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In Brief

Identifying compound-protein

interactions is one of the essential

challenges in drug discovery. We

developed MONN, a multi-objective

neural network, which not only accurately

predicts the binding affinities but also

successfully captures the non-covalent

interactions between compounds and

proteins. MONN can prove to be a useful

tool in exploring compound-protein

interactions.
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SUMMARY
Computational approaches for understanding compound-protein interactions (CPIs) can greatly facilitate
drug development. Recently, a number of deep-learning-based methods have been proposed to predict
binding affinities and attempt to capture local interaction sites in compounds and proteins through neural at-
tentions (i.e., neural network architectures that enable the interpretation of feature importance). Here, we
compiled a benchmark dataset containing the inter-molecular non-covalent interactions for more than
10,000 compound-protein pairs and systematically evaluated the interpretability of neural attentions in exist-
ing models. We also developed amulti-objective neural network, called MONN, to predict both non-covalent
interactions and binding affinities between compounds and proteins. Comprehensive evaluation demon-
strated that MONN can successfully predict the non-covalent interactions between compounds and proteins
that cannot be effectively captured by neural attentions in previous prediction methods. Moreover, MONN
outperforms other state-of-the-art methods in predicting binding affinities. Source code for MONN is freely
available for download at https://github.com/lishuya17/MONN.
INTRODUCTION

Elucidating the mechanisms of compound-protein interactions

(CPIs) plays an essential role in drug discovery and development

(Kola and Landis, 2004; Paul et al., 2010). Although various

experimental assays (Inglese and Auld, 2008) have been widely

applied for drug candidate screening and property characteriza-

tion, identifying hit compounds from a large-scale chemical

space is often time and resource consuming. To relieve this

bottleneck, computational methods are typically used to reduce

time and experimental efforts in drug development (Chen et al.,

2016). For example, it has been shown that effective high-

throughput virtual screening can greatly accelerate the lead dis-

covery process (Rester, 2008).

Apart from the binding and functional assays, structure deter-

mination of compound-protein complexes can shed light on the

molecular mechanisms of CPIs and thus significantly promote

the lead optimization process. For instance, based on themolec-

ular basis of CPIs revealed by the complex structures, drug de-

velopers can gain better insights into understanding how to

improve the design of candidate compounds, for the purpose

of enhancing binding specificities or avoiding side effects (Price

et al., 2017). However, determining the atomic resolution struc-
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tures of protein-ligand complexes through currently available

experimental techniques, such as X-ray crystallography (Sver-

gun et al., 2001), nuclear magnetic resonance (NMR) (W€uthrich,

1989), and cryoelectron microscopy (cryo-EM) (Nogales and

Scheres, 2015), is still time-consuming in practice, resulting in

only a limited number of solved structures (Berman et al.,

2000). Therefore, a natural question arises: can computational

virtual screening methods also provide useful mechanistic in-

sights about CPIs in addition to predicting their binding affinities?

Molecular docking (e.g., AutoDock Vina [Trott and Olson,

2010] and GOLD [Verdonk et al., 2003]) and molecular dynamics

(MD) simulations (Salsbury, 2010) have been popularly used in

virtual screening of compounds interacting with proteins (Sousa

et al., 2013). These methods have inherently good interpret-

ability, as they can predict potential binding poses as well as

binding affinities. Despite a number of successful stories about

the applications of these structure-based computational

methods, they still suffer from several limitations. One major lim-

itation lies in their heavy dependence on the available high-qual-

ity 3D-structure data of the protein targets to handle fine-scale

structural data during the simulation process. In addition, these

molecular docking and MD simulation-based methods generally

require tremendous computational resources.
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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To overcome the current limitations of the structure-based

computational methods, a number of structure-free models (Ci-

chonska et al., 2017; Airola and Pahikkala, 2018; Tsubaki et al.,

2019;Gaoet al., 2018; Karimi et al., 2019;Wanet al., 2019; Özt€urk

et al., 2018) have been developed for CPI prediction. An example

is the similarity-based methods that take similarity matrices as

descriptors of both compounds and proteins (Cichonska et al.,

2017; Airola and Pahikkala, 2018). These methods mainly focus

on the global similarities of entire compounds or proteins, while

ignoring the detailed compositions of each molecule.

Conversely, deep-learning-based methods (Tsubaki et al.,

2019;Gao et al., 2018; Karimi et al., 2019; Özt€urk et al., 2018) fully

exploit the local features of both input compound structures and

protein sequences to predict their binding affinities. DeepDTA

(Özt€urk et al., 2018) and DeepAffinity (Karimi et al., 2019) are rep-

resentatives of deep-learning-based models that require only

simplified molecular-input line-entry system (SMILES) strings of

compounds and primary sequences of proteins as input. They

employ the widely used deep neural network architectures,

such as convolutional neural networks (CNNs) and recurrent neu-

ral networks (RNNs) to process and extract contextual features

from the input sequence data. Another group of methods rely

on graph-based representations to encode the molecular fea-

tures of compounds (Tsubaki et al., 2019; Gao et al., 2018), in

which vertices represent atoms and edges represent chemical

bonds. The graph convolution algorithms (Lei et al., 2017) are

applied accordingly to extract useful molecular features from

such graph representations of compounds. Although these

structure-free methods can successfully predict the binding af-

finity between each pair of compound andprotein, their interpret-

ability is still limited due to the lack of structural information.

A fraction of these structure-free methods make use of neural

attentions, which have been widely used in the deep-learning

community to guide models to focus on those ‘‘important’’ fea-

tures, and thus increase the interpretability of the prediction

results (Vaswani et al., 2017; Santos et al., 2016). For theCPI pre-

diction tasks (Tsubaki et al., 2019; Gao et al., 2018; Karimi et al.,

2019), attentions are expected to be able to capture the local

binding sites mediated by non-covalent interactions (e.g.,

hydrogen bonds and hydrophobic effects) between compounds

and proteins. Although these methods demonstrated that real

binding sites of compounds or proteins were enriched in their

attention-highlighted regions in a fewexamples, systematic com-

parison and evaluation on this learning capacity are still lacking,

probably due to the absence of benchmark datasets and evalua-

tion standards. In thiswork,weconstructedabenchmarkdataset

containing pairwise non-covalent interactions between atoms of

compounds and residues of proteins for more than 10,000 com-

pound-protein pairs and comprehensively evaluated the inter-

pretability of different neural attention-based frameworks. Tests

on our constructed benchmark dataset showed that current neu-

ral-attention-based approaches have difficulty in automatically

capturing the accurate local non-covalent interactions between

compounds and proteins without extra supervised guidance.

Basedon this observation,wedevelopedMONN, amulti-objec-

tive neural network, to learn both pairwise non-covalent

interactions and binding affinities between compounds and

proteins. MONN is a structure-free model that takes only graph

representations of compounds andprimary sequencesof proteins
as input, with capacity to handle large-scale datasets with rela-

tively low computational complexity. The input information is pro-

cessed by graph convolution networks and CNNs, but different

from previous CPI prediction methods in the following aspects:

(1)MONNuses a graphwarpmodule (Ishiguro et al., 2019) in addi-

tion to a traditional graph convolution module (Lei et al., 2017) to

learn both a global feature for the whole compound and local fea-

tures for individual atoms of the compound to better capture the

molecular features of compounds; (2) MONN contains a pairwise

interactionpredictionmodule,whichcancapture thenon-covalent

interactions between atoms of a compound and residues of a pro-

tein with extra supervision from the labels extracted fromavailable

high-quality 3D compound-protein complex structures; and (3) in

MONN, the pairwise non-covalent interaction prediction results

are further utilized to benefit the prediction of binding affinities,

by effectively incorporating the shared information between com-

pound and protein features into the downstreamaffinity prediction

module.

Comprehensive cross-validation tests on our constructed

benchmark dataset demonstrated that MONN can successfully

learn the pairwise non-covalent interactions derived from high-

quality structural data, even using the 3D structure-free informa-

tion as input.We also used an additional test dataset constructed

from the protein data bank (PDB) (Berman et al., 2000) to further

validate the generalization ability of MONN. Moreover, extensive

tests showed that MONN can achieve superior performance in

predictingCPI-binding affinities over other state-of-the-art struc-

ture-free models. In addition, although the chemical rules, such

as the correlation of hydrophobicity scores between compounds

and proteins and the preference of atom and residue types for

hydrogen bonds and p-stacking interactions, are not explicitly

incorporated into the prediction framework, such features can

still be effectively capturedbyMONN.All these results suggested

thatMONNcanprovide a useful tool for effectivelymodelingCPIs

both locally and globally, and thus greatly facilitate the drug dis-

covery process.

RESULTS

The Network Architecture of MONN Is Designed for
Solving a Multi-objective Machine Learning Problem
MONN is an end-to-end neural network model (Figures 1 and 2)

with two training objectives, whose main concept and key meth-

odological terms are explained in Primer (Box 1) and Glossary

(Box 2). One objective of MONN is to predict the non-covalent in-

teractions between the atoms of a compound and the residues

of its protein partner. We first define a pairwise interaction matrix

to describe the non-covalent interactions between the input

compound and protein pair. More specifically, for a compound

withNa non-hydrogen atoms and a protein withNr residues, their

pairwise interaction matrix P is defined as an Na3Nr binary ma-

trix, in which each element Pij (i = 1;2;/;Na and j = 1;2;/;Nr )

indicates whether there exists a non-covalent interaction (1 for

existence, and 0 otherwise) between the i-th atom of the com-

pound and the j-th residue of the protein when forming a com-

plex structure. The interaction sites of the compound or protein

can be then derived from this pairwise interaction matrix by

maximizing over rows or columns (Figure 1A). The other objec-

tive of MONN is to predict the binding affinities (e.g., Ki, Kd, or
Cell Systems 10, 308–322, April 22, 2020 309
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Figure 1. The Concept of MONN

(A) Non-covalent interactions between compounds and proteins. The pose view was generated by https://poseview.zbh.uni-hamburg.de/5z1c.

(B) Construction of the PDBbind-derived benchmark dataset.

(C) Training and validation of MONN.

(D) Three settings of the clustering-based cross-validation.
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Figure 2. The Network Architecture of MONN

(A) The architecture overview of MONN. Given a compound-protein pair, a graph convolution module and a CNN module are first used to extract the atom and

residue features from the inputmolecular graph and protein sequence, respectively. Then, these extracted atom and residue features are processed by a pairwise

(legend continued on next page)
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Box 1. Primer

One of the key steps in drug discovery is to characterize the small molecule ligands of protein targets. However, it is still difficult to

experimentally measure large-scale CPIs in an efficient way. Computational methods have been developed in this field to facilitate

the discovery of hit or lead ligands for protein targets. Currently, there are still several challenges in establishing the computational

models for compound-protein interaction prediction:

d The first challenge is the accuracy of predictions, which is also the most important goal of computational methods. Machine

learning methods rely heavily on the amount and quality of training data to learn the regulations of the chemical or biological

objects. However, there exists certain bias in many datasets for drug discovery. For example, similar compounds or proteins

may be overly presented in the datasets, resulting from characterizing analogs of lead compounds and investigating impor-

tant target proteins identified earlier. Such bias may possibly lead to overfitting of computational models and thus inaccurate

reports of model performances.

d The second challenge is the limited accessibility of structural data at atomic resolution. Most structure-based machine

learningmethods for CPI prediction heavily rely on the compound-protein complex structures as their input, thus limiting their

applications. In addition, these structure-based CPI prediction methods, including traditional CADD methods, generally

require immense computational resource when processing the enormous atom coordinates in the 3D structures.

d The third challenge is the interpretability of current deep-learning-based models, especially for those structure-independent

models. Although deep neural networks are powerful, they are also well known for their black-box nature. Despite that some

of them attempted to seek for explanations through the attention mechanism (which tells the ‘‘focuses’’ of computational

models), their performance is still quite limited, according to our systematic tests on a benchmark dataset.

In this paper, we developed a computational framework, called MONN, to address these challenges (Figure 1):

d First, through comprehensive evaluation of our model, we demonstrated that MONN can achieve superior performance than

existing state-of-the-art CPI prediction methods. To avoid the bias introduced by similar compounds and proteins in training

data, clustering-based cross-validation schemes were used to evaluate the ability of our model to make prediction for those

compounds or proteins that are dissimilar with training data.

d Second, our model takes only protein sequences and chemical structures of compounds as input. Although during the

training process, we can incorporate the non-covalent interaction labels derived from structural data to provide additional

support for the affinity prediction task, during the application phase, our model does not require structural information as

its input.

d Third, the network architecture of our model allows the extraction of contextual features from individual molecular compo-

nents (i.e., atoms of compounds and residues of proteins), followed by the prediction of local non-covalent interactions be-

tween compounds and proteins. In addition to the successful prediction of binding affinities by MONN, the predicted local

interactions can help provide useful mechanistic insights underlying the CPI events.

ll
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IC50), which can also be regarded as a global measurement of

the binding strength, between a protein and its ligand. The

(predicted) binding affinity can be denoted by a real number

a˛R.
An input chemical compound with Na atoms can be repre-

sented by a graph G = fV ;Eg, where each node vi˛V, i = 1;2;

/;Na, corresponds to the i-th non-hydrogen atom in the com-

pound, and each edge ei1 ;i2˛E, i1; i2˛f1;2;/;Nag, corresponds
to a chemical bond between the i1-th and the i2-th atoms. An

input protein with Nr residues can be represented by a string

of its primary sequence, denoted by S = ðr1; r2;/; rNr
Þ, where

each rj, j = 1; 2;/;Nr , is either one of the 20 standard amino

acids, or a letter ‘‘X’’ for any non-standard amino acid. Given a

graph representation of a compound and a string representation

of a protein sequence, our model is expected to output a pre-

dicted pairwise non-covalent interaction matrix P˛RNa3Nr and

an estimated binding affinity value a˛R.
MONN consists of four modules: (1) a graph convolution mod-

ule for extracting the features of both individual atoms and the
interaction prediction module to derive the predicted pairwise interaction matrix,

and residues of the protein. Finally, an affinity prediction module is used to integra

pairwise interactions to predict the binding affinity.

(B) The graph convolution module for encoding the molecular features of an inpu

(C) The CNN module for encoding the features of an input protein sequence. Mo

312 Cell Systems 10, 308–322, April 22, 2020
whole compound from a given molecular graph (Figure 2B), (2)

a CNN module for extracting the features of individual residues

from a given protein sequence (Figure 2C), (3) a pairwise interac-

tion prediction module for predicting the probability of the non-

covalent interaction between any atom-residue pair from the

previously learned atom and residue features (Figure 3A), and

(4) an affinity prediction module for predicting the binding affinity

between the given pair of compound and protein, using the

previously extracted molecular features, as well as the derived

pairwise interaction matrix (Figure 3B). The graph convolution

module and the CNN module effectively extract information

from the local contexts for atoms of compounds and residues

of proteins, and the pairwise interaction prediction module infers

the potential non-covalent interactions from the previously

learned local features. The basic idea of the affinity prediction

module is to integrate information from both compounds and

proteins to benefit the prediction of their binding affinities. During

this process, the predicted non-covalent interactions are used to

enable information sharing between the components of
which also enables one to construct the links between atoms of the compound

te information from atom features, residue features, and the previously derived

t compound.

re details can be found in STAR Methods.



Box 2. Glossary

Pairwise Interactions
To computationally describe the non-covalent interactions between a compound-protein pair, we first regard the compound as a

list of atoms and the protein as a list of residues. A pairwise interaction matrix is represented by a [number of atoms]-by-[number of

residues] matrix in which each element is a binary value indicating whether the corresponding atom-residue pair has an interaction

or not.

Clustering Threshold
We use hierarchical clustering for splitting all the compounds (proteins) into groups (i.e., clusters) based on their similarities. A clus-

tering threshold determines theminimal distance between clusters. For example, a threshold 0.3 for compound clustersmeans that

any two compounds from different clusters have at least 30% difference in their chemical structures.

Convolutional Neural Networks (CNNs)
CNNs are neural networks widely used for processing image-like or sequence-like inputs (e.g., text strings describing chemical

structures and protein sequences). For each position of a sequence, CNNs extract its local contextual features through capturing

diverse sequence patterns of the surrounding regions (Alipanahi et al., 2015; Özt€urk et al., 2018).

Recurrent Neural Networks (RNNs)
RNNs are neural networks designed for processing sequential data. Unlike CNNs that mainly focus on the detection of local pat-

terns, RNNs scan the whole sequences to capture the long-range features of individual positions (i.e., the features related to distant

positions) (Lipton et al., 2015; Karimi et al., 2019).

Graph Convolution Networks
In graph convolution networks, each atom of a compound can be regarded as a node. Different atoms can share information

through their chemical bonds. The basic idea of graph convolution is to iteratively gather information from the neighbors of

each node (i.e., atom), so that each single atom is aware of the molecular substructures around it (Lei et al., 2017; Tsubaki

et al., 2019).

Graph Warp Unit
We use a variant of graph convolution network (Ishiguro et al., 2019), which extracts not only local features from neighbors of in-

dividual nodes but also global feature of a graph through a graph warp unit. In particular, a virtual node (also called super node) is

introduced to connect with all the other nodes (i.e., atoms) in a graph representing the compound structure. Such a design allows

remote atoms to directly communicate with each other through the virtual node, resulting in the detection of the global feature of the

whole compound.

Neural Attentions
Neural attentions are generally designed to capture the importance of different input positions to the final prediction in deep-

learning models. They are often realized by calculating a ‘‘weight’’ for each input position, which thus can provide certain interpret-

ability about the contributions of individual input positions to the final prediction results (Vaswani et al., 2017; Santos et al., 2016).
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compounds and proteins. Details about each module of MONN

and the training process can be found in STAR Methods.

Systematic Evaluation Indicates the Limited
Interpretability of Neural Attentions in CPI Prediction
Models
A number of deep-learning-based methods (Tsubaki et al.,

2019; Gao et al., 2018; Karimi et al., 2019; Wan et al., 2019;

Özt€urk et al., 2018) have been developed previously for

modeling CPIs from 3D structure-free inputs. Despite their suc-

cess in predicting binding affinities with relatively low computa-

tional complexity, interpretability is still considered as a chal-

lenge for these structure-independent methods. Several

recent studies (Tsubaki et al., 2019; Gao et al., 2018; Karimi

et al., 2019) sought interpretability by incorporating neural at-

tentions (i.e., weighing the contributions of individual elements

in the given input to the final predictions) into their model archi-
tectures. The attention weight can be regarded as a measure of

importance of the feature at each position (e.g., an atom or a

residue), and thus such an attention mechanism is expected

to be able to explain the interaction sites between compounds

and proteins. For example, Tsubaki et al. developed an end-to-

end neural network with attentions for protein sequences (Tsu-

baki et al., 2019). They showed two examples in which the

attention-highlighted regions were able to capture the real

interaction sites in proteins. The method developed by Gao

et al. involved both compound and protein attentions (Gao

et al., 2018). By visualizing the attention weights, the authors

demonstrated that the derived attention-highlighted regions

derived from their model can successfully identify the interac-

tion interface in a compound-protein complex. DeepAffinity re-

ported an enrichment of true interaction sites in those regions

with high attention scores in protein sequences for several ex-

amples (Karimi et al., 2019).
Cell Systems 10, 308–322, April 22, 2020 313
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(A) The pairwise interaction prediction module. Here,

Watom andWresidue stand for the weight parameters of

two single-layer neural networks that need to be

learned.

(B) The affinity prediction module. More details can be

found in STAR Methods.
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However, there are still several limitations in theprevious studies

about the interpretability of the deep-learning-based CPI predic-

tion methods. First, in these studies, the interpretability of neural

attentions was evaluated only through one or several examples,

and not comprehensively assessed by a large-scale benchmark

dataset. In addition, the evaluations were conducted only by visu-

alizing the attention weights (Tsubaki et al., 2019; Gao et al., 2018)

orcalculating theenrichmentscores (Karimietal., 2019), thus lack-

ing a unified standard for systematically evaluating the interpret-

ability of different attention-based models. More importantly, in

these existing studies, attention weights were mainly used to infer

the positions of the interaction sites, but the exact matchings be-

tween them (i.e., the pairwise interactions) still remainedunknown.

To overcome these limitations, we conducted a systematic

analysis to evaluate the interpretability of the neural attentions.

We first constructed a benchmark dataset containing labels of

pairwise non-covalent interactions for about 13,000

compound-protein complexes with available atomic resolution

structures (STAR Methods; Table S1).
314 Cell Systems 10, 308–322, April 22, 2020
Then the interpretability was evaluated

from the following three aspects: the ability

of attentions to capture the interaction sites

in compounds (at atom level), the interaction

sites in proteins (at residue level), and the

pairwise interactions between compounds

and proteins. For these binary classification

problems, we mainly used the average area

under receiver operator characteristic curve

(AUC) scores (i.e., averaging over all the

compound-protein pairs in the test data)

for performance evaluation. In addition, as

in DeepAffinity (Karimi et al., 2019), we also

calculated the enrichment score, which

was defined as the fold change of the preci-

sion score of the trained model over the ex-

pected precision of random predictions

(more details on these metrics can be found

in STAR Methods).

Four different types of neural attentions

used in existing compound-protein interac-

tion prediction models were evaluated,

including the method by Tsubaki et al. that

calculates attentions only for proteins (Tsu-

baki et al., 2019), the method by Gao et al.

that uses a bilinear function to generate

compound and protein attentions for infer-

ring their interaction sites (Gao et al.,

2018), as well as a soft alignment matrix for

inferring the pairwise interactions, and the

separate and joint attentions proposed in
DeepAffinity (Karimi et al., 2019) that calculate attentions for

individual sites in the compounds or proteins and for their pair-

wise combinations, respectively. More details about the imple-

mentations of these neural attentions can be found in STAR

Methods. The attention weights were obtained after training

the models using the binding affinity labels, that is, without extra

supervision from the pairwise interaction labels. The clustering-

based cross-validation procedure (Mayr et al., 2018) was used

during the training process, which ensured that similar com-

pounds (or/and proteins) in the same clusters were not shared

between training and test sets.

Three cross-validation settings were used in the evaluation,

including the new-compound setting, in which the test com-

pounds were never seen in the training process, the new-protein

setting, in which the test proteins were never seen in the training

data, and the both-new setting, in which both compounds and

proteins in the test data were never seen during training. More

details about the cross-validation procedures can be found in

STAR Methods.
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Figure 4. Performance Evaluation on the Interpretability of Different Neural Attentions and MONN for Predicting Non-covalent Interactions

between Compounds and Proteins

(A) Evaluation on the PDBbind-derived benchmark dataset. Average AUC scores and average enrichment scores were used for evaluating the prediction of

interaction sites (atoms) in compounds under the new-compound setting, interaction sites (residues) in proteins under the new-protein setting, and pairwise non-

covalent interactions between compounds and proteins under the both-new setting. The mean values and standard deviations over 10 repeats of cross-vali-

dation with clustering threshold 0.3 are plotted. The ratios of positive and negative labels are about 1:1.44, 1:46.5, and 1:605 under these three cross-validation

settings, respectively.

(B–E) Validating MONN on an additional test set derived from the PDB (Wang et al., 2005).

(B) The distribution of AUC scores for all the compound-protein pairs.

(legend continued on next page)
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Under different prediction tasks and cross-validation settings,

all the four types of neural attentions achieved average AUC and

enrichment scores around 0.5 and 1, respectively, which were

close to the scores of random predictions (Figures 4 and S3).

These results suggested that, although the attention-highlighted

regions and the real binding sites displayed accordance in some

cases (Tsubaki et al., 2019; Gao et al., 2018; Karimi et al., 2019),

they only showed poor correlation in a comprehensive test on a

large-scale dataset. Thus, it seems not possible to derive the ac-

curate predictions of non-covalent interactions between com-

pounds and proteins from the attention-based models trained

using only binding affinity labels (i.e., without pairwise interaction

labels).

MONN Successfully Predicts Pairwise Non-covalent
Interactions with Extra Supervision
Based on the above observation that neural attentions cannot

automatically capture the non-covalent interactions between

compounds and proteins, we speculated that extra supervision

information can be used to guide our model to capture such local

interactions. Instead of using attention mechanisms, MONN

uses an individual module (i.e., the pairwise interaction predic-

tion module) to learn the pairwise non-covalent interactions

from given labels (STAR Methods). Meanwhile, through margin-

alizing the predicted pairwise interaction matrix, the predicted

interaction sites in either compounds or proteins can also be

derived.

The cross-validation settings and themetrics for evaluating the

pairwise non-covalent interaction prediction results of our model

were the same as described in the previous section and STAR

Methods. As shown in Figure 4A, our model achieved average

AUC scores of 0.837, 0.763, and 0.821 and average enrichment

scores of 1.63, 10.8, and11.3 under the three application settings

(i.e., new-compound, new-protein, and both-new settings),

respectively. Note that the values of the enrichment scores

were not comparable among these three settings, due to the

different ratios of positive-negative labels (STAR Methods). A

more comprehensive comparison test (Figure S1) on our model

and different neural attentions was performed for different pre-

diction goals, cross-validation settings, and clustering thresh-

olds, which showed that the predictions of MONN are effective

and robust (average AUC scores decreased less than 5% with

the clustering threshold increasing from 0.3 to 0.6). These results

suggested that while the neural attentions have difficulty in inter-

preting the non-covalent interactions, MONN is able to accu-

rately predict such interactions between compounds and pro-

teins under different cross-validation settings.

The distributions of AUC scores of compound-protein pairs

achieved byMONN for predicting the pairwise interactions under

the three cross-validation settings are shown in Figure S2A. The

results indicated that different compound-protein pairs indeed

can have distinct performance. To further explore the potential

factors affecting the performance of MONN on individual sam-
(C–E) Three example pairs ranked around 10% (C), 50% (D), and 90% (E) in terms

occurrences of the same pair, the same compound, and the same protein in tr

predicted pairwise interactions, the interaction sites (atoms) in compounds, and

and top 40%predicted interaction sites aremarked in red using RDKit (Landrum, 2

for individual positions are plotted.
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ples, we also examined the relationships between the achieved

AUC scores and various properties of the test compound-pro-

tein pairs. It seemed that the occurrence of the same compound

in training data did not affect the prediction performance much

(Figure S2B), but the prediction performance was obviously

affected by whether the same protein occurred in training data

or not (Figure S2C). Also, molecular weights, logP values of com-

pounds and sequence lengths of proteins may slightly influence

the prediction performance (Figures S2D–S2F). In addition,

MONN may perform better on certain protein families (e.g.,

kinases) than on others (Figures S2G–S2I).

To further examine the generalization ability of our model, we

also validated MONN on an additional independent dataset con-

taining pairwise non-covalent interactions between compounds

and proteins. As our training data (i.e., the benchmark dataset

derived from the PDBbind v2018 [Wang et al., 2005, 2004])

included all the high-quality structures of compound-protein com-

plexes released in the PDB (Berman et al., 2000) before 2018, we

also constructed an additional test dataset by collecting all the

compound-protein complexes from the PDB with the release

date from Jan 1st, 2018 to March 31st, 2019 (STAR Methods). In

this extra test, MONN achieved average AUC 0.859 and average

enrichment score 112.47 in predicting pairwise interactions of

compound-protein pairs on this additional dataset (Figure 4B).

To visualize the prediction results of our model, we selected

three representative compound-protein pairs ranked around

10%, 50%, and 90% in terms of the AUC scores and plotted

the corresponding true labels and the predicted interaction sites

in the compound structures and protein sequences (Figures 4C–

4E). The example pair ranked around top 10% was a tyrosine

kinase inhibitor binding to TYK2 (Figure 4C, PDB ID: 6DBK) (Fen-

some et al., 2018). In this example pair, top 40% of the predicted

interaction sites (atoms) in the compound covered all the true

interaction sites, and the high prediction scores also appeared

around the true interaction sites along the protein sequence.

The example pair ranked around the median prediction score

contained a compound binding to KRAS (Figure 4D, PDB ID:

6FA1) (Quevedo et al., 2018). The predicted interaction sites of

the compound had several overlaps with true interaction sites

(5/8 recall) but also with several false positives. For example,

the positively charged group in the compound was predicted

as an interaction site, which is actually located outside the bind-

ing pocket. The predicted interaction sites (residues) of the pro-

tein had several overlaps with the true labels, but also with a

number of false positives. The example pair ranked around

90% was a ligand binding to rhodopsin (Figure 4E, PDB ID:

6FK7) (Mattle et al., 2018). The deviation of the predicted interac-

tion sites from true labels in this example was probably due to the

scarcity of training data to support the prediction. All these visu-

alization results demonstrated that the accuracies of MONN

predictions were consistent with their corresponding rankings

in AUC scores. Overall, the above comprehensive validation

tests supported the strong predictive power of MONN.
of AUC scores for the pairwise interaction prediction. We show the numbers of

aining data, as well as the AUC scores and the corresponding ranks for the

interaction sites (residues) in proteins. In the compound structures, true labels

006). In the protein sequences, the true labels and theMONN-predicted scores
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Figure 5. Evaluating MONN Using Binding Affinity Data and Known Chemical Rules

(A) Performance evaluation for MONN and baseline methods on binding affinity prediction, on both IC50 and KIKD datasets. Pearson correlations achieved by

MONN with single (denoted as MONNsingle) or multiple (denoted as MONNmulti) training objectives and four baseline methods, under three different cross-

validation settings and four different clustering thresholds are shown. The mean values and standard deviations over 10 repeats of cross-validation are plotted.

(B–E) Correlations between the hydrophobicity scores of the compounds and the corresponding interaction sites (residues) in the proteins.

(B) The interaction residues were derived from the pairwise interaction labels of the benchmark dataset.

(C) The interaction residues of the proteins were derived from the randomly selected residues from the protein sequences. Here, the number of selected residues

was the same as the number of true interaction sites in each protein sequence.

(D) The interaction residues of the proteins were predicted byMONN. Using a 9-fold cross-validation on the benchmark dataset under the both-new setting with a

clustering threshold 0.3, the interaction residues were derived from the predicted pairwise interaction matrices of the test samples for each fold.

(E) The interaction residues were predicted for the compound-protein pairs in the additional test dataset, while the model was trained using the benchmark

dataset.
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Table 1. Performance Evaluation of Different Prediction

Approaches on the BindingDB Dataset

Method RMSE

Pearson

Correlation

DeepAffinity (Single Model) 0.74 0.84

DeepAffinity (Parameter Ensemble) 0.73 0.84

DeepAffinity (Parameter + NN Ensemble) 0.71 0.86

DeepDTA (Single Model) 0.782 0.848

DeepDTA (Ensemble of 30 Models) 0.686 0.886

MONN (Single Model) 0.764 0.858

MONN (Ensemble of 30 Models) 0.658 0.895

The RMSE and Pearson correlation of DeepAffinity are adopted from the

original paper (Karimi et al., 2019), in which ‘‘parameter ensemble’’ means

averaging the predictions over the last 10 epochs, and ‘‘parameter + NN

ensemble’’ means averaging predictions over the last 10 epochs of three

networks with different hyper-parameter settings (i.e., averaging over 30

predictions).
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MONN Successfully Predicts Binding Affinities with
Single- and Multi-objective Learning
In this section, we examined the affinity prediction performance

of MONN and compared it to that of other state-of-the-art

models. For the binding affinity prediction task, we separated

our PDBbind-derived dataset into two subsets, named IC50

(which contained IC50 values) and KIKD (which contained both

Ki and Kd values). The main reason for such a separation was

that IC50 values are generally dependent on experimental condi-

tions and thus often considered noisier than themeasured Ki and

Kd values. Here, the IC50 dataset with the new-compound

setting and clustering threshold 0.3 was used for hyper-param-

eter calibration.More details about training and hyper-parameter

selection can be found in STAR Methods.

We considered the following state-of-the-art baseline

methods for comparison: the similarity-based kernel method

CGKronRLS (Cichonska et al., 2017), and the deep-learning-

based methods, including DeepDTA (Özt€urk et al., 2018), the

method by Tsubaki et al. (Tsubaki et al., 2019) and DeepAffinity

(Karimi et al., 2019). As in the previous sections, MONN and

these baseline methods were evaluated under three different

settings of clustering-based cross-validation (i.e., new-com-

pound, new-protein, and both-new), in terms of Pearson correla-

tion (Figure 5) and root mean squared error (RMSE, Figure S3).

To investigate whether involving the extra supervision from the

pairwise interaction labels can help predict the binding affinities,

we mainly tested MONN under two conditions: one was a single

objective model, denoted as MONNsingle, which used only the

affinity labels as supervision information, while the other was a

multi-objective model, denoted asMONNmulti, which considered

both pairwise interactions and binding affinities into the training

objectives.

Our tests showed that bothMONNsingle andMONNmulti outper-

formed other baseline methods in all the three cross-validation

settings with different clustering thresholds, on both IC50 and

KIKD datasets (Figure 5). In particular, compared with the base-
(F–H) Conditional likelihood scores (whose definition can also be found in the main

interaction sites (atoms) of the compounds, including hydrogen-bond acceptor a

given type of atoms from the compounds, we considered the interaction residue
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line methods, themulti-objective model (MONNmulti) achieved an

increase in Pearson correlation by up to 3.6% (average 2.3%). In

addition, the multi-objective model performed slightly better

than the single objective one, which indicated that incorporating

extra supervision information from pairwise interaction labels

can further improve the binding affinity prediction task.

Since compound-protein complexes generally have limited

structural availability, we further tested our model on a

large-scale structure-free CPI dataset. To our best knowledge,

among the baseline methods, only DeepAffinity has been evalu-

ated previously on a large dataset with more than 260,000

training samples and more than 110,000 test samples, with the

IC50 values derived from the BindingDB database (Gilson et al.,

2016).We followed the same experimental settings as inDeepAf-

finity and also tested MONN and DeepDTA on the same dataset.

Themethod by Tsubaki et al. andCGKronRLS are not suitable for

this testmainly due to their limited scalability in processing such a

large dataset. To make a fair comparison, we also evaluated an

ensemble version (i.e., averaging predictions from several single

models) ofMONNon thisBindingDBdataset, as in theDeepAffin-

ity paper (Tsubaki et al., 2019) (details can be found in STAR

Methods). The performances of DeepAffinity, DeepDTA, and

MONN were evaluated in terms of RMSE and Pearson correla-

tion, as listed in Table 1. When evaluating the single models,

MONN achieved the best Pearson correlation (0.858). For all

the methods, their performances can be largely improved

through using the ensemble-based models. Among them, the

ensemble version of MONN achieved the best performance

(RMSE 0.658 and Pearson correlation 0.895). This comparison

result suggested that, MONN can achieve better performance

than the state-of-the-art baseline methods even when the struc-

tural data is not available.

To make a direct comparison between MONN and existing

structure-based CPI prediction methods (including molecular

docking and deep-learning-based models [Koes et al., 2013;

Wallach et al., 2015; Ragoza et al., 2017; Gonczarek et al.,

2018; Torng and Altman, 2019; Lim et al., 2019]), we also evalu-

ated our model on the DUD-E dataset (Mysinger et al., 2012),

which was widely used as a benchmark dataset for evaluating

structure-based CPI prediction tasks. Among existing struc-

ture-based methods, Smina is a molecular docking method

(Koes et al., 2013), and AtomNet, and the methods by Lim

et al., Gonczarek et al., Torng et al., and Ragoza et al. are

deep-learning-basedmethods dealingwith structural input infor-

mation. Although the method by Gonczarek et al. is structure

independent, we still included it in the comparison as it was

claimed to outperform most of the structure-based methods

(Gonczarek et al., 2018). The DUD-E dataset contains 22,805

active compounds and 1,411,214 decoys (i.e., inactive com-

pounds) for in total 102 proteins. Using the same training-test

splitting strategy as in Wallach et al. (2015), we evaluate MONN

under the ‘‘new-protein’’ condition, with 72 proteins as training

data and the rest 30 proteins as test data. As shown in Table 2,

the average AUC score over the 30 test proteins achieved by

MONN was higher than those of the structure-based methods.
text) measuring the preference of specific residue types given the properties of

toms (F), hydrogen-bond donor atoms (G), and aromatic atoms (H). For each

s for four different situations, as described in (B–E).



Table 2. Performance Evaluation of Different Prediction

Approaches on the DUD-E Dataset

Method Average AUC

Smina (Koes et al., 2013) 0.7

AtomNet (Wallach et al., 2015) 0.855

Ragoza et al. (Ragoza et al., 2017) 0.868

Torng et al. (Torng and Altman, 2019) 0.886

Gonczarek et al. (Gonczarek et al., 2018) 0.904

Lim et al. (Lim et al., 2019) 0.968

MONN 0.974

The performances of previous methods were directly obtained from the

original papers (Wallach et al., 2015; Ragoza et al., 2017; Gonczarek

et al., 2018; Torng and Altman, 2019; Lim et al., 2019). Note that the

train-test split schemes of some methods were slightly different: Lim

et al. used 72 proteins as training data and 25 as test data (Lim et al.,

2019); Toring et al. and Ragoza et al. used 4-fold and 3-fold cross-valida-

tion strategies to evaluate their models, respectively (Torng and Altman,

2019; Ragoza et al., 2017).
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We also examined the running time of our model. One of the

structure-based models, AtomNet, requires about a week

training on 6 Nvidia-K10 GPUs, as stated in the original paper

(Wallach et al., 2015). In our test, MONN was able to fit this

DUD-E dataset in about 20 h on one GeForce GTX 1080Ti GPU.

MONN Captures the Global Molecular Property
From the perspective of chemical properties, the size, shape,

and hydrophobicity of a protein-binding pocket are essential

for its interaction with a compound (Volkamer et al., 2012). Infor-

mation about the size and shape of a binding pocket is usually

hard to derive only based on its raw sequence, so we mainly

examined the hydrophobicity of the potential binding residues

predicted byMONN, through calculating the correlation between

the hydrophobicity scores of the entire compounds and the

average hydrophobicity scores of the predicted interaction sites

(residues) in the proteins. Here, the hydrophobicity of the com-

pound was measured by the logP value calculated by RDKit

(Landrum, 2006), which is defined as the log ratio of the solubility

of the compound in organic solvent (e.g., 1-octanol) against

water (Wildman and Crippen, 1999). The hydrophobicity of the

(predicted) interaction sites of a protein is defined as the average

hydrophobicity score over the corresponding side chains (Leh-

ninger et al., 2005). Here, the predicted interaction sites of the

protein were selected from the top scored atom-residue pairs

in the predicted pairwise interactionmatrix P, according to a cut-

off value of mean (P) + 3 3 std (P), where std(,) stands for the

standard deviation. Next, the residues involved in the selected

top atom-residue pairs were used for the downstream analysis.

The true interaction sites of proteins derived from the solved

structures in the benchmark dataset showed a certain level of cor-

relation (Pearson correlation 0.487) in hydrophobicity with their li-

gands (Figure 5B). As a control, no significant correlation was

observed from randomly chosen residues (Figure 5C).

The interaction sites of proteins predicted by MONN had similar

correlations in hydrophobicity scores with their ligands (0.515 for

cross-validation and 0.499 for the additional test dataset, Figures

5D and 5E), close to that of true labels. Note that the correlation

achieved by the prediction result was slightly higher than that of
true labels, this was probably because the information about hy-

drophobicity was somewhat over-represented in the predicted

interaction sites selected according to the current threshold (i.e.,

3 times of standard deviation above mean). If we used a stricter

threshold, e.g., 4 or 5 times of standard deviation above mean,

the resulting correlations (0.489 and 0.471, respectively) become

closer to or lower than that of true labels, which suggested that

MONNmay focusmoreonother featuresunder stricter thresholds.

These results indicated that the predictions ofMONNcanalsowell

reflect the relationships between compounds and proteins in

terms of the global molecular property (i.e., the hydrophobicity).

MONN Captures the Chemical Rules of Non-covalent
Interactions
The rules of non-covalent interactions and information of interac-

tion types between compounds and proteins are not explicitly

incorporated into MONN. Nevertheless, we examined whether

MONN can automatically capture such chemical rules. Among

the three most common non-covalent interaction types (i.e.,

hydrophobic interactions, hydrogen bonds, and p-stackings)

between proteins and their ligands, we chose to analyze the

preference of interaction partners for the atoms that can form

hydrogen bonds or p-stackings. Hydrophobic interactions

were not considered here, as hydrophobic carbons exist in all

the 20 types of residues.

To characterize the preference of residues with a specific

property under a given atom type of their interaction partners,

we first define the conditional likelihood score p (residue prop-

erty = xjatom property = y) = (number of residues ˛SðxÞ that

interact with the atoms of property yÞ/(total number of residues

interacting with the atoms of property y), where S(x) represents

the set of residues whose side chains contain at least one kind

of elements satisfying the property x. To be more specific, S

(‘‘H-bond donor’’) = {H, K, N, Q, R, S, T, W, Y}, in which each res-

idue has at least one hydrogen-bond donor in its side chain.

Similarly, S (‘‘H-bond acceptor’’) = {D, E, H, N, Q, S, T, Y}, and

S (‘‘aromatic’’) = {Y, W, F}. The corresponding properties of

atoms from the compounds were calculated using RDKit (Land-

rum, 2006). Here, we calculated the conditional likelihood scores

under different situations, in which the pairwise interactions

referred in the above definition were obtained from either true la-

bels, MONN predictions, or random choices (used as control).

A hydrogen bond is generally formed between a hydrogen

donor group and an acceptor group. When the atoms from com-

pounds are hydrogen-bond acceptors, the conditional likelihood

of hydrogen-bond donor residues as their interaction partners

(0.63, calculated using true labels) was much higher than the

control residues (0.38, calculated using the randomly chosen

residues, Figure 5F). The conditional likelihood scores calculated

using MONN-predicted interaction sites were also relatively high

(0.62 for cross-validation and 0.64 for the additional test,

Figure 5F). Similarly, the hydrogen-bond acceptor residues

from the MONN prediction results also had significantly higher

conditional likelihood scores than the random control when their

interaction partners were the hydrogen-bond donor atoms from

the compounds (Figure 5G).

The p-stacking interactions generally occur between aromatic

rings. There are three amino acids containing aromatic rings, i.e.,

phenylalanine, tryptophan and tyrosine. They generally had
Cell Systems 10, 308–322, April 22, 2020 319
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higher conditional likelihood scores when their interaction part-

ners are aromatic atoms from the compounds (0.44 calculated

from true labels compared with 0.09 from random control,

Figure 5H). In the MONN prediction results, the three aromatic

residues also had higher conditional likelihood scores (0.35 for

cross-validation and 0.37 for the additional test set, Figure 5H)

than that from random control, which thus provided another

evidence to support the reasonableness of theMONN prediction

results.

In summary, the above results indicated that MONN can

correctly capture the preferred interaction partners for different

types of atoms in the compounds, according to the possibility

of forming different kinds of non-covalent interactions.

DISCUSSION

Accurately predicting CPIs can greatly facilitate the drug discov-

ery process. While several deep-learning-based tools have been

proposed to predict binding affinities and improve virtual high-

throughput screening, our approach MONN goes further to

explore more about the mechanisms underlying CPIs. In this

work, we demonstrated that MONN can successfully predict

the pairwise non-covalent interaction matrices, which can also

be used to infer the interaction sites in compounds and proteins.

Comparison tests showed that MONN can outperform other

state-of-the-art machine learning methods in predicting binding

affinities. Besides, the structure-free input of MONN allows it to

have a wider range of applications than those structure-depen-

dent approaches. We also verified that the predictions of

MONN are accordant with chemical rules, in terms of the corre-

lation in hydrophobicity between interaction sites in compounds

and proteins, and the preference of interaction partners for

different atom types. All these results indicated that MONN

can provide a powerful and useful tool to advance the drug

development process.

MONN takes molecule graphs of compounds and protein

sequences as input, which brings both advantages and limita-

tions into our method. Structure-free inputs allow MONN to

make predictions for proteins without known 3D structures.

On the other hand, the sequence-only inputs may limit the

amount of information directly conveyed into the model. Since

most existing computer-aided drug design (CADD) tools rely on

3D structure data to predict binding poses, this kind of informa-

tion is indeed useful for inferring the detailed binding mecha-

nisms between proteins and compounds. For example, it would

be beneficial if the region of binding pocket in a protein is

already defined before predicting its interaction with com-

pounds. Although the definition of ‘‘interaction sites’’ in our

problem setting is not equivalent to that of binding pockets,

we checked the percentage of our predicted interaction sites

included in the regions of known binding pockets provided by

PDBbind (Wang et al., 2005) (76.8%, 38.5%, and 33.4% for

our model under new-compound, new-protein, and both-new

settings, respectively, and 11.8% for random predictions as

control). The results suggest that MONN may miss some of

the true positions of binding pockets when it never sees the

proteins in the training process. To better address the com-

pound-protein interaction prediction task, a future method

may face the problem of systematically integrating the abun-
320 Cell Systems 10, 308–322, April 22, 2020
dant information extracted from high-quality 3D structures

with the large-scale sequence data under the generalizable

deep-learning-based frameworks.
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METHOD DETAILS

Detailed Implementation of Individual Modules in MONN
The Graph Convolution Module

The graph convolution module (Figure 2B) takes the graph representationG= fV ;Eg of a compound as input. More specifically, each

node (i.e., atom) vi˛V is initially represented by a feature vector viniti of length 82, which is the concatenation of one-hot encodings

representing the atom type, degree, explicit valence, implicit valence and aromaticity of the corresponding atom. Then, the initial

atom features are transformed into Rh1 (h1 is the size of hidden units) by a single-layer neural network:

v0
i = f

�
W initv

init
i

�
; (Equation 1)

where fð ,Þ stands for the leaky ReLU activation function fðxÞ = maxð0;xÞ + 0:1minð0;xÞ, andW init˛Rh1382. Note that for all the neural

network layers described in this paper, unless otherwise stated, fð ,Þ stands for the leaky ReLU activation function,Wx (x can be any

subscript) stands for the learnable weight parameters, and the bias terms are omitted for clarity.

Each edge (i.e., chemical bond) ei1 ;i2˛E is represented by a feature vector ei1 ;i2 of length 6, which is the concatenation of one-hot

encodings representing the bond type (i.e., single, double, triple or aromatic) and other properties, e.g., whether the bond is conju-

gated and whether it is in a ring.

The atom features are then processed by L iterations of graph convolution to produce a set of updated atom features fvLi ˛Rh1gNa

i = 1

and a super node feature sL˛Rh1 , which is an overall feature representation for the compound of interest. Note that the bond features

are not updated during the whole process. In particular, at each iteration of graph convolution, the atom features are sequentially

updated using both a basic message passing unit (Lei et al., 2017) and a graph warp unit (Ishiguro et al., 2019). The message passing

unit executes the following two steps to extract the local features from the given graph: gathering information and updating informa-

tion. During the first step (i.e., gathering information), each atom vi gathers local information tli from both its neighboring atoms and

bonds, that is,

tli =
X

vk˛NeighborðviÞ
f
�
W l

gather

�
vl�1
k ; ei;k

��
; (Equation 2)

where i = 1;2;/;Na, l = 1;2;/;L,W l
gather˛R

h13ðh1 +6Þ, NeighborðviÞ stands for the set of neighboring atoms of vi, v
l�1
k represents the

feature of atom vk from the ðl � 1Þ-th layer, and ½ ,; ,� stands for the concatenation operation. In the second step (i.e., updating
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information), the gathered information and the atom features learned from the previous iteration are then processed to obtain the

updated features ful
ig

Na

i =1 at each iteration l, that is,

ul
i = f

�
W l

update

�
tli; v

l�1
i

��
; (Equation 3)

where i = 1;2;/;Na, l = 1; 2;/;L, and W l
update˛R

h132h1 .

The graph warp unit (Ishiguro et al., 2019) further improves the performance (the results of the corresponding ablation studies are

shown in Figure S4) of graph convolution networks by introducing a super node s, which captures the global feature for the

compound of interest. The extracted global feature will also be used in the affinity prediction module, as the properties of the

whole compounds can generally contribute to their binding affinities. Before all the graph convolution iterations, the super node

feature s0˛Rh1 is initialized as the summation of all the atom features, that is,

s0 =
X
i = 1

Na

v0
i ; (Equation 4)

where v0i stands for the transformed initial feature of the i-th atom, which is described in STAR Methods of the main text.

Through information sharing between the super node and all the atoms, distant atoms in the graph can communicate effectively

and efficiently through this super node, and thus a global feature can be extracted based on this technique (Ishiguro et al., 2019).

In the lth iteration, the message passing unit is used to obtain the updated atom features ful
ig

Na

i =1, as described above. Accordingly,

the graph warp unit first updates the super node feature by a single-layer neural network to obtain ul
s, that is,

ul
s = tanh

�
W l

supers
l�1
�
; (Equation 5)

where l = 1;2;/;L, tanh(,) stands for the hyperbolic tangent activation function, sl�1 stands for the super node feature from the

ðl � 1Þ-th iteration, and W l
super˛R

h13h1 denotes the learnable parameters.

Then, three steps are conducted to obtain the updated atom and super node features for each iteration.

Step 1: gathering information from the super node and the main nodes (atoms). The information (ul
s/v) gathered from the super

node is calculated by a single-layer neural network, that is,

ul
s/v = tanh

�
W l

s/vs
l�1
�
; (Equation 6)

where l = 1; 2;/;L and W l
s/v˛R

h13h1 .

To calculate the information gathered from each atom (main node), attention mechanism is used to weigh the contributions of

individual atoms. As in the original version of graph warp unit (Ishiguro et al., 2019), a K-head attention mechanism is used to deter-

mine the contributions of features gathered from individual atoms, that is,

ul
v/s = tanh

 
W l

v/s

"X
i = 1

Na

a
1;l
v;iv

l�1
i ;
X
i = 1

Na

a
2;l
v;iv

l�1
i ;/;

X
i = 1

Na

a
K;l
v;i v

l�1
i

#!
; (Equation 7)
k;l
�

k;l k;l
�

av;i = softmax Wattbv;i ; k = 1;2;/;K; i = 1;2;/;Na; (Equation 8)
k;l
�

k;l l�1
� �

k;l
bv;i = tanh Wvattvi � tanh Wsatts
l�1
�
; k = 1;2;/;K; i = 1;2;/;Na; (Equation 9)

where l = 1;2;/;L,W l
v/s˛R

h13Kh1 ; Wk;l
att˛R

13h1 ; Wk;l
vatt andWk;l

satt˛R
h13h1 , softmaxðxiÞ= expðxiÞP

i
expðxiÞ stands for the softmax normalization

function, ½ ,; ,;/; ,� denotes the concatenation operation, * denotes the element-wise multiplication, and K is the number of heads.

Step 2: calculating the passed information using warp gates. For the super node, an element-wise warp gate gl
v/s˛R

h1 is used to

combine the information from the super node itself ul
s and the main nodes (atoms) ul

v/s, that is,

gl
v/s = s

�
W l

gate11u
l
v/s + W l

gate12u
l
s

�
; (Equation 10)
tlv/s =
�
1� gl

v/s

� � ul
v/s +gl

v/s � ul
s; (Equation 11)

where l = 1;2;/;L, W l
gate11;W

l
gate12˛R

h13h1 , sð ,Þ stands for the sigmoid activation function, 1 is an all-one vector of length h1, and

tlv/s denotes the information passed to super node.

For each atom, similarly, an element-wise warp gate gl
s/i˛R

h1 is used to combine the updated atom features ul
i and information

from the super node ul
s/v, that is:

gl
s/i = s

�
W l

gate21u
l
i + W l

gate22u
l
s/v

�
; (Equation 12)
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tls/i =
�
1� gl

s/i

� � ul
i +gl

s/i � ul
s/v; (Equation 13)

where l = 1; 2;/;L, i = 1;2;/;Na, W
l
gate21;W

l
gate22˛R

h13h1 , and tls/i denotes the information passed to each atom.

Step 3: calculating the updated features using gated recurrent units (GRUs) (Chung et al., 2014). Here, twoGRUs are used to deter-

mine the proportion of information updated at layer l for the atom and super node features, that is,

vl
i = GRUv

�
vl�1
i ; tls/i

�
; i = 1;2;/;Na; (Equation 14)
sl = GRUs

�
sl�1; tlv/s

�
: (Equation 15)

After completing L iterations of graph convolution, the final atom features fvLi ˛Rh1gNa

i = 1 and the super node feature sL˛ Rh1 are

generated and then fed into the downstream modules. In the remaining part of this paper, we will drop the superscript L for clarity.

The CNN Module

The protein sequence is encoded using the BLOSUM62matrix (Henikoff and Henikoff, 1992), that is, the initial feature of each residue

is represented by the corresponding column of the BLOSUM62matrix. The features of non-standard amino acids are zero-initialized.

We use this encoding strategy instead of the commonly used one-hot encoding scheme for protein sequences, mainly because the

BLOSUM62 matrix is a 20320 matrix that has encoded the evolutionary relationships between amino acids, while the one-hot en-

coding scheme lacks such information. Then, the initial features are updated through typical 1-D convolution layers (LeCun et al.,

1998) with a leaky ReLU activation function. Note that before being fed into each convolutional layer, the input is zero-padded to

ensure that the number of the output features remains fixed. The specific architecture of the employed convolutional neural network

is determined by three hyper-parameters, including the number of convolution layers, the number and the size of filters in each layer.

In the end, we obtain the final output features fr j˛Rh1gNr

j =1 for all the residues along the protein sequence (Figure 2C), where h1 stands

for the number of output channels and Nr stands for the number of residues in the input protein sequence.

The Pairwise Interaction Prediction Module

To predict the pairwise interactions between a given compound-protein pair, the pairwise interaction prediction module (Figure 3A)

uses the atom features fvi˛Rh1gNa

i =1 and the residue features fr j˛Rh1gNr

j =1 derived from the modules described above. The atom and

residue features are first transformed into a compatible space by two single-layer neural networks separately. Then, the predicted

probability of the interaction between an atom vi and a residue rj is derived based on the inner product between the transformed

atom and residue features, normalized by a sigmoid function, that is,

Pij = sðfðWatomviÞ , fðW residuer jÞÞ; (Equation 16)

where i = 1;2;/;Na, j = 1;2;/;Nr , Watom;W residue˛Rh13h1 , sð ,Þ represents the sigmoid function sðxÞ = 1

1+ e�x
, and , denotes the

inner product.

The Affinity Prediction Module

The affinity prediction module (Figure 3B) integrates information from not only the previously learned atom features fvigNa

i = 1, the super

node feature s and the residue features fr jgNr

j =1, but also the predicted pairwise interaction matrix P. Intuitively, P can be used to

construct the links to share information between atom and residue features, which may thus provide additional useful information

for predicting the binding affinity. Here, we describe how the binding affinity is predicted by our affinity prediction module.

First, the atom features fvigNa

i = 1 and the super node feature s, which are originally constructed in the compound space, as well as

the residue features fr jgNr

j = 1, which are originally constructed in the protein space, are transformed into a compatible space for affinity

prediction by single-layer neural networks, that is,

hv;i = fðWvviÞ; (Equation 17)
hs = fðWssÞ; (Equation 18)
hr;j = fðW rr jÞ; (Equation 19)

whereWv;W r ;Ws˛Rh23h1 , and h2 is the size of hidden units in the single-layer neural networks used in the affinity prediction module.

Next, we generate a fixed-size feature representation for each compound and each protein, from a list of transformed atom and

residue features, using attention mechanism that has been widely used to enhance the performance of deep learning. In particular,

the neural attention mechanism is introduced to weigh the contributions of features from individual atoms and residues, which has

been proved to be more effective than simply averaging all the atom and residue features (the results of the corresponding ablation

studies are shown in Figure S4). The dual attention network (DAN) (Nam et al., 2017) is a recently published method that can produce

attentions for two given related entities (each with a list of features). For example, given an image with a sentence annotation, DAN

generates a textual attention for theword features of the sentence and a visual attention for the spatial features of the image. Here, we
Cell Systems 10, 308–322.e1–e11, April 22, 2020 e3
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modify the original DAN framework by further exploiting the predicted pairwise interactionmatrix to construct the direct links between

atoms and residues. Information passing is thus enabled by gathering features of interaction partners through such links for each

atom of the compound and each residue of the protein. The passed information is then incorporated into the calculation of compound

and protein attentions by DAN. Next we will describe how to use the modified DAN framework to derive compound and protein

attentions in the affinity prediction module to transform the atom and residue features into fixed-size vector representations.

Before all the DAN iterations, we first define the initial compound feature h0
c˛R

h2 , the initial protein feature h0
p˛R

h2 and the initial

memory vector m0˛Rh2 (h2 is the size of hidden units used in the affinity prediction module), that is,

h0
c =

1

Na

X
i = 0

Na

hv;i; (Equation 20)
h0
p =

1

Nr

X
j =0

Nr

hr;j; (Equation 21)
0
m = h0
c � h0

p; (Equation 22)

where fhv;igNa

i = 1 and fhr;jgNr

j = 1 are the transformed atom and residue features, as also described in the main text.

The compound feature, protein feature and the memory vector are then updated by D iterations of DAN. More specifically, at the

dth iteration (d = 1;2;/;D), we first calculate the information shared between the atom features and the residue features, according

to the predicted pairwise interactionmatrix P. Intuitively, each atom of the compound receives information from all the residues of the

protein, weighed by the probabilities of local interactions between the atom-residue pairs, and vice versa for the residues. That is,

sdr/v;i =
X
j =1

Nr

Pijtanh
�
Wd

r/vhr;j

�
; i = 1;2;/;Na; (Equation 23)
N

sdv/r;j =
X
i =1

a

Pijtanh
�
Wd

v/rhv;i

�
; j = 1; 2;/;Nr ; (Equation 24)

where d = 1; 2;/;D,Wd
r/v;W

d
v/r˛R

h23h2 , fsdr/v;ig
Na

i = 1
are the information delivered from residues to atoms, fsdv/r;jg

Nr

j = 1
are the infor-

mation delivered from atoms to residues, and Pij stands for the corresponding element in P.

Next, the atom or residue features (fhd
v;ig

Na

i = 1
or fhd

r;jg
Nr

j = 1
), the memory vector from the previous iteration (md�1) and the above

derived shared information (fsdr/v;ig
Na

i = 1
or fsdv/r;jg

Nr

j =1
) are combined to calculate the hidden states of the compound and protein

attentions, that is,

bd
v;i = tanh

�
Wd

vchv;i

� � tanh�Wd
mcm

d�1
� � sdr/v;i; (Equation 25)
� �

bd
r;j = tanh Wd

rphr;j � tanh
�
Wd

mpm
d�1
�
� sdv/j; (Equation 26)

where d = 1; 2;/;D and Wd
vc;W

d
mc;W

d
rp;W

d
mp˛R

h23h2 .

The compound and protein attentions are then calculated through two linear layers, normalized by the softmax function, that is,

ad
v;i = softmax

�
Wd

vsb
d
v;i

�
; (Equation 27)
ad
r;j = softmax

�
Wd

rsb
d
r;j

�
; (Equation 28)

where d = 1; 2;/;D and Wd
vs;W

d
rs˛R

13h2 .

Finally, the fixed-size compound feature, protein feature and memory vector for the dth iteration is updated by current attentions:

hd
c =

X
i = 0

Na

ad
v;ihv;i; (Equation 29)
N

hd
p =

X
j = 0

r

ad
r;jhr;j; (Equation 30)
�

md = GRU md�1;hd

c � hd
p

�
; (Equation 31)

where GRU stands for the gated recurrent unit (Chung et al., 2014).
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After completing all the D iterations of updating the attentions, we obtain the fixed-size feature representations of the input

compound graph and protein sequence (that is, hD
c and hD

p , respectively).

Finally, hD
c is concatenated with the transformed super node feature hs to obtain a combined representation of the compound

features (i.e., ½hD
c ; hs�). To fully exploit the relationship between this combined representation of the compound features and the

representation of the protein features, we calculate their outer product, normalized by a leaky ReLU activation function f, and

then followed by a linear regression layer to predict the binding affinity, that is,

a = Waffinity f
�
flatten

��
hD
c ;hs

�
5hD

p

��
; (Equation 32)

where 5 denotes the outer product, flatten(,) reshapes the result of the outer product into a column vector of length 2h22, and

Waffinity˛R132h2
2 .

Training
For a training dataset with N samples (i.e., compound-protein pairs), we minimize the cross-entropy loss for pairwise non-covalent

interaction prediction, which is defined as

LP =
1

N

XN
n= 1

XNðnÞ
a

i = 1

XNðnÞ
r

j =1

�
� bPðnÞ

ij logP
ðnÞ
ij +

�
1� bPðnÞ

ij

�
log
�
1�P

ðnÞ
ij

��
; (Equation 33)

where P
ðnÞ
ij and bPðnÞ

ij stand for the predicted probability and the true binary label of the interaction between the i-th atom and the j-th

residue in the nth sample, respectively, andN
ðnÞ
a andN

ðnÞ
r stand for the total number of atoms in the compound and the total number of

residues in the protein in the nth sample, respectively.

For binding affinity prediction, the objective is to minimize the mean squared error, which is defined as

LA =
1

N

XN
n=1

ðaðnÞ � baðnÞÞ2; (Equation 34)

where aðnÞ and baðnÞ
stand for the predicted affinity and the true affinity label for the n-th sample, respectively.

In our multi-objective training process, we aim to minimize the combination of two losses to further enhance the binding affinity

prediction, that is,

L = LA + lLP; (Equation 35)

where l stands for a weight parameter controlling the contribution of Lp to the final affinity prediction. During the training process, we

use a mini-batch stochastic gradient descent scheme to optimize the model parameters. For each training batch, compounds with

different numbers of atoms and proteins with different numbers of residues are zero-padded to obtain the same input feature lengths.

During the training process, the padded regions of features are masked so that they do not contribute to the calculation of the losses

and gradients. MONN has about two million learnable parameters. A single MONN model can be trained within an hour on a Linux

server with 48 logical CPU cores and one Nvidia Geforce GTX 1080Ti GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Construction of the Benchmark Dataset
Our benchmark dataset was constructed mainly based on PDBbind (version 2018, the general set) (Wang et al., 2005; 2004), which

contains a high-quality set of protein-ligand complexes with available structural data and corresponding binding affinities. Each com-

plex was provided with an affinity value of certain measurement type (i.e., Ki, Kd, or IC50).

For complexes in the PDBbind dataset, we obtained their 3D structures from the RCSB PDB (Berman et al., 2000) and then

extracted the pairwise non-covalent interactions between compounds and proteins using PLIP (Salentin et al., 2015). After consid-

ering the atom types, distances and bond angles, PLIP recognized seven types of non-covalent interactions, including hydrogen

bond, hydrophobic interaction, p-stacking, p-cation, salt bridge, water bridge and halogen bond.

There are in total 16,151 entries in the downloaded PDBbind dataset (Wang et al., 2005; 2004). We filtered these entries according

to the following criteria: 1) each affinity value needs to be an accurate number, rather than a range or an approximation; 2) compounds

need to have available and valid graph representations that can be processed by RDKit (Landrum, 2006); and 3) proteins can be

successfully mapped to UniProt IDs with available sequence data (UniProt Consortium, 2019). Note that we used UniProt sequences

instead of the original protein sequences directly extracted from the PDB structures, for the following reasons: First, the protein se-

quences in the PDB structures may be incomplete (e.g., only including some domains or lacking some flexible regions); Second, one

protein may have different sequence variants in different PDB structures; Third, in a practical scenario, when we want to predict

candidate ligands for a protein without known structure, it is generally more convenient to use its full-length primary sequence.

In total, we obtained 13,306 compound-protein pairs satisfying these criteria.

Next, we calculated the pairwise interaction labels for the resulting 13,306 compound-protein pairs. The non-covalent interactions

between the proteins and the corresponding ligands were extracted using the PLIP tool (Salentin et al., 2015) (https://github.com/
Cell Systems 10, 308–322.e1–e11, April 22, 2020 e5
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ssalentin/plip/). The ligand atoms involved in the non-covalent interactions were thenmapped to the corresponding compound struc-

tures (downloaded from http://ligand-expo.rcsb.org/ld-download.html), which contain the unique names and indices for all the

non-hydrogen atoms. For proteins, the residues involved in the non-covalent interactions were first mapped to the UniProt

sequences using a sequence alignment tool (Zhao et al., 2013) (https://github.com/mengyao/Complete-Striped-Smith-Waterman-

Library/). Then, we examined the mappings to control the quality of the generated interaction labels, and discarded those structures

when the detected interactions cannot be correctly mapped into themolecular graphs of the compounds and the protein sequences.

In addition, to further improve the mapping quality, we also filtered the complexes whose protein sequences in the PDB structures

and the corresponding UniProt sequences had less than 90% matched residues. After the mapping process, we filled the pairwise

interaction matrix according to the indices of the atoms and the residues involved in the non-covalent interactions to obtain the final

interaction labels. After these procedures, we successfully constructed pairwise non-covalent interaction labels for about 95%of the

compound protein pairs, resulting in 12,738 interaction matrices out of the 13,306 complex structures.

After constructing the benchmark dataset as described above, the performance of the pairwise interaction prediction was evalu-

ated using all the available data. For binding affinity prediction, we further separated the compound-protein pairs according to the

measurement types of binding affinities (i.e., Ki;Kd or IC50), resulting in two affinity datasets, which were called the IC50 dataset and

the KIKD dataset (which contained both Ki and Kd values), respectively. The reason for this separation was that the IC50 values usually

depend on the experimental conditions and thus are often considered noisier than the Ki or Kd values. Here, we mainly used the IC50

dataset for hyper-parameter tuning for binding affinity prediction. For those repetitive records (defined as pairs with the same protein

IDs and the same compound InChIs), we only kept the pairs with pairwise interaction labels and higher binding affinities. The raw

affinity values were transformed into p(affinity) (i.e., � log10ðaffinityÞ ½M�) to obtain the affinity labels. Finally, we obtained 5,340

and 6,689 unique pairs for the IC50 and KIKD datasets, respectively.

Construction of the Additional Test Dataset for Validating the Pairwise Non-covalent Interaction Predictions
We also downloaded the compound-protein complexes from the RCSB PDB database (Berman et al., 2000) to construct an addi-

tional test set for evaluating the pairwise non-covalent interaction prediction results of MONN. Since the PDBbind v2018 dataset,

which was used as our training data, already contained the high-quality compound-protein complex structures with releasing

date up to the end of 2017, here we downloaded structure data with date from January 2018 toMarch 2019 to avoid overlap between

training and additional test datasets. Here three criteria were used to select the compound-protein complexes and control the quality

of this additional dataset: (1) Each protein sequence can be mapped to a Uniprot sequence, with at least 90%matches in sequence

alignment; (2) To remove ions, coenzymes and other crystallization assistant chemicals, we retained only those compound-protein

pairs in which the quantitative estimation of drug-likeness (QED) scores (Bickerton et al., 2012) of the compounds are larger than 0.5;

(3) Overlaps between training and test datasets were removed by discarding the test samples with both compound and protein sim-

ilarities larger than 0.9 with any compound-protein pair in the training data. Then, the selected compound-protein complexes were

processed using PLIP (Salentin et al., 2015) to extract the non-covalent interactions and construct the pairwise interaction labels

using the same procedure as in the construction of the benchmark dataset.

Evaluation of Different Types of Neural Attentions
Evaluation Metrics

We used the average AUC scores and the average enrichment scores to evaluate the interpretability of neural attentions and predic-

tion performance of MONN. Given a test dataset containing N samples, the average AUC score is defined as:

average AUC score =
1

N

X
n= 1

N

AUCðnÞ; (Equation 36)

where AUC(n) stands for the area under the ROC curve calculated between the labels and the predictions of the nth sample.

The average enrichment score is defined as:

average enrichment score =
1

N

X
n= 1

N

enrichmentðnÞ; (Equation 37)
enrichmentðnÞ = precisionðnÞ
random precisionðnÞ ; (Equation 38)

where precision(n) stands for the precision score between the true labels and the binarized predictions (defined below) of the nth

sample, and random_precision(n) stands for the expected precision of random predictions. Suppose that the positive-negative ratio

of the whole dataset is xpos : xneg, and the length of prediction is lpred. Then the binarization is realized by sorting the real-value

predictions, and assigning 1 for top
�
lpred3xpos=ðxpos + xnegÞ

	
predictions (d:,e stands for the ceiling operation), and 0 for the rest.

The random_precision(n) is calculated as random_precision(n) = xpos=ðxpos + xnegÞ.
The upper limit of the average enrichment score is derived below:
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average enrichment score =
1

N

X
n= 1

N

enrichmentðnÞ (Equation 39)
=
1

N

X
n= 1

N precisionðnÞ
xpos


�
xpos + xneg

�

%
1

N

X
n=1

N 1

xpos

�

xpos + xneg
�

= 1+
xneg
xpos

:

Thus, with a relatively small positive-negative ratio (i.e., relatively large
xneg
xpos

), the upper limit of the average enrichment score is rela-

tively high.

Implementation of the Tested Neural Attentions
We tested four types of neural attentions, by either using the original implementations or re-implementing and incorporating them into

our MONN framework. For the protein attentions in the method by Tsubaki et al., we directly used their source code (Tsubaki et al.,

2019). Since only the attention for proteins is generated, evaluations in terms of compound interaction sites and pairwise interactions

are not applicable for themethod by Tsubaki et al. For the bilinear attention in themethod byGao et al., since the source codewas not

released, we re-implemented it according to the descriptions provided from the original paper (Gao et al., 2018). For the separate and

joint attentions of DeepAffinity (Karimi et al., 2019), their original implementations of attentions were mainly used to weigh short

secondary protein structures (SPSs), rather than single residues. Thus, we re-implemented their attentions for testing them in our

settings, which requires the protein attention to be calculated at residue resolution.

In our implementations, we used the transformed atom and residue features (denoted by fhv;igNa

i = 1 and fhr;jgNr

j = 1, respectively) from

the affinity prediction module of MONN (as described in STARMethods) to calculate the compound and protein attentions according

to the neural attention based methods mentioned above. After that, the resulting compound and protein attentions substitute the

corresponding part (i.e., the DAN part) in our affinity prediction module, and then the models were trained according to the binding

affinity labels. Note that our pairwise interaction prediction module was not used in this process. More details about how we imple-

mented these neural attentions under our MONN framework are described below.

The Bilinear Attention of the Method by Gao et al.

Variables and parameters used only by this algorithm aremarked with superscript ½G�. The atom features and the residue features are

combined to calculate a soft alignment matrix P½G� of size Na 3 Nr :

P
½G�
ij = tanh

��
W ½G�

v hv;i

�T�
W ½G�

r hr;j

��
; (Equation 40)

where W ½G�
v ;W ½G�

r ˛Rh23h2 stands for the learnable weight parameters. Note that the bias terms for single-layer neural networks are

also omitted for clarity in this section.

Then, the compound attentions fa½G�
v;i g

Na

i = 1
and protein attentions fa½G�

r;j g
Nr

j = 1
are calculated using max-pooling over the soft alignment

matrix P½G�, and then followed by a softmax normalization function, that is:

a
½G�
v;i = softmax

�
max

j =1;2;/;Nr

P
½G�
ij

�
; (Equation 41)
a
½G�
r;j = softmax

�
max

i =1;2;/;Na

P
½G�
ij

�
; (Equation 42)

where softmaxðxiÞ= expðxiÞP
i
expðxiÞ stands for the normalization function.

These attentions are then used for reducing the sizes of compound and protein features for predicting binding affinity values.

To evaluate the interpretability, the compound attentions fa½G�
v;i g

Na

i =1
and the protein attentions fa½G�

r;j g
Nr

j = 1
are used as the predictions

of interaction sites of compounds and proteins, respectively. The soft alignment matrix P½G� is used as the predicted pairwise inter-

action matrix.
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The Separate Attention of DeepAffinity

Variables and parameters used only by this algorithm aremarked with superscript ½Ds�. The separate attention of DeepAffinity (Karimi

et al., 2019) calculates the soft self-attentions for the features of compounds and proteins, separately. In particular, the attentions for

atom features of a compound (fa½Ds�
v;i gNa

i = 1
) are calculated by:

e
½Ds�
v;i = tanh

�
W ½Ds�

ev hv;i

�
; (Equation 43)
½Ds�

av;i = softmax

�
W ½Ds�

av e
½Ds�
v;i

�
; (Equation 44)

where W ½Ds�
ev ˛Rh23h2 and W ½Ds�

av ˛R13h2 stand for the learnable weight parameters, and tanh(,) stands for the hyperbolic tangent acti-

vation function.

Similarly, the attentions for residue features of a protein (fa½Ds�
r;j g) are calculated by:

e
½Ds�
r;j = tanh

�
W ½Ds�

er hr;j

�
; (Equation 45)
½Ds�

ar;j = softmax

�
W ½Ds�

ar e½Ds�
r;j

�
; (Equation 46)

where W ½Ds�
er ˛Rh23h2 and W ½Ds�

ar ˛R13h2 stand for the learnable weight parameters.

The compound and protein attentions are then fed into the affinity prediction module of MONN. After trained by binding affinity

labels, these attentions are used as the predictions of the interaction sites. Evaluation on pairwise interaction prediction is not appli-

cable for this kind of attention, as the matchings between atoms and residues are not considered in this condition.

The Joint Attention of DeepAffinity

Variables and parameters used only by this algorithm are marked with superscript ½Dj�. A pairwise interaction matrix P½Dj� of size Na3

Nr is first calculated through a single layer neural network that combines both atom and residue features, that is,

P
½Dj�
ij = tanh

��
W ½Dj�

pv hv;i

�T�
W ½Dj�

pr hr;j

��
; (Equation 47)

where W ½Dj�
pv ;W

½Dj�
pr ˛R

h23h2 stand for the learnable weight parameters.

Then, a softmax function is used to normalize the pairwise interaction matrix over all the elements, to obtain a Na3Nr attention

matrix A½Dj�, that is,

A
½Dj�
ij =

exp
�
P
½Dj�
ij

�
PNa

i = 1

PNr

j = 1exp
�
P
½Dj�
i;j

� : (Equation 48)

This normalized pairwise attention matrix A½Dj� can be used in the evaluation of pairwise interaction prediction. In addition, through

marginalizing A½Dj�, we can also derive the predictions of interaction sites in compounds or proteins, that is,

a
½Dj�
v;i = max

j˛1;2;/;Nr

P
½Dj�
i;j ; (Equation 49)
½Dj�

ar;j = max

i˛1;2;/;Na

P
½Dj�
i;j : (Equation 50)

Since the original implementation of DeepAffinity with joint attention did not define the compound-wise/protein-wise attentions,

here wemodified our affinity prediction module, by replacing the outer product between compound and protein features with a com-

bined feature, which is used in DeepAffinity:

b
½Dj�
i;j = tanh

�
W

½Dj�
bv hv;i + W

½Dj�
br hr;j

�
; (Equation 51)
N

h½Dj� =
X
i = 1

a X
j = 1

Nr

A
½Dj�
ij b

½Dj�
i;j ; (Equation 52)

where W
½Dj�
bv ;W

½Dj�
br ˛R

h23h2 stand for the learnable weight parameters.

The final binding affinity is then predicted by:

a½Dj� = W ½Dj�
a f
��
s; f
�
h½Dj����; (Equation 53)

where fð ,Þ stand for the leaky ReLU activation function, ½ ,; ,� stands for concatenation operation, and s represents the super node

feature.
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Clustering-based Cross Validation
Clustering

In the real datasets for compound-protein interaction prediction, there often exist highly similar compounds or proteins. To avoid the

data redundancy problem caused by these similar compounds or proteins, we follow the same strategy as in (Mayr et al., 2018) and

use a clustering-based cross validation strategy to evaluate the performance of our prediction model. The training-test splitting pro-

cess in such a clustering-based cross validation scheme guarantees that the compounds (or proteins) within the same cluster, which

share high similarities, are either all used in the training set, or all used in the test set. Note that an alternative approach to reduce data

redundancy is to discard those high-similar data points. However, we argue that the clustering-based scheme would allow us to

make better use of all available data. Here, we use the single-linkage clustering algorithm (Gower and Ross, 1969), which ensures

that theminimal distance between any two clusters is above a given clustering threshold. The distance between a pair of compounds

ðci;cjÞ, is defined as

Distanceðci; cjÞ = 1� JaccardðMFðciÞ;MFðcjÞÞ; (Equation 54)

whereMF(,) stands for theMorgan fingerprints calculated by RDKit (Landrum, 2006) and Jaccard(,;,) denotes the Jaccard similarity.

The distance between a pair of proteins ðpi;pjÞ is defined as

Distance
�
pi;pj

�
= 1� SW

�
pi;pj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
SW

�
pi;pi

�
SW

�
pj;pj

�q � ; (Equation 55)

where SW(,, ,) stands for the Smith-Waterman alignment score calculated based on the SSW library (Zhao et al., 2013). The clus-

tering threshold (which is a distance parameter used in the clustering algorithm) is defined as themimimal distance between any com-

pounds (proteins) from different clusters. The clustering threshold value used in our paper is selected from {0.3, 0.4, 0.5, 0.6}. We

choose 0.3 as the lower limit of the threshold, because a distance smaller than 0.3 would not be separable enough to avoid the

data redundancy problem, consistent with the previous study (Mayr et al., 2018). The upper limit of our clustering threshold is set

to 0.6, because a higher threshold will lead to so large clusters that the splitting of training-test data would become highly imbalanced

(i.e., too much training data and too little test data, or vice versa, Tables S2 and S3).

Cross Validation Settings

After generating the compound and protein clusters, three settings are considered during the cross validation process, i.e., the new-

compound setting, the new-protein setting and the both-new setting. To explain these settings, we denote the training, validation and

test sets by Dtrain;Dvalid and Dtest, respectively, and use ðci;piÞ to represent the compound-protein pair of the i-th sample (i = 1;2;

/;N).

In the new-compound setting, cross validation is performed on compound clusters, so that the compound-protein pairs with com-

pounds from the same cluster cannot be shared across training, valid and test sets. That is, for any two compound-protein pairs

ðci;piÞ and ðcj;pjÞ from different sets, ci and cj must come from different compound clusters.

In the new-protein setting, cross validation is performed on protein clusters, so that the compound-protein pairs with proteins from

the same cluster cannot be shared across training, valid and test sets. That is, for any two compound-protein pairs ðci;piÞ and ðcj;pjÞ
from different sets, pi and pj must come from different protein clusters.

In the both-new setting, both compound clusters and protein clusters cannot be shared across training, valid and test sets. That is,

for any two compound-protein pairs ðci;piÞ and ðcj;pjÞ from different sets, ci and cj must come from different compound clusters, and

pi and pj must come from different protein clusters as well.

For the new-compound and the new-protein settings, we use five-fold cross validation, and the train-valid-test splitting ratio is

approximately 7 : 1 : 2. Note that here the ratio is an approximation, because the splitting is performed on clusters, and the number

of data points among individual clusters is not necessarily evenly distributed. For the both-new setting, we randomly partition the

pairs of compound-protein clusters into a 333 grid. Then, a nine-fold cross validation (Airola and Pahikkala, 2018) was conducted

according to the following three steps: 1) select a grid as the test set; 2) discard the four grids that share compound or protein clusters

with the selected one; 3) reorganize the remaining grids as a new 333 grid setting and randomly select one grid as the validation set,

and the four grids that do not share any compound or protein cluster with the validation set are used as the training set. Such a cross-

validation strategy results in an approximately 16 : 4 : 9 train-valid-test ratio.

Hyper-parameter Selection
Four baseline models were used in the performance comparison for the binding affinity prediction task, including CGKronRLS (Ci-

chonska et al., 2017), DeepDTA (Özt€urk et al., 2018), the method by Tsubaki et al. (Tsubaki et al., 2019) and DeepAffinity (Karimi et al.,

2019). The method by Gao et al. was not included here, because its source code was not released, and the model requires additional

input information (i.e., gene ontology terms of proteins) (Gao et al., 2018). For our model and all the baseline methods, each cross-

validation setting (i.e., new-compound, new-protein or both-new) has a specific set of hyper-parameters. For MONN, the hyper-

parameter selection was performedwith both training objectives. The details of the hyper-parameter spaces forMONN and the base-

line methods are provided below:
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d For our model, the number of graph convolution iterations L= 4 and the number of DAN iterations D= 2 were determined using

the same schemes as in the original papers (Lei et al., 2017; Nam et al., 2017). The hidden size h1 is set to 128. Other hyper-

parameters include the number of heads of the K-head attention used in the graph convolution module K˛f1;2g, the number of

CNN layers LCNN˛f2;4g, the kernel size of the CNN layers Skernel˛f5; 7g, the hidden size of the affinity prediction module h2˛
f64;128g, and the ratio of pairwise loss l˛f0;0:1;1g. A grid search was used to find the best combination of these four hyper-

parameters. Although it is not practical to search all the hyper-parameter space thoroughly in the grid search process, we also

tested the influence of the number of graph convolution iterations while fixing the other hyper-parameters after the grid search

(Figure S5). The result suggested that the numbers of graph convolution iterations ranging from one to four achieved quite

similar performance in both affinity prediction and pairwise interaction prediction tasks. Probably this was because the super

node had already allowed sufficient information passing across remote nodes at a small number of iterations.

d For CGKronRLS (Airola and Pahikkala, 2018), the regularization parameter was chosen from f2�5;2�4;/;25g.
d For DeepDTA (Özt€urk et al., 2018), a grid search was conducted to select the best combination of different hyper-parameters,

including the number of filters from f16; 32; 64;128g, the length of sequence windows from f4; 8; 12g and the length of SMILES

windows from f4;6;8g. These ranges were adopted from the original paper (Özt€urk et al., 2018).

d For the method by Tsubaki et al., according to the original paper (Tsubaki et al., 2019), the radius of compound subgraph and

the length of the protein ‘‘ngram’’ (i.e., n-mer from the protein sequence) were selected from fð0; 1Þ;ð1;2Þ;ð2; 3Þg, the hidden

dimension of ngram and atom embedding was selected from f5; 10;20;30g, and the number of layers of both CNN and GNN

was selected from f2;3;4g. A grid search was performed to select the best combination from these ranges. Note that the

method by Tsubaki et al. is originally a classification model. Here, we modified its last hidden layer by removing the activation

function, and changed its loss function to the mean squared error (MSE) to perform the regression task.

d For DeepAffinity (Karimi et al., 2019), since the authors did not provide a specific hyper-parameter set and their model requires a

pretraining step, we directly used their pretrained RNN-CNN models and then fine-tuned them with our data. For each cross-

validation setting, we chose a better DeepAffinity model from those with either joint or separate attentions.

Apart from all the hyper-parameters mentioned above, all the methods have another hyper-parameter, i.e., the number of epochs

(or iterations) during the training process. We used the RMSE as the evaluation metric from the validation set to select the best value

of this hyper-parameter for all themethods. Themaximumnumber of epochs for ourmethodwas set to 30. For DeepDTA, themethod

by Tsubaki et al. and DeepAffinity, we used their default maximum numbers of epochs (which is 100). For CGKronRLS, we set the

maximum number of iterations to 500, as the performance no longer increased after 500 iterations.

For each cross-validation setting, the best hyper-parameters were selected based on the IC50 dataset with clustering threshold

0.3. The same parameters were used for other scenarios (i.e., other thresholds and the KIKD dataset) under the corresponding cross-

validation setting. For pairwise interaction prediction, we also used the best hyper-parameters selected based on the affinity predic-

tion results. We did not select the hyper-parameters according to the performance of the pairwise prediction task (that is, only single

training objective ofMONNwas used), for the following two reasons. First, inMONN, those hyper-parameters in the affinity prediction

module will not be optimized under this condition. Second, the baseline methods do not include a direct supervised optimization

procedure for local interaction prediction. So for fair comparison, we did not specifically tune the hyper-parameters for pairwise inter-

action prediction for MONN.

Evaluation of MONN and Other Methods on the BindingDB-derived Dataset
We tested MONN and DeepDTA using the same dataset derived from BindingDB (Gilson et al., 2016) as in DeepAffinity (Karimi et al.,

2019). The other two baseline methods, CGKronRLS (Airola and Pahikkala, 2018) and the method by Tsubaki et al. (Tsubaki et al.,

2019), were not included in this test for the following reasons, respectively: CGKronRLS requires the input of compound and protein

similarity matrices, and its space and time usage increases dramatically with the input data size (for example, loading the float32-

format similarity matrix of all the 202,169 unique compounds from the BindingDB training set needs 149 Gbmemory, and processing

such a huge matrix by the CGKronRLS algorithm is nearly infeasible). Unlike other deep learning-based baseline methods that pro-

cess batches of input samples, the implementation of themethod by Tsubaki et al. allows only one sample to be processed at a time,

so training this method on such a large dataset would be too time-consuming and nearly impractical.

The performance of DeepAffinity on this dataset was obtained from the original paper (Karimi et al., 2019). In addition to a ‘‘single

model’’, the performance of several ensemble versions of DeepAffinity (i.e., averaging predictions over several single models) was

also reported in (Karimi et al., 2019). In particular, one ensemble strategy was called ‘‘parameter ensemble’’, i.e., averaging the pre-

dictions over the last 10 epochs. The other ensemble strategy was called ‘‘parameter+NN ensemble’’, that is, averaging predictions

over the last 10 epochs of three networks with different hyper-parameters (i.e., the sizes of the last fully-connected layers).

For MONN and DeepDTA (Özt€urk et al., 2018), we used the same training and test sets as provided by DeepAffinity (Karimi et al.,

2019), but dropped out a small number of samples (49 out of 263,583 training samples and 26 out of 113,168 test samples, about

0.02%), since these SMILES strings cannot be converted into a valid molecular graph by RDKit (Landrum, 2006). Followed the

same strategy as used in DeepAffinity (Karimi et al., 2019), 10% of training data were used as the validation set. As we used this vali-

dation set to select the best number of epochs for MONN and DeepDTA, the ‘‘parameter ensemble’’ strategy is not suitable for these

two models. So we directly use 30 ensemble models for MONN and DeepDTA (the same number of DeepAffinity predictions in their

‘‘parameter+NN ensemble’’ setting). That is, the predictions of 30 models were calculated and averaged as the ensemble prediction.
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Here, we did not specifically optimize the hyper-parameters of MONN and DeepDTA over the BindingDB dataset, and directly used

the hyper-parameter settings derived previously from the PDBbind-derived benchmark dataset.

DATA AND CODE AVAILABILITY

The benchmark dataset created in this work and the source code of the MONNmodel can be downloaded from https://github.com/

lishuya17/MONN.
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