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Abstract

We study the complexity and approximation of the problem of reconstructing haplotypes from genotypes on pedigrees under
the Mendelian Law of Inheritance and the minimum recombinant principle (MRHC). First, we show that the MRHC for simple
pedigrees where each member has at most one mate and at most one child (i.e. binary-tree pedigrees) is NP-hard. Second, we present
some approximation results for the MRHC problem, which are the first approximation results in the literature to the best of our
knowledge. We prove that the MRHC on two-locus pedigrees or binary-tree pedigrees with missing data cannot be approximated
unless P = NP. Next we show that the MRHC on two-locus pedigrees without missing data cannot be approximated within any
constant ratio under the Unique Games Conjecture and can be approximated within the ratio O(

√
log(n)). Our L-reduction for the

approximation hardness gives a simple alternative proof that the MRHC on two-locus pedigrees is NP-hard, which is much easier to
understand than the original proof. We also show that the MRHC for tree pedigrees without missing data cannot be approximated
within any constant ratio under the Unique Games Conjecture, too. Finally, we explore the hardness and approximation of the
MRHC on pedigrees where each member has a bounded number of children and mates mirroring real pedigrees.
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1. Introduction and definitions

The secret mechanism behind phenotypic variation and inheritance has intrigued the study of genetic markers.
With the discovery of genetic markers such as microsatellite DNA sequences and Single Nucleotide Polymorphisms
(SNPs), it is now possible to provide a unique genetic map to track the variation and inheritance of genetic markers.
The international HapMap project, launched in October 2002, aims to discover the haplotype structure of human
beings and examine the common haplotypes among populations [17].
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Fig. 1. (a) A pedigree drawn in the formal way. (b) The pedigree drawn in the conventional way. (c) A pedigree with a mating loop.

Homologous recombination, the combination of genetic material between chromosome pairs during meiosis,
is essential in diploid organisms such as humans [7]. Unfortunately, the diploid structure of humans makes it
very expensive to collect haplotype data directly to display the recombination events. In a large-scale sequencing
project, genotype data instead of haplotype data are collected. However, haplotype data are required in many genetic
marker applications, such as linkage disequilibrium analysis and disease association mapping, to name a few [12,
13]. Therefore, combinatorial algorithms and statistical methods to reconstruct haplotypes from genotypes (i.e. the
haplotype phasing or inference problem) are urgently needed.

The input data for this problem can be SNP fragments from an individual, genotype data in a population or genotype
data in a family [8–11,15]. There are many combinatorial [1,2,14,16] and statistical ways [11,19] of tackling the
phasing problem. They are usually quite computationally demanding.

Some of the commonly used combinatorial methods [1,2,14,16] take advantage of the availability of pedigree data.
In other words, given a pedigree and the genotype information, they reconstruct a haplotype configuration for each
individual in the pedigree by trying to solve the Minimum Recombinant Haplotype Configuration (MRHC) problem
[1]. During the process of reconstruction, the minimum recombinant criterion is used as the objective function.
Because this objective attempts to reduce the number of candidate haplotype configurations, it naturally preserves
common haplotype structures.

All the existing methods of solving the MRHC problem are time and space consuming for realistic applications.
For example, a Pentium IV computer with 256 MB RAM is used to solve the MRHC on a input pedigree with 29
members and 51 SNP markers. An effective combinatorial algorithm ILP takes about 5 h to find an exact solution,
whereas a well-known statistical approach SimWalk2 takes even more than 6 days to find a haplotype configuration
with the maximum likelihood [21]. While over 5 million SNPs have been identified in the public database dbSNP [17],
there is a great need for efficient algorithms that could scale up to the whole genome level. This difficulty motivates
us to analyze the hardness and approximability of MRHC problems from a theoretical point of view.

1.1. Formal definition of the MRHC problem

In this subsection, we give a formal definition of the MRHC problem as well as the issue of pedigree representation
and biological background. We follow the conventions in [1].

Definition 1. A pedigree graph is a connected directed acyclic graph (DAG) G = {V, E}, where V = M ∪ F ∪ N ,
M represents the male nodes, F represents the female nodes, N represents the matting nodes, and E = {(u, v) : u ∈

M ∪ F and v ∈ N or u ∈ N and v ∈ M ∪ F}. M ∪ F is called the individual nodes. The in-degree of each individual
node is at most one. The in-degree of a mating node must be two, with one edge starting from a male (called the
father) node and the other edge from a female node (called the mother), and the out-degree of a mating node must be
larger than zero.

In a pedigree, the individual nodes outgoing from a mating node are called the children. The individual nodes with
zero in-degree are called the founders. The induced subgraph by the father, the mother and one child adjacent to the
same mating node is called a family trio. If there are two node-disjoint paths between two mating nodes in the pedigree
graph, this pedigree has a mating loop. A pedigree without mating loops is called a tree pedigree. A pedigree where
each member has at most one mate and at most one child looks like a binary tree, so this kind of pedigree is called
a binary-tree pedigree. Fig. 1 demonstrates an example pedigree drawn in both the formal and conventional ways.
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In the conventional way, the mating nodes are omitted. For convenience, we use conventional drawings of pedigrees
throughout this paper.

A genetic marker is a short non-redundant discriminative DNA sequence that can be used to trace inheritance.
Some common genetic markers are microsatellite DNA sequences or SNP data. Each polymorphism state of a genetic
marker is called an allele. Different kinds of markers have different numbers of alleles. For instance, a microsatellite
marker has multiple possible alleles occurring at a locus, which is called multi-allelic. An SNP marker commonly
has only two possible alleles occurring at a locus, which is called bi-allelic. We will mostly be interested in bi-allelic
markers because they are becoming the most popular markers in practice. Bi-alleles can be in exactly one of the two
alternative states, such as 1 or 2. If an allele is missing at some locus, it is denoted as a “*”.

In diploid organisms, because chromosomes come in pairs, at each locus there is a pair of alleles, which is referred
to the genotype of this locus. If these alleles are the same, the genotype at this locus is homozygous; otherwise,
the genotype is heterozygous. The alleles on the same chromosome form a haplotype. Each individual has a pair of
haplotypes.

If there is no genetic mutation in a meiosis process, the child inherits one haplotype from the mother and the
other one from the father. This is the well-known Mendelian law of inheritance. The haplotype inherited from the
mother is called the maternal haplotype while the one from the father is called the paternal haplotype. Given a pair
of haplotypes of an individual, if it is known which one was inherited from his (or her) father and which was from
his (or her) mother, the haplotypes and the inheritance information together are called a haplotype configuration (i.e.
a configuration in short); otherwise, the haplotypes without inheritance information form a haplotype grouping (i.e. a
grouping in short).

Usually, an entire haplotype of the mother’s (or father’s) haplotype pair is passed onto the child during meiosis.
However, crossover between the haplotype pair might occur, where the haplotype pair gets shuffled and one of the
mixed haplotypes is passed onto the child. This crossover is called a recombinant.

A PS (or phase) value represents the paternal or maternal information about the alleles at a locus. The PS value
can take the values 0 or 1, where 1 means that the allele with the smaller identification number is from the mother
and the allele with the larger identification number is from the father, and 0 otherwise. Thus, the reconstruction of
haplotype configuration for an input pedigree can be viewed as assigning PS values to each locus of every member of
the pedigree.

We will give in the next section the mathematical notations of the concepts mentioned above for convenience. Now,
the MRHC problem is defined as follows:

Definition 2 (MRHC [1]). Given a pedigree and genotype information for each member of the pedigree, find a
haplotype configuration of the pedigree that obeys the Mendelian law of inheritance and requires the minimum number
of recombinants.

1.2. Mathematical notations and some related definitions

We use the following mathematical notations to represent the critical concepts mentioned in Section 1.1. Let n

denote the number of loci, and ai , bi , ci , di , ei , fi ∈ {1, 2, ∗}, 1 ≤ i ≤ n. We define a vector
→

A as (a1, a2, . . . , an)
T.

We also define
→

B ,
→

C ,
→

D,
→

E and
→

F similarly. We represent a genotype, haplotype, haplotype configuration and

haplotype grouping by the following forms: G(
→

A,
→

B), H(
→

A), HC(
→

A,
→

B) and H G(
→

A,
→

B) respectively.
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B) =

a1 b1
... ...
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 H(
→

A) =
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...

an

 HC(
→
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→
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... | ...
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H G(

→
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→

B) =
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... / ...
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 .
For an individual, the genotype is denoted by a vector of allele pairs at every locus with the form G(

→

A,
→

B); the

haplotype is denoted by a vector of alleles at every locus with the form H(
→

A ); the haplotype configuration is denoted
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by an ordered haplotype pair with the form HC(
→

A,
→

B ), where the former haplotype comes from the mother and the
latter one comes from the father; the haplotype grouping is denoted by an unordered haplotype pair with the form

H G(
→

A,
→

B ).
Given an optimization problem Q, we denote a solution to Q by OPT(Q). Given an instance ϕ of problem Q, we

denote a solution to ϕ by OPTQ(ϕ) for convenience.
For the Min 2CNF Deletion [4,5], Min UnCut [5], 6=3SAT [20] and other satisfiability problems, we usually need

to check the following two properties to make sure that a truth assignment is a feasible solution. The following term
“satisfiability” means different things in different problems. For instance, in the Min 2CNF Deletion and Min UnCut
problems, a constraint is satisfied if it is true; but in the 6=3SAT problem, a clause is satisfied if its three literatures do
not have the same value.

Definition 3. Given a variable xi , any occurrence of xi and xi have different values; all occurrences of xi (or xi )
must have the same values (i.e. consistency property). Given a constraint, clause or monomial, it is satisfied (i.e.
satisfiability property).

1.3. Variants of MRHC and some related problems

We give the definitions of the variants of MRHC and list the related problems that are going to be discussed later
in the paper.

Definition 4. MRHC(k, j) is defined the same as MRHC except that each member in the pedigree has at most k mates
and at most j children with each mate. Binary-tree-MRHC is defined as MRHC on a binary-tree pedigree. Binary-
tree-MRHC* is defined the same as binary-tree-MRHC except it is allowed to have missing alleles. 2-locus-MRHC is
MRHC on a two-locus pedigree without missing data. 2-locus-MRHC* is defined the same as 2-locus-MRHC except
it is allowed to have missing data. Tree-MRHC is MRHC on a pedigree without mating loops or missing data.

In order to discuss the hardness and approximation of the variants, we are going to make use of some related
problems or properties, such as the Min UnCut [5] (i.e. 2-Linear-Equations Mod 2 [4]), Min UnCut(k) (the same
definition as Min UnCut except that each variable occurs at most k times), Min 2CNF Deletion [4,5] problems,
consistency and satisfiability property (see the appendix). The Min UnCut and Min 2CNF Deletion problems are
known to be NP-hard [5]. We will show that the Min UnCut(k) problem is also NP-hard in this paper.

For any NP-hard minimization (or maximization) problem, if there is some polynomial time algorithm to give a
solution with the objective value no more (or less, respectively) than f (n)·OPT (or OPT/ f (n), respectively), where
f (n) can be any function of the input size n, the problem can be approximated within ratio f (n); otherwise, the
problem cannot be approximated.

1.4. Previous complexity results on MRHC

Qian and Beckmann proposed a ruled-based algorithm to reconstruct haplotype configurations based on six rules
[16]. Their algorithm is a heuristic without theoretical analysis. Li and Jiang first proved that the MRHC on a two-
locus pedigree is NP-hard [1]. Doi, Li and Jiang further proved that the MRHC on tree pedigrees is also NP-hard in
the general case [2], even though MRHC can be solved by dynamic programming algorithms when the number of
members or loci in the input pedigree is bounded by a constant. However, the NP-hardness proof requires pedigrees
containing individuals with an unbounded number of mates or children. It was left as an open question if the proof
can be improved to work for tree pedigrees where every individual has a bounded number of mates and children.

Consistency checking of the Mendelian law of inheritance (i.e. the Mendelian law checking problem) is closely
related to the MRHC problem. The purpose of Mendelian law checking is to determine whether the given genotype
data obey the classic Mendelian law of inheritance. Mendelian law checking usually needs to be done ahead of
phasing haplotype configurations. Aceto et al. showed that the Mendelian law checking problem is NP-hard in
general, although checking the consistency on pedigrees with bi-allelic data or with no mating loops [3] can be done
in polynomial time (see Table 1).

In this paper, we consider a simple variant of MRHC, which involves pedigrees with members that have at
most one mate and one child (i.e. binary-tree-MRHC). It is an open question if binary-tree-MRHC is NP-hard. A
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Table 1
The known hardness results of the Mendelian law checking and MRHC problems

Problem Pedigree
Loop? Multi-allelic? Unbounded number of loci? Unbounded number of members? Hardness

Mendelian law checking Yes Yes NP-hard [3]
No P [3]

No P [3]
MRHC Yes No No Yes NP-hard [1]

No No No Yes P [2]
No No Yes No P [2]
No No Yes Yes NP-hard [2]

polynomial-time algorithm for it, if exists, could be useful for solving the general-case MRHC problem. Another
important question is whether a good approximation algorithm exists for MRHC. Here, in terms of computing the
minimum-recombinant haplotype, the accuracy is sacrificed to improve the efficiency. Previously, there is no known
polynomial-time approximation algorithm for MRHC with a guaranteed ratio.

1.5. Our results

We will consider pedigrees with bi-allelic genotype data throughout this paper. First, we reduce 6=3SAT to the
binary-tree-MRHC problem and show that this problem is NP-hard, which answers an open question in [2]. Second,
we study the approximability of MRHC on pedigree data with the following restrictions: (I) 2-locus genotype data
with missing alleles, (II) binary-tree pedigrees with missing alleles, (III) 2-locus genotype data without missing alleles,
and (IV) tree pedigrees without missing alleles. These four restricted cases of MRHC are NP-hard problems shown
either in the literature [1,2] or in this paper. We demonstrate that the MRHC in the former two cases (I) and (II) cannot
be approximated unless P = NP. We also prove that it is NP-hard to approximate problems (III) and (IV) within any
constant ratio under the Unique Games Conjecture [4]. Moreover, we show that problem (III) can be approximated
with ratio O(

√
log(n)) in polynomial time by reducing it to the Min 2CNF Deletion problem, Finally, we discuss

the approximation of the MRHC on pedigrees where each member has a bounded number of children and mates,
mirroring pedigrees in real applications.

1.6. Organization of the paper

The paper is organized as follows. We briefly give definitions of MRHC problem and other closely related
problems, and introduce the related biological background in Section 1. We prove that binary-tree-MRHC is NP-hard
and state the approximatability of MRHC on pedigrees with missing data in Section 2. We show the approximation
lower bound of MRHC on pedigrees without missing data and the approximation upper bound of 2-locus-MRHC in
Section 3. In Section 4, we tentatively explore the approximation hardness of the MRHC on pedigrees where each
member has a bounded number of mates and children. We organize our hardness results and conclude this paper with
a few remarks in Section 5.

2. Approximation of MRHC on pedigrees with missing data

In this section, we prove the hardness of approximating MRHC on pedigree data with missing alleles. Two variants
are considered.

Lemma 1. If it is NP-hard to decide whether OPT(R) = 0 for a minimization problem R, R cannot be approximated
unless P = NP.

Proof. This lemma is a folklore. We prove it for the completeness of the paper. Suppose that there is an approximation
algorithm A with ratio f (n), where f (n) is a function of input size n. On any instance, algorithm A can generate a
solution S with cost smaller than f (n) ·OPT(R) in polynomial time. If OPT(R) = 0, solution S has cost 0. Otherwise,
solution S has a positive cost. This gives rise to a polynomial time algorithm to decide whether OPT(R) = 0, which
contradicts the assumption that it is NP-hard to decide whether OPT(R) = 0. This lemma holds. �
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Fig. 2. (a) G 6=M , G=M , G 6=F , G=F , HC 6=, and HC=. (b) The pedigree used in the reduction from 6=3SAT to binary-tree-MRHC.

2.1. Hardness and approximation of binary-tree-MHRC(*)

Theorem 2. Binary-tree-MRHC is NP-hard.

Proof. We reduce 6=3SAT to binary-tree-MRHC. Given an instance of 6=3SAT, we assume that the Boolean formula
ϕ has m clauses and each clause has three literals. In order to construct an instance of binary-tree-MRHC to enforce
the consistency and satisfiability properties of a assignment to the literals in ϕ, we consider all pairs of literals in ϕ
for each variable xk (for consistency checking) and all pairs of literals (x p, xq ), (x p, xs) and (xq , xs) for each clause
x p ∨ xq ∨ xs of ϕ (for satisfiability checking). Suppose that t pairs are required for consistency checking. Clearly, t is
smaller than m2. We check exactly 3m literals pairs for the satisfiability property. These pairs of literals are indexed
sequentially starting from 1.

We construct a pedigree with genotype data consisting of 6m + 1 loci, indexed from 1 through 6m + 1. First, we
introduce an individual node M0. Each even-numbered locus of M0 has a heterozygous genotype {1 2} and corresponds
to a literal in the formula ϕ. We observe that an assignment of PS values to the even-numbered loci in M0 naturally
divides the loci (and thus the literals) into two groups, which also bipartitions the corresponding literals in ϕ. The
literals in one group can be considered to have value TRUE and the others FALSE. Therefore, the PS values of
the even-numbered loci in M0 encode an assignment to the literals in the formula ϕ. The constructed pedigree is
illustrated in Fig. 2. This construction can be done in O(m3) time. Satisfiability checking or consistency checking
involving complementary literals is called type (I) checking; it is type (II) checking, otherwise.

Suppose that the i th pair of literals indexed in the above is (x j , xk). The two loci representing the occurrences of
these two literals are denoted as the joth and koth loci. The pedigree has four types of individuals: Ai , Bi , Ci and Mi .
For convenience, we define four genotypes, G 6=M , G=M , G 6=F , G=F , and two configurations, HC 6=, HC=, in Fig. 2.

The genotype of each individual is constructed as follows.
• Ai : All odd-numbered loci have genotype {2 2} and all even-numbered loci have genotype {1 2} except the two

loci jo and ko. The genotype of these two loci is G 6=M if the i th literal pair is for type (I) checking; the genotype is
G=M otherwise.

• Bi : All odd-numbered loci have genotype {2 2} and all even-numbered loci have genotype {1 2} except the two
loci jo and ko. The genotype of these two loci is G 6=F if the i th pair is for type (I) checking; the genotype is G=F
otherwise.

•Ci : All odd-numbered loci have genotype {2 2} and all even-numbered loci have genotype {1 2}. Due to the
genotype value of Ai and Bi , the two loci jo and k0 of Ci will be forced to have the haplotype configuration HC 6= if
the i th pair is for type (I) checking; they will be forced to have the configuration HC= otherwise.
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Table 2
How Ci ’s configuration works in the reduction

• Mi : All loci have genotype {1 2}. Because Mi ’s father, Ci , has genotype {2 2} at odd-numbered loci, Mi has
haplotype configuration {1|2} at odd-numbered loci. In other words, the maternal allele of Mi at odd-numbered loci
must be 1.

There are two main parts in the pedigree. Part 1 is used to enforce the consistency property of a truth assignment,
while part 2 is used to verify the satisfiability property.

Part 1: For the i th (1 ≤ i ≤ t) pair of literals indexed above, we introduce a gadget consisting of the parents–child
trio Ai , Bi and Ci to do consistency checking. The two loci ko and jo standing for the occurrences of the i th pair are
shown in Table 2. If and only if these two loci in Mi−1 have the consistent PS value, there can be zero recombinants
in this parents–child trio. Therefore, if and only if all the variables are consistent, there can be zero recombinants in
part 1.

Part 2: For the j th (1 ≤ j ≤ m) clause x p ∨ xq ∨ xs , we need three adjacent trios At+3 j−r,Bt+3 j−r , Ct+3 j−r
(0 ≤ r ≤ 2) to verify its satisfiability. We check whether at least one of the three pairs (x p, xq ), (x p, xs) and (xq ,
xs) has different PS values. Each trio is constructed in the same way as the above. If all three literals in a clause
have the same truth value, the satisfiability checking in all three corresponding trios will fail and thus at least two
recombinants will be required in the pedigree. Otherwise, exactly one checking fails and thus only one recombinant
would be required (which takes place when a Ci passes its haplotypes to the Mi , 1 ≤ i ≤ t + 3m). Therefore, given
any haplotype configuration, there are at least m recombinants in part 2, no matter how many recombinants are in part
1.

We claim that ϕ has a satisfiable assignment if and only if there exists a haplotype configuration generating m
recombinants in the whole pedigree. The proof of our claim is given as follows.

“=>”: Suppose ϕ has a satisfying assignment ψ to the literals (i.e. ψ has both consistency and satisfiability
properties). Now we will show how to construct a haplotype configuration for each member based on ψ . Let us
take M0 as an example. For each M0’s even-numbered locus, we can set its PS value being the boolean value of
the corresponding literal in ψ . All the other Mi ’s have the same haplotype configurations as M0. We also set the
PS values of loci in Ai , Bi , Ci and Mi appropriately so that there is zero recombinant in part 1 of the pedigree and
m recombinants in part 2. It is easy to verify that there are exactly m recombinants in the whole pedigree for the
constructed haplotype configuration.

“<=”: Suppose that the pedigree has a haplotype configuration solution with m recombinants. Because part 2
requires at least m recombinants, there must be exactly zero recombinant in Part 1 and m recombinants in Part 2.

First, we claim that all Mi in the solution have the same haplotype configurations, which holds trivially for part
1. Now we focus on part 2. For convenience, a small pedigree for checking the satisfiability of a clause, say clause
j (1 ≤ j ≤ m), is called a gadget, which includes four adjacent Mt+3 j−r ’s (0 ≤ r ≤ 3) and three adjacent trios
At+3 j−r,Bt+3 j−r , Ct+3 j−r (0 ≤ r ≤ 2). There are m gadgets in total in part 2. Observe that each gadget requires at
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Fig. 3. (a) HCSAT. (b) Part 2 of the constructed pedigree in the reduction.

least one recombinant, regardless how many recombinants occur in other gadgets or part 1. Therefore, each gadget
must have exactly one recombinant. For each member Mi , notice that the maternal allele of every odd-numbered locus
is 1, which means that every odd-numbered locus passes the maternal allele onto her child Mi . Further, notice that
even-numbered loci are sandwiched by odd-numbered loci. Therefore, if any recombinant events occur between some
Mi−1 and Mi (i.e. some even-numbered locus, say locus k of Mi−1,, passes the paternal alleles to Mi ), there must be
at least two recombinants, one of which occurs between loci k − 1 and k, and the other occurs between loci k and
k + 1. However, the gadget containing Mi−1 and Mi has only one recombinant. Therefore, no recombinant can occur
between any Mi−1 and Mi (i.e., all members Mi have the same haplotype configurations).

Now we can transform the haplotype configuration solution into a truth assignment. We pick an arbitrary Mi , say
M0, assign the PS values at even-numbered loci to the corresponding literals and obtain a truth assignment ψ . Because
there are zero recombinants in part 1, this assignment is consistent. Because there is exactly one recombinant in the
every gadget in part 2, this assignment satisfies every clause. In other words, the assignment ψ satisfies the boolean
formula ϕ.

Thus, binary-tree-MRHC is NP-hard. �

Theorem 3. It is NP-hard to decide whether OPT(binary-tree-MRHC*)= 0.

Proof. Again, we reduce 6=3SAT to binary-tree-MRHC. Given an instance of 6=3SAT, assume that the Boolean
formula ϕ has m clauses and each clause has three literals. We use a similar pedigree as the one in Theorem 2.
The main structure of the two parts of the pedigree remains the same. However in part 2, instead of using three
parents–child trios to check the satisfiability of the j th (1 ≤ j ≤ m) clause, we use just one trio containing members
D j , E j and F j . We can force F j ’s (6 j − 4)th, (6 j − 2)th and (6 j)th loci to have configuration HCSAT defined in
Fig. 3, by using the same technique as the one Theorem 2 (i.e. setting D j and E j ’s genotype appropriately). This
construction can still be done in O(m3) time.

This modified part 2 of the new pedigree is illustrated in Fig. 3. For the j th (1 ≤ j ≤ m) clause x p ∨ xq ∨ xs ,
part 2 contains a member F j that can be used to check if all x p, xq and xs have equal truth values. If the literals in
this clause do not have the same value, we can always assign appropriate alleles to the missing data positions without
causing recombinants in the parents–child trio containing M j−1, F j and M j ; otherwise, there must be at least one
recombinant, because of arguments similar to those demonstrated in Table 2.

We claim that if and only if ϕ has a satisfying assignment, there is a zero-recombinant solution for the entire
pedigree. The details are omitted here. This completes the proof. �

Corollary 4. Binary-tree-MRHC* cannot be approximated unless P = NP.

Proof. It follows obviously from Lemma 1 and Theorem 3. �

2.2. Approximation of 2-loop-MHRC*

Theorem 5. It is NP-hard to decide whether OPT(2-locus-MRHC*)= 0.

Proof. We reduce 3SAT to 2-locus-MRHC*. Given an instance of 3SAT, we assume that the Boolean formula ϕ has
n variables and m clauses, where each clause has three literals. We construct gadgets for each variable and clause and
define a genotype G0, two grouping H GTRUE and H GFALSE, a haplotype HTRUE illustrated in Fig. 4. The logical
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Fig. 4. (a) G0, HTRUE, H GTRUE and H GFALSE. (b) Gadget for variable x . (c) Gadget for clause x ∨ y ∨ z. (d) An example of the reduction from
3SAT to 2-locus-MRHC* for (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

value TRUE and FALSE are represented by two alternative haplotype groupings for the genotype G0. Without loss of
generality, we will represent TRUE by H GTRUE and FALSE by H GFALSE.

We create a founder for all negative occurrences of each variable and a founder for all positive literals, and add
appropriate offsprings according to the variable and clause gadgets in Fig. 4. In each variable gadget, we let the
positive (or negative) literal be male (or female, respectively). In each clause gadget, we carefully set each variable
member’s mate be the complementary gender. By this means, we can construct a pedigree in O(m + n) time. Fig. 4
also shows an example of the construction.

If and only if ϕ has a consistent assignment, there is a solution where no recombinant is needed in the variable
gadgets. Moreover, if and only if some assignment has at least one literal with TRUE value in each clause, at least
one founder has the grouping H GTRUE in the corresponding clause gadget, so the haplotype HTRUE is passed through
intermediate members to the last generation without incurring any recombinant. Then we claim that ϕ has a satisfiable
truth assignment if and only if there is a zero-recombinant haplotype solution for the entire pedigree. This completes
the proof. �

Corollary 6. 2-locus-MRHC* cannot be approximated unless P = NP.

Proof. This follows immediately from Lemma 1 and Theorem 5. �

3. Approximation of MRHC on pedigrees without missing data

In this section, we consider the approximability of the same variants of MRHC without missing data. In order to
show the negative result, we need to use some gap-introducing reduction (or gap-preserving reduction) for MRHC.
We will use the concept of L-reduction proposed by Papadimitriou and Yannakakis [18].

3.1. Approximation of tree-MRHC

Lemma 7. There is an L-reduction from Min UnCut to tree-MRHC that transforms a set of Boolean constraints ϕ to
a tree pedigree ξ such that:

(i) OPTMinUnCut(ϕ) = OPTtree−MRHC (ξ ), and
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Fig. 5. The reduction from Min UnCut to tree-MRHC.

(ii)Given a haplotype solution for ξ with k recombinants, we can construct a solution for ϕ with at most k unsatisfied
clauses.

Proof. To simplify the proof, let ϕ represent both an instance of Min UnCut (or 2CNF Deletion) on a set of constraints
(or clauses, respectively) and the input constraint (clause) set, and ξ represent both an instance 2-locus-MRHC and
also the input pedigree.

The idea here is borrowed from an NP-hardness proof in Doi, Li and Jiang [2]. Given an instance of Min UnCut,
we assume that the Boolean constraint set ϕ has n variables and m constraints. We construct a pedigree ξ with n loci,
each of which represents a variable, as illustrated in Fig. 5. All loci in O1, O2, Mi , Ci and Di (1 ≤ i ≤ m) are
heterozygous. Two haplotype configurations HC= and HC 6= are defined in the same way as in Theorem 2. For the
i th constraint of ϕ, if the constraint has the form x j1 ⊕ x j2 = 0, Ci is be forced to have the configuration HC= at the
j1th and the j2th loci. Otherwise, if the constraint has the form x j1 ⊕ x j2 = 1, Ci is forced to have the configuration
HC 6= at these two loci. All other loci of Ai and Bi are heterozygous.

Using the same arguments as the proofs in [2], it is easy to show this reduction is an L-reduction. The details are
omitted here. �

Theorem 8. It is NP-hard to approximate tree-MRHC within any constant ratio under the Unique Games Conjecture
[4].

Proof. It is known NP-hard to approximate the Min UnCut problem within any constant ratio under the Unique
Games Conjecture [4]. The property of L-reduction in Lemma 7 guarantees the NP-hardness of approximating tree-
MRHC. �

3.2. Approximation of 2-locus-MRHC

We will present a lower bound and an upper bound on the approximation ratio for the 2-locus-MRHC problem.

3.2.1. Negative result for approximating 2-locus-MRHC
Lemma 9. There is a polynomial-time L-reduction from Min UnCut to 2-locus-MRHC that transforms a Boolean
constraints set ϕ to a pedigree ξ such that

(i) OPTMinUnCut(ϕ) = OPT2-locus-MRHC(ξ), and
(ii)Given any haplotype solution for ξ with k recombinants, we can find in polynomial time a truth assignment for ϕ

with at most k unsatisfied constraints.

Proof. Given an instance ϕ of Min UnCut, we assume that the Boolean constraint set has n variables and m constraints.
We create a male member (Mx ) and a female member (Fx ) for each variable x as the founders, and add appropriate
offsprings according to the variable and constraint gadgets shown in Fig. 6. We can construct the pedigree ξ for
2-locus-MRHC in O(mn) time. We denote TRUE by H GTRUE and FALSE by H GFALSE in the same way as in
Theorem 5.

Observe that we can let Mx and Fx have the same haplotype grouping for each variable x and obtain a haplotype
solution S with at most m recombinants in the constraint gadgets. Moreover, we claim that it is always advantageous
for each pair of members Mx and Fx to have the same haplotype grouping. This is because if Mx and Fx have different
haplotype groupings in some haplotype solution, each of their sons in the corresponding variable gadget would incur
a recombinant and thus the variable gadget would contain a total of m recombinants. Clearly, we will obtain a better
solution by changing the haplotype grouping of Mx or Fx .
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Fig. 6. (a) Gadget for variable x . (b) Gadget for constraint xi ⊕ x j = 0. (c) Gadget for constraint xi ⊕ x j = 1.

It is easy to see that we can translate in polynomial time any haplotype solution for ξ with k recombinants to a
solution for ϕ with at most k unsatisfied constraints. This correspondence trivially constitutes an L-reduction. �

Theorem 10. It is NP-hard to approximate 2-locus-MRHC within any constant ratio under the Unique Games
Conjecture [4].

Proof. The result follows from the above lemma and the fact that Min UnCut has no constant ratio approximation
unless P = N P under the Unique Games Conjecture [4]. �

3.2.2. Positive result for approximating 2-locus-MRHC
We first would like to reduce an instance of 2-locus-MRHC so that each member of the pedigree can be described

by one Boolean variable. Since only two loci are involved, there are three types of members in a pedigree: (I) both
loci are homozygous, (II) one locus is homozygous, and (III) both loci are heterozygous. A type (I) (or (II)) member
has a fixed haplotype grouping. A type (III) member has a variable haplotype grouping.

Agarwal et al. recently presented a randomized polynomial-time O(
√

log(n)) approximation algorithm for the Min
2CNF Deletion problem [5], where n is the number of variables in the input 2CNF constraints.

Lemma 11. There is a randomized polynomial-time O(
√

log(n)) approximation algorithm for 2-locus-MRHC, where
n is the number of members in the input pedigree.

Proof. The main idea of the proof is to transform an instance ξ of the 2-locus-MRHC problem to an instance ϕ of
Min 2CNF Deletion whose solution corresponds to a haplotype solution of ξ in an equivalent way (in terms of cost).
Moreover, the number of variable in ϕ is no more than the number of members in ξ . This would give rise to an L-
reduction from 2-locus-MRHC to Min 2CNF Deletion, which has an O(

√
log(n)) approximation algorithm. In the

reduction, we represent the haplotype grouping of each type (III) member of pedigree ξ as a Boolean variable. Clauses
of size two are then used to capture all grouping combinations in a parents–child trio that would cause recombinants.

Without loss of generality, we represent grouping H GTRUE by TRUE and another grouping H GFALSE by FALSE
in the same way as in Theorem 5. We use Table 3 to show how to map each parents–child trio to a clause so that the
number of recombinants is translated to the number of unsatisfied clauses.

Note that, if both parents of a trio are members of types (I) or II, the trio cannot incur any recombinants, although
we need check the Mendelian consistency of the genotypes in the trio. Hence, such trios are omitted in Table 3.
Let ϕ denote the 2CNF constraints consisting of all the clauses created above. Then it is easy to see that there is a
one-to-one correspondence between recombinants in the pedigree and unsatisfied clauses, and the reduction is in fact
an L-reduction. Hence, we have a randomized polynomial-time O(

√
log(n)) approximation algorithm for 2-locus-

MRHC. �

Observe that the results in this section show that, in terms of approximability, the 2-locus-MRHC problem is easier
than the Min 2CNF Deletion problem and harder than the Min UnCut problem. Also, Lemma 9 presents an alternative
proof that 2-locus-MRHC is NP-hard, which is much easier to understand than the original proof in [1].

4. Approximation of MRHC(k, j )

The proof of Lemma 7 uses a pedigree that contains members with a variable number of children, although every
member in the pedigree has only one mate. Can we get the same hardness result for tree-MRHC if we bound the
number of mates instead of the number of children? In addition, the pedigrees in the proofs of Theorem 5 and Lemma 9
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Table 3
Mapping a parents–child trio to clauses (Here, alleles X and Y can be either 1 or 2, and X are Y are different)

Genotype of the Mother (A) Genotype of the Father (B) Genotype of the Child (C) 2CNF constraint

1 1 2 2

1 1 2 2 2(A ∨ B) (A ∨ B̄) ( Ā ∨ B)

1 2 1 2 2 2 1 1

1 2 1 2 1 1 2 2 2( Ā ∨ B̄) (A ∨ B̄) ( Ā ∨ B)

2 2 1 1 1 2 1 2

1 2 1 2 2 2 1 1 ( Ā ∨ B̄) (A ∨ B)

1 2

1 2 ( Ā ∨ C) (A ∨ C̄) (B̄ ∨ C) (B ∨ C̄)

1 1 2 2

1 1 2 2 A

X X Y X 2 2 1 1

Y X X X 1 1 2 2 Ā

1 2

1 2 ( Ā ∨ C) (A ∨ C̄)

1 2 X X Y X

1 2 Y X X X A

Y X

Y Y Ā

Y X X X

X X X Y A

Y Y

X Y Ā

contain members with a variable number of children or mates. Another question is whether the MRHC on two-locus
pedigrees with a bounded number of children and mates leads to the same hardness result. In this section, we discuss
the approximation of the MRHC on pedigrees with bounded number of children and mates. For the convenience of
comparison, we state strengthened versions of the previous theorems in the order they appear in this paper. We use u
to present an integer variable.

First, we refine Theorem 5. The hardness result in this theorem holds for 2-locus-MRHC(u, 1), because some
member might appear in every clause gadget and every member has at most one child in the proof of Theorem 5.

Theorem 12. 2-locus-MRHC*(4,1) cannot be approximated unless P = NP.

Proof. According to the L-reduction from Max 3SAT to Max 3SAT(29) and the L-reduction from Max 3SAT(29) to
MAX 3SAT(3) [6], deciding whether there is a satisfiable solution for 3SAT(3) is NP-hard. In the proof of Theorem 5,
rather than reducing 3SAT to 2-locus-MRHC*, we can reduce 3SAT(3) to 2-locus-MRHC*. Then, in the pedigree
constructed, each member has at most four mates (i.e. one mate in the variable gadgets and at most three mates in
the clause gadgets). The construction of the pedigree introduces at most one child for each member with each mate.
Hence, Theorem 5 can be tightened to 2-locus-MRHC*(4,1)). �

Next, let us look at Lemma 7. This lemma actually works for tree-MRHC(1, u). It is natural to consider tree-MRHC
on pedigrees where members have a bounded number of children with each mate. In order to decrease the number of
children and mates in the pedigree, we need a bounded version of Min UnCut like the one for Max 3SAT.

In fact, there is an L-reduction from Min UnCut to Min UnCut(15) that transforms a Boolean constraints set ϕ to
another Boolean constraints set ψ such that

(i) OPTUnCut(ϕ) = OPTUnCut(15)(ψ), and
(ii) Given any truth assignment for ψ with k unsatisfied constraints, we can find in polynomial time a truth

assignment for ϕ with at most k unsatisfied constraints.
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Fig. 7. The reduction from UnCut(15) to tree-MRHC(u, 8).

This L-reduction from Min UnCut to Min UnCut(15) can be constructed using the same idea as the L-reduction that
transforms Max 3SAT to Max 3SAT(29) in [6] with just a few minor modifications. The details of this L-reduction are
omitted here. Based on the property of this L-reduction, we know that it is NP-hard to approximate Min UnCut(15)
within any constant ratio under the Unique Games Conjecture [4].

Theorem 13. It is NP-hard to approximate tree-MRHC(u, 1) within any constant ratio under the Unique Games
Conjecture [4].

Proof. Given an instance ϕ of Min UnCut(15) with n variable and m constraints, we construct a pedigree ξ as
illustrated in Fig. 7. We use the same notation and idea to construct every member as those in Theorem 2. All Mi ’s
children are designed to have the same genotype as Mi . Members C1, C2, . . . ,Ct are used to check the consistency
of each variable. Ct+ j (1 ≤ i ≤ m) is designed to check the satisfiability of the j th constraint.

Using arguments similar to those in Lemma 9, we can prove that an optimal truth assignment for the Boolean
constraints ϕ can be mapped to an optimal haplotype solution for the pedigree ξ with the same cost and vice versa.
Given a haplotype solution for ξ with k recombinants, we can construct a solution for ϕ with at most k unsatisfied
clauses easily. In other words, the above is an L-reduction. The details are omitted here. Hence, the approximability
result holds for tree-MRHC(u, 8).

In the above reduction, tree-MRHC(u, 8) can be further tightened to tree-MRHC(u, 1). We can create 8 new mates
with only one child with each mate to replace Ci (1 ≤ i ≤ m) and its 8 children. These 8 new mates are duplicates of
the old Ci . It is easy to see that the approximability result still works for tree-MRHC(u, 1). �

Finally, we consider Lemma 9. The hardness result actually holds for 2-locus-MRHC(u, u), because neither the
number of mates nor the number of children for a member is bounded by any constant.

Theorem 14. It is NP-hard to approximate 2-locus-MRHC(16,15) within any constant ratio under the Unique Games
Conjecture [4].

Proof. Similar to the proof of Lemma 9. But we reduce from Min UnCut(15) instead of Min UnCut. Each member in
the constructed pedigree has at most 16 mates (i.e. one mate in the variable gadgets and at most 15 mates in the clause
gadgets) and 15 children with each mate. The details are omitted here. �

5. Discussion and conclusion

The results presented in this paper are organized in Table 4. First, we showed that binary-tree-MRHC is NP-hard.
Binary-tree-MRHC is a simplest variant of MRHC because one mate and one child are the minimum requirement to
express the inheritance of human beings. Second, we showed some approximability results concerning the MRHC
problem. With the presence of missing data, it is NP-hard to tell if an instance of 2-locus-MRHC* and binary-
tree-MRHC* requires any recombinant. This gives an interesting contrast to the results in [1] where the problem
of finding a zero-recombinant haplotype solution for MRHC was shown to be solvable in polynomial time. This
result also implies that 2-locus-MRHC* and binary-tree-MRHC* is not approximable in polynomial time. Without
the presence of missing data, 2-locus-MRHC can be approximated with the ratio O(

√
log(n)). In addition, it is NP-

hard to approximate 2-locus-MRHC and tree-MRHC within any constant ratio under the Unique Games Conjecture
[4]. Our final results concern the inapproximability of the MRHC on pedigrees where each member has a bounded
number of mates and/or a bounded number of children with each mate.
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Table 4
Our hardness and approximation results for MRHC with bi-alleles

Loop Missing Unbounded Unbounded Hardness Lower bound Assumption The lower Upper
? data? Number number of of approx. bound bound of

of loci? members? ratio holds for approx.
ratio

Binary-tree- No No Yes Yes NP
MRHC
2-locus-MRHC* Yes Yes No Yes Any f (n) P 6= NP 2-locus-

MRHC* (4,1)
Binary-tree- No Yes Yes Yes Any f (n) P 6= NP Binary-tree-
MRHC* MRHC*
2-locus-MRHC Yes No No Yes Any P 6= NP, 2-locus-MRHC O(

√
log(n))

constant The Unique (16,15)
Games
Conjecture

Tree-MRHC No No Yes Yes Any P 6= NP, Tree-MRHC
constant The Unique (1, u)

Games Tree-MRHC
Conjecture (u, 1)
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