
PipeZK: Accelerating Zero-Knowledge Proof
with a Pipelined Architecture

Ye Zhang1,5 Shuo Wang1 Xian Zhang3 Jiangbin Dong4,7 Xingzhong Mao7 Fan Long6

Cong Wang8 Dong Zhou2 Mingyu Gao2,7* Guangyu Sun1*

Peking University1 Tsinghua University2 Microsoft Research3 Xi’an Jiaotong University4

Shanghai Tree-Graph Blockchain Research Institute5 University of Toronto6

Institute for Interdisciplinary Information Core Technology, Xi’an7

International Digital Economy Academy at Guangdong-Hong Kong-Macau Greater Bay Area8

{zhangye1998, gsun}@pku.edu.cn, gaomy@tsinghua.edu.cn

Abstract—Zero-knowledge proof (ZKP) is a promising crypto-
graphic protocol for both computation integrity and privacy. It
can be used in many privacy-preserving applications including
verifiable cloud outsourcing and blockchains. The major obstacle
of using ZKP in practice is its time-consuming step for proof gen-
eration, which consists of large-size polynomial computations and
multi-scalar multiplications on elliptic curves. To efficiently and
practically support ZKP in real-world applications, we propose
PipeZK, a pipelined accelerator with two subsystems to handle
the aforementioned two intensive compute tasks, respectively.
The first subsystem uses a novel dataflow to decompose large
kernels into smaller ones that execute on bandwidth-efficient
hardware modules, with optimized off-chip memory accesses
and on-chip compute resources. The second subsystem adopts a
lightweight dynamic work dispatch mechanism to share the heavy
processing units, with minimized resource underutilization and
load imbalance. When evaluated in 28 nm, PipeZK can achieve
10x speedup on standard cryptographic benchmarks, and 5x on
a widely-used cryptocurrency application, Zcash.

I. INTRODUCTION

Zero-knowledge proof (ZKP) blossoms rapidly in recent

years, drawing attentions from both researchers and practi-

tioners. In short, it is a family of cryptographical protocols

that allow one party (called the prover) to convince the others

(called the verifiers) that a computational statement is true,

without leaking any information. For example, if a program

P outputs the result y on a public input x and a secret input

w, using a ZKP protocol, the prover can assure the verifiers

that she knows the secret w that satisfies P (x,w) = y without

revealing the value of w.

As a fundamental primitive in modern cryptography, ZKP

has the potential to be widely used in many privacy-critical

applications to enable secure and verifiable data process-

ing, including electronic voting [54], online auction [26],

anonymous credentials [23], verifiable database outsourc-

ing [52], verifiable machine learning [51], privacy-preserving

cryptocurrencies [22], [47], and various smart contracts on

blockchains [37]. More specifically, verifiable outsourcing,

* Mingyu Gao and Guangyu Sun are the co-corresponding authors.

as a promising use case of ZKP, allows a weak client to

outsource computations to the powerful cloud, and also effi-

ciently verify the correctness of the returned results [52], [53].

Another widely deployed application of ZKP is blockchains

and cryptocurrencies. With ZKP, the intensive computations

can be moved off-chain and each node only needs to verify

the integrity of a much more lightweight proof on the critical

path [1], [22], [47].

Since its birth [30], tremendous effort has been made by

cryptography researchers to make ZKP more practical. Among

newly invented ones, zk-SNARK, which stands for Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge,

is widely considered as a promising candidate. As its name

suggests, zk-SNARK generates succinct proofs — often within

hundreds of bytes regardless of the complexity of the program,

and these proofs are very fast to verify. Because of these

two properties, we are seeing more and more deployments

of zk-SNARK in real-world applications, especially in the

blockchain community. [1], [4], [7], [10], [12], [39].

Although zk-SNARK proofs are succinct and fast to verify,

their generation remains an obstacle in large-scale zk-SNARK

adoption. To generate proofs for a program, it is typical

to first translate the program into a constraint system, the

size of which is usually several times larger than the initial

program, and could be up to a few millions. The prover then

performs a number of arithmetic operations over a large finite

field. The actual number of operations required is protocol-

specific, but is always super-linear comparing to the number

of constraints, hence even larger. As a result, it takes much

longer to generate the zk-SNARK proof of a program than

verifying it, sometimes up to hundreds of times, and could be

up to a few minutes just for a single payment transaction [47].

In this paper, we present PipeZK, an efficient pipelined

architecture for accelerating zk-SNARK. PipeZK mainly in-

volves two subsystems, for the polynomial computations with

large-size number theoretic transforms (NTTs), and for the

multi-scalar multiplications that execute vector inner products

on elliptic curves (ECs). These two phases are the most

20
21

 A
C

M
/IE

EE
 4

8t
h

A
nn

ua
l I

nt
er

na
tio

na
l S

ym
po

si
um

 o
n

C
om

pu
te

r A
rc

hi
te

ct
ur

e
(I

SC
A

) |
 9

78
-1

-6
65

4-
33

33
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
52

01
2.

20
21

.0
00

40

compute-intensive parts. We implement them as specialized

hardware accelerators, and combine with the CPU to realize

a heterogeneous end-to-end system for zk-SNARK.

For the polynomial computation subsystem, we notice that

the large-size NTTs (up to a million elements) result in

sigificant challenges for both off-chip memory accesses and

on-chip compute resources, due to the irregular strided access

patterns similar to classical FFTs, and the large bitwidth (up

to 768 bits) of each element. We propose a novel high-level

dataflow that recursively decomposes the large NTT kernels

into smaller ones, which can then be efficiently executed

on a bandwidth-efficient NTT hardware module that uses

lightweight FIFOs internally to realize the strided accesses.

We also leverage data tiling and on-chip matrix transpose to

improve off-chip bandwidth utilization.

For the multi-scalar multiplication subsystem, rather than

simply replicating multiple processing units for EC operations,

we exploit the large numbers of EC multiplications in the

vector inner products, and use Pippenger algorithm [43] to

share the dominant EC processing units with a lightweight

dynamic work dispatch mechanism. This alleviates the re-

source underutilization and load imbalance issues when the

input data have unpredictable value distributions. Furthermore,

we scale the system in a coarse-grained manner to allow

each processing unit to work independently from each other,

while guaranteeing that there are no stragglers even when data

distributions are highly pathological.

In summary, our contributions in this paper include:

• We designed a novel module, which decomposes a large-

scale polynomial computation into small tiles and pro-

cesses them in a pipeline style. It achieves high efficiency

in both off-chip memory bandwidth and on-chip logic

resource utilization.

• We designed a novel module for multi-scalar point mul-

tiplications on elliptic curves. It leverages an optimized

algorithm and a pipelined dataflow to achieve high pro-

cessing throughput.

• We implemented a prototype of the proposed architecture

in RTL and synthesized our design as a 28 nm ASIC, and

evaluated it in an end-to-end heterogeneous system with a

host CPU. Compared to state-of-the-art approaches, the

overall system can achieve 10x speedup for small-size

standard cryptographic benchmarks on average, and 5x

for a real-world large-scale application, Zcash [47]. When

individually executed, the two subsystems of PipeZK can

achieve 197x to 77x speedup, respectively.

Beyond our accelerator design, both subsystems in PipeZK

could be of independent interest to a wider range of ap-

plications. The NTT module is the key building block in

homomorphic encryption (HE) [29] and modern public-key

encryption schemes [38] based on Ring Learning With Er-

rors (R-LWE) problems [44]. The multi-scalar multiplication

module is commonly used in vector commitments [19] and

many pairing-based proof systems [32], [42]. We expect

our architecture insights would inspire more opportunities in

making modern cryptographic algorithms more practical to use

towards general-purpose secure computation.

II. BACKGROUND AND MOTIVATION

Zero-knowledge proof (ZKP) is a powerful cryptographic

primitive that has recently been adopted to many real-world

applications [22], [23], [26], [37], [47], [51], [52], [54], and

drawn a lot of attentions in both academia [16]–[18], [20],

[25], [28], [42], [48] and industry [1], [4], [7], [10], [12], [39].

ZKP allows the prover to prove to the verifier that a given

statement of the following form is true: “given a function

F and an input x, I know a secret witness w that makes

F (x,w) = 0.” More specifically, the prover can generate a

proof, whose validity can be checked by the verifier. However,

even though the verifier gets the proof and is able to verify

its validity, she cannot obtain any information about w itself.

The prover’s secret remains secure after the proving process.

As a result, the zero-knowledge property of ZKP provides a

strong guarantee for the prover’s privacy, as she can prove

to others that she knows some private information (i.e., w)

without leaking it.

A. Applications of Zero-Knowledge Proof

As one of the fundamental primitives in modern cryptogra-

phy, ZKP can be widely used in many security applications

as a basic building block to enable real-world secure and ver-

ifiable data processing. Generally speaking, ZKP allows two

or multiple parties to perform compute tasks in a cooperative

but secure manner, in the sense that one party can convince

the others that her result is valid without accidentally leaking

any sensitive information. Many real-world applications can

benefit from these properties, including electronic voting [54],

online auction [26], anonymous credentials [23], verifiable

database outsourcing [52], verifiable machine learning [51],

privacy-preserving cryptocurrencies [22], [47], and various

smart contracts on blockchains [37].

A promising example application of ZKP is verifiable out-

sourcing [27], in which case a client with only weak compute

power outsources a compute task to a powerful server, e.g., a

cloud datacenter, who computes on potentially sensitive data

to generate a result that is returned to the client. Examples

include database SQL queries [52] and machine learning

jobs [51]. In such a scenario, the client would like to ensure

the result is indeed correct, while the server is not willing

to expose any sensitive data. ZKP allows the server to also

provide a proof associated with the result, which the client

can use to efficiently check the integrity. The zero-knowledge

property allows the prover to make arbitrary statements about

(i.e., to compute functions on) the sensitive data without

worrying about exposing them, therefore naturally supporting

theoretically general-purpose outsourcing computations.

Another widely deployed application of ZKP is blockchains

and cryptocurrencies. Conventional blockchain-based applica-

tions require every node in the system to execute the same

on-chain computations to update the states, which brings

a large overhead with long latency. ZKP enables private

decentralized verifiable computations which are moved off-

chain, and each node only checks the integrity of a lightweight

proof to discover illegal state transitions. For instance, zk-

Rollup [1] packs many transactions in one proof and allows

the nodes to check their integrity by efficiently verifying the

proof. Other work even enables verifying the integrity of the

whole blockchain using one succinct proof [39]. This feature

greatly increases the blockchain scalability. Furthermore, the

zero-knowledge property allows users to make confidential

transactions while still being able to prove the validity of

each transaction. Zcash [47] and Pinocchio Coin [22] are such

examples, where the transaction details including the amount

of money and the user addresses are hidden.

B. Computation Requirements of Zero-Knowledge Proof

It is natural to imagine that realizing such a counter-intuitive

ZKP functionality would require huge computation and com-

munication costs. Since its first introduction by Goldwasser

et al. [30], there have been significant improvements in the

computation efficiency of ZKP to make it more practical. zk-

SNARK [32], as the state-of-the-art ZKP protocol, allows the

prover to generate a succinct proof, which greatly reduces the

verification cost. Formally speaking, the proof of zk-SNARK

has three important properties: correctness, zero-knowledge,

and succinctness. Correctness means that if the verification

passes, then the prover’s statement is true, i.e., the prover does

know the secret witness w. Zero-knowledge means that the

proof does not leak any information about w. And succinctness

means that the size of the proof is small (e.g., 128 bytes) and

it is also fast to verify (e.g., within 2 milliseconds), regardless

of how complicated the original statement might be.

Unfortunately, although the proof verification is fast, gener-

ating such a proof at the prover side with zk-SNARK has

considerable computation overheads and can take a great

amount of time, which hinders zk-SNARK from wide adoption

in real-world applications. Therefore, this work focuses on the

workflow and the key components of the prover’s computa-

tion [32], which is our target for hardware acceleration.

For a specific implementation of zk-SNARK, a security

parameter λ is first decided to trade off the computation com-

plexity and the security strength, by specifying the data width

used. A larger λ provides stronger security guarantees but also

introduces significantly higher computation cost. Typically, λ
ranges from 256-bit to 768-bit.1

As illustrated in Figure 1, the prover first goes through a

pre-processing phase, during which the function F , typically

written in some high-level programming languages, is first

compiled into a set of arithmetic constraints, called “rank-1

constraint system (R1CS)”. The constraint system contains a

number of linear or polynomial equations of the input x and

the witness w. Determined by the complexity of the function

F , the number of equations in the constraint system could

be as many as up to millions for real-world applications.

1Here we abuse the notion of security parameter for simplicity, since it
is usually directly related to the bit width of parameters and the underlying
elliptic curve.

Pre-processing

Prover’s Computation (
Polynomial computation:
Multi-scalar multiplication: }

{

F(input , witness) = 0
def F (input=v, witness=w):
 return w4 + w2 - v

Constraint System

 w * w = var1
 var1 * w = var2
 var2 * w = var3
var2 + var1 = var4

 var4 – v = out

Fig. 1. The workflow of the prover. The illustrated F (x,w) has a constraint
system size of five (i.e. n = 5).

Fig. 2. Prover’s POLY and MSM computations for hardware acceleration.

Meanwhile, various random parameters are set up, including

the proving keys. With the prover’s secret witness, the con-

straint system, the proving keys, and other parameters, the

pre-processing phase subsequently outputs two sets of data

(Figure 1), which are later used in the computation phase.

• Scalar vectors �Sn, �An, �Bn, �Cn. Each vector includes n
λ-bit numbers. The dimension n is determined by the size

of the constraint system. Note that n could be extremely

large for real-world applications. For example, Zcash has

n as large as a few millions [35].

• Point vectors �Pn, �Qn. Each vector includes n points on a

pre-determined elliptic curve (EC) [33]. EC is commonly

used in cryptographic primitives. It supports several basic

operations including point addition (PADD), point double
(PDBL) and point scalar multiplication (PMULT). By

leveraging the binary representation of the scalar, PMULT

can be broken down into a series of PADD and PDBL

in the scalar’s bit-serial order. Both PADD and PDBL

operations contain a bunch of arithmetic operations over

a large finite field, as shown in Figure 2. Fast algorithms

for EC operations typically use projective coordinates to

avoid modular inverse [13]. They also adopt Montgomery

representations for basic arithmetic operations over the

finite field [40].

With these data, the prover can now generate the proof �Π.

This is the most computation-heavy phase, and therefore is

our main target for hardware acceleration. It involves large-

size number theoretic transforms (NTTs) and complicated EC

operations, as illustrated in Figure 2. More specifically, the

computation phase mainly includes the following two tasks:

• Polynomial computation (POLY). It takes �An, �Bn, �Cn

as inputs and calculates a resultant scalar vector �Hn,

whose elements represent the coefficients of a degree-

n polynomial. The state-of-the-art implementations for

this part use NTTs and inverse NTTs (INTTs), which are

similar to Fast Fourier Transforms (FFTs) but instead on

a finite field. It can reduce the complexity of POLY from

O(n2) to O(n log n). Nevertheless, POLY still needs to

do NTTs/INTTs for many times, as shown in Figure 2.

And each NTT/INTT also has considerable computation

cost, given that n could be quite large (up to millions)

and each coefficient is a very wide integer number (e.g.,

λ = 768 bits).

• Multi-scalar multiplication (MSM). This part includes

the calculation of the “vector inner products” between
�Sn and �Qn, and between �Hn (the output of POLY)

and �Pn, respectively. Note that the inner products are

performed on EC, i.e., using the PADD and PMULT

operations defined above to multiply the scalar vector and

the point vector together. MSM is computation-intensive,

because the cost of the inner products is proportional

to n, and the PADD/PMULT operations on EC are also

quite expensive, with arithmetic operations between wide

integer numbers on a large finite field.

As Figure 1 shows, the prover’s witness, after pre-processed,

is used as the input for both POLY and MSM. The output of

POLY will be included in the input of MSM. The final proof

is the output of MSM composed of several EC points. The

proof can be verified by the verifier within a few milliseconds

through pairing, a special operation on the EC.

C. Hardware Acceleration Opportunities

As we can see from the workflow in Section II-B, the

prover’s computations are particularly complicated and require

significant compute time. In Zcash [35], the size n of the

constraint system is about two million. It takes over 30 seconds

to generate a proof for each anonymous transaction. As a

result, ordinary users sometimes prefer sending transparent

transactions instead to avoid the high cost of generating proofs,

which trades off privacy for better performance. In File-

coin [24], the function F is even larger. It contains over 128

million constraints and requires an hour to generate a proof.

Actually, these blockchain applications usually use crypto-

friendly functions that have well-crafted arithmetic computa-

tion flows, which are easier to transfer into smaller constraint

systems. For real-world, general-purpose applications such

as those in Section II-A, the problem sizes will be even

larger, with extremely high computation overheads. This is

the primary reason that hinders the wide adoption of ZKP. It

is therefore necessary to consider hardware acceleration for

ZKP workloads, especially on the prover side.

In the proving process, the pre-processing typically takes

less than 5% time [8]. We hence focus mostly on the POLY

and MSM computations. The POLY part takes about 30% of

the proving time. As shown in Figure 2, it mostly invokes the

NTT/INTT modules for seven times. Other computations like

multiplications and subtractions only contribute less than 2%

time. These large-size NTTs are extremely expensive. Similar

to FFTs, NTTs have complicated memory access patterns with

different strides in each stage. Moreover, all the arithmetic

operations (multiplications, exponentiations, etc.) inside NTTs

are performed over a large finite field, making them also

compute-intensive. Thus, the main focus of hardware accel-

eration in POLY is the large-size NTTs/INTTs (Section III).

The MSM part takes about 70% of the proving time,

which makes it the most computation-intensive part in prov-

ing. It requires many expensive PMULT operations on EC.

Though several previous proposals have accelerated a single

PMULT [14], [15], [36], [41], MSM additionally requires

adding up the PMULT result points, i.e., an inner product.

This brings the opportunity to use more efficient algorithms

rather than simply duplicating multiple PMULT units. Also, in

zk-SNARK, the scalar vectors exhibit certain distributions that

we can take advantage of to improve performance. We propose

a new hardware framework for MSM which can make full use

of the hardware resources (Section IV).

Why not just CPUs/GPUs? The basic operations of both

POLY and MSM are arithmetics over large finite fields, which

are not friendly to traditional general-purpose computing plat-

forms like CPUs and GPUs. CPUs have insufficient com-

putation throughput and they cannot exploit the parallelism

inside these operations well enough. GPUs, on the other hand,

have high computation throughput but mostly for floating-

point numbers. Moreover, the memory architecture of modern

GPUs is also not efficient for POLY and MSM operations.

Each thread can only access a very limited software cache

(i.e., shared memory) and the irregular global memory access

patterns in each component will slow down the operations

in GPUs significantly. In contrast, large integer arithmetic

operations have been well studied in specialized circuit design.

It is also more flexible to generate customized designs for

different memory access patterns. Thus, a domain-specific

accelerator is more promising to achieve better performance

and energy efficiency.

D. Prior Work

Prior work has achieved significant performance improve-

ment for polynomial computations in homomorphic encryp-

tion using customized hardware [45], [46]. Accelerating EC

operations has also been well studied in the literature of

circuit design [14], [15], [36], [41]. However, it is inefficient

to directly employ the prior designs for zk-SNARK due to

two issues. First, the scale of polynomial computations in zk-

SNARK is much larger than those needed in homomorphic en-

cryption. Thus, it induces intensive off-chip memory accesses,

which cannot be satisfied in prior design. In addition, the data

bitwidth in zk-SNARK is much larger, thus it is inefficient to

use large-scale multiplexers to select proper input elements

for different butterfly operations like before [45]. Second,

directly duplicating EC hardware cannot leverage state-of-

the-art algorithm optimizations for zk-SNARK. Besides, the

sparsity in scalars may cause a lot of resource underutilization

in the pipelines that compute MSM. Detailed discussions are

in Section III and Section IV.

A recent work called DIZK has proposed to leverage

Apache Spark for distributing the prover’s computation to

multiple machines [50]. Though it can reduce the latency for

the proving process, the primary goal for DIZK is supporting

zk-SNARK for super large-scale applications, such as ma-

chine learning models. Large cloud computing is inefficient

for ordinary-size applications like anonymous payment and

privacy-preserving smart contracts due to network latency

and computation cost. Therefore DIZK can be regarded as a

complementary work to ours, while our design achieves better

efficiency for each distributed machine.

Recently, a few approaches in industry try to accelerate

the prover with dedicated hardware (GPU [11] or FPGA [5])

by leveraging the parallelism inside zk-SNARK. For example,

Coda held a global competition for accelerating the proving

process using GPU with high rewards ($100k) [11]. However,

the final acceleration result of the competition is even worse

than our CPU benchmark (See Section VI for more details).

And the FPGA one does not contain a complete end-to-end

implementation [5]. In summary, there is still a considerable

gap between the existing performance and the requirement in

practical usage.

III. ACCELERATING POLYNOMIAL COMPUTATION

The POLY part of zk-SNARK mainly consists of multiple

NTTs and INTTs. To overcome the design challenges of large-

size NTTs, we introduce a recursive NTT algorithm with an

optimized overall dataflow. We also design efficient hardware

NTT modules to alleviate the off-chip bandwidth and on-chip

resource requirements.

A. NTT Computations

The NTT computation â
def
= NTT(a) is defined on two N -

size arrays a and â, with their elements â[i] =
∑N−1

j=0 a[j]ωij
N .

Here a[j] and â[i] are λ-bit scalars in a finite field. And ωN is

the N th root of unity in the same field. All possible exponents

of ωN are called twiddle factors, which are constant values for

a specific size of N . Since we use off-chip memory to store

them, we assume all twiddle factors for all possible Ns are pre-

computed. This may only introduce tens of MB storage for N
up to several millions. Typical implementations of NTT utilize

the property of the twiddle factors to compute the results

recursively. The access patterns are similar to the standard FFT

algorithms, as shown in Figure 3. In this example, the NTT

size is N = 2n. In stage i, two elements with a fixed stride

2n−i perform a butterfly operation and output two elements

to the next stage. The overall NTT computations complete

in n stages. The different strides in different stages result in

Fig. 3. The data access pattern of NTT (similar to FFT) with size 23 = 8.

complicated data access patterns, which makes it challenging

to design an efficient hardware accelerator.

As shown in Figure 3, the output elements on the right

side are out-of-order and need to be reordered through an

operation called bit-reverse. Alternatively, we can reorder the

input elements and generate the outputs in order [21]. If we

need to perform multiple NTTs in a sequence, it is possible

to properly chain the two styles alternately and eliminate the

need for the bit-reverse operations in between.

B. Design Challenges

NTT is an important kernel commonly used in cryptography.

As a result, there exist many hardware accelerator designs for

NTT. One state-of-the-art NTT hardware design is HEAX [45],

which is specialized for homomorphic encryption. However,

the POLY computations in zk-SNARK have substantially

larger scales than those addressed in HEAX. It requires

multiple NTTs of up to a few million elements, with the data

width normally more than 256-bit. Such large sizes can hardly

be satisfied by any previous NTT hardware design and pose

new challenges that must be properly addressed.

First, the total size of zk-SNARK NTT data can be too large

to keep on-chip and should be stored in off-chip memory.

For example, a million-size NTT with 256-bit data width

will need over 64 MB data storage for the input data and

the twiddle factors. If we need to access 1024 elements in

each cycle from the off-chip memory to feed a 1024-size

NTT module, the accelerator has to support at least 2.98 TB/s

bandwidth, even with a relatively low 100 MHz frequency.

This is unrealistically high in existing systems, let alone

that the complicated stride accesses may further reduce the

effective bandwidth. Therefore, it is critical to optimize the

off-chip data access patterns of the NTT hardware modules

to minimize bandwidth requirements and balance between

computations and data transfers. In contrast, prior work like

HEAX assumes data can be buffered on-chip in most cases

and does not specially design for off-chip data accesses [45].

Second, the large bitwidth of NTT elements also requires

significant on-chip resources on the computation side. The

original HEAX design only works with data no wider than 54-

bit. It, therefore, adopts an approach that uses a set of on-chip

multiplexers before the computation units to choose the correct

input elements for each butterfly operation [45]. If we naively

Fig. 4. The recursive NTT algorithm.

scale up the bitwidth beyond 256 as required in zk-SNARK,

the area and energy overheads of such multiplexers will

increase significantly. Furthermore, the required computation

resources for the butterfly operation itself in the NTT module

also scale in a super-linear fashion. Both make it inefficient

to support large NTTs with high throughput.

C. Recursive NTT Algorithm

To overcome the above challenges, we adopt a parallel

NTT algorithm from [21], [49] to recursively decompose a

large NTT of arbitrary size (e.g., 1 million) into multiple

smaller NTT kernels (e.g., 1024). This allows us to only

implement smaller NTT modules, which can fit into the on-

chip compute resources and also satisfy the off-chip bandwidth

limitation. We then iteratively use the smaller NTT modules to

calculate the original large NTT. The hardware NTT module

in Section III-D can work with different NTT kernel sizes,

therefore supporting flexible decomposition.

We give a high-level overview of the algorithm as shown

in Figure 4. A more precise description can refer to the

literature [21], [49]. In this example, the large NTT size is

N = I × J . We can then decompose the N -size NTT into

several I-size and J-size smaller NTTs. For convenience, we

represent the original 1D input array a as a row-major I × J
matrix in Figure 4. We first do an I-size NTT for each of

the J columns (step 1). Then we multiply the output with

the corresponding twiddle factors (step 2). Next, we do a J-

size NTT for each of the I rows (step 3). Finally, we output

each element in the column-major order, as the final output

1D array â.

D. Bandwidth-Efficient NTT Hardware Module

With the above decomposition, we only need to design a

relatively small-size NTT hardware module that works on

I and J array elements. Previous work like HEAX [45]

implemented such NTT modules following the data access

pattern in Figure 3, using a set of on-chip multiplexers to

deliver each input element to the corresponding multiplier.

However, recall that I and J could still be large (e.g., 1024).

Directly fetching these data from off-chip memory in every

cycle would result in significant bandwidth consumption, as

described in Section III-B. Therefore, we adopt a bandwidth-

efficient pipelined architecture. We choose a design similar to

[34] as the basic building block. It is a fully pipelined design

that reads one input element and produces one output element

sequentially in each clock. Instead of using many multiplexers,

we use FIFOs with different depths to deal with the different

strides in each stage.

Figure 5 shows the simplified design for a 1024-size NTT

pipeline module. It contains 10 stages. Each stage has an NTT

core that does the butterfly operation between two elements

with a certain stride, as in Figure 3, and generates two new

elements for the next stage. The core has a 13-cycle latency

for the arithmetic operations inside. The depth of the FIFO

in each stage matches the stride needed, i.e., 512 for the first

stage, 256 for the second stage, and so on. The pipeline keeps

reading one element per cycle from the memory. In the first

512 cycles, the 512 elements are stored in the FIFO in the

first stage. In the next 512 cycles, we enable the NTT core,

which uses the newly read element and pops the head of the

FIFO as its two inputs, with the desired stride 512. In this

way, the stride is correctly enforced with a FIFO instead of

multiplexers. The NTT core generates two output elements in

each cycle, one of which is directly sent to the next stage. The

other output needs to be buffered and sent to the next stage at

a later point (see the orders in Figure 3). We reuse the FIFO

in the first stage for this purpose, as the input elements in the

FIFO can be discarded after use. The next stage follows the

same behavior but with a different FIFO depth to realize a

different stride. The last stage writes the output back to the

memory.

With the above design, we reduce the bandwidth needed

to only one element read and one element write per cycle.

With 256-bit elements and 100 MHz, this is just 5.96 GB/s,

much more practical to satisfy than before. Also, we reduce

the superlinear multiplexer cost to linear memory cost. Not

only the resources scale better now, but also the resource type

changes from complex logic units to regular RAM.

The total latency for an N -size NTT includes 13 logN
cycles for the logN stages, and N cycles for buffering the data

across all stages. It requires another N cycles to fully process

all elements, which can be overlapped with the next NTT

kernel if any. If there are t modules, it takes 13 logN+N+NT
t

cycles to compute T NTT kernels in parallel.

Supporting INTT. We also need to support INTT in POLY.

An INTT module is almost the same as NTT, except that (1)

the execution order in the butterfly NTT core is different; (2)

the control unit operates in the reversed stage order; and (3)

the twiddle factors are inversed. We design one butterfly core

for both NTT and INTT with different control logic, but shared

computation resources such as the expensive multipliers which

are the dominant components. In POLY, NTTs and INTTs are

chained together as in Figure 2. Thus we can alternately adopt

the two reordering styles of input and output arrays in our

modules as described in Section III-A to eliminate the need

for the bit-reverse operations.

Fig. 5. The architecture of a 1024-size bandwidth-efficient NTT module.

Various-size kernels. Our NTT module can also easily

support various-size NTT kernels that are smaller than N .

The NTT kernels in POLY are always padded by software

to power-of-two sizes. For a power-of-two size smaller than

N , we can bypass the previous stages in the module and start

from a later stage. For example, a 512-size NTT starts from the

second stage. Thus the module can flexibly support different

I-size and J-size NTTs after decomposition.

E. Overall NTT Dataflow

We follow the recursive algorithm in Figure 4 to process

large-size NTT kernels in a decomposed manner on the small

NTT hardware modules in Section III-D. However, the overall

data access pattern in each of the steps does not match well

with the data layout stored in the off-chip memory. This would

result in inefficient large-stride accesses that poorly utilize the

available bandwidth. To illustrate this issue, we consider the

original input matrix in Figure 4, whose layout in memory is

row-major, generated from the 1D array a (up to a million

elements). In step 1, each I-size column NTT kernel needs

to process one column of data. This would make J-strided

accesses (up to 1024) on the row-major layout. The output

data of this step naturally form a column-major matrix. Step

2 is a simple pass of element-wise multiplication. However,

in step 3, each J-size row NTT kernel should access the data

in a row, again resulting in large strides on the column-major

layout. Finally, the output of step 3, which is in row-major after

the row NTT kernels, should go through another transpose to

be read out in the column order, leading to another round of

strided accesses.

To alleviate the problem and make better use of the band-

width, we effectively block the data to balance between the

two choices of layouts (row-major and column-major) and

initiate on-chip SRAM buffers to improve input data reuse and

aggregate output data before storing back. We also implement

multiple NTT modules to process in parallel and to fully utilize

the data fetched together from memory each time.

For simplicity, suppose I = J and the original NTT size

N = I× I . We implement t NTT modules of size I as shown

in Figure 6. Data are still stored in the off-chip memory in a

row-major order, as resulted from the original 1D array. First,

we fetch t columns together from the off-chip memory and

process them in the t NTT modules. Each memory access

reads a t-size range of elements, resulting in better sequential

access bandwidth. Recall from Section III-D that each NTT

module only reads one new input element at each cycle, and

outputs one element per cycle after the initial pipeline filling.

Fig. 6. The overall dataflow of NTT processing. In each cycle, we read t
sequential elements from each row of the original 2D array as the input of the t
I-size column NTTs. Or equivalently, we read from t columns simultaneously.
The marked read happens in the (I + t)-th cycle to fetch that sub-row to the
NTT modules. The green block shows the buffered output data on-chip to be
transposed. The grey elements are currently being processed in the t NTT
module pipelines.

We use an on-chip buffer of size t×t to resolve the data layout

issue, by performing a small matrix transpose before writing

data back to off-chip memory. In each cycle, the t modules

output t elements and write a column in the on-chip buffer.

When the buffer is filled up, we write back each row to off-chip

memory, resulting in at least t-size access granularity. This

allows us to always keep the data in the off-chip memory in

row-major formats, while still achieving at least t-size access

granularity for high effective bandwidth.

Figure 6 shows the details during the processing. The green

block of t× t elements are already processed and the results

are written to the on-chip buffer on the right side. They were

pushed into the buffer by columns and popped out to the

memory by rows. The gray elements, including the beginning

of the second group of t columns, are being processed in the

NTT module pipelines. In such a way, we see that the t NTT

modules are fully pipelined and well utilized. The pressure on

the off-chip bandwidth is also alleviated with our bandwidth-

efficient NTT module design.

IV. ACCELERATING MULTI-SCALAR MULTIPLICATION

In this section, we first introduce the computation task and

design challenges for MSM. Then, we present the algorithm

and the corresponding architecture to accelerate it.

A. MSM Computations

As illustrated in Section II-B, the MSM computations are

defined as Q =
∑n

i=1 kiPi, where each Pi is a point on a pre-

determined EC and each ki is a λ-bit scalar on a large finite

field. Each pair kiPi is a point scalar multiplication (PMULT),

and MSM needs to add up (PADD) these products to get one

Fig. 7. An example of bit-serial PMUT computation.

final point. zk-SNARK requires several times of MSM with

different scalar vectors. One is from the result of POLY (Hn)

and the other is from the witness (Sn). Note that the point

vectors are known ahead of time as fixed parameters for a

certain application problem; only the scalar vectors change

according to different witnesses.

As we can see, the most expensive operations in MSM are

PMULT and PADD on the EC. Similar to the fast exponen-

tiation algorithm [31], the more expensive PMULT can be

decomposed into a series of PADD and PDBL in a bit-serial

fashion. An example is shown in Figure 7, where we want to

compute 37P. We represent 37 in its binary form (100101)2.

At each bit position, we execute a PDBL to double the point.

If the bit is 1, we add it to the result using a PADD. We

can find that PMULT invokes PADD and PDBL sequentially

according to each bit of the scalar ki. Thus, the sparsity of

the scalar ki impacts the overall latency. If the binary form of

ki contains more 1’s, then the ith PMULT needs more PADD

operations and thus more time.

B. Design Challenges

While EC is a commonly used kernel in a wide range

of cryptographic applications, most of them only need a

single PMULT to encrypt values. Thus, none of the previous

accelerators or ASICs has been specially designed for MSM,

which involves a large number of PMULT operations whose

results are finally accumulated with a PADD. For such a

pattern, directly duplicating existing PMULT accelerators is

inefficient. Because the computation demands of PADD and

PDBL depend on each input scalar, not only the utilization of

each PMULT module would be quite low for sparse scalars,

but the multiple PMULT modules would also suffer from load

imbalance issues, further decreasing the overall performance.

C. Optimized Algorithm and Hardware Module Design

Instead of directly replicating PMULT modules, we adopt

the Pippenger algorithm [43] to achieve high resource utiliza-

tion and better load balancing. We firstly represent the scalar

k under radix 2s, where s is a chosen window size. This is

equivalent to dividing the λ-bit scalar k into λ
s chunks with s

bits each. An example is shown in Figure 8, where λ = 12 and

s = 4. Computing Q can be done with the following steps:

First, sum up the elements in each chunk i (s-bit wide) to get

Gi. Then, sum up 2i×sGi to get the final result, with 2i×s as

the weights.

In this way, we convert the original computation to a set

of smaller sub-tasks of computing Gi. For each sub-task, the

Pippenger algorithm groups the elements in the s-bit chunk

by the scalars, and put those P’s with the same corresponding

Fig. 8. Pippenger algorithm.

scalar value into the same bucket, as shown in Figure 8 right

side. Since the scalar bitwidth is s, there are 2s − 1 different

buckets in total. Note that if the scalar is zero, we can directly

skip the corresponding points. Then we add up all the points

assigned to the same bucket, to get one sum point Bi per

each bucket. Then Gi can be computed by adding up Bi

weighted by the corresponding scalar i to that bucket. As long

as the number of original PMULT operations (i.e., the length

of the point and scalar vectors) is much larger than the number

of buckets (2s − 1), by doing this we can convert the many

expensive PMULT operations into the more lightweight PADD

within each bucket. The detailed maths is shown below, where

bi[j] represents the j-th radix-2s chunk of ai.

n∑

i=1

aiPi =

λ
s −1∑

j=0

[
n∑

i=1

(bi[j] ∗Pi)] ∗ 2js =
λ
s −1∑

j=0

Gj ∗ 2js

Gj =
n∑

i=1

(bi[j] ∗Pi) =
2s−1∑

k=0

k ∗ [
n∑

i=1

(bi[j] == k) ∗ Pi]

With the Pippenger algorithm, MSM becomes PADD-

intensive. We design efficient PADD modules. The PADD

module is heavily pipelined with 74 stages for expensive

arithmetic modular operations such as modular multiply. Since

the datapath of PADD is deterministic, we alleviate resource

underutilization and load imbalance issues. The remaining few

PDBL operations when summing up iBi and 2i×sGi have

only negligible cost, less than 0.1% in our evaluation.

D. Overall Architecture

While we convert expensive PMULT into cheaper PADD

operations, the overall architecture still faces a few challenges.

First, the group-by phase requires an efficient implementation,

especially considering that the size of the MSM (i.e., the length

of the scalar and point vectors) could be very large, up to a few

millions. The control logic is also non-trivial. Second, while

each PADD operation is deterministic, the number of points

assigned to each bucket, and hence the number of PADD

operations needed, can be skewed. The workloads between

buckets can therefore still be possibly imbalanced.

To solve the above problems, we propose a novel archi-

tecture for the Pippenger algorithm. First, we divide a large

MSM into smaller segments to fit in the on-chip memory.

Fig. 9. Overall architecture of the Pippenger algorithm for MSM.

For example, as shown at the top of Figure 9, an MSM

with 1 million scalars and points can be divided, and each

time we load one segment of 1024 scalars (256-bit each) and

points (768-bit each using projective coordinates) to the on-

chip global buffer from the off-chip memory.

Then, in each cycle, we read two scalars and two corre-

sponding points from the on-chip buffer. We put the points

into different buckets according to the last four bits of the

corresponding scalars. The depth for the bucket buffer is only

one. Once there are two points that would appear in the

same bucket, they will be transferred into a centralized FIFO

together with the bucket index as their label, as the green

area shown in Figure 9. Each entry of the FIFO contains a 4-

bit label (bucket index) and two points from the same bucket

waiting to be added together. There are two 15-entry FIFOs

prepared for the two scalar-point pairs read in the same cycle.

The entries in the FIFOs are sent to a shared, pipelined

PADD module to be processed. When the resultant sum is

ready, it should be written back to the corresponding bucket

according to the label for further accumulation. However, these

results also need another 15-entry FIFO to buffer, in case

of conflicts with the already existing data in the destination

buckets. Basically, the newly obtained sum can be immediately

sent to this FIFO together with the existing data in the bucket

for another PADD operation. The PADD module hence can

read from three FIFOs in total, two for newly loaded data and

one for PADD results. After 512 cycles, the last 4-bit chunks

of all 1024 scalars are processed. We then move forward to

the next 4 bits and repeat the above workflow.

Overall, our architecture for the Pippenger algorithm uses a

centralized and shared PADD module among all buckets, and

dynamically dispatches work from these buckets to achieve

load balance. Because the PADD module is the performance

and area dominant part, sharing it results in a much bet-

ter resource utilization than having separate private PADD

modules in each bucket. Our work dispatch mechanism is

also lightweight. We avoid physically sorting the points as

typical group-by algorithms require. We mostly rely on a

small number of buffers and FIFOs to stash the data to be

accumulated. Carefully provisioning the buffer and FIFO sizes

allows us to avoid most stalls and achieves high throughput.

E. Exploiting Parallelism and Balancing Loads

The PADD module in our architecture in Section IV-D is

clearly a performance bottleneck. Now, we extend the design

to use multiple PADD modules in parallel. A straightforward

way to make use of those PADDs is to provision multiple

PADD for the same set of FIFOs and distribute work from

these FIFOs among them. However, this will result in com-

plicated synchronization control logic. Also, increasing the

number of PADD modules may lead to more idle cycles when

the FIFOs are empty, thus decreasing resource utilization.

We use a different way to balance the workloads among

different PADD modules. Notice that we only read 4 bits of

a scalar in one round and then read the next 4 bits in the

next round. Each round is independent of each other, and thus

can be processed in parallel. Therefore, we replicate the entire

design in Section IV-D as multiple processing elements (PEs),

each with a separate set of buckets, the FIFOs, and a PADD

module. For t PEs, we can read 4t bits of the scalar each time

in one round. Each PE works exactly the same as previously

described, and processes its own 4-bit chunk with the same set

of points. The control logic is greatly simplified in this way.

We next consider the detailed workload balance among

different PEs. The worst situation is that all points in one

PE are put into a single bucket. Thus, it has the longest

PADD dependency chain, with 1023 PADD operations to get

the final result. The best situation is that all points in one

round have a uniform distribution and they are put into the

15 buckets evenly, each with 64 or 65 points. This requires

1024 − 15 = 1009 PADD operations. As the PADD module

is shared across all buckets in a PE and is not aware of

which bucket the pair of points is from, the end-to-end latency

difference between these two cases with similar numbers

of required PADD operations is negligible. Therefore, load

balance among multiple PEs is well maintained.

As shown in Figure 2, one scalar Hn is from the polynomial

computation, and the other Sn is from the expended witness

directly. Hn is dense and can be regarded as approximately

uniformly distributed, since doing NTT brings uncertainty to

the data. Consequently, the possibility of the worst case is

extremely low. Sn is very sparse. In fact, more than 99% of

the scalars are 0 and 1. This is because the arithmetic circuit

usually has a lot of bound checks and range constraints. It

uses the binary form of values, and brings 0 and 1 to the

expended witness vector. Note that the cases for 0 and 1
can be directly computed without sending into the pipelined

acceleration hardware. We process those cases separately. 2

V. OVERALL SYSTEM

The overall architecture of PipeZK is shown in Figure 10.

The CPU first expands the witness and transfers the data to the

accelerator’s DDR memory. Next, the accelerator reads from

its memory to execute NTT/INTTs for the POLY phase. After

the POLY is done, the MSM subsystem processes the scalar

2The cases of 0 and 1 can be filtered when fetching from the scalar and
processed in parallel.

Fig. 10. The overall architecture of PipeZK.

and point vectors. It outputs the partial sums of Bi from each

bucket (see Figure 9), and the CPU deals with the remaining

additions, which is less than 0.1% of the execution time.

Note that there are two types of ECs (G1 and G2) in the

actual MSM implementation of zk-SNARK [9]. Both G1 and

G2 have exactly the same high-level algorithm, so they could

have benefited from the same architecture as we introduced in

Section IV. The difference is that G2 has different basic units,

i.e., the multiplication on G2 needs four modular multiplica-

tions whereas G1 only needs one. It needs more resources to

implement G2. However, G2 often takes less than 10% of the

overall MSM time and the scalar vectors for this part are very

sparse. Therefore we move the G2 part to the host CPU, to

achieve better trade-off between resources and performance.

In summary, the CPU generates the witness and processes the

MSM for G2, and the accelerator processes the POLY and the

MSM for G1. This results in a heterogeneous system with few

interactions. And the computations on both sides can happen

in parallel.

VI. EVALUATION

The evaluation consists of two parts. First, we present

the microbenchmark results with various input sizes (i.e.,

constraint system sizes) for the NTT/MSM modules, along

with the results of typical workloads shown in Table V.

Second, a real-world application, Zcash, is showcased with

three end-to-end workloads to demonstrate the practicality of

our design and implementation.

A. Experimental Setup

For POLY and MSM, we have a full-stack Verilog im-

plementation, which includes the low-level operations such

as PADD, PDBL, and PMULT (with Montgomery optimiza-

tions [40] and projective coordinates [13]). We synthesize our

design using Synopsys Design Compiler under UMC 28 nm

library (details in Table I), and use Ramulator to simulate

the performance of off-chip DDR memory. The ASIC-based

POLY and MSM modules are integrated along with other

modules (such as trusted setup and witness generation) from

libsnark [9] running on the host CPU, to derive an end-to-end

prototype, as Figure 10 illustrates.

We compare our design (denoted as “ASIC”) against the

state-of-the-arts, including a single GPU implementation [6]

(denoted as “1GPU”), an 8-GPU implementation [3] (denoted

as “8GPUs”), and libsnark [9] and bellman [2] on a CPU

TABLE I
CONFIGURATIONS AND SUPPORTED CURVES ON EACH PLATFORM.

Platforms Detailed Configurations Supported Curves

ASIC (ours)
Synopsys DC, UMC 28nm library,

DDR4 @2400MHz (4 channels, 2 ranks)

BN-128, BLS12-381,

MNT4753

CPU [9]
Intel(R) Xeon(R) Gold 6145 @2.00G Hz,

80 logical cores, 377G RAM

BN-128, MNT4753 [9]

BLS12-381 [2]

8GPUs [3] eight Nvidia GTX 1080 TI cards BLS12-381

1GPU [6] single Nvidia GTX 1080 TI card MNT4753

TABLE II
LATENCIES (IN SECONDS) AND CORRESPONDING SPEEDUPS FOR NTT

MODULE WITH DIFFERENT INPUT SIZES.

Size
λ = 768-bit λ = 256-bit

CPU ASIC CPU ASIC

214 0.050 0.253 ms (197.5x) 0.008 0.076 ms (105.6x)
215 0.062 0.522 ms (118.8x) 0.015 0.151 ms (99.6x)
216 0.151 1.045 ms (144.5x) 0.030 0.281 ms (106.6x)
217 0.284 2.248 ms (126.3x) 0.056 0.604 ms (92.7x)
218 0.471 5.670 ms (83x) 0.104 1.489 ms (69.8x)
219 0.845 0.016 (54x) 0.195 4.052 ms (48.1x)
220 1.368 0.044 (30.4x) 0.333 0.011 (29.3x)

server (denoted as “CPU”), respectively. Note that due to

the limitations of the baseline implementations, in the rest of

the paper, we only show corresponding results for supported

curves (details in Table I).

B. Evaluating NTT and MSM with Different Input Sizes

This section presents the microbenchmark results for our

NTT and MSM implementations on ASICs. We vary the

input size from 214 to 220 to demonstrate the scalability

of our design. For both NTT and MSM, we evaluate them

with different underlying elliptic curves: BN-128, BLS12-381,

and MNT4753, where the bitwidth λ = 256, 384, and 768,

respectively. For BN-128 and MNT4753, we use libsnark [9]

on CPUs while bellperson [3] for BLS12-381 on GPUs.3

The results for NTT and MSM are shown4 in Tables II

and III. The speedup over the baseline is also attached to

each latency number of the ASIC, which equals to the latency

ratio between the baseline and the ASIC. Compared to the

CPU/GPU implementations, our ASIC design demonstrates a

speedup up to 197.5x and 77.7x for NTT and MSM, respec-

tively. Even with increasing input sizes, our implementation

still shows superiority.

We carefully tailor the tradeoffs between resource consump-

tion and speed in our ASIC implementations. For the 256-bit

curve BN-128, we implement 4 NTT pipelines and 4 PEs

for MSM, while use only 1 PE for MSM/NTT in the 768-

bit MNT4753 curve. For BLS12-381, we implement 4 NTT

3Since the eight-GPU implementation [3] on BLS12-381 is much faster
than that of CPU [2], we omit corresponding latency results of CPU for
simplicity. However, the one-GPU-card implementation [6] demonstrates
weaker performance than that of our 80-core CPU server. Thus, we only
list the CPU results for BN-128 and MNT4753 in Tables II and III.

4For BLS381 where λ = 384, the scalar field is still 256-bit. Thus we only
compare the performance of 256 and 768-bit for NTT part in Table II.

TABLE III
LATENCIES (IN SECONDS) AND CORRESPONDING SPEEDUPS FOR MSM

MODULE WITH DIFFERENT INPUT SIZES.

Size
λ = 768-bit λ = 384-bit λ = 256-bit

CPU ASIC 8GPUs ASIC CPU ASIC

214 0.449 0.012 (39.00x) 0.223 0.004 (77.70x) 0.018 0.001 (18.69x)

215 0.642 0.023 (27.93x) 0.233 0.006 (40.50x) 0.029 0.002 (15.24x)

216 1.094 0.046 (23.82x) 0.246 0.011 (21.42x) 0.047 0.004 (12.27x)

217 2.002 0.092 (21.78x) 0.265 0.023 (11.55x) 0.083 0.008 (10.86x)

218 3.253 0.184 (17.70x) 0.343 0.046 (7.47x) 0.180 0.016 (11.76x)

219 5.972 0.369 (16.26x) 0.412 0.092 (4.47x) 0.308 0.032 (10.05x)

220 11.334 0.735 (15.42x) 0.749 0.184 (4.08x) 0.485 0.061 (7.92x)

TABLE IV
RESOURCE UTILIZATION AND POWER CONSUMPTION.

Curve Modules Frequency Area (mm2) Dyn Pwr Lkg Pwr

BN128 (256)

POLY 300 MHz 15.04 (29.63%) 1.36 W 0.68 mW
MSM 300 MHz 35.34 (69.64%) 5.05 W 0.33 mW

Interface 600 MHz 0.37 (0.73%) 0.03 W 0.01 mW
Overall - 50.75 6.45 W 1.02 mW

BLS381 (384)

POLY 300 MHz 15.04 (30.51%) 1.36 W 0.68 mW
MSM 300 MHz 33.72 (68.40%) 4.75 W 0.31 mW

Interface 600 MHz 0.54 (1.10%) 0.04 W 0.01 mW
Overall - 49.30 6.15 W 1.00 mW

MNT4753 (768)

POLY 300 MHz 9.69 (18.31%) 0.88 W 0.43 mW
MSM 300 MHz 42.95 (81.18%) 6.14 W 0.40 mW

Interface 600 MHz 0.27 (0.51%) 0.02 W 0.01 mW
Overall - 52.91 7.04 W 0.84 mW

pipelines (256-bit) and 2 PEs for MSM (384-bit). These are

determined by the resource utilization of different curves: the

768-bit modules take more resources than those of the 256-

bit curve, especially for the integer modular multiplications

(details in Table IV). Large integer modular multiplication

plays a dominant role in the resource utilization. We expect

the performance will be further improved with more careful

resource-efficient design for modular multiplications.

C. Evaluating zk-SNARK Workloads

We also evaluate POLY and MSM of zk-SNARK5 over

typical workloads [8], as shown in Table V.

We present the end-to-end proof time, which includes the

time of loading parameters through PCIe, computing POLY

and MSM on chip, as well as other processing on CPU. These

workloads are compiled with jsnark [8] and executed with

libsnark as our backend. Both CPU and GPU baselines [6]

are evaluated with the curve MNT4753 where λ = 768. And

as described in Section V, MSM G2 is offloaded to CPU

in the GPU baseline and our design. We list the time for

POLY, MSM, and MSM G2, respectively. We only provide the

overall proof time for “1GPU” without the breakdown due to

their heterogeneous architecture with intertwined timings of

MSM/POLY on GPU/CPU.

For our ASIC implementation, the latency for proof without

G2 (which runs on ASIC) and the latency for MSM G2

(which runs on CPU) are both presented. The final proof

5Note that in the rest of the paper, MSM of zk-SNARK (or MSM for
short) denotes the computations of four G1-type MSMs and one G2-type
MSM, which differ from “MSM” in Section VI-B that consists of only one
G1-type MSM.

time is determined by the maximum latency of the two parts,

since they can execute in parallel. However, MSM G2 usually

dominates in the overall latency. In summary, Table V shows

significant acceleration rates of our implementation over the

baselines (50x faster). If we could have additional support for

MSM G2 part, the speedup would be even higher.

D. Evaluating Zcash

Last, we evaluate a real-world industrial application, Zcash,

and compare the end-to-end results with a CPU implementa-

tion (currently, there are no available GPU implementations

for Zcash). The results are shown in Table VI.

There are three kinds of workloads (sprout, sapling spend,
sapling output) in Zcash. To make a shielded transaction,

a compound proof is required (i.e., a combination of those

workloads). The time for the transaction adds up the proving

time for different types of proofs. Other latencies in a trans-

action such as generating signatures occupy less than 0.5%

portion. For the largest workload, sprout, we can accelerate

the time to generate shielded transactions by 6x. For circuits

sapling spend and sapling output , we can reduce the latency

of making shielded transactions over 4x.

We can see that the overall acceleration rate is much lower

compared to the acceleration rate of each single module

(POLY, MSM). This is because the latencies for MSM G2 and

generating witness on CPU (“MSM G2” and “Gen Witness”)

start to dominate after our acceleration for other parts. As we

mentioned in the previous section, MSM G2 can use exactly

the same architecture as G1 and get a similar acceleration

rate if needed. In addition, generating witness is highly par-

allelizable with software optimizations, which takes 10% of

the overall time and one only needs to accelerate this part

for 3 or 4 times to match the overall speedup achieved by

our implementation. Therefore, we expect the effort to be

technically trivial for ASIC-based MSM G2 and software-

optimized witness generating. We leave these for future work.

VII. CONCLUSIONS

Zero-knowledge proof has been introduced for decades and

are widely considered as one of the most useful weapons for

establishing trust and preserving privacy. However, its limited

performance has impeded its wider applications in practice. In

this paper, we propose PipeZK, the first architectural effort to

significantly accelerate zk-SNARK, the state-of-the-art zero-

knowledge proof protocol. We introduce and implement vari-

ous techniques to efficiently streamline key operations (NTTs,

MSMs, etc.) in zk-SNARK. Our empirical results demonstrate

considerable speedups compared to state-of-the-art solutions.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valu-

able comments. This work is partially supported by Na-

tional Key R&D Program of China (2020AAA0105200), Na-

tional Natural Science Foundation of China (62032001 and

62072262).

TABLE V
RESULTS FOR DIFFERENT WORKLOADS (LATENCIES IN SECONDS).

CPU 1GPU ASIC Acceleration Rate Acceleration Rate (w/o G2)

Application Size POLY MSM Proof Proof POLY
MSM

w/o G2
Proof

w/o G2
MSM

G2
Proof ASIC/CPU ASIC/GPU ASIC/CPU ASIC/GPU

AES 16384 0.301 0.835 1.137 1.393 0.002 0.021 0.023 0.097 0.097 11.768 14.420 49.791 61.012
SHA 32768 0.545 0.984 1.529 1.983 0.003 0.027 0.030 0.102 0.102 14.935 19.365 50.330 65.261

RSA-Enc 98304 1.882 3.403 5.290 5.157 0.014 0.080 0.094 1.230 1.230 4.302 4.193 56.297 54.878
RSA-SHA 131072 1.935 3.578 5.514 5.958 0.014 0.105 0.119 0.822 0.822 6.705 7.246 46.481 50.228

Merkle Tree 294912 6.623 8.071 14.695 16.287 0.063 0.226 0.289 2.697 2.697 5.449 6.040 50.869 56.381
Auction 557056 13.875 10.817 24.692 30.573 0.139 0.445 0.585 2.053 2.053 12.025 14.890 42.243 52.306

TABLE VI
RESULTS FOR ZCASH (LATENCIES IN SECONDS).

CPU ASIC Acceleration Rate

Application Size
Gen

Witness
POLY MSM Proof

MSM
G2

POLY
MSM

w/o G2
Proof

w/o G2
Proof ASIC/CPU

ASIC/CPU
w/o G2

Zcash Sprout 1956950 1.010 3.652 5.147 9.809 0.677 0.076 0.136 0.211 1.687 5.815 8.031
Zcash Sapling Spend 98646 0.187 0.441 0.766 1.393 0.167 0.004 0.014 0.018 0.354 3.937 6.817
Zcash Sapling Output 7827 0.043 0.107 0.115 0.266 0.034 0.254ms 0.001 0.002 0.077 3.480 5.982

REFERENCES

[1] “barrywhitehat. roll up: Scale ethereum with snarks,” https://github.com/
barryWhiteHat/roll up/.

[2] “bellman: a crate for building zk-snark circuits,” https://github.com/
zkcrypto/bellman.

[3] “bellperson: Gpu parallel acceleration for zk-snark,” https://github.com/
filecoin-project/bellperson.

[4] “Filecoin company,” https://filecoin.io/.
[5] “Fpga snark prover targeting the bn128 curve,” https://github.com/

bsdevlin/fpga snark prover.
[6] “Gpu groth16 prover,” https://github.com/CodaProtocol/gpu-groth16-

prover-3x.
[7] “J.p. morgan quorum,” https://www.goquorum.com/.
[8] “jsnark: A java library for building snarks,” https://github.com/akosba/

jsnark.
[9] “libsnark: a c++ library for zksnark proofs,” https://github.com/scipr-

lab/libsnark.
[10] “Qed-it,” https://qed-it.com/.
[11] “The snark challenge: A global competition to speed up the snark

prover,” https://coinlist.co/build/coda.
[12] “Zcash company,” https://z.cash/.
[13] “Ieee standard specifications for public-key cryptography,” IEEE Std

1363-2000, pp. 1–228, 2000.
[14] H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware support for

ecc over multiple standard prime fields,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2661–2674,
2014.

[15] B. Baldwin, R. R. Goundar, M. Hamilton, and W. P. Marnane, “Co-
Z ECC scalar multiplications for hardware, software and hardware–
software co-design on embedded systems,” Journal of Cryptographic
Engineering, vol. 2, no. 4, pp. 221–240, 2012.

[16] E. Ben-Sasson, I. Bentov, A. Chiesa, A. Gabizon, D. Genkin,
M. Hamilis, E. Pergament, M. Riabzev, M. Silberstein, E. Tromer
et al., “Computational integrity with a public random string from quasi-
linear pcps,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2017, pp. 551–
579.

[17] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs,”
in Theory of Cryptography Conference. Springer, 2016, pp. 31–60.

[18] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Succinct
non-interactive arguments via linear interactive proofs,” in Theory of
Cryptography Conference. Springer, 2013, pp. 315–333.

[19] D. Catalano and D. Fiore, “Vector commitments and their applications,”
in International Workshop on Public Key Cryptography. Springer, 2013,
pp. 55–72.

[20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward,
“Marlin: Preprocessing zksnarks with universal and updatable srs,” in

Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2020, pp. 738–768.

[21] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[22] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
coin: building zerocoin from a succinct pairing-based proof system,”
in Proceedings of the First ACM workshop on Language support for
privacy-enhancing technologies. ACM, 2013, pp. 27–30.

[23] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cin-
derella: Turning shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 235–254.

[24] B. Fisch, J. Bonneau, N. Greco, and J. Benet, “Scaling proof-of-
replication for filecoin mining,” Benet//Technical report, Stanford Uni-
versity, 2018.

[25] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge.” IACR Cryptol. ePrint Arch., vol. 2019, p. 953, 2019.

[26] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on
the ethereum blockchain,” in International Conference on Financial
Cryptography and Data Security. Springer, 2018, pp. 265–278.

[27] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[28] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 626–645.

[29] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178.

[30] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18, no. 1,
pp. 186–208, 1989.

[31] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
algorithms, vol. 27, no. 1, pp. 129–146, 1998.

[32] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2016, pp. 305–326.

[33] D. Hankerson and A. Menezes, Elliptic curve cryptography. Springer,
2011.

[34] S. He and M. Torkelson, “A new approach to pipeline fft processor,” in
Proceedings of International Conference on Parallel Processing. IEEE,
1996, pp. 766–770.

[35] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” GitHub: San Francisco, CA, USA, 2016.

[36] K. Javeed and X. Wang, “Low latency flexible fpga implementation of

point multiplication on elliptic curves over gf (p),” International Journal
of Circuit Theory and Applications, vol. 45, no. 2, pp. 214–228, 2017.

[37] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[38] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[39] I. Meckler and E. Shapiro, “Coda: Decentralized cryptocurrency at
scale,” O (1) Labs whitepaper. May, vol. 10, p. 4, 2018.

[40] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[41] G. Orlando and C. Paar, “A scalable gf (p) elliptic curve processor
architecture for programmable hardware,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2001, pp.
348–363.

[42] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 238–252.

[43] N. Pippenger, “On the evaluation of powers and related problems,”
in 17th Annual Symposium on Foundations of Computer Science (sfcs
1976). IEEE, 1976, pp. 258–263.

[44] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[45] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture
for Computing on Encrypted Data,” in Proceedings of the 25th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2020, pp. 1295–1309.

[46] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic

computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2019, pp.
387–398.

[47] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[48] S. Setty, “Spartan: Efficient and general-purpose zksnarks with-
out trusted setup,” in Annual International Cryptology Conference.
Springer, 2020, pp. 704–737.

[49] T.-W. Sze, “Schönhage-strassen algorithm with mapreduce for multiply-
ing terabit integers,” in Proceedings of the 2011 International Workshop
on Symbolic-Numeric Computation, 2012, pp. 54–62.

[50] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica,
“DIZK: A distributed zero knowledge proof system,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 675–692. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/wu

[51] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs
for decision tree predictions and accuracy,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 2039–2053.

[52] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vsql: Verifying arbitrary sql queries over dynamic outsourced
databases,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 863–880.

[53] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“A zero-knowledge version of vsql.” IACR Cryptol. ePrint Arch., vol.
2017, p. 1146, 2017.

[54] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,” in
International Conference on Information and Communications Security.
Springer, 2015, pp. 82–96.

