Mitsunori Ogihara
Jun Tarui (Eds.)

Theory and Applications
of Models of Computation

8th Annual Conference, TAMC 2011
Tokyo, Japan, May 2011
Proceedings

LNCS 6648

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6648



Mitsunori Ogihara Jun Tarui (Eds.)

Theory and Applications
of Models of Computation

8th Annual Conference, TAMC 2011
Tokyo, Japan, May 23-25, 2011
Proceedings

@ Springer



Volume Editors

Mitsunori Ogihara

University of Miami

Department of Computer Science

1365 Memorial Drive, Coral Gables, FL 33146, USA
E-mail: ogihara@cs.miami.edu

Jun Tarui

University of Electro-Communications

Department of Information and Communication Engineering
Chofugaoga 1-5-1, Chofu, Tokyo, 182-8585, Japan

E-mail: tarui@ice.uec.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-20876-8 e-ISBN 978-3-642-20877-5
DOI 10.1007/978-3-642-20877-5

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926299
CR Subject Classification (1998): F.2, 3, F4, G.2.2, H.1.1,E.1, G4, 1.1

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Theory and Applications of Models of Computation 2011 (TAMC 2011) was held
May 23-25 in Chofu, Tokyo. After six years of successful meetings in China, the
seventh TAMC was held in Prague, Czech Republic, in 2010. This eighth meeting
was the second to be held outside China. The conference has a strong focus on
computational models. In 2011, there were 136 submissions, out of which 51
papers were selected by the Program Committee. The conference had invited
talks by two world-renowned scholars, Tetsuo Asano of the Japan Advanced
Institute for Science and Technology and Richard Lipton of the Georgia Institute
of Technology.

May 2011 Mitsunori Ogihara
Jun Tarui
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Designing Algorithms with Limited Work Space

Tetsuo Asano

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
t-asano@jaist.ac.jp

Abstract. Recent progress in computer systems has provided program-
mers with virtually unlimited amount of work storage for their programs.
This leads to space-inefficient programs that use too much storage and
become too slow if sufficiently large memory is not available. Thus, I
believe that space-efficient algorithms or memory-constrained algo-
rithms deserve more attention.

Constant-work-space algorithms have been extensively studied
under a different name, log-space algorithms. Input data are given on a
read-only array of n elements, each having O(logn) bits, and work space
is limited to O(logn) bits, in other words, a constant number of point-
ers and counters, each of O(logn) bits. This memory constraint in the
log-space algorithms may be too severe for practical applications. For
problems related to an image with n pixels, for example, it is quite rea-
sonable to use O(y/n) work space, which amounts to a constant number
of rows and columns.

I will start my talk with a simple algorithm for detecting a cycle in
a graph using only some constant amount of work space (more exactly,
O(logn) bits in total) and then its applications. Then, I will introduce
some paradigms for designing such memory-constrained algorithms and
their applications to interesting problems including those in computa-
tional geometry and computer vision.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Group-Theoretic Lower Bounds for the
Complexity of Matrix Multiplication

Alexey Pospelov*

Saarland University, Computer Science Department
Campus E1.3, 66123 Saarbriicken, Germany
pospelov@cs.uni-saarland.de

Abstract. The complexity of multiplication in group algebras is closely
related to the complexity of matrix multiplication. Inspired by the recent
group-theoretic approach by Cohn and Umans [I0] and the algorithms by
Cohn et al. [9] for matrix multiplication, we present conditional group-
theoretic lower bounds for the complexity of matrix multiplication. These
bounds depend on the complexity of multiplication in group algebras.
Using Bléser’s lower bounds for the rank of associative algebras we
characterize all semisimple group algebras of minimal bilinear complex-
ity and show improved lower bounds for other group algebras. We also
improve the best previously known bound for the bilinear complexity
of group algebras by Atkinson. Our bounds depend on the complexity
of matrix multiplication. In the special if the exponent of the matrix
multiplication equals two, we achieve almost linear bounds.

Keywords: Bilinear complexity, group algebras, complexity of matrix
multiplication, lower bounds.

1 Introduction

The complexity of multiplication in algebras is an important problem in the
algebraic complexity theory and computer algebra. The goal is to compute the
coefficients of the product of two vectors with the minimal number of algebraic
operations. The required coefficients are bilinear forms of the coefficients of the
input vectors. Naturally, the model and the complexity measure for this prob-
lem which received particular attention in the literature are the bilinear model
and the bilinear complexity resp., the latter also called the rank of multiplica-
tion [16], [7, Chap. 4]. In a bilinear computation, all multiplications other than
by constants are of the form £(a) - ¢'(b), where a and b are the input vectors, and
£, ¢ are some linear forms. An O((dim A)Q) upper bound is straightforward to
prove, and all currently known lower bounds for the general case are §2(dim A)
[7, Chap. 17].

This research is motivated by the recent group-theoretic approach [10] and
the following group-theoretic algorithms [9] for matrix multiplication. It was

* This work was supported through funds provided by the Cluster of Excellence
“Multimodal Computing and Interaction” at Saarland University.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 2 2011.
© Springer-Verlag Berlin Heidelberg 2011



Group-Theoretic Lower Bounds for the Complexity of Matrix Multiplication 3

shown that finite groups with special properties can be used for the design of
fast matrix multiplication algorithms. Our goal is to explore the structure of
the group algebras and investigate further the complexity relations between the
group algebras and the matrix algebra. We put the group-theoretic approach
into a different light by showing that the group algebras of the most promising
groups for the group-theoretic approach have roughly the same bilinear com-
plexity as the matrix multiplication itself. For the bilinear complexity of a wide
class of group algebras the lower bounds depend on the exponent of the matrix
multiplication denoted in the literature by w [7, Introduction)].

Another motivation for this work was the search for the algebras of high

bilinear complexity. Over the complex field there exist algebras of arbitrarily

. f 2
high dimensions with bilinear complexity higher than (dimension O;; he algebra) [6],

[7, Ex. 17.20]. However, no explicit example is known. This situation is sim-
ilar to a classical problem in the logical synthesis theory. It is known that
the circuit complexity in a full basis B of almost all Boolean functions of
n variables is 027:'(1 + o(1)) [14] where the constant ¢ depends solely on B.

For B = {f1, ..., fu}, where each f, is of m, variables (with no fictitious
dependencies) and has weight w,,,

. Wy
C = 1mnin .
1<v<n, m, — 1
my >

E.g., for B = {V, &, —}, with unit weights, ¢ = 1. However, no explicit function
of n variables is known to have a superlinear lower bound on the number of gates
in a full finite functional circuit basis.

Algebraic preliminaries. In what follows k will always denote a field, and algebra
(or k-algebra) will always stand for a finite dimensional associative algebra with
unity 1 over k. A basis of an algebra is a basis of the underlying vector space.
The dimension of the algebra A, dim A is the dimension of the underlying vector
space. We call a basis {61}?:1 of a k-algebra A a group basis if the vectors e;
form a group with respect to the multiplication in algebra. If A contains a
group basis, it is called a group algebra. Given a finite group G = {g1, ..., gn},
and k we can always build a group algebra k[G] as an n-dimensional vector
space over k with a basis {g;},—, and the multiplication in k[G] defined as

(Cim1 @igi) - (=1 B195) = 2001 (g, g,= g0 @il35)9e-

The direct product of algebras A and B over k is the algebra A x B over k
which consists of all pairs (a, b), a € A, b € B, and where all operations are
performed component-wise: (a1, b1) o (as, b2) = (a1 o az, by obz), o € {+, —, -},
and A - (a, b) = (Aa, Ab), where A € k, and a; € A, b; € B, for i =1, 2.

B C Ais called a subalgebra of A, if it is a linear subspace of A, which is closed
under the multiplication in A. A subalgebra I of A is called a left (a right) ideal
of A, iffor all a € A, x € I, the product ax € I (za € I resp.) A left ideal which
is at the same time a right ideal is called a two-sided ideal. A two-sided ideal is
called mazimal if it is not contained in any other proper two-sided ideal of the
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algebra. An ideal T is called nilpotent if I"™ = {0} for some m > 0 The smallest
m with this property is called the nilpotence index of I. The sum of all nilpotent
left ideals of the algebra A is called the radical of A and is denoted by rad A. The
intersection of all maximal two-sided ideals of A is called the Jacobson radical
of A and is denoted by J(A). In an algebra, rad A = J(A), see [17, §98].

A is called a division algebra if every a € A has a multiplicative inverse
a~ ! e A. Ais called semisimple if rad A = 0, and simple if it does not contain
any proper twosided ideals except {0}. The structure of the semisimple and
simple algebras is described by Wedderburn’s theorem [I7]. It states that every
finite dimensional semisimple k-algebra is isomorphic to a finite direct product
of simple algebras; every finite dimensional simple k-algebra is isomorphic to an
algebra D™*" for an integer n > 1 and a k-division algebra D, where the integer
n and the algebra D are uniquely determined by A (D—up to isomorphism).

Model of computation. Let A be a k-algebra. A bilinear algorithm for the multi-
plication in A is a sequence ¢ = (u1, v1, Wi; ... ; Uy, Up, Wy ), Where u,, v, € A*,
w, € A, such that for all z, y € A, z -y = Z;Zl Up(x)v,(y)w,. 1 is called the
length of ¢, and the minimal length of all bilinear algorithms for the multiplica-
tion in A is called the rank or the bilinear complexity of A, and is denoted by
rk A. Trivially, tk A < (dim A)2, and rk A x B < rk A + rk B. However, it is not
known if the converse of the latter holds, see [7, p. 360, Strassen’s Direct Sum
Conjecture].

Let A = {A;, Ay, ...} be a family of algebras over k. We define the rank-
exponent of A, wa = inf{r : tkA, = O((dimAn)T) for all n > 1}. Trivially,
1 < wyg < 2. Note that this definition makes only sense if A contains algebras
of arbitrarily high dimensions. This notion is very similar to the well-known
exponent of the matriz multiplication wy, = inf{r : rk k"™ = O(nT)}E However,
wy, is defined with respect to n and dim k™*™ = n2. It can be easily verified that
the exponent of the matrix multiplication equals twice its rank-exponent.

The rank-exponent is a rather crude estimate. For example, rk A,, = dim A4,,,
or tk A, = (dim 4,) - ﬂwogdim A"w, both imply ws = 1. On the other hand,
for the complexity of matrix multiplication, the exponent (or twice the rank-

exponent) is only known to be within 2 < w < 2.376 [7, 15.13 Notes| and the
exact value is a long-standing open problem.

Structure of group algebras. For a finite group G, the group algebra k[G] is
semisimple iff chark 1 §G. In this case

K[G] = D X™ x ... x Dpx™, (1)

where D, is a division algebra over k, dim D, = d; for 1 < 7 < t. Each D7 *"~
is called an irreducible representation of G over k. ny, ..., n; are called the
character degrees of G. If k is algebraically closed then all D, = k and d, = 1.

! For a set S with multiplication and a positive integer r, S™ denotes the set of all
possible products of r elements of S: {s1---s,: s, €5, 1 <p<r}.
2 As usually, we will write just w when k is clear from the context.
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If char k = p, and §G = np®, for p 1 n, then k[G] has a nontrivial radical. We
have k[G]/J (k[G]) & D™ x...x D™ and Y2 _| n2d, +dim J (k[G]) = G.
If a Sylow p-subgroup of G is normal (and therefore is the Sylow p-subgroup of
@), then dim J(k[G]) = n(p® — 1). If the Sylow p-subgroups of G are not normal,
it is known that J(k[G]) contains all ideals generated by all J(k[H]), where H is
a normal p-subgroup of G. In particular, this holds when H is the intersection
of all the p-Sylow subgroups of G.

For more on the representation theory of finite groups we refer to [18].

Lower bounds for the bilinear complexity. The only general lower bound for the
bilinear complexity of associative algebras is based on the following fact: if A and
B are associative algebras over k and t(A) is the number of maximal twosided
ideals of A, then [I]

tkA x B >2dim A —t(A) +rk B. (2)

In particular, rk A > 2dim A — ¢(A). Algebras for which the latter holds as an
equality are called the algebras of minimal rank. Their structure was completely
defined in [5]. We mention here that a semisimple algebra is not of minimal rank
if it contains at least one simple factor of format m x m, for m > 3.

The next two lower bounds are from [3]:

Theorem 1. Let A be a k-algebra, A/rad A = Ay X -+ x Ay with Ay = DPm*"r
for all 7, where D is a k-division algebra. Assume that each A. is noncommu-
tative, that is, n. > 2 or D, is noncommutative. Then

t
rk A > ZdimA—SZnT.

=1
Theorem 2. Let A be a finite dimensional k-algebra. For all m, n > 1,

rk A > dim A — dim((rad A)™*" ") 4 dim((rad A)™) + dim((rad 4)").  (3)

Our results. We first show an O(N 2 ¢) upper bound for the rank of a group
algebra of order N, for any € > 0. This improves the best previously known upper
bound of O(N2) [2]. We show how one can do better with an extra knowledge
about the group.

Using Bléser’s classification of all algebras of minimal rank [5] we give a cri-
terion for a semisimple group algebra over an algebraically closed field to be
an algebra of minimal rank. Under different assumptions we prove g-dimension—
and 3-dimension-lower bounds for the rank of group algebras.

For groups having not “too many” different irreducible representations, we
deduce from Schénhage’s 7-theorem [7, Asymptotic Sum Inequality (15.11)] a
lower bound for the rank of group algebras, which is superlinear if w # 2. We
show that this lower bound holds for the group algebras of full symmetric groups
and finite general linear groups. We prove therefore that the group algebras
of some of the promising groups for the group-theoretic approach for matrix
multiplication have essentially the same complexity as the matrix multiplication
itself.
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2 Lower Bounds for the Complexity of Matrix
Multiplication

The complexity of the multiplication in group algebras is closely related to the
complexity of matrix multiplication (). We will use the following simple fact.

Proposition 1. Let ni, ..., n; >0 and a > 1. Then Y. _ n% < (ZT lnT)a.
Proof. The statement follows from the convexity of z® for x > 0 and a > 1. O

For monotonically growing functions f(n) and g(n) we will write f(n) $ g(n), if
for every 6 > 1, f(n) = O((g(n))‘S). G and G; will always stand for finite groups,
and §G will denote the order of G.

Theorem 3. Let G = {G1, Ga, ...} be a family of finite groups, §G; < $Git1.
Assume that k is algebraically closed, and chark = 0, or chark t #G;, for each
1> 1. Then for G € G,

Tkk[G] £ (5G)* (4)

where w is the exponent of matriz multiplication over k, and

w > 2limsu log rk k[Gn]

n—oo log G (5)

Proof. We have () for k[G], with all D, = k, and rkk[G] < S0_, rkk"=x".
Furthermore, rk k" *"~ < n¥, and by Proposition [}

tkk[G] £ ) ny =) (n2)% < (Z n3> = (16)%,

T=1 T=1 T=1

which proves ().
From () we have that for every € > 0, there exists a constant C = C(e), such

€ ogr G
that tk k[Gy] < C - (G,) 92 This implies w > 2! igkﬁ% - 21(12%& — 2,
for all n. Since §G,, — oo, it also implies that w > 2limsup,,_, lofsgﬁkgw‘n] — 2e.
The latter holds for every € > 0, and (&) follows. |

Corollary 1. If for all group algebras k[Gy,] from the family {k[G1], k[G2], ...},
tkk[Gy) = Q((ﬁGn)He) for arbitrary but fized € > 0, then the exponent of matriz
multiplication w > 2.

Theorem 4. Let G = {G1, Ga, ...} be a family of finite groups, 1G; < §G,11,
and k is algebraically closed with chark = 0 or chark {1 G; for every i. Let f(N)

be an integer function such that for each G € G, all character degrees of G over
k are less or equal than f(#G). Then for G € G,

Ik E(G] S 16 (F(HG))° 2 s = 4G (f(16)) <7 <16 (J(:G)* ™", (6)
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where w is the exponent of matrix multiplication. If, additionally, for all n,
tk k[G,] > Gy and limsup,, . f(§G,) = oo, then for F, = logrkk[G’élflogﬁG",

w > lim sup (Fn + \/FT% + 4F, log f(ﬁGn)) , (7)
n—oo
Proof. Let ny > --- > mn; be the irreducible character degrees of G over k

and h(N) > 0 be an arbitrary integer function. Let j(N) be the number of n,
greater than h(N). Then #G = 32" _ n2 > j(tGQ) (h(tG))” and j(1G) <
This implies:

el
(h(4G))? "

t

tkk[C) S (j(ttG) G+ Y n:) <

T=j(1G)+1

(FED o mseone.
ey G (166)

We finally obtain (@) by setting h(N) = (f(N))'~ i < f(N). The last inequal-
ity in (@) follows from the fact that w > 2.

([@) is proved by a bit more involved but similar argument as in the proof
of (@) in Theorem [Bl |

Corollary 2. 1. If f(§G) = O(1), then rkk[G] is linear. If for every e > 0,
f(EG) = o((#G)°), then wyg) = 1.

2. If for some {k[G1], k[G2], ...}, limsup,,_, ﬁéf_]}[gg}") > 1, then the expo-
nent of matrix multiplication w > 2.

Remark 1. The upper bound of (@) is better than of (@), and the lower bound

of (@) is better than the lower bound of (@), if f(§G,) = 0((ﬁGn) 2= ) Accord-
ing to the best known upper bound w < 2.376 [7, Notes 15.13], this is currently
the case when f(1G,) = o((ﬁGn)O'ME’?).

Theorem [3] can be generalized to the case of a not algebraically closed fields.

Theorem 5. Let G = {G1, Ga, ...}. Assume that chark = 0, or k is finite.

Then for oll G € G, tkk[G] 5 (ﬁG)g, where w is the exponent of matriz multi-
log rk k[G ]

plication over k. In the same way, w > 2limsup,,_, log £G

Proof. Assume first that chark = 0. In this case k[G] is semisimple, () holds,
and Q C k is the prime subfield. Let K be the algebraically closed extension
of k. It is known [I2, Theorem 11.4, Chap. XVIII] that every representation
of G over K is definable over Q((,,) where m is the exponent of G, i.e., the
minimal g such that g* = 1 for every ¢ € G, and (,, € K is a primitive
m-~th root of unity. Therefore, it is definable over k((y,). Any irreducible rep-
resentation of G over k is a simple k[G]-module by Maschke’s Theorem [12]
Theorem 1.2, Chap. XVIII|. Therefore, it is isomorphic to D"*™, where D is
a k-division algebra. (,, is algebraic over D since it is algebraic over k C D
and D = D’ C k(). The latter holds since all irreducible representations of G
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over k((,) are isomorphic to matrix algebras over k((,,). Thus, D is a subalgebra
of k(¢m), and D =2 k(¢,) for some ¢ | m, and for all 7, rk D, < 2d, — 1 since k is
infinite. Therefore, we obtain

t t t 3
rkk[G] £ n¥(2d, —1) <2> n¥d, <2 (Z nsz> —2(1G)2 .
T=1 T=1 T=1

The lower bound for w is proved exactly as in the proof of Theorem [3

Note that the proof remains valid for chark > 0, whenever the division al-
gebras in () of k[G;] have linear ranks. By Wedderburn’s Little Theorem [I3|
Theorem 2.55], a finite dimensional division algebra over a finite field k is an
extension field of k. Its rank is linear due to Chudnovskys’ algorithm, see [8IT5],
[7, Theorem 18.20], and the statement holds also for finite k. O

3 Lower Bounds for the Bilinear Complexity of Group
Algebras

Let G = {G1, Ga,...} be a family of finite groups so that §G; < $G;11. If
char k = 0, or chark = p, and for every i > 1, p {1 #G;, G is called a semisimple
(over k) family of finite groups. If char k = p and for some i > 1, p | §G; then G
is called a modular family.

From the Hélder’s inequality we have:

1
Lemma 1. Letny, ..., n; >0 and 6 > 1. Then 2321 ny < =5 (2321 ni)é.

We will denote by ¢;(G) the number of the irreducible characters of G over
k whose degree equals to i. Obviously, t;(G) = 0 if i > 4G. We will fur-
ther denote T;(G) = Z;’il t;(G). By definition, T;(G) > T;(G), if i < j and
t;(G) = T;(G) — T;4+1(G). Note that the number of the maximal twosided ideals
of k[G] is exactly T1(G) = t, where ¢ is the number of factors in ().

Theorem 6. Let G be a finite group and let k be an algebraically closed field of
chark = 0 or chark t §G. Let t be as in ().

1. T5(G) = 0 iff k[G] is of minimal rank. In this case tk k|G| = t1(G) + Tt2(G).

2. If T5(G) > 0, then rkk[G] > 24G — t + max (JT7(G), 1).

3. Let G = {G1, Ga, ...} be a semisimple family of groups. Assume that the
number of irreducible representations of each G € G over k is o(ﬁG)E‘ Then
for all G € G, Tkk[G] > 341G — o(1G).

Proof. Consider the decomposition ([l) for k[G] (here all D, = k). Assume
w.l.o.g. that ny < --- < ny. Let A be the direct product of all matrix alge-

bras from (IJ) of order 1 x 1 or 2 x 2, and let B be such that k[G] = A x B. Then
dim A =t (G) + 4t2(G) = Th (G) + 31(G) — 4T3(G),

th A = t,(G) + Tt2(G) = 2dim A — (£1(G) + t2(G)), 8)

3 0(#G) means that for any e > 0, there exists such N = N(¢) > 0, that if G € G
and §G > N, then the number of irreducible representations of G over k is less than

€ - iG.
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since tk k2*? = 7, see [T, (17.10)]. The number of the maximal twosided ideals
in A is t1(G) 4 t2(G), and (®) follows.

1.
2.

If T5(G) = 0, then t = #1(G) + t2(G), and the statement follows from (g).
If T5(G) > 0, then 1k k[G] = 2dim A — (T4 (G) — T5(G)) +1k B > 24G —t + 1,
by @). k[G] is not of minimal rank [5]. Let B = By x Ba, so that B
consists of all matrix algebras from (Il) of order < 6. The number of max-
imal twosided ideals in B; is ¢3(G) + - + t6(G) = T5(G) — T7(G). By (@)
we haverk B > 2dim By — (T3(G) — T7(G)) + rk Bs. If By is not empty, then
n¢_1,(@)+1 = 7, since ny < -+ < ng. From Theorem [I] we obtain

t t
5 9 . 7
rk By > 5 E n:—3 E n722d1mB2+2T7(G),
T=t—T7(G)+1 T=t—T7(G)+1

Gathering it all together, we come up to
rk k[G] > 2dim A+2 dim By +2 dim Bo — T3 (G) + § T7(G) = 286G —t+ T%(G).

which proves the second claim of the theorem.
Let k[G] = k1(&) x C, dim C = nffTQ(G)+1+' --+n?. By @) and Theorem[I]
rk k[G] = 1k k" (D) 41k C > 1 (G) +

Lemma [I] for the dimensions of the factors of C, and setting § = %, we
obtain ZT T (@)1 T < VT2(G)dim C < VG = o(tG). On the other
hand, ¢1(G) < t = o(§G). Thus, dlmC’ = 4G — t1(G) = G — o(4G), and
rk k[G] > SHG — o(4G). O

>dimC —3 Zi:thZ(G)H n,. By using

Remark 2. The lower bound in case [2] can be improved for some groups using
the lower bound due to Bléser: for n > 3, tk k%™ > 2n2 +n — 2 [4]. The best we
can do in this case is to employ the Alder-Strassen lower bounds for all matrix
algebras in (II) except for one of the highest dimension, for which we will use the
Blaser’s lower bound: if ny < -+ < ng, and ny > 3, then rk k[G] > 26G+n;—t—1.

Corollary 3. Let k be algebraically closed of chark = 0, p be an arbitrary fixed
prime, and p, be the n-th prime number. Let G = {G,, }n>1, where Gy, is

1. Sy, full symmetric group of order n!, or

2. GL(2, p"™), general linear group of nonsingular 2 X 2 matrices over Fpn, or

3. SL(2, p™), special linear group of 2 x 2 matrices over Fyn whose determinant
equals 1, or

4. F,, a Frobenius group of order p,(pn, — 1), generated by a, b € F,,, such that
aPr =Pt =1, b= lab = a*, where u is a primitive element of Ly, , or

5. A non-abelian p,-group with an abelian subgroup of index py,.

Then rk k[G,,] > QﬁGn — o(§G,).

The statements follow from Theorem [6] and the well-known upper bounds on the
number of different irreducible representations of the mentioned groups.
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Schonhage’s 7-theorem [7, (15.11)] in its weakened form states that if the rank
of kM X™ x ... x k™>™ ig at most r, and g ---my > 1, then ny +--- +n¥ <r,
where w is the exponent of matrix multiplication over k. Note that Strassen’s Di-
rect Sum Conjecture implies that rk k[G] = rk k™ *™ + ... + rkk™*™ in case
of an algebraically closed k. It turns out that an insignificantly weaker version
of the corresponding lower bound can be proved independently of the validity of
the Direct Sum Conjecture.

Theorem 7. Let G = {G1, Ga, ...} be a semisimple family of finite nonabelian
groups over an algebraically closed field k.

1. Let f(1G) be a lower bound for the largest irreducible character degree of
G € G. Then tkk[G] > (f(1Q))“, where w is the exponent of matriz multi-
plication. If for all n, f(4G,) > 1, then

. log k|G,
w < limsup loggf([ﬁG })

2. Let t(8G) be an upper bound for the number of different irreducible represen-

tations of G € G. Then rkk[G] > (ﬁG) : Af for all n, t(§G,) > 1, then
(t(G)) 4
_ log #Gn
Jor Qn =1+ log t(EGr)
) logrk k[G)]
> " 2 _

Proof. tkk[G] > f(#G)¥ follows trivially from (II) and the observation that for
any algebras A, B over one field rk A x B > max{rk A, rk B}. The related lower
bound for w is obtained by taking logarithms of both sides of the inequality.

Since G is not abelian, at least one n, > 1 in (). By Schonhage’s 7-theorem,
n{ + -+ n¥ <rkk[G]. On the other hand, by Lemma [I]

anz<n22><t1 Zn) ((@G);

=1 =1 ﬁG)) 4
It follows, that w? — 2Q,w + lffgrf({;([;i”s] > 0. Since w > 0, the solution is
w>Qn+ \/ Q32— lffgrf(];([;i”s]. This holds for all n, therefore (@) follows. O

Corollary 4. 1. If t(§G,) = o((§Gy) ) for every € > 0, then wyg) = “Q’E If
additionally w > 2, then wyg) > 1.

2. If w > 2 and §Gy, = o((f(§Gn))”), then wyig) > 1. One promising family of
finite groups which can help to achieve w = 2 in [10] has f(§Gn) = (8Gn) 3¢
for some fized € > 0. It follows from Theorem [, that one should look for
€> ; — i}, since otherwise the lower bound is superlinear unless w = 2, and
for € > 0.079 to improve the Coppersmith- Winograd upper bound for w.

4 For a family of finite groups G = {G1, G2, ...} we denote by k[G] the family of
group algebras {k[G1], k[G2], ...}
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3. If w > 2 and t(§G,) = 0((ﬁGn)3), then wyig) > 1. In particular, this holds

if t(ﬁGn) = 0((ﬁGn)O-841)'
4. Let k be an algebraically closed field of characteristic 0, q be a fized prime
power, Gi = {Sn}, 51, G2 ={GL(n, @)}, Then wyg,) =3, fori=1,2.

Proof. Ttems[IH3lare trivial. Item Ml for G; follows from Corollary[3] and for Go—
from the fact that GL(n, g) contains an irreducible representation of dimension

(tGL(n, q))> =Y []. O

We conclude with an extension of the lower bounds to the more difficult case of
non-semisimple group algebras. Let k be an algebraically closed field of character-
istic p, and let G be a finite group of order N = np?, where p { n. We will assume
that G has the normal Sylow p-subgroup P of order p. In this case rad k[G] is
generated by all vectors 3, . p xnh, with >_ 2, = 0, and dimrad k[G] = p®(n — 1).
We will further assume that P is abelian and is isomorphic to a direct product
of cyclic p-groups:

P =Zpe1 X+ X Lpor, 51 < < 8, d=s1++ 5. (10)

Theorem 8. Let k be a field of characteristic p, and G = {G1, G2, ...} be a
modular family of groups. Let G € G, and G = np?, where p { n, and d is as
in (IO). Assume that

- P= Z(GE is the Sylow p-subgroup of G;
— For any D > 0 there exists G € G with d > D;
— For any € > 0 and for all G € G with G > No = No(e), s, — 1 < logp er.

Then tk k[G] > (2+ ) G — o(HG).
Proof. We will denote the elements of P by h; .. 4., 0 < i, < p°, for all
1 < p < r,sothat

hil, ey e h_yl, s T h(7,1+jl) mod p°1, ..., (ir+7,) mod psr -

For 0 <p<r,let
Tp = hul,...,uT. - hO,...,Oa

where u, =1 and u,, = 0 for k # p. R :=rad k[G] is generated by z1, ..., z,. It
is easy to check that xﬁsP = 0 and for m > 1, the system
{a - al i+ +ip >m, 0<id, <p*}

is linearly independent and generates R™. For
am—1 =4{(ir, ..., i) 1+ i, <m—1,0<4, <p*},
dim R™ = n(p? — am—_1).

® Z(Q) is the center of G, i.e., the set of elements of G that commute with all the
elements of G.
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Let E€ be the expectation of a discrete random variable £ which can assume
only finite number of values. If £ takes value a; € R with probability p; > 0 for
1<i<mn, Y, pi=1,then B¢ = 7"  a;p;. D = E( — E£)? denotes the
variance of &.

The exponent of P is p*~ = o(§P) by the third condition of the theorem. Thus
the parameter r is unbounded among all groups from G. According to (@),

m—1 — 2Qm—
rk k[G] > $G + dim R™ + dim R™ — dim R?™ = (2 4 famm1 = 1) {G.
np
We will choose m in such a way that “*7 ' — 1, “"7' — 0 when r — 0.
This following elegant argument is due to B. Chokayev. Consider the indices

{ip};=1 as independent random variables, i, taking each value in [0, p® —1] with
25p

probability !, . Then Ei, = *",™", Di, = ¥ [, and denoting & = i1 +- - +iy,

1 — r 1 « r
E¢, = S — D¢, = e — .
&=, 0"~y 6= 192 P~
p=1 p=1
Note that & takes each value in [0, Y7 _, p*» — r| with probability “" _p‘fj”*l.
Now consider m = g]Eﬁr as a function of r. By Chebyshev’s inequality,
Qe
"t =Pl <m-1) < Pl — Bl 2 Bg —m+ )
25,—281
< D¢, < 3p —0,
“(E& —m+1)2 = 4r r—00
“2mol (g, < om— 1) > P(1& — E& | < 2m— 1 — EE,)
p
258,.—2s8
>1- DE: ST
- (2m — 1 — Efr)g - 4’[“ 77— 00
O

Corollary 5. Let k be a field of characteristic p and G = {G1, Ga, ...} be a
family of finite groups such that
1. For alli > 1, 1G; < tGit1,
2. For every i > 1, the only Sylow p-subroup of G; coincides with Z(G;), and
Z(Gi) =ZLp, X+ X Ln,,
Then there exists such N that the family of group algebras k[G] does not contain
algebras of minimal rank of dimension greater than N.

4 Conclusion

We extended the group-theoretic approach and algorithms for matrix multipli-
cation by showing that there are tight relations between the lower bounds for
the rank of matrix multiplication and the rank of group algebras.
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The first possible improvement would be a further generalization of Theorem [
for the case of arbitrary semisimple group algebras. This would link the ranks
of group algebras and of the matrix algebra over more fields. On the other
hand, relaxing the conditions of Theorem [§ may shed more light on the possible
complexity issues that arise in the group algebras with radical which are not
related to the complexity of matrix multiplication.

Acknowledgements. 1 would like to thank M. Bléser, the anonymous reviewers for
many helpful comments and suggestions, and V. Alekseyev for introducing me
into this topic. Many thoughtful remarks came from D. Khovratovich, M. Fouz
and R. Rao.
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Abstract. The master theorem provides a solution to a well-known
divide-and-conquer recurrence, called here the master recurrence. This
paper proves two cook-book style generalizations of this master theorem.
The first extends the treated class of driving functions to the natural class
of exponential-logarithmic (EL) functions. The second extends the result
to the multiterm master recurrence. The power and simplicity of our ap-
proach comes from re-interpreting integer recurrences as real recurrences,
with emphasis on elementary techniques and real induction.

1 Introduction

Techniques for solving recurrences are among the standard repertoire of algo-
rithmic textbooks [I3IEIT6I4/T]. A proto-typical recurrence arising in the analysis
of efficient recursive algorithms is

T(n) = aT(n/b) + d(n) (1)
where ¢ > 0 and b > 1 are arbitrary real numbers, and d(n) > 1 is the driving
function. We call [Il) the master recurrence since theorems providing its
solution are widely known as “master theorems”. The solutions depend on the
nature of d(n). The case where d(n) is multiplicative is treated in [I}, p. 301]. In
an influential note, Bentley, Haken and Saxe [3, Table 1, p.39] proved a master
theorem under a fairly general hypothesis on d(n). Recurrence (Il) generalizes to

k
T(n) = Z a;T(n/b;) + d(n) (2)

where a; > 0 and b; > 1 are arbitrary real constants (k > 2). We call @) the
multiterm master recurrence. E.g., the 2-term recurrences T'(n) = T'(n/b1)+
T(n/bs) + n and T(n) = T(n/2) + T(n/4) + logn arise (respectively)
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in fast median algorithms [4, p. 240] and in conjugate search tree analysis in
Computational Geometry [0].

To discuss the literature, it is useful to begin with the “standard” master
theorem for (d). This is Proposition 1 in the next Section. It has two kinds
of generalizations: (A) The first kind, as in Verma [19], extends the class of
driving functions d(n) that are captured by the master theorem. Verma’s main
result [19, Theorem 13] provided integral bounds on solutions when the driving
functions d(n) satisfy some growth properties. (B) The second kind comes from
extending the master recurrence itself. Wang and Fu [20, Theorem 3.5] gave
integral bounds for a parametric form of ([Il) where a, b are now functions of n. Of
course, the multiterm recurrence (@) is also a generalization of the second kind.
An early treatment of multiterm recurrences is found in Purdom and Brown
[16]. Multiterm master theorems are given by Kao [I1], Akra and Bazzi [2],
and Roura [I8, Theorem 2.3|. Leighton [14] provides an exposition of [2]. We
remark that obtaining generalized bounds in the form of integrals, by itself,
is not satisfactory: our goal is to achieve “cookbook style” theorems [12] as
exemplified by the master theorem.

€ 1. Contributions and Overview. Our main contribution is two cookbook style
generalizations of the master theorem, Theorems A and B. They are natu-
ral extensions, and completions, of known results. They serve to unify many
complexity analysis of individual algorithms: thus, no previous master theorems
capture the analysis of Schonhage-Strassen’s multiplication algorithm [13], but
this is now an application of Theorem A. Similarly, the conjugate tree analy-
sis of Edelsbrunner and Welzl [6] is a consequence of Theorem B. Furthermore,
Theorem B shows that the conjugate tree exponent, a = lg(¢ — 1) ~ 0.695
where ¢ = 1.618 ... is the golden ratio, can be systematically obtained, and that
this bound is tight to ©-order. Our second contribution is the introduction of
rigorous elementary techniques for these derivations. In particular, we provide
summation formulas for Exponential-Logarithmic (EL) functions. Elementary
techniques are possible because we exploit bounds which are tight to (only)
O-order.

Section 2 will review the master theorem and extensions. Section 3 states our
two main results: Theorem A is a master theorem that allows the driving func-
tion d(n) to be any EL-function. Theorem B is a multiterm master theorem.
Section 4 introduces elementary summation techniques. Section 5 addresses ele-
mentary sums and proves Theorem A. Section 6 introduces real induction and
proves Theorem B. We conclude in Section 7.

92. Approach of Paper. Our approach has two emphases. The first is on real
recurrences: in the recurrences () and (2I), we treat n as a real variable, T'(n)
as a real function and all constants a, b, a;, b; are real. In contrast, most of the
literature regards n as an integer variable. E.g., Kao [II] treats this multiterm
recurrence:
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e B k . )
T(n) = {2 n®-log”n+ 3 ., a;T([bin]) ]1:2: Z i ZO 3)
n 0

where n and k are positive integers, ¢, ¢,,, a; are positive constants, «, 3 are non-
negative constants, b; € (0,1) and ng > rnaxf=1 ljbi . Similar viewpoints are seen
in Wang-Fu, Akra-Bazzi and Roura. But most driving functions such as d(n) =
v/n and d(n) = nlogn are naturally real functions. Hence our real extension
remains well-defined if we simply omit the (troublesome) integer-valued functions
such as ceiling or floor. A standard approach to avoid ceiling/floor functions is
“domain restriction”. E.g., restricting the domain of T'(n) in recurrence () to
positive powers of b ([4, p. 145, Problem 4.44] or [19]) and requiring b to be
integer. Finally, to restore n to range over all integers, we need special arguments
(e.g., [0, pp. 81-84]) or smoothness assumptions on T'(n). Although the idea of
real recurrences is nascent in several of the papers (e.g., [2[19/1]]), it seldom
takes on a full-blown form. In this paper, we develop basic tools to rigorously
treat real recurrences.

Our second emphasis is the use of elementary methods. Here “elementary”
means the avoidance of calculus [I0], not that the results are trivial or easy to
come by. It is conventional wisdom in algorithmics to solve T'(n) up to ©-order
because it yields robust conclusions about complexity (e.g., [3]). But it is seldom
noted that @-order analysis lends itself to elementary techniques. E.g., below
we give elementary ©-bounds on sums that are usually treated by the Euler-
Maclaurin formula [8, p. 217]. Authors also fail to exploit problem simplifications
from ©-order analysis [T9J20/T8]. For instance, up to @-order, most solutions
are insensitive to the initial conditions. So we need not explicitly specify initial
conditions. Instead, this paper assumes the following default initial condition
(DIC):

T(n)=C,  (n<mno) (4)
for some constant C' > 0 and real ng; the recurrence equation is assumed to be
operative for n > ng. Usually C = 0 is simplest and easily justified. Thus,
using real recurrences under DIC, Kao’s recurrence (B]) greatly simplifies to
T(n) = n*log’ n + Zle a;T(b;n). Roura [I8] and Leighton [14] also discuss
robustness issues. The pedagogical advantage of avoiding calculus for computer
science students is obvious. Also our driving function d(n) need not be differen-
tiable (Lipschitz type bounds suffice).

These two emphases (real and elementary) explain the title of this paper. The
simplicity and power of the real approach will hopefully be evident.

2 On Master Theorems

The “standard” master theorem provides the motif for generalizations. Relative
to the master recurrence (Il), we define a watershed constant

a:=logya (5)
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and an associated watershed function w(n):=n®. The master theorem is a
trichotomy based on a comparison between d(n) and w(n):

Proposition 1 (Standard Master Theorem). The solution to () is

n® if d(n) = O(w(n)n=°) for somee >0 [CASE (—)]
T(n) =6< n®lognif d(n) = O(w(n)) [CASE (0)] (6)
d(n)  if “d(n) = 2(w(n)n®)” for some e > 0 [CASE (+)].

I

This is taken from Cormen et al [5l, p. 73], except n is now a real variable and
a >0 (not a > 1). The trichotomy amounts to d(n) being (resp.) polynomially-
slower than, ©-order of, and polynomially-faster than w(n). The condition for
polynomially-faster [CASE (+)] in (@) is written in quotes because the original
{2-notation in [3, p. 39] was non-standard. This was replaced in [5] by the weaker
regularity condition: for some C > 1,

d(n) > C-a-d(n/b) (ev. n) (7)
where the qualification “(ev. n)” reads as “eventually n”, meaning that the
statement holds for large enough n. Our real approach affords a “two-line proof”
of Prop. I by induction, T'(n) = a"™'T (n/b"*1) + dipd - d (), for i =
0,1,.... Setting ¢ = m:=[log, n], and using DIC (with C' = 0) in [}, we obtain

T(n) =Zajd(n/bj). (8)
j=0
The 3 cases follow by plugging in the corresponding bounds for d(n). Q.E.D.
93. Extended Master Theorem. It is well-known that Prop. [Il does not cover
many useful driving functions such as d(n) = w(n) log’ n (6 # 0). By applying
the general techniques of domain and range transformations [4, pp. 130-137],
we get:

Proposition 2 (Extended Master Theorem). The solution to () is

d(n) if d(n) satisfies the reg. cond. (@) [CASE (+)] ,
d(n)logn if d(n) = @(n*log’ n) for some § > —1 [CASE (0
d(n)lognloglogn if d(n) = ©(nlog®n) where § = —1  [CASE (1
n® if d(n) = O(n*log’ n) for some § < —1 [CASE (—

)
],
I,
)]
Prop. [ generalizes the master theorem (@) since the original CASEs (—)&(0)
are subsumed by the new ones; CASE (+) is unchanged but CASE (1) is new.
Prop. 2 is from Brassard and Bratley [4, p. 145] (cf. [B] p.84, Ex.4.4-2]), slightly
sharpened here: we state CASE (+) in terms of the regularity condition. Further
[4] assumes n = nob® for integers ng > 1 and b > 2. Wang and Fu’s version of
Prop. @ is in [20, §4.3 and Table 1]. Roura’s version [I7] missed CASE (1). Case
3 in Verma’s version [19, Theorem 1] is weaker than CASE (0) as he assumes
0 > 0. Still, our Prop. Bl is silent when the driving functions are, for example:

do(n) :=n%lognloglogn }

T(n) =6 ;

di(n) :=n“(loglogn)”
.__ . a(logloglogn)?®
d2(n) =n 1o§n lgoglgogn

(9)
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for non-zero r, s. Note that dy(n) arise in the Schonhage-Strassen’s algorithm
[13] with « = 1. It turns out that the solutions for T'(n) under the driving
functions (@) are (resp.)

O(n* -log” nloglogn), O(n-logn(loglogn)”), O(n*(logloglogn)*™"). (10)

The last case assumes s > —1; different solutions arise if s = —1 or if s < —1.
Theorem A in the next section will provide these solutions, and much more.

3 Two Generalized Master Theorems

This section will state our two main results: Theorems A and B. Both are ex-
tensions of Prop. 2l We begin with Theorem B since Theorem A requires a bit
more development to formulate.

94. We need the multiterm analogues of (B and ([7): the watershed constant
for (@) is the unique « satisfying the characteristic equation ZZ 1 g; =1 (see
[1112]). Say d(n) satisfies the regularity condition of (2] if, for some 0 < ¢ < 1,

Zad( )<cd() (11)

Theorem B — Multiterm Master Theorem
The solution to [3) satisfies

d(n) if d(n) satisfies the reg. cond. () [CASE (+)],

T(n)—© d(n)lgn if d(n)=6(n" lg n) for some § > —1 [CASE (0)],
()= d(n)lgnlglgn if d(n)=6(n* lg n) where § = —1  [CASE (1)],
n® if d(n) =0(n>1g’n) for some § < —1 [CASE (—)].

All previous versions of Theorem B have 3 cases, as in Prop. [l Our CASE
(1) is new, and in some sense it completes this line of analysis. Kao [I1] gave
an inductive proof for the case k = 2 only. Roura [18, Theorem 2.3] treats more
general driving functions; like Kao, the treatment is for integer recurrences. Akra
and Bazzi [2] deduced their result from a general integral bound, which Leighton
[14] simplified.

95. On EL-functions. We now introduce the famil of “EL-functions” which

will serve as driving functions for Theorem A. The iterated logarithm func-

tion (for k € N) is defined as €lg, (x) :=1g(lg(- - - (Ig(x)) - - -)) where 1g:=log, is
~ ~ rd

k times
the “computer science logarithm”. E.g., llg,(x) = z, llg,(x) = gz, llgy(x)

lglg z. We may extend the index k to all integers where, for k € N, £lg_ ) (x (x)

1 EL is mnemonic for Exponential-Logarithmic.
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= 29 k(™ Thys llg (z) = 2% and g _,(x) = 22". An exponent se-
quence is a function e : Z — R with finite support, i.e., e(i) = 0 for all
but finitely many i’s. We normally write e; for e(i). Call e trivial if e¢; = 0
for all ¢ € Z. For nontrivial e, the smallest index 4 such that e; # 0 is called
its order, and e; its leading power; these are denoted Ord(e) and Pow(e)
(resp.). Given k,¢ € N, if e, = 0 for all i < —k and ¢ > ¢, we may repre-
sent e (non-uniquely) as the sequence e = (e_g,...,e_1,€e0;€1,...,¢e7) where
the semi-colon “;” between ey and e; indicates the “origin” of the bidirec-
tional sequence. An elementary function is a partial function f(z) of the
form EL®(x) :=]],;c5 0lg;’ (v) where £lgy(x):=(llgy(x))® is the a-th power of
00gy(z). B.g., ELCZ0™) (2) = 2-2(1g1g(x))".

We need one more concept to state Theorem A. Any driving function d(n)
of the form EL®(n) where Ord(e) = 0 and Pow(e) = a (watershed constant)
is just “at the cusp” between CASES (+) and (—), and so we call such e a
cusp exponent. The cusp order of any e is the largest index A > 1 such that
e(i)=—-1fori=1,2,...,h—1; also call e(h) the cusp power. Cusp exponents
have form e = (o; —1,—1,...,—1,03,...) where 8 # —1 is the cusp power.

Theorem A — Generalized Master Theorem

Let the driving function be d(n) = EL®(n) with k = Ord(e) and ¢ = Pow(e).
Also let the cusp order and cusp power of € be h and (3 respectively. The solution
T(n) to the master recurrence [dl) with watershed constant o = logy a satisfies

d(n) if (k<O0Ac>0)or (k>0Ae(0) > «a), [CASE (+)]
T(n)=6 { d(n)LLy(n)if (k=0Ae(0) =aAf>-1), [CASE (h —1)]
n® otherwise [CASE (-)]
(12)

where LLp(n) := H?Zl g, (n) =lgn-lglgn - llgs(n)--- Ly, (n).

This theorem has infinitely many cases, one for each h > 1. For h =1 and 2,
we reproduce CASEs (0) and (1) of Prop.[2l Verma [19, Theorem 13] has driving
functions not covered here. To make Theorem A fully comparable to Prop. [l
we could re-formulate CASE (+) using the regularity condition. An interesting
corollary of Theorem A is this: when the driving function is an EL-function, the
solution to the master recurrence is, up to ©-order, another EL-function.

To see Theorem A in action, recall the driving functions dy(n), d;(n), d2(n) in
[@). The exponent sequence for them are (resp.)

(s1,1), (;0,7), (c;—1,—-1,5)

For dy(n) and d;(n), their cusp order h and cusp power 3 are (resp.) (h,() =
(1,1) and (1,0). As these cusp powers are > —1, they are both fall under CASE
(0) which has solution T'(n) = ©(d(n)LL1(h)). This yields the first two solutions
in ([I0). For da(n), we have three possibilities: If s > —1, then (h, 8) = (3, s) and
the solution falls under CASE (2) with solution T'(n) = ©(d(n)LLs(n) as given
by the third bound in ([I0). If s = —1, then (h,8) = (4,0) and it falls under
CASE (3) with solution T'(n) = ©(d(n)LLs(n)) = O(n*lg,(n)). If s < —1,
then (h, 8) = (3, s) but it falls under CASE (—) with solution T'(n) = ©(n®).



20 C. Yap

4 Elementary Summation Techniques

A complexity function is a partial function f : R — R where f(z) is defined
for = large enough. Standard asymptotic notations (big-Oh, big-Omega, Theta,
etc) can be extended to partial functions [21]. Define two kinds of sums on f-
values between real limits a,b € R:

2ﬁmf@%=ﬂw+f®—U+~~+ﬂb—w—ﬂ%mwwmmg} 13
Ziza f(x):=fla)+ fla+1)+---+ fla+ |b—a]) (ascending)

Both sums are 0 for b < a; else the descending (ascending) sum will include
the term f(b) (f(a)). The two versions are distinguished by way we write their
lower limits: Y- o 7 versus “Y°__ ”. Such sums are always well-defined as any
undefined summand f(x) is replaced by 0. Our manipulations below exploits:

b b
Y f@) =) flb-u2). (14)
x>0 =0

Our main focus will be descending sums of the form S/ (n):=3""- | f(z) for real
values of n. This sum is traditionally bounded with the Euler-Maclaurin formula.
But we now provide elementary method based on “growth-types”:

e f is polynomial-type if f > 0, f is non-decreasing, and for some K > 0,
F(z) < K f(x/2) (ev.)

e [ increases exponentially if f > 0 and for some C > 1 and k > 0, f(z) >
C- flx—k) (ev.).

e f decreases exponentially if f > 0 and for some 0 < ¢ < 1 and k£ > 0,

fx) <ec-flz—k)(ev.).

We say that f is exponential-type if it increases or decreases exponentially.
Polynomial-type functions corresponds to Verma’s “slowly growing functions”
[19]. These growth-types are non-exhaustive: for instance, it can be shown that
the function 2™ is not captured. Our next result is relatively easy but useful
because it reduces estimating S¥(n) to the easier problem of determining the
growth type of f.

Theorem 1 (Summation Rules)

nf(O(n)) if f is polynomial-type,
ST(n)=07¢ f(n) if f increases exponentially,
1 if f decreases exponentially.

To determine the growth-type of f, we can exploit simple closure properties of
growth types (e.g., each type is closed under addition, multiplication, raising to
a positive power, etc). Moreover, an EL-functions f (say f(xz) = EL®(()x)) is
exponential-type if Ord(e) < 0; otherwise, either f or f=! is polynomial-type.
We exploit such properties in our proofs.
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5 Elementary Sums and Proof of Theorem A

Our goal is to bound elementary sums, i.e., S/(n) where f is an EL-function.
Such sums may be denoted by S°(n):= "7 EL®().

6. Error Notation. We write “z = y £ 2” to mean that x = y + 6z for some 6
where |0] < 1. The general convention [21] is that in any numerical expression,
each occurrence of the symbol “+” stands for a sequence “+46” where 0 is an
anonymous variable satisfying |0] < 1. Like the big-Oh notation, this is a very
useful variable hiding device. Thus, the following holds for any continuous f:

n

Zf(nic):nf(nic). (15)

i=1

We need 3 operators on e. The shift operator o is: o(e)(i) = e(i + 1) for all i.
E.g., EL7®(n) = EL®(2"). For ¢ € R, let €’ (resp., e + ¢) denote the exponent
sequence where we zero out (resp., add ¢ to) the component e(0): €’(0) = 0 and
(e+¢)(0) = c+e(0), and €'(i) = (e +¢)(i) = e(i) (i # 0). Usually, ¢ = 1.
Another result we need is this: if Ord(e) > 0 and ¢ € R,

EL®(2"%¢) = EL?®) (n £ ¢) = O(EL7® (n)) = O(EL®(2")). (16)

The next transformation of elementary sums is the key.
Lemma 1 (Key Transformation). If Ord(e) > 0, S¢(n) = ©(S(e+1) (Ign)).

Up to B@-order, we will show S¢(n) = O(f(n)) for some elementary function
f. The goal (next Theorem) is to determine the exponent of f. Note that all
asymptotic notations assume a fixed e. We need a variant notion of cusp order
from Section 3: for any e, its augmented cusp order is 0 if e(0) # —1; else
it is the cusp order of e. Also e(h) is the augmented cusp power if h is the
augmented cusp order. If e(0) = —1, then the augmented concepts agree with
the original ones.

Theorem 2 (Elementary Sums). Let k:=Ord(e), c:= Pow(e). Also, let the
augmented cusp order and power of € be h and (3, respectively. Then

EL®(n) if (k<—-1A ¢>0), [CASE (+)]
S¢(n) =0 ¢ EL®(n)LLp41(2") if (K >0A B> —1),[CASE (h)]  (17)
1 else [CASE (—)]

The proof uses repeated application of the key transformation, Lemma [[l To
see the power of Thm. B note that it implies S/(n) = ©(llg),(n)) when f(z) =
1/LLyp(2%) (for any h € N). Goursat [9, p. 349] has the calculus analogue of this.
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€7. Proof of Theorem A. Let n = b™. From (), we have

Tn) = Slgddn/t) =Shear ) by @) o
=nY5ea td(b) = n Y75 a T ELE(bY).

If k < —1, the function F(i):=a *EL®(b") is increasing (decreasing) exponen-
tially when ¢ > 0 (¢ < 0). Applying our summation rules (Thm. [I]) to (I8]),

(19)

o a”™EL®(b™) EL®(n) if ¢ > 0,
T(n)=n '9{1 Q{no‘ if ¢ <0.

This proves our theorem for k¥ < —1. Next assume k > 0. Writing ey = €(0),

m
T(n) = n* )" a 'EL() = n® Y7Lo(b% /a)' - EL (bY). (20)
i>0 B
But (b%°/a) is > 1 (= 1,< 1) depending on whether ey > a (= «, < «). So the
sum (20) is exponential-type (polynomial-type) when eg # a, (eg = «). So:

a”™EL®(b™), EL®(n) if eo > a,
T(n) =n"-6 4 SR ELE (b)), =04 n® - Y ELY)(ilgb) if ey = a(21)
1 n® if eg < a.

We are done with the case k > 0 and eg # . For k = 0 and eg = «, [21)) gives

T(n) = O(n* - Y1 BL7)(ilgh))

=O(n*- Zgo ELU(E/)(Z')) (Igb is const. in a poly.-type sum)
=O(n*- Sa(e/)(m)) (definition of S”(e/))
o e ELC) (m)LL,(2™) if 8> —1

Q{na if <1 (by Thm. )

In applying Thm. 2] we use the fact that Ord(c(e’)) > 0 and the augmented cusp
order of o(€’) is equal to h—1. The case § < —1 falls under CASE (—). Case § >
—1 falls under CASE (h) because n® - EL7) (m)LLj,(2™) = ©(EL®(n)LLy(n))
because m = O(lgn). This proves Theorem A.

6 Real Induction and Proof of Theorem B

The principle of natural induction, or induction on N, is well-known. To prove
Theorem B, we need induction on R, or real induction. Real induction is
rarely discussed in the literature although it is needed in areas such as automatic
correctness proofs of programs involving real numbers, timing logic [15], and in
the programming language Real PCF [7]. We give a simple formulation here:
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PRINCIPLE OF (ARCHIMEDEAN) REAL INDUCTION
Let P(x) be a real predicate. Then P(z) is valid provided there exist real numbers
x1 (cutoff constant) and v > 0 (gap constant) such that:

(RB) Real Basis: For all x < x1, P(x) holds.
(RI) Real Induction: For ally > x1, if (Vo <y —)P(z) then P(y).

The derived predicate “P*(y) = (Vo < y —v)P(z)” in (RI) is called the real
induction hypothesis (RIH). Thus (RI) says P (y) = P(y). This principle
s “Archimedean” because it exploits the Archimedean property of the reals:
for any x € R, there is a smallest n(z) € N such that < z1 + n(x)y. Our
principle is easily justified by a strong induction on the natural number n(z).
As an application of real induction, we can prove that the multiterm regularity
condition () implies d(n) = 2(n®*¢) for some € > 0.

98. Proof of Theorem B. We use the Principle of Real Induction. First we prove

the real induction (RI) part of each case in our theorem:

CASE (+): This is the easiest case. The lower bound T'(n) = £2(d(n)) is trivial.
For the upper bound, we will show T'(n) < Did(n) (ev.), for some Dy:

T(n) = d(n) + X5y aiT () < d(n) + i, aiDd(n/b,) (by RIH)
<d(n) + Dicd(n) (by regularity cond. (1))
< Did(n) (choosing D1 > 1/(1 —¢))

CASE (0): Assume that d(n) = n®1g° n for some § > —1. We first show T'(n) <
D1d(n)lgn. We have, eventually,

T(n) =d(n) + Y5 ;T
<nlg’n+ Y a;iDy (") 1g°+! (g) (by RIH)

5+1
=n*1g’ n+ Din*1g’ ' n |:Z7, 1 e (1 B llil;) ]

=Din®lg’ ' n Dy lgn + i bo {1 —(0+ ]‘)llggl;, (1+ 0(1))}
=D 1™ 1 L {8 - G ) D, (1 0(1) ]
< Din® lg‘SHn

provided D7 is sufficiently large to verify 5 (6 + )ZZ 1 “Qjéb Here the
condition 4 > —1 is necessary. Similarly, we show the lower bound T(n) >
Dod(n)lgn using the same derivation above, but with reversed inequalities. The

provision is that D5 is small enough to verify 52 > (0+1) Zle aig% bi

CASE (1): Assume that d(n) = n®/lgn. We first show T'(n) < D1d(n)lglgn.
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T(n)=d(n) + S5 1a:T("
<+ L 1azD1( )alglg(gg) (by RIH)
= Din® Dllgn —I—Zz 1 b(, g{(lgn) (1 - lél;)}
= Dyn® -Dllgn +Zl L b(, lglgn +1g (1f lélx H

= Din® -lglgnJr D, lgn +El 1 b"‘ lg (1 - lél;z)

= Din® -lglgn—l— Dy lgn ¥ b 1lggl':: (1+0(1))

e k K
= Din® [iglgn+ ), {4 — S0, “ 5% (1 +o(1) }]
< Din%lglgn

provided D; is large enough to verify 51 < Zle ‘“;5 b Similarly, the lower

bound T'(n) > Dan®lglgn uses the above derivation with inequalities reversed,

and Dy small enough to verify 52 > Zle ’“bli b

CASE (—1): This is the trickiest. By assumption, 0 < d(n) < n®1g°n (ev.) for
some § < —1. To show T'(n) = O(n®), the hypothesis T'(n) < Din® will not
do. Instead, use the stronger hypothesis T'(n) < Din® [1 — Klg*™ n] (ev.) for
some Dy, K > 0. Eventually,

k
n)—l—ZaiT(Z)
<n*1g’n+ 55 aiDy (@)a {1—Klg5+1 (")} (by RIH)
= Din® lgDJl" +1- Klg“lnzl | b(, (1 — labs )6+1]

Ign

=D [1- Kl n{— L+ (1 6+ 1)11gg*;) 1+ 0(1))}]
= Do [1- K11 L (Kgl (+1) 3k, wlebi(1 4001 ))}]
< Din® [1 - K1g°+! n}

provided K Dy is small (sic) enough to verify KlD —(6+1) Zl 1 ’“blf'z b (recall

0 < —1). The introduction of K is crucial. For the lower bound, we also use a
strengthened hypothesis, T'(n) > Dgna(1+lg6+1 n). The derivations is essentially
the same, except inequalities are reversed. This completes the four cases.

We now provide the real bases (RB) for each of the above cases: first choose
ng so that d(n) is defined and the recurrence (2)) for T'(n) holds nonvacuously
(Vn > ng). Choose v = v(no) as shown in the Appendix. Ensure the cutoff n; is
> ng /7, so that RIH holds nonvacuously.

CASE (+4): Choose ny = ng/~ and ensure Dy > T'(n)/d(n) for all n € [ng,n1].
CASEs (0) and (1) are omitted in this abstract. CASE (—): For upper bound, we

first choose the product K D; to equal the reciprocal of —(4 + )ZZ 1 3a£-;§ bi

Choose n1 > ng/v to be large enough so that the o(1) term has absolute value
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< 1/2, and for n > ny, the function f(n) = n®— (K D;)1g°"! n is increasing and
> 1. Finally, choose Dy as sup,,, <,<,, 17'(n)/f(n)}. Note that f(n) < Din®(1—
K1g® n) and hence T'(n) < f(n) < Din®*(1 — K1g°t1 n) for n € [ng, ni).

The proof of Theorem B is complete.

7 Conclusion

Cormen et al [B p. 90] noted that some generalized master theorems are not
easy to use. This echoes Karp’s wish for “cookbook theorems” to recurrences
[12]. That is the appeal of the standard master theorem. Our Theorem B has
similar qualities. Although Theorem A is also cookbook, the generality of its
driving function calls for some unavoidable deciphering of the notations. Further
generalizations of Theorems A and B are possible: for instance, one could extend
Theorem B to driving functions that are general EL functions. Another direction
is to treat robustness issues of such solutions — we address this in the full paper.

Features that detract from cookbook property include bounds left in an in-
tegral form, tedious details involving integrality assumptions, and tracking of
(essentially) arbitrary initial conditions. We have shown that much of this can
be removed if we exploit ©-robustness and embrace real recurrences whole-
heartedly. Real induction is another useful tool that ought to be used more
widely in this context. We feel our ideas are pedagogically sound. For instance,
the summation rules for the various growth-types are easily taught in intro-
ductory algorithms. Indeed, our perspectives have developed out of classroom
teaching.
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Abstract. In this paper we study energy efficient deadline scheduling on
multiprocessors in which the processors consumes power at a rate of s
when running at speed s, where a > 2. The problem is to dispatch jobs
to processors and determine the speed and jobs to run for each processor
so as to complete all jobs by their deadlines using the minimum energy.
The problem has been well studied for the single processor case. For the
multiprocessor setting, constant competitive online algorithms for special
cases of unit size jobs or arbitrary size jobs with agreeable deadlines have
been proposed [4]. A randomized algorithm has been proposed for jobs of
arbitrary sizes and arbitrary deadlines [13]. We propose a deterministic
online algorithm for the general setting and show that it is O(log™ P)-
competitive, where P is the ratio of the maximum and minimum job size.

1 Introduction

Energy efficient deadline scheduling. Energy consumption has become an im-
portant concern in the design of modern processors, not only for battery-operated
mobile devices with single processors but also for server farms or laptops with
multi-core processors. A popular technology to reduce energy usage is dynamic
speed scaling (see e.g., |4, 7, &, [21]) where the processor can vary its speed dy-
namically. The power consumption is modelled by s* when the processor runs at
speed s, where « is typically 2 or 3 |11}, 120]. Running a job slower saves energy,
yet it takes longer to finish the job. The challenge arises from the conflicting
objectives of providing good “quality of service” (QoS) and conserving energy.
Deadline feasibility is a common QoS measure for job scheduling. Jobs with ar-
bitrary sizes and deadlines arrive at unpredictable times and they are to be run
on some processor. Preemption is allowed with no penalty.

The study of speed scaling was initiated by Yao et al. [21]. They studied
deadline scheduling on a single processor in which jobs with arbitrary sizes and
deadlines arrive online and the aim is to finish all jobs by their deadlines using the
minimum amount of energy. The decision at any time is to determine which job
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to run and at what speed. They gave an optimal offline algorithm and a simple
online algorithm AVR which is 2~ 'a®-competitive and they also proposed an
online algorithm OA. Bansal, Kimbrel and Pruhs [g] later showed that OA is
a®-competitive. They also gave a 2(a/(a—1))*e“-competitive algorithm, which
is called the BKP algorithm and is better than OA when « > 5. The result is
further improved to 4%/(2+/ea)-competitive by the qOA algorithm [7].

The problem of energy efficient scheduling has also been studied for other
QoS measures. The problem of minimizing flow time and energy has attracted a
lot of attention [3, 15, 16, 9, 113, [18, [19]. Energy efficient scheduling has also been
extended to the setting with sleep states |14, [16, [17]. The literature also contains
results on other aspects of energy efficient scheduling, see [1, 12, [15].

Energy efficient multiprocessor scheduling. The problem of energy efficient
deadline scheduling becomes NP-hard in the multiprocessor setting, even when
all the jobs have the same arrival times and deadlines. In the multiprocessor set-
ting, in addition to determining processor speeds, a job dispatching algorithm is
required to assign jobs to processors. Albers et al. [4] have extended the study
to the multiprocessor setting and they study the special cases of unit-size jobs
or jobs with agreeable deadlines (jobs arriving earlier have earlier deadlines).
If jobs have unit-size and agreeable deadlines, Round Robin (RR) is optimal.
For the case of unit-sized jobs with arbitrary deadlines or arbitrary-sized jobs
with agreeable deadlines, they gave an a®2**-competitive algorithm. Their algo-
rithm, called Classified Round Robin (CRR) first classifies jobs according to the
density of the job (the ratio of the job size to the duration between arrival and
deadline), and then schedules jobs in each class independently using RR. All jobs
(of different classes) dispatched on a processor are run at a speed determined by
AVR. The case for jobs of arbitrary sizes and arbitrary deadlines is left as an
open question.

Recently, Greiner, Nonner and Souza |13] have shown that any §-competitive
algorithm for a single processor yields a randomized 3B,-competitive algorithm,
where B, is the ath Bell number [10] and this result holds for jobs of arbitrary
size and arbitrary deadlines. This means that the existing algorithms |7, I8, 21|
for single processors lead to randomized online algorithms in the multiprocessor
setting. Yet it is still an open question to have a competitive deterministic algo-
rithm for the general case of jobs with arbitrary sizes and arbitrary deadlines.

Our contribution. In this paper we study the generalized problems in the mul-
tiprocessor setting where jobs have arbitrary sizes and arbitrary deadlines and
give a deterministic online algorithm. We first show that the Classified Round
Robin algorithm (CRR) [4] does not scale well when jobs have arbitrary sizes
and deadlines. The competitive ratio is at least m®~!, where m is the num-
ber of processors. We then consider a natural extension of CRR and propose
a non-migratory deterministic job dispatching algorithm, called Dual-Classified
Round Robin (DCRR), which classifies jobs in terms of both density and sizes.
We show that DCRR coupled with AVR is 24%(log® P + a“2%~!)-competitive
where P is the ratio between the maximum and minimum job size. Note that
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the competitive ratio is independent of m and holds even against an optimal
migratory offline algorithm.

Roughly speaking, to analyze the performance of DCRR, we round the den-
sity and size of a job to the boundaries that define the classes, and show that
the performance on the general set is no more than a constant factor of that on
such a “nice” job set. This idea is similar to the proof in [4], which rounds only
the density of the jobs. We further show that for a nice job set, the classification
of DCRR means that the jobs in the same class satisfy the property of agree-
able deadlines, making the analysis easier. We are then able to show that the
competitive ratio of DCRR depends on the number of classes, which is related
to log P.

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we define the problem and give some preliminary results. In Section [3]
we review an existing algorithm CRR and show that it does not work well for
jobs of arbitrary sizes and deadlines. In Section M we describe and analyze our
algorithm DCRR. Finally, we conclude in Section

2 Preliminaries

We are to schedule a set of jobs onto m processors My, My, -+, M,,—1. Pre-
emption is allowed without penalty. The speed of each processor can be varied.
When running at speed s, a processor processes s units of work and consumes
s units of energy in each time unit, where o > 2.

We denote the release time, deadline and size of a job j as r(j), d(j), and
w(j), respectlvely The span of job j is span(j) = d(j) — r(j) and the density
den(j) = n ) r(]) A job j is called active at time ¢ if r(j) <t < d(j).

The problem is to dispatch the jobs to processors, and for each processor, to
determine which job and at what speed to run at any time. The objective is to
complete all jobs by their deadlines using the minimum energy.

Consider any job set J. For any algorithm A, we overload the symbol
A(J) to mean both the schedule of A on J and the energy required by
the schedule. Let OPT; and OPT,, denote the optimal schedule on a sin-
gle processor and m processors, respectively. In [4], it has been shown that
OPT1(J)/m>! < OPT,,(J). We further lower bound the value OPT,, (7).
At any time ¢, the speed of AVR on a processor is the sum of the densities of
all active jobs at ¢ scheduled on this processor. It has been shown in [21] that
AVR(J) < a®2*71OPT4(J), implying AVR;(J) < a®2° tm*1OPT,, (7).
Let MIN(J) be the minimum energy to run each job of J independently of
other jobs, i.e., MIN(J) = >_,c 7(den(j))*span(j). Then, we have MIN(J) <
OPT,,(J). We summarize these bounds on OPT,,(J) in the following lemma.

Lemma 1 ([4]). Consider any job set J. (a) OPT,,(J) > OPT{(J)/m>1.
(b) (i) MIN(J) < OPTp(J); (ii) AVR1(J) < a®29 Im>~1OPT,,(J).
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Fig. 1. In the adversary, all jobs have density 1. The span and size of the m large jobs
is k and the m? — m small jobs is €. (a) CRR schedules all the large jobs to processor
My and m small jobs to each of My, -, Mm—1. (b) The optimal schedule dispatches
one large job and m — 1 small jobs to each processor.

3 Classified Round Robin (CRR)

In this section, we review the algorithm CRR which is a®2**-competitive for
the special case in which jobs are of unit size, or jobs are of arbitrary sizes but
agreeable deadlines [4]. We show that CRR is no longer constant competitive
when the jobs have arbitrary sizes and arbitrary deadlines.

Let A be the maximum density of the jobs in J. CRR classifies jobs with
density A into density-class-0, and jobs with density in [A/2%, A/2F~1) into
density-class-k, for some positive integer k. Jobs within each class are dispatched
to processors by round-robin independently. For each processor, the speed is
the sum of the densities of the unfinished jobs dispatched to that processor
(i.e., AVR) and the processor processes these jobs by splitting the speed equally
among them.

The following theorem shows a lower bound for CRR when jobs are of ar-
bitrary sizes and deadlines. Figure [[] shows the CRR schedule and the optimal
schedule for the adversary.

Theorem 1. For arbitrary size jobs with arbitrary deadlines, CRR has a com-
petitive ratio of at least m>~ 1.

Proof. Let € > 0 be a small positive value and k > 0 be an arbitrary large value.
Given m processors, define a job set J of m? jobs such that for any 1 <4 < m?,
the release time of job j; is ie. For all jobs j; with ¢ mod m # 0, we set the span
of the job to be €. For all jobs j; with ¢ mod m = 0, we set the span of the jobs
to be k. We further set the sizes of all jobs to be the same as their span, in other
words, all jobs have density 1.

Algorithm CRR classifies all m? jobs into the same class Cj since they have
the same density and dispatches jobs according to round robin by their release
time. Thus the first processor receives the m jobs of large span k and large size
k. The energy used by the first processor is therefore km® as ¢ — 0 and the
energy of the remaining processors approaches 0.
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On the other hand, we can dispatch one large span job and m — 1 small span
jobs to each processor. As € tends to 0, the energy used by each processor is k
and the total energy of the schedule is km. Therefore, the competitive ratio of
CRR is at least m~1. O

We note that even if we classify jobs according to their sizes, such a classification
plus round robin still does not perform well. We give a similar adversary with
m? jobs of the same size, m of them having a small span (thus large density) and
the rest with very large span. One job of small span arrives followed by m — 1
large span jobs and this repeats for m times. Then CRR assigns all the small
span jobs to the same processor, dominating the energy used by the algorithm.
The optimal offline algorithm can dispatch one small span job to each processor,
distributing the energy used much better and thus the same lower bound can be
obtained.

4 Dual-Classified Round Robin (DCRR)

4.1 The Algorithm

We now describe our algorithm DCRR (Dual-Classified Round Robin). In addi-
tion to classifying jobs into density classes, DCRR also classifies jobs according
to sizes. Let I' be the maximum job size of a job set J. Jobs with size in
(I'/2"+1 /2] are classified into size-class-h, for some integer h > 0 (note the
difference from the definition of density-classes). We then define the set Cj j to
be the set of jobs in density-class-k and size-class-h. For simplicity, we assume
that A and I" are known in advanc. With the definition of Cj j, DCRR dis-
patches jobs in the same C} 5 in a round robin manner, independent of other
classes. Then all jobs (of different classes) dispatched to the same processor are
run using a speed determined by AVR (see Algorithm [I]).

4.2 Framework of the Analysis and Nice Job Sets

To analyze the performance of DCRR, we transform job set J to a nice job
set J* (to be defined) and show that such a transformation only increases the
energy usage modestly. Furthermore, we show that for a nice job set J*, we
can bound DCRR(J*) by OPT,,,(J*) and in turn by OPT,,(J). Then we can
establish the competitive ratio of DCRR.

A job set J* is said to be a mice job set if every job j* in J* satisfies the
following properties.

L If A and I' are not known in advance, the class definition could be modified slightly.
Specifically, the first job which arrives will define the initial density and size classes
A’ and I". New jobs may have larger sizes or density than these A’ and I'" and
thus we may have classes with a negative index, but the analysis can be seen to still
hold and increasing the competitive ratio by at most a factor of 2, see [4] for further
details.
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Algorithm 1. Algorithm DCRR

Let A and I' be (respectively) the maximum density and maximum size of all jobs.

Classification: A job is classified into Cy if its density is in [A/2%, A/2"71) and its
size is in (I"/2"+1, /2",

Job dispatching: Jobs of the same class Cy,j are dispatched (upon their arrival) to
the m processors using a round-robin strategy, i.e., the i-th job in C} ) is dispatched
to processor-(i mod m), and different classes are handled independently.

Speed running: The speed of each processor is determined by AVR on the jobs
dispatched to that processor and the speed is split equally among these jobs (note that
this gives a feasible schedule).

— The density den(j*) = A/2F, for some positive integer k.
— The size w(j*) = I'/2", for some positive integer h.

Given a job set J, we transform each job j € 7 into a job j* as follows. Suppose
J is in class Cy, p.

— We set the release time of j* to be the same as j, i.e., r(j*) = r(j).

— We round up the size of j to the maximum in the class Cy , i.e., w(j*) =
I'/2". Then, we have w(j) < w(j*) < 2w(j).

— We round down the density of j to the minimum in the class Cy, ie.,
den(j*) = A/2%. Then, we have den(j)/2 < den(j*) < den(5).

— Effectively, we set the deadline d(j*) = r(j*) + (4 - 2Ak ).

In other words, job densities only decrease and sizes only increase. The following
lemma relates the optimal schedule for 7 and J*, as well as the DCRR schedule
for J and J*. The implication of the lemma is that we can focus on analyzing
the performance of DCRR on nice job set J*.

Lemma 2. For any job set J and its corresponding nice job set J*, we have
(a) 2°OPT,,(J) > OPT,,,(J*); (b) DCRR(J) < 2*DCRR(J™).

Proof. (a) We construct from OPT,,(J) a feasible schedule S for J*, and show
that this increases the energy slightly. The dispatching of S follows the dis-
patching of OPT,,,(J). For any processor, at any time ¢, S runs at double the
speed that OPT,,(J) does. S is feasible for J* because w(j*) < 2w(j) and
span(j) < span(j*), the latter implies that whenever j is run, it is within the
span of j*. Because of the double speed, S = 2*OPT,,,(J). As S is a feasible
schedule for J*, we have S > OPT,,,(J*). Then the statement follows.

(b) First we notice that a job j and its corresponding j* belong to the same
class. The release time of j* is also kept the same as j. Therefore, j* will be
dispatched to the same processor as j. In the schedule of DCRR(J*), at any time
when the job j* is active, it contributes den(j*) to the speed of that processor.
If we consider a schedule S’ that runs double the speed at any time and on any
processor as AVR(J*) does, the job j* contributes 2 x den(j*) to the speed.
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As for energy usage, S’ = 2°DCRR(J*). On the other hand, in DCRR(J), at
any time that j is active, it contributes den(j) to the speed of that processor.
Since 2 den(j*) > den(j) and span(j*) > span(j), for any processor, the schedule
S’ runs at least the same speed as DCRR(J), and probably higher. Therefore,
S’ > DCRR(J), and the statement follows. O

4.3 Analysis of DCRR

With Lemma 2] the analysis of DCRR on a general job set J can be done via the
analysis of DCRR on J*. Recall that MIN(7) is the minimum energy to run each
job of J independently of other jobs, i.e., MIN(J) = 3_;c 7(den(j))*span(j).
First, we show in Lemma [3 a property about how DCRR dispatches jobs in
a class to the m processors. Then, in Lemma M we relate the sum of energy
usage of AVR on jobs DCRR dispatched to each machine with MIN(7) and
AVR4 (7). Finally, together with Lemma [2l we can then conclude in Theorem
the competitive ratio of DCRR.

The following is a modification to a lemma from [4]. Since all spans within a
class are identical, they have agreeable deadlines and the same proof follows as
is shown in [4].

Lemma 3. For any time t, DCRR assigns to each processor at most
[Crn(t)/m] jobs from JT*, where Cyp(t) is the set of jobs from Cyp active
at time t.

Let J;* be the subset of J* that is dispatched to processor ¢ by DCRR. Then
DCRR(J*) = > cicm AVR1(T;*). We now relate ), .,.,, AVR{(J;*) with
MIN(J*) and AVR;(J™). o

Lemma 4. For any nice job set J*, the following inequality holds

3T AVR(J}) < 2%%((log® P*) MIN(J*) + AVR; (J*) /m*™Y)
1<i<m

« _ maz {w(jlies"}
where P = in fwi)lie Ty -

Proof. We adapt the proof of CRR in M]. Let Cy pi(t) for 1 < i < m be the
set of jobs from class Cy j assigned to processor i active at time ¢ dispatched
by DCRR. Let s;(t) denote the speed of the average rate AVR algorithm on
processor i at time ¢. Since the speed of AVR is the sum of densities of all active
jobs at each time point, we see that:

sit) = > \ck,h,i(t)@. (1)

k>0 h>0

Running jobs according to the FEarliest Deadline First policy yields a feasible
schedule. Let s(t) denote the speed of AVR for the whole job set J*. Then

s(t) = Yks0 2nso [Crn(t)]A/25.
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Fix a time ¢ > 0 and a processor 1 < i < m. Let K7 be the set of job class
indices (k, h) such that |Ck ()] = 1 and Ky be the indices (k,h) such that
|Cn,i(t)] > 2. Define k1 = min{k|(k,h) € K;} for some h > 0 and P* =

max {w(j)|j€T"}
min {w(f)|j€T*}

sh= Y o+ Y 10l

. Using Equation (1) and Lemma [B, we see that

(k,h)EK1 (k,h)EK>
o A [Crn(®)]] A
< (log P )th1 + Z [ . ok (by Lemma [])
(k,h)EK
. 2[Crn(t)] A
< (IOgP )2]@1,1 + Z m 2k
(k,h)EK
A st
§4-max{(10gp*)2k1, 8751)} (2)

We shall integrate s;(¢)* first over all ¢ when the first term of Equation () is
dominating to give an upper bound on required energy of:

) “Aowen T
(41og(P") ZZ|CMmJ|(2k> (2’“ ”A>

k>0 h>0

Integratlng 3i(t)* when the second term of Equation (2)) is dominating gives

(1) AVR,(T%). Summmg over 1 < i < m shows that Y>I" AVR;(J;") <
4%((log™ P*)MIN(J*) + m'=*AVR; (J*)) as required. O
Together with Lemma 2] we can conclude the competitive ratio of DCRR in the
following theorem.

Theorem 2. For an arbitrary job set J, the competitive ratio of algorithm
DCRR is at most 2**(log® P + a®2%~1), where P is the ratio between the maz-
mmum and minimum job size.

Proof. By Lemma [l we know that:
> AVR(J7) < 22%((log™ P*) MIN(J*) + AVRy(J*)/m* ™).
1<i<m
Since MIN(J*) < OPT,,(J*) and AVR;(J*) < a®2° tm*1OPT,,(J*) b

Lemma [T] (b) (ii) we therefore conclude that

DCRR(J*) < Y AVRy(J}) < 2°*OPT,,(J7)((log® P*) + o271,

1<J <m
By Lemma 2 (a) and (b) above, DCRR(J) < 2*°DCRR(J*) and OPT,,,(J*) <
2*0PT,,(J). Then, we have
DCRR(J) < 2**OPT,,,(J)((log® P*) + a*2%71).

Note that from the proof of Lemma [, log P* is essentially the number of size
classes used by DCRR which does not change under J or J*, therefore log P
and log P* can be taken to be equal and the theorem holds. O
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5 Conclusion

We extend the study of energy efficient deadline scheduling on multiprocessor
to jobs with arbitrary sizes and deadlines. We analyze the performance of the
deterministic algorithm DCRR. In the proof of Theorem [ the log P factor
comes in the case K1, yet we note that this bound is rather loose and we believe
that this can be improved. On the other hand, one may consider how DCRR
can be coupled with OA instead of AVR to improve the results. Another open
question is to consider speed bounded processors [12], in which case, not all the
jobs can be completed by their deadlines. The concern becomes to maximize
the throughput (number of jobs completed by their deadlines) and to minimize
the energy used to achieve this throughput. The problem has been considered
in the single processor setting |5, [12]. It would be interesting to derive algo-
rithms that are competitive both in throughput and energy in the multiprocessor
setting.
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Abstract. We study the approximation complexity of the Minimum
Edge Dominating Set problem in everywhere e-dense and average é-dense
graphs. More precisely, we consider the computational complexity of ap-
proximating a generalization of the Minimum Edge Dominating Set prob-
lem, the so called Minimum Subset Edge Dominating Set problem. As a
direct result, we obtain for the special case of the Minimum Edge Dom-
inating Set problem in everywhere e-dense and average é-dense graphs
by using the techniques of Karpinski and Zelikovsky, the approximation
ratios of min{2,3/(1+ 2¢)} and of min{2, 3/(3 — 24/1 — €)}, respectively.
On the other hand, we show that it is UGC-hard to approximate the
Minimum Edge Dominating Set problem in everywhere e-dense graphs
with a ratio better than 2/(1 + ¢) with € > 1/3 and 2/(2 — /1 — &) with
€ > 5/9 in average é-dense graphs.

Keywords: Edge Dominating Set, Minimum Maximal Matching, Dense
Instances, Approximation Algorithms, Approximation Lower Bounds.

1 Introduction

In this paper, we consider the computational complexity of approximating the
Minimum Subset Edge Dominating Set problem which generalizes the Minimum
Edge Dominating Set problem. As a direct result, we obtain improved upper
bounds for the Minimum Edge Dominating Set problem in everywhere and aver-
age dense graphs, i.e. graphs with bounded minimum and average vertex degree,
respectively.

1.1 Problem Statement

An edge dominating set (for short EDS) of a finite undirected graph G = (V, E)
is a subset M C FE of edges such that each edge in F shares an endpoint with
some edges in M. The Minimum Edge Dominating Set problem (for short MEDS
problem) asks to find an edge dominating set of minimum cardinality |M|.

For given graph G = (V, E), the Minimum Maximal Matching problem (for
short MMM problem) asks for a subset M C E of non adjacent edges with
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minimal cardinality such that each edge in E shares an endpoint with some edge
in M.

It has been noted that the Minimum Edge Dominating Set and the Minimum
Maximal Matching problem admit optimal solutions of the same size and that
an optimal solution of the MEDS problem can be transformed in polynomial
time into an optimal solution of the MMM problem (cf. [20]), and vice versa.

The Minimum Subset Edge Dominating Set problem (for short MSED prob-
lem) is a generalization of the MEDS problem and is defined as follows: given a
graph G = (V, E) and a subset S C V|, find a minimum cardinality EDS M of
G with the property S C .,/ e-

For some ¢, € > 0, we call a graph G = (V, E) everywhere e-dense if any vertex
in G has at least €|V| neighbors, and we call a graph G = (V, E) average €-dense if

the average degree of a vertex in G is at least €|V, i.e. (3, oy deg(v))/|V| > €V|.

1.2 Related Work

The MEDS problem is already referred to in Garey and Johnson [I1]. Even for
planar or bipartite graphs of maximum degree 3 the MEDS problem remains
N P-hard [20] in the exact setting. An inapproximability result was obtained by
Chlebik and Chlebikovd ([7]), who claimed that it is N P-hard to approximate
the MEDS problem within any factor better than 7/6. They further showed that
the MEDS problem is N P-hard to approximate within any constant less than
(7+¢€)/(6 + 2¢), in graphs with minimum degree at least en. In the unweighted
case, finding an arbitrary maximal matching M provides 2-approximation for
the MEDS problem, since each edge in the optimal solution can cover at most
two edges of M. The first nontrivial approximation algorithm is due to Gotthilf
et al. ([12]) and achieves an approximation ratio of 2 — clog(n)/n, where ¢ is an
arbitrary positive constant and n is the number of vertices in the graph.

Density parameters such as the number of edges € and the minimum degree €
have been used in approximation ratios for various optimization problems (see
[15] for a detailed survey, [I7IT4U213] for covering and related problems).

Currently, the best parameterized ratios for the Vertex Cover problem with
parameters € and € are 2/(2—+/1 — €) and 2/(1+¢), respectively ([I7]). Imamura
and Iwama ([I4]) later improved the former result, by generalizing it to depend
on both € and A := max,cy{deg(v)}.

As for lower bounds, Clementi and Trevisan ([§]) as well as Karpinski and
Zelikovsky ([I6]) proved that the Vertex Cover problem restricted to everywhere
and average dense graphs remains APX-hard. Later, Eremeev ([9]) showed that
it is NP-hard to approximate the Vertex Cover problem in everywhere e-dense
graphs within a factor less than (7 + €)/(6 + 2¢). Finally, Bar-Yehuda et al.
([2]) prove that if the Vertex Cover problem cannot be approximated within a
factor strictly smaller than 2 on arbitrary graphs, then it cannot be approximated
within factors smaller than 2/(2—+/1 — €)—o(1) and 2/(1+¢€)—o(1), respectively,
on average and everywhere dense graphs.
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For the MEDS problem, Cardinal et al. achieved the first upper bound smaller
than 2 for sufficiently dense graphs. More precisely, the obtained approxima-
tion ratio is asymptotic to min{2,1/e} in everywhere e-dense graphs and to
min{2,1/(1 — /1 — €)} in average é-dense graphs ([4]). More recently, Cardinal,
Langerman, and Levy provided an improved bound on the approximation ratio
for the MEDS problem in average dense graphs. This bound is asymptotic to
1/(1 = /(1 — €)/2), which is smaller than 2 when e is greater than 1/2 ([5]).

1.3 Owur Contributions

This work is the first best to our knowledge studying the approximation com-
plexity of the MSED problem. We give an approximation algorithm that achieves
the approximation ratio at most min{2,3/(1 + 2|S|/|V|)}. For the special case
of the MEDS problem in dense graphs, it yields by using the techniques of
Karpinski and Zelikovsky for the dense Minimum Vertex Cover problem ([17])
an approximation ratio of min{2,3/(1+ 2¢)} for everywhere e-dense graphs and
min{2,3/(3 — 2y/1 — €)} for average é-dense graphs, respectively.

On the other hand, we use an approximation preserving reduction due to
Karpinski and Zelikovsky ([I6]) from the Minimum Vertex Cover problem to
the Minimum Vertex Cover problem in dense graphs to obtain hardness result
for the MEDS problem in dense graphs. We show that it is UGC-hard (cf. [18])
to approximate the MEDS problem in everywhere e-dense graphs with a ratio
better than 2/(1 + €) with € > 1/3 and 2/(2 — /1 — €) with € > 5/9 in average
é-dense graphs. The same reduction shows that the MSED problem is UGC-hard
to approximate within any constant better than 2/(14 |S|/|V|) with 3|S| > |V].

2 Subset Edge Dominating Set Problem

We start by introducing some basic notations and tools which are used in our
algorithms. Afterwards we state our approximation algorithm for the MSED
problem and prove the claimed result.

2.1 Definitions and Notations

Given a finite graph G = (V| E) and a subset S C V, the induced subgraph G|5]
is defined as (S,{e € E | e C S}). For a given set M C E we introduce the
notation V(M) := J.c s €

The maximal matching heuristic is a standard algorithm that provides a 2-
approximation for the Minimum Edge Dominating Set problem. It is perhaps one
of the simplest and best-known approximation algorithm. It consists in finding
a collection of disjoint edges (a matching) that is maximal (with respect to edge
inclusion) by iteratively removing adjacent vertices until no more edges are left
in the graph.

In the Maximum Subset Matching problem (for short MSM problem), which
generalizes the Maximum Matching problem, we are given a graph G = (V, E)
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and S C V. The goal is to determine the maximum number of vertices of S that
can be matched in a matching of G. Alon and Yuster considered this problem
and introduced a randomized algorithm in [I]. The Maximum Subset Matching
problem can be reduced to the Maximum Weighted Matching problem. Just
assign to every vertex with both endpoints in S weight 2, and edges from S to
V\S weight 1. The currently fastest algorithm for maximum weighted matchings
in general graphs is the algorithm of Gabow and Tarjan (see [10]).

In our setting, it runs in O(/|V|(|E| + |S|?)) time. For a given graph G =
(V,E), SCV and U C V\S, let us denote by MSM(G,S,U) the set of edges
of a maximum subset matching in the graph G[S U U] and S.

An important theorem for many problems related to the Minimum Vertex
Cover problem was proven by Nemhauser and Trotter (cf. [I9]). It enables us to
reduce the problem to instances in which the value of a minimum vertex cover
is at least |V|/2 together with other nice properties. Here, we use a generalized
version of the NT-Theorem given by Chlebik and Chlebikova.

Theorem 1. (Optimal Version of the NT-Theorem [6])

There exists a polynomial time algorithm that partitions the vertex set V' of any
graph G into three subsets (Vo,Vl,Vl/g) with no edges between Vo and Vy /o or
within Vy such that

1. for any vertex cover VC of G[Vy 5] it holds |VC| > |V} /5]/2
2. every minimum vertex cover C' for G satisfies V1 € C C V3 U Vy/o and
C NV g is a minimum vertex cover for G[Vi s].

Such a partition can be constructed by computing maximum matching of a
specially constructed bipartite graph. The algorithm of Hopcroft and Karp is
currently the fastest algorithm for maximum matching in bipartite graphs and
runs in time O(|E|\/|V|) (see [13]).

2.2 Algorithm Asgps

In order to explain the intuition behind the algorithm, notice that the set S needs
to be covered with edges and we want to achieve it by a maximum matching
which covers the whole set .S. Clearly, we cannot expect that there always exists a
perfect matching in G[S]. Instead we compute a maximum subset matching with
endpoints in V; U Vj /5 for which we hope to have good vertex cover properties
in G[V\S]. The remaining vertices of S will be covered greedily. Finally, we take
care of the remaining graph by applying the maximal matching heuristic (MMH).
We now present our main algorithm (see Figure [I]).

2.3 Analysis of Agsgps

We now formulate our main theorem.

Theorem 2. Given a graph G = (V,E) and S C V, the algorithm Asgps has
an approzimation ratio at most min {2,3/(1+ 2|S|/|V])}.
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Input: Graph G = (V,E), SCV
Set M; := 0;
If |S| > |Z| Then
Compute the NT-Partition (Vo, Vi, Vi2) of GIV\S];
If |[Vo| < 2|Vi| Then
Compute M := MSM(G, S, V\S);
Else
Compute My := MSM(G, S, Vi UVy,2);
EndIf
EndIf
Cover the remaining vertices of S greedily with edges M,;
Compute the remaining graph G’ := G[V\V (M1 U M,)];
Construct a maximal matching M> in G’ by applying the MMH;

Output: M1 U M, U M
Fig. 1. Algorithm Askps

Proof. Let OPT denote some optimal solution for the MSED problem and
EDS 4 the solution produced by algorithm Aggps. First, we concentrate on
the case |S| < |V|/4. Then, we show that Aggps computes a solution with ap-
proximation ratio 3/(1 + 2|S|/|V|) which is better than 2 if |S| > |V'|/4 holds.
We start with

Lemma 1. If |S| < |V|/4 holds, then the algorithm Asgps has an approzima-
tion ratio at most 2.

Proof. The algorithm covers the vertices of S greedily with edges, which means
that we use at most |S| edges. Since the maximal matching heuristic computes a
solution as well for the MEDS problem as for the Minimum Vertex Cover problem
(by choosing the endpoints of the constructed matching) with approximation
ratio 2, our solution for the graph G[V'\S] has at most as many edges as the
cardinality of an optimal vertex cover VCopr of G[V\S] . Consequently, the
approximation ratio of the algorithm is bounded by

|[EDSa| _ |S|+|VCopr| _
[OPT| = 3(IS| +|VCoprl)

a

In the remaining part of the proof, we will restrict ourselves to instances (G, S)
with |S] > |V|/4.

For the sake of the analysis, let us now consider a maximum subset
matching M* = MSM(G*,S,V(OPT) N V') of the restricted graph G* =
(V(OPT),OPT), where V' is a subset of V\S. We denote by M}, the edges
contained in OPT to cover the remaining vertices in S\V(M*), i.e. M}, :={e €
OPT | en (S\V(M*)) # 0}. We prove a simple lemma.
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Lemma 2. Let M be a mazimum subset matching MSM(G,S, V') and M, C
E(G) be the edges which are greedily chosen to cover the remaining vertices in
S\V(M). Then we have |M,| < |Mj].

Proof. Since OPT is contained in E(G) and by definition of a maximum subset
matching, it is clear that |[SNV (M*)| < |SNV(M)| holds. Therefore, we conclude
[S\V (M*)| > |S\V(M)| which implies |M,| < |MF|. a

Let us assume that |S| > |V|/4 holds, we now show that Aggps has an approx-
imation ratio at most 3/(1 + |S|/|V]). We will consider two cases separately.

Case || < 2|V4|

First of all, the algorithm Aggps computes a maximum subset matching M; :=
MSM(G,S,V\S) of G and then covers the remaining vertices of S greedily with
edges M,.

Let M* := MSM(G*,S,V(OPT)\S) be a maximum subset matching of the
restricted graph G* = (V(OPT), OPT) and denote by Mj}; the edges contained
in OPT to cover the vertices in S\V (M*). From Lemma 2l we know that |M,| <
| M| holds.

We analyze the cardinality of EDS 4, the solution produced by Agsgps, and
OPT separately. The maximum subset matching MSM(G,S,V\S) covers in
the worst case all the vertices of the remaining graph G[V\S] and |S| — |M,|
vertices of S. Therefore, we can bound the cardinality of EDS 4 as follows:

2[EDSA| < (IS| = M, [) + [VAS| + 2|M,| < V[ + [M]| < [V| + M|

Now we give a lower bound on the optimal solution. Notice that the cardinality
of V(OPT)\S is at least |V1|4 3| V4 2|, since | V4 |+|V4 /2| /2 is a lower bound on the
cardinality of an optimal vertex cover of G[V'\ S]. Therefore, we can assume that
a matching in OPT covers the |Vi| + 3 |V; jo| vertices in G[V\S] and |S| — | M};|
vertices in S. The remaining vertices in S are covered by |M};| edges. Hence, we
get the following:

200PT| 2 (IS| = [MR]) + Vil +  [Viyo| + 2IME[ 2 [S]+ Vil + , [Va o] + | M|

We are ready to analyze the approximation ratio of Asgps by combining the
upper and lower bounds. In (x) we use the property of the case |Vo| < 2|V4].

2ABDSA| _ VI + M) 3 v
2(0PT| = ||+ Vil + 3 Vol + IMz| = IS]+ Vil + } Vi ol
= 3|S|+3|V3|+ 31Viyal = [S|4-3| Vi |+ V5 |3 208|414 o] < 5 15
1 1/2 1 1/2 1/2
Vi ) [S|+3[Va [+ V12| + |\2/| 1+2|V|
Case || > 2|V4|
Unlike the previous case, the algorithm Aggps computes a maximum subset

matching MSM (G, S, Vi UV ,9) of G. As before M, and M} are the sets of
edges to cover the remaining vertices of S, where V(M}) NS are the vertices left
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uncovered by a maximum subset matching M* := MSM(G*,S, (Vi U Vi) N
V(OPT)) of G* := (V(OPT),OPT). From Lemma[2l we know that |M,| < |M}|
holds.

As before, we analyze EDS 4 and OPT separately. This time the algorithm
Aseps computes a maximum subset matching MSM (G, S, Vi U Vi) which
contains in the worst case only the vertices in S\V (M,). Afterwards, the maximal
matching heuristic produces a matching which covers 2|V;| 4 |V; 5| vertices of
the remaining graph G[V\S]. In this way, we derive the following:

2[EDSA| < (|S| = [Mr]) +2[Vi] + [Vij2| + 2| M, |
S IST+2Va| + [Vage| + My < S|+ 2[VA| + [Viga| + [ME]

Now we analyze the cardinality of OPT. In contrast to the previous case, the
independent set G[Vp] is sufficiently large. Some of the vertices of V(Mf) NV
could be used to cover edges between Vj and V;. Nevertheless, the number of
such edges is bounded by |Vi|, since |Vi| + [V;/2]/2 is a lower bound on the
cardinality of an optimal vertex cover of G[V\S]. The crucial fact |[M3| > |V4|
will be used later on to attain (x%). We give a lower bound on the cardinality of
OPT.

210PT| = (IS| = IMg]) + ,[Vijol + 2IME| = [S]+ ,[Vijo| + |Mp]

By combining the deduced upper and lower bounds, we analyze the approxi-
mation ratio of Asgps.

2AEDSA| _ 151+ 20Vil +[Vips| +IMR| _ [S]+2[Vil + Vasal + Vi

200PT| = |S|+ 3Vl +IMEl o 1S+ Vil + VA
< s<|S|+|vi|))+1|v h S 2|S|i1|v S ’ E O
1 1/2 1/2
IS|+3[Va | 41V2 o] L+ v L+2,y,

3 Dense Instances of the MEDS Problem

In this section, we consider the Minimum Edge Dominating Set problem in dense
graphs. Firstly, we start with a observation of fundamental importance to our
analysis.

Oberservation 1. Given a connected graph G = (V, E) and an optimal EDS
M of G. There is a vertex v € V with N(v) C V(M).

Proof. If M covers the whole vertex set V', then we have nothing to show. Oth-
erwise the whole neighborhood of a vertex v € V\V (M) belongs to V(M) to
cover the edges incident to v. a

This observation gives us a simple proof of the analysis of the approximation
ratio of the maximal matching heuristic in dense graphs studied by Cardinal et
al. (see [4]). Since the cardinality of an optimal EDS of an everywhere e-dense
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graph G = (V, E) can be lower bounded by min,cy {|N(v)|}/2 > €|V|/2 and the
worst case solution of the maximal matching heuristic is a maximum matching,
the approximation ratio is bounded by min{2, (|V'|/2)/(e|V|/2)}.

Next, we want to derive an equivalent statement for average e-dense graphs.
We need a lemma which was proven by Karpinski and Zelikovsky.

Lemma 3. [17] Given an é-average dense graph G = (V, E) and let W be the
set of (1 — /1 —€)|V| vertices with highest degree. Then every vertex of W has
degree at least |W|.

As a direct consequence, we get the following

Corollary 1. Given an €-average dense Graph G = (V, E). The cardinality of
an optimal EDS M s at least (1 — /1 —€)|V]/2.

Proof. If the whole set W of (1—+/1 — €)|V| vertices with highest degree belongs
to V(M), we have nothing to show. Otherwise the neighborhood of a vertex
v e W\V(M) is a subset of V(M). According to Lemma [ the degree of this
vertex v is at least (1 —+/1 — €)|V|. Therefore, the cardinality of M can be lower
bounded by |[N(v)|/2 > (1 — /1 —&)|V]|/2. O

Analogously, one can easily deduce similarly to Observation [I] that the maximal
matching heuristic computes an EDS in average é-dense graphs with approxi-
mation ratio at most min{2, (1 — /1 — €)~'} as analyzed in [4].

We are ready to state the algorithm for the dense MEDS problem:

Input: Graph G = (V, E)
ForAllv eV
compute Aseps(G, N(v));
EndForAll
Let M; be the solution with smallest cardinality among {Aseps(G, N(v)) | v € V};
Let W be the set of (1 —+/1 — €)|V| vertices with highest degree;
Compute Ms := Aseps(G, W);
ForAllv e W
compute Aseps(G, N(v));
EndForAll
Let M3 be the solution with smallest cardinality among {Aseps(G, N(v)) | v € W};

Output: The best solution among M;, M2 and M3

Fig. 2. Algorithm Apgps

Corollary 2. The algorithm Apgps has an approzimation ratio at most
min{2,3/(1 + 2¢)} for e-everywhere dense graphs and at most min{2,3/(3 —
2\/1 — &)} for é-average dense graphs. Apgps has a better approzimation ratio
than 2 if e > 1/4 or € > 7/16.
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Proof. Given an e-everywhere dense graph G = (V, E) and an optimal EDS
M, V(M) contains always the neighborhood N(v) of a vertex v € V because
of Observation [[I By exhaustive search we find the right vertex v and use the
algorithm Aggps for the MSED problem. In case of € < 1/4, we know from
Theorem Pl that Asgps produces a solution with approximation ratio at most 2.
Restricted to e-everywhere dense graphs with € > 1/4, we get a solution with an
approximation ratio at most 1+2|N?v)|/|V| < 1+2e|%/|/|v|'

In the case of é-average dense graphs, we have to consider two cases. If there
is a vertex v € W, which does not belong to V (M), then we use the same
argumentation as before. Since the smallest degree of a vertex in W is at least
(1 — /1 —€)|V|, the approximation ratio can be bounded as follows:

3 _ 3 B 3
L4+ 2[N@)/[V] 1420 —-—v1—8 3-2V1—¢

Otherwise the whole set W belongs to V(M). Since the cardinality of W is
(1 — /1 —€)|V], the corollary follows from Theorem 2 O

4 Approximation Hardness Results

Assuming the Unique Game Conjecture (see [18]), we provide new lower bounds
on efficient approximability for everywhere e-dense (resp. average é-dense) in-
stances of the MEDS problem with 1/3 < € (resp. with 5/9 < €). The starting
point of our proof is the hardness result of Khot and Regev [18]. Then we show
that the approximation preserving reduction from the Minimum Vertex Cover
problem to the dense Vertex Cover problem due to Karpinski and Zelikovsky [16]
can be used to derive the claimed inapproximability result for the dense MEDS
problem.
We now formulate our inapproximability result.

Theorem 3. For every 6 > 0, it is UGC-hard to approximate the everywhere
e-dense MEDS problem for every constant €, € with € > :13 (resp. average €-dense
MEDS problem with € > ) to within 13_6 — 0 (resp. Ny J5).

Proof. Khot and Regev ([18]) showed that for every > 0 there are instances
G = (V,E) of the Vertex Cover problem such that it is UGC-hard to decide
whether |OPTyc| > (1 — 0)|V] or [OPTve| < (1/2 4 6)|VC|. We set 6 €
(0,¢/(1 —€) — 1/2). Given such an instance, we densify it by joining all vertices
of a clique of size €¢/(1 — €)|V| with all vertices of G. The same reduction was
used by Karpinski and Zelikovsky ([16]) to prove that the dense Vertex Cover
problem is APX-hard. This new instance G’ is e-dense, since every vertex of G’
has a vertex degree at least

€ € n' € n' ,

n= . = . —=€-Nn.
_ _ € _ 1—e €

1—¢ 1—c¢ 1Jr17E 1—¢ e+ .5,

If the optimal solution of the vertex cover problem < (1/2 + §)|V|, then we can
match every vertex in the optimal solution with some vertices in the clique K



46 R. Schmied and C. Viehmann

which is of size en/(1 —€) > (1/2 + d)n. Since K is a clique, every remaining
vertex in K can be matched by edges in E(K) (We can double the graph G and
join it with a twice larger clique K’ to obtain a perfect matching in G'{OPTy ¢ U
V(K")]). Therefore, the optimal solution for dense MEDS problem is < n/2(1/2+
€/(1—¢€)+9). If the optimal solution of the Vertex Cover problem is larger than
n(l — J), we know that the optimal solution of the dense MEDS problem must
be at least n/2(1 + ¢/(1 — €) — §), since V(OPTgps) is a vertex cover of the
graph G’.
Hence, we get the following UGC-hard decision question:
OPTEDS > 1 1 € ) OPTEDS 1 1 € )

— <
n Z2to1_¢ 2 n 4T 91-¢T o

This decision question implies directly the following inapproximability factor:

1 1 e  6\/1 1 ¢ 6\ ' 1—ete 41—
— < . -
(2+21e 2>(4+21e+2> T 2(1—¢) 1—e€+2e

2
<
(%xk) 1+e€

/

In the case of average é-dense instances of the Minimum Edge Dominating
Set problem, we set € := 1 — /1 — € and the claimed inapproximability factor
follows from (% x x). It remains to verify that the resulting graph G’ is é&-dense:

deg deg
deg(v) _ V| (V') +n (V')
Z 2 > V2 =(1—-¢€et+te=¢l—€e+1)
veV’
=1-V1iI-1+V1-e=1-1+¢ O

Using the same reduction for the MSED problem with S = V(K), we get the
following

Corollary 3. For every 0 > 0 and 3|S| > |V, it is UGC-hard to approzimate

the MSED problem within 1+|52|/|V| -4
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Near Approximation of Maximum Weight Matching
through Efficient Weight Reduction
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Abstract. Let G be an edge-weighted hypergraph on n vertices, m edges
of size < s, where the edges have real weights in an interval [1, W]. We
show that if we can approximate a maximum weight matching in G within
factor « in time 7'(n,m, W) then we can find a matching of weight at least
(o — €) times the maximum weight of a matching in G in time (e~ )9 x

. —1,0(e 1
MK, oty Wy S Tmin{n, smy g, e ),

We obtain our result by an approximate reduction of the original problem to
O(ellffl) subproblems with edge weights bounded by (6’1)0“71). In
particular, if we combine our result with the recent (1 — ¢)-approximation
algorithm for maximum weight matching in graphs due to Duan and Pettie
whose time complexity has a poly-logarithmic dependence on W then we obtain
a (1 — e)-approximation algorithm for maximum weight matching in graphs
running in time (¢ ~1)°® (m 4 n).

1 Introduction

A hypergraph G consists of a set V' of vertices and a set of subsets of V' called edges
of G. In particular, if all the edges are of cardinality two then G is a graph. A matching
of G is a set of edges of G without common vertices. If real weights are assigned to
the edges of GG then a maximum weight matching of G is a matching of G whose total
weight achieves the maximum.

The problem of finding a maximum weight matching in a hypergraph is a funda-
mental generalization of that of finding maximum cardinality matching in a graph. The
latter is one of the basic difficult combinatorial problems that still admit polynomial-
time solutions. For hypergraphs the decision version of the maximum weight matching
problem is NP-hard even if the edges are of size O(1) since it is a generalization of
the problem of maximum weight independent set for bounded degree graphs [15]]. On
the other hand, polynomial-time algorithms yielding (d — 1 + 1/d)-approximation of
maximum weight matching in hypergraphs with edges of size d are known [3].

The fastest known algorithms for maximum weight matching in graphs have sub-
stantially super-quadratic time complexity in terms of the number n of vertices of the
input graph G [[11412J20]. For these reasons, there is a lot of interest in designing faster
approximation algorithms for maximum weight matching [4/506/14J18/19].

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 48F57]2011.
(© Springer-Verlag Berlin Heidelberg 2011
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Recently, even fast approximation schemes for maximum weight matching in graphs
have been presented E] The fastest known in the literature is due to Duan and Pettie [[7]].
It yields a (1 — €)-approximation in time O(me~2log® n) for a connected graph on n
vertices and m edges with real edge weights. The approximation scheme from [7]] is a
composition of a (1—e¢)-approximate reduction of the problem in general edge weighted
graphs to that in graphs with small edge weights and an efficient (1 — ¢)-approximate
algorithm for graphs with small edge weights.

1.1 Our Contributions

Let G be an edge-weighted hypergraph on n vertices, m edges of size < s, where the edges
have real weights in an interval [1, T/]. We show that if we can approximate a maximum
weight matching in G within factor ain time 7'(n, m, W) then we can find a matching of
weight at least a — ¢ times the maximum weight of a matching in G in time (¢ )9 x

icgzo(e, 0 E ) At mg=m >0 T(min{n, sm;},my, (€71)C)). We ob-

n

log

tain our result by an approximate reduction of the original problem to O(e, g

) sub-

problems with edge weights bounded by (671)0(671).

This reduction of maximum weight matching in hypergraphs with arbitrarily large
edge weights to that in hypergraphs with small edge weights is incomparable to the
aforementioned similar reduction for graphs from [7]. In particular, if we combine
our reduction with the aforementioned (1 — ¢)-approximation algorithm for maximum
weight matching in graphs from [[7] whose time complexity has a poly-logarithmic de-
pendence on W then we obtain a (1 — €)-approximation algorithm for maximum weight
matching in graphs running in time (¢! )0(1) (m + n). In comparison with the approx-
imation scheme from [[7], our approximation scheme is more truly linear in m + n, as
free from the poly-logarithmic in n factor at the cost of larger polynomial dependence
one !,

As another corollary from our approximate edge-weight reduction for hypergraphs,
we obtain also some results on approximating maximum weight independent set in
graphs of bounded degree.

1.2 Other Related Results

As the problem of finding maximum weight matching in graphs is a classical problem
in combinatorial optimization there is an extensive literature on it. It includes such
milestones as an early algorithm of Kuhn [[17] just in the bipartite case and an algorithm
of Edmond and Karp [§]] running in time O(nmz), where n is the number of vertices
and m is the number of edges in the input graph. Hungarian algorithm [17] can be
implemented in time O(mn + n?logn) with the help of Fibonacci heaps [9] and this
upper bound can be extended to include general graphs [[10]].

Assuming integer edge weights in [-W,W] and RAM model with
log(max{N,n})-bit words, Gabow and Tarjan established O(\/nmlog(nWW))

" In a preliminary version of this paper presented at SOFSEM Student Forum held in January
2010 (no proceedings), an O(n“ logn)-time approximation scheme for maximum weight
matching in bipartite graphs has been presented.
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and O(y/nlog nm log(nW)) time-bounds for maximum weight matching respectively
in bipartite and general graphs [[L1/12].

More recently, Sankowski designed an O(n“W)-time algorithm for the weighted
matching problem in bipartite graphs with integer weights, where w stands for the expo-
nent of fast matrix multiplication known to not exceed 2.376 [20]. His result asymptot-
ically improved an earlier upper-time bound for maximum weight matching in bipartite
graphs with integer weights of the form O(y/nmW) due to Kao [16].

There is also an extensive literature on fast approximation algorithms for maxi-
mum weight matching in graphs [4l5l6[14/18/19]. Typically they yield an approxi-
mation within a constant factor between ; and almost é, running in time of order
m logo(l) n. Already the straightforward greedy approach yields ;-approximation in
time O(mlogn).

The maximum weight matching problem in hypergraphs is known also as a set
packing problem in combinatorial optimization [15]. By duality it is equivalent to
maximum weight independent set and hence extremely hard to approximate in poly-
nomial time [[13]]. The most studied case of maximum weight matching in hypergraphs
is that for d-uniform hypergraphs where each edge is of size d. Then a polynomial-time
(d— 1+ 1/d)-approximation is possible [3]. By duality, one obtains also a polynomial-
time (d — 1 4+ 1/d)-approximation of maximum weight independent set in graphs of
degree d (cf. [15]).

2 Simple Edge Weight Transformations

In this section, we describe two simple transformations of the edge weights in the in-
put hypergraph G such that an a-approximation of maximum weight matching in the
resulting hypergraph yields an (« — €)-approximation of maximum weight matching of
G. We assume w.l.0.g. throughout the paper that G has n vertices, m edges, and real
edge weights not less than 1. The largest edge weight in G is denoted by W.

Lemma 1. Suppose that there is an a-approximation algorithm for maximum weight
matching in G running in time T'(n, m, W). Then, there is an O(n + m)-time transfor-
mation of G into an isomorphic hypergraph G* with edge weights in the interval [1, "]
such that the aforementioned algorithm run on G* yields an (o — €)-approximation of
maximum weight matching in G in time T'(n, m, 7).

Proof. We may assume w.l.o.g that W > ". Note that the total weight of maximum
weight matching in G is at least W. Hence, if we transform G to a hypergraph G’ by
raising the weight of all edges in G of weight smaller than VZLE to Wff then the following
holds:

1. the maximum weight of a matching in G’ is not less than that in G;
2. any matching in G’ induces a matching in G whose weight is smaller by at most
ew.

To find an a-approximation of maximum weight matching in G’, we can simply rescale
the edge weights in G’ by multiplying them by i . Let G* denote the resulting
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graph. Now it is sufficient to run the assumed algorithm on G* to obtain an (o — €)-
approximation of maximum weight matching in G. Note that the application of the
algorithm will take time T'(n, m, " ). O

Lemma 2. Suppose that there is an (« — €)-approximation algorithm for maximum
weight matching in G running in time T'(n,m, W, ¢€). By rounding down each edge
weight to the nearest power of 1 + € and then running the (o — €)-approximation al-
gorithm on the resulting graph, we obtain an (o — O(€))-approximation of maximum
weight matching in G in time T'(n,m, W, €) + O(n + m).

Proof. Let e be any edge in G. Denote its weight in G by w(e) and its weight in the
resulting graph by w’(e). We have w’(e)(1 + €) > w(e). Consequently, we obtain
w'(e) > w(e) —ew'(e) > (1 — e)w(e). It follows that a maximum weight matching
in the resulting graph has weight at least 1 — € times the weight of a maximum weight
matching in G. Thus, if we run the assumed (« — €)-approximation algorithm on the
resulting graph then the produced matching with edge weights restored back to their
original values will yield an (o — 2¢)-approximation. O

3 A Transformation into an (o — €)-Approximation Algorithm

A sub-hypergraph of a hypergraph H is any hypergraph that can be obtained from H
by deleting some vertices and some edges. Once a vertex is removed all edges contain-
ing it are also removed. A class C of hypergraphs such that any subhypergraph of a
hypergraph in C' also belongs to C' is called hereditary.

In this section, we present a transformation of an hypothetical a-approximation algo-
rithm for maximum weight matching in a hereditary family of hypergraphs with edges
of size O(1) into a (o — €)-approximation algorithm. The running time of the (o — €)-
approximation algorithm is close to that of the a-approximation algorithm in case the
largest edge weight is e (¢ ).

Theorem 1. Suppose that there is an algorithm for a maximum weight match-
ing in any hypergraph having edges of size < s and belonging to the same
hereditary class as G running in time T(n,m',\W') = Q(n' + m’), where
n/, m' are respectively the number of vertices and edges, and [L,W’'] is the
interval to which all edge weights belong. There is an (o — €)-approximation
algorithm for a maximum weight matching in G running in time (6_1)0(1) X
maXISqSO(elf’Fgl | WX, = S U T (min{n, sm;},m;, (e 1)O€ ),

Proof. We may assume w.l.o.g that W = O(n/¢) and any edge weight is a nonnegative
integer power of 1 + € by Lemmata [Tl Bl Order the values of the edge weights in G
in the increasing order. Set k = O(e~!) and [ = [log, . ?]. By the form of the edge
weights and the setting of /, the following holds.

Remark 1: For any two different edge weights w; and ws, if the number of w; is
greater than that of ws by at least / in the aforementioned ordering then jw; > ws.



52 A. Lingas and C. Di

In order to specify our (a — €)-approximation algorithm, we partition the ordered
edge weights into consecutive closed basic intervals, each but perhaps for the last, con-
taining exactly / consecutive edge weights, see Fig.[Il

(a+e)’ (1+e) (+e)’ (+e)’ (1+e)’ (s ) 00
¢ ® ® ® ® ® - o
1=3 1=3

Fig. 1. Partitioning of edge weights (I = 3)

Next, we group k-tuples of consecutive basic intervals into large intervals composed
of k — 1 consecutive basic intervals followed by a single basic interval called a gap.
This partition corresponds to the situation when the so called shift parameter z is set to
0.Forz € {1, ..,k — 1}, the partition into alternating large intervals and gaps is shifted
by « basic intervals from the right, so the first large interval from the right is composed
solely of k — 1 — z basic intervals, see Fig.[2l The maximal subgraph of GG containing
solely edges with weights in the large intervals in the partition is denoted by G .

[ [ gap | [ gap | ! 0 shift

k-1 k-1 k-1

1 shift
gap L1 gap | ! gap [ 1

k-1 k-1 k-2

2 shift
D gap ! Dogap b g

k-1 k-1 k-1
Fig. 2. An example of shift x from 1 to 3 with k=3
For our (v — €)-approximation algorithm for a maximum weight matching in G see

Fig. Bl We shall assume the definitions of the subgraphs G/, G, ;, M, given in the
algorithm.
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Algorithm 1

1. forz — 1tok — 1do

2 M, — 0;

3 Gl — G

4. for j — 1to O(log,,. ") do

5. begin

6 Set G55 to the sub-hypergraph of G, induced by the edges whose weights

7 fall in the jth interval from the right;

8. Run the a-approximation algorithm for maximum weight matching M, ; of G ;;
9. M, %MIUM:E,]';

10. Remove all edges incident to M, ; from G;

11. end

12. Return the heaviest among the matchings M,

Fig. 3. The (o — ¢€)-approximation algorithm

Since the union of the gaps over all shifts covers all edge weights, in particular all
edge weights occurring in an optimal matching of GG, there must be a shift where the
gaps cover at most i of the weight of the optimal matching of G. Hence, there must
be a shift # such that the weight of an optimal matching in G, is at least (1 — 1/k) of
the weight of an optimal matching of G. Thus, it is sufficient to show that M, closely
approximates an a-approximate weight matching of G.

Consider a maximum weight matching OM,, of G, and the a-approximation M, ;
of a maximum weight matching of G ;, respectively. Note that M, ; has total weight
not smaller than o times the total weight of OM,, restricted to the edges in G ;. On
the other hand, each edge e in M, ; can eliminate at most O(1) edges of OM, from
all G, ; for ¢ > j. The total weight of the at most O(1) edges is only at most the ¢
fraction of the weight of e by Remark 1. Let EO M, denote the set of all edges in OM,,
eliminated by M, = |J; M., ;. The following two inequalities follow:

weight(My) + weight(EOM) > a x weight(OMy)

€ x weight(M,) > weight(EOM,)

Consequently, we obtain:
weight(My) > a x weight(OM,) — € x weight(M,)

> (a —€) x weight(OM,)

Thus, M, approximates a maximum weight matching of G, within («—€), and con-
sequently the heaviest of the matchings M, approximates a maximum weight match-
ing of G within (1 — €)(1 — 1/k). By setting k = £2(!), we obtain an (1 — O(e))-
approximation of the optimum.

It remains to estimate the time complexity of our method. Note that the weight of
heaviest edge in G ; is at most

(1 +€)lk‘ _ 0(6—1)0(671) _ (6—1)0(671)
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times larger than that of the lightest one. Let m,, ; denote the number of edges in G ;.
Next, let n, ; denote the number of vertices in the sub-hypergraph of G ; induced by
the edges of G, ;. Note that n, ; < min{n, sm,_ ;} by our assumption on the size of
edges in G.

Hence, by rescaling the weights in G, ;, we can find M, ; in time
T(min{n, smy ;},mej, (7)€ ) for j = 1..,0(log,, "/lk)andz = 0,...,k —
1. Note thatlog; . " = l(l)zgli = O(e ' log ") and similarly Ik = log,, 20O(e ') =

( logf

log 1+€ N
i.e., the number of the subgraphs G,  is O(ekl):ifl ).

Note that Zj mg; < m since each edge of G belongs to at most one hypergraph
G,j. Thus, the total time taken by finding all M, ; for j = 1, ...,O(El(l)zgejl)’ for
MaXyn, +.mg=m 33 1 ({0, smy},my, (71)0€7).

Recall that = ranges over O(e~ 1) possible values.

By the assumed form of the edge weights in GG, we can apply a standard radix sort
with O(e~'log ™) buckets to sort the edges of G by their weights in time O(m +
e 'log ™). The latter is also O(e 2T (n, m, (e71)©(" 1)) by the assumptions on 7.

In order to efficiently construct the graphs G ;, the sorted edge list is kept in array
and there are double links between an occurrence of an edge in the adjacency lists rep-
resenting G and its occurrence in the sorted edge list. To determine the edges inducing
G,.;, we just scan a consecutive fragment of the sorted list from left to right. Given a
list of edges of G ;, an adjacency representation of the sub-hypergraph can be con-

e 1) = O(e 2 loge1). It follows that for a given z, the largest value of j,

a fixed x is max log ™
ISQSO(CIOGFE1)

structed in time O(n 4+ m) = O(T(n,m, (e1)2( ")) by using the aforementioned
double links.

To remove an edge from G’,, we locate it on the sorted edge list by using the
double links with the adjacency lists and then link its predecessor with its succes-
sor on the sorted list. We conclude that the updates of G/, take time O(m) =
O(T(n,m, (=)0 ).

Summarizing, our upper time-bound on finding M, ; for all j and  dominates our
upper time-bounds for the remaining steps which yields the theorem. g

4 Applications

There are at least two known exact algorithms for maximum weight matching in bipar-
tite graphs with integer edge weights for which the upper time bounds on their running
time in linear fashion depend on the maximum edge weight W [16/20]. Recently, Duan
and Pettie have provided substantially more efficient 1 — € approximation algorithm for
maximum weight matching in general graphs with integer edge weights, whose running
time also depends on W in linear fashion [7]. Furthermore, their final approximation
scheme for this problem in fact exhibits poly-logarithmic dependence on W.

Fact 1 (Duan and Pettie, see the proof of Theorem 1 in [7]). An (1 — €)-approximation
of maximum weight matching in a connected graph on m edges and positive integer
weights not exceeding W can be found deterministically in time O(e~?m log® W).
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We can trivially generalize the upper time bound of Fact 1 to include a non-necessarily
connected graph by extending it by an additive factor of O(n).

There is one technical difficulty in combining Fact 1 with Theorem[Il In the theorem
we assume that there is available an a-approximation algorithm for maximum weight
matching for graphs belonging to the same hereditary class as G with arbitrary real
edge weights not less than 1 whereas the algorithm of Fact 1 assumes integer weights.
In fact, even if the input graph got positive integer weights the preliminary edge weight
transformations in the proof of Theorem[I] would result in rational edge weights. There
is a simple remedy for this. We may assume w.l.0.g that € is an inverse of a positive
integer and through all the steps of our approximation scheme round down the edge
weights to the nearest fraction with denominator O(e~1) and then multiply them by the
common denominator to get integer weights. This will increase the maximum weight
solely by O(e~1) and will preserve close approximability.

Hence, Fact 1 combined in this way with Theorem[Ilyield our main application result
by straightforward calculations.

Theorem 2. There is an approximation scheme for a maximum weight matching in a
graph on n vertices and m edges running in time (e ~=)°M) (m + n).

5 Extensions

Note that Theorem [l includes as a special case the problem of finding a maximum
weight independent set in a graph G of maximum degree d which is equivalent to the
problem of finding a maximum weight matching in the dual hypergraph with edges
corresponding to the vertices of G and vice versa.

Several combinatorial algorithms for maximum independent set achieving the ap-
proximation ratio of O(d), where d is the maximum or average degree are known in the
literature [[15]. In the appendix, we demonstrate that by using the method of Theorem
[l they can be simply transformed into good approximation algorithms for maximum
weight independent set.

6 Final Remark

In earlier versions of our paper, we presented a simpler formula on the time complexity
of our reduction (see Theorem[I)) with a single term T'(n, m, ...), which resulted in an
additional logarithmic factor in the application to maximum weight graph matching.
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Appendix: Approximation Algorithms for Maximum Weight
Independent Set in Bounded Degree Graphs

Note that Theorem [ includes as a special case the problem of finding a maximum
weight independent set in a graph G' of maximum degree d which is equivalent to the
problem of finding a maximum weight matching in the dual hypergraph with edges
corresponding to the vertices of G and vice versa.

Several combinatorial algorithms for maximum independent set achieving the ap-
proximation ratio of O(d), where d is the maximum or average degree are known in
the literature [15]]. Here, we demonstrate that by using the method of Theorem [1] they
can be simply transformed into good approximation algorithms for maximum weight
independent set.

Lemma 3. Suppose that there is an o(d)-approximation algorithm for maximum inde-
pendent set in a graph on n vertices and maximum (or average degree, respectively)
degree d running in time S(n, d), where the function S is non-decreasing in both argu-
ments. There is an a(dW)-approximation algorithm for maximum weight independent
set in a graph on n vertices, maximum (or average degree, respectively) degree d, pos-
itive integer vertex weights not exceeding an integer W, running in time S(nW, dW).

Proof: Let G be the input vertex weighted graph G. We form the auxiliary unweighted
graph G* on the base of G as follows. In G*, we replace each vertex v in G with
the number of its copies equal to the weight of v. We connect each copy of v by an
edge with each copy of each neighbor of v. Next, we run the assumed algorithm for
maximum unweighted independent set on G*. Note that any maximal independent set
in G* is in one-to-one correspondence with an independent set in G since whenever
a copy of v is in the independent set then all other copies of v can be inserted into it
without any conflicts. O

The drawback of Lemma[3is that the approximation factor and/or the running time of
the resulting algorithm for the weighted case can be very large in case the maximum
weight W is large. However, we can plug Lemma [3] in the method of Theorem [1] to
obtain much more interesting approximation algorithms in the weighted case.

Theorem 3. Suppose that there is an o(d)-approximation algorithm for maximum in-
dependent set in a graph on n vertices and maximum degree d running in time S(n, d),
where the function S is non-decreasing in both arguments and S(n, d) = £2(ndlogn).
There is an (a(deil)o(efl)) — de)-approximation algorithm for maximum weight in-
dependent set in a graph on n vertices, with maximum degree d, positive integer vertex

weights, running in tim O(elffg(ﬂi) S(n(e—l)o(fl)7 d(e=1)0y).

Proof. sketch. Recall that the problem of maximum (weighted or unweighted) inde-
pendent set is equivalent to the problem of maximum (weighted or unweighted, respec-
tively) matching in the dual hypergraph. In the dual hypergraph, the edges have size
not exceeding the maximum vertex degree in the input graph. We run the method of
Theorem [1] on the dual hypergraph using as the black box algorithm the result of the
application of Lemma 3] to the assumed algorithm and its adaptation to the maximum
matching problem in the dual hypergraph. O
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Abstract. The SUBSET SUM problem is a well-known NP-complete prob-
lem in which we wish to find a packing (subset) of items (integers) into a
knapsack with capacity so that the sum of the integers in the packing is
at most the capacity of the knapsack and at least a given integer thresh-
old. In this paper, we study the problem of reconfiguring one packing into
another packing by moving only one item at a time, while at all times
maintaining the feasibility of packings. First we show that this decision
problem is strongly NP-hard, and is PSPACE-complete if we are given a
conflict graph for the set of items in which each vertex corresponds to an
item and each edge represents a pair of items that are not allowed to be
packed together into the knapsack. We then study an optimization ver-
sion of the problem: we wish to maximize the minimum sum among all
packings in the reconfiguration. We show that this maximization prob-
lem admits a polynomial-time approximation scheme (PTAS), while the
problem is APX-hard if we are given a conflict graph.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transforma-
tion between two feasible solutions of a problem such that all intermediate results
are also feasible. Recently, Ito et al. [7] proposed a framework of reconfiguration
problems, and gave complexity and approximability results for reconfiguration
problems derived from several well-known problems, such as INDEPENDENT SET,
CLIQUE, MATCHING, etc. In this paper, we study two reconfiguration problems
derived from the SUBSET SUM problem.

The SUBSET SUM problem is a well-known NP-complete problem, defined as
follows [9]. Suppose that we are given a knapsack with a nonnegative integer
capacity ¢, and a set A of items aq, a9, ..., ay, each of which has a nonnegative
integer size s(a;), 1 <i < n. We call a subset A" of A a packing if the total size
of A’ does not exceed the capacity c, that is, ) . 4, s(a) < c. Given an integer
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5,6 |4,
A
[5,6,8 —— 5.8 |
| 6.8 |4,

Fig. 1. All packings of total size at least k = 10 for A = {5,6,8,11} and ¢ = 20

threshold k, the SUBSET SUM problem is to find a packing A’ whose total size
is at least k, that is, K < ) 4 s(a) < c. For a knapsack with capacity ¢ = 20
and a set A = {5,6,8, 11}, there are 8 packings of total size at least k = 10, as
illustrated in Figlll where each packing is surrounded by a box. Our definition
of SUBSET SUM is known as the decision version of the MAXIMUM SUBSET SUM
problem in which we wish to find a packing whose total size is maximum [9]

Suppose now that we are given two packings Ay and A;, both of total size
at least k, and we are asked whether we can transform one into the other via
packings by moving (namely, either adding or subtracting) a single item to/from
the previous one without ever going through a packing of total size less than k.
We call this decision problem the SUBSET SUM RECONFIGURATION problem.
For two packings Ag = {5,6} and A; = {6,8} in Figlll the answer is “yes”
since they can be transformed into each other via A; = {5,6,8}; in Figlll two
packings (boxes) are joined by a line if and only if one packing can be obtained
from the other by moving a single item.

Obviously, we cannot always find such a transformation. For example, there
is no transformation between Ay = {5,6} and A} = {6,11} in Figlll if we are
allowed to use only packings of total size at least k¥ = 10. On the other hand, the
answer is always “yes” if k = 0: we first remove all items of Ay, and obtain the
empty packing; and then, add all items of A; to the knapsack. In turn, we can
get a natural optimization problem if we wish to maximize the minimum total
size among all packings in a transformation between Ay and A;. We call this
maximization problem the MAXMIN SUBSET SUM RECONFIGURATION problem.
The sequence of packings emphasized by thick lines in Fig Plis an optimal solution
for Ag = {5,6} and A} = {6,11}; its objective value is 8.

Reconfiguration problems have been studied extensively in recent literature
[2556/7/8], but reconfiguration problems for SUBSET SUM have not been studied
yet. One can easily imagine a variety of practical scenarios, where a packing (e.g.,
representing a feasible display of electronic advertisements on a Web browser)
needs to be changed (to show other advertisements) by individual changes (ap-
pealing to the user by showing one by one) while maintaining both threshold
and capacity of the allowed area on the Web browser (in order to maintain both
advertiser and user satisfactions during the transformation). Reconfiguration
problems are also interesting in general because they provide a new perspective

! Note that SUBSET suM in [4] is slightly different from our definition: SUBSET SUM in
[4] is defined as the problem of finding a packing whose total size is exactly k.
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Fig. 2. All packings for A = {5,6,8,11} and ¢ = 20

and deeper understanding of the solution space and of heuristics that navigate
that space.

For the (ordinary) SUBSET SUM and MAXIMUM SUBSET SUM problems, sev-
eral variants have been studied [9]. In particular, MAXIMUM SUBSET SUM with
“conflict graph” [10] is an important variant, because this variant has been stud-
ied for several other problems, such as BIN PACKING [3] and SCHEDULING under
makespan minimization [I]. In the variant, we are given a conflict graph for a
set A of items in which each vertex corresponds to an item in A, and each edge
represents a pair of items in A that are not allowed to be packed together into
the knapsack. It is known that the (ordinary) MAXIMUM SUBSET SUM problem
with conflict graph is strongly NP-hard [10].

In this paper, we first show that SUBSET SUM RECONFIGURATION is strongly
NP-hard, and is PSPACE-complete for the variant of conflict graph. We then
show that MAXMIN SUBSET SUM RECONFIGURATION with conflict graph is APX-
hard, and hence there is no polynomial-time approximation scheme (PTAS) for
this variant unless P = NP. In contrast, we give a PTAS for the original version
of MAXMIN SUBSET SUM RECONFIGURATION. Note that, since this maximization
problem is strongly NP-hard, the problem does not admit a fully polynomial-
time approximation scheme (FPTAS) unless P = NP; in this sense, a PTAS is
the best approximation algorithm we can expect for the problem [11l p. 72].

Our main result of this paper is a PTAS for MAXMIN SUBSET SUM RECON-
FIGURATION. The strategy of our PTAS is the following: we divide a set A of
items into two groups, one is the set of items having “large” sizes, and the other
consists of items having “small” sizes; and we deal with the two groups sepa-
rately. Because such an approximation technique is fairly standard, especially for
MAXIMUM SUBSET SUM and BIN PACKING [9ITT], one might think that our PTAS
could be obtained also straightforwardly by extending several known FPTAS or
PTAS [9/11]. However, this is not the case, because the focus of reconfiguration
problems is different from the ordinary problems: we seek the reachability be-
tween two feasible solutions, and hence the placement of items is the central
matter. For example, two packings {5,6} and {11} in Fig[ll have the same total
size 11, and hence we can regard them as an “equivalent” packing in the ordi-
nary SUBSET SUM problem. However, we cannot identify these two packings in
the reconfiguration problems; for example, {11} can be transformed into {6, 11},
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but {5,6} cannot, when k = 10. (See Figlll) We thus introduce a “configura-
tion graph” which represents the placements of items and their connectivity. (A
formal definition will be given in Section Bl but an example is already shown in
Figll) Our main idea is to approximate the configuration graph appropriately.

2 Complexity and Inapproximability

Before showing our results, we introduce some terms and define the problems
more formally. In the Introduction, we have defined a packing A; as a subset
of items in a set A such that the total size of A; is at most the capacity ¢ of a
knapsack; the total size of a packing A; is denoted by s(A;), that is, s(4;) =
> aca, s(a). Note that a packing does not necessarily satisfy a threshold k. We
say that two packings A; and A; of A are adjacent if their symmetric difference
is of cardinality 1, that is, |[A; A A;| = |(Al \A;) U (4; \AZ)| = 1; the item a
in A; A A;j is said to be moved between A; and A;. A reconfiguration sequence
between two packings Ay and A; is a sequence of packings Ag, 41, ..., A; such
that A;_1 and A; are adjacent for i = 1,2, ...,t. For a reconfiguration sequence
P, we denote by f(P) the minimum total size among all packings in P, that is,
f(P) =min{s(4;) : A; € P}. Then, for two packings Ay and A;, let

OPT(Ag, Ar)=max{f(P)|P is a reconfiguration sequence between Ay and A;}.

Given an integer threshold k& and two packings Ag and A; with s(A4g) > k and
s(A¢) > k, the SUBSET SUM RECONFIGURATION problem is a decision problem
to determine whether OPT(Ag, A;) > k. On the other hand, its optimization
version is defined as follows: Given two packings Ag and A;, the MAXMIN SUBSET
SUM RECONFIGURATION problem is to compute OPT(Ag, A;). Note that we are
asked simply to compute the optimal value OPT(Ayp, A;), and we need not to
find an actual reconfiguration sequence.

We first have the following theorem, whose proof is omitted from this extended
abstract.

Theorem 1. Both SUBSET SUM RECONFIGURATION and MAXMIN SUBSET SUM
RECONFIGURATION are strongly NP-hard.

We then consider the variant with conflict graph. Notice that every feasible
packing of A induces an independent set of the conflict graph. Therefore, we
have the following theorem.

Theorem 2. SUBSET SUM RECONFIGURATION with conflict graph is PSPACE-
complete.

Proof. 1t is easy to see that the problem is in PSPACE. Therefore, we show that
SUBSET SUM RECONFIGURATION with conflict graph is PSPACE-hard by giving
a polynomial-time reduction from the INDEPENDENT SET RECONFIGURATION
problem [7].
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Given a graph G of n nodes, an integer threshold k', and two independent sets
Iy and I; of G, both of cardinality at least k', the INDEPENDENT SET RECONFIG-
URATION problem asks whether we can transform I into I; via independent sets
of G, each of which results from the previous one by either adding or subtracting
a single node of GG, without ever going through an independent set of cardinality
less than &’ — 1. This problem is known to be PSPACE-complete [7].

We now construct the corresponding instance of SUBSET SUM RECONFIGU-
RATION with conflict graph. The set A contains n items, and let s(a) = 1 for
all items a in A. Each item in A corresponds to a node of GG, and the conflict
graph for A is connected as G. The knapsack is of capacity ¢ = n, and let the
threshold £ = k£’ — 1. Finally, the two packings Ay and A; consist of the items
which correspond to the nodes in Iy and Iy, respectively; and hence both Ay and
A, are of total size at least k' =k + 1.

Since every feasible packing of total size at least k induces an independent
set in G of cardinality at least k = k' — 1, it is obvious that there is a desired
transformation between Iy and I; if and only if OPT(Ag, A;) > k. ad

We finally have the following inapproximability result, whose proof is omitted
due to the page limitation.

Theorem 3. MAXMIN SUBSET SUM RECONFIGURATION with conflict graph is
APX-hard, and cannot be approximated within any constant factor unlessP = NP.

3 PTAS

Since MAXMIN SUBSET SUM RECONFIGURATION with conflict graph is APX-hard,
this variant does not admit a PTAS unless P = NP. However, in this section,
we give a PTAS for the original version. Remember that, since we have shown
in Theorem [ that the problem is strongly NP-hard, there is no FPTAS for
the problem unless P = NP; in this sense, a PTAS is the best approximation
algorithm we can expect for the problem. We have the following theorem.

Theorem 4. There is a polynomial-time approximation scheme for MAXMIN
SUBSET SUM RECONFIGURATION.

In the remainder of this section, as a proof of Theorem [, we give an algorithm
which actually finds a reconfiguration sequence P between two given packings
Ap and A; such that f(P) > (1 —¢")OPT(Ayp, A¢) in time polynomial in n (but,
exponential in 1/¢’) for any fixed constant ', 0 < ¢’ < 1, where n is the number of
items in the set A. Therefore, our approximate objective value APPRO(Ay, A;)
is f(P), and hence the error is bounded by e’OPT(Ag, A;), that is,

OPT(Ag, A;) — APPRO(Ag, A;) = OPT(Ag, Ay) — f(P) < &'OPT(Ag, Ay).

As we have mentioned in the Introduction, the placement of items is the central
matter in the reconfiguration problem. Therefore, we construct an edge-weighted
graph, called a configuration graph, which represents all (feasible) packings to-
gether with their adjacency. For a set A of items and a knapsack of capacity c,



Approximability of the Subset Sum Reconfiguration Problem 63

a configuration graph C = (V,€) is defined as follows: each vertex in V corre-
sponds to a packing A;, and two vertices are joined by an edge e in £ if and only
if the corresponding two packings A; and A; are adjacent; the weight w(e) of e
is defined as follows: w(e) = min{s(4,), s(4;)}. Notice that the weight w(e) of
an edge e corresponds to the objective value f(P; ;) for the reconfiguration se-
quence P; j = {A;, A;} along e. Figure Qillustrates the configuration graph for a
set A = {5,6,8,11} and a knapsack of capacity ¢ = 20, where each vertex is drawn
as a box and each edge as a line. From now on, we may call a packing simply a ver-
tex of a configuration graph if it is clear from the context. Since there is a vertex
corresponding to the empty packing, a configuration graph is always connected.
Then, MAXMIN SUBSET SUM RECONFIGURATION can be seen as the problem of
maximizing the minimum edge-weight in a path between Ay and A; in C. It is
easy to see that the problem can be solved in time polynomial in |V| + |€] by
the following naive algorithm: delete all edges having the smallest weight from
C, and check whether the two vertices Ap and A; remain in the same connected
component of the resulting graph; if so, let C be the resulting graph and repeat.
Note that, however, the size |V| + |€| of C can be an exponential in n.

We now briefly explain our PTAS together with the organization of this sec-
tion. For a fixed constant ¢/, 0 < &’ < 1, let

e= _¢. (1)

(The reason why the coeflicient above is 1/2 will be explained in Section [34])
Given a set A of items and a fixed constant e, 0 < & < 1/2, we divide the items
of A into two groups: an item a is called a large item if s(a) > ec/2; otherwise
the item is called a small item. We show in Section [3.1] that the problem can be
optimally solved in polynomial time if A contains only large items; in this case,
the number of packings (and hence the number of vertices in the configuration
graph) can be bounded by a polynomial in n. In Section we then explain
that small items can be moved greedily with only small error. In Section [3.3] we
finally deal with a general instance by combining the techniques above, without
losing the reachability and with keeping the small error. Section [3.4] gives the
analysis of our algorithm.

3.1 Large Items

In this subsection, we show that MAXMIN SUBSET SUM RECONFIGURATION can
be optimally solved in polynomial time if the given set A contains only large
items. It suffices to show that we can construct the corresponding configuration
graph C = (V,€&) in polynomial time for such an instance, and that the size
[V| + |€] of C is a polynomial in n. Formally, we have the following lemma.

Lemma 1. For a fized constant € > 0, suppose that every item in the set A
is of size at least ec/2, where c is the capacity of the knapsack. Then, MAXMIN
SUBSET SUM RECONFIGURATION can be optimally solved in polynomial time.
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Proof. Since s(a) > ec/2 for each item @ € A, the number of items in any (fea-
sible) packing is bounded by |2/e]. Let v = |2/¢], then 7 is a fixed constant.
We denote by N the number of vertices (packings) in the corresponding config-
uration graph C = (V, &), that is, N = |V|. Since A contains n items and each
packing consists of at most v items, it is easy to see that N can be bounded by
(":7). Therefore, N is a polynomial in n, and hence we can construct C in time
polynomial in n. Since the size |V| + || of C is a polynomial in n, we can solve
the problem optimally in polynomial time. a

3.2 Small Items

Suppose in this subsection that the given set A may contain small items. Then,
the number of items in a packing cannot be bounded by a constant, and hence
the number N = |V| of vertices in the configuration graph C = (V,£) cannot
be always bounded by a polynomial in n; more specifically, N can be O(2").
Therefore, we will later (in Section B3] construct an “approximate configuration
graph C4,” whose size is bounded by a polynomial in n.

We now explain how to find a reconfiguration sequence greedily when Ay A A,
contains only small items for two given packings Ag and A;. Let L. be the set
of large items in A, that is, L. = {a € A | s(a) > ec/2}, and let S = A\ L.. We
have the following lemma.

Lemma 2. Let Ag and Ay be an arbitrary pair of packings such that Ag A Ay C
S.. Then, there exists a reconfiguration sequence Ps between Ag and A; such
that

(a) no item in L. is moved in Ps; and

(b) f(Ps) > (1 —e)min{s(Aop), s(A4:)}.

Moreover, such a reconfiguration sequence Ps can be found in linear time.

Proof. We give an O(n)-time algorithm which finds a reconfiguration sequence
Ps between Ag and A; satisfying (a) and (b), as follows.

Case (i): s(AgUA;) <ec.

In this case, we first add all items in A; \ A one by one, and obtain the packing
Ap U Az; and then, delete all items in Ag \ A; one by one, and obtain A;. Note
that Ay \ Ag C Ag A A; CS; and Ap \ A; C Ag A A; C S., and hence no item
in L. is moved in this reconfiguration sequence P,. We clearly have

f(Ps) = min{s(Ap), s(4)} > (1 — &) min{s(Ao), s(A+)}.

Therefore, P satisfies both (a) and (b). Moreover, P, can be found in linear
time since we move each item in Ay A A; only once.

Case (ii): s(Ag U A¢) > c.

In this case, we first add items in A; \ Ap one by one in arbitrary order as many
as possible; let A; be the current packing. Then, s(4;) > (1 — 3)c because,
otherwise, we can add more items to A; since s(a) < ec/2 for all items a € A;\ Ao.
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We then delete items in Ag \ A; one by one in arbitrary order until we obtain a
packing A’ such that

(1—e)e < s(A)) < (1_ ;)c 2)

Since s(a) < ec¢/2 for all items a € Ag \ A, we can always find such a packing
A% Tf (A U Ag) < ¢, then go to Case (i) above; otherwise, repeat Case (ii).
Note that, in this reconfiguration sequence Ps, every addition is executed for an
item in A; \ Ag (Q SE) and every deletion is done for an item in Ag \ A; (g SE).
Thus, P; satisfies (a). Furthermore, since each item in Ay A A; is moved exactly
once, Ps can be found in linear time. We now show that (b) holds for Ps. By
Eq. @) we have

F(Py) > min{(l — ¢)e, min{s(Ao), s(At)}}.

Since ¢ > min{s(Ap), s(A+)}, we have f(Ps) > (1 — &) min{s(Ao), s(As)}. |

3.3 General Instance

We finally deal with a general instance, that is, a set A may contain small items
and two packings Ag and A; do not necessarily satisfy Ag A A; C S.. Our idea
is to construct an approximate configuration graph Ca, as follows.

Step 1: Configuration graph for L.

We first construct a configuration graph Cr,_ = (V_,&r.) for the large item set
L. of A and the capacity c. Then, as in Lemmalll C_ can be constructed in time
polynomial in n, and the size |Vr_|+|EL.| of Cr, can be bounded by a polynomial
in n. Figure Ba) illustrates the configuration graph for L. of A, where each box
corresponds to a packing consisting of only large items. Note that Cr_ contains
the vertex corresponding to the empty packing, and hence Cy,_ is connected.

Step 2: Small items

We then expand Cy_ into the approximate configuration graph C4 = (Va,€4),
as illustrated in Figl3(b). For each edge in Cy_ joining two vertices AF and Af
(that consist only of large items), we replace it with an edge e that joins two new
vertices A; ; and A;,, called gate vertices or gate packings, defined as follows.
Assume without loss of generality that AJL = AL U {a} for some large item a
in L., and hence Af can be obtained by adding one large item a to AL. To
extend AJL to the gate packing A;, containing small items, we find a packing
Af C S, of small items for the remaining space ¢ — s(Af) of the knapsack;
we employ an FPTAS for the ordinary MAXIMUM SUBSET SUM problem [9] for
the fixed constant e. Then, let A;, = AF U A and let A;, = A;, \ {a}.
Note that A;, A A;, = {a} and hence A;, and A;, are adjacent. We call
the edge e = (Aiz,Ajy) an external edge, and the weight w(e) is defined as
follows: w(e) = min{s(A4;,),s(A,,)} = s(Ai ). In Figl3(b), each gate packing
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Fig. 3. (a) Configuration graph Cr. for the large item set L. of A, and (b) approximate
configuration graph Ca for A
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is represented by a circle, triangle, square, pentagon, or hexagon, colored with
white; all gate packings represented by the same symbol have the same placement
of large items; and each external edge is drawn as a (non-dotted) line.

For each vertex AF in Cp_, we have thus created the number d(AF) of new
gate vertices A1, A2, ..., A; gary, where d(AL) is the degree of AF in Cy_.
Clearly, A; o N L. = A; . N L. for every pair of vertices. The original vertex
AF is deleted, and we connect the d(AF) gate vertices so that they form a
clique; for each pair of vertices A;, and A; ., the edge joining them is called
an internal edge; in Figl(b), each internal edge is drawn as a dotted line. It
should be noted that A; ; and A; . are not necessarily adjacent although they
are joined by an internal edge. However, using Lemma [2] we can regard such an
internal edge as a reconfiguration sequence Ps between A; , and A; . such that
f(Ps) > (1 —e)min{s(A; ), s(Ai)}. Therefore, the weight w(e) of e is defined
as follows:

we) = min{s(A4; ), s(4;.)} if A;, and A; . are adjacent; 3)
1 (1 —¢)min{s(A4;4),s(4;.)} otherwise.

Step 3: Ay and A,

The current graph above does not always contain the vertices corresponding
to given packings Ay and A;. If the graph does not contain Ag, then we add
a new vertex Ag to the graph, and join it with each gate vertex having the
same placement Ag N L. of large items by an internal edge. (The case for A;
is similar.) This completes the construction of the approximate configuration
graph C4 = (Va,&4).

Clearly, a path between the two vertices Ag and A; in C4 corresponds to a
reconfiguration sequence between the two packings Ag and A;. Since [Va| <
2|€r.|+2 and |€L, | is bounded by a polynomial in n, the size [Va|+|Ea| of C4 is
bounded by a polynomial in n. Therefore, we can find in polynomial time a path
between Ag and A; whose minimum edge-weight is maximum in C4; we choose
the corresponding reconfiguration sequence P as our approximate solution.
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Fig. 4. Reconfiguration sequences P*, P’ and P” between Ao and A;

3.4 Analysis of the Algorithm

We have shown in Section[B.3]that our algorithm finds a reconfiguration sequence
P between Ay and A; in polynomial time. In this subsection, we show that P
satisfies f(P) > (1 — &)OPT(Ay, A;) for a fixed constant ', 0 < ¢’ < 1, as
required.

Let P* = {Af, A%, ..., A7} be an arbitrary optimal reconfiguration sequence
between Ag and A:, where Af = Ap and A = A;. Figure ll(a) illustrates the
optimal reconfiguration sequence P*, where each black symbol corresponds to
a packing A} in P*, and all packings represented by the same symbol have the
same placement of large items. Let A* . be a packing in P* whose total size is

minimum, and hence f(P*) = s(A};,). Then, we have

5( ;knin) = OPT(A07 At)7 (4)
and
(A7) 2 s(Afin) (5)

for each packing A7, 0 <17 <t.

From now on, we transform P* into another reconfiguration sequence P”
between Ay and A; so that C4 contains the path corresponding to P”. Remember
that our algorithm finds a reconfiguration sequence P between Ag and A; which
is optimal in C4, and hence we have

APPRO(Ao, A1) = f(P) = f(P"). (6)

We first transform P* into a reconfiguration sequence P’ between Ay and A;
such that the same placement of large items appears consecutively. This can be
done by the following algorithm: find the last packing A% in P* such that A} N
L. = A§ N L; replace the subsequence {A§, Aj,..., A%} with a reconfiguration
sequence P, between Af and A} obtained by Lemma 2} set Aj = A}, and
repeat. We denote by Py ; the reconfiguration (sub)sequence obtained by the ith
step of the algorithm above. (See Fig[(b), where the intermediate packings in
Py ; are represented by dotted symbols.) By Lemma[2(a) all packings in P; ; have
the same placement of large items, and hence all intermediate packings in P;l
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are depicted by the same symbol in Figll(b). Moreover, from the construction,
every two reconfiguration subsequences 735 ; and 73;7 ; with @ # j have different
placements of large items. Let ¢ be the number of iterations of the algorithm,
and hence P’ = P; ; UP; ,U---UP,,. For each i, 1 <i </, let A}, and A7,
be the first and last packmgs in P, s respectlvely Then from the constructlon
the optimal reconfiguration sequence P* contains the packings A7, and A7,
1 < i < ¢, and hence they are depicted by black symbols in FngZI( ). On the
other hand, intermediate packings are not necessarily contained in P*, and hence
they are depicted by white dotted symbols. Note that A} ; = Ag and A7, = A;.

We then transform P’ into the reconfiguration sequence P” between Ay and A,
such that C4 contains the path corresponding to P”. For each i, 1 < i < /—1, two
packings A}, and A7 ; are adjacent; moreover, the item moved between them
is a large item a € L.. Therefore, C4 contains the external edge e = (A;+, Ait1,0)
which corresponds to moving the item a from the large item placement A7, N L.
to A7 ;o N Le. We may regard that the two endpoints (gate packings) A;¢
and A;410 of e correspond to A7, and A7, respectively. Of course, the gate
packings A;; and A;1,0 are not always the same as A}, and A7, , respectively,
and hence they are depicted by (non-dotted) white symbols in Figll(c). However,
it should be noted that A7, N L. = A;: N Lc and A7} oN L: = Aijp1,0N Le, and
hence A;; and A;;1,0 in Figlic) are depicted by the same symbols as A;"t and
A}, o, respectively. For the sake of notational convenience, let A;,0 = A7 ; = Ao
and Ay = Azt = A;. Since A; ¢ and A;+, 1 <i </, have the same large item
placement and are contained in C4, there exists the internal edge e, ; joining
them in Cy4; let 73” be the reconfiguration subsequence between A; o and A;+
corresponding to e, ;. By Eq. (3) we have

fPLi) = wlesq) = (1 —e)min{s(Aio), s(Aie)} (7)
foreach i, 1 <i </l Let P" =P/ UP/,U---UP,, then f(P") = min{f(Py,) :
1 < i < £}. This completes the construction of P”.

We now show the following lemma, whose proof is omitted due to the page
limitation.

Lemma 3. s(A4;0) > (1 —¢)s(A],) and s(Ais) > (1 — €)s(A},) for each i,
1<i<e.

Assume that P[; contains the packing whose total size is minimum in P”. Then,
by Eq. (@) we have f(P") = f(P}) = (1 — &) min{s(Ak,), s(Ak,t)}. Therefore,
by Lemma [3l and Egs. (@) and (&) we have

F(P") > (1 —e)? min{s(A} o), s(4; )} = (1 — &)s(ALn)
> (1 —2e)s(AL;,) = (1 —26)OPT(Ag, Ay). (8)
By Egs. (@), (@) and (8) we have

APPRO(Ag, Ay) > f(P") > (1 — 26)OPT(Ag, A;) = (1 — £')OPT(Ag, Ay).

This completes the proof of Theorem [l a
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Concluding Remark

In the ordinary KNAPSACK problem [4[9], each item is assigned not only a
size but also a profit, and we wish to find a packing whose total profit is at
least a given threshold. Consider the two reconfiguration problems for KNAP-
SACK, called KNAPSACK RECONFIGURATION and MAXMIN KNAPSACK RECON-
FIGURATION, which are defined similarly as SUBSET SUM RECONFIGURATION
and MAXMIN SUBSET SUM RECONFIGURATION, respectively. Because they are
generalizations of our reconfiguration problems for SUBSET SuM, the complex-
ity and inapproximability results in Section [2] hold also for them. However, it
remains open to obtain a PTAS for MAXMIN KNAPSACK RECONFIGURATION.
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Abstract. In this paper, we study the Planar Connected Dominating
Set problem, which, given a planar graph G = (V, E) and a non-negative
integer k, asks for a subset D C V with |D| < k such that D forms a
dominating set of G and induces a connected graph. Answering an open
question by S. Saurabh [The 2nd Workshop on Kernelization (WorKer
2010)], we provide a kernelization algorithm for this problem leading to a
problem kernel with 130k vertices, significantly improving the previously
best upper bound on the kernel size. To this end, we incorporate a vertex
coloring technique with data reduction rules and introduce for the first
time a distinction of two types of regions into the region decomposition
framework, which allows a refined analysis of the region size and could
be used to reduce the kernel sizes achieved by the region decomposition
technique for a large range of problems.

1 Introduction

The Dominating Set problem decides for a given graph G = (V| E) and a non-
negative integer k whether G has a dominating set of at most k vertices. The
problem is NP-complete [6] and has many applications in the fields such as ad-
hoc networks and voting systems. Moreover, from the viewpoint of parameterized
complexity theory, the problem is W|[2]-complete, parameterized by k [5]. There-
fore, it is unlikely that the problem is fixed-parameter tractable with respect to k.
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Equivalently, it is unlikely that the problem admits a kernelization algorithm. A
kernelization algorithm for a parameterized problem () runs in polynomial time
and, for a given instance (G, k) of @, produces another instance (G',k’) of Q
such that (G, k) is a yes-instance if and only if (G’, k') is a yes-instance, k' < k,
and the size (i.e., the number of vertices) of G’ is bounded by a function of k.
The graph G’ is called the problem kernel. If the size of G’ is linearly depend-
ing on k, we call G’ a linear kernel and the corresponding algorithm is called
a linear kernelization algorithm. See [2J0] for more background on kernelization
algorithms.

Recently, much attention has been focused on linear kernelization algorithms
for problems on planar graphs. In particular, the Planar Dominating Set (PDS)
problem has been extensively studied. Alber et al. [I] introduced the concept
of region decomposition and gave a linear kernel with 335k vertices for PDS,
which was later improved to 67k vertices by Chen et al. [4]. Motivated by [I],
Guo and Niedermeier [10] proposed a general framework to obtain linear kernels
for planar graph problems. Finally, Bodlaender et al. [3] formally showed the
existence of linear kernels for problems satisfying specific properties on bounded-
genus graphs. Note that the results from [3] serve mainly as a classification tool
and are infeasible for practical applications. Huge constants hide behind the
thereby achieved kernel sizes.

Here we study a well-known variant of the Dominating Set problem, namely,
the Connected Dominating Set problem, which requires further that the sub-
graph induced by the dominating set should be connected. Connected Domi-
nating Set is also NP-complete and has applications in various network design
settings [6]. The parameterized version of the Connected Dominating Set prob-
lem on general graphs is also W[2]-complete [5], parameterized by the solution
size k. However, if we restrict the input to planar graphs, we arrive at the main
problem of this paper, the Planar Connected Dominating Set (PCDS) problem,
where, given a planar graph G = (V, E) and a non-negative integer k, to decide
whether there exists a subset D C V with at most k vertices such that the graph
induced by D is connected and every vertex in V is either in D or adjacent to
at least one vertex in D.

Kernelization algorithms for PCDS have been studied recently. Lokshtanov
et al. [II] showed that the problem has a linear kernel with 3968187 - k ver-
tices, based on the method of “reduce or refine”. Gu and Imani [7] proposed an
improved kernel with 413k vertices for the problem. However, a careful exam-
ination shows that Gu-Imani’s construction in [7] misses some subtle cases of
the reduction rules and their revised version of the paper can be found in [g].
Recently, at the 2nd Workshop on Kernelization, Saket Saurabh [12] posed the
open question whether there exists a kernel for PCDS with size at most ck for a
constant ¢ =~ 100. Here, we answer this question by showing a kernel with 130k
vertices for PCDS, significantly improving the previous results. To this end, we
not only extend the reduction rules introduced in [7], but also present new rules
that color the vertices of a graph, which enable to reduce some “useless” edges.
Furthermore, while analyzing the kernel size based on the region decomposition
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framework, we distinguish two types of regions which allows to make use of some
structural characteristics of the regions, resulting in the improved kernel. We be-
lieve that the distinction of region types could be a promising extension to the
region decomposition framework and might lead to improved kernels for many
planar graph problems.

Due to lack of space, some proofs are deferred to the full paper.

2 Preliminaries

Basic graph notations. Let G = (V,E) be an undirected, simple, connected
graph, where n := |V|. For two vertices u,v € V, the edge between them is
denoted by (u,v). The length of a path is the number of edges in the path.
For two vertices u,v € V, let d(u,v) denote the distance between them, that
is, the length of the shortest path between u and v. For a vertex w and an
edge e = (u,v), let d(e,w) := min{d(v, w), d(u, w)} be the distance between e
and w. For a subset U C V, the graph induced by U is denoted by G[U]. For
two vertices u,v € V, if u = v or (u,v) € E, then v dominates u. Given two
sets V1, Vo C V, if every vertex of V5 is dominated by some vertex of Vi, then V
dominates V5. Specially, if V5 = (), then V; still dominates V5. For a vertex v €
V, let N(v) be the set of neighbors of v, that is, N(v) := {u | (v,u) € E},
and N[v] := N(v) U {v}. If a graph can be drawn in the plane without edge
crossings then it is called a planar graph. A plane graph is a planar graph with
a fixed embedding in the plane. Throughout this paper, we assume that we are
working with an arbitrary but fixed embedding of G in the plane; whenever this
embedding is of relevance, we refer to G as being plane instead of planar.

For a vertex v € V, N(v) is partitioned into the following three subsets:

— Ni(v) :={u|u € N(v) and N(u)\ Nv] # 0},
— No(v) :={u|ue N(w)\Ni(v) and N(u) N N1(v) # 0}, and
= N3(v) = N(v) \ (N1(v) U Na(v)).

For two vertices v,w € V, let N[v,w] := N[v] U N[w] and N (v,w) := N[v,w] \
{v, w}. We partition N(v,w) into the following three subsets:

— Ni(v,w) :=={u|u € N(v,w) and N(u)\ N[v,w] # 0},
— No(v,w) :={u|u € N(v,w)\ N1(v,w) and N(u) N Ny(v,w) # 0}, and
— N3(v,w) := N(v,w) \ (N1(v,w) U Na(v,w)).

Region and region decomposition. In the following, we introduce the region de-
composition framework.

Definition 1. [I] For a plane graph G = (V, E) and two vertices v,w € V, a
region R(v,w) between v and w is a closed subset of the plane with the following
properties:

1. The boundary of R(v,w) is formed by two simple paths Py and Py between v
and w, and the length of each path is at most three.

2. All vertices strictly inside (that is, not on the boundary) the region R(v,w)
are from N(v,w).
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For a region R = R(v,w), v, w are called the endpoints of R. Let V[R] denote the
vertices in R, that is, V[R] = {u € V| u sits strictly inside or on the boundary
of R}, and let V(R) := V[R] \ {v,w}. A vertex in V(R) is called simple, if it is
adjacent to both v and w; otherwise it is called non-simple.

Definition 2. [I] A region R = R(v,w) between two vertices v and w is called
simple, if all vertices in V(R) are common neighbors of both v and w, that is,
V(R) C N(v) N N(w).

Definition 3. A region R = R(v,w) between two vertices v and w is called
quasi-simple, if for every non-simple verter x in R, x satisfies the following
conditions:

1. x sits strictly inside R and
2. x is adjacent to v but not adjacent to w, and is also adjacent to at least one
simple vertex in R.

Note that for a quasi-simple region R = R(v,w), it always holds V(R) C N(v)
but V(R) \ N(w) might be non-empty. In the following, the boundary of a re-
gion R will be denoted by OR.

Definition 4. [1] Let G = (V,E) be a plane graph and D C V. A D-region
decomposition of G is a set R of regions between pairs of vertices in D such that

1. for R(v,w) € R no vertex from D is in V(R(v,w)) and
2. for two regions Ri, Ro € R, it holds (R1 N R2) C (OR1 UJRy).

For a D-region decomposition f, we define V[R] = (Jpcy VI[R]. A D-region
decomposition  is called mazimal if there is no region R (R ¢ R) such that ' :=
RU{R} is a D-region decomposition with V[R] C V[R'].

Definition 5. [10] A graph problem P on G = (V, E) is said to admit a distance
property with constants ¢y and cg if

1. P asks for a set of vertices or edges satisfying a specified property and
2. for every solution set D with the vertex set V(D), it holds that Vu € V : Jv €
V(D) : d(u,v) <cy andVe € E:Jv € V(D) : d(e,v) < cg.

3 Data Reduction Rules

We present 7 data reduction rules for Planar Connected Dominating Set. Note
that the first 6 rules work also for general graphs. Some of these rules color
the vertices in G with two colors, black and white. Assigning the color white
to a vertex means that this vertex will be never included into the connected
dominating set sought for. Initially, all the vertices are colored black. During the
execution of the data reduction rules, if we find a vertex v such that there exists
a minimum connected dominating set excluding v, then we color v white. We
will show later that by incorporating this vertex coloring we can reduce some
“useless” edges and vertices. Finally, the output of our kernelization process is



74 W. Luo et al.

the “uncolored” version of the reduced, colored graph, that is, the same graph
without the vertex coloring. Note that we require that the minimum connected
dominating set of the input graph containing at least two vertices.

The first rule is a natural consequence of the definition of the coloring.

Rule 1. For two white vertices v and v, if N(u) C N(v), then remove v from G.
Then, we give a colored version of the first rule for Dominating Set introduced
in [I], which deals with the neighborhood of a single vertex.

Rule 2. For a black vertex v € V, if N3(v) # 0, then remove Na(v) U N3(v)
from G, and add a new white vertex v’ to V and edge (v,v’) to E.
The next rule deals with the colors of the neighbors of a single vertex.

Rule 3. For a black vertex v € V, if there exists a black vertex € Na(v)UN3(v),
then color x white and remove the edges between x and other white vertices in G.

The next 3 rules consider the “joint neighborhood” N (v, w) of two vertices v
and w. Compared to the second rule for Dominating Set introduced in [I], more
cases have to be considered.

Rule 4. For two black vertices v, w with d(v, w) = 1, if N3(v, w) is not dominated
by a single vertex from Ns(v,w) U Na(v,w), then we distinguish the following 4
cases:

Case 1. N3(v,w) is dominated by v and also dominated by w: remove N3(v,w)
and Nz(v,w) N N(v) N N(w) from G; add a new white vertex z to V and
edges (v, z) and (w, z) to E.

Case 2. N3(v,w) is dominated by v but not dominated by w: remove N3(v,w)
and Nz(v,w) N N(v) from G; add a new white vertex v’ to V and edge (v,v’)
to E.

Case 3. N3(v,w) is dominated by w but not dominated by v: remove N3(v,w)
and Na(v,w) N N(w) from G; add a new white vertex w’ to V and edge (w,w’)
to E.

Case 4. N3(v,w) is not dominated by v and not dominated by w: re-
move Na(v,w) U N3(v,w) from G; add two new white vertices v/ and w’ to V
and edges (v,v’) and (w,w’) to E.

In order to present Rule 5, we need some further notations: For two ver-
tices u,v € V in a colored graph G = (V, E), let dpjack(u, v) be the length of the
shortest path between v and v such that all vertices on this path with the only
exception of u and v are black. We further partition N5(v,w) for two vertices v
and w into the following 3 subsets:

Z := N3(v,w) N N(w) N N(v),
X := (N3(v,w) v)\ Z,

N N(
Y = (N3(v,w) N N(w)) \ Z.
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Rule 5. For two black vertices v, w with dpiacr (v, w) = 2, if N3(v,w) cannot be
dominated by at most two vertices from Na(v, w) U N3(v,w), then consider the
following 4 cases. Let p be any black vertex adjacent to both v and w.

Case 1. N3(v,w) can be dominated by at most two vertices from {v}UNz (v, w)U
N3(v, w) but cannot be dominated by at most two vertices from {w}U Ny (v, w)U
N3(v,w): Set B:={z € Z | N(z) C{v,w}UZUX}. If XUB\ {p} # 0, then
remove X U B\ {p} and add a new white vertex v’ to V and edge (v,v’) to E.

Case 2. N3(v,w) cannot be dominated by at most two vertices from {v} U
No(v,w) U N3(v,w) but can be dominated by at most two vertices from
{w} U Na(v,w) U N3(v,w): Set B := {& € Z | N(z) C {v,w}UZUY}
IfYUB\{p} # 0, then remove Y U B\ {p} and add a new white vertex w’ to V'
and edge (w,w’) to E.

Case 3. N3(v,w) cannot be dominated by at most two vertices from {v} U
Ny(v,w) U N3(v,w) and cannot be dominated by at most two vertices from
{w} U Na(v,w) U N3(v,w): Set B :={x € Z | N(z) C {v,w}UZUY UX}.
If | XUY UB\ {p} > 2, then remove X UY U B\ {p} and add new white
vertices v and w’ to V and edges (v,v’) and (w,w’) to E.

Case 4. N3(v,w) can be dominated by at most two vertices from {v}UNz (v, w)U
N3(v,w) and can be dominated by at most two vertices from {w} U Na(v,w) U
Ni(v,w): Set B:={zx € Z| N(z) C {v,w}UZ}. If B\ {p} # 0, then remove B\
{p} and add a new white vertex z and edges (v, z) and (w, z) to E.

The next rule requires a more refined analysis of the structure of N3(v,w).
Further subsets of X and Y are needed:
X :={z|zeX,Nx)NNw) =0}, Xo:= X\ Xy,

Vi={y|lyeY,N@y)NN() =0}, Yo:=Y\Yi.

Further, X5 and Y5> are again partitioned into two subsets, respectively:

Xy ={x |z € Xo,N(z) N Na(v,w) N N(w) = 0}, X§ := Xo\ X3,
Yy :={y|y €Yy, Ny) N No(v,w) N N(v) =0}, Yy :=Ya\Ys.

Rule 6. For two black vertices v and w with d(w,v) < 3 and dpger(w,v) > 3,
if N3(v,w) cannot be dominated by at most three vertices from Ny(v,w) U
Ns(v,w), then distinguish the following 4 cases.

Case 1. N3(v,w) can be dominated by at most three vertices from {v} U
No(v,w) U N3(v,w) and can also be dominated by at most three vertices from
{w}UNz(v,w)UN3(v,w): if Z # 0, then remove Z from G and add a new white
vertex z to V and edges (z,v) and (z,w) to E.

Case 2. N3(v,w) cannot be dominated by at most three vertices from {v} U
Ny(v,w) U N3(v,w) and cannot be dominated by at most three vertices from
{w}UNz (v, w)UNs (v, w): if dpiger (w,v) = 3, then set T := {p, ¢}, where p and ¢
are two black vertices making a path (v, p, ¢, w); otherwise, T := 0. If | N3(v, w) \
T| > 2, then remove N3(v,w)\ T from G and add two white vertices v' and w’
to V and edges (v,v") and (w,w’) to E.
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Case 3. N3(v, w) can be dominated by at most three vertices from {v}}UNa (v, w)U
N3(v, w) but cannot be dominated by at most three vertices from {w}UN3 (v, w)U
N3(v,w): let Ay = {z | z € X}, fy € N(z) N N(w): {x,y} dominates Y}; if
A1UX1UZ # ), then remove A1 UX;UZ from G and add a new white vertex v’
to V and edge (v,v’) to E.

Case 4. N3(v,w) cannot be dominated by at most three vertices from {v} U
Ny(v, w) UN3(v,w) but can be dominated by at most three vertices from {w} U
Na(v,w) U N3(v,w): let Ay = {y |y € Y], Bz € N(y) N N(v): {y, v} dominates
X};if AoUY, U Z # 0, then remove As UY; U Z from G and add a new white
vertex w’ to V and edge (w,w’) to E.

Rule 7. For a quasi-simple region R = R(v,w) between two vertices v and w
in G where at least one of v and w is black, say v being black, let (v, y,w, z,v)
be the boundary of R. We consider then the following cases:

Case 1. One of y and z is black: If there is a simple black vertex strictly in-
side R dominating all non-simple vertices in R, then let p denote this vertex and
consider the following cases:

Case 1.1. If the non-simple vertices in R can be dominated by a single vertex
