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Multiplexed quantum memories and high-dimensional entanglement can improve the performance
of quantum repeaters by promoting the entanglement generation rate and the quantum communica-
tion channel capacity. Here, we experimentally generate a high-dimensional entangled state between
a photon and a collective spin wave excitation stored in the multiplexed atomic quantum memory.
We verify the entanglement dimension by the quantum witness and the entanglement of formation.
Then we use the high-dimensional entangled state to test the violation of the Bell-type inequality.
Our work provides an effective method to generate multidimensional entanglement between the
flying photonic pulses and the atomic quantum interface.

I. INTRODUCTION

Long distance quantum communication requires quan-
tum entanglement distributed over two end nodes of a
quantum communication channel [1–3]. Due to the op-
tical absorption and other noise in the channel, the er-
ror of direct communication increases exponentially with
the distance, thus reduces the key rates in quantum key
distribution. To overcome this problem, the quantum re-
peater protocol has been proposed, where a series of en-
tanglement generation and swapping operations are per-
formed to extend the entanglement to farther and farther
nodes with only polynomial cost [4]. The practical uti-
lization of a quantum repeater requires quantum mem-
ories [5, 6]. Pioneering works have been demonstrated
toward the implementation of a quantum repeater with
atomic quantum memory. For example, photonic qubits
have been stored as collective spin wave excitations in the
atomic ensemble [7–9]; entanglement between the mem-
ory and transmitting photons has also been realized [10–
12].

Several methods have been proposed to further im-
prove the quantum repeater protocol. One is to use mul-
tiplexed quantum memories, which significantly reduce
the required time to establish entanglement in the quan-
tum communication channel [13–15]. Another possibility
is to explore high-dimensional entanglement in the quan-
tum network [16, 17], which increases the capacity of the
communication channel and thus enhances the quantum
communication efficiency [18]. High-dimensional entan-
glement also has plenty of applications beyond quantum
communication, such as quantum teleportation with high
capacity [19–21], quantum distillation [22, 23] and robust
Bell tests [24, 25]. Recently, many efforts have been de-
voted to creating high-dimensional entanglement sources
in different systems, like rare-earth-doped crystals [26–
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32], integrated devices [25, 32] and atomic systems [33–
35]. Moreover, the photonic qudits possessing the high-
dimensional entanglement have been stored in quantum
memory elements, based on atomic ensembles [36, 37] or
rare-earth-doped crystals [9, 26, 38].

Despite its importance, the verification of a high-
dimensional entangled state and the certification of the
entanglement dimension are sophisticated tasks for the
experiments. The standard method to estimate the en-
tanglement fidelity is to reconstruct the full quantum
state, for example, through quantum state tomography
[39, 40]. It works well for low-dimensional entangled
states [27]; but the measurement costs increase signifi-
cantly with the system dimension. Besides being time
consuming, it also requires the setup to be stable during
the whole measurements. Furthermore, some measure-
ment settings may not be available for a given experi-
mental platform [29, 31]. To overcome these difficulties,
several methods are proposed and experimentally demon-
strated to efficiently characterize the high-dimensional
entanglement with sparse data, such as entanglement
witness [24, 29, 31, 41] and compressed sensing [42, 43].

In this paper, we experimentally demonstrate an alter-
native and effective method to generate high-dimensional
entanglement between a flying photon pulse and a spin
wave stored in an atomic quantum memory based on
the use of spatial multiplexing. Through excitation of
a one-dimensional (1D) array of 10 atomic memory cells
[44, 45], we generate high-dimensional entanglement car-
ried by different spatial modes of the photon and the
atoms. These different modes are brought together for in-
terference through an acoustic-optical deflector (AOD) to
confirm the multi-dimensional entanglement. The high-
dimensional entanglement is verified through different
kinds of entanglement witnesses, and we confirm that at
least eight-dimensional entanglement is achieved exper-
imentally [41]. Entanglement of formation is also mea-
sured to confirm a lower bound of 4-dimensional entan-
glement [29]. Finally, as an application, we demonstrate
the violation of high-dimensional Bell-type inequalities
using the stored entangled state [46].
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FIG. 1. Generation of high dimensional entanglement between a photon and a multiplexed atomic quantum
memory (MAQM). (a) Setup. HWP represents half-wave plate, QWP for quarter-wave plate, and SPD for single photon
detector. The two programmable acousto-optic deflectors (AOD) (W-AOD/R-AOD or S-AOD/I-AOD), two lenses and the
atomic ensemble in the middle under 4f configuration form the multiplexing/demultiplexing optical circuits. The write pulse
is split into ten paths in the x direction (4 paths shown here for clarity). The entanglement between a signal photon and a
spin wave excitation in the memory array is generated by the DLCZ protocol. To verify the entanglement, the spin wave is
retrieved into an idler photon. The ten optical modes of the signal/idler photon are further combined in the S-AOD/I-AOD;
measurements in different bases can be performed by adjusting the amplitudes and phases of the RF signals on the AODs.
(b) Energy diagram |g〉 ≡ |5S1/2, F = 1〉, |s〉 ≡ |5S1/2, F = 2〉, |e〉 ≡ |5P1/2, F = 2〉. The write beam is blued-detuned by
∆ = 16 MHz from resonance at the central memory cell. (c) Basis choice for AODs. the blue (green) lines are the signal (idler)
modes; the pink squares represent the individual memory cells, and the red rectangles are the S-AOD/I-AOD. The AODs can
be set to measure the X-basis (upper row), or the K-basis (lower row). More details can be found in Appendix B.

II. EXPERIMENTAL SETUP

Our experiment is illustrated in Fig. 1 schematically.
A cold 87Rb ensemble is loaded into a 3D MOT with
about 2-3 billion atoms. After a 10 ms compression and
a 7 ms polarization gradient cooling (PGC) processes, the
temperature of the ensemble is reduced to 25µK. Then
we further prepare the atoms to the ground state |g〉 ≡
|5S1/2, F = 1〉 through optical pumping. The experiment
starts with a 100 ns write pulse, which is 16 MHz blue-
detuned to the D1 transition |g〉 → |e〉 ≡ |5P1/2, F = 2〉.
Upon the detection of a signal photon from spontaneous
Raman scattering, we know that an atom has been scat-
tered into the storage state |s〉 ≡ |5S1/2, F = 2〉, and that
a spin wave has been generated in the atomic ensemble.
Then it can be retrieved back into an idler photon by a
500 ns strong read pulse, resonant to the |s〉 → |e〉 tran-

sition. The interval time between the write and the read
pulse, 7.9µs, is the same as the Larmor period of the
ensemble. In this way, we can achieve the highest re-
trieval efficiency of the spin wave excitation [47]. On the
other hand, if there is no signal photon detected follow-
ing the write pulse, a strong clean pulse identical to the
read pulse will be applied to bring the atoms back to
the ground state |g〉, and the experimental cycle will be
repeated.

The multiplexing/demultiplexing optical circuits con-
sists of the acousto-optic deflectors (AODs) and lenses
under 4f configuration to address different regions of the
cold 87Rb ensemble. Each region serves as an individually
addressable memory cell with low cross talk errors [44].
We use the Duan-Lukin-Cirac-Zoller (DLCZ) protocol to
generate the high dimensional entanglement between the
signal photon and the spin wave in the memory array
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FIG. 2. Measurement of entanglement witness. The sum of visibility Vx, Vy and Vz in X-space and K-space are shown
respectively. Each pixel in the plot corresponds to a two-dimensional subspace spanned by X = x1 and X = x2 (K = k1 and
K = k2) for both the signal and the idler photons. Every mode pair requires 12 measurement settings to obtain the visibility,
and the ideal sum of visibility is 3 for each pair.

[5]. In this work, we divide the weak write pulse into 10
spatial modes (4 shown in Fig. 1(a) for clarity). Since
the signal photon and the spin wave come from the same
spatial mode, the entangled state can be written as:

|Ψ〉 =

9∑
i=0

Ci|i〉s|i〉a, (1)

where |i〉s (|i〉a) refers to the signal photon (spin wave) in
the mode i, and the coefficients Ci can be controlled by
adjusting the amplitudes and phases of RF tones in the
W-AOD. Ideally we want Ci = 1/

√
10 (i = 0, 1, · · · , 9)

for the maximally entangled state.
To verify the high-dimensional entanglement, we first

retrieve the spin wave excitation into an idler photon
by a strong read pulse. The signal modes and the idler
modes are combined by the S-AOD and I-AOD respec-
tively for different measurement bases. Two types of
bases will be used: the spatial basis X̂ = |x〉〈x| (x =

0, 1, · · · , 9), and the momentum basis K̂ = |k〉〈k|, where

|k〉 =
∑9

x=0 exp(2πixk/10)|x〉/
√

10 (k = 0, 1, · · · , 9).

III. ENTANGLEMENT WITNESS

Quantum state tomography can reconstruct the full
density matrix, but it is time-consuming for high-
dimensional entangled states. Here, to efficiently ver-
ify the entanglement, we use the entanglement witness
method [34, 41]. The entanglement witness we use here
was originally designed for photons carrying orbital an-
gular momentum (OAM). Three mutually unbiased bases
(MUBs) are measured for every 2-dimensional subspace;
following Ref. [34], we call them diagonal/anti-diagonal
(σx), left/right (σy), and horizontal/vertical (σz) bases.
The visibility is defined as the correlation between the

signal and the idler photons Vi = |σ(s)
i ⊗σ

(i)
i | (i = x, y, z).

We measure the visibility for all the two-dimensional sub-
spaces in the X (K) space spanned byX = x1 andX = x2

(K = k1 and K = k2), as shown in Fig. 2. If the sys-
tem has at most d-dimensional entanglement, it can be
shown that the sum of visibilities for all the mode pairs
W satisfies [34]:

W ≤ f(d) ≡ 3D(D − 1)/2−D(D − d), (2)

where D = 10 is the total number of modes. When the
measured W exceeds this bound, we can conclude that
the entanglement is at least (d + 1)-dimensional. Here
we measure WX = 111.6 ± 0.8 for the X-space, and
WK = 111.1 ± 0.8 for the K-space. Both of them are
larger than f(d) = 105 for d = 7, which verifies that
at least an 8-dimensional entangled state is generated.
The major obstruction to reach higher visibility is the
accidental coincidence counts [48, 49]. It reduces the
signal-to-noise ratio and hence the visibility of all the
two-dimensional subspaces. If we subtract the accidental
coincidence from the data, as described in Appendix C,
the calculated total visibilities are W ′X = 126.5±1.0 and
W ′K = 125.5± 0.9, which correspond to at least 10- and
9- dimensional entanglement, respectively.

IV. ENTANGLEMENT OF FORMATION

We also bound the entanglement of formation EF to
verify the entangled state. The entanglement of forma-
tion gives the minimal number of maximally entangled
qubit-qubit states (ebits) that is required to get one copy
of the desired entangled state through local operations
and classical communication (LOCC) [28, 29]. A lower
bound of EF is given by [29]

EF ≥ − log2(1−B2/2), (3)
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FIG. 3. Entanglement of formation. The entanglement
of formation is measured for both X-basis and K-basis after
subtracting accidental coincidence. The maximal values are
1.793 ebits for the X basis and 1.90 ebits for the K basis. The
red dashed line represents the results for an ideal maximally
entangled state with log2d ebits.

where B is defined as

B =
2√
|C|

∑
(j,k)∈C

j<k

(
|〈j, j|ρ|k, k〉|

−
√
〈j, k|ρ|j, k〉〈k, j|ρ|k, j〉

)
. (4)

In the above equation, ρ is the density matrix of the
entangled state; j (k) indicates the mode j (k) of the
signal and the idler photons; C is a set of mode pairs
(j, k) and |C| denotes the number of pairs in the set.
To lower bound EF , we need to measure the 〈j, k|ρ|j, k〉
and 〈j, j|ρ|k, k〉 terms, which can be obtained in a simi-
lar way as the visibility in the entanglement witness ex-
periment. Note that in Ref. [29] the 〈j, j|ρ|k, k〉 terms
for |j − k| > 1 are bounded by the nearest neighbor
terms, and the bounds become looser for farther away
pairs; hence the bound on the entanglement of formation
ceases to improve for these pairs. In comparison, here
we are able to measure all these terms directly; since
the entangled state we prepare has high fidelity (even
though we are not able to measure the fidelity by quan-
tum state tomography), it will be beneficial to include
all the mode pairs in Eq. (8). In Fig. 3 we show the
increase of the bound on the entanglement of formation
as we consider more and more X or K modes. In this
way, we get the tightest bound on the entanglement of
formation as 1.79± 0.06 and 1.90± 0.07 for the X-space
and K-space measurements respectively (after subtrac-
tion of accidental coincidence; details can be found in
Appendix C). This result verifies genuine 4-dimensional
entanglement.

V. BELL-TYPE INEQUALITY

Finally, we use our entangled state to study the viola-
tion of high-dimensional Bell-type inequalities. The orig-
inal Bell inequality focuses on a qubit-qubit entangled
state [50]. It has been generalized to higher-dimensional
entangled systems with the advantage of stronger resis-
tance to experimental noise [46, 51]. Consider a bipartite
quantum system of dimension d×d. If the correlation can
be described by local hidden variable theories, the Bell-
type parameter Sd will satisfy the CGLMP inequalities
[24, 46]:

Sd ≡
[d/2]−1∑

l=0

(
1− 2l

d− 1

){
[P (I0 = S0 + l)− P (I0 = S0 − l − 1)] + [P (S1 = I0 + l)− P (S1 = I0 − l − 1)]

+ [P (S0 = I1 + l + 1)− P (S0 = I1 − l)] + [P (I1 = S1 + l)− P (I1 = S1 − l − 1)]
}

≤2. (5)

Here two possible detector settings can be used for the
signal and the idler photons respectively, and for each

detector setting there are d possible measurement out-
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FIG. 4. Violation of the CGLMP inequalities. The
error bars of the Bell parameter Sd are estimated assuming a
Poisson distribution of the photon counting. The violation of
the Bell-type inequalities is observed for up to d = 6 (red line),
and up to d = 10 after subtracting the accidental coincidence
(green line).

comes: Ss, Ii = 0, · · · , d − 1 (s, i = 0, 1 represent the
measurement settings). P (Ii = Ss) is the probability
that the signal photon and the idler photon outcomes
are the same:

P (Ss = Ii) =

d−1∑
k=0

P (Ss = k, Ii = k). (6)

Similarly

P (Ss = Ii + l) =

d−1∑
k=0

P (Ss = k, Ii = (k− l) mod d). (7)

The measurement bases for the signal and the idler
photons are

|k〉S,s =
1√
d

d−1∑
x=0

exp[2πix(k + Θs)/d]|x〉S , (8)

|l〉I,i =
1√
d

d−1∑
x=0

exp[2πix(−l + Φi)/d]|x〉I , (9)

where k, l = 0, · · · , d − 1 and Θ0 = 0, Θ1 = 0.5, Φ0 =
0.25, Φ1 = −0.25.

Figure 4 shows the measured Sd as a function of the
dimension d, comparing with the classical bound. The
violation of the CGLMP inequality remains up to d =
6 (red line), and it can be extended to d = 10 (green
line) when the accidental coincidence is subtracted. This
reveals the quantum nature of the correlation between
the signal photon and the idler photon (thus the spin
wave excitation in the atomic ensemble).

VI. DISCUSSION AND CONCLUSION

The measured entanglement dimension is mainly af-
fected by two factors: the accidental coincidence of pho-
ton counting on the signal and the idler detectors (details
in Appendix C), and the difference in the amplitude and
phase settings on different AODs (details in Appendix B
and Appendix D). There are also high order excitations
and background noises, which are not the dominant er-
rors in our experiment. To improve the visibility, the
cross correlation g2 between the signal and the idler pho-
tons can be increased by reducing the generation rate
of the signal photon, so long as the coincidence is kept
much higher than the background noise. In principle, a
2D array of memory cells can be used to create a higher
dimensional entangled state, but there the visibility mea-
surement will be difficult for two memory cells that are
neither in the same row nor in the same column. Al-
though the visibility can still be bounded based on the
methods of Ref. [29], it is not tight enough to give larger
number of ebits or witness parameter W .

To summarize, in this work, we generate an entangled
state between a signal photon and a spin wave excitation
in a 1D MAQM array with 10 spatial modes. Entangle-
ment witness and entanglement of formation are used to
verify the entanglement, and we confirm at least 8- and
4-dimensional entanglement respectively using these two
methods. The Bell-type inequality is studied as an ap-
plication, which in turn proves the existence of entangle-
ment in the system. Our experiment is an important step
toward quantum repeaters and quantum networks using
multiplexed quantum memories and high-dimensional en-
tanglement. If each memory cell can store a photon car-
rying other degrees of freedom [37], we can combine the
advantages of high dimensional entangled state and mul-
tiplexed quantum memory together and expect further
improvement in the performance.
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Appendix A: The control of AODs

The multiplexing/demultiplexing optical circuits are
composed of a pair of 2D AODs and lenses under a 4f
configuration. The AODs are controlled by the RF sig-
nals generated by arbitrary waveform generators (AWG).
Before the experiment, we need to choose an optimized
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FIG. 5. The g2 correlation and retrieval efficiency of the MAQM. The g2 correlation and retrieval efficiency of the
MAQM is measured before the experiment. The collecting probability of a signal photon is about 0.6%. We choose one X row
(specified by the purple box) to carry out the experiment. Its g2 correlation and retrieval efficiency for each memory cell are
both high enough and close to each other.

array with the highest and nearly uniform retrieval effi-
ciency and optical depth for each memory cell. The cross
correlation and retrieval efficiency for the 2D array are
shown in Fig. 5 and the 1D subarray used for the ex-
periment is specified in the purple box. The frequency
interval between adjacent spatial modes in the X/Y di-
rections is 0.8 MHz on the AODs, and correspondingly
the distance between the neighbor cells is 180µm. The
waists of the signal/idler and the write/read modes are
70µm and 120µm respectively, which guarantees a cross
talk error well below 1%.

Appendix B: AOD setting and measurement bases

In the experiment, d memory cells are addressed at the
same time, therefore d RF tones are input into the AODs.
The nonlinearity of AODs will then produce two-tone
third-order components [52], which can be overcome by
tuning the amplitude and phase of each RF tone [53, 54].
Once we have the optimized amplitude and phase settings
for the d RF components, a K-space basis state is created
as the superposition of d spatial modes:

|0〉K ≡
d−1∑
x=0

Axe
iΦx |x〉X . (B1)

Actually, the optimal phase setting is almost the same for
the d-tone RF signals regardless of the interval frequency
difference. The amplitude and phase settings should be
optimized for different AODs to suppress the unwanted
nonlinear effects and to unify the amplitude Ax for each
mode. After absorbing the phases into the definition of
the spatial basis states, we can express this K-space basis

state as

|0〉K =
1√
d

d−1∑
x=0

|x〉X . (B2)

Then the other d−1 K-space basis states can be obtained
by adding proper phases on each RF tone as

|k〉K =
1√
d

d−1∑
x=0

exp(2πixk/d)|x〉X (B3)

for k = 1, · · · , d − 1. With this method, bases used for
all the AODs can be determined for arbitrary dimension
d = 1, · · · , 10. For W-AOD and R-AOD, we keep using
the |0〉K (d = 10) setup to generate the entangled state
and to retrieve the spin wave.

Appendix C: Accidental coincidence

The accidental coincidence is one of the major sources
of noise in our experiment. The recorded photon coinci-
dence can be written as CSI = (ηrPS + PSPI)N , where
ηr is the retrieval efficiency of the spin wave, PS (PI)
denotes the probability to detect a signal (idler) photon,
and N is the total number of experiments. The second
term is the random coincidence; in principle it will van-
ish if both PS and PI decrease simultaneously, since ηr
remains constant. However, at low excitation rate the
photon counting will be dominated by the background
noise; also the retrieval efficiency can drop when PS is
low [55].

In our experiment, the signal recording probability is
maintained at PS ≈ 0.6%, and the experimental repeti-
tion rate is about 16000 s−1. The accidental coincidence
is subtracted as C ′SI = CSI−CSCI/N , where CS = PSN
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FIG. 6. Density matrix of a 2-dimensional subspace after post-selection. The density matrix is reconstructed by
quantum state tomography. Here we choose a subspace spanned by |K = 0〉 and |K = 5〉 modes. The fidelity is 87.8 ± 2.1%,
with a relative phase of 17◦ between the two modes.

and CI = PIN are the collected signal and idler pho-
ton counts respectively. After this correction, the results
for entanglement witness, entanglement of formation and
Bell-type inequality can be modified correspondingly.

Appendix D: Quantum state tomography in
subspace

When measuring the visibility, we find that there is
a relative phase between two K-space modes. Here,
we measure a two-dimensional subsystem of K-space
spanned by |K = 0〉 and |K = 5〉. Figure 6 is the

reconstructed density matrix of the subspace by quan-
tum state tomography after post-selection (renormaliz-
ing the trace to 1) [39]. The fidelity is 87.8 ± 2.1% be-
tween the measured density matrix and the ideal one
|Ψ〉 = (|0, 0〉 + |5, 5〉)/

√
2. A relative phase of 17◦ exists

owing to the basis setting difference between W-AOD and
R-AOD. As is mentioned in Appendix B, to eliminate the
unwanted tones in AODs due to the nonlinear effect, the
amplitudes and phases of the RF signals are optimized
for each AOD. The optimal amplitude and phase settings
for W-AOD and R-AOD are different, which effectively
causes a relative phase between two modes in the K-
space. This is another limit to obtain high entanglement
dimension.
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