
Ad Hoc Networks 59 (2017) 63–70

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

A maximum flow algorithm based on storage time aggregated graph

for delay-tolerant networks

Hongyan Li a , Tao Zhang

a , ∗, Yangkun Zhang

b , Kan Wang

a , Jiandong Li a

a State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
b Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 10 0 084, China

a r t i c l e i n f o

Article history:

Received 1 May 2016

Revised 7 December 2016

Accepted 29 January 2017

Available online 31 January 2017

Keywords:

Delay-tolerant networks

Time aggregated graph

Maximum flow

a b s t r a c t

Delay-tolerant networks (DTNs) (e.g., Internet, satellite networks, sensor networks, ad hoc networks) have

attracted considerable attentions in both academia and industry. As a fundamental problem, the maxi-

mum flow is of vital importance for routing and service scheduling in networks. For solving the maxi-

mum flow problem of the DTN, an appropriate model should be built first. Compared to the conventional

snapshot approach to model the DTN topology, the time aggregated graph (TAG) is capable of accurately

characterizing the intermittent connectivity and time-varying capacity for each edge, and thus has been

acted as a suitable model for modeling DTNs. However, existing TAG-related works only focus on solving

the shortest path problem, and neither the correlation between time intervals nor nodes storage of a DTN

are described in TAG, resulting in a non-trivial maximum flow problem in TAG. In this paper, we study

the maximum flow problem through our proposed storage time aggregated graph (STAG) for DTNs. First,

an intermediate quantity named bidirectional storage transfer series is introduced to each node in STAG,

and the corresponding transfer rule is also designed for this series to model the correlation between time

intervals. Next, on the basis of the storage transfer series, a STAG-based algorithm is proposed and de-

scribed in detail to maximize the network flow. In addition, we analyze the effectiveness of the proposed

algorithm by giving an illustrative example.

© 2017 Elsevier B.V. All rights reserved.

1

r

s

I

w

v

E

p

T

t

p

w

D

c

j

g

[

a

b

n

p

T

n

t

t

(

t

m

i

e

p

h

1

. Introduction

Recently, Delay-Tolerant Networks (DTNs) [1] have drawn much

esearch attentions due to its wide application in Internet [2] ,

atellite networks [3,4] , ad hoc networks [5] , sensor networks [6] ,

nternet of Things (IOT) [7] and many other communication net-

orks [8,9] . As a fundamental problem, the maximum flow is of

ital importance for routing and service scheduling in networks.

specially for DTN networks, there exists no permanent end-to-end

ath since the topology and links’ characteristics are time-varying.

he study on the maximum flow problem could not only adapt to

he network dynamics and ensure reliable transmissions, but also

rovide powerful guarantee for network management (e.g., net-

ork planning and optimization), thus playing a significant role in

TN.

In particular, the graph theory has been viewed as an effi-

ient approach to study DTNs in many existing works [10–18] . In
∗ Corresponding author.

E-mail addresses: hyli@xidian.edu.cn (H. Li), taozhangfsz@gmail.com

(T. Zhang), hubert.zyk@gmail.com (Y. Zhang), kanwangkw@outlook.com (K. Wang),

dli@xidian.edu.cn (J. Li).

s

r

p

[

g

ttp://dx.doi.org/10.1016/j.adhoc.2017.01.006

570-8705/© 2017 Elsevier B.V. All rights reserved.
raph theory terminology, snapshots are utilized to model the DTN

11] , where each snapshot corresponds to the topology of a DTN

t a particular time interval. However, there exists no correlation

etween snapshots, which can not be utilized to solve the dy-

amic maximum flow problem. What is more, it would result in a

rohibitively large number of snapshots with the time increasing.

ime expanded graphs [12,13] , which have been used to model dy-

amic networks (e.g., DTNs), employ replication of networks across

ime intervals, also resulting in high storage overhead and compu-

ationally complex algorithms. In contrast, time aggregated graphs

TAG), which have been proposed by Betsy George et al. [15] , allow

he properties of edges to be modeled as a time series. Since the

odel does not need to replicate the entire graph for each time

nterval, it uses less memory and the algorithms for common op-

ration are computationally more efficient than those for time ex-

anded graph.

Indeed, time expanded graphs are essentially an expansion of

tatic graphs, and hence many standard flow maximization algo-

ithms (e.g., generic augmenting path algorithm [10]) can be ap-

lied to time expanded graphs. In particular, Iosifidis et al. in

17] iteratively updated the minimum cut of the time expanded

raph and derived a joint storage capacity management to max-

http://dx.doi.org/10.1016/j.adhoc.2017.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2017.01.006&domain=pdf
mailto:hyli@xidian.edu.cn
mailto:taozhangfsz@gmail.com
mailto:hubert.zyk@gmail.com
mailto:kanwangkw@outlook.com
mailto:jdli@xidian.edu.cn
http://dx.doi.org/10.1016/j.adhoc.2017.01.006

64 H. Li et al. / Ad Hoc Networks 59 (2017) 63–70

s

o

c

n

{

c

a

m

a

r

o

i

p

a

a

t

e

m

r

a

c

I

s

t

i

l

a

i

o

s

r

t

o

c

t

r

o

S

r

[

(

n

w

imize the amount of data transferred to the destination. Never-

theless, the time expanded graphs connect any two time intervals

of the same node via one link and the storage size of this node

can be deemed as the link’s capacity, while our proposed TAG ap-

proach strives to construct the storage of the node as a time series,

namely, bidirectional storage transfer series. Moreover, the aug-

menting path algorithm only considers single capacity of an edge

both in time expanded graphs and traditional static graphs, and

thus can not be easily applied to TAG where an edge has a capacity

series. Furthermore, existing TAG-related works only focus on solv-

ing the shortest path problem [14,15] , and neither the correlation

between time intervals nor nodes storage of a DTN are described

in TAG, leading to the sub-optimal rather than the optimal solu-

tion for the maximum flow problem in a DTN. To the best of our

knowledge, the maximum flow problem for a DTN through TAG

has not been studied in previous works.

In this paper, we modify the existing TAG as STAG and then ex-

ploit it to study the maximum flow problem of a DTN. In order

to ameliorate the model, we introduce an intermediate quantity

named bidirectional storage transfer series to each node in STAG,

and the corresponding transfer rule is also designed for this se-

ries to model the correlation between time intervals. As such, it

is possible for us to solve the maximum flow problem of a DTN.

Furthermore, on the basis of the bidirectional storage transfer se-

ries, a STAG-based algorithm is proposed and described in detail to

effectively solve the maximum flow problem.

The distinctive features of this paper are summarized as fol-

lows:

• We model the DTN by STAG (a modified TAG) where the time-

variant topology (capacity) of a DTN is incorporated. Mean-

while, the bidirectional storage transfer series is introduced to

each node in STAG, which could describe the data storage pro-

cess of each node and the correlation between time intervals of

each edge.

• A transfer rule is formulated to describe bidirectional storage

transfer series. It could act as a storage strategy and incorpo-

rates two new storage functions, namely forward storage func-

tion and reciprocal storage function. Accordingly, some storage

transfer series-based definitions are also presented.

• To solve the DTN’s maximum flow problem with high compu-

tational complexity, we propose a Max flow-STAG algorithm on

the basis of STAG. The proposed algorithm can obtain the DTN’s

maximum flow by giving a feasible routing scheme.

• The theoretical analysis is presented to validate the proposed

algorithm. We analyze the effectiveness of the algorithm by giv-

ing an illustrative example.

The remainder of this paper is organized as follows.

In Section 2 , the system model is presented. Following it,

Section 3 provides some basic definitions in STAG. In Section 4 , we

propose and describe the STAG-based maximum flow algorithm

in detail. In Section 5 , we provide the validness of the proposed

algorithm. Finally, we conclude this work and discuss the future

works in Section 6 .

2. System model

In this section, the system model for a DTN with some pre-

dictable characteristics is presented. For the sake of presentation

and without loss of generality, as in [19] , we neglect both the

transmission delay and the propagation delay on the edge.

Consider a DTN with predictable characteristics [20] , e.g., the

motion period, the topology structure and the capacity of each

edge. Assume a large time period T = [t 0 , t h) , V and E are the set

of nodes and edges, respectively. Edge e ∈ E is a directed edge be-

tween two nodes in V , and has a constant capacity on a small time
cale to carry commodity flow. We further partition T into a set

f h small time intervals τ1 , . . . , τq , . . . , τh . To guarantee the time

ontinuity, each time interval is set as left closed and right open,

amely, τq = [t q −1 , t q) .

It follows that the DTN can be modeled by a graph as STAG =
 (V, E, T , C u, v

T
, N

v
T
) | u ∈ V, v ∈ V, (u, v) ∈ E} , where

• V : the set of nodes.

• E : the set of edges.

• T : the given time period.

• C u, v
T

: a capacity time series of an edge (u, v).

C u, v
T

= (c u, v
τ1

, . . . , c u, v
τq

, . . . , c u, v
τh

) and c u, v
τq

=

∫
τq

w u, v (t) dt , where

w u, v (t) is the capacity of the edge (u, v) at a time instant t

∈ τ q . Thus, c u, v
τq

is the total capacity during the time interval

τq = [t q −1 , t q) .

• N

v
T

: a bidirectional storage transfer series of node v .

N

v
T = [n v τ1 ,τ2

, . . . , n v τq −1 ,τq
, . . . , n v τh −1 ,τh

] , where n v τq −1 ,τq
is the

amount of flow transferred between the adjacent time interval

τq −1 and τ q . Note here that, the original values of N

v
T

for all

nodes are initialized to zero.

In practical terms, DTNs may arise in networks with known

onnectivity terms such as Low-Earth Orbiting Satellites (LEO) [20] ,

nd thus STAG is proposed for modeling predictable DTNs. We

ake some rationality hypothesis and create a general example,

s shown in Fig. 1 , where each edge possess a capacity time se-

ies C u, v
T

to aggregate its capacity at different time intervals in the

rder of time. For instance, the capacity time series of edge (S, A)

s C S,A
5

= (2 , 0 , 3 , 0 , 0) , where the number 2 represents the total ca-

acity of edge (S, A) at time interval τ 1 . Each node is marked with

 bidirectional storage transfer series N

v
T
, and the original values

re initialized as N

v
T

= [0 , 0 , 0 , 0] .

We modify the existing TAG as STAG, and an intermediate quan-

ity named bidirectional storage transfer series is designed for mod-

ling the storage process. As such, the store-carry-and-forward

echanism [21] (which is widely utilized to cope with the spo-

adic connectivity of mobile nodes in DTNs, namely, some data

re temporarily stored at a node until an appropriate communi-

ation opportunity arises) of nodes can be well described in STAG.

n particular, our proposed scheme, characterized by the dynamic

torage process, could describe the bidirectional data transfer be-

ween two adjacent time intervals for each node. For instance, dur-

ng time interval τ q and due to the intermittent connectivity of

inks, a total of m units of data (reaching node v) must be stored

nd carried in v until next time interval τq +1 . Then, during time

nterval τq +1 , these m units of data could be finally transferred out

f node v . In conclusion, the whole storage procedure can be de-

cribed as a transfer process, namely, n v τq ,τq +1
= [m] . And the bidi-

ectional storage transfer series incorporate two new storage func-

ions: one is the forward storage function that records the amount

f data transferred from τ q to τq +1 , and the other one is the re-

iprocal storage function that offers the data transferred from τq +1

o τ q on the basis of existing storage transfer series. Note that, the

eciprocal storage function is equivalent to an offset or a correction

f the forward storage process.

We want to from a specific path l , not for all paths in

TAG, to explain how the bidirectional storage transfer se-

ies generate. Hence, the forward storage transfer series N

v
T

=
 n v τ1 ,τ2

, . . . , n v τq −1 ,τq
, . . . , n v τh −1 ,τh

] of node v can be obtained by Eq.

1) as

v
τq −1 ,τq

=

{
f

l u, v
τq −1

− f
l v ,w
τq −1

, q = 2 ,

n

v
τq −2 ,τq −1

+ f
l u, v
τq −1

− f
l v ,w
τq −1

, q = 3 , . . . , h,
(1)

here l denotes any path connecting u, v and w in STAG, f
l u, v
τq

and

f
l v ,w
τq

respectively correspond to the amount of the feasible flow

H. Li et al. / Ad Hoc Networks 59 (2017) 63–70 65

Fig. 1. Storage time aggregated graph.

Fig. 2. Nodes with the forward storage function.

Fig. 3. Nodes with the reciprocal storage function.

i

l

τ

[

t

p

v

{

<

β

w

r

a

r

t

[

d

3

β

w

o

s

d

m

a

a

β

τ

b

F

3

s

f

r

w

b

u

r

v

r

i

p

(

f

v

fl

o

e

t

t

4

s
nto and out of node v during the time interval τ q for the path

 , n v τq −1 ,τq
represents the amount of data transferred from τq −1 to

q .

Given a storage transfer series N

v
T =

 n v τ1 ,τ2
, . . . , n v τq −1 ,τq

, . . . , n v τh −1 ,τh
] and for an arbitrary time in-

erval τ q , we can derive the reciprocal storage function, which

ermits some data limited by N

v
T

to transfer from τ q to the pre-

ious time interval. By choosing the smallest one from the subset

 n v
k −1 ,k

| (q ≥ k ≥ 2) } ⊂ N

v
T
, the reciprocal transfer data βτq ,τp (1 ≤ p

 q) can be obtained as follows:

τq ,τp
= min { n

v
τk −1 ,τk

| p + 1 ≤ k ≤ q } , (2)

here min S denotes the minimum number in set S, τ q and τ p

espectively represent the current and previous time interval. k

cts to identify those elements n v τk −1 ,τk
with p + 1 ≤ k ≤ q, and the

eciprocal transfer data βτq ,τp is equal to the minimum one of

hose elements n v τk −1 ,τk
with p + 1 ≤ k ≤ q . For instance, given N

v
T =

2 , 0 , 1 , 3] and assume τq = τ5 , from Eq. (2) the reciprocal transfer

ata βτ5 ,τp (1 ≤ p < 5) can be obtained, namely, βτ5 ,τ4
= 3 (means

 units of data could be transferred from τ 5 to τ 4), βτ5 ,τ3
= 1 ,

τ5 ,τ2
= 0 and βτ5 ,τ1

= 0 , respectively.

As shown in Fig. 2 (a), there is one path in STAG where a flow

ith two units of data goes into node A at time interval τ 1 and

ut of node A at time interval τ 2 . It is obvious the node A takes a

torage action. From Eq. (1) , the storage process of node A can be

escribed as a forward storage transfer series N

A
2 = [n A τ1 ,τ2

] = [2] ,

arked in gray as in Fig. 2 (b). Considering another case, there is

lso a path in STAG in Fig. 3 (a) where node B already has a stor-

ge series N

B
2 = [n B τ1 ,τ2

] = [1] . From Eq. (2) , it can be obtained that

τ2 ,τ1
= 1 , implying that one unit of data could be transferred from

2 to τ 1 . Hence, on the basis of βτ2 ,τ1
= 1 , we can obtain a feasi-

le flow with two units of data rather than one unit, as shown in

ig. 3 (b).

. Basic definitions in STAG

Let s be the source of the network, and d be the sink. The fea-

ible flow in STAG is also a series f T = (f τ1
, . . . , f τq , . . . , f τh

) , satis-

ying the following two properties:
1) Capacity constraint:

0 ≤ f u, v
τq

≤ c u, v
τq

∀ 1 ≤ q ≤ h, ∀ (u, v) ∈ E. (3)

2) Flow conservation:

∑

v ∈ V

h ∑

q =1

f u, v
τq

−
∑

v ∈ V

h ∑

q =1

f v ,u τq
=

⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

h ∑

q =1

f τq
, u = s,

0 , u � = s, d,

−
h ∑

q =1

f τq
, u = d.

(4)

Intuitively, given a flow network STAG and a flow f T , the

esidual network STAG (rSTAG) consists of new added edges

ith capacities (for amending the flow), and nodes with the

idirectional storage transfer series. Consider a pair of vertices

, v ∈ V , we define the residual capacity time series rc u, v
T

=
(rc u, v

τ1
, . . . , rc u, v

τq
, . . . , rc u, v

τh
) by

c u, v
τq

= c u, v
τq

− f u, v
τq

, ∀ 1 ≤ q ≤ h, if (u, v) ∈ E. (5)

Correspondingly, the reverse counterpart (v, u) of edge (u,

) can also obtain a residual capacity time series rc v ,u
T

=
(rc v ,u τ1

, . . . , rc v ,u τq
, . . . , rc v ,u τh

) where

c v ,u τq
=

{
c v ,u τq

+ f u, v
τq

, ∀ 1 ≤ q ≤ h, if (v , u) ∈ E,

f u, v
τq

, ∀ 1 ≤ q ≤ h, if (v , u) �∈ E.
(6)

As illustrated in Fig. 4 (a), there exists a path l = S − A − B − D

n STAG, and the feasible flow in this path satisfies both the ca-

acity constraint and the flow conservation. Following Eqs. (5) and

6) , the residual network rSTAG is available as in Fig. 4 (b). It can be

ound that, for each edge in path l , the flow summation over inter-

als is equal. Taking path l in Fig. 4 (a) as an example, the feasible

ow of edge (A, B) is f
l A,B

5
= (2 , 0 , 0 , 0 , 0) , while the feasible flow

f the link (B, D) is f
l B,D

5
= (0 , 0 , 0 , 2 , 0) . This feature is very differ-

nt from the common feasible flow, because the STAG incorporates

he storage transfer series, which acts an important role in solving

he maximum flow of STAG.

. Maximum flow algorithm for storage time aggregated graph

The maximum flow problem can be stated as that we wish to

end as much flow as possible between two special nodes (e.g., a

66 H. Li et al. / Ad Hoc Networks 59 (2017) 63–70

Fig. 4. (a) Path with a flow in STAG. (b) The residual network rSTAG.

t

f

A

R

E

A

N

i

v

t

i

s

e

t

(

t

p

p

4

p

e

r

s

o

e

F

s
source node s and a sink node d), under the capacity constraints in

STAG. That is,

f M

T = max
∑

l i

f l i
T

= max
∑

l i

h ∑

q =1

f l i τq
, (7)

where l i is the i th augmenting path in the residual network rSTAG,

and f
l i
T

= (f
l i
τ1

, . . . , f
l i
τq

, . . . , f
l i
τh

) is the maximum feasible flow of l i
(which also satisfies the aforementioned two properties of the fea-

sible flow). Moreover, f M

T
represents the maximum flow of STAG,

and is equal to the summation of all augmenting paths’ maximum

feasible flow.

Algorithm 1 Max flow-STAG Algorithm.

Require: STAG = { (V, E, T , C u, v
T

, N

v
T) | u ∈ V, v ∈ V, (u, v) ∈ E}

Ensure: The maximum flow f M

T
from s to d for a given time period

T

1 Initialize both flow f M

T and the storage transfer series N

v
T to

0, and the original residual network rSTAG is equivalent to

STAG;

2 Repeat

1) Adopt the Depth First Search(DFS) method combined

with the storage strategy to acquire an augmenting path

l i from s to d in the residual network;

2) Augment flow f M

T along l i :

(1) Compute the maximum flow f
l i
T

and add it to f M

T
as

in (7);

(2) Update the residual network and the storage transfer

series of all nodes along path l i ;

3) Return f M

T
;

3 Until there exist no augmenting paths from s to d in the

residual network.

The proposed bidirectional storage transfer series can be lever-

aged to exploit the correlation between time intervals and to seek

as many augmenting paths as possible. Henceforth, on the basis of

bidirectional storage transfer series and the maximum flow algo-

rithm of the static network [22] , we propose the Max flow-STAG al-

gorithm to solve problem (7) , with the following three steps: seek-

ing an augmenting path, computing its maximum flow as well as

getting its residual network. The proposed algorithm would iterate

between the three steps until there is no one more augmenting

path in rSTAG. As such, the maximum flow of STAG can be ob-

tained.

4.1. Seeking an augmenting path in rSTAG

The augmenting path is a simple path from the source node to

the sink node in STAG, and the Depth First Search [22] combined

with the bidirectional storage transfer series can be utilized to get

it. The key principle behind searching for the augmenting path is
o use the storage transfer series to adjust the routing start time,

rom which an adjacent node is chosen as the next hop.

lgorithm 2 Augmenting path algorithm.

equire: STAG = (V, E, T , C u, v
T

, N

v
T)

nsure: An augmenting path l

a l ← s ; // set source s as the current node a l of l

t s ← τq ; // the original routing start time t s of a l is τq

t ← q ;

while a l � = d do

v ← a l ;

for j = t to 2 do

if (n v τ j−1 ,τ j
== 0) then

t s ← τ j ;

break ;

else

t s ← τ j−1 ;

end if

end for

z t ← min { τk | C a l ,w

τk
� = 0 && τk ≥ t s , (a l , w) ∈ E} ;

� ← { w | C a l ,w

z t
� = 0 } ;

a l ← min �;

t ← k ;

end while

Next we illustrate Algorithm 2 via an exemplary instance.

s shown in Fig. 5 , node A , with a storage transfer series

A
5

= [n A τ1 ,τ2
, n A τ2 ,τ3

, n A τ3 ,τ4
, n A τ4 ,τ5

] = [0 , 2 , 1 , 3] , has an original rout-

ng start time t s = τ4 . By choosing n A τ3 ,τ4
(related to time inter-

al τ 4) out of N

A
5
, and the corresponding time interval τ 2 can be

aken as the new routing start time of node A (t s = τ2) since n A τ1 ,τ2

s the first zero element before n A τ3 ,τ4
. Following the new routing

tart time, the available connected time intervals of all adjacent

dges of A are t(A, B) = τ3 , t(A, C) = τ4 and t(A, D) = τ2 , respec-

ively. By choosing the earliest available connected time interval

 t(A, D) = τ2), node D can be set as the next hop of node A . And

he original routing start time of node D is marked as t s = τ2 . Re-

eat the above process until the sink d and thus the augmenting

ath l in rSTAG is eventually found.

.2. Computing the maximum flow of the augmenting path

For the discovered augmenting path l in Section 4.1 , we com-

ute its maximum flow f l
T

and thus the residual capacity of each

dge among it is available. What is more, the storage transfer se-

ies of all nodes in the path are also updated. For sake of pre-

entation, we compute the maximum flow of an augmenting path

nly with two edges, although the computation process can be

xtended to the cases with more edges effortlessly. As shown in

ig. 6 , there are three nodes u, v and w , and the capacity time

eries of edges (u, v) and (v, w) are C u, v
T

= (c u, v
τ1

, . . . , c u, v
τq

, . . . , c u, v
τ)
h

H. Li et al. / Ad Hoc Networks 59 (2017) 63–70 67

Fig. 5. Node with multiple choices to find the next hop.

Fig. 6. Augmenting path with two links.

a

v

[

c

t

t

m

i

i

e

f

t

4

g

t

b

N

.

n

m

b

E

4

t

b

S

s

T

b

t

n

a

f

s

e

a

l

4

t

p

t

p

i

i

r

o{

r

r

d

e

l

c

i

4

c
nd C v ,w

T
= (c v ,w

τ1
, . . . , c v ,w

τq
, . . . , c v ,w

τh
) , respectively. Moreover, node

 is marked with an bidirectional storage transfer series N

v
T =

 n v τ1 ,τ2
, . . . , n v τq −1 ,τq

, . . . , n v τh −1 ,τh
] .

The temporary feasible flow t f
l v ,w
T

= (t f
l v ,w
τ1

, . . . , t f
l v ,w
τq

, . . . , t f
l v ,w
τh

)

an be set by the capacity time series of edge (v, w), namely,

f
l v ,w
T

= C v ,w

T
. After that, we can obtain the temporary feasible flow

 f
l u, v
T

= (t f
l u, v
τ1

, . . . , t f
l u, v
τq

, . . . , t f
l u, v
τh

) of edge (u, v), which is deter-

ined by C u, v
T

, t f
l v ,w
T

and N

v
T . Moreover, define a duplicate of N

v
T ,

.e., tN

v
T

= N

v
T

.

The big principle behind computing the temporary feasible flow

s to traverse the entire time interval reversely. In other words, for

ach feasible τ q (h ≥ q ≥ 1), we need to compute the reciprocal

easible flow b f
l u, v
τq

as well as the forward feasible flow s f
l u, v
τq

. Next,

hese two processes will be elaborated in detail respectively.

.2.1. Reciprocal feasible flow b f
l u, v
τq

First, for each feasible τ q (h ≥ q ≥ 1) and τ p (1 ≤ p < q), we can

et the reciprocal transfer data βτq ,τp from tN

v
T from Eq. (2) . Then

he corresponding reciprocal flow b τq ,τp is given by

 τq ,τp
= min { c u, v

τq
, βτq ,τp

, t f
l v ,w
τp

} . (8)

ext, update C u, v
T

, t f
l v ,w
T

and t N

v
T by b τq ,τp as follows:

c
′ u, v
τq

= c u, v
τq

− b τq ,τp
,

t f
′ l v ,w
τp

= t f
l v ,w
τp

− b τq ,τp
,

n

′ v
τk −1 ,τk

= n

v
τk −1 ,τk

− b τq ,τp
, ∀ p + 1 ≤ k ≤ q.

(9)

Following Eq. (9) , C u, v
T

= (c u, v
τ1

, . . . , c
′ u, v
τq

, . . . , c u, v
τh

) , t f
l v ,w
T

= (t f
l v ,w
τ1

,

 . . , t f
′ l v ,w
τp

, . . . , t f
l v ,w
τq

, . . . , t f
l v ,w
τh

) and t N

v
T

= [n v τ1 ,τ2
, . . . , n

′ v
τp ,τp+1

, . . . ,

′ v
τq −1 ,τq

, . . . , n v τh −1 ,τh
] . Furthermore, we can acquire b f

l u, v
τq

by sum-

ing b τq ,τp over τ p (1 ≤ p < q), namely,

f
l u, v
τq

=

q −1 ∑

p=1

b τq ,τp
. (10)

specially, we set the b f
l u, v
τ1

= 0 for τq = τ1 .

.2.2. Forward feasible flow s f
l u, v
τq

To compute the forward feasible flow s f
l u, v
τq

, we first assume

hat

f e τ = s f e τ = 0 , k �∈ { 1 , . . . , h } , e ∈ l. (11)

k k
ubstituting b f
l u, v
τq

into Eq. (12) , s f
l u, v
τq

is given by

f
l u, v
τq

= min { c u, v
τq

− b f
l u, v
τq

,

h ∑

k = q
t f

l v ,w
τk

−
h ∑

i = q +1

s f
l u, v
τi

} . (12)

he temporary feasible flow t f
l u, v
τq

is equal to the summation of

f
l u, v
τq

and s f
l u, v
τq

from Eq. (13) , namely,

f
l u, v
τq

= b f
l u, v
τq

+ s f
l u, v
τq

. (13)

Eventually, on the basis of the temporary feasible flow t f
l u, v
T

=
(t f

l u, v
τ1

, . . . , t f
l u, v
τq

, . . . , t f
l u, v
τh

) , the path l ’s maximum flow is available,

amely, f l
T

= t f
l u, v
T

.

The aforementioned algorithm could be also extended to the

ugmenting path with more than two edges. In reality, starting

rom the last edge of the path, we can compute the temporary fea-

ible flow of its preceding one. Repeat the process until the first

dge is computed, and then we can get its temporary feasible flow

nd take it as the maximum flow of the path. Due to the space

imitation, nevertheless, we omit the detailed process here.

.3. Getting the residual network

In order to get the residual network, it is of great importance

o compute the feasible flow of each edge, which is similar to the

rocess of computing the maximum flow of the path. We also take

he augmenting path in Fig. 6 as an actual example.

Note here that, we start from the first edge of the augmenting

ath to compute the relevant feasible flow and the residual capac-

ty. Since the maximum flow f l
T

is available from Section 4.2 , set

t as the feasible flow of edge (u, v), namely, f
l u, v
T

= f l
T

. Hence, the

esidual capacity of edge (u, v) and the reverse one (v, u) can be

btained by

rc u, v
τp

= c u, v
τp

− f
l u, v
τp

, 1 ≤ p ≤ h,

rc v ,u τp
= c v ,u τp

+ f
l u, v
τp

, 1 ≤ p ≤ h,
(14)

espectively. After that, we can obtain the feasible flow f
l v ,w
T

=
(f

l v ,w
τ1

, . . . , f
l v ,w
τp

, . . . , f
l v ,w
τh

) of edge (v, w), which is determined by

f
l u, v
T

, c
l v ,w
T

and N

v
T .

Then, we traverse the entire time interval orderly to compute

f
l v ,w
T

. For each feasible τ p (1 ≤ p ≤ h), we need to compute the

eciprocal feasible flow a f
l v ,w
τp

as well as the forward feasible flow

f
l v ,w
τp

. It should be noted here that these two processes are differ-

nt from the processes in Section 4.2.1 and Section 4.2.2 , since the

atter ones focus on time interval τ q while the former ones con-

entrate on τ p . Next, these two processes also will be elaborated

n detail respectively.

.3.1. Reciprocal feasible flow a f
l v ,w
τp

First, for each feasible τ p (1 ≤ p ≤ h) and τ q (h ≥ q > p), we

an get the amount of reciprocal transfer data βτq ,τp from N

v
T

by

68 H. Li et al. / Ad Hoc Networks 59 (2017) 63–70

Fig. 7. Example of Max flow-STAG algorithm.

T

f

F

o{

c

[

z

5

5

T

O

t

d

n

P

e

t
Eq. (2) . Then the corresponding reciprocal flow a τq ,τp is given by

a τq ,τp
= min { f l u, v

τq
, βτq ,τp

, c v ,w

τp
} . (15)

Next, update f
l u, v
T

, C v ,w

T
and N

v
T

by a τq ,τp as follows:

f
′ l u, v
τq

= f
l u, v
τq

− a τq ,τp
,

c
′ v ,w

τp
= c v ,w

τq
− a τq ,τp

,

n

′ v
τk −1 ,τk

= n

v
τk −1 ,τk

− a τq ,τp
, ∀ p + 1 ≤ k ≤ q.

(16)

From Eq. (16) , f
l u, v
T

= (f
l u, v
τ1

, . . . , f
′ l v ,w
τq

, . . . , f
l v ,w
τh

) , C v ,w

T
= (c u, v

τ1
, . . . ,

c
′ u, v
τp

, . . . , c u, v
τq

, . . . , c u, v
τh

) and N

v
T = [n v τ1 ,τ2

, . . . , n
′ v
τp ,τp+1

, . . . , n
′ v
τq −1 ,τq

, . . . ,

n v τh −1 ,τh
] . Moreover, we can acquire a f

l v ,w
τp

by summing a τq ,τp over

τ q (p < q ≤ h), namely,

a f
l v ,w
τp

=

h ∑

q = p+1

a τq ,τp
. (17)

Especially, we set a f
l v ,w
τh

= 0 for τp = τh .

4.3.2. Forward feasible flow df
l v ,w
τp

To compute the forward feasible flow df
l v ,w
τp

, we also assume

that

a f e τk
= df e τk

= 0 , k �∈ { 1 , . . . , h } , e ∈ l. (18)

Substituting a f
l v ,w
τp

into Eq. (19) , df
l v ,w
τp

is given by

df
l v ,w
τp

= min { c v ,w

τp
− a f

l v ,w
τp

,

p ∑

k =1

f
l u, v
τk

−
p−1 ∑

i =1

df
l v ,w
τi

} . (19)
he feasible flow f
l v ,w
τp

is equal to the summation of a f
l v ,w
τp

and df
l v ,w
τp

rom Eq. (20) , namely,

f
l v ,w
τp

= a f
l v ,w
τp

+ df
l v ,w
τp

. (20)

urthermore, the residual capacity of edge (v, w) and the reverse

ne (w, v) can be obtained by

rc v ,w

τp
= c v ,w

τp
− f

l v ,w
τp

, 1 ≤ p ≤ h,

rc w, v
τp

= c w, v
τp

+ f
l v ,w
τp

, 1 ≤ p ≤ h.
(21)

Finally, on the basis of f
l u, v
T

, f
l v ,w
T

and updated N

v
T , we

an obtain a new bidirectional storage transfer series zN

v
T

=
 zn v τ1 ,τ2

, . . . , zn v τq −1 ,τq
, . . . , zn v τh −1 ,τh

] of node v as follows:

n

v
τq −1 ,τq

=

{
n

v
τq −1 ,τq

+ f
l u, v
τq −1

− f
l v ,w
τq −1

, q = 2 ,

z n

v
τq −2 ,τq −1

+ n

v
τq −1 ,τq

+ f
l u, v
τq −1

− f
l v ,w
τq −1

, q = 3 , . . . , h .

(22)

. Analysis of Max flow-STAG algorithm

.1. Algorithm complexity analysis

heorem 1. The time complexity of the Max flow-STAG algorithm is

 ((m + nh) | f M

T
|) , where h is the number of time intervals (for a given

ime period T, we partition T into a set of h small time intervals), f M

T
enotes the value of the maximum flow in a DTN, n is the number of

odes and m represents the number of edges in STAG.

roof. We combine the depth-first search method with the earli-

st start time of nodes to find an augmenting path in rSTAG, and

he time complexity for this step reaches O (m + n) . Besides, both

H. Li et al. / Ad Hoc Networks 59 (2017) 63–70 69

t

a

t

s

fl

o

5

g

s

i

N

s

A

p

p

o

a

m

D

fl

m

s

o

a

m

p

i

S

6

s

i

t

d

f

fl

t

p

r

t

l

n

r

t

r

t

c

n

r

a

t

d

w

s

t

m

c

l

w

A

d

(

t

S

1

r

w

R

[

[
he time for computing the maximum flow of a augmenting path

nd getting the residual network rSTAG are O ((m + nh) . Hence, the

otal time complexity for each augmenting path is O (m + nh) . As-

uming f M

T
is the maximum flow in a DTN, if we set unit value of

ow augmentation for each iteration, then the total running time

f the Max flow-STAG algorithm reaches O ((m + nh) | f M

T
|) .

.2. Case analysis

For a better understanding of the proposed Max flow-STAG al-

orithm, an example will be given to illustrate its application in

olving the maximum flow problem of the DTN.

As shown in Fig. 7 (a), the STAG models a DTN, where the source

s S , the sink is D , and the given time period is T = [t 0 , t h) = [0 , 5) .

ote here that, we partition T into 5 small time intervals, and as-

ume that the initial feasible flow is equal to zero. First, we use

lgorithm 2 (Augmenting Path Algorithm) to seek an augmenting

ath l 1 = S − A − B − D, which is marked in gray. Then, we com-

ute the maximum flow of path l 1 as f
l 1
T

= (2 , 0 , 0 , 0 , 0) . Finally,

n the basis of f
l 1
T

= (2 , 0 , 0 , 0 , 0) , the augmented maximum flow

f M

T along l 1 and thus the residual network are acquired.

Fig. 7 (b) describes the residual network rSTAG after the first

ugmentation, where the dotted line represents the first aug-

ented path. Via Algorithm 2, an augmenting path l 2 = S − B − A −
 (also marked in gray) is available, and the path l 2 ’s maximum

ow turns out to be f
l 2
T

= (0 , 2 , 0 , 0 , 0) . Following it, we augment

aximum flow f M

T along l 2 and acquire the residual network.

Fig. 7 (c) and (d) describe the residual network rSTAG after the

econd and third augmentation, respectively. From Fig. 7 (d), it can

bserved that there exists no augmenting path any more in rSTAG,

nd hence the algorithm terminates. Therefore, the DTN’s maxi-

um flow f M

T is equal to the summation of f
l i
T

of all augmenting

aths, as shown in Fig. 7 (e). Besides, it can also provide a rout-

ng scheme with the maximum flow along the paths S − A − D and

 − B − D to transfer data.

. Conclusion and future work

In this paper, we described a model named as STAG to repre-

ent the DTN. First, the bidirectional storage transfer series was

ntroduced to each node in STAG. Second, a bidirectional storage

ransfer series-based maximum flow algorithm was proposed and

escribed in detail to maximize the network flow. Finally, the ef-

ectiveness of the proposed algorithm was also illustrated.

As an innovative approach, the proposed STAG-based maximum

ow algorithm (i.e., Max-flow STAG algorithm) has broken through

he limitation that the TAG could not solve the maximum flow

roblem of the DTN. In practice, the motion of the satellite would

esult in the time-varying network topology and link, and thus

he satellite networks are typical DTNs. However, there exist some

arge data services (e.g., observation service, video service) that

eed to be transmitted in real time. To ensure the efficient and

eliable transmission of the services, it is necessary to construct a

ime-varying model for the satellite networks, followed by the cor-

esponding routing schemes. The STAG could sufficiently describe

he satellite networks’ time-varying characteristics, and the graph

ould be simpler and less memory by aggregating the link and

ode attributes. Furthermore, the proposed Max-flow STAG algo-

ithm could provide an efficient routing scheme for the services,

nd which can make full use of the scarce link resources to realize

he efficient and reliable transmission of large data services. In ad-

ition, DTNs (e.g., sensor networks, ad hoc networks) are also faced
ith the same problem, i.e., how to ensure the efficient transmis-

ion of large data services in the time-varying networks. In a word,

he constructed model STAG and the proposed STAG-based maxi-

um flow algorithm would be widely applied to the time-varying

ommunication networks and transportation systems.

Future works will be extended to the case that nodes possess

imited storage capacity, which is a more practical scenario in real-

orld DTNs.

cknowledgments

This work is supported by the National Science Foun-

ation (91338115, 61231008), National S & T Major Project

2015ZX030 020 06), the Fundamental Research Funds for the Cen-

ral Universities (WRYB142208, JB140117), Program for Changjiang

cholars and Innovative Research Team in University (IRT0852), the

11 Project (B08038), SAST (201454). Furthermore, we thank the

eviewers for their detailed reviews and constructive comments,

hich have helped to improve the quality of this paper.

eferences

[1] J. Rodrigues , V. Soares , An introduction to delay and disruption-tolerant net-
works, in: Advances in Delay-Tolerant Networks (DTNs), Woodhead Publishing,

Oxford, 2015, pp. 1–21 .

[2] K. Fall , A delay-tolerant network architecture for challenged internets, in: Proc.
ACM SIGCOM, Karlsruhe, Germany, 2003, pp. 27–34 .

[3] C. Caini , et al. , Delay and disruption tolerant networking: an alternative
solution for future satellite networking applications, Proc. IEEE 99 (2011)

1980–1997 .
[4] J. Fraire , J. Finochietto , Routing-aware fair contact plan design for predictable

delay tolerant networks, Ad Hoc Netw. 25, Part B (2015) 303–313 .

[5] Y. Lu , X. Li , et al. , Information-centric delay-tolerant mobile ad-hoc networks,
in: Computer Communications Workshops (INFOCOM WKSHPS), Toronto,

Canada, 2014, pp. 428–433 .
[6] H. Chen , W. Lou , On protecting end-to-end location privacy against local eaves-

dropper in wireless sensor networks, Pervasive Mob. Comput. 16, Part A (2015)
36–50 .

[7] M. Auzias , et al. , Coap over bp for a delay-tolerant internet of things, in: Future
Internet of Things and Cloud (FiCloud), Rome, Italy, 2015, pp. 118–123 .

[8] J. Vijayanathan , P. Vijayanathan , Delay tolerant social networking (dtsn): dual

architecture for dtn based social networking, in: Telecommunication Systems,
Services, and Applications (TSSA), 2011, pp. 55–58 .

[9] Z. Wang , J. Liao , et al. , Friendbook: a semantic-based friend recommendation
system for social networks, IEEE Trans. Mob. Comput. 14 (3) (2015) 538–551 .

[10] L. Ford , D. Fulkerson , Flows in Networks, Princeton U. Press, Princeton, NJ,
1962 .

[11] M. Werner , A dynamic routing concept for atm-based satellite personal com-

munication networks, IEEE J. Sel. Areas Commun. 15 (8) (1997) 1636–1648 .
[12] E. Köhler , et al. , Time-expanded graphs for flow-dependent transit times, in:

Proc. 10th Annu. Eur. Symp. Algorithms, 2002, pp. 49–56 .
[13] A. Ferreira , Building a reference combinatorial model for manets, IEEE Netw.

18 (5) (2004) 24–29 .
[14] B. George , S. Kim , Spatio-temporal network databases and routing algorithms:

a summary of results, in: Advances in Spatial and Temporal Databases, Boston,

2007, pp. 460–477 .
[15] B. George , S. Shekhar , Time-aggregated graphs for modeling spatio-temporal

networks, in: Journal on Data Semantics XI, Springer, 2008, pp. 191–212 .
[16] D. Hay , P. Giaccone , Optimal routing and scheduling for deterministic delay tol-

erant networks, in: Wireless On-Demand Network Systems and Services, 2009,
pp. 27–34 .

[17] G. Iosifidis , et al. , The impact of storage capacity on end-to-end delay in time

varying networks, in: INFOCOM, 2011 Proceedings IEEE, 2011, pp. 1494–1502 .
[18] G. Konidaris , et al. , Primal decomposition and online algorithms for flow op-

timization in wireless dtns, in: Global Communications Conference (GLOBE-
COM), 2013, pp. 84–90 .

[19] S. Jain , et al. , Routing in a delay tolerant network, SIGCOMM Comput. Com-
mun. Rev. 34 (4) (2004) 145–158 .

20] Z. Wu , G. Hu , et al. , Agent-based dynamic routing in the packet-switched

leo satellite networks, in: Wireless Communications Signal Processing (WCSP),
2015, pp. 1–6 .

[21] C. Glacet , M. Fiore , M. Gramaglia , Temporal connectivity of vehicular networks:
The power of store-carry-and-forward, in: Vehicular Networking Conference

(VNC), 2015 IEEE, 2015, pp. 52–59 .
22] K.A. Ravindra , L.M. Thomas , et al. , Network Flows: Theory, Algorithms and Ap-

plication, Pearson Education, New York, 1993 .

http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0001
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0001
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0001
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0002
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0002
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0003
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0003
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0003
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0004
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0004
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0004
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0005
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0005
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0005
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0005
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0006
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0006
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0006
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0007
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0007
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0007
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0008
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0008
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0008
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0009
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0009
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0009
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0009
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0010
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0010
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0010
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0011
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0011
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0012
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0012
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0012
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0013
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0013
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0014
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0014
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0014
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0015
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0015
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0015
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0016
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0016
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0016
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0017
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0017
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0017
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0018
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0018
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0018
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0019
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0019
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0019
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0020
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0020
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0020
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0020
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0021
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0021
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0021
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0021
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0022
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0022
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0022
http://refhub.elsevier.com/S1570-8705(17)30024-0/sbref0022

70 H. Li et al. / Ad Hoc Networks 59 (2017) 63–70

ngineering from Xi’an Jiaotong University, Xi’an, China, in 1991 and the Ph.D. degree in

, Xi’an, in 20 0 0. She is currently a Professor with the State Key Laboratory of Integrated
s include wireless networking, cognitive networks, integration of heterogeneous network,

 engineering from HeFei University of Technology, Hefei, China, in 2015. He is currently

 of Integrated Service Networks, Institute of Information and Science, Xidian University,
ss networking, cognitive networks, integration of heterogeneous network, and mobile ad

 the Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, China.

levision engineering from Zhejiang University of Media and Communications, Hangzhou,

egree in military communications with the State Key Lab of ISN, Xidian University, Xi’an,
rleton University, Ottawa, ON, Canada, as a visiting scholar funded by China Scholarship

llular networks, resource management, and interference alignment.

ommunications engineering from Xidian University, Xi’an, China, in 1982, 1985, and 1991,
of Telecommunications Engineering at Xidian University since 1985, where he is currently

of State Key Laboratory of Integrated Service Networks. He was a Visiting Professor to the
rnell University from 2002 to 2003. He served as the General Vice Chair for ChinaCom

as Distinguished Young Researcher from NSFC and Changjiang Scholar from Ministry of
s include wireless communication theory, cognitive radio, and signal processing.
Hongyan Li (M’08) received the M.S. degree in control e

signal and information processing from Xidian University
Service Networks, Xidian University. Her research interest

and mobile ad hoc networks.

Tao Zhang received the B.S. degree in telecommunication

pursuing the Ph.D. degree with the State Key Laboratory
Xi’an, China. His current research interests include wirele

hoc networks.

Yangkun Zhang is currently an undergraduate student in

His current research interests is network optimization.

Kan Wang received the B.S. degree in broadcasting and te

China, in 2009. He is currently working toward the Ph.D. d
China. From Oct. 2014 to Oct. 2015, he was also with Ca

Council (CSC). His current research interests include 5G ce

Jiandong Li received the B.E., M.S., and Ph.D. degrees in c
respectively. He has been a Faculty Member of the School

a Professor and Vice Director of the Academic Committee
Department of Electrical and Computer Engineering at Co

2009 and TPC Chair of IEEE ICCC 2013. He was awarded
Education, China, respectively. His major research interest

	A maximum flow algorithm based on storage time aggregated graph for delay-tolerant networks
	1 Introduction
	2 System model
	3 Basic definitions in STAG
	4 Maximum flow algorithm for storage time aggregated graph
	4.1 Seeking an augmenting path in rSTAG
	4.2 Computing the maximum flow of the augmenting path
	4.2.1 Reciprocal feasible flow
	4.2.2 Forward feasible flow

	4.3 Getting the residual network
	4.3.1 Reciprocal feasible flow
	4.3.2 Forward feasible flow

	5 Analysis of Max flow-STAG algorithm
	5.1 Algorithm complexity analysis
	5.2 Case analysis

	6 Conclusion and future work
	 Acknowledgments
	 References

