Improved distance sensitivity oracles via tree
partitioning

Ran Duan and Tianyi Zhang

Tsinghua university

Abstract. We introduce an improved structure of distance sensitivity
oracle (DSO). The task is to pre-process a non-negatively weighted graph
so that a data structure can quickly answer replacement path length
for every triple of source, terminal and failed vertex. The previous best
algorithm [Bernstein and Karger, 2009] constructs in time *O(mn) a
distance sensitivity oracle of size O(n?logn) that processes queries in
O(1) time. As an improvement, our oracle takes up O(n?) space, while
preserving O(1) query efficiency and O(mn) preprocessing time. One
should notice that space complexity and query time of our novel data
structure are asymptotically optimal.

1 Introduction

The objective of distance sensitivity oracles (DSO) is to pre-process the graph
so that pairwise shortest distances can be answered by a static data structure in
constant time even when one vertex or edge crashes. More precisely, every query
for the DSO is composed of three fields: a source vertex, a terminal vertex, and
a vertex or an edge that is presumed failed, and then the DSO is supposed to
compute the length of shortest source-terminal replacement path that circum-
vents the failed vertex or edge. In this paper, we are only concerned with vertex
failures, as all vertex-failure DSOs can be easily extended to handle edge-failure
queries without any asymptotic loss in space / time efficiency [10].

Motivations for distance sensitivity oracles mainly come from practical sce-
narios like network routing where some nodes occasionally undergo crash failures.
As recomputing all-pair shortest paths from scratch every time a node or link
crashes is expensive, a static data structure like DSOs that plans for emergency
is highly desirable. Vickery pricing [19] is an example that motivates the DSOs
from a theoretical perspective, where one wishes to measure, for every pair of
source and target as well as a failed edge, by how much the shortest distance
would rise if this designated edge were to shut down.

1.1 Related work

The naive approach is that we pre-compute and store the length of all O(n?)
possible replacement path lengths, which incurs intolerable space complexity.

1 O(-) suppresses poly-logarithmic factors.

© Springer International Publishing AG 2017 349
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 349-360, 2017.
DOI: 10.1007/978-3-319-62127-2_30

350 R. Duan and T. Zhang

Authors of [12] proposes the first DSO that occupies only near-quadratic space.
More specifically, The DSO in [12] has space complexity O(n?logn) and O(1)
query time. Space complexity of constant query time DSO has not been improved
ever since.

DSO in [12] demands a somewhat high preprocessing time complexity of
O(mn?), which was improved to O(mn?) in the journal version [10] while the
space complexity was blown up to O(n?®). Cubic time preprocessing algorithm
was first obtained by [6] and shortly improved from O(n?y/m) to O(mn) in [7],
while maintaining O(n?logn) space and O(1) query time. Note that O(n?logn)
and O(mn) are basically optimal up to poly-logarithmic factors, as discussed
in [7]. Therefore, surpassing [7]’s construction time has been deemed hard from
then.

Since the publication of [7], the community’s interest has diverged to seeking
truly sub-cubic preprocessing time algorithms. F. Grandoni and V. Williams [15]
obtained truly sub-cubic preprocessing time bound O(Mn?%%), if one should
tolerate a sub-linear query time of O(n"7); here all edge weights are assumed to
be integers within interval [—M, M].

There are several generalizations of the distance sensitivity problem. In [13],
the authors considered the scenario where two instead of one vertices could
fail. The paper presented a distance oracle with O(n?log®n) space complexity
and O(logn) query time. As it turned out, things got far more complicated
than single vertex-failures, and sadly no non-trivial polynomial preprocessing
algorithms were known.

There are papers (e.g., [22,9,11,3,2]) mainly concerned with dynamically
maintaining all pairs shortest paths (APSP). Such data structures can solve
distance problems if subsequent failures are cumulative, but update time would
be as large as O(n5).

If one should sacrifice preciseness for space efficiency, one may consider ap-
proximate distance oracles for vertex failures. Authors of [20] considered ap-
proximating the replacement path lengths where a single vertex could crash. In
[8], the authors focused on data structures that approximately answer minimal
length of paths that do not pass through a designated set of failed edges. For
fully dynamic approximate APSP, one can refer to [16]; especially, for planar
graphs, [1] may provide useful results.

There are remotely related problems such as (partially) dynamic single-source
shortest paths and reachability. Papers [18] and [17] discussed these topics in
depth. Some other loosely related work concerns the construction of spanners
and distance preservers resilient to one edge / node failure.

1.2 Our result

In this paper we present a DSO construction that improves upon [7].

Theorem 1. For any directed non-negatively weighted graph G = (V, E) with
weight function w: E — RT U {0}, with m,n referring to total number of edges

Improved distance sensitivity oracles via tree partitioning 351

and vertices, a DSO with O(n?) space complexity and O(1) query time exists.
Also, such DSO can be preprocessed in time O(mn).

In Bernstein & Karger’s work [7], the space / query time was O(n?logn)
and O(1). So compared with [7]’s result, our construction shaves off the last
log n factor in the space complexity, leading to a quadratic space consumption,
while preserving constant time query efficiency. Plus, our DSO can also be con-
structed in O(mn) time as in 7], which is nearly optimal. We emphasize that the
space complexity of our DSO is asymptotically optimal even for sparse graphs,
assuming hardness of set intersection [21].

The observation comes from Demetrescu and Thorup’s original work [12]. Its
construction basically applies the idea of sparse table, where each pair of source
and target are associated with O(logn) sparse table entries, thus resulting in
a total storage of O(n?logn). Our preliminary idea is that we do not store
sparse table entries for every source-terminal pair. More specifically, for each
single source shortest path (SSSP) tree, only a proportion of all tree vertices will
be associated with sparse table entries, hence making our data structure even
sparser. The set of all designated vertices should be carefully chosen with respect
to the topological structure of the SSSP tree.

With the sparser data structure, we can answer queries (s,t, f) when f keeps
distance from both of s and ¢. So the bottleneck lies in degenerated cases where
f is very close to one of the endpoints s or t. For degenerated cases, we can use
much smaller sparse tables to cover short paths, resulting in a DSO that only
occupies O(n? loglogn) space. To obtain an optimum of O(n?) space complexity,
we would need to apply a tabulation technique (otherwise known as the “Four
Russians” [4]).

Our preprocessing algorithm heavily relies on the notion of admissible func-
tions from [6]. The idea is that we substitute “bottleneck” vertices for intervals
in the original construction, without harming the correctness of query algorithm.
This would largely facilitate the preprocessing algorithm of DSOs.

2 Preliminaries

Suppose we are given a directed graph G = (V, E) with non-negative edge
weights w : £ — R* U {0}. In this section, we summarize the notations or
assumptions that are used throughout this paper. More or less, we inherit the
conventions from [13].

— Our data structures & algorithms are implemented on 2(logn)-word RAM
machines. We will leverage its strength in computing the most significant
set bit [14]. Although in previous works on DSO (]9, 10,6, 7]) 2(logn)-word
RAM model was not explicitly assumed, this assumption is not dispensable in
these papers since their algorithms required memory indexing and computing
logarithms in constant time.

— We call a data structure (f(n), g(n)), if its space complexity is at most f(n)
and its query time is at most g(n).

352 R. Duan and T. Zhang

— For each pair of s,t € V, the weighted shortest path from s to ¢ is unique.
This assumption is without loss of generality since we can add small pertur-
bations to break ties (e.g., [10,7]).

— For each pair of s,t € V', let st denote the weighted shortest path from s to
t.

— Let p be a simple path. Denote by ||p|| and |p| the weighted and un-weighted
length of path p.

— For each s € V, let T} be the single-source shortest path tree rooted at s; let
Ts be the single-source shortest path tree rooted at s in the reverse graph G
where every directed edge in G is reversed.

— For each query (s,t, f), we only consider the case when f lies on the path st,
because verification can be done by checking whether ||st|| = ||sf| + || ft|.

— For each vertex set A, let st o A denote the weighted shortest path from s to
t that avoids the entire set A. For instance, st o {f} (abbreviated as st ¢ f)
denotes the replacement path, and st ¢ [u, v] refers to the weighted shortest
path that skips over an entire interval [u,v] C st. Here for [u,v] to be a
properly defined interval on st, it is required that both of v and v are on st,
and either u = v, or u lying between s and v.

— Let s @i and s © i be the i vertex after and before s on some path that
can be learnt from context.

By uniqueness of shortest paths, it is easy to verify that any path of the form
sto f (sto[u,v]) must diverge from and converge with st for at most once [10],
with divergence on path sf (su) and convergence on ft (vt). We denote A and V
to be the vertices at which divergence and convergence take place, respectively,
when the path can be learnt from context.

3 Admissible functions and the triple path lemma

Our query algorithms will be frequently using the triple path lemma from [6].
This lemma is based on the notion of admissible functions.

Definition 1 ([6]). A function Fb[?t’v] is admissible if V.f € [u,v], [u,v] an interval
on st, we have ||st o [u,0]|| > FI%5*) > ||st o f]].

S

Definition 2 ([6]). Two important admissible functions are max ye, . { | sto f||}
and ||st ¢ [u,v]||. We call them bottleneck and interval admissible functions,
respectively.

Lemma 2 (The triple path lemma [6]). Let [u,v] be an interval on st, and
f € [u,v] be a vertex. For any admissible function Fl%’v], |st o fI| = min{||sul|| +

llut o fl|, [Isvo fl] + ||Ut||,F£7“t"”]}_

Proof. On the one hand, ||st¢ f|| is always smaller or equal to min{||su|| + ||ut ¢

Il lsve fll+ ot F;;”]} This is because, by definition 1 Fs)[utv > ||sto f]|; also
it is easy to see that both of ||sul| + [Jut ¢ f|| and |[svo f|| + ||m‘|| are > ||st o f]|.

Improved distance sensitivity oracles via tree partitioning 353

On the other hand, we argue ||st ¢ f|| > min{||su| + [Jut o f],||sv < f| +
vt Fiut”]} If sto f passes through either u or v, then ||st ¢ f| would be equal
to either [[sul| + [lut o f|| or ||svo f|| + [[vt]], which is > min{||sul| + [[uto f[], |sve
fll -+ vt Fs[utv}} Otherwise st ¢ f skips over the entire interval [u,v] and thus
st o fll = llst o [u,oll| > Fiy* > min||sul + ut o £, lsv o £l + [Jotl], £5").

4 The tree partition lemma

Our novel DSO begins with the following lemma. Paper [15] has a similar lemma,
but it is actually different from ours.

Lemma 3 (Tree partition). Given a rooted tree T, and any integer 2 < k <
n =|V(T)|, there exists a subset of vertices M C V(T), |M| < 3k —5, such that
after removing all vertices in M, the tree T is partitioned into sub-trees of size
< n/k. We call every u € M an M-marked vertex, and M a marked set. Plus,
such M can be computed in O(nlogk) time.

A detailed proof can be found in the full version of this paper.

The high-level idea of our data structure is that we reduce the computation
of an arbitrary ||st ¢ f]| to a “shorter” ||uv ¢ f]|; here we say “short” in the sense
that either |uf| or |fv| is small. The tree partition lemma helps us with the
reduction. Basically, we apply the lemma twice with different parameters so
that either uf or fv becomes “short” enough, and then we can directly retrieve
the length of replacement path from storage.

4.1 Shortness of replacement paths

Our new data structure will heavily rely on the notion of "shortness" of replace-
ment paths, which we describe below. On a high-level, for any replacement path
sto f, shortness measures how close f is to either s or ¢ on the weighted shortest
path st. For those replacement paths where f lies near to the middle of st, we
think of them as long ones, and for those where f is very close to one of the end-
points, we view them as short paths. The rough idea is that, when we compute
the length of a general replacement path, we reduce it to a constant number of
shorter paths and conquer them separately. Now we propose a formal definition
of shortness.

Definition 3. Given a vertex subset M, whose removal breaks 7' (either T} or
T) into subtrees of size < L, L being a fixed parameter. Then for any ¢, as well
as a failed vertex f on path st, we say st ¢ f is L-short with respect to M, if ¢
and f lie in the same subtree of 7' induced by removal of M. We often do not

explicitly refer to M when it can be learnt from context.

5 Reducing to log? n-short paths

We devise an O(n?)-space data structure that computes any non-log? n-short
path in constant time.

354 R. Duan and T. Zhang

5.1 Data structure

Our DSO first pre-computes all values of ||st| and |st|, which accounts for O(n?)
space. Then, for each s € V, apply lemma 3 in T (ﬁ) to obtain a marked set
M, (M\s) with parameter [n/(L — 1)], where 2 < L < n is an integer to be
set later. So M, (]/\4\9) is of size O(n/L), and the size of each sub-tree is < L.
Consider the following structures.

For any pair of s,t such that t € M, suppose we are met with M-marked
vertices 4y — Ug —> -+ - — uy =t along the path st in Ts. Our data structure
consists of several parts. Note that we also build the symmetric structures of (i)
to (iv) for every pair of s,t where ¢ € M,.

(i) For each k — 2¢ € [1,k — 1], the value of ||st o uj_oi.

(ii) For each k — 2% € [1,k — 2], the value of ||st o [uj_oi,up_oi11]]|-

(i) Let vy — -+ -+ — v1 be the sequence of all M,-marked vertices along the
path st. Then for each properly defined interval [v;_gi,u)_5i] on the path
st, store the value of ||st o [v;_gi, up_oi]||-

(iv) For each f such that |ft| < 2L or |sf| < 2L, the value of ||st o f].

From now on we drop the assumption that ¢ is Mg-marked.

(v) For every pair (s,t) of different vertices, let = be t’s nearest M -marked
Ts-ancestor, and y be s’s nearest Mt marked T r-ancestor. If intervals (s, z]
and [y, t) intersect, then we pre-compute and store ||st ¢ [y, x]||. Also, store
addresses of x,y, if such ancestors exist.

(vi) Build a tree upon all Mg U {s}’s vertices as follows. In this tree, u is v’s
parent if and only if in T u is v’s nearest ancestor that belongs to M U{s}.
Then pre-compute and store the level-ancestor [5] data structure of this tree.
Note again that we also build similar structures for M,U {s} in the reverse
graph.

Note 1. The un-weighted distances between two adjacent marked vertices in T
(Ts) are < L.

Conduct a simple space complexity analysis for each part of the data struc-
ture.

(i) takes up space O(" nlogny gince we have O(logn) choices for the index i,

and every |Mg| = O(n/L).
2 ;
(ii) uses O(%) for a similar reason as in the previous part.
2, 9.

(iii) (d'er%andS O(%) space since we have O(log®n) choices for the pair of
i, 7).

(iv) entails an O(n?) space consumption since each Mg-marked ¢ is associated
with O(L) entries, and there are O(n/L) Mg-marked vertices ¢.

(v) induces O(n?) space complexity.

(vi) takes O(n?/L) total space, each tree of size O(n/L).

Therefore, the overall space complexity from (i) through (vi) is equal to
2 2,
O(™19&" 4 p?). Taking L = log” n, it becomes O(n?).

Improved distance sensitivity oracles via tree partitioning 355

5.2 Query algorithm
We prove the following reduction lemma in this sub-section.

Lemma 4. The data structure specified in section 5.1 can compute ||sto f|| in
O(1) time if st o f is not L-short with respect to My or M,.

Proof. A constant time verification for L-shortness is easy: we check if f lies
below x, which is the nearest Ms-marked Ts-ancestor of ¢, and similarly if f lies
below y, which is the nearest M;-marked T;-ancestor of s.

Firstly we argue that it is without loss of generality to assume that ¢ is
M -marked. The reduction proceeds as follows.

Let = and y be vertices defined as in (v) from section 5.1. Since st ¢ f is not
L-short, f € (s,z] N [y,t), and thus [y, x] is a properly defined interval on path
st. By the triple path lemma, one has:

st o fI| = min{|[sz o fI| + |zt]|, [[syll + llyt o flI; l[st o [y,][I}

Here we use the interval admissible function | st ¢ [y, z]||. Noticing that the
third term ||sto[y, z]| is already covered in (v) from section 5.1, we are left with
|sz o f|| and ||yt o f||. By definition, z is M,-marked and y is M;-marked, and
thus we complete our reduction.

Let up — ug — +++--- — u, =t be the sequence of all M,-marked vertices
along st. We can assume that p > 1; otherwise ||sto f|| has already been computed
in structure (iv).

It is not hard to find the interval [uq,uq+1) that contains f. On the one
hand, u, is easily retrieved: if f not Ms-marked, then u, is its nearest marked
ancestor stored in (v); otherwise, u, = f. On the other hand, u,+; can be found
by querying the level-ancestor data structure (vi) at node ¢ in tree rooted at s.

Let vg — vg—1 — -+ -+ — w1 be the sequence of all J\/Zt—marked vertices on
st. It is also safe to assume ¢ > 1; otherwise, we have |st| < 2L and then using
(iv) we can directly compute ||st o f||. Similar to the previous paragraph, locate
the interval (vpi1,vs) that includes f. We only need to consider the case when
a+1<pandb+ 1< gq,since otherwise ||st ¢ f|| can be directly retrieved from
structure (iv).

Find maximum indices i,7 > 0 such that ¢ — 2! > b+ 1, p—2/ > a + 1.
Applying the triple path lemma with respect to [vy_oi, u,_2i] in terms of interval
admissible function, ||st ¢ f|| must be the minimum among the following three
distances.

(1) st o [vg—2:, up—2s]l-
This value is directly retrievable from (iii) in section 5.1.

(2) [[sup—2s o fl| + [[up-2st|.
Note that since we are interested in the minimum among (1)(2)(3) which
gives us ||st ¢ f||, we can substitute any value for (2) that lies in range
[lIst o fII, Isup—2s © fI + [Jup—2st]]].

356 R. Duan and T. Zhang

By definition of j, ug42s lies between u,_o; and ¢, and hence we know that
the concatenation of paths su,_s; ¢ f and u,_o;t passes through w, ;. Thus,
it must be

[sup—2s © fIl + lup—2stll > l[stiasas o fIl + [[tasast] = llst o f]

So instead of computing the original (2), we are actually calculating ||suq 25

71+ [ttt

We focus on the case when f # u,; the case where f = u, is easy in that we

can directly query ||su,i2i © uq|| using (i).

Applying the triple path lemma for a third time to su,,o; ¢ f and interval

[tas Ua+1], we further divide it into three cases.

() [15tas2s © [ty taa]| + a2t
This can be computed by a single table lookup in (ii).

() lIsugt1 o fIl + llua+1t].
Since uq+1 is Mg-marked, ||suqt1 © f|| is stored in structure (iv), and
thereby ||suqr1 ¢ f]| + ||uar1t| is computed effortlessly.

(©) llsuall + [luat o £
If u, itself is M; marked, then (iv) directly help us out since ||uqt ¢ f]|
is already pre-computed as |u, f| < L./\
Otherwise, suppose v is u,’s nearest M;-marked ancestor in Ty (if any).
To locate such v, we can try to find the interval (v.41,v] that contains
Uq, in a similar fashion of finding intervals [uq, uq+1) and (vp11, vp]; after
that we assign v < ve41.
If such v does not exist, then s and u, lie in the same sub-tree of IA}
after removing M,. Noticing that |sf| < |sug+1| = |sua|+|uata+1| < 2L,
(iv) can finish up ||st ¢ f|| by a single table look-up. If v exists, then by
[[sua|l + lluat © fl| = |Isvl| + vt o f]| > ||st < f], it suffices to compute
[lute f|l, which also has already been pre-computed in (iv) due to |vf]| =
[vug| + |uaf] < 2L.

(3) Jl5vq_aill + l[vg_2:t o f1I
The only difficult part is ||v,_oit o f||. Similar arguments as in the previous
case (2) would still work.

6 An (O(n?loglogn),O(1)) construction

In this section, we present an ordinary way of handling L-short paths, resulting
in an (O(n?loglogn),0(1)) DSO. On a high level, we directly apply the sparse
table construction as in [10]. But since the sparse table only needs to cover L-
short paths, the space requirement shrinks to O(log L) = O(loglogn) for every
pair of s,¢ € V. Hence the total space complexity would be O(n?loglogn).

6.1 Data structure

For any pair of s,t € V, besides ||st||, |st|, build the following structures.

Improved distance sensitivity oracles via tree partitioning 357

(i) For every 2¢ < min{4L, |st| — 1}, store ||st o (s & 2%)|| and ||st o (t & 2%)].
(ii) For every 2! < min{4L, |st| — 1}, store ||st o [s & 2%, s & 271]|| and ||st ©
to2t to2]|.
(iii) Level ancestor data structures of Ty and T .

Since L = log? n, the total space of this structure is equal to O(n?logL) =
O(n?loglogn). Note that this structure is basically identical to [10], except for
the additional bound 4L on the power-of-two’s 2¢. Therefore, when |st| < 4L,
Ist o f]| can be retrieved in O(1) time according to the correctness guaranteed
by [10].

6.2 Query algorithm

We prove the following lemma, showing how our data structure covers all L-short
paths.

Lemma 5. For any st o f such that |sf| < L or |ft| < L, ||st o f| can be
computed in O(1) time by the data structure presented in section 6.1.

For details of the proof, please refer to the full version of this paper.

From definition 3, we can see every L-short path st ¢ f satisfies |sf| < L
or |ft|] < L. So by the above lemma, data structure introduced in section 6.1
answers every L-short path query. Together with the structures in section 5.1,
it makes an (O(n?loglogn), O(1)) DSO.

7 Two-level partition

In this section, we obtain an (O(n?),0(1)) construction of DSO. The high-level
idea is that we further partition every sub-tree into even smaller ones, and then
we apply a tabulation (“Four Russians”) technique to store all answers. More
specifically, we apply the tree-partitioning lemma for the second time and break
each SSSP tree into sub-trees of size < loglog® n. Then we devise data structures
to reduce log2 n-short paths to log log2 n-short paths. Finally, the tabulation
technique kicks in when it comes to log log? n-short paths.

7.1 Data structure

~

Let L’ < L be a parameter to be set later. For each SSSP tree T (Ts), compute
its tree partition with parameter [n/(L’ —1)] by Lemma 3, and let M (Z/W\ 1) be
the corresponding marked set. For any ¢, let 7 be the root of the sub-tree, induced
by removal of M;, that contains vertex t. We build the following data structures.
(Note that similar structures are also built for the reverse graph where t is the
source and s is the terminal.)

(i) If ¢ is not M/-marked.
Let u be t’s nearest M!-marked ancestor below r (if such u exists), and
store the value of ||st o [r,u]]|.

358 R. Duan and T. Zhang

(i) If t is M -marked.

Let ugy — ug — ------ — ug, = t be the sequence of all M/-marked ancestor
along the directed path rt. Note that k < L = O(log2 n). Then for each
k —2' € [1,k — 1], store the value of ||st ¢ [r,up_o:]|. After that, for each
f € [uk—1,ur) (define ug =), store the value of ||st o f].

(iii) Build upon the marked set M/ all structures from (i) to (vi) in section
5.1. The only difference is that we impose an additional constraint that
|st| < L on structures (i) through (iii). It is not hard to verify that the space
complexity of this part becomes O("le# +n?) = O(% +n?). So
if st o f is non-L’-short, with |st| < L, then applying lemma 5.1, ||st ¢ f]|
can be answered in constant time.

Note that the space complexity of (i) and (ii) in section 7.1 is equal to
2
O(% +n?). Together with (iii), the overall space complexity of the data

n?loglogn + n? loglog®n

structure is O(n? + =% 208 ") Taking L' = loglog”n, the space
becomes O(n?).

7.2 Reduction algorithm

We claim the following lemma; due to page limits, its full proof is presented in
the full version.

Lemma 6. Given an L-short replacement path st o f, the data structure in
sections 7.1 and 5.1 can reduce ||st o f|| to a constant number of |[uv o f]|’s,

where uv ¢ f’s are L'-short with respect to M, or M.

7.3 Tabulation

In this sub-section, we handle all L’-short paths. Recall that the notation A,V
refers to divergence and convergence of replacement path sto f. when s, ¢, f can
be learnt from context.

Let sto f be an L'-short path; without loss of generality assume that ¢, f lie
in the same sub-tree, the corresponding marked set being M. One observation
is that we only need to focus on cases where |sA| < L: if the divergence comes
after s ® L, then it admits the decomposition lIsto f|| = ||sul| + ||ute f||, u being
s’s nearest M;-marked ancestor in tree T}. Since |ft| < L' < L < 2L, ||ut o f||
can be found in (iv) from section 5.1.

For each sub-tree T' partitioned by marked set M!, we in-order sort all its
vertices. The aggregate divergence / convergence information within this sub-tree
can be summarized as an L’ x L’ matrix, each element being a pair (|s4|,|Vt|)
corresponding to a replacement path sto f, Vt, f € V(T'). Since we only consider
the case when |sA| < L, the total number of choices for this matrix is no more
than (L - L')(E)* < [2L)* = gtleglos®n — ,(n). Recall we are running on
£2(log n)-word RAM machines, so this matrix admits random accesses.

Construct an indexable table of all possible configurations of such matrices.
The space of this table is < o(n-(L’)?) = o(nloglog® n) = o(n'!). Then associate

Improved distance sensitivity oracles via tree partitioning 359

each sub-tree with an index of its corresponding matrix in the table, which
demands a storage of O(n/L’) indices, totalling o(n) space for every s. Thus the
overall space complexity associated with tabulation is o(n?).

Now the L’-short ||st ¢ f|| can be computed effortlessly. After indexing the
corresponding matrix in the table, we can extract (|s4|,|Vt|) directly from this
matrix, and then recover A,V from level-ancestor data structures. Finally, de-
compose the replacement path as ||st o f|| = [[s4| + [|[AV ¢ (4, V)| + [|[V¢]|.
Noticing that AV o f = AV o (A, V), thereby the value of |AV o f|| is equal to

any admissible function value F[Aée LVEU Hence, storing a ||uvo[u®1,vel]| for
every pair of u, v will suffice for querying ||sto f|| once divergence and convergence
vertices are known.

8 Concluding remarks

From the triple path lemma (Lemma 1), we can see:

Remark 1. We can obtain a DSO with the same space and query time if all
interval admission functions of the form | sto[u, v]|| are replaced by corresponding
bottleneck admission functions max e, . {|st o f[}.

So far we have devised (O(n?),0(1)) DSOs. Clearly both of the space com-
plexity and query efficiency have reached asymptotic optima; also its preprocess-
ing time (for the bottleneck admission functions form) is O(mn) (see full version
of this paper), which is nearly optimal.

References

1. Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate dis-
tance oracles for planar graphs via forbidden-set distance labels. In: Pro-
ceedings of the Forty-fourth Annual ACM Symposium on Theory of Com-
puting. pp. 1199-1218. STOC ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145,/2213977.2214084

2. Abraham, I., Chechik, S., Krinninger, S.: Fully dynamic all-pairs shortest paths
with worst-case update-time revisited. In: Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms. pp. 440-452. STAM (2017)

3. Abraham, I., Chechik, S., Talwar, K.: Fully dynamic all-pairs shortest paths: Break-
ing the o(n) barrier. In: APPROX-RANDOM. pp. 1-16 (2014)

4. Arlazarov, V.L., Dinic, E.A.] Kronrod, M.A., FaradZev, I.A.: On economical con-
struction of the transitive closure of a directed graph. Soviet Mathematics—
Doklady 11(5), 1209-1210 (1970)

5. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoret-
ical Computer Science 321(1), 5-12 (2004)

6. Bernstein, A., Karger, D.: Improved distance sensitivity oracles via random
sampling. In: Proceedings 19th ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 34-43 (2008)

7. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: Proceedings 41st Annual ACM Symposium on Theory of Computing
(STOC). pp. 101-110 (2009)

360 R. Duan and T. Zhang

8. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance
oracles and routing schemes. Algorithmica 63(4), 861-882 (Aug 2012),
http://dx.doi.org/10.1007/s00453-011-9543-0

9. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968-992 (2004)

10. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for
distances avoiding a failed node or link. STAM J. Comput. 37(5), 1299-1318 (2008)

11. Demetrescu, C., Italiano, G.F.: Fully dynamic all pairs shortest paths
with real edge weights. J. Comput. Syst. Sci. 72(5), 813-837 (Aug 2006),
http://dx.doi.org/10.1016/j.jcss.2005.05.005

12. Demetrescu, C., Thorup, M.: Oracles for distances avoiding a link-failure. In: Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 838-843. SODA ’02, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA (2002), http://dl.acm.org/citation.cfm?id=545381.545490

13. Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: Proceedings
20th ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 506-515 (2009)

14. Fredman, M.L., Willard, D.E.: Surpassing the information-theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424-436 (1993)

15. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-
source replacement paths. In: FOCS. pp. 748-757. IEEE Computer Society (2012),
http://dblp.uni-trier.de/db/conf/focs/focs2012.htmlGrandoniW12

16. Henzinger, M., Krinninger, S., Nanongkai, D.: Dynamic approximate all-pairs
shortest paths: Breaking the o(mn) barrier and derandomization. In: FOCS
2013 54th Annual IEEE Symposium on Foundations of Computer Science.
pp- 538-547. Proceedings 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science FOCS 2013, IEEE, Los Alamitos, CA (October 2013),
http://eprints.cs.univie.ac.at/3747/

17. Henzinger, M., Krinninger, S., Nanongkai, D.: Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In:
46th ACM Symposium on Theory of Computing (STOC 2014) (June 2014),
http://eprints.cs.univie.ac.at /4042 /

18. Henzinger, M., Krinninger, S., Nanongkai, D.: A subquadratic-time algorithm for
decremental single-source shortest paths. In: SODA 2014. SIAM, Philadelphia (Jan-
uary 2014), http://eprints.cs.univie.ac.at/3785/

19. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge
worth? In: Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence (FOCS). pp. 252-259 (2001), erratum, Proc. 43rd FOCS, p. 809, 2002

20. Khanna, N., Baswana, S.: Approximate shortest paths avoiding a failed vertex: Op-
timal size data structures for unweighted graphs. In: 27th International Symposium
on Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy,
France. pp. 513-524 (2010), http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2481

21. Patrascu, M., Roditty, L.: Distance oracles beyond the thorup-zwick bound. In:
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Com-
puter Science. pp. 815-823. FOCS ’10, IEEE Computer Society, Washington, DC,
USA (2010), http://dx.doi.org/10.1109/FOCS.2010.83

22. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In:
Proceedings 37th ACM Symposium on Theory of Computing (STOC). pp. 112-119
(2005)

	30 Improved distance sensitivity oracles via tree partitioning
	1 Introduction
	1.1 Related work
	1.2 Our result

	2 Preliminaries
	3 Admissible functions and the triple path lemma
	4 The tree partition lemma
	4.1 Shortness of replacement paths

	5 Reducing to log2 n-short paths
	5.1 Data structure
	5.2 Query algorithm

	6 An {O(n2 log log n),O(1)} construction
	6.1 Data structure
	6.2 Query algorithm

	7 Two-level partition
	7.1 Data structure
	7.2 Reduction algorithm
	7.3 Tabulation

	8 Concluding remarks
	References

