
Improving Quality of Experience for Mobile
Broadcasters in Personalized Live Video Streaming

Qingmei Ren1, Yong Cui* 1, Wenfei Wu1, Changfeng Chen1, Yuchi Chen2, Jiangchuan Liu2, and Hongyi Huang1

1Department of Computer Science and Institute for Interdisciplinary Information Sciences, Tsinghua University
2Department of Computer Science, Simon Fraser University

Abstract

Ensuring high video quality of experience (QoE) on the

broadcaster side is critical for interactive live streaming.

However, measurements on multiple live streaming platforms

show that they all suffer from broadcaster-side video quality

degradation in the presence of transient bandwidth fluctua-

tions. This paper presents Greedy Variable Bitrate (GVBR), a

suite of solutions that optimizes the QoE through an approri-

ate keyframe interval that trades cross-frame compression for

lowered inter-frame interdependency, a simple-yet-efficient

frame dropping strategy to prevent excessive frame drops,

and a bitrate adaptation strategy customized for broadcasters

who have shallow buffer. We compare GVBR with state-of-

art algorithms in different network conditions, and find that

GVBR can cut video interruption incidents by 90%, while

achieving comparable bitrate.

I. INTRODUCTION

Recent years with more personal devices equipped with

high-definition cameras, applications that allow device users

to stream videos to anyone get a rapid proliferation (e.g.,

Facebook Live, Periscope, Twitch, Douyu). While recent

work on personalized live streaming has insofar focused on

analyzing its traffic pattern (e.g., [21]) and video distribution

architecture (e.g., [14], [17]), there has not been enough effort

to characterize the quality issues of broadcaster-uploaded
videos. Yet, we argue that improving the broadcaster-side
uploading video quality is crucial to the QoE in the per-
sonalized live streaming. Any delay or failure caused by

the broadcaster could inflate on all viewers. Moreover, the

upstream video quality sets a “cap” on all viewers.

Compared with traditional live streaming where broadcast-

ers have well-provisioned connections and streaming delay

is tens of seconds, the broadcaster-side video uploading

in personalized live streaming distinguishes itself in two

aspects. (1) Individual mobile users as broadcasters. Content

source in personalized video streaming is often mobile broad-

casters that encounter a more variable network connection

(e.g., user motion and complicated wireless signal strength).

Supported by the Science and Technology Project of State Grid Corpo-
ration of China (No.2017YFB1010002) and Funding of Beijing National
Research Center for Information Science and Technology.

*Corresponding author: Yong Cui (cuiyong@tsinghua.edu.cn)

(2) Broadcaster-viewer interactivity. The broadcasters are

required to interact with viewers, and thus the end-to-end

streaming delay must not exceed several seconds.

Due to its unique characteristics, there are three require-

ments on the broadcaster streaming protocol design.

1. High quality. Video quality includes many metrics, includ-

ing bitrate, frame-per-second (FPS), resolutions. Broadcasters

must provide videos with as highest possible quality as

possible and then the viewers can get satisfactory QoE.

2. Agile adaptation. The broadcaster must be sufficiently

adaptive to quickly react to bandwidth fluctuations.

3. Timeliness. The delay between the broadcaster and viewers

must be minimized or at least bounded.

Directly applying frameworks to traditional live streaming

leads to the QoE of broadcaster-uploading video far from

ideal. We observe two prevalent quality issues across many

popular platforms. (1) An amplifying effect of transient
fluctuating network conditions causes persistent video QoE

degradation. (2) These broadcasters are unable to effec-

tively respond to long-term throughput drops as well. Thses

problems cause significant quality degradation in practice,

especially for the broadcasters that are often subject to both

transient and long-term wireless throughput fluctuations.

The root cause of amplifying effect lies in the fact

that RTMP drops frames too aggressively when the buffer

overflows, resulting in unnecessary drops of video frames

and persistent video stalls. RTMP, the de-facto streaming

protocol, is widely used in many popular platforms; alter-

native HTTP-based live streaming protocols have also been

studied [12] [19]. While switching to HTTP-based protocols

might achieve better video quality, it cannot timely react to

wireless fluctuation due to chunking overheads.

For the long-term network fluctuations, existing solutions

focus on the bitrate adaptation in video-on-demand (VOD),

which can be classified into three categories: rate-based,

buffer-based and the combination of two. Rate-based methods

pick the highest available bitrate lower than the estimated

bandwidth [9] [16], while buffer-based chooses the bitrate

according to the buffer [8]. Control theory is also applied to

the bitrate adaptation, which uses the combination of buffer

and throughput [20]. The difference between VOD and live

streaming are the chunk granularity and the buffer size. There

978–1–5386–2542–2/18/$31.00 c© 2018 IEEE

are also some papers about video adaptation in live streaming,

but little talks about video transmission quality. Cicco et

al. [6] use feedback control to switch the encoding parameter,

but the issue lies in the server-client distributing link.

In this paper, we present GVBR, a suite of solutions that

substantially improves the broadcaster-side video quality. Our

key insight is that these quality issues can be mitigated by a

systematic co-design of RTMP configuration (i.e., keyframe

interval, buffer size), frame-level drop logic, and higher-

level bitrate adaptation strategy. While integrating GVBR in

existing broadcaster involves changes in multiple aspects, all

changes are non-intrusive, changing either tunable parameters

or control logic that is not hard-coded in the software.

Our preliminary evaluation shows that a better design

could obviously improve video quality compared to an open-

source RTMP platform. Through extensive evaluation under a

variety of network conditions, we find that GVBR cuts video

interruption incidents by 90% compared to popular video

adaptation algorithms, while achieving comparable bitrate.

In short, we make two contributions:

1) We are the first to shed light on the broadcaster-side

video quality issues across personalized live streaming.

Measurement results reflect a prevalent quality issue,

caused by unnecessarily persistent video interruptions

in the presence of transient bandwidth fluctuations.

2) We present a holistic suite of solutions that system-

atically address the observed quality issue via better

designs for the encoding of frames, frame prioritization

strategies, as well as bitrate adaptation strategy.

II. VIDEO QUALITY ISSUES ON BROADCASTER SIDE

We measure several personalized live streaming platforms

and show the broadcaster-side quality degradation issue. We

then analyze the root causes, and propose possible solutions.

A. Measuring Broadcaster Performance

Video streaming architecture. A brief introduction to

the common architecture of personalized live streaming is as

follows. When live streaming starts, the broadcaster uploads

the live video to a source server using RTMP protocols, from

which the video is forwarded to many CDN edge servers.

Then, each viewer streams the video from a nearby edge

server using HTTP-based streaming protocols (i.e., DASH).

Experiment setup. We set up a demo that a broad-

caster uploads video. Broadcaster and viewer are equipped

with 100Mbps NICs; they are connected by a switch. The

broadcaster uses OBS studio [3] (one of the most popular

broadcast softwares) to send videos, and it has a bandwidth

control module to emulate network bandwidth in wireless

environments. The viewer is built on nginx-rtmp module to

receive videos and uses VLC player to play the rtmp stream.

Case study: performance in variable networks. We

control the network bandwidth according to a real trace from

a wireless network [4]. The result is shown in Figure 1.

We have two observations. (1) In Figure 1a, the actual

throughput follows the trace closely. However at 50s, the

(a) Throughput of 0− 140s (b) Throughput of 120− 260s

Fig. 1: Streaming throughput in oscillating wireless network. The trace
records the real-time bandwidth when a mobile device user visits Amazon
website. We aggregate packets into 5s bins and calculate the data amount
in each slot. We stream video at a bitrate of 3300kbps (below the average
bandwidth) via OBS and capture packet trace in viewers’ side.

bandwidth falls below the bitrate for 2s, while the throughput

degrades to almost 0 from 50s to 58s. It’s an abnormal behav-

ior, as a 2s network jitter cascadingly causes 8s throughput
falling in application level. (2) Live streaming platforms

cannot efficiently handle the long-term bandwidth variance

in Figure 1b. Bandwidth drops dramatically after 180s and

the period lasts for 80s. In the challenging network, OBS

insists the previous bitrate and massive frame drops occur.

0 10 20 30 40 50 60 70
Time(s)

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
(K

bi
ts

/ti
ck

)

Throughput
Trace

0 10 20 30 40 50 60 70
Time(s)

0

15

30

45

60

75

90

105

N
o.

 o
f d

ro
pp

ed
 fr

am
es

(a) OBS player to Douyu server

0 10 20 30 40 50 60 70
Time(s)

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
(K

bi
ts

/ti
ck

) Throughput
Trace

0 10 20 30 40 50 60 70
Time(s)

0

50

100

150

200

N
o.

 o
f d

ro
pp

ed
 fr

am
es

(b) Douyu tool to Douyu server

Fig. 2: Throughput and No. of dropped frames in commercial platforms.
We repeat the above experiement with two settings: (1) use OBS to stream to
Douyu servers, (2) from Douyu tool to Douyu server. In both settings, the
average available bandwdith (1700kbps) is above the video bitrate, while
intermittently, the throughput drops below the bitrate. Frame drops occur
and keep a high value in certain periods, e.g., 30-36s in OBS player, 32-39s
in Douyu tools.

Fig. 3: Throughput in long-time bandwidth drop case. Bandwidth drops
dramatically after 180s. During this period all the video bitrate keeps
identical.

Experiments on commercial platforms. The “cascading

effect” of the quality issues is prevalent, which manifests

itself in many commercial platforms of personalized live

streaming, as shown in Figure 2. We also find that the

cascading effect is not related to the instantaneously available

bandwidth. For example, in Figure 2a, a dramatic bandwidth

drop at 30s causes the cascading effect; while in Figure 2b,

only a slight bandwidth drops at 32s.

The ability to handle long-term throughput drop is val-

idated in Figure 3. Play failure time equals to the time

corresponding to frame drops. OBS to Douyu performs worst,

with the play failure time equaling to 93.1s. Others though

follows the bandwidth, frames are dropped constantly in this

period. Obs player to Twitch has a 79.3s play failure time,

while Douyu tools to douyu has a 66.67s play failure time. In

all, present commercial platforms cannot solve the long-term

throughput drop, due to the excessive data generation speed.
B. Analyzing the Root Cause

The “cascading effect” arises from the inter-frame de-

pendency. In case of bandwidth drop, there exists a queue

to store video frames. A frame generating thread encodes

raw captured images into frames, and enqueues the frames.

According to H.264, the de-facto video encoding standard, a

video is organized into several groups of pictures (GOP). In

each GOP, the first I frame keeps unchanged; P frames are

generated by computing their delta with the preceding I or

P frame; B frames are computed based on its neighboring

frames. Meanwhile a sending thread sends frames out via

socket. If in bad network conditions, the frame sending thread

would be blocked, disabling the generating thread to enqueue

frames and thus dropping them. And if frame drops occur

in the beginning or middle of a GOP, it would cascadingly

render the remaining frames with the GOP undecodable.

We study the frame drop strategy in OBS. Drop priority
is designed to avoid the useless transmission of undecodeable

frames. At first, drop priority is set as false, and would be-

come true when frames drop. Then the queue stop receiving

the subsequent frames until next GOP. T imespan represents

the maximum time difference among frames in the buffer.

When a new frame arrives, if it’s an I frame, it is enqueued.

If the frame is a P frame, only if the timespan is less than 0.9s

and the drop priority regarding P frame is true, the P frame is

enqueued; otherwise, all frames within the GOP are dropped

(except I frame). If the frame is a B frame, the threshold is

0.7s, and the processing logic resemble that of P frames.

However, in long-term bandwidth degradation, frame gen-

eration speed exceeds the network capacity, and frames are

dropped. The cascading effect would further worsen the

performance. The essential reason is that the video bitrate

cannot be adjusted adaptively to the instantaneous bandwidth.

C. Design Space Insight

Massive frame drops obviously violate the quality require-

ments, but increasing video buffer would exceed the timeli-

ness limitation. Thus in our design, we keep the buffer as 0.9s
to satisfy the timeliness requirement, and adapt the frame

generation mechanisms to variable network conditions. The

previous motivating case gives us three possible methods.

Reduce the dependency between frames. The depen-

dency between frames is due to the video compression

algorithm, where compressed frames are computed from

keyframes. Keyframes are independent. Thus, the depen-

dency is limited within each GOP, the intuition to eliminate

dependency is to reduce GOP size. Nevertheless, this ap-

proach may be a tradeoff between the minimal frame drop

and the video quality, because reducing keyframe interval

means less compression in video streaming. To reach a pre-

configured bitrate, per-image quality would be degraded.

Drop frames wisely. Frame-dropping policy could strike

a balance between quality and timeliness in the presence

of bandwidth fluctuation [7], [10], [15]. Default OBS drops

all P/B frames when the buffer exceeds a threshold. It is

kind of reasonable because if dropping the earlier frames,

the following frames cannot be decodable. And if dropping

the latest several frames, the timeliness will be violated.

But intuitively, for the case where two GOPs coexist in the

buffer, dropping the frames of the old GOP, may have better

performance. It is challenging to design an online frame

dropping strategy that approaches the optimal solution.

Adaptive bitrate. Bandwidth fluctuations occur fre-

quently, and measurements show that commercial appli-

cations use only constant bitrate (CBR). These methods

cannot follow the dynamic bandwidth, which would bring

tremendous frame dropping, even worse if the bandwidth

drop lasts for a while. One possible and efficient solution

is applying adaptive bitrate to broadcaster’s side.

III. GVBR SOLUTION

Based on the intuitions above, we customize the design of

RTMP protocol in three aspects. First, we tune the GOP size

to reduce the dependency between frames so that “cascading

effect” is mitigated; second, we improve the frame drop

strategy within GOP to avoid unnecessary frame drops. These

two methods are targeted at short throughput drop. We also

devise a GOP-level bitrate adaptation algorithm for long-term

wireless bandwidth degradation.

A. Determining GOP Size

Larger GOP size causes “cascading effect” when the

network suffers from transient bandwidth drop; but smaller

GOP causes high compression ratio and subsequently low

frame resolution. Here, we try to find the best GOP size.

The influence of GOP size on frame drops is measured

by controlled experiments. We replay the stored video with

controlled network conditions, tune GOP size in each replay,

and figure out the GOP size with the least frame drops. As for

the video resolution, SSIM(structural similarity), an effective

method for measuring quality of video [18] [13], is used

as the metric. Then we vary GOP sizes, and figure out the

minimum GOP size that can keep SSIM within [95%-100%]

of the SSIM of the original video. This computation can be

done offline in a cloud, CDN server, or in the streaming

device.

B. Smart Drop Strategy

In the runtime with GOP size configure, a frame drop

logic is needed for transient network degradation. We first

maximize ΣiyiT , subject to

xij + yij + zij = 0, ∀j < i (1)
xij + yij + zij = 1, ∀j ≥ i (2)
xij ≥ xi,j+1, ∀j ≥ i (3)
yij ≤ yi,j+1, ∀j ≥ i (4)
zij ≤ zi,j+1, ∀j ≥ i (5)

yij = xi,j−1, ∀j, i ≤ Mj (6)

yij + zij = 1, ∀j > i + T1 (7)

yi+1,T ≥ yiT , ∀i �≡ N − 1(modN) (8)

Fig. 4: Frame Drop Strategy

theoretically figure out the best possible drop decision (i.e.,

best video quality) assuming the network degradation is

known beforehand. Then we design an online algorithm that

has low complexity and is suitable for mobile devices.

1) Problem Analysis: Assuming the frame pattern of GOP

and network bandwidth are known, there exists an optimal

scheduling maximizing audience QoE within the system

constraints. A GOP comprises three kinds of frames, namely

I/P/B frame; for convience, B frame is ignored. The problem

can be formulated by integer programming (Figure 4). We

divide the total decision time into T slots, and assume the i-
th frame is generated at time i. We define xij , yij , zij as 0/1

variables to describe in time j whether i-th packet is in the

queue, sent or dropped. At time j, the bandwidth capacity is

Cj . Besides, the keyframe interval is defined as N .

Frame conservation constraints. Frame i is generated

at time i, and after that, it is either in the queue, sent, or

dropped (1-2). After a packet is removed from the queue, it

would never be enqueued (3). After a packet is sent/dropped,

it is permanently sent/dropped (4-5).

Bandwidth constraints. Here we assume that the broad-

caster sends as many packets as possible when meeting the

network capacity constraints. In addition, the frame that can

be send must be in the buffer (6). Considering the constraints,

the max sendable frame index Mj , is calculated by the

function.

Mj = argmaxΣk(1− yk,j−1)(1− zk,j−1) ≤ Cj (1)

Timeliness constraint. A frame can be ”fresh” within T1
since its generation, after T1 it’s either sent or dropped (7).

Decodability constraints. The final delivered frames must

be decodable. I frames are always decodable. A P frame is

decodable only if its preceding frame is decodable (8).

Optimization goal. The goal is to maximize the delivered

frames. Compared with prior work [15], this IP model has

timeliness and decodability in consideration.

2) Greedy Algorithm: IP can achieve the offline optimal.

Nevertheless long-term bandwidth is unknowable ahead of

time, and the computational complexity is too high for mobile

devices. Consequently, an online drop strategy is necessary.

Considering the situation where two GOPs coexist in

buffer, we propose a modified dropping algorithm, called

GreedyDrop. Differing from dropping all the P frames in the

buffer by default, GreedyDrop drops all the P frames until

the next keyframe. Hence the latest GOP can be reserved and

our algorithm avoid frame dropping at least one GOP.

C. Adaptive Bitrate

maximize
∑

Rj − α
∑ |Rj+1 − Rj | − β

∑
Dj , subject to

Rj+1 = Rj , ∀mod(j,M) �≡ M − 1 (1)

Sj = argmax
∑

k Rj
k ∗ T j

k ≤ Cj , ∀j (2)

Restj = (Cj − ∑
Sj

Rj
k ∗ T j

k)/R
j
Sj+1, ∀j (3)

Fj = sgn(
∑

Sj+1 T j
k − Restj − T1), ∀j (4)

Dj = Fj ∗ (T j
Sj+1 − Restj), ∀j (5)

Nj+1 = Nj − Sj − Fj + 1 − sgn(mod(j,M)), ∀j (6)

Rj+1
k = Rj

k+Sj+Fj
, ∀j, k ∈ {1, Nj − Sj − Fj} (7)

Rj+1
Nj−Sj−Fj+1 = Rj+1, ∀mod(j,M) ≡ 0 (8)

T j+1
k = T j

k+Sj+Fj
, ∀j, k ∈ {1, Nj − Sj − Fj} (9)

T j+1
Nj−Sj−Fj

= T j+1
Nj−Sj−Fj

− Dj − Restj , ∀j (10)

T j+1
Nj−Sj−Fj+1 = 1, ∀mod(j,M) ≡ 0 (11)

Fig. 5: Video Adaptation Formulation
1) Problem Formulation: To deal with long-term band-

width fading, we introduce the adaptive bitrate. Symbols Cj ,

j, T , T1 are defined the same as the previous section. Rj

represents the bitrate of the j frame. Fj and Dj describe

whether frame drops occurs and the number of dropped

frames. Restj is the remaining time in buffer. Adopting

GreedyDrop as frame drop strategy, the utility function (QoE)

can be formulated as in Figure 5. The first item Rj is the

bitrate utility, the second represents the bitrate switch penalty,

the last one equals the frame drops penalty. Variables α and

β are the utility parameters of bitrate switch and frame drops.
Bitrate Constraint. Constraint (1) requires that bitrate

within one GOP must be identical.
Bandwidth Constraint. The maximum number of GOPs

that can sent within the limited bandwidth is Sj (2).
Timeliness Constraint. Constraint (3) judges whether the

remaining time after sending exceeds the buffer threshold and

constraint (4) gives the number of dropped frames in time j.
State Transition. At time j, the total number of GOPs

is Nj ; for the k-th GOP, the remaining time and bitrate are

T j
k and Rj

k respectively. Constraints (7-11) reflect the state

transition of the bitrate and remaining time of the GOPs in

the buffer. Equation (6) describes the number of GOPs in

time slot j +1, and the last items 1−mod(j,M) represents

whether the j−th frame is the keyframe. sgn is the modified

sign function. When the variable is greater than 0, it equals

to 1; otherwise it equals to 0. mod is the modulo operation.
Offline optimal solution is hard to calculate. Assume for

each GOP, the broadcaster can choose one from total M
bitrate candidates. For a t GOP decision, the computation

complexity equals to M t, which has an exponential com-

plexity.

Algorithm 1 Greedy Variable Bitrate(GVBR) algorithm

1: Initialize Rest=0, Send=0, Drop=0, η
2: for j=1 to T do
3: record the history bandwidth [Cj−τ , Cj−1], use harmonic mean to estimate

Cj

4: choose the closest bitrate Rj to (Cj − rest)/η
5: send frames Send in buffer within the bandwidth limit
6: judge whether to drop extra frames Drop
7: calculate the rest data size in buffer Rest = Rest+Rj − Send−Drop

2) Solution Description: The offline optimal with expo-

nential complexity is hard to solve and on the basis of off-the-

shelf knowledge of future bandwidth. Long-term bandwidth

prediction is inaccurate, and an intuitive idea is to change

the bitrate following the bandwidth. Moreover, the remaining

data size in the buffer can also be adopted. GVBR is designed

for broadcaster’s bitrate adaptation, as shown in Algorithm 1.

1. Bandwidth estimation. According to Festive [9] and

MPC [20], harmonic mean is a useful method of estimating

the future bandwidth. Here we use harmonic mean.

2. Bitrate selection. Given the future bandwidth Cj and the

data size in buffer Rest, assuming the tuning parameter as η,

choose the largest available bitrate lower than (Cj−Rest)/η.

IV. EVALUATION

Evaluation of the previous design in RTMP protocol is

shown in this section, so does the GVBR algorithm.

A. Best GOP

In this section we evaluate reducing keyframe interval to

figure out whether it can reduce the frame dropping.

Implementation. We keep the outbound throughput of

broadcaster at a constant level, and introduce a 2s interrup-

tion. We record the number of frame drops as comparison

metrics. The FPS in this paper is usually set as 30.

(a) Frame drops with different I
frame interval. Default interval is
8s, and change it to 4s and 1s.

(b) SSIM for different GoP val-
ues. We pick four videos from the
dataset to represent the result.

Fig. 6: Relationship between GOP size and video quality

Varying keyframe interval. The frame drops are shown in

Figure 6a. We can observe that in each individual experiment,

earlier the interruption starts in a GOP, more frames are

dropped. Because an early frame has more frames depending

on it. For the default keyframe interval, when interruption

starts at 17s, 19s, 21s, and 23s, the number of frame drops

is 238, 164, 105, and 48. Comparing bars within the group

of 17s, we find that smaller keyframe interval significantly

reduces the number of frame drops (i.e., 238, to 102, and 46

when the interval changes from 8s to 4s and 1s).

This experiment shows that if we eliminate the dependency

between frames, an occasional network jitter would only af-

fect frames within a limited duration near the jitter. However,

reducing keyframe interval is an intractable issue because that

adjusting would cause video quality degradation.

Video quality and GOP To figure out the relationship, we

vary the GOP sizes and repeat encoding uncompressed video

using x264 encoder [5] [11]. A fact is that x264 uses the

delta intermode coding. Thus a larger GOP is more likely to

increase the cumulative error, and the recommended value of

GOP is less than 250 frames. Nevertheless how to determine

the specific value is still sophisticated. The video dataset

we use contains SD, HD, and 4k content in variety [2].

The relationship between normalized SSIM and GOP size

is displayed in Fig 6b. From the figure, we can see when

the GOP size is larger than 0.5s, the SSIM keeps almost the

same. Combining the previous experiment, we can see that

GOP size between [0.5, 2]s may be the best choice.

B. Greedy Drop Strategy

We compare the performance with two drop strategies,

Oracle and Default OBS. Oracle, the offline optimal solution

by brute-force searching, has an exponential time complexity.

(a) No. of frame drop (b) Real-time throughput
Fig. 7: Comparison of different frame drop strategies. We pick out 30
seconds from the dataset. During the period both long-term and short period
bandwidth fluctuating appear. The keyframe interval is chosen between
[0.5s,2s], 1s.

OBS drops the most frames (320 frames), and GreedyDrop

reduces 15% (274 frames), which is a prominent improve-

ment; and the gap between GreedyDrop and Oracle (265

frames) is small, which is less than 5%. The frame drop and

throughput is shown in Figure 7. Frame dropping happens

at 5-10s and 20-30s. All algorithms perform similarly during

5-10s, but the Oracle saves more frames before the network

recovers, and keeps a high bandwidth during 10-15s. The

frame drop of OBS waves at a high variance in 20-30s, but

GreedyDrop almost keeps unchanged, because GreedyDrop

only drops the undecodable frames of the first GOP. Oracle

also fluctuates, but with a small variance. Considering time

complexity and performance, GreedyDrop is a good choice.

C. Greedy Adaptive Bitrate

(a) FCC dataset [4] (b) HSDPA dataset [1]
Fig. 8: Throughput of different datasets. GreedyDrop is adopted as the
drop strategy (excluding OBS-VBR).

Three algorithms work excellently in VOD scenario is

used for comparison, harmonic mean is used for bandwidth

estimation:

• OBS-VBR: A simple but popular method, chooses the

highest bitrate lower than the estimated bandwidth.

Fig. 9: Normalized bitrate, play failure

and QoE Fig. 10: CDF of Play Failure Seconds Fig. 11: CDF of Normalized QoE

• MPC (Model predictive control) [20]: use buffer state

(buffer size, frame types) and bandwidth predictions to

calculate the optimal bitrate operation in future several

time slots. Use the first bitrate choice in next time slot.

• Robust-MPC [20]: use the approach resembling MPC,

but correct the estimated bandwidth by considering the

prediction error in the past several time slots.

Detailed results are shown in Figure 8. Without predication

correction, MPC prefers to choose higher bitrate than Robust-

MPC. Additionally, the MPC and Robust-MPC switch bitrate

more frequently than GVBR. Because GVBR tends to choose

the lower bitrate than the throughput, when small bandwidth

fluctuation happens, GVBR is less likely to shake. However

MPC struggles to achieve the optimal utility, and has the

potential to choose a higher bitrate to maximize bitrate utility.

We use two datasets, FCC and HSDPA to evaluate GVBR

algorithm. Massive simulation is displayed in Figure 9.

Normalized QoE utility is compared in the figure. MPC

has the maximum average bitrate, because the bandwidth

estimation is more aggressive. Others reach almost the same

average bitrate, with little difference, but GVBR is a little

higher. With higher bitrate, MPC also drops the most frames,

and the time of play failure is the longest. GVBR reduces

the play failure to a small value, which is a 50% reduction

compared with Robust-MPC. With higher bitrate and lower

play failure, GVBR definitely preforms the best, with the

highest QoE.

CDF about play failure and normalized QoE is in Figure

10, 11. In GVBR, 98% of the paly failure is less than 5s, 40%

even plays fluently with no failure; and only 2% receives poor

QoE, and the the rest 98% receives at least 80% normalized

QoE. The total frame drops compared with original OBS with

CBR are reduced by 96%. The play failure time of original

OBS is 26s in average, and GVBR is only 1s.

V. CONCLUSION

We proposed GVBR, a combined algorithm which im-

proves the default frame dropping strategy and design an

effective video adaptation algorithm. The revised frame drop-

ping strategy considers the case where two GOPs exist in the

buffer and keep the frames of the next GOP, and thus have

only 5% more frame dropping than Oracle. GVBR chooses

the bitrate according to the difference between the estimated

bandwidth and the data size in buffer, which reflects more ac-

curately the real bandwidth. Massive experiments illustrates

that GVBR reduces 50% of frame dropping compared with

the state-of-art adaptation methods. All in all, our proposed

combined algorithm, GVBR, reduces the paly failure time

from 26s to 1s, with an improvement of more than 96%.

REFERENCES

[1] http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/.
[2] https://media.xiph.org/video/derf/.
[3] https://obsproject.com/.
[4] https://www.fcc.gov/measuring-broadband-america.
[5] http://www.videolan.org/developers/x264.html.
[6] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback control for

adaptive live video streaming. In MMSys, 2011.
[7] J. Huang, C. Krasic, and J. Walpole. Adaptive live video streaming

by priority drop. In AVSS, 2003.
[8] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A

buffer-based approach to rate adaptation: Evidence from a large video
streaming service. SIGCOMM CCR, 2015.

[9] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. TON,
2014.

[10] C. Krasic, J. Walpole, and W.-c. Feng. Quality-adaptive media
streaming by priority drop. In NOSSDAV, 2003.

[11] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices. In
Mobicom, 2017.

[12] B. Seo, W. Cui, and R. Zimmermann. An experimental study of video
uploading from mobile devices with http streaming. In MMSys, 2012.

[13] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui. Cloud gaming: architecture
and performance. IEEE Network, 2013.

[14] M. Siekkinen, E. Masala, and T. Kämäräinen. A first look at quality
of mobile live streaming experience: the case of periscope. In IMC,
2016.

[15] S. K. Singh, H. W. Leong, and S. N. Chakravarty. A dynamic-priority
based approach to streaming video over cellular network. In ICCCN,
2004.

[16] J. Song, Y. Cui, Z. Li, Y. Bao, L. Zhang, and Y. Zhang. Edash: Energy-
aware qoe optimization for adaptive video delivery over lte networks.
In ICCCN, 2016.

[17] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Y. Zhao. Anatomy
of a personalized livestreaming system. In IMC, 2016.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 2004.

[19] S. Wilk, R. Zimmermann, and W. Effelsberg. Leveraging transitions
for the upload of user-generated mobile video. In Proceedings of the
8th International Workshop on Mobile Video, 2016.

[20] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. SIGCOMM
CCR, 2015.

[21] C. Zhang and J. Liu. On crowdsourced interactive live streaming: a
twitch. tv-based measurement study. In NOSSDAV, 2015.

