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Abstract

We advance significantly beyond the recent progress on
the algorithmic complexity of Nash equilibria by solving
two major open problems in the approximation of Nash
equilibria and in the smoothed analysis of algorithms.

• We show that no algorithm with complexity poly(n, 1
ε )

can compute an ε-approximate Nash equilibrium in
a two-player game, in which each player has n pure
strategies, unless PPAD ⊆ P. In other words, the
problem of computing a Nash equilibrium in a two-
player game does not have a fully polynomial-time ap-
proximation scheme unless PPAD ⊆ P.

• We prove that no algorithm for computing a Nash equi-
librium in a two-player game can have smoothed com-
plexity poly(n, 1

σ ) under input perturbation of mag-
nitude σ, unless PPAD ⊆ RP. In particular, the
smoothed complexity of the classic Lemke-Howson al-
gorithm is not polynomial unless PPAD ⊆ RP.

Instrumental to our proof, we introduce a new discrete
fixed-point problem on a high-dimensional hypergrid with
constant side-length, and show that it can host the embed-
ding of the proof structure of any PPAD problem. We prove
a key geometric lemma for finding a discrete fixed-point, a
new concept defined on n + 1 vertices of a unit hypercube.
This lemma enables us to overcome the curse of dimension-
ality in reasoning about fixed-points in high dimensions.

1 Introduction

Shortly after Spielman and Teng [24] proved that the
smoothed complexity of the simplex algorithm with sha-
dow-vertex pivoting rule is polynomial, a number of people
[1] asked them whether their analysis can be extended to an-
other classic algorithm, the Lemke-Howson algorithm [15].
Indeed, whether the smoothed complexity of the Lemke-
Howson algorithm is polynomial has been the question
most frequently raised during talks on smoothed analysis.

The Lemke-Howson algorithm is the most popular me-
thod for computing a Nash equilibrium in a two-player
game. It can be viewed as an extension of the simplex algo-
rithm for linear programming and its worst-case complex-
ity is also exponential [23]. As the simplex algorithm can
be used to solve zero-sum two-player games [18], a spe-
cial subclass of two-player games, it is natural to conjecture
that the Lemke-Howson algorithm has smoothed polyno-
mial complexity like the simplex algorithm. Earlier and in
the same spirit, it was asked [21] whether the problem of
finding a Nash equilibrium in a two-player game is in P as
two-player zero-sum games and linear programming [13].

Motivated by the result of Bárány, Vempala, and Vetta
[2] that random two-player games can be solved in polyno-
mial time, the following conjecture was included in a recent
survey on smoothed analysis [25]:

Smoothed 2-NASH Conjecture: The problem of finding
a Nash equilibrium in a two-player game is in smoothed
polynomial time.

A positive answer to this conjecture would provide an
encouraging result to the computation of Nash equilibria.

However, so far, no polynomial smoothed analysis of the
Lemke-Howson algorithm or any other algorithm for com-
puting Nash equilibria in two-player games has been found.

In the final installment of a series of recent exciting de-
velopments initiated by Daskalakis, Goldberg and Papadi-
mitriou [9], Chen and Deng [4] proved that 2-NASH, the
problem of computing a Nash equilibrium in a two-player
game, is PPAD-complete. These results, despite unknowns
about the PPAD complexity class [22], provide strong evi-
dence that this search problem might be hard for P.

These developments inspired us to attempt disproving
the Smoothed 2-NASH Conjecture. In this regard, we for-
mulated a competing conjecture that, 2-NASH is not in
smoothed polynomial time unless PPAD ⊆ RP. A connec-
tion between the smoothed complexity and approximation
complexity of Nash equilibria ([25], Proposition 9.12) then
led us to the conjecture: 2-NASH is PPAD-hard to appro-
ximate in fully polynomial time.



By proving these two conjectures, we advance signifi-
cantly beyond the recent progress on the algorithmic com-
plexity of Nash equilibria. Not only do we answer the ques-
tion about the smoothed complexity of the Lemke-Howson
algorithm, but our investigation also enables us to settle an
important open question about Nash equilibria by proving
2-NASH does not have a fully polynomial-time approxima-
tion scheme, unless PPAD ⊆ P.

Consequently, it is unlikely that the nO(log n/ε2)-time al-
gorithm of Lipton, Markakis, and Mehta [16], the fastest
algorithm known today for finding an ε-approximate Nash
equilibrium, can be improved to poly(n, 1/ε). Also, it is
unlikely that the average-case polynomial time result of [2]
is extendible to the smoothed model.

Our results on approximation and smoothed complexity
of Nash equilibria, together with those of [4, 9] on “exact”
Nash equilibria, demonstrate computational difference be-
tween two-player games and their zero-sum specializations.
These results may further encourage the study of the differ-
ence between local search and fixed-point computation.

1.1 Nash Equilibria of Two-Player Games

A two-player game (or bimatrix game ) [20, 14, 15] is
a non-cooperative game between two players in which the
players have m and n choices of actions or pure strategies,
respectively. The games can be specified by two m×n ma-
trices A = (ai,j) and B = (bi,j). If the first player chooses
action i and the second player chooses action j, then their
payoffs are ai,j and bi,j , respectively. A mixed strategy of
a player is a probability distribution over its choices. The
Nash Equilibrium Theorem [20, 19] on non-cooperative
games when specialized to bimatrix games states that there
exists a profile of possibly mixed strategies, called a Nash
equilibrium, such that neither player can gain by changing
his or her (mixed) strategy alone.

Let P
n denote the set of all probability vectors in R

n,
i.e., non-negative vectors whose entries sum to 1.

Mathematically, a profile of mixed strategies can be ex-
pressed by two column vectors (x∗ ∈ P

m,y∗ ∈ P
n). A

Nash equilibrium is then a pair (x∗,y∗) such that for all
x ∈ P

m and y ∈ P
n,

(x∗)T Ay∗ ≥ xT Ay∗ and (x∗)T By∗ ≥ (x∗)T By. (1)

Computationally, one might settle with an approximate
Nash equilibrium. An ε-relatively-approximate Nash equi-
librium is a pair (x∗,y∗) that satisfies

(x∗)T Ay∗ ≥ (1 − ε)xT Ay∗ and

(x∗)T By∗ ≥ (1 − ε)(x∗)T By,

for all x ∈ P
m,y ∈ P

n, while an ε-approximate Nash equi-
librium is a pair (x∗,y∗) that satisfies

(x∗)T Ay∗ ≥ xT Ay∗ − ε and

(x∗)T By∗ ≥ (x∗)T By − ε.

The zero-sum two-player game [18] is a two-player game
(A,B) with B = −A. It can be formulated as a linear pro-
gram and can be solved in (weakly) polynomial time [13].

1.2 Our Results and Approaches

Our main complexity-theoretic results are:

• It is PPAD-complete to compute a 1/nc-approximate
Nash equilibrium of an n× n normalized1 two-player
game, for any fixed c > 0. Thus, no algorithm can
compute an ε-approximate Nash equilibrium in time
poly(n, 1/ε) for all ε, unless PPAD ⊆ P.

• The smoothed complexity of the Lemke-Howson algo-
rithm or in fact of any algorithm for bimatrix games is
not poly(n, 1/σ) under perturbations with magnitude
σ, unless PPAD ⊆ RP.

The first result implies that it is also PPAD-hard to find a
1/poly(n)-relatively-approximate Nash equilibrium in an
n × n two-player game. It also implies that for any fixed
c > 0, it remains PPAD-complete to compute the first
(1 + c) log n-bits of an exact Nash equilibrium in a two-
player game, even when the entries of the matrices that de-
fined the game are integers of poly(n) magnitude. Thus,
computing these leading bits is as hard as finding an exact
Nash equilibrium of a rational two-player game.

We emphasize that the PPAD-hard games constructed
in [9, 5, 10, 4] can not be used to demonstrate that the pro-
blem of computing a 1/poly(n)-approximate Nash equilib-
rium in a {2, 3, 4}-player game is PPAD-hard. For exam-
ple, we can compute in polynomial time a 1/n-approximate
Nash equilibrium in the PPAD-hard two-player games con-
structed by Chen and Deng [4], although they proved that
finding a 2−Θ(n)-approximate Nash equilibrium in these
games is PPAD-complete. Thus, their proof does not apply
to the search of 1/poly(n)-approximate Nash equilibria.

This limitation of [9, 5, 10, 4] is inherent in their choice
of the PPAD-complete fixed-point problems from which
they build their {2, 3, 4}-player games. The exponential
dependency is the result of the fact that the approximation
precision needed increases geometrically in the number of
bits required to represent the coordinate of a point in the
search space. In order to prove our new result, we need a
reduction from a PPAD-complete fixed-point problem on
hypergrids of a constant or polynomial side-length, which
seems inconceivable in previous approaches.

1As an ε-approximate Nash equilibrium (x,y) of game (A,B) be-
comes a c · ε-approximate Nash equilibrium in game (cA, cB) for c > 0.
Following Lipton, Markakis, and Mehta [16], we normalize the matrices
A and B so that all their entries are between 0 and 1, or between -1 and 1
when studying ε-approximate Nash equilibria.



As an instrumental step of our work, we introduce a fam-
ily of high-dimensional discrete fixed-point problems, one
associated with the (8 × 8 ...× 8) n-dimensional hypergrid.

Fortunately and somewhat surprisingly, the fixed-point
problem is still PPAD-complete in this hypergrid with a
seemingly very small side-length. We show this hypergrid
has enough flexibility and structure to host the embedding
of the proof structure of any PPAD problem.

However, high dimensionality come with their own chal-
lenges, as the original approach defines a fixed point to be
a unit hypercube with 2n points, which creates new diffi-
culties to the efficiency of the reduction. As a critical step
of our reduction, we prove a geometric lemma for finding
a fixed point defined on n+ 1 vertices of a unit hypercube.
This lemma allows us to overcome the curse of dimension-
ality in reasoning about fixed points in high dimensions.

1.3 Notations

We will use bold lower-case Roman letters such as a to
denote vectors and upper-case Roman letters such as A to
denote matrices. We denote the ith-entry of a by ai and the
(i, j)th entry of A by ai,j . Further, (1) Z

d
+ denotes the set

of d-dimensional vectors with positive integer entries, (2)
Z

d
[a,b] = {q ∈ Z

d | a ≤ qi ≤ b,∀ 1 ≤ i ≤ d }, (3) R
m×n
[a:b]

is the set of m× n matrices with real entries between a and
b, (4) 〈a|b〉 is the dot-product of two vectors. (5) ei stands
for the unit vector whose ith entry is equal to 1 and all other
entries are zeros, (6) for x, y ∈ R and ε ∈ R

+, by x = y±ε,
we mean y− ε ≤ x ≤ y+ ε, (7) for p,q ∈ R

n and ε ∈ R
+,

by p = q± ε, we mean pi = qi± ε, for all i, and (8) a game
(A,B) is positively normalized if A, B ∈ R

n×n
[0,1] .

2 PPAD and Discrete Fixed Points

A binary relation R ⊂ {0, 1}∗ × {0, 1}∗ is polynomi-
ally balanced if there exists a polynomial p such that for
all pairs (x, y) ∈ R, |y | ≤ p( |x |). It is a polynomial-time
computable relation if for each pair (x, y), one can decide
whether or not (x, y) ∈ R in time polynomial in |x | + |y |.
One can define the NP search problem QR specified by R
as: Given x ∈ {0, 1}∗, if there exists y such that (x, y) ∈
R, return y, otherwise, return a special string “no”.

Relation R is total if for every x ∈ {0, 1}∗, there exists
y such that (x, y) ∈ R. Following [17], let TFNP denote
the class of all NP search problems specified by total rela-
tions. A search problem QR1 ∈ TFNP is polynomial-time
reducible to problem QR2 ∈ TFNP if there exists a pair
of polynomial-time computable functions (f, g) such that
for every x of R1, if y satisfies that (f(x), y) ∈ R2, then
(x, g(y)) ∈ R1. QR1 and QR2 are polynomial-time equiv-
alent if QR2 is also reducible to QR1 .

The complexity class PPAD [22] is sub-class of TFNP,
containing problems polynomial-time reducible to:

Definition 2.1 (LEAFD). The input instance of LEAFD is
a pair (M, 0n) where M defines a polynomial-time Turing
machine satisfying: (1). For every v ∈ {0, 1}n, M(v) is an
ordered pair (u1, u2) with u1, u2 ∈ {0, 1}n ∪ {“no”}; (2).
M(0n) = (“no”, 1n) and the first component of M(1n)
is 0n. This instance defines a directed graph G = (V,E)
with V = {0, 1}n and (u, v) ∈ E iff v is the second compo-
nent of M(u) and u is the first component of M(v). The
output is a directed leaf of G other than 0n. A vertex is a
directed leaf if its out-degree plus in-degree equals one.

2.1 Problem Brouwerf

We say an integer function f(n) is well-behaved if it
is polynomial-time computable and there exists an integer
constant n0 such that 3 ≤ f(n) ≤ n/2 for all n ≥ n0. For
example, f1(n) = 3, f2(n) = 
n/2�, f3(n) = 
n/3�, and
f4(n) = 
log n� are all well-behaved functions.

Let Kp = {q ∈ Z
d | qi ∈ {pi, pi + 1} ,∀ i.} for p ∈

Z
d. Let Ad

r = {q ∈ Z
d | 0 ≤ qi ≤ ri − 1,∀ i.}, for d

∈ Z
1
+ and r in Z

d
+, denote the hypergrid with side lengths

specified by r. The boundary of Ad
r , ∂(Ad

r), is the set of
points q ∈ Ad

r with qi ∈ {0, ri − 1} for some i. For each
r ∈ Z

d
+, let Size [r] =

∑
1≤i≤d � log(ri + 1) .

Definition 2.2 (Brouwer-Mapping Circuit). For d ∈ Z
1
+, r

∈ Z
d
+, a Boolean circuit C is a Brouwer-mapping circuit

with parameters d and r if it has Size [r] input bits and 2d
output bits ∆+

1 ,∆
−
1 , ...,∆

+
d ,∆

−
d . C is valid if

• ∀ p ∈ Ad
r , the 2d output bits evaluated at p satisfy:

case i, 1 ≤ i ≤ d: ∆+
i = 1 and all other 2d − 1 bits

are 0; or case (d+ 1): ∀ i, ∆+
i = 0 and ∆−

i = 1.
• ∀ p ∈ ∂(Ad

r), if there exists an i such that pi = 0,
letting imax = max { i | pi = 0 }, then the output bits
satisfy the ithmax case, otherwise (∀ i, pi �= 0 and some
pi is ri − 1 ), the output bits satisfy the d+ 1st case.

Definition 2.3 (Brouwer Color Assignment and Panchro-
matic Simplex). Let C be a valid Brouwer-mapping cir-
cuit with parameters d and r. It defines a color assignment
ColorC : Ad

r → {1, 2, ..., d+ 1} as: ColorC [p] = i if the
output bits of C evaluated at p satisfy the ith case.

A subset P ⊂ Ad
r is accommodated if P ⊂ Kp for some

point p ∈ Ad
r . P ⊂ Ad

r is a panchromatic simplex of C if
it is accommodated and contains exactly d + 1 points with
distinct d+ 1 colors.

Definition 2.4 (BROUWERf ). For a well-behaved function
f and an integer n > 0, let d = �n/f(n) and m = f(n).
An input instance of BROUWERf is a pair (C, 0n), where
C is a valid Brouwer-mapping circuit with parameters d



and r with ri = 2m for all i : 1 ≤ i ≤ d. The output of the
problem is then a panchromatic simplex of circuit C.

Both BROUWERf2 [3] and BROUWERf3 [9] are PPAD-
complete. In section 5, we will establish the following the-
orem. It states that the complexity of finding a fixed point is
independent of the shape or dimension of the search space.

Theorem 2.5 (High-Dimensional Fixed Points). For each
well-behaved function f , BROUWERf is PPAD-complete.

3 Smoothed Analysis and Approximation

In the smoothed analysis [24] of two-player games, we
consider perturbed games: For a pair of m × n matrices A
and B with |ai,j |, |bi,j | ≤ 1, let A and B be matrices with
ai,j = ai,j + rA

i,j , bi,j = bi,j + rB
i,j , while rA

i,j and rB
i,j are

chosen independently and uniformly from [−σ, σ] or from
Gaussian distribution with variance σ2. We refer to these
perturbations as σ-uniform and σ-Gaussian perturbations.
An algorithm for bimatrix games has polynomial smoothed
complexity [25] if it finds a Nash equilibrium of (A,B) in
expected time poly(m,n, 1/σ), for all (A,B).

The following lemma shows that if the smoothed com-
plexity of the bimatrix game, under uniform or Gaussian
perturbations, is low, then one can quickly find an approxi-
mate Nash equilibrium. See the full version [7] for a proof.

Lemma 3.1 (Smoothed Nash vs Approximate Nash). If
2-NASH can be solved in smoothed poly(m,n, 1/σ) time
under σ-uniform perturbations or σ-Gaussian perturba-
tions, then for all ε > 0, there exists a randomized algo-
rithm to compute an ε-approximate Nash equilibrium in a
two-player game with expected time O(poly(m,n, 1/ε)) or
O(poly(m,n,

√
log max(m,n)/ε)), respectively.

4 Approximating Nash Equilibria is Hard

In this section, we prove our main theorem:

Theorem 4.1 (Unlikely FPTAS for 2-NASH). For any con-
stant c > 0, the problem of computing a 1/nc-approximate
Nash equilibrium of a positively normalized n×n bimatrix
game is PPAD-complete.

Setting ε = 1/poly(n), by Theorem 4.1 and Lemma 3.1:

Theorem 4.2 (Hardness of Smoothed 2-NASH). 2-NASH
is not in smoothed polynomial time, under uniform or Gau-
ssian perturbations, unless PPAD ⊆ RP.

Consequently,

Theorem 4.3 (Simplex vs Lemke-Howson: Smoothed Per-
spective). The smoothed complexity of the Lemke-Howson
algorithm is not polynomial under uniform or Gaussian
perturbations, unless PPAD ⊆ RP.

4.1 Well-Supported Nash Equilibria

In our analysis, we will use an alternative notion of ap-
proximate Nash equilibria as introduced in [9]: For a game
G = (A,B), let ai and bi denote the ith row of A and the
ith column of B, respectively. An ε-well-supported Nash
equilibrium of G is a pair (x∗,y∗), such that for all j, k,

〈bj |x∗〉 > 〈bk|x∗〉 + ε ⇒ y∗k = 0 and

〈aj |y∗〉 > 〈ak|y∗〉 + ε ⇒ x∗k = 0.

We prove the following lemma in our full version [7].

Lemma 4.4 (Polynomial Equivalence). In a bimatrix game
(A,B) with A,B ∈ R

n×n
[0:1] , for any 0 ≤ ε ≤ 1, (1) each ε-

well-supported Nash equilibrium is also an ε-approximate
Nash equilibrium; and (2) from any ε2/(8n)-approximate
Nash equilibrium (u,v), one can find in polynomial time
an ε-well-supported Nash equilibrium (x,y).

4.2 From Brouwer to Approximate Nash

We reduce the search of a panchromatic simplex in an
instance of BROUWERf1 (which will be simply referred to
as BROUWER in this section) to the computation of a 1/nc-
approximate Nash equilibrium in a positively normalized
bimatrix game, for some constant c > 0. Recall f1(n) = 3.
Our reduction will use ideas and gadgets from [9, 4].

However, we will need to develop several new techni-
ques to meet the geometric and combinatorial challenges
in the consideration of high-dimensional fixed-points.

Let U = (C, 03n) be an input instance of BROUWER,
which colors the hypergrid Bn = Z

n
[0,7] with colors from

{1, ..., n, n + 1}. Let m be the smallest integer such that
2m ≥ Size [C] and N = 26m+1 = 2K, where Size [C] is
the number of gates plus the number of input and output
variables in a Boolean circuit C. We first, in polynomial
time, construct an N ×N bimatrix game GU = (AU ,BU ).
Our construction ensures for ε = 1/K3, ε′ = ε2/(8N),

• Property A1: |aU
i,j |, |bUi,j | ≤ N3, ∀ 1 ≤ i, j ≤ N and

• Property A2: From every ε′-approximate Nash equili-
brium of game GU , we can compute a panchromatic
simplex P of circuit C in polynomial time.

By Lemma 4.4 it suffices to show

• Property A′
2: From each ε-well-supported Nash equi-

librium of game GU , we can compute a panchromatic
simplex P of circuit C in polynomial time.

We normalize GU to obtain GU = (AU ,BU ) by setting

aU
i,j =

aU
i,j +N3

2N3
and bU i,j =

bUi,j +N3

2N3
, ∀ i, j.



From Property A2, a panchromatic simplex P of C can be
found in polynomial time from every N−10-approximate
Nash equilibrium of GU . By the following lemma, (proof
omitted), we can extend the constant 10 to any fixed c > 0.

Lemma 4.5. If the problem of finding an n−c-approximate
Nash equilibrium in an n × n positively normalized game
is PPAD-complete for some constant c = c0 > 0, then the
problem is PPAD-complete for every constant c > 0.

4.3 Overcome the Curse of Dimensionality

We now prove a key geometric lemma for finding a pan-
chromatic simplex in order to overcome the curse of dim-
ensionality. Our reduction will then build on this lemma.

For a ∈ R
+, let π(a) = max{ i | 0 ≤ i ≤ 7 and i < a }

be the largest integer in [0 : 7] that is smaller than a. Let
En = { z1, z2...zn, zn+1 } where zi = ei/K

2 and zn+1 =
−∑

1≤i≤n ei/K
2. We encode the ith color by vector zi.

For p ∈ R
n
+, let q = π(p) be the lattice point inBn with

qi = π(pi), ∀ i. Let ξ(p) = zt, where t = ColorC [π(p)].

Definition 4.6 (Well-Positioned Points). A real a ∈ R
+ is

poorly-positioned if there is an integer t : 0 ≤ t ≤ 7 such
that |a − t | ≤ 80Kε = 80/K2. A point p ∈ R

n
+ is well-

positioned if none of its components is poorly-positioned,
otherwise, it is poorly-positioned.

Let S = {p1,p2...,ph } be a set of h points in R
n
[0,8].

Let IB(S) = { k | pk is a poorly-positioned point }, and
IG(S) = { k | pk is a well-positioned point }.

Lemma 4.7 (Key Geometry: Equiangle Averaging Seg-
ment). Let S = {pi, 1 ≤ i ≤ n3 } be n3 points in R

n
[0,8]

such that pi = pi−1 +
∑n

i=1 ei/K, ∀ 1 < i ≤ n3. If there
is a vector rk ∈ R

n
[0,1/K2] for each k in IB(S), such that,

∥∥ ∑
k∈IG(S) ξ(p

k) +
∑

k∈IB(S) r
k

∥∥
∞ = O(ε),

then Q = {π(pk), k ∈ IG(S)} is a panchromatic simplex
of Boolean circuit C.

Proof. We first prove that Q′ = {qk = π(pk), 1 ≤ k ≤
n3 } is accommodated, and |Q′ | ≤ n + 1. As sequence
{pk} is strictly increasing, {qk} is non-decreasing. Since
n/K � 1, there exists at most one ki, for each i, such that
qki
i = qki−1

i + 1, which implies that Q′ is accommodated.
Moreover, as {qk} is non-decreasing, |Q′ | ≤ n + 1. As
Q ⊂ Q′, Q is also accommodated and |Q | ≤ n+ 1.

Because 1/K2 � 1/K � 1, there is at most one ki,
for each i, such that pki

i is poorly-positioned. Since every
poorly-positioned point has at least one poorly-positioned
component, |IB(S) | ≤ n and |IG(S) | ≥ n3 − n.

For every 1 ≤ i ≤ n + 1, let Wi denote the number
points in

{
qk : k ∈ IG(S)

}
that is colored i by circuit C.

G+: P[T ] = [ x[v] = min(x[v1] + x[v2],xC [v] ) ± ε ]

Gζ : P[T ] = [ x[v] = c± ε ]

G×ζ : P[T ] = [ x[v] = min(cx[v1],xC [v] ) ± ε ]

G=: P[T ] = [ x[v] = min(x[v1],xC [v] ) ± ε ]

G<: P[T ] =

[
x[v] =B 1 if x[v1] < x[v2] − ε
x[v] =B 0 if x[v1] > x[v2] + ε

]

G−: P[T ] =

[
min(x[v1] − x[v2],xC [v]) − ε ≤ x[v]

x[v] ≤ max(x[v1] − x[v2], 0) + ε

]

G∨: P[T ] =

[
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

]

G∧: P[T ] =

[
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0
x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1

]

G¬: P[T ] =

[
x[v] =B 0 if x[v1] =B 1
x[v] =B 1 if x[v1] =B 0

]

Figure 1. Constraint P[T]

It suffices to show that Wi > 0 for all i in order prove Q is
a panchromatic simplex,

Let rG =
∑

k∈IG(S) ξ(p
k) and rB =

∑
k∈IB(S) r

k.
Since |IB(S)| ≤ n and ‖rk ‖∞ ≤ 1/K2, we have

‖rB ‖∞ ≤ n/K2, and

‖rG ‖∞ ≤ ‖rB ‖∞ +O(ε) ≤ n/K2 +O(ε). (2)

Assume by way of contradiction that one of Wi is zero:
(i) Wn+1 = 0: Suppose Wi∗ = max1≤i≤nWi, then

Wi∗ ≥ n2 − 1. But rG
i∗ ≥ (n2 − 1)/K2 � n/K2 + O(ε),

since ε = 1/K3, which contradicts with (2) above.
(ii) Wt = 0 for some 1 ≤ t ≤ n: We assert Wn+1 ≤

n2/2, for otherwise, |rG
t | > n2/(2K2) � n/K2 + O(ε),

contradicting with (2). Suppose Wi∗ = max1≤i≤n+1Wi,
then Wi∗ ≥ n2 − 1 and i∗ �= n + 1. So rG

i∗ ≥ (n2 − 1 −
n2/2)/K2 � n/K2 +O(ε), contradicting with (2).

4.4 Gadget Games and Constraints

To construct game GU , we transform a prototype game
G∗= (A∗,B∗), a zero-sum game to be defined, by adding
“gadget” games: We will build a collection of gadgets SU

= {T1, ..., Tl } for some l ≤ K. Each T ∈ SU defines two
N ×N matrices (L[T ],R[T ]), as shown in Figure 2.

We define a function named BUILDGAME that takes a
valid collection (will be defined) of gadgets SU and returns
a bimatrix game GU = (AU ,BU ) = BUILDGAME(SU )
as: AU = A∗+

∑
T∈SU L[T ], BU = B∗+

∑
T∈SU R[T ].

4.4.1 Nodes, Values and Capacities

We choose two sets VA and VI with |VA| = |VI | = K. It
will become clear what these elements are. So, don’t worry



too much about them now. We call elements in VA arith-
metic nodes and elements in VI internal nodes.

Below, we will always use v to denote a node in VA and
w to denote a node in VI . We also pick two one-to-one
correspondences CA and CI to index these sets: CA maps
VA to [K] = {1, 2, ...,K } and CI maps VI to [K].

Let (x ∈ P
N ,y ∈ P

N ) be a pair of probability vectors.
For each v ∈ VA, let x[v] = x2k−1 and xC [v] = x2k−1 +
x2k, where k = CA(v). We refer to x[v] and xC [v] as the
value and capacity, respectively, of v in (x,y). Similarly,
the value and capacity of each w ∈ VI is y[w] = y2t−1 and
yC [w] = y2t−1 + y2t, respectively, where t = CI(w).

4.4.2 The Prototype Game and its Properties

Our prototype G∗ = (A∗,B∗) is the game of Matching
Pennies with parameter M = 218m+1 = 2K3: A∗ is a
K × K block-diagonal matrix where each diagonal block
is a 2 × 2 matrix of all M ’s, and B∗ = −A∗. All games
we will consider below belong to the following class:

Definition 4.8 (Class L). A two-player game (A,B) be-
longs to class L if 0 ≤ A − A∗,B − B∗ ≤ 1.

Every equilibrium (x,y) of G∗ enjoys a nice property:
xC [v] = yC [w] = 1/K, for all v ∈ VA and w ∈ VI .

Let P denote the following constraint on (x,y):

[xC [v] = 1/K ± ε,yC [w] = 1/K ± ε,∀ v ∈ VA, w ∈ VI ].

Lemma 4.9 (Nearly Uniform Capacities). If G ∈ L, then
every 1.0-well-supported Nash equilibrium (x,y) of game
G satisfies constraint P for ε = 2−18m = 1/K3.

4.4.3 Gadgets and their Constraints

We use all the nine types of gadgets designed in [4] for our
construction: {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬ }.
Among them, G∧, G∨ and G¬ are logic gadgets. They will
be used to simulate the logic gates in the Boolean circuit
C. Associated with probability vectors (x,y), the value of
v ∈ VA represents boolean 1 (x[v] =B 1) if x[v] = xC [v];
it represents boolean 0 (x[v] =B 0 ) if x[v] = 0. A gad-
get T = (G, v1, v2, v, c, w) is a 6-tuple that implements an
arithmetic or logic constraint P[T ], which requires the val-
ues of nodes v, v1 and v2 to satisfy certain functional rela-
tionship. The requirements for logic gadgets will hold ex-
actly and the requirements for arithmetic ones will hold ap-
proximately. By Figure 1, the logic constraints implemen-
ted by the logic gadgets are effective only when the values
of their input nodes are representations of binary bits.

In gadget T , v1 ∈ VA ∪ {nil} and v2 ∈ VA ∪ {nil}
are the first and second input nodes, respectively, v ∈ VA

is the output node, and w ∈ VI is the internal node of the
gadget. Parameter c is only used in Gζ and G×ζ gadgets:

when type G = Gζ , we have c ∈ R and 0 ≤ c ≤ 1/K − ε;
when G = G×ζ , 0 ≤ c ≤ 1; otherwise, c = nil.

Definition 4.10 (Valid Collection). A collection S of gad-
gets is valid if for each pair T = (G, v1, v2, v, w, c) and
T ′ = (G′, v′1, v

′
2, v

′, c′, w′) in S, v �= v′ and w �= w′.

For every valid collection S, BUILDGAME(S) satisfies
the following constraints:

Lemma 4.11 (P). Let G = BUILDGAME(S). If S is valid
then G ∈ L and |S | ≤ K. So, by Lemma 4.9, each ε-well-
supported Nash equilibrium of G satisfies constraint P .

Proof. For each T ∈ S, (L[T ],R[T ]) of Figure 2 satisfy:

Property 4.12. Let T = (G, v1, v2, v, c, w), L[T ] = (Li,j)
and R[T ] = (Ri,j). Let k = CA(v) and t = CI(v). Then

• i �= 2k or 2k − 1 ⇒ Li,j = 0, ∀ 1 ≤ j ≤ 2K;

• j �= 2t or 2t− 1 ⇒ Ri,j = 0, ∀ 1 ≤ i ≤ 2K;

• i = 2k or 2k − 1 ⇒ 0 ≤ Li,j ≤ 1, ∀ 1 ≤ j ≤ 2K;

• j = 2t or 2t− 1 ⇒ 0 ≤ Ri,j ≤ 1, ∀ 1 ≤ i ≤ 2K.

As S is valid, G ∈ L. As |VA| = |VI | = K, |S | ≤ K.

Theorem 4.13 (Gadget Constraints). If S is a valid collec-
tion of gadgets, and (x,y) is an ε-well-supported Nash
equilibrium of BUILDGAME(S), then for all T ∈ S, con-
straint P[T ] as defined in Figure 1 is satisfied by (x,y).

Proof. A similar theorem is proved in [4], also see [7].

4.5 Construction of the Game GU

Our objective is to design a bimatrix game GU to en-
code n3 points in R

n
[0,8], to simulate the π function, and the

boolean circuit C so that in every ε-well-supported equilib-
rium of GU , the sum of the n3 vectors as given in Lemma
4.7 is close to zero, i.e., O(ε). To achieve this, We build a
valid collection SU of gadgets to define the bimatrix game.
Then Q defined in Lemma 4.7 is a panchromatic simplex
of C, which can be computed in polynomial time.

Let us define some notations that will be useful. Let S
be a valid collection of gadgets. A node v ∈ VA (or node
w ∈ VI ) is said to be unused if none of the gadgets in S
uses v (or w) as its output node (or internal node). Suppose
T �∈ S is a gadget such that S ∪ {T} is valid. We will use
INSERT(S, T ) to denote the insertion of T into S.

To encode these n3 points, let {vk
i }1≤k≤n3,1≤i≤n be n4

distinguished nodes in set VA. We start with SU = ∅ and
insert a number of gadgets into it so that, in every ε-well-
supported Nash equilibrium (x,y) of GU , values of these
nodes encode n3 points S = {pk : 1 ≤ k ≤ n3 } in R

n
[0,8]

that approximately satisfy all the conditions of Lemma 4.7.
In our encoding, we let pk

i = 8Kx[vk
i ].



L[T ] and R[T ], where T = (G, v1, v2, v, c, w)

Set L[T ] = (Li,j) = R[T ] = (Ri,j) = 0

k = CA(v), k1 = CA(v1), k2 = CA(v2), and t = CI(w)

G+:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k2−1,2t−1 = R2k−1,2t = 1

Gδ:

{
L2k−1,2t = L2k,2t−11
R2k−1,2t−1 = 1, Ri,2t = c, ∀ 1 ≤ i ≤ 2K

G×δ:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = c, R2k−1,2t = 1

G=:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k−1,2t = 1

G−:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k2−1,2t = R2k−1,2t = 1

G<:

{
L2k−1,2t = L2k,2t−1 = 1
R2k1−1,2t−1 = R2k2−1,2t = 1

G∨:

{
L2k−1,2t−1 = L2k,2t = R2k1−1,2t−1 = 1
R2k2−1,2t−1 = 1, Ri,2t = 1/(2K), ∀ 1 ≤ i ≤ 2K

G∧:

{
L2k−1,2t−1 = L2k,2t = R2k1−1,2t−1 = 1
R2k2−1,2t−1 = 1, Ri,2t = 3/(2K), ∀ 1 ≤ i ≤ 2K

G¬:

{
L2k−1,2t = L2k,2t−1 = 1
R2k1−1,2t−1 = R2k1,2t = 1

Figure 2. Matrices L[T] and R[T]

EXTRACTBITS(S, v, v1, v2, v3)

1: pick unused nodes v1, v2, v3, v4 ∈ VA and w ∈ VI

2: INSERT(S, (G=, v, nil, v1, nil, w))

3: for j from 1 to 3 do

4: pick unused vj1, vj2 ∈ VA and wj1, wj2, wj3, wj4 ∈ VI

5: INSERT(S, (Gζ , nil, nil, vj1, 2
−(6m+j), wj1))

6: INSERT(S, (G<, vj1, vj , v
j , nil, wj2))

7: INSERT(S, (G×ζ , v
j , nil, vj2, 2

−j , wj3))

8: INSERT(S, (G−, vj , vj2, vj+1, nil, wj4))

Figure 3. Function ExtractBits

We define two functions EXTRACTBITS and COLOR-
INGSIMULATION. They will be used as the building blocks
of our reduction. EXTRACTBITS given in Figure 3, enables
us to realize the π function. We have

Lemma 4.14 (Encoding Binary with Games). Suppose S is
a valid collection of gadgets. For each v ∈ VA and three
unused nodes v1, v2, v3 ∈ VA, let S ′ be the set obtained
after calling EXTRACTBITS(S, v, v1, v2, v3). Then S ′ is
also valid and in every ε-well-supported Nash equilibrium
(x,y) of game G′ = BUILDGAME(S ′), if a = 8Kx[v]
is well-positioned, then x[vi] =B bi, where b1b2b3 is the
binary representation of integer π(a) ∈ [0 : 7].

For each {vi}i∈[1:n] ⊂ VA and 3n unused nodes {v+
i ,

v−i }i∈[1:n] ⊂ VA, let p ∈ R
n
+ denote the point encoded by

{vi}i∈[1:n]. Think p as a point in S =
{
pk : 1 ≤ i ≤ n3

}
.

COLORINGSIMULATION(S, {vi}i∈[1:n] ,
{
v+

i , v
−
i

}
i∈[1:n]

)
simulates circuit C on input π(p), given a valid collection
S: (i) Pick 3n unused nodes {vi,j}i∈[1:n]j∈[1:3] in VA. Call
EXTRACTBITS(S, vt, vt,1, vt,2, vt,3), for each 1 ≤ t ≤ n;
(ii) View the values of {vi,j} as 3n input bits of C. Insert
the corresponding logic gadgets from {G∨, G∧, G¬} into
S to simulate the evaluation of C, one for each gate, and
place the 2n output bits in {v+

i , v
−
i }.

Lemma 4.15 (Point Coloring). Let S ′ be the set of gad-
gets after calling the above COLORINGSIMULATION. For
a pair of probability vectors (x,y), let p be the point with
pi = 8Kx[vi], q = π(p), and ∆+

i [q] and ∆−
i [q], for all

i, be the output bits of C evaluated at q. Then, S ′ is valid.
Moreover, if (x,y) is an ε-well-supported equilibrium of
BUILDGAME(S ′), and p is a well-positioned point, then
x[v+

i ] =B ∆+
i [q] and x[v−i ] =B ∆−

i [q] for all i ∈ [1 : n].

Note that if the point p in the lemma above is not well-
positioned, the values of {v+

i , v
−
i } could be arbitrary. For-

tunately, because S ′ is valid and thus (x,y) must satisfy P ,
we know 0 ≤ x[v+

i ],x[v−i ] ≤ 1/K + ε.
We build SU and thus GU with a four-step construction.

Part 1 [ Equiangle Sampling Segment ] :
SU = ∅. Insert properly-valued Gζ gadgets and G+ gad-
gets to ensure that in each ε-well-supported Nash equilib-
rium (x,y) of the resulting game,

x[vk
i ] = min(x[v1

i ] + (k − 1)/(8K2),xC [vk
i ] ) ±O(ε),

for all k ∈ [1 : n3] and i ∈ [1 : n].

Part 2 [ Point Coloring ] :
Pick 2n4 unused nodes {vk+

i , vk−
i }i∈[1:n],k∈[1:n3] from VA.

For each integer k ∈ [1 : n3], call function COLORING-
SIMULATION(SU , {vk

i }, {vk+
i , vk−

i }i∈[1:n]).

Part 3 [ Summing up the Coloring Vectors ] :
Pick 2n unused nodes {v+

i , v
−
i }i∈[1:n] from VA and insert

properly-valued G×ζ gadgets and G+ gadgets to ensure in
the resulting game, every ε-well-supported Nash equilib-
rium (x,y) satisfies

x[v+
i ] =

∑
1≤k≤n3

(
1
K x[vk+

i ]
) ±O(n3ε) and

x[v−i ] =
∑

1≤k≤n3

(
1
K x[vk−

i ]
) ±O(n3ε).

Part 4. For each i ∈ [1 : n], pick unused nodes v′i, v
′′
i ∈

VA and w1
i , w

2
i , w

3
i ∈ VI . Insert the following gadgets:

INSERT
(SU , (G+, v

0
i , v

+
i , v

′
i, nil, w

1
i )

)
,

INSERT
(SU , (G−, v′i, v

−
i , v

′′
i , nil, w

2
i )

)
,

INSERT
(SU , (G=, v

′′
i , nil, v

0
i , nil, w

3
i )

)
.



4.6 Analysis of the Reduction

We now prove the correctness of our construction.
Let (x,y) be an ε-well-supported Nash equilibrium of

GU . Recall S = {pk, with pk
i = 8Kx[vk

i ], 1 ≤ k ≤ n3}
is the set of n3 points that we want to produce. Let IG =
IG(S) and IB = IB(S). For each t ∈ IG, let ct ∈ [1 : n+1]
be the color of qt = π(pt) assigned by C, and for each
i ∈ [1 : n+ 1], Wi = |{ t ∈ IG | ct = i}|.

By Part 1 of our construction, we have

Lemma 4.16 (Not Too Many Poorly-Positioned Points).
|IB | ≤ n, and hence |IG | ≥ n3 − n.

Lemma 4.17 (Accommodated). Q = {π(pk), k ∈ IG} is
accommodated and |Q | ≤ n+ 1.

For each 1 ≤ k ≤ n3, let rk denote the vector that,
after Part 2, satisfies rk

i = x[vk+
i ] − x[vk−

i ], for all i. The
construction and Lemma 4.9 guarantees that

Lemma 4.18 (Correct Encoding of Colors). For each t ∈
IG, rt = Kzct ± ε; for each t ∈ IB , ‖rt‖∞ ≤ 1/K + ε.

Recall that Part 3 sums up these n3 vectors
{
rk

}
. Let

r denote the vector that can be defined after Part 3, with
ri = x[v+

i ] − x[v−i ], for all i : 1 ≤ i ≤ n.
Ideally, with the gadgets inserted in Part 4, we wish to

establish ‖r‖∞ = O(ε). However, whether or not this con-
dition holds depends on the values of {v1

i }1≤i≤n. For ex-
ample, in the case when x[v1

i ] = 0, the magnitude of x[v−i ]
could be much larger than that of x[v+

i ]. We are able to
establish the following lemma which is sufficient to carry
out our correctness proof of the reduction.

Lemma 4.19 (Well-Conditioned Solution). For all 1 ≤ i ≤
n, if x[v1

i ] > 4ε, then ri = x[v+
i ] − x[v−i ] > −4ε; if

x[v1
i ] < 1/K − 2n3/K2, then ri = x[v+

i ] − x[v−i ] < 4ε.

Now we start to show that Q is a panchromatic simplex
of C. By Lemma 4.17, it suffices to show that Wi > 0, ∀ i.

By Part 3 of the construction and Lemma 4.18,

r =
1
K

∑
i∈IG

ri +
1
K

∑
i∈IB

ri ±O(n3ε)

=
∑

1≤i≤n+1

Wi zi +
1
K

∑
i∈IB

ri ±O(n3ε)

= rG + rB ±O(n3ε).

where rG =
∑

1≤i≤n+1Wizi and rB =
∑

i∈IB
ri/K.

Since |IB | ≤ n and ‖ri‖∞ ≤ 1/K + ε for each i ∈ IB ,
following Lemma 4.9, ‖rB ‖∞ = O(n/K2).

As |IG | ≥ n3 − n, we have
∑

1≤i≤n+1Wi ≥ n3 − n.
The following lemma shows that, if one of Wi is equal to
zero, then ‖rG‖∞ � ‖rB ‖∞.

Lemma 4.20 (Color Gap). If one of Wi equals zero, then
‖rG‖∞ ≥ n2/(3K2), and thus ‖r‖∞ � 4ε.

Therefore, if Q is not a panchromatic simplex, then one
of the Wi’s is equal to 0, and hence ‖r‖∞ � 4ε. Had the
Part 4 of our construction guaranteed that ‖r‖∞ = O(ε),
we would have completed the proof. As it is not always the
case, we prove the following lemma to complete the proof.

Lemma 4.21 (Well-Conditioness). For all i : 1 ≤ i ≤ n,
4ε < x[v1

i ] < 1/K − 2n3/K2.

Proof. In this proof, we will use Lemma 4.22 below about
the boundary conditions of circuit C. Recall 1/K = 2−6m,
ε = 2−18m = 1/K3 and 2m > n.

First, if there exists an integer k : 1 ≤ k ≤ n such that
x[v1

k] ≤ 4ε, then qt
k = 0 for all t ∈ IG, according to Part

1. By Lemma 4.22.1, Wn+1 = 0. Let l be the integer such
that Wl = max1≤i≤nWi. As

∑n+1
i=1 Wi = |IG | ≥ n3 − n,

we have Wl ≥ n2 − 1. So, rl ≥ Wl/K
2 − O(n/K2) −

O(n3ε) � 4ε. Now consider the following cases : (1) If
x[v1

l ] < 1/K − 2n3/K2, then we get a contradiction in
Lemma 4.19. (2) If x[v1

l ] ≥ 1/K − 2n3/K2, then for all
t ∈ IG, pt

l = 8K(min(x[v0
l ] + t/K2,xC [vt

l ])±O(ε)) > 1
and hence qt

l > 0. By Lemma 4.22.2, we have Wl = 0,
which contradicts with the assumption.

Second, if there exists an integer 1 ≤ k ≤ n such that
x[v1

k] ≥ 1/K − 2n3/K2, then qt
k = 7 for all t ∈ IG. By

Lemma 4.22.3, Wk = 0. If Wn+1 ≥ n2/2, then rk ≤
−Wn+1/K

2 +O(n/K2) +O(n3ε) � −4ε, which contra-
dicts with the assumption that x[v1

k] ≥ 1/K − 2n3/K2 >
4ε ( see Lemma 4.19.1). Below, we assume Wn+1 < n2/2.

Let l be the integer such that Wl = max1≤i≤n+1Wi.
Because Wk = 0, we have Wl ≥ n2 − 1 and l �= k. As
Wn+1 < n2/2, Wl −Wn+1 > n2/2 − 1 and thus, rl ≥
(Wl −Wn+1)/K2 − O(n/K2) − O(n3ε) � 4ε. We now
consider the following two cases : (1) If x[v1

l ] < 1/K −
2n3/K2, then we get a contradiction in Lemma 4.19.2; (2)
If x[v1

l ] ≥ 1/K −2n3/K2, then pt
l > 1 and thus qt

l > 0
for all t ∈ IG. By Lemma 4.22.4, we have Wl = 0 which
contradicts with the assumption.

Lemma 4.22. For each q ∈ Bn and 1 ≤ k �= l ≤ n, (1) if
qk = 0, then ColorC [q] �= n+ 1, (2) if qk = 0 and ql > 0,
then ColorC [q] �= l, (3) if qk = 7, then ColorC [q] �= k,
and (4) if qk = 7 and ColorC [q] = l �= k, then ql = 0.

5 PPAD-Completeness of Brouwerf

Our reduction starts with the 2D problem BROUWERf2 .
To simplify the proof, we modify the definition of prob-
lem BROUWERf as follows: In the original definition, each
valid Brouwer-mapping circuit C defines a color assign-
ment from the search space to {1..., d+ 1}. In this section,
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Figure 4. The 2-Dimensional View of Set W

ColorC′ [p] in Ad+1
r′ by L3(T, t, a, b)

1: if p ∈W then

2: ColorC′ [p] = ColorC [ψ(p)]

3: else if p ∈ ∂
(
Ad+1

r′
)

then

4: if there exists i such that pi = 0 then

5: ColorC′ [p] = imax = max{ i ∣∣ pi = 0 }
6: else ColorC′ [p] = red

7: else if pd+1 ≡ 0 (mod 4) and 1 ≤ pt ≤ a+ 1

8: ColorC′ [p] = d+ 1

9: else if pd+1 ≡ 1, 2 or 3 (mod 4) and pt = 1

10: ColorC′ [p] = d+ 1

11: else ColorC′ [p] = red

Figure 5. L3(T,t,a,b)

we replace the color d + 1 by a special color “red”. In an-
other word, if the output bits of C evaluated at p satisfy the
d+ 1st case, then ColorC [p] =“red”.

The basic idea of our reduction is to iteratively embed
an instance of BROUWERf2 into one for a space one dimen-
sion higher. We use the following concept to describe such
embedding processes. A triple T = (C, d, r) is a coloring
triple if r ∈ Z

d with ri ≥ 7 for all 1 ≤ i ≤ d and C is
a valid Brouwer-mapping circuit with parameters d and r.
We let Size [C] denote the number of gates plus the number
of input and output variables in a circuit C.

Our embedding is defined by a sequence of three poly-
nomial-time transformations: L1(T, t, u), L2(T, u), and
L3(T, t, a, b). They embed a coloring triple T into a larger
T ′ such that from every panchromatic simplex of T ′, one
can find a panchromatic simplex of T efficiently.

Both L1 and L2 are very simple operations. Given a T =

(C, d, r) and two integers 1 ≤ t ≤ d, u > rt, L1(T, t, u)
pads dimension t to size u, i.e., it builds a new coloring
triple T ′ = (C ′, d, r′) with r′t = u and r′i = ri, ∀ i : 1 ≤
i �= t ≤ d. For u ≥ 7, L2(T, u) adds a dimension to T by
constructing T ′ = (C ′, d + 1, r′) such that r′d+1 = u and
r′i = ri, ∀ i : 1 ≤ i ≤ d.

L3(T, t, a, b) is the one that does all the hard work.

Lemma 5.1 (L3(T, t, a, b): Snake Embedding). Given a
coloring triple T = (C, d, r) and an integer 1 ≤ t ≤ d,
if rt = a(2b + 1) + 5 for some integers a, b ≥ 1, then we
can construct a new coloring triple T ′ = (C ′, d + 1, r′)
that satisfies the following two conditions. (1) r′t = a + 5,
r′d+1 = 4b + 3, and r′i = ri for all 1 ≤ i �= t ≤ d. More-
over, there exists a polynomial g(n) such that Size [C ′] =
Size [C] + O(g(Size [r′])) and T ′ can be computed in time
polynomial in Size [C ′]. (2) From each panchromatic sim-
plex P ′ of coloring triple T ′, one can compute a panchro-
matic simplex P of T in polynomial time.

In the construction of C ′, we use a snake-pattern W ⊂
Ad+1

r′ to realize the longer tth dimension of Ad
r in the two-

dimensional space defined by the shorter tth and d + 1st

dimensions, see Figure 4 and 5. In Figure 5, ψ is a onto
map (defined in the full version [7] ) from W to Ad

r . The
proof of Lemma 5.1 can be found in [7].

By repeatedly applying the three operations L1−3, we
can prove Theorem 2.5. The proof is relatively procedural
and can be found in [7].

6 Extensions and Open Questions

As the fixed-points and Nash equilibria are fundamental
to many other search and optimization problems, our results
and techniques may have a broader scope of applications
and implications.

Our hardness results can be naturally extended to both
r-player games [20] and r-graphical games [12], for every
fixed r ≥ 3. Recently, there are a few exciting extensions of
our work: Huang and Teng [11] applied our result to show
that the problem of finding a market equilibrium in a Leon-
tief exchange economy does not have a fully polynomial-
time approximation scheme, unless PPAD ⊆ P. They also
show that the smoothed complexity of neither Scarf’s gen-
eral market equilibrium algorithm nor any other algorithm
for Leontief market is likely polynomial. Chen, Teng, and
Valiant [8] solved one of our conjectures by extending the
PPAD-hardness result to the approximation of win-lose bi-
matrix games. In addition, we proved in [6] that the prob-
lem of computing a 1/poly(n)-approximate Nash equilib-
rium remains PPAD-complete for a sparse bimatrix game
(A,B) in which each row and column of A and B contains
at most a constant number of nonzero entries.



There remains a complexity gap on the approximation
of Nash equilibria in two-player games: Lipton, Markakis
and Mehta [16] show that an ε-approximate Nash equilib-
rium can be computed in nO(log n/ε2)-time, while this paper
shows that no algorithm can find an ε-approximate Nash
equilibrium in poly(n, 1/ε)-time for ε of order 1/poly(n),
unless PPAD ⊆ P. However, our hardness result does not
cover the case when ε is a constant between 0 and 1, or of
order 1/polylog(n). Naturally, it is unlikely that finding an
ε-approximate Nash equilibrium is PPAD-complete when ε
is an absolute constant, for otherwise, all the search prob-
lems in PPAD would be solvable in nO(log n)-time, due to
the result of [16].

Thinking optimistically, we would like to see the follow-
ing conjectures to be true.

Conjecture 1 (PTAS for NASH). There is an O(nk+ε−c

)-
time algorithm for finding an ε-approximate Nash equilib-
rium in a two-player game, for some constants c and k.

Conjecture 2 (Smoothed 2-NASH: Constant σ). There is
an algorithm to compute a Nash equilibrium in a two-player
game with smoothed complexity O(nk+σ−c

) under pertur-
bations with magnitude σ, for some constants c and k.

We also conjecture that Theorem 4.3 remains true with-
out any complexity assumption on PPAD. A positive an-
swer would extend the result of Savani and von Stengel [23]
to smoothed games.
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[2] I. Bárány, S. Vempala, and A. Vetta. Nash equilibria in ran-
dom games. In FOCS 2005, pages 123–131.

[3] X. Chen and X. Deng. On the complexity of 2d discrete
fixed point problem. In ICALP 2006, pages 489–500.

[4] X. Chen and X. Deng. Settling the complexity of 2-player
nash-equilibrium. In FOCS 2006.

[5] X. Chen and X. Deng. 3-nash is ppad-complete. ECCC,
TR05-134, 2005.

[6] X. Chen, X. Deng, and S.-H. Teng. Sparse games are hard.
In WINE 2006.

[7] X. Chen, X. Deng, and S.-H. Teng. Computing nash equilib-
ria: Approximation and smoothed complexity. ECCC TR06-
023, 2006.

[8] X. Chen, S.-H. Teng, and P. A. Valiant. The approximation
complexity of win-lose games. Manuscript: Tsinghua-BU-
MIT, 2006.

[9] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The com-
plexity of computing a nash equilibrium. In STOC 2006.

[10] C. Daskalakis and C. Papadimitriou. Three-player games
are hard. ECCC, TR05-139, 2005.

[11] L.-S. Huang and S.-H. Teng. On the approximation and
smoothed complexity of leontief market equilibria. ECCC,
TR06-031, 2006.

[12] M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical
models for game theory. In UAI 2001, pages 253–260.

[13] L. Khachian. A Polynomial Algorithm in Linear Program-
ming. Dokl. Akad. Nauk, SSSR 244:1093–1096, English
translation in Soviet Math. Dokl. 20, 191–194, 1979.

[14] C. Lemke. Bimatrix equilibrium points and mathematical
programming. Management Science, 11:681–689, 1965.

[15] C. Lemke and J. J.T. Howson. Equilibrium points of bima-
trix games. J. Soc. Indust. Appl. Math., 12:413–423, 1964.

[16] R. J. Lipton, E. Markakis, and A. Mehta. Playing large
games using simple strategies. In EC 2003, pages 36–41.

[17] N. Megiddo and C. Papadimitriou. On total functions, ex-
istence theorems and computational complexity. Theoret.
Comput. Sci., 81:317–324, 1991.

[18] O. Morgenstern and J. von Neumann. The Theory of Games
and Economic Behavior. Princeton University Press, 1947.

[19] J. Nash. Equilibrium point in n-person games. Porceedings
of the National Academy of the USA, 36(1):48–49, 1950.

[20] J. Nash. Noncooperative games. Annals of Mathematics,
54:289–295, 1951,.

[21] C. Papadimitriou. Algorithms, games, and the internet. In
STOC 2001, pages 749–753.

[22] C. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Com-
puter and System Sciences, pages 498–532, 1994.

[23] R. Savani and B. von Stengel. Exponentially many steps for
finding a nash equilibrium in a bimatrix game. In FOCS
2004, pages 258–267.

[24] D. A. Spielman and S.-H. Teng. Smoothed analysis of al-
gorithms: Why the simplex algorithm usually takes polyno-
mial time. J. ACM, 51(3):385–463, 2004, also STOC 2001.

[25] D. A. Spielman and S.-H. Teng. Smoothed analysis of algo-
rithms and heuristics: Progress and open questions. In L. M.
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