
Discrete Mathematics 308 (2008) 2213–2221
www.elsevier.com/locate/disc

Searching monotone multi-dimensional arrays�

Yongxi Chenga,∗, Xiaoming Sunb, Yiqun Lisa Yinc

aDepartment of Computer Science, Tsinghua University, Beijing 100084, China
bCenter for Advanced Study, Tsinghua University, Beijing 100084, China

cIndependent security consultant, Greenwich CT, USA

Received 15 September 2004; received in revised form 7 March 2006; accepted 24 April 2007
Available online 8 May 2007

Abstract

A d-dimensional array of real numbers is called monotone increasing if its entries are increasing along each dimension. Given
An,d , a monotone increasing d-dimensional array with n entries along each dimension, and a real number x, we want to decide
whether x ∈ An,d , by performing a sequence of comparisons between x and some entries of An,d . We want to minimize the number
of comparisons used. In this paper we investigate this search problem, we generalize Linial and Saks’ search algorithm [N. Linial,
M. Saks, Searching ordered structures, J. Algorithms 6 (1985) 86–103] for monotone three-dimensional arrays to d-dimensions for
d �4. For d = 4, our new algorithm is optimal up to the lower order terms.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Search algorithm; Complexity; Partially ordered set; Monotone multi-dimensional array

1. Introduction

In this paper, we investigate the problem of searching monotone multi-dimensional arrays. Suppose we are given a
d-dimensional array of real numbers with n entries along each dimension

An,d = {ai1,i2,...,id |i1, i2, . . . , id = 1, 2, . . . , n}.
We say that the array An,d is monotone increasing if its entries are increasing along each dimension. More precisely,
if i1 �j1, i2 �j2,…, id �jd then ai1,i2,...,id �aj1,j2,...,jd

. In other words, if P = [n]d is the product of d totally ordered
sets {1, 2, . . . , n}, then An,d is consistent with the partially ordered set P.

The search problem is to decide whether a given real number x belongs to the array An,d , by comparing x with a
subset of the entries in the array. The complexity of this problem, denoted by �(n, d), is defined to be the minimum
over all search algorithms for An,d of the number of comparisons needed in the worst case. Note that for d = 1, this
problem reduces to searching a totally ordered set. In this case, the binary search algorithm is optimal and requires at
most �log2(n + 1)� comparisons in the worst case.

� Supported in part by National Natural Science Foundation of China Grant 60553001, 60603005, and National Basic Research Program of China
Grant 2007CB807900, 2007CB807901.

∗ Corresponding author.
E-mail addresses: cyx@mails.tsinghua.edu.cn (Y. Cheng), xiaomings@tsinghua.edu.cn (X. Sun), yiqun@alum.mit.edu (Y.L. Yin).

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.04.067

http://www.elsevier.com/locate/disc
mailto:cyx@mails.tsinghua.edu.cn
mailto:xiaomings@tsinghua.edu.cn
mailto:yiqun@alum.mit.edu

2214 Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221

We first briefly review some previous work. In [3], Linial and Saks presented some general results on the complexity
of the above class of search problems. In particular, they proved that for any finite partially ordered set P, the information
theoretic bound for the complexity is tight up to a multiplicative constant. In [2] they studied the problems for general
finite partially ordered set P and also gave more precise results for the case where P =[n]d , for dimensions d �2. They
observed that for d = 2, it had been known that �(n, 2) = 2n − 1 [1]. For d �2, they showed that the order of �(n, d)

is O(nd−1). More specifically, they proved that for d �2,

c2(d)nd−1 + o(nd−1)��(n, d)�c1(d)nd−1,

where c1(d) is a nonincreasing function of d and upper bounded by 2, and c2(d)=√
(24/�)d−1/2+o(d−1/2). The upper

bound c1(d)nd−1 was obtained by using a straightforward search algorithm which partitions An,d into n isomorphic
copies of An,d−1, and then searches each copy separately. They also described a more efficient algorithm for d = 3 and
proved the following bounds on �(n, 3):⌊

3n2

2

⌋
��(n, 3)� 3n2

2
+ cn ln n.

In the above inequality, c is a positive constant, and so the bounds are asymptotically tight. An open problem left is
whether their search algorithm for d = 3 can be generalized to higher dimensions.

In this paper, we present new search algorithms for monotone d-dimensional arrays for d �4, from which we can
obtain

�(n, d)� d

d − 1
nd−1 + O(nd−2).

The above bound is tight for d = 4, up to the lower order terms.
The rest of the paper is devoted to the description and analysis of the new algorithms. We start with the case where

d =4. This special case best illustrates the main idea, and it is also easier to visualize the subspaces that are encountered
in the search algorithm. Then we describe the generalized algorithm for d �4.

Before presenting the technical details, we describe some basic notation and convention that we will follow throughout
the paper. In general, we use capital letters to represent sets and small letters to represent numbers. The sets that we
need to consider are often subsets of An,d for which some of the subscripts are fixed, and we use some simple notation
to represent them. For example, we use Q = {a1,i2,i3,i4} to denote a “surface” of the four-dimensional array An,4 for
which the first subscript of a is fixed to be 1. It is understood that all other subscripts range between [1, n], and we
often omit the specification “i2, i3, i4 = 1, 2, . . . , n” if it is clear from the context.

2. Searching four-dimensional arrays

In this section, we present a 4
3n3 + O(n2) algorithm for searching monotone four-dimensional arrays. The algorithm

is optimal up to the lower order terms.
We start with a lower bound on �(n, 4) which will be shown to be asymptotically tight later, followed by the description

of an algorithm for partitioning monotone two-dimensional arrays, which will be a useful subroutine for our searching
algorithm. Then, we will present the main idea and the details of our search algorithm for four-dimensional arrays.

2.1. A lower bound on �(n, 4)

Using the method in [2], we can calculate a lower bound on �(n, 4). Let [n] denote the totally ordered set {1, 2, . . . , n},
and let

D1(n, 4) = {(i1, i2, i3, i4) ∈ [n]4|i1 + i2 + i3 + i4 = 2n + 1},
D2(n, 4) = {(i1, i2, i3, i4) ∈ [n]4|i1 + i2 + i3 + i4 = 2n + 2}.

Define D(n, 4) = D1(n, 4) ∪ D2(n, 4). As shown in [2], D(n, 4) is a section of [n]4, and a simple adversary argument
implies that �(n, 4) is lower bounded by |D(n, 4)|. Let

X = {(i1, i2, i3, i4) ∈ [2n + 1]4| i1 + i2 + i3 + i4 = 2n + 1},

Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221 2215

Yk = {(i1, i2, i3, i4) ∈ X| ik > n} for k = 1, 2, 3, 4,

Z = {(i1, i2, i3, i4) ∈ [n + 1]4| i1 + i2 + i3 + i4 = n + 1}.

It is easy to see that |Yk|=|Z|=(
n
3

)
for k=1, 2, 3, 4. Thus, |D1(n, 4)|=|X|−∑4

k=1|Yk|=
(

2n
3

)
−4

(
n
3

)= 1
3 (2n3 −2n).

Similarly, |D2(n, 4)| =
(

2n+1
3

)
− 4

(
n+1

3

)
= 1

3 (2n3 + n). Therefore,

�(n, 4)� |D(n, 4)| = |D1(n, 4)| + |D2(n, 4)| = 4

3
n3 − n

3
.

2.2. Partitioning two-dimensional arrays

In [2], Linial and Saks gave a simple algorithm for searching an m × n matrix (m, n�1) with entries increasing
along each row and column. The algorithm needs at most m + n − 1 comparisons. We will refer to this algorithm as
the Matrix Search Algorithm. Since An,2 is isomorphic to an n × n matrix, given an input x, we can adapt the Matrix
Search Algorithm to partition An,2 into two subsets S and L using at most 2n − 1 comparisons, such that S contains
entries smaller than x and L contains entries larger than x. For the sake of completeness, we give detailed description
of the new partition algorithm.

Algorithm. Partition two-Dimensional Array
Input

• A real number x.
• A monotone two-dimensional array An,2 = {ai1,i2}.

Output

• If x ∈ An,2, output (i1, i2) such that ai1,i2 = x.
• If x /∈ An,2, output a partition {u, v, S, L} of An,2 with the following properties:

◦ u and v are two arrays each contains n integers such that i1 �u[i2] iff ai1,i2 < x and i2 �v[i1] iff ai1,i2 < x.
◦ S and L form a partition of {(i1, i2)|i1, i2 ∈ [n]} such that if (i1, i2) ∈ S then ai1,i2 < x, and if (i1, i2) ∈ L

then ai1,i2 > x.

Procedure

• Initially set S = L = �.
• View An,2 as an n×n matrix and repeat comparing x with the element e at the top right corner of the current matrix.

◦ If x > e, then eliminate the first row of the current matrix and put their entries into S.
◦ If x < e, then eliminate the last column of the current matrix and put their entries into L.
◦ If x = e, then return this entry and exit.

• Stop when the partition is finished, thus also obtain u and v (see Fig. 1).

We will use the notation u, v, S, L throughout the paper. Sometimes we will introduce subscripts to them to represent
the dimension indices to be considered. Ignoring the indices, these four variables have the following useful relations:

S = {(i1, i2)|1� i1 �u[i2]} = {(i1, i2)|1� i2 �v[i1]}, (1)

L = {(i1, i2)|u[i2] < i1 �n} = {(i1, i2)|v[i1] < i2 �n}. (2)

Obviously, S ∩ L = � and S ∪ L = [n]2, hence |S| + |L| = n2. In addition, |S| = u[1] + · · · + u[n] = v[1] + · · · + v[n]
and |L| = (n − u[1]) + · · · + (n − u[n]) = (n − v[1]) + · · · + (n − v[n]).

Notice that when m = 0 or n = 0, we can “search” an m × n matrix using 0 comparisons. Therefore, based on the
Matrix Search Algorithm in [2], we have the following lemma that will be useful later.

2216 Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221

i1

i2

u[1]

n

n

1
1 2

2

S

L

i1

i2

n

n

1

1 2

2

S

L

v[1]v[2]

u[2]

Fig. 1. u, v, S, L: partition of the monotone two-dimensional array An,2.

Lemma 2.1. For m, n�0, any m × n matrix with entries increasing along each dimension can be searched using at
most m + n comparisons.

Proof. If m=0 or n=0, the matrix is empty, thus needs no comparison. If m, n > 0, using the Matrix Search Algorithm,
we can search the matrix using at most m + n − 1 comparisons. Therefore, the lemma holds. �

2.3. Main idea of the search algorithm

The main idea of our algorithm for d = 4 is to first search the “surfaces” (three-dimensional arrays) of An,4 and
then the problem reduces to searching a “smaller” array An−2,4. At a high level, searching the surfaces consists of two
major steps:

• Step 1: Select eight special two-dimensional arrays. By using the algorithm Partition two-dimensional array, partition
each selected two-dimensional array into two subsets L and S, where elements in L are larger than or equal to x, and
elements in S are smaller than x.

• Step 2: Search the eight “surfaces” of An,4. The subsets S, L obtained in Step 1 help to “cut” each surface into a
sequence of two-dimensional matrices that allows searching with less comparisons.

2.4. Description and analysis of the search algorithm

Now we are ready to present our search algorithm for d = 4. As explained in Section 2.3, the algorithm is recursive,
and reduces n by two for each recursion. Without loss of generality, we consider the case where x /∈ An,4. We first
describe the algorithm and then analyze the number of comparisons needed.

Step 1:Apply the algorithm Partitioning two-dimensional array to divide each of the following eight two-dimensional
arrays into two subsets (the eight arrays are defined by fixing two of the subscripts to either 1 or n, thus reducing the
number of dimensions by two):

M1 = {ai1,i2,1,n} : S1, L1, M∗
1 = {ai1,i2,n,1} : S∗

1 , L∗
1,

M2 = {an,i2,i3,1} : S2, L2, M∗
2 = {a1,i2,i3,n} : S∗

2 , L∗
2,

M3 = {a1,n,i3,i4} : S3, L3, M∗
3 = {an,1,i3,i4} : S∗

3 , L∗
3,

M4 = {ai1,1,n,i4} : S4, L4, M∗
4 = {ai1,n,1,i4} : S∗

4 , L∗
4.

The eight pairs of “mutually complementary” subsets Sk, Lk and S∗
k , L∗

k (k = 1, 2, 3, 4) have the following properties:

ai1,i2,1,n < x < aj1,j2,1,n for (i1, i2) ∈ S1 and (j1, j2) ∈ L1,

an,i2,i3,1 < x < an,j2,j3,1 for (i2, i3) ∈ S2 and (j2, j3) ∈ L2,

Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221 2217

a1,n,i3,i4 < x < a1,n,j3,j4 for (i3, i4) ∈ S3 and (j3, j4) ∈ L3,

ai1,1,n,i4 < x < aj1,1,n,j4 for (i4, i1) ∈ S4 and (j4, j1) ∈ L4,

ai1,i2,n,1 < x < aj1,j2,n,1 for (i1, i2) ∈ S∗
1 and (j1, j2) ∈ L∗

1,

a1,i2,i3,n < x < a1,j2,j3,n for (i2, i3) ∈ S∗
2 and (j2, j3) ∈ L∗

2,

an,1,i3,i4 < x < an,1,j3,j4 for (i3, i4) ∈ S∗
3 and (j3, j4) ∈ L∗

3,

ai1,n,1,i4 < x < aj1,n,1,j4 for (i4, i1) ∈ S∗
4 and (j4, j1) ∈ L∗

4.

In addition to the eight pairs of subsets, the algorithm also outputs uk, vk and u∗
k, v

∗
k , corresponding to Sk, Lk and

S∗
k , L∗

k , respectively, with the properties given in Eqs. (1) and (2). For each k, at most 2n − 1 comparisons are needed
to partition Mk (M∗

k). Thus, at most 8 × (2n − 1) comparisons are needed in this step.
Step 2: Search the following eight three-dimensional surfaces of An,4 (each surface is defined by setting one of the

subscripts to either 1 or n, thus reducing the number of dimensions by one):

Q1 = {a1,i2,i3,i4}, Q∗
1 = {an,i2,i3,i4},

Q2 = {ai1,1,i3,i4}, Q∗
2 = {ai1,n,i3,i4},

Q3 = {ai1,i2,1,i4}, Q∗
3 = {ai1,i2,n,i4},

Q4 = {ai1,i2,i3,1}, Q∗
4 = {ai1,i2,i3,n}.

By symmetry, we only need to show how to search Q1. The algorithm proceeds by fixing i3 = i
′
3 for i

′
3 = 1, 2, . . . , n

and searching each of the two-dimensional arrays {a1,i2,i
′
3,i4

}. A useful observation is that for each i
′
3, we can restrict

the search to a smaller matrix (in contrast to an n × n matrix) by leveraging on information obtained in Step 1.
Below, we explain the above observation and Step 2 in more detail. Consider an element a1,i2,i

′
3,i4

∈ Q1. If (i2, i
′
3) ∈

S∗
2 , then we know that a1,i2,i

′
3,i4

�a1,i2,i
′
3,n

< x. Hence, in order for a1,i2,i
′
3,i4

= x, it must be the case that (i2, i
′
3) ∈ L∗

2,

or equivalently, u∗
2[i

′
3] < i2 �n. Similarly, we can conclude that in order for a1,i2,i

′
3,i4

= x, it must be the case that

(i
′
3, i4) ∈ L3, or equivalently, v3[i ′

3] < i4 �n. Hence, we obtain a constraint on the indices (i2, i4). By Lemma 2.1,
searching this restricted (n − u∗

2[i
′
3]) × (n − v3[i ′

3]) matrix needs at most (n − u∗
2[i

′
3]) + (n − v3[i ′

3]) comparisons.
Notice that n − u∗

2[i
′
3] is the number of entries (i2, i3)’s in L∗

2 with i3 = i
′
3, and n − v3[i ′

3] is the number of entries
(i3, i4)’s in L3 with i3 = i

′
3. Thus,

(n − u∗
2[i

′
3]) + (n − v3[i ′

3]) = |{(i2, i3) ∈ L∗
2|i3 = i

′
3}| + |{(i3, i4) ∈ L3|i3 = i

′
3}|.

When i3 ranges over 1, 2, . . . , n, we obtain that the total number of comparisons needed to search Q1 is at most
N(Q1) = |L∗

2| + |L3| (see Fig. 2).
Similarly, if an,i2,i3,i4 ∈ Q∗

1 equals to x, it must be the case that (i2, i3) ∈ S2 and (i3, i4) ∈ S∗
3 , it follows that the

total number of comparisons needed to search Q∗
1 is at most N(Q∗

1) = |S2| + |S∗
3 |.

Using similar arguments, the numbers of comparisons needed for searching the above eight three-dimensional arrays
are

N(Q1) = |L3| + |L∗
2|, N(Q∗

1) = |S2| + |S∗
3 |,

N(Q2) = |L4| + |L∗
3|, N(Q∗

2) = |S3| + |S∗
4 |,

N(Q3) = |L1| + |L∗
4|, N(Q∗

3) = |S4| + |S∗
1 |,

N(Q4) = |L2| + |L∗
1|, N(Q∗

4) = |S1| + |S∗
2 |.

2218 Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221

i3

i4

i2
n 1

n

1

n

1

*
S2

*
L2

i3

i4

i2
n 1

n

1

n

1

i3

i4

i2
n 1

n

1

n

1
S3

L3

v3[i '3]
*
u2 [i

'
3]

i
'
3 i

'
3

Fig. 2. Searching the three-dimensional surface Q1 = {a1,i2,i3,i4 } of An,4. (a) Partition of M∗
2 = {a1,i2,i3,n} into S∗

2 and L∗
2; (b) partition of

M3 = {a1,n,i3,i4 } into S3 and L3; (c) the ‘pyramid’ composed of a sequence of two-dimensional matrices to be searched.

Therefore, the total number of comparisons needed for searching these eight arrays is at most

4∑
k=1

(|Sk| + |Lk| + |S∗
k | + |L∗

k |) = 4 × 2n2 = 8n2.

Steps 1 and 2 leave an (n − 2)4 array

An−2,4 = {ai1,i2,i3,i4 |i1, i2, i3, i4 = 2, . . . , n − 1}.
Hence, we have for n > 2,

�(n, 4)��(n − 2, 4) + 8n2 + 8(2n − 1).

From this recursion we can get (see Eq. (4) for the derivation)

�(n, 4)� 4
3n3 + O(n2). (3)

3. Searching d-dimensional arrays

The algorithm for four-dimensional arrays can be generalized to higher dimensions (d �4). The main idea is quite
similar: the 2d “surfaces” ((d −1)-dimensional arrays) of An,d can be searched using 2dnd−2 +O(nd−3) comparisons.
We achieve this in two steps. First, select 2d special (d − 2)-dimensional arrays and partition each of them into two
subsets S and L. Second, we search the 2d “surfaces”. The subsets {S, L} will help cut some part of each surface, i.e.,
reduce the comparison number. In particular, if we fix (d − 3) subscripts, the resulting part is a smaller matrix (in
contrast to an n × n matrix). An a × b matrix can be searched using at most a + b comparisons (Lemma 2.1), adding
them up for all the 2d “surfaces”, we can get the desired upper bound.

First we describe how to select and partition the (d − 2)-dimensional arrays. Define M1 ={ai1,i2,...,id ∈ An,d |id−1 =
1, id = n}. Consider the case where x /∈ M1. For fixed i2 = i

′
2, i3 = i

′
3, . . . , id−3 = i

′
d−3 (where i

′
2, i

′
3, . . . , i

′
d−3 ∈ [n]

are constants) we can get two integer arrays u[n] and v[n] such that

ai1,i2,...,id |i2=i
′
2,...,id−3=i

′
d−3; id−1=1,id=n

< x for i1 �u[id−2],

ai1,i2,...,id |i2=i
′
2,...,id−3=i

′
d−3; id−1=1,id=n

> x for i1 > u[id−2],

ai1,i2,...,id |i2=i
′
2,...,id−3=i

′
d−3; id−1=1,id=n

< x for id−2 �v[i1],

ai1,i2,...,id |i2=i
′
2,...,id−3=i

′
d−3; id−1=1,id=n

> x for id−2 > v[i1],

Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221 2219

by using the algorithm Partitioning two-dimensional array, at most 2n − 1 comparisons are needed for each fixed
i2, . . . , id−3. Thus using at most nd−4(2n− 1) comparisons we can get two integer arrays u1 and v1 of sizes nd−3 such
that

• If i1 �u1[i2, . . . , id−2], then ai1,i2,...,id |id−1=1,id=n < x.

Otherwise, ai1,i2,...,id |id−1=1,id=n > x.

• If id−2 �v1[i1, . . . , id−3], then ai1,i2,...,id |id−1=1,id=n < x.

Otherwise, ai1,i2,...,id |id−1=1,id=n > x.

Thus, we can partition [n]d−2 into two subsets S1 and L1 such that

• ai1,i2,...,id |id−1=1,id=n < x for (i1, . . . , id−2) ∈ S1.
• ai1,i2,...,id |id−1=1,id=n > x for (i1, . . . , id−2) ∈ L1.

Obviously, we have

• (i1, . . . , id−2) ∈ S1 if and only if i1 �u1[i2, . . . , id−2] (also id−2 �v1[i1, . . . , id−3]).
• (i1, . . . , id−2) ∈ L1 if and only if i1 > u1[i2, . . . , id−2] (also id−2 > v1[i1, . . . , id−3]).

Next we describe the algorithm for searching d-dimensional arrays An,d , for d �4. Without loss of generality, we
consider the case where x /∈ An,d .

Step 1: Partition each of the following 2d (d − 2)-dimensional arrays into two subsets.

Mk = {ai1,i2,...,id |ik−2 = 1, ik−1 = n}: Sk, Lk ,

M∗
k = {ai1,i2,...,id |ik−2 = n, ik−1 = 1}: S∗

k , L∗
k ,

k = 1, 2, . . . , d (here ik−2 means i(k−2) mod d , and ik−1 means i(k−1) mod d).
We get 2d pairs of mutually complementary subsets Sk , Lk and S∗

k , L∗
k with the following properties:

ai1,...,id |ik−2=1,ik−1=n < x < aj1,...,jd
|jk−2=1,jk−1=n

for (ik, . . . , ik+d−3) ∈ Sk and (jk, . . . , jk+d−3) ∈ Lk ,

ai1,...,id |ik−2=n,ik−1=1 < x < aj1,...,jd
|jk−2=n,jk−1=1

for (ik, . . . , ik+d−3) ∈ S∗
k and (jk, . . . , jk+d−3) ∈ L∗

k ,

k = 1, 2, . . . , d (here ik+d−3 means i(k+d−3) mod d , etc.).
For the pair Sk and Lk , we have two (d − 3)-dimensional arrays uk and vk such that, if ik �uk[ik+1, . . . , ik+d−3]

then (ik, . . . , ik+d−3) ∈ Sk else (ik, . . . , ik+d−3) ∈ Lk; if ik+d−3 �vk[ik, . . . , ik+d−4] then (ik, . . . , ik+d−3) ∈ Sk else
(ik, . . . , ik+d−3) ∈ Lk , k = 1, 2, . . . , d. Similarly, we have u∗

k and v∗
k for the pair S∗

k and L∗
k , for k = 1, 2, . . . , d.

In this step, we obtain 4d (d −3)-dimensional arrays uk , vk , u∗
k , v∗

k (k =1, 2, . . . , d), using at most 2dnd−4(2n−1)

comparisons.
Step 2: Search the following 2d (d − 1)-dimensional surfaces of An,d , which are defined by fixing one of the

subscripts to either 1 or n.

Qk = {ai1,...,id |ik = 1}, Q∗
k = {ai1,...,id |ik = n},

k = 1, 2, . . . , d.
By symmetry, we only need to consider searching Q1 = {a1,i2,...,id }.
If a1,...,id ∈ Q1 equals to x, we have (i3, . . . , id) ∈ L3 and (i2, . . . , id−1) ∈ L∗

2. For fixed i3 = i
′
3, . . . , id−1 =

i
′
d−1 (where i

′
3,…,i

′
d−1 ∈ {1, 2, . . . , n}), there exist two integers u = u∗

2[i
′
3, . . . , i

′
d−1] and v = v3[i ′

3, . . . , i
′
d−1] such

2220 Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221

that only when u < i2 �n, (i2, i
′
3, . . . , i

′
d−1) ∈ L∗

2; only when v < id �n, (i
′
3, . . . , i

′
d−1, id) ∈ L3. Thus for fixed

i3 = i
′
3, . . . , id−1 = i

′
d−1, only when u < i2 �n and v < id �n, a1,i2,i

′
3,...,i

′
d−1,id

possibly equal to x. Searching this

(n − u) × (n − v) matrix needs at most (n − u) + (n − v) comparisons. Notice that n − u is the number of elements
(i2, . . . , id−1)’s in L∗

2 with i3 = i
′
3, . . . , id−1 = i

′
d−1, and n − v is the number of elements (i3, . . . , id)’s in L3 with

i3 = i
′
3, . . . , id−1 = i

′
d−1. Thus (n − u) + (n − v) = |{(i2, . . . , id−1) ∈ L∗

2|i3 = i
′
3, . . . , id−1 = i

′
d−1}| + |{(i3, . . . , id) ∈

L3|i3 = i
′
3, . . . , id−1 = i

′
d−1}|. When (i3, . . . , id−1) ranges over all elements in [n]d−3, we obtain that the total number

of comparisons needed to search Q1 is at most N(Q1) = |L3| + |L∗
2|.

Similarly for Q∗
1 = {an,i2,...,id }, we have N(Q∗

1) = |S2| + |S∗
3 |.

Using similar arguments, the numbers of comparisons needed for searching the above 2d surfaces are

N(Qk) = |Lk+2| + |L∗
k+1|, N(Q∗

k) = |Sk+1| + |S∗
k+2|,

k = 1, 2, . . . , d (here Lk+2 means L(k+2) mod d , etc.).
Thus, searching these 2d (d − 1)-dimensional surfaces needs at most

d∑
k=1

{|Lk+2| + |L∗
k+1| + |Sk+1| + |S∗

k+2|} = d × 2nd−2 = 2dnd−2

comparisons.
Steps 1 and 2 leave an (n − 2)d d-dimensional array

An−2,d = {ai1,...,id |i1, . . . , id = 2, . . . , n − 1}.
Hence the generalized recursion is

�(1, d) = 1,

�(2, d)�2d ,

�(n, d)��(n − 2, d) + 2dnd−2 + 2dnd−4(2n − 1) for n > 2.

From the recursion, for fixed d there exists a constant C and � ∈ {1, 2} (the value of � depends on the parity of n) such
that

�(n, d)��(n − 2, d) + 2dnd−2 + 4dnd−3

��(n − 4, d) + 2d(nd−2 + (n − 2)d−2) + 4d(nd−3 + (n − 2)d−3)

� ·
�C + 2d(nd−2 + (n − 2)d−2 + · · · + �d−2) + 4d(nd−3 + (n − 2)d−3 + · · · + �d−3)

�C + d((n + 1)d−2 + nd−2 + (n − 1)d−2 + · · · + 1d−2) + 4dnd−2

�C + d ×
∫ n+2

1
td−2 dt + 4dnd−2

= C + d

d − 1
(n + 2)d−1 − d

d − 1
+ 4dnd−2

= d

d − 1
nd−1 + O(nd−2).

Therefore,

�(n, d)� d

d − 1
nd−1 + O(nd−2), d = 4, 5, (4)

The following theorem summarizes our main results.

Y. Cheng et al. / Discrete Mathematics 308 (2008) 2213–2221 2221

Theorem 3.1. For n�1 and d �4, �(n, d)�(d/(d − 1))nd−1 + O(nd−2).
In particular, for d = 4, 4

3n3 − n/3��(n, 4)� 4
3n3 + O(n2).

4. Discussion

In this paper we give an algorithm for searching monotone d-dimensional (d �4) arrays An,d , which requires at most
(d/(d − 1))nd−1 + O(nd−2) comparisons. For d = 4, it is optimal up to the lower order terms.

For d = 5, let D(n, 5) = {(i1, i2, i3, i4, i5) ∈ [n]5|i1 + i2 + i3 + i4 + i5 = � 5
2 (n + 1)�} ∪ {(i1, i2, i3, i4, i5) ∈

[n]5|i1 + i2 + i3 + i4 + i5 = � 5
2 (n + 1)� + 1}, then the best known lower bound on �(n, 5) can be shown to be

|D(n, 5)| = 115
96 n4 + O(n3). However, applying the techniques in this paper, a 115

96 n4 + O(n3) search algorithm for
An,5 has not been found (our algorithm requires 5

4n4 + O(n3) comparisons in the worst case). It may be interesting to
tighten the bounds for d > 4.

Acknowledgments

The authors are grateful to Andy Yao for introducing this interesting problem and helpful discussions. Also, we
would like to thank the referees for their valuable suggestions and comments.

References

[1] R.L. Graham, R.M. Karp, Unpublished, CA, 1968.
[2] N. Linial, M. Saks, Searching ordered structures, J. Algorithms 6 (1985) 86–103.
[3] N. Linial, M. Saks, Every poset has a central element, J. Combin. Theory Ser. A 40 (1985) 195–210.

	Searching monotone multi-dimensional arrays62626262
	Introduction
	Searching four-dimensional arrays
	A lower bound on tau(n,4)
	Partitioning two-dimensional arrays
	Main idea of the search algorithm
	Description and analysis of the search algorithm

	Searching =d-dimensional arrays
	Discussion
	Acknowledgments
	References

