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ABSTRACT
As the main revenue source of Internet companies, online
advertising is always a signi�cant topic, where click-through
rate (CTR) prediction plays a central role. In online advertis-
ing systems, there are o�en many advertisement products.
Due to the competition in the bidding mechanism, some
advertising products may get lots of data to train the CTR
prediction model while some may lack high-quality data.
However, to predict accurate CTR, a large amount of data is
needed. �erefore, transfer knowledge from the large prod-
uct (source) to the small product (target) is necessary. We
propose a transfer learning method that iteratively updates
the data weights to selectively combine source data with
target data for training. To e�ciently process huge adver-
tisement data, we design a sampling strategy based on the
gradient information, and implement the algorithm with a
MapReduce-like machine learning framework. We do ex-
periments on real advertisement datasets. �e results show
that our approach improves the accuracy of CTR prediction
compared to the supervised learning method.
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1 INTRODUCTION
Online advertising is a multi-billion dollar industry, and
the major revenue source of many Internet companies. It
is also a well-studied topic both in academia and industry.
In a modern online advertising systems, online revenue is
determined by three major factors: the average click price
(ACP), the click-through rate (CTR) and the number of page
views (PVs). Factors outside of the advertising system o�en
a�ect the PV, and thus the key question for advertising is
how to increase revenue given a certain PV.

Click through rate (CTR) is a key metric for advertising.
It is the ratio between the number of clicks on an ad and
the total number of impressions. Improving CTR directly
improves the revenue. Also, a high CTR means more relevant
ads on the page, indirectly improving user experience as well.
A common way to optimize CTR is to predict the CTRs of a
portfolio of ads based on a variety of features about the user,
the page, the ad itself etc., before actually displaying one,
and choose the ad with the highest CTR to display. �us,
it is important to accurately predict the CTR [5, 13, 18, 23],
which is the goal of this paper.

In this paper, we focus on improving CTR prediction ac-
curacy on Baidu’s AllianceAds advertising service, a system
similar to Google’s AdSense. Baidu is the largest search en-
gine provider in China, and one of the largest online adver-
tising companies in the world. AllianceAds o�ers a variety
of advertisement products. �ese products di�er in many
ways. For example, they target di�erent websites or apps
(e.g. games, shopping, news, social media), have di�erent
presentations (e.g. text, image, Flash animations), as well as
have di�erent cost structures (e.g. cost-per-impression or cost-
per-click). AllianceAds delivers ads to hundreds of thousands
of third-party websites and mobile apps every day.

In general, more data we have, the be�er a CTR prediction
model can be. We are accumulating a huge amount of user
browsing data every day. However, CTR prediction remains
a challenge especially in two kinds of products: 1) Small,



niche-market products and 2) newly developed products. In
either case, there is li�le click history to build an accurate
CTR model. As a result, they do not perform as well as other
well-tuned products in terms of CTR, or even revenue. �us,
the chances of them being chosen are even lower, further
limiting their ability to accumulate more data, resulting in a
vicious cycle.

It is a natural idea to use the vast amount of data from other
large products to build the CTR model for these niche / new
products. However, the problem is not trivial. Although the
features are the same for di�erent products, the distribution
of the data can be quite di�erent. In fact, as we will show
in Section 5, naively using data from a di�erent product can
negatively a�ect the prediction accuracy.

Transfer learning is a promising approach to solve the
problem above. Speci�cally, we want to “transfer” some of
the data from the large products (called the source) to the
smaller products (called the target), in order to increase the
training data size for the small products. �is type of transfer
learning is o�en called “instance transfer learning”. To deal
with the problem that the source and target have distinct
distributions, we want to sample the source set to select the
data points that are similar to those in the target set, and
combine them into the target set for training.

We use an improved version of TrAdaBoost [8]. TrAd-
aBoost assigns a weight on each data point from both source
and target set, and iteratively adjusts the weight. It adjusts
the weight di�erently for source and target data: for a mis-
classi�ed data point in the target set the algorithm increases
its weight, allowing it to contribute more in the model in the
next round; however, for a misclassi�ed source data point,
the weight is decreased as we can assume it is less similar to
target data.

To make the approach scalable to the large advertising
datasets, we made improvements both to the algorithm and
to its implementation. To the algorithm, we add a sampling
strategy based on the gradient information in each itera-
tion. �e strategy allows us to use large-scale data as input,
and it provides an intuitive hyper-parameter to control the
tradeo� on how much source dataset to use. We also use a
model ensemble approach to combine the results from dif-
ferent iterations. On the implementation side, we provide a
MapReduce-like implementation, allowing the algorithm to
run in hundreds of servers in parallel.

We perform experiments on real data from two products
with over 100 million data instances. �e result shows that
our approach signi�cantly improves the CTR prediction per-
formance over existing approaches, and trains 3x faster than
the o�-the-shelf TrAdaBoost algorithm.

In summary, we make the following three contributions
in this paper.

Source
(Labelled)

Target
(Labelled)Different distribution

Same feature space

Figure 1: Transfer learning. Our source and target
have the same feature space but di�erent data distri-
bution.

• We proposed a new transfer learning based approach
to deal with the multi-product CTR prediction prob-
lem, greatly improving the prediction accuracy for
niche / new products lacking training data.

• We design and implement an improved version of
TrAdaBoost. Using sampling strategy and map re-
duce implementation, the algorithm achieves both
computation e�ciency and CTR prediction accuracy.

• We apply our method on real production data and
demonstrate promising preliminary results.

�e rest of the paper is organized as follows. In Section
2, we describe some related work in CTR prediction and
transfer learning. Section 3 brie�y introduces the advertising
system of our Internet company and background knowledge
of transfer learning. In the fourth section, we introduce
our method. Section 5 shows the preliminary experiment
results. Section 6 discusses limitations of our approach and
concludes our work.

2 RELATEDWORK
2.1 CTR Prediction
CTR prediction is of great signi�cance for Internet com-
panies, and thus people have applied all sorts of machine
learning algorithms to improve it. Most of the work in the
literature can be categorized broadly as either model devel-
opment or feature development.

Regarding the model development, logistic regression [4]
and decision trees [10] are the most popular models in the
computational advertising literature. [5] factorizes CTR prob-
ability as two natural stochastic models to capture users’ the
di�erent behaviors on di�erent ads positions (a.k.a. posi-
tional bias).

In terms of feature development, [7] integrates multimedia
features extracted from display ads into the click prediction
models. [3] proposes click feedback features based on aggre-
gated historical click data. [6] designs user speci�c features
and demographic features.

Some work presents real industry experiences concerning
CTR prediction. [18] summarizes valuable experiences, both
positive and negative, at Google. [13] describes the Bayesian
online learning algorithm in Microso�’s Bing search.



However, the above projects mainly focus on a single ad-
vertising product, while we are dealing with multiple prod-
ucts.

2.2 Transfer Learning
In transfer learning, the knowledge can be transferred among
models in di�erent ways. In addition to the instance transfer
(i.e. transferring data instances) [8, 14] method we use in
this paper, the other three popular types are: feature rep-
resentation transfer [1, 26], parameter transfer [11, 15] and
relational knowledge transfer [19, 20].

Transfer learning is also widely utilized in training deep
learning models, such as the Deep Adaptation Network
(DAN) [17] and the study on what kind of features in deep
learning transfers well to other DNN models [24].

Given the computation cost involved in transfer learning,
most of the applications only use small datasets like natural
language articles or images [2, 8, 11, 26], rather than the
large-scale click log data.

A few projects use transfer learning in online advertis-
ing. [22] proposes a two-stage transfer learning pipeline for
targeted display advertising by transferring the prediction
scores as a new feature to the target task. [16] proposes a
method that constructs a joint feature space through data
from multiple tasks. [9] trains a source model to get an in-
formative prior and incorporate this Bayesian prior into the
target loss function.

Our approach is di�erent from the above work in that we
directly transfer data samples from the source to the target,
and also we handle a much larger data set.

3 BACKGROUND
3.1 AllianceAds System
Our AllianceAds system delivers advertisements to third-
party partner websites. In a nutshell, the system keeps an
inventory of ads from many advertisers and try to �ll ads po-
sitions on third-party websites in real time. Separate teams
have developed di�erent advertisement products serving dif-
ferent advertiser categories, advertising positions, display
formats and so on. AllianceAds system uses a real-time bid-
ding (RTB) mechanism to decide which ad product gets a
position; then it is up to the product to decide which ad to
use.

Figure 2 shows the basic pipeline of AllianceAds. When a
user opens a web page with an open advertising space, the
web page sends a request to the Advertisement Exchange
System (ADX) in AllianceAds with necessary information
such as the page content, and the users’ pro�le. ADX for-
wards the information to several products, who then o�er
bids at di�erent prices. �e product with highest bidding
price wins the chance to display its ad. What ad to display is

up to the product. ADX then routes the ad content from the
winning product to display on the web page.

To build CTR models, we build the feature space including
three feature sets: user, advertiser and �ow. �e feature
set user includes the user pro�les, such as the website they
visit, the queries they issue and other historical behaviors.
�e feature set advertiser include the information of the
advertisers, such as their brand category and so on. �e
feature set �ow consists of the characteristics of the current
web page, the advertisement content and other information
related to the current web �ow.

However, from the pipeline of AllianceAds we can �nd that
only when the product wins in bidding, it can get the user
and �ow information. Due to the competition in the bidding,
it is hard for the product that does not bid the highest price
to get adequate data. Besides, if an advertising product is just
released, it also lacks data compared to the large products
that have accumulated many data. �erefore, to get accurate
CTR prediction models, transferring knowledge from large
products to small products is necessary.

In this paper, we present our experiment results on two
products on AllianceAds. Product 1 and Product 2 are both
display-ads on web pages. �ey bid on the same advertise-
ment position, have similar advertising environment and
have the same feature space format. However, they do have
many di�erences that we summarize in Table 1. Note that for
Product 2, we �nd that end-to-end prediction is not e�ective
compared to multistage prediction. �erefore the �rst task
of Product 2 is to predict CTR. Product 1 and Product 2 have
the same feature space, but they have di�erent distribution
of the data. �is scenario is what our method focuses on. In
this paper, we use Product 1 as source, Product 2 as target to
do transfer learning.

Product 1 (source) Product 2 (target)
Size huge 10% of the former

Pricing type cost-per-click cost-per-action
Ad format image, Flash, text Flash, image

Table 1: Di�erences of the two products. We use Prod-
uct 1 as source, Product 2 as target.

3.2 Transfer Learning
Based on [21], we here give the de�nition of transfer learning.
A domain D consists of two components: a feature space
X and a data distribution P (X ), where X = {xi }

n
i=1, and

xi ∈ X. Namely, D = {X, P (X )}. We use xi to denote the
data instance used in machine learning algorithms. A task
T also consists of two components: a label space Y and a
prediction function h(·). In other words, T = {Y,h(·)}. Y
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Figure 2: �e work�ow of AllianceAds. User opens a web page, and AllianceAds chooses ads to show to the user.

describes the label format in a machine learning problem,
e.g., true or false in the binary classi�cation problem. h(·)
is the machine learning prediction function, the output of
which is the predicted label, namely h(xi ) = ŷi .

Given the notations above, we then de�ne transfer learn-
ing. Transfer learning is the algorithm that aims to transfer
knowledge from source to target. Given a source domainDS

and a source task T S , a target domain DT and a target task
T T , transfer learning is the algorithm that can improve T T

in DT with the knowledge in DS and T S , where DS , DT

or T S , T T . For example, some source and target may have
di�erent feature space and di�erent data distributions. Some
may have di�erent label spaces.

4 OUR APPROACH
4.1 Problem Formulation
In our task, we want to use the data from the source product
to improve the target product in CTR prediction. CTR is the
ratio of the number of clicks on a certain advertisement link
to the number of total views of this advertisement. Namely,
CTR = click/show . �e value of CTR ranges between 0 to 1.
In our dataset, each data instance is labeled with the number
of show and click. We have a set of online advertisement
data D = {(xi ,yi )}

n+m
i=1 , where xi ∈ {0, 1}d , yi ∈ [0, 1] and d

is a very large number over ten million. �is d-dimensional
feature space includes user, advertiser and �ow information,
which has been described in Section 3. �e feature space
is one-hot encoded and only hundreds of them are ones
and most of them are zero. In a word, our data is large-
scale, sparse and one-hot encoded. CTR prediction task is
to predict the click-through rate yi given an advertisement
data xi , namely to get h(xi ) = ŷi

For transfer learning, we assume there are n source data
instances and m target data instances. We let i = 1 to n to
represents the index of the source data while i = n + 1 to

n +m to represent the index of the target data. We add a S
or a T in the upper right of the existing notations to denote
whether it belongs to source or target. Our source data
DS = {(xi ,yi )}

n
i=1 and target data DT = {(xi ,yi )}

n+m
i=n+1 are

from Product 1 and Product 2 respectively. �e two datasets
have the same feature space but di�erent data distribution.
�erefore our transfer learning problem is formalized as
follows.

XS = XT ⊆ {0, 1}d , (1)

P (X S ) , P (XT ), (2)

YS = YT ⊆ [0, 1]. (3)
Our goal is to get h(·)T to predict accurate CTR.

4.2 Model
Our idea is similar to TrAdaBoost [8]. Compared to TrAd-
aBoost, we made the following changes to �t our problem
se�ing. 1) We add a sampling strategy to sample the source
data. 2) We use logistic regression as our learning model,
with L1 regularization. 3) We use AdaGrad as our optimiza-
tion algorithm. 4) We modify the model ensemble method. 5)
We implement our approach in a MapReduce-like machine
learning framework inside our company, which makes this
algorithm run in more than one hundred computing nodes.

In each iteration, we �rst sample some source data in-
stances. Since the source data is usually very large, it is
unnecessary to use every source data in each iteration. So
we design a sampling strategy to sample the source data. �e
sampling probability is proportional to the data’s gradient
in the trained model [25]. In the t-th iteration, the sam-
pling probability is based on the t − 1-th model’s gradient
information. �e larger the gradient is, the larger parameter
updates the model will get, which means the model needs



this source data instance more than others. �erefore, the
sampling probability of this instance is larger. Before the
�rst iteration, there is a pre-training target model to help
on the �rst sampling. Let Li (θ )t denote the loss of logistic
regression on data instance xi in the t-th iteration, θ is the
model parameter. �e sampling probability of a source data
instance xi in the t-th iteration is

Psamp (xi )
t = min{1,α ∗ |∇Li (θ )t−1 |}, 1 ≤ i ≤ n, (4)

where α is a hyper parameter that we can set, and ∇Li (θ )t−1

denotes the source data instance xi ’s gradient in the trained
model in iteration t − 1. �e larger α ∗ |∇Li (θ )t−1 | is, the
more the trained model needs this source data instance.

A�er sampling, we combine these sampled source data
and target data in training. For sampled source data, we use
importance weighting to eliminate the bias [25] during the
training process. For a target data instance, we will not do
revision. But if there comes a source data, we use Eq.(5) to
revise the gradient value.

∇̃Li (θ )
t =

∇Li (θ )
t

Psamp (xi )t
, 1 ≤ i ≤ n, (5)

where ∇̃Li (θ )t is the gradient a�er the revision. In this way,
we modify the gradient value by multiplying 1/Psamp (xi ).

A�er the training process, we get the t-th model ht (·). We
calculate the training error on target data as

ϵt =

∑n+m
i=n+1w

t
i ∗ |ht (xi ) − yi |∑n+m
i=n+1w

t
i

, (6)

where wt
i is the weight of the i-th data instance in the t-th

iteration, and ht (x ) is the prediction function in the t-th
iteration. Initially, we set every data weight to 1.

�en, we use Eq.(7) to reweight the data [8]. If an instance
is correctly classi�ed by the model, its weight will not change.
If a target data is misclassi�ed, we increase its weight to make
it contribute more in the next iteration. If a source data is
misclassi�ed, we decrease its data weight since we think it
is less similar to target data.

wt+1
i =




wt
i β
|ht (xi )−yi |, 1 ≤ i ≤ n,

wt
i β
−|ht (xi )−yi |
t ,n + 1 ≤ i ≤ n +m,

(7)

where β and βt is a parameter that ranges between 0 to 1. In
each iteration, β and βt [12] are set to

βt =
ϵt

1 − ϵt
, (8)

β =
1

1 +
√

2 lnn
N

. (9)

Lastly, we output the ensemble model. As [8] proves, if
the algorithm runs for N iterations, the average weighted
training loss on source data from the dN /2eth iteration to
the N th iteration converges to zero. �erefore, we do model
ensemble from the dN /2eth model to the N th model. For
example, if we run the algorithm for 10 iterations, we will do
ensemble from the 5-th model to the 10-th model and output
the ensemble model. �e prediction function of ensemble
model is as follows.

h(x ) =
−
∑N

t= dN /2e ht (x ) ln βt∑N
t= dN /2e ln β−1

t
. (10)

�is prediction function is modi�ed from [8] in order to
�t our problem se�ings. �e function value ranges from
0 to 1, indicating the probability that the user clicks the
advertisement.

Algorithm 1 shows the pseudo code of our method.

Algorithm 1 Transfer Learning Algorithm
Input: Data: source data DS = {(xi ,yi )}

n
i=1, target data

DT = {(xi ,yi )}
n+m
i=n+1, where n > m

Hyper-parameter: sample parameter α , learning rate
γ , total iteration N , L1 regularization parameter λ, mini
batch size s

1: Pre-train a model on target data.
2: for t = 1 to N do
3: D̃S = sample source data according to Eq.(4)
4: ht = train(D̃S ,DT )
5: Calculate the error on target data according to Eq.(6).
6: if ϵt > 0.5 then
7: break;
8: end if
9: Set βt and β according to Eq.(8) (9)

10: Update data weights according to Eq.(7)
11: end for
Output: Output the model according to Eq.(10)

5 EXPERIMENT
5.1 Datasets
We do experiments in the real online advertisement data
from Baidu. Table 2 lists the sizes of our datasets. �ese data
are just small samples of Product 1 and Product 2. �e ratio
of source size to target size is the same as the original ratio
of Product 1 size to Product 2 size. We randomly choose 10%
of the training set as the validation set. Every experiment
result listed in this paper is the average number of three
running results, varying the random data splits.

We implement our algorithm on an internal MapReduce-
like machine learning framework in our company. �is



framework provides user-friendly APIs and an e�cient run-
ning environment. During the experiment, we use 100 com-
puting nodes.

To measure the performance of the methods in CTR predic-
tion, we use AUC, the area under the ROC curve. ROC curve
is a plot that illustrates the true positive rate against the
false positive rate of a binary classi�er, as the discrimination
threshold varies. AUC is the area under this curve, ranging
from 0 to 1. �e larger AUC indicates that the method has
a low false positive rate and a high true positive rate at a
certain threshold. When AUC=1, the method has a threshold
that makes the false positive rate equal 0 and the true positive
rate equal 1. �us, the larger the AUC is, the more accurate
the prediction is. An improvement in AUC means more
accurate advertisement to users, thus helping the Internet
company make more pro�t.

Dataset # of data instances
Source 135,187,742

Target-training 11,703,741
Target-validation 1,300,315

Target-testing 1,705,122

Table 2: Data Size. Our approach uses sampled source
and target-training.

5.2 Results
We now describe the results of our method. In our experi-
ment, we use pure supervised learning method logistic re-
gression (LR) as our comparison method. We run LR on
di�erent training data. We use LRT to denote that we train
logistic regression only on target data. LRS means we train
logistic regression only on source data. LRST means we di-
rectly combine source data and target data for LR training.
Note that the test data in these di�erent se�ings is the same
set of target data Target-testing, as Table 2 shows.

We carefully tuned the hyperparameters to get the optimal
combination. Our best hyperparameters are as follows: N =
6,γ = 0.01, λ = 0.1,α = 2, s = 100, 000. �e experiment
results are showed in Table 3. �e �rst column of the table
indicates di�erent method names. �e second column shows
the training data we use. �e third column shows testing
AUC.

From LRT and LRS we can see that the model trained on
source has very low AUC on the target testing data, and
we believe it is due to the fact that source and target have
very di�erent distribution. LRT and LRST together show
that directly combining source data and target data is not
useful to improve AUC. �e last row shows our method out-
performs the above traditional supervised learning method.

Besides, our method has slightly be�er AUC of TrAdaboost,
and greatly reduces training time due to the sampling strat-
egy. Our sampling strategy automatically selects the data
instances the model needs, while TrAdaboost only uses all
the data it has, thus making our approach performs be�er.
Besides, the total running time of TrAdaboost is about 220
minutes, while our approach runs only for about 70 minutes
due to the sampling strategy. Our approach saves 68.2% time
compared to TrAdaboost. �is time saving is very important
to scale the algorithm to very large datasets that is common
in the online advertising scenario.

Method Training data AUC
LRT Target-training 0.7123
LRS Source 0.6513

LRST Source + Target-training 0.7069
TrAdaboost [8] Source + Target-training 0.7301
Our method Source + Target-training 0.7341

Table 3: Experiment Results. Our method has better
AUC and less training time.

5.3 Parameter Sensitivity
In this section, we discuss about the sensitivity of the hy-
perparameters of our algorithm. We mainly focus on the
total iteration N and the sampling parameter α , since the
two are special parameters in our algorithm, while the other
hyperparameters work similar in our algorithm compared
to other machine learning algorithms.
�eTotal IterationsN . �e parameterN controls the total
number of iterations in our algorithm. Since our algorithm
outputs the ensemble model according to the iteration, so N
also controls the number of ensemble models. We run our
algorithm using di�erent N and record the AUC as Figure 3
shows. �e blue curve is our method, while the red dashed
line means LRT . Since the method LRT is not a�ected by
N , this line is horizontal. We can see from the �gure that
the AUC �rstly increases and then decreases, and reaches
the maximum at N = 6. When N = 6, the algorithm uses
d6/2e = 3 to N = 6, altogether 4 models to do ensemble. �e
current experiment shows this is the most suitable choice in
our problem se�ings. We think when N is small, the number
of ensemble model is too small so the algorithm does not
work well. When N is large, the number of ensemble model
is too large so that the algorithm tends to over�t. So it is
be�er to select an N that is neither too small nor too large.
�e Sampling Parameter α . �e parameter α controls
the sampling probability of the source data. We run our
algorithm using di�erent α and Figure 4 shows the results.
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Figure 3: AUC-iteration curve. As iteration increases,
AUC �rstly increases and then decreases.
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Figure 4: AUC-alpha curve. Source is helpful to im-
prove AUC, but too many source data will not help.

LRT is a horizontal line since the method LRT only uses tar-
get data, not a�ected by α . �e �gure indicates that source
data help to improve AUC compared to only using target
data (α = 0). However, sampling every source data instance
(α = 20) may not be very useful since target and source have
very di�erent data distribution. In our experiment the best
choice is α = 2. In this se�ing the sampling ratio, namely
# sampled source/# total source is about 0.113. �e ratio of
# tarдet/# sampled source is about 0.85. In our algorithm,
each iteration has di�erent sizes of sampling source data,
so we only count the number in the �rst iteration to cal-
culate the sampling ratio. If α is zero, no source data will
be used. �e algorithm only uses target data and do model
ensemble so this algorithm will become somewhat similar
to Adaboost [12]. If α is too large, the probability value will
be larger then 1. �us, every source data instance will be
sampled. In this way, the algorithm becomes TrAdaboost.
We choose an α that is between the two extremes as a good
practical tradeo�.

5.4 Data Size Ratio
We will talk about the ratio of source data size to target data
size in this subsection. We �x the target data size according
toTarдet − traininд in Table 2 and vary the source data size.
Since we have discussed the sampling ratio in the previous
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Figure 5: Data size ratio. It is necessary to carefully
adjust the data size ratio instead of over utilizing the
source data.

subsection, we run this experiment with all the source data
to focus on the data size ratio. We compare our method with
LRST and LRT . Figure 5 shows the results. �e blue curve
is our method, while the green curve means the method
LRST . LRT is horizontal since we �x the target data size. In
the �gure, the starting point of is #tarдet/#source = 0.01,
which means source data is 100 times the size of target data.
�e ending point is 1 since in our se�ings Product 1 is much
larger than Product 2, so the ratio large than 1 is meaningless.
It is also the case in most transfer learning problems.

When the ratio is 0.01, we can see that AUC is very low
even compared to LRT . It is because in our datasets, source
and target have very di�erent distributions. Using too much
source data will hurt the training data quality, thus making
the AUC drop greatly. As the ratio increases, namely the
source data decreases, AUC increases gradually. When the
ratio reaches around 0.8, our method reaches the max AUC.
Meanwhile, the LRST ’s AUC keeps increasing gradually, but
with a decreasing speed. If we use too few source data, then
AUC will start to drop. If the source size is zero, we can
imagine the AUC of the two curves will get close to the line
LRT .

In real cases, the data size is o�en given. One can adjust the
data size ratio though our sampling parameter α . Manually
selecting data amount is possible but not convenient. People
o�en do not know which part of the data they should use.
Our sampling strategy makes this choice fully automatic.
Based on a given α , the sampling strategy can automatically
select the data that the model needs. Di�erent problems and
di�erent datasets may have di�erent optimal points, but we
believe that it is necessary to carefully adjust the data size
ratio instead of over utilizing the source data.

6 DISCUSSIONS AND CONCLUSIONS
Online advertising is always a hot topic in Internet compa-
nies. Due to the bidding mechanism, the data size of di�erent
products varies much. To improve the CTR prediction of



the small product (target) with the help of the large product
(source), we propose an iterative transfer learning method.
Our sampling strategy and MapReduce-like implementation
make the algorithm more scalable. We do experiment on
real advertisement data and the results show that our ap-
proach improves AUC of CTR prediction compared to the
supervised learning method.

While our experiment shows good preliminary results,
there are some limitations in our approach. Firstly, the cur-
rent version of sampling strategy only uses the information
of gradient. �is strategy selects the source data that are
most needed by the trained model. We still need to �gure out
what sampling strategy is the best for improving AUC and
reducing training time. Also, we do not take the sparsity of
the advertisement data into consideration, which we believe
can further improve the algorithm performance. Besides, our
approach only uses one source and one target. Actually there
are multiple products in the company. How to e�ciently do
multiple-source transfer is challenging. In addition, we use L1
regularization in our current approach to avoid over��ing,
and we will explore other techniques to reduce over��ing.

Our approach shows a promising direction. �e current
algorithm is used only in CTR prediction. Actually, it can
also be used in ACP (average click price) prediction, which
is another important topic in online advertising. In our com-
pany, the ACP dataset has a similar format of CTR dataset.
�us, we are also going to adapt to ACP prediction.
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