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ABSTRACT
To smartly control the massive electrical appliances in buildings
to save energy, the real-time on/off states of the electrical appli-
ances are critically required as the fundamental information. How-
ever, it is generally a very difficult and costly problem, because
N appliances have 2N states and the appliances are massively in
modern buildings. This paper propose a novel compressive sensing
model for monitoring the massive appliances’ states, in which the
sparseness of on/off switching events within a short observation in-
terval is exploited. Based on such a temporal sparseness feature, a
lightweight state tracking framework is proposed to track the on/off
states of N appliances by deploying only m smart meters on the
power load tree, where m � N . Particularly, it firstly presents an
online state decoding algorithm based on a Hidden Markov Model
of sparse state transitions. It reduces the traditional O(t22N ) com-
plexity of Viterbi decoding to polynomial complexity of O(tnU+1)
where n < N and U is an upper bound of the simultaneous switch-
ing events. To minimize the meter deployment cost, i.e., m, an
entropy-based necessary condition for deploying the minimal num-
ber of meters while guaranteeing the state tracking accuracy is pre-
sented. Based on it, a greedy algorithm to optimize the meter de-
ployment to meet any given state decoding accuracy requirement is
proposed. These proposed results are verified extensively based on
the simulated data and the real PowerNet data. Simulation results
confirm the the good performances of the proposed methods, and
also demonstrate some interesting structures of the problem.
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1. INTRODUCTION
Recent survey shows that in our offices, up to 70% of computers
and related equipments are left on all the time [1]. To reduce the en-
ergy waste caused by such idle running, the real-time on/off states
of the electrical devices are required as the necessary state infor-
mation for smart control technologies. But tracking the real-time
on/off states of the appliances is a challenging problem, because the
appliances are massive and widely distributed in buildings. Tradi-
tional fidelity energy monitoring systems generally require large-
scale smart meter networks, and thus suffer from the high deploy-
ment, maintenance and data collection costs. In real applications,
it is always desirable to design a low-cost and efficient method to
track the states of the massive appliances.

The on/off duration of an appliance is a critical variable to estimate
the appliance’s power consumption, because the energy consump-
tion pattern (how much energy an appliance consumes when it is
on) can be learned off-line from the nominal power data sheet or
by an off-line learning process [2][3]. Therefore, in this paper,
we consider deploying m smart meters to track the on/off states
of N appliances in real-time, where m � N . Particularly, the
power distribution network in a building has a typical tree struc-
ture, where the leaf nodes are the appliances. Smart meters may be
deployed at the root (power entrance), at some intermediate nodes
(power switches or outlets), or at the leaf nodes of the tree. Each
meter monitors the aggregated current/power consumption of the
electrical appliances in the subtree rooted at itself. The goal is to
disambiguate the on/off states of the N appliances from the mixed
power measurements of the m meters.

1.1 Related Work
The energy auditing and monitoring problem has caught tremen-
dous attentions from both academia and industry for the last decade.
There are three main bodies of the related literature.

1. Bottom up monitoring approach. The first category focuses on
designing smart meter network for detailed energy monitoring. An
early work is the MIT Plug system [4], where the design and de-
velopment of the smart metering system were reported with a trial
deployment of 35 smart meters on a floor of a building. Jiang et
al. [5] reported the design and development of Berkeley AC me-
ter network exploiting the idea of web of things. The same authors
reported utilizing contextual metadata for the high-fidelity monitor-
ing and spatial, functional, and individual decomposition of elec-
tric usage in buildings in [6]. A recent work by Dawson-Haggerty
et al. [7] shared their insights obtained from a year-long, 455 meter
deployment of wireless plug-load electric meters in a large com-
mercial building. In [8], Kazandjieva et al. introduced PowerNet,
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which was a hybrid sensor network for monitoring the power and
utilization of computing systems in a large academic building. Jung
et al. [9] proposed energy breakdown research with consideration
of minimizing meter deployment cost, but they assume the appli-
ance’s on/off states are sensed by additional RFID sensors. There
are also solutions from the industry, such as Tendril [10], Greenbox
[11], EnergyHub [12], and Sensicast[13]. In contrast to the existing
work, this paper in the first time studies the impact of the meter de-
ployment to the decoding accuracy, so that the meter deployment
cost can be saved remarkably while guaranteeing highly accurate
state monitoring by sequential decoding.

2. Top down disaggregation approach. The second category
focused on the non-intrusive load monitor (NILM) based on/off
state disaggregation. In particular, the NILM-based method can
efficiently reduce the deployment cost for smart metering, since
it only deploys one high-frequency smart meter at the root of the
power load tree to disambiguate the on/off states of the appliances
by transient or static signal processing and pattern recognition. The
first NILM approach was proposed by Hart in [14], which used real
and reactive power measurements to detect the specific load signa-
tures of individual appliances. Norford et al. [2] and Leeb et al. [3]
proposed transient event detection methods to analyze the specific
patterns in the spectral domains. Patel et al. [15] tried to recognize
the electrical noise on the residential power lines to detect the on/off
switching events. Farinaccio et al. [16] proposed a method to dis-
aggregate the total electricity consumption into the major end-uses
by pattern recognition. However, the NILM-based approach gen-
erally need the high-cost meter for high frequency sampling, and
thus is limited in the application scale. To tackle this challenge, in
this paper, we propose a lightweight approach which can monitor a
load tree connecting massive appliances and has less requirements
to the meter device.

3. On/off detection by additional sensors. Instead of utilizing
smart meters, the final body concerned the on/off states monitor-
ing by other types of sensors. For example, Kim et al. developed
ViridiScope system [17], which detected the ambient signals emit-
ted from appliances to infer the power consumption of appliances.
Gupta et al. [18] proposed ElectriSense, which sensed EMI (elec-
tromagnetic interference) by a single point sensing for electrical
event detection and classification in the home. Rowe et al. [19]
used contactless sensing to monitor the variations in electromag-
netic fields. Taysi et al. [20] proposed Tinyears to utilize audio
sensor nodes.

A notable character in this problem is that the on/off states of an
appliance are highly correlated in the time domain, which is rarely
exploited in the previous studies. When an appliance is turned on,
it generally works a long time before it is turned off and an ap-
pliance must be turned off (on) before it can be turned on (off).
So that, for N appliances, their on/off switching events are quite
sparse during a short observation period (for example a second),
and the on/off events of an appliance must happen in turn. We call
these two features: switching sparseness and sequence feasibility
constraint. Thus, the problem can be converted to a problem of
sparse switching event detection, by m � N meters sampling in
continuous short intervals. A typical sampling interval could be of
length one second.

1.2 Our Contributions
However, even utilizing the temporal sparseness characters, to de-
code 2N combinatorial states from the readings of m meters is still

difficult. Ambiguities and inefficiency are the main challenges be-
cause the problem is essentially a NP-complete sub-set sum prob-
lem. For a measurement instance of m meters at time t, there could
be multiple states of the N appliances that have the same energy
consumptions in terms of the smart meter measurement. Determin-
ing the right state from the ambiguities is difficult, and the state
decoding complexity is O(t22N ) in the traditional Viterbi decod-
ing. Note that the disambiguation difficulty is mainly determined
by the meter deployment scenario. A meter can disambiguate the
states of its monitoring appliances successfully only if these ap-
pliances have no ambiguous combinatorial states. But deploying
more meters will increase the cost of the metering system. Then,
how should we deploy the minimal number of smart meters while
guaranteeing no ambiguitie? The focus of this paper is to answer
this question, and the major contributions of this paper could be
summarized as follows:

• To achieve an efficient and correct decoding, we propose a
hidden Markov model (HMM) based decoding method to
embed the switching sparseness and the sequence feasibility
constraint into the decoding process. It recovers the on/off
state path of N appliances from the sequential readings of m
meters from time 1 to t. We further design a fast sequence
decoding (FSD) algorithm, which exploits the idea of the off-
line load-tree splitting, the state vector pre-ordering in each
split tree, and the online state sequence likelihood ranking by
forward and backward searching. The FSD algorithm runs in
parallel in each split tree, with polynomial time complexity
O(nUt+1), where n < N is the number of appliances in a
split tree, and Ut is the upper bound of simultaneous switch-
ing events in a split tree in a sampling slot.

• We investigate the relationship between the sensor deploy-
ment scenario and the state decoding accuracy by an entropy-
based analysis. We propose the notion of “clear ratio" as a
bridge to connect the tracking accuracy and the deployment
cost. A meter deployment optimization algorithm (MDOP)
is proposed based on the idea of entropy maximization to
give a near-optimal, adjustable deployment strategy based on
the requirement to the tracking accuracy.

• Extensive evaluations based on the simulated data and the
real PowerNet data were carried out to show the efficiency,
correctness and deployment cost saving performances of the
proposed decoding and deployment optimization methods.

The rest of this paper is organized as follows. We introduce the
system model in Section II. The HMM-based efficient sequential
decoding method is introduced in Section III. Deployment opti-
mization algorithm is presented in Section IV. Evaluation results
will be presented in Section V, and the paper is concluded with dis-
cussion of future work in Section VI.

2. SYSTEM MODEL
The energy distribution network in a building has a typical tree-like
structure [6]. The root of the load tree is the main power entrance
of the building. Each node in the middle tier is a power break or an
outlet and the leaf nodes of the tree are the electrical appliances. In
the load tree, the power consumption at a node is equal to the sum
of the power consumptions of the appliances in the subtree rooted
at the node. Smart meters can be deployed at any node in the tree.

1. Observation Model
When m meters are deployed on the load tree to track the on/off
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Figure 1: Sparse meter deployment scenario on the load tree.

states of N appliances. We can imagine the meter deployment sce-
nario as shown in Fig.1. Each meter measures the real-time aggre-
gated power of the appliances in the subtree rooted at itself. We
assume all the meters are synchronized. At time t the observation
model of a meter i can be formulated by:

Zt,i =
∑

j∈S(i)

Xt,jPt,j (1)

where S(i) is the subtree rooted at the meter i, Xt,j ∈ [0, 1] is
the state of appliance j at time t, and Pt,j is the real-time power
consumption of appliance j at time t. The goal of state decoding at
meter i is to find the state vector of the appliances {Xt,j , j ∈ S(i)}
to minimize the following expected square error:

minimize:
X

E

⎧⎨
⎩
⎛
⎝Zt,i −

∑
j∈S(i)

Xt,jPt,j

⎞
⎠

2⎫⎬
⎭ . (2)

By assuming Pt,j is a random variable with mean Pj and variance
δj = αiPj , we prove in Appendix that the solution of problem (2)
is approximately the same as the following problem:

minimize:
X

⎛
⎝Zt,i − α/2−

∑
j∈S(i)

Xt,jPj

⎞
⎠

2

, (3)

where α is defined as the expectation of variance/mean ratio of
appliances power consumption patterns, i.e, α = E {δj/Pj}.

2. Pattern Matrix
Based on (3), we denote Yt,i = Zt,i − α/2 and consider the state
decoding problem of the N appliances on the load tree, which can
be formulated by (4).

minimize:
X

‖XtP−Yt‖2 (4)

In (4), Xt ∈ (0, 1)N is the state vector, indicating the on/off state
of the N appliances at time t. Yt ∈ R

m is called the observation
vector of the m meters. Different from the single meter case, a
pattern matrix is introduced in (4) to model the meter deployment
scenarios. When a meter deployment scenario is know, we can
easily judge whether an appliance is in the subtree of a meter or
not. We assume the load tree is static, so that the pattern matrix can
be constructed from a given meter deployment scenario as follows:

1. The jth column of P indicates the jth meter.

2. Pi,j = Pi, if appliance di is in the subtree of meter j; oth-
erwise Pi,j = 0.

Problem (4) is to decode a N dimension variable Xt from m di-
mension observation Yt. Since m � N , the number of equations
is much less than the number of unknowns. Thus, there will be
serious ambiguities in calculating Xt, making the accurate state
decoding very difficult.

3. On/off Switching Event Detection Model
An important fact to make the above model solvable is the temporal
sparseness feature of the on/off switching events. A linear transfor-
mation is applied to Xt, and Yt to obtain a new observation model:

(Xt −Xt−1)P = (Yt −Yt−1) , (5)

where Xt,i−Xt−1,i indicates the on/off switching event of the ith
appliance from t − 1 to t. Yt,j − Yt−1,j is the measured power
variation from t−1 to t at meter j. This transformation converts the
state tracking problem to an on/off switching event detection prob-
lem. Xt − Xt−1 indicates the simultaneous on/off switch events
happened in interval t, which is sparse when sampling interval is
short. We denote Ut as the upper bound of the non-zero switch-
ing events in sampling interval t, i.e., ‖Xt −Xt−1‖1 ≤ Ut, and
Ut � N . So that, the decoding problem of Xt by the meter mea-
surements Yt can be solved by Least Squares Estimation (LSE)
with a L1-Norm constraint, which is also known as the constraint
type LASSO (Least Absolute Selection and Shrinkage Operator)
problem[21].

minimize: ‖XtP−Yt‖2
subject to: 1. ‖Xt −Xt−1‖1 < Ut

2.∀i, ∀t,Xt,i ∈ [0, 1].

(6)

Problem (6) can be solved by existing algorithms such as Tibshi-
rani algorithm [21]. However, decoding Xt only by the smart meter
measurements at time t tends to be inaccurate because the informa-
tion get at time t is very limited. It has not fully utilized the histori-
cal observations and the sequence feasibility constraint of the state
sequence.

4. HMM-based State Sequence Decoding Model
Note that the state transition of electrical appliances has Marko-
vian property, i.e., an appliance’s state at interval t is only related
to its state at interval t−1. Thus the state sequence decoding prob-
lem can be efficiently modeled by a Hidden Markov Model. The
state space has size 2N , which includes possible states of N ap-
pliances, denoted by S1, ..., S2N . The observation space contains
all the possible distinct observations that maybe observed by the
m meters, which is denoted by V = {v1, v2, ..., vM}. So that,
the HMM model for state sequence decoding is formulated as λ =
(X0,At,B), where X0 is the initial state distribution; At is the
state transition matrix, where ai,j,t = P (Xt = Sj |Xt−1 = Si),
i, j ∈ [1, ..., 2N ] is the state transition probability from Si at t− 1
to Sj at t; B is the observation matrix, where bi,j = P (Yt =
vi|Xt = Sj) is the likelihood of state Sj when the observation
is vi. Based on the HMM model, the problem of state sequence
decoding can be formulated as following:

PROBLEM 1. Given the sequences of power measurements by
m meters from time 1 to t: Y = {Y1,Y2, ...,Yt}, and the HMM
model λ, we want to find the state sequences of N appliances,
X = {X1,X2, ...,Xt} that maximize the following conditional
probability:

δt = maximize
X1,...,Xt

P (X1, ...,Xt,Y1, ...,Yt|λ)

subject to: 1.∀τ ∈ [1, t], ‖XτP−Yτ‖2 < ε,

2.∀τ ∈ [2, t], ‖Xτ −Xτ−1‖1 < Uτ ,

3.∀i, ∀τ,Xτ,i ∈ [0, 1],

(7)

where ε is the tolerable measurement error of smart meters.

5. Building HMM of Sparse State Transitions
Training the HMM model is a critical step before using HMM to
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decode the state sequence, which generally requires considerable
training efforts, because the electrical appliances are massive. We
propose to use lightweight off-line knowledge to build the HMM
model and focus on the online decoding algorithm.

1. We propose to set up the transition matrix At by the knowl-
edge of Ut. Assume the on/off transition probabilities are
equal and i.i.d. for N appliances, and denote p as the occu-
pance probability of one state change. Then p can be calcu-
lated by

∑Ut
i=1 p

k(1 − p)N−k
{
N
k

}
= 1. If d is the number

of different states between Si and Sj , i.e., d = |Si − Sj |1,
then the transmission probability from Sj to Si is modeled
by ai,j,t = pd(1− p)N−d.

2. Modeling the observation matrix is generally difficult, be-
cause the distinct measurements measured by m meters are
numerous. We propose to use a Least Square Estimation
based online searching scheme to replace the explicit obser-
vation matrix model. When Yt is observed by m meters,
a fast search algorithm will be executed to infer the hidden
states that most likely generate the observations. It elimi-
nates the efforts of training observation matrix and efficiently
speeds up the online state decoding process.

3. The initial state of the HMM can be set by the off-line knowl-
edge of the appliance states. Accurate knowledge on the ini-
tial states will improve the tracking accuracy. For example,
the tracking algorithm can be started at mid-night, so that
most appliances are in off state, which can be set as the ini-
tial states.

Therefore, the HMM model can be set up with very limited off-line
knowledge, making it practical in state decoding.

3. FAST SEQUENCE DECODING
The HMM model in (7) has 2N states and the sequence length is
t. Traditional Viterbi decoding algorithms need O(t22N ) complex-
ity to decode the most likely hidden state sequence, which is hard
to calculate in real-time when N is large. Further, in Viterbi al-
gorithm, the reward of a state sequence is evaluated by the sum-
mation of vertex rewards and the link rewards associated to the
sequence[22]. Since the vertex reward is affected by the measure-
ment errors of the meters and the link rewards are determined by the
state transition probabilities, these two rewards are not given from
the same metric system. It is generally difficult to design weight
for balancing them or determining which reward is dominant.

To solve these problems, this work exploits the tree structure of
power network and the sparseness of on/off switching events to
present a fast sequence decoding algorithm (FSD). The algorithm
runs in parallel in the sub-trees of the load network, which has poly-
nomial complexity O(nUt+1), where n < N is the number of ap-
pliances in a sub-tree. It guarantees efficient real-time decoding
even N is very large. Further, in FSD, we models both the link
reward and the vertex reward by the occupance probabilities of the
corresponding event, and propose a product-type reward function
instead of sum-type to rank the state sequence by overall occupance
probabilities. We show such reward functions are easily to set up
and provide better decoding accuracy than traditional Viterbi.

1. Transform Load Tree to Mono-meter Tree Forest
We can decompose the state decoding problem by load tree split-
ting. For a node v in the load tree, if it is monitored by a smart me-
ter, the power consumptions of the appliances in its subtree ST (v)
will be continuously monitored by the smart meter, so that all the

n1 n2 n3 n4 n5

n0 Y0

Y2 Y4 Y5 n1 n2n3 n4 n5

0 Y0 − (Y2 + Y4 + Y5)

Y2 Y4 Y5

(b)

T0 T1 T2 T3 T4

(a)

Figure 2: Load-tree splitting example

parents of v can know the power consumptions of its subtree. So
that the subtree ST (v) can be split from the full tree T . For a load
tree T = (V,E) with m meters deployed on it, it can be split into
a forest of m mono-meter trees, where each mono-meter tree has
only the root equipped by a meter while the others are not. A load
tree T is transformed to a forest F by repeating following three
steps on every tree in F :

1. For any tree T0 in F rooted at n0, run Bread-first Search to
find the first meter-equipped node n1 s.t. n1 �= n0;

2. Split T1, i.e., the subtree rooted at n1 from T0 and add T1

into F ;

3. Subtract meter reading value of n1 from reading of n0, i.e.,
Yt,0 ← Yt,0 −Yt,1;

This algorithm is initialized by assigning T to T0 and is stopped
when no tree in F can be further split, which ensures that every
tree in F is a mono-meter tree.

Figure 2(a) shows an example load tree monitored by several me-
ters. The leaf nodes stand for appliances while the others stand for
outlets. The nodes equipped with smart meter are represented by
black node and the nodes without smart meter are in white. Figure
2(b) shows the forest of mono-meter trees which is transformed
from Figure 2(a).

2. Off-line State Sorting in Each Mono-meter Tree
Based on the tree splitting results, the online sequence decoding
problem is decomposed to sequence decoding problem in each mono-
meter tree. Considering a mono-meter tree with n appliances, we
denote yt = {y1, y2, ..., yt} as the observation sequence measured
by the smart meter; denote p ∈ R

n×1 as the pattern matrix of the
mono-meter tree and denote xt = {x1, x2, ..., xt} as the state se-
quence of n appliances.

Note that the a mono-meter tree with n appliances still have 2n

possible states. Finding the feasible states that most likely generate
the smart meter’s observation at time t need O(2n) comparisons.
For speeding up this step in the online phase, we off-line sort the
2n states according to their energy consumptions to prepare an or-
dered state vector for efficient online binary search. Although the
sorting operation has complexity O (2nlog(2n)) = O(n2n), its
needs only to be executed once in off-line or infrequently in case of
mono-meter tree structure changing.

3. Sequence Decoding Model in HMM Graph
After the mono-meter tree splitting and the off-line state sorting in
each mono-meter tree, we now present the online state decoding
algorithm in each mono-meter tree. We first consider the HMM
model as shown in Fig.3. The HMM graph contains t layers (time
intervals) and each layer contains 2n vertices (states). S0

xt
is the

vertex reward which means the likelihood that the observation yt is
generated by state xt. Sxt,xt−1 is the edge reward, which indicates
the state transition probability. A path is a sequence of vertices
x1, x2, ..., xt crossing t layers, whose reward is evaluated by the
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Figure 3: Online Fast Sequence Decoding Algorithm

product of rewards of edges and vertices associated to the path:

w(x1, x2, ..., xt) = αt

t∏
u=1

S0
xu

t∏
u=2

S1
xu,xu−1

(8)

In (8),

αt =
1

∑
x1,x2,...,xt∈Pt

t∏
u=1

S0
xu

t∏
u=2

S1
xu,xu−1

, (9)

is a normalizer that keeps the total rewards of all possible pathes
at time t (denoted by set Pt) equal to 1. We define γ(xt) as the
maximal reward associated to any path from nodes in layer 1 to xt:

γ(xt) = max
x1,x2,...,xt−1

w(x1, x2, ..., xt−1, xt) (10)

Thus, we can calculate the reward of the best path γ(xt) via

γ(xt)=

⎧⎨
⎩

α1S
0
x1

if t = 1,

max
xt−1

(
αt · γ(xt−1) · S1

xt,xt−1
S0
xt

)
otherwise.

(11)

The sequence decoding algorithm is to find the best reward path
from layer 1 to layer t.

γ(xt)
∗ = max

xt

γ(xt) (12)

Traditional Viterbi algorithm opens 2n states at time t to evaluate
S0
xt

and backtracks t − 1 steps for calculating (11). In each back-
track step, up to 2n predecessors are opened. We use open to mean
an operation of reward calculation, so Viterbi has O(t22n) com-
plexity. In this paper, a polynomial time online decoding algorithm
is proposed. The main idea is to open only necessary states in the
forward and backward steps.

4. Fast Forward Search Strategy
In the forward step at time t, only the states that satisfy constraint
(13) will be open. We call them the feasible states.

‖xtp− yt‖2 ≤ ε (13)

Since in the off-line phase, the 2n states are ordered according to
their energy consumption values, using yt − ε and yt + ε as search
target, we can conduct twice binary searches on the 2n states, which
will find all the feasible states that satisfy (13). ε is the foreknowl-
edge about the metering error bound. Such a binary search step on
2n states only has complexity O(log(2n)) = O(n), which makes
the forward search very quick. The vertex reward, i.e., the likeli-
hood that state xt generates the observation can be calculated by
:

S0
xt

= βt
1√
2πσ2

e
− (|xt·p−yt|)2

2σ2 (14)

It uses the normal distribution N(0, σ2) as an example, which can
be extended to other distributions. σ can be set to ε/k where k > 3
for guaranteeing most of metering errors are less than ε. The fea-
sible states at time t are denoted by set Ft. βt normalizes the total
likelihoods of all feasible states at time t equal to one.

5. Fast Backward Search Strategy
After getting a feasible state xt by the forward search, a backtrack
algorithm is needed to calculate the best path reward γ(xt) by (11).
By the state transition model At, the link reward from xt to a pre-
decessor xt−1 can be calculated by:

S1
xt,xt−1

= pd(1− p)n−d
(15)

where d = ||xt − xt−1||1 is the number of different states be-
tween xt and xt−1. Since the on/off switching events from t − 1
to t is sparse, which is upper bounded by Ut, it is not necessary

to open all the predecessor states. At most
Ut∑
i=1

(ni ) predecessors

maybe open, which is O(nUt). Further, the infeasible predeces-
sors should not appear in the state sequence, which is needless to

open. So that ∀xt ∈ Ft, at most min

{
Ut∑
i=1

(ni ) , |Ft−1|
}

prede-

cessors need to be visited for calculating γ(xt), in which |Ft−1|
is generally a very small value, guaranteeing the calculation to be
very efficient. Since γ(xt) can be fully determined by the feasible
predecessors by backtracking only one step without the needs to
backtrack t steps. So the backward search algorithm has the worst
complexity O(nUt) which is polynomial to n. γ(xt)

∗ can be cal-
culated by (12). For reliable decoding against the ambiguities, FSD
keeps the top-K possible pathes without assertively choosing one
top path. The storage cost is linear to t, which is very small.

The forward search and the backward search algorithm can be ex-
ecuted in m mono-meter trees in parallel. The overall online algo-
rithm needs at most O(nUt+1) calculations to calculate the top-K
pathes in time t. Since n < N , the online algorithm is efficient in
tracking real-time states of massive electrical appliances. The nor-
malizer {αt} and {βt} can be calculated in real-time, avoiding the
difficulties of assigning reward weights.

4. METER DEPLOYMENT OPTIMIZATION
The FSD algorithm gives fast state sequence decoding based on the
real-time measurements of smart meters. However, the deployment
scenarios of the smart meters will not only dominate the system de-
ployment, maintenance and data collection costs, but also affect the
state sequence decoding difficulty and accuracy. Users generally
hope to place the least number of meters to get enough information
for decoding the on/off sequence of the appliances. Therefore, this
section studies the meter deployment optimization problem.

1. Problem Definition
The Meter Deployment Optimization Problem[MDOP] can be de-
fined as follows:

PROBLEM 2 (MDOP PROBLEM). Given a load tree T = (V,E)
with N nodes, let L ⊆ V be the set of leaves in T . Each leaf li ∈ L
has a power pattern Pi on it. A subtree ST (v) = (V (v), E(v))
denotes the subtree of T with node v ∈ V as its root. V (v) and
E(v) denotes the set of nodes and edges in the subtree ST (v)
correspondingly. A binary xi,t ∈ {0, 1} is assigned to each leaf
li ∈ L, indicating the on/off state of the appliance at time t. If a a
smart meter is deployed at node v, it can measure the total power
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consumed by its subtree ST (v), i.e., measure
∑

i∈ST (v)

xi,tPi. The

goal of smart meter deployment optimization is to minimize the
number of deployed meters while still getting enough information
to know the value of each xi,t.

2. The Entropy of Meter Measurement
Understanding how the deployment scenario will affect the state
tracking accuracy is a fundamental problem in the proposed light-
weight energy auditing method. We exploit information entropy
to answer this problem. In information theory, entropy (or Shan-
non’s entropy) is a measurement of the uncertainty associated with
a random variable. In our problem, sum function of the energy con-
sumptions could be treated as a way to compress the binary state
information xi, which can be thought as a random variable. The
goal of the problem is to decode xi, i ∈ ST (v) without error, thus
the compression should be lossless. From information theory we
know that if a compression scheme is lossless, i.e., if we can always
recover the entire original message without error, then the com-
pressed message has the same total entropy as the original. That
requires all the subtrees which are measuring by a smart meter are
lossless. In other words, for each subtree ST (v), the entropy of the
sum on the root should be equal to the entropy of the random vari-
ables xi, i ∈ ST (v) on the leaves. Suppose Prob(xi = 0) = qi
for leaf i in mono-meter tree ST (v). Then the sum entropy of the
leaf nodes can be calculated as:

Hs(v) = −
∑

i∈ST (v)

qi log qi (16)

For the smart meter at the root, it can measure only t ≤ 2n dis-
tinct aggregated power values, which are corresponding to 2n ap-
pliance states. Consider the ith distinct aggregated power values
ai ∈ [a1, a2...at], it may correspond to mi combinations of states.
Let set Si be any subset of appliances, i ∈ {1, 2, ..., t} such that∑

j∈Si
Pj = ai. Since all the appliances take measurements in

i.i.d. , the probability that the meter measures a value ai is:

Prob(dv = ai) =
∑
Si

∏
j∈Si,k∈S\Si

(1− qj)qk (17)

in which dv indicates a measurement at root v. So that the entropy
of the smart meter is:

Hd(v) = −
t∑

i=1

Prob(dv = ai) log(Prob(dv = ai)) (18)

3. The Clear Ratio
Note that Hd(v) < Hs(v), if there are two different states have
the same sum power consumption. That means it will be difficult
to disambiguate the exact state from the aggregated power mea-
surement. In this situation, we call the mono-meter tree ST (v) is
Blurry. Otherwise, if Hd(v) = Hs(v), we call ST (v) is Clear,
which means the states of appliances can be disaggregated without
error.

From information theory, we know that the less information we
get, the hard to recover the original state vector. Thus we define the
clear ratio r(D,T ) for a deployment D on load tree T as:

r(D,T ) = min
v∈D

Hd(v)

Hs(v)
(19)

The state combinations of appliances can be disaggregated with-
out error when r(D,T ) = 1 and decoding ambiguities increase as
r(D,T ) decrease. Given a constant factor r as the threshold of the
clear ratio to guarantee the decoding performance, the deployment

optimization problem is to find an optimal deployment D over T
to maximize r(D,T ) while minimizing the number of deployed
meters.

4. MDOP Algorithm for the Bounded Trees
We can proved that this MDOP problem is NP-complete by an
polynomial time reduction from the 3-SAT problem. Details will
be omitted for the space limitation. Since the MDOP problem is
NP-Complete, finding an efficient algorithm that output optimal so-
lution is hard. But in practice, the degree of the power load tree are
usually small, and the total power consumptions of the tree are also
bounded. Thus we can still design efficient MDOP algorithm for
solving practical problems. We make two following assumptions
to bound the degree and the maximum power consumption of the
tree:

1. the maximum degree of the node in T is upper bounded by a
constant d.

2.
∑

i∈V Pi ≤ Pmax, Pmax is a constant.

Then we will introduce an polynomial algorithm for minimizing the
number of meter deployment when a clear ratio r(D,T ) is given.
The algorithm searches tree T node by node from bottom up to
the root. Thus all the nodes in subtree ST (v) (except for v) must
have been visited before v. Let Ti, i = 1, 2, ..., N be the remained
tree after ith iteration of the algorithm and STi(v) be the subtree
of Ti rooted on v. Suppose in ith iteration we visit node v. Then
we decide meter deployment in STi(v) and cut Ti accordingly by
checking the clear ratio of the subtree STi(v) against the require-
ment.

1. If the clear ratio of STi(v) is less than r(D,T ), we need
to deploy more meters in STi(v). Suppose Children(v) is
the set of all the children of node v. There are at most 2d

subsets of Children(v). It takes time O(1) to enumerate all
of them. Then we could find the smallest subset Cbest ⊆
Children(v) such that the clear ratio of the subtree that
STi(v) is less or equal than r by removing all the subtrees
STi(u), u ∈ Cbest. Meters should be deployed on node u
for all u ∈ Cbest. And the new remaining tree Ti+1 is gener-
ated from Ti by removing all the subtrees ST (u), u ∈ Cbest.

2. If the clear ratio of STi(v) is larger or equal than r(D,T ),
we need not deploy more meters in STi(v). We just connect
all leaves of STi(v) directly to node v.

We keep this strategy from the bottom up to the root of tree T .
Notice that a meter is needed to be deployed on the root if the re-
maining tree is not empty. The algorithm outputs an deployment
strategy D which is at most 2 times the size of an optimal solution
for any given T and requirement factor r. And total running time
is O(2dPmaxn

2), which is polynomial to n when d and Pmax is
constant.

The following pseudo-code 1generally describes algorithm. Notice
that we only need Ti−1 in the ith iteration. The notation of Ti will
make the analysis clear, while in practice we only keep the newest
tree T in each iteration for the algorithm.

5. NUMERICAL EVALUATIONS
We conduct extensive experiments to evaluate the proposed MDOP
algorithm and the FSD algorithm by both the simulated data and the
real data from Powernet data set. In simulations, load trees contain
N leaf nodes with the maximum D degree were generated ran-
domly, simulating the arbitrary power distribution networks. The
power patterns of the electrical appliances (leaf nodes) were gen-
erated by Uniform, Normal or Exponential distributions, in which
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Algorithm 1 Algorithm for Bounded Tree

INPUT : Tree T = (V,E) with integers on the leaves
OUTPUT: A set V ′ ⊆ V represent the nodes need to be placed
meters.
V ′ = ∅
for all i ← 1 to n do

let v be the ith node when searching from bottom to the root
if Clear-Ratio(ST (v)) < r then

Let set Children(v) = {u|u is a child of v}
Cbest = ∅
for all C ⊆ Children(v) do

if |Cbest| < |C| and Clear-Ratio(ST (v) \ ST (u), ∀u ∈
Children(v) \ C) ≥ r then

Cbest ← C
end if

end for
V ′ = V ′ ∪ Children(v) \ Cbest

T ← T \ ST (u), ∀u ∈ Children(v) \ Cbest

end if
end for
OUTPUT: V ′

the uniform power distribution simulates the case when appliances’
power levels are almost even; normal distribution simulates the
general case and exponential distribution simulates the case when
appliances’ powers are very concentrated.

1. Performance of MDOP
For evaluating MDOP, we evaluate 1) the deployment cost saving
performance; 2) the sub-tree character after meter deployment and
3) the effect of clear ratio to the deployment cost.

1. Cost Saving Ratio
We apply MDOP to load trees with 100-1000 electrical appliances
and evaluate the cost saving ratio, which is defined by the number
of deployed smart meters given by MDOP divided by the number
of appliances in the load tree. In these experiments, the clear ratio
in the MDOP algorithm is set to 1; the normal, uniform and expo-
nential power distributions are evaluated with equal mean = 100.
The cost saving results for different load trees are plotted in Fig.4.
From the results we see that for load trees with different size and
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Figure 4: Cost saving ratio of MDOP for different scale load trees
and different power pattern distributions

different power distributions, the MDOP algorithm can reduce the
meter deployment cost by more than 75% if comparing with the
one-to-one monitoring method. The cost saving ratios in exponen-
tial and uniform power distributions are similar. When the power
levels of appliances are more concentrated (in the normal distribu-
tion), more smart meters are required for disambiguating the states
of similar-power appliances, which accords our general intuition.
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Figure 5: Cost saving ratio VS. Clear ratio

2. Cost Saving Ratio VS. Clear Ratio
Fig.5 further shows how the clear ratio in MDOP algorithm affects
the cost saving ratio. The results are shown for load trees with nor-
mally distributed power patterns. It can be seen that the cost saving
ratio decreases with the clear ratio. When the clear ratio is set to
0.8, almost 90% deployment cost can be saved. The results hold
for different power distributions. In next section, we will show the
FSD algorithm provides accurate state tracking even when the clear
ratio is not high.

3. Size Distribution of the Mono-meter Trees
After meter deployment, the load tree will be split into m mono-
meter trees. The size of each mono-meter tree (number of appli-
ances in the tree) dominates the complexity and accuracy of on-
line decoding algorithms. We investigate the distribution of mono-
meter tree size for different clear ratios. For a load tree with 500
appliances with power distribution N

(
200, (200/3)2

)
, we run 20

MDOP experiments for different clear ratios and plot the fitted dis-
tribution of the mono-meter tree size in Fig.6. The results show
that MDOP generally divide load tree to similar size mono-meter
trees. For r = 1, most of mono-meter trees have less than 10 leaf
nodes (appliances), which guarantees the accurate on/off state dis-
ambiguation. When r = 0.8 the size of mono-meter trees increase
a little; for r = 0.6, the size of mono-meter trees is around 15.
Since the decoding complexity and ambiguity will increase with
the size of mono-meter tree, the results visually show that MDOP
with less clear ratios can save more deployment costs but poses
higher pressure to the online decoding algorithms.

2. Performance of FSD
The mono-meter trees are generally not large in size, which reduces
the online decoding complexity remarkably, i.e., the state space is
reduced from 2N to 2n, where n < N . Therefore, in evaluat-
ing FSD, we focus more on the decoding accuracy than the decod-
ing efficiency. The FSD algorithm is run in different mono-meter
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Figure 6: Mono-meter tree size distribution in different clear ratios
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trees in parallel. We evaluate the accuracy of FSD over the whole
load tree by considering the average accuracy of all the mono-meter
trees:

e =
1

T ·N
T∑

t=1

‖X(t)− X̂(t)‖1 (20)

In (20), X(t) indicates the ground truth states of N appliances at
time t. X(t) is the estimated state vector. e evaluates the average
state tracking error over N appliances and over time T . The state
tracking error at time t is evaluated by e(t) = 1

N
‖X(t)− X̂(t)‖1.

1. Metering Noise V.S. Tracking Accuracy
We first evaluate how the metering noises of the smart meters af-
fect the tracking accuracy. In simulations, we set the meter noise
to N(0, σ2), where σ = ε/5 to guarantee most of the metering
errors are less than |ε|. For a load tree of 500 nodes with power
distribution N

(
200, (200/3)2

)
, the real-time tracking errors vs.

metering noises σ are plotted in Fig.7. In the experiments, meters
are deployed by MDOP with clear ratio r = 1; each point is the
average result of 10 experiments. The blue curves show the track-
ing error of FSD and the red curves show the tracking error given
by traditional Viterbi algorithm. In Viterbi, the vertex reward is
assigned a weight to make it comparable to the link reward. The
results show that 1). the FSD algorithm generally has better track-
ing accuracy than Viterbi. 2) When the metering error is small,
the tracking error of FSD is very small, showing its effectiveness
in disambiguating the mixed states. The FSD algorithm performs
better than Viterbi for it keeping top-500 feasible pathes instead of
only the top-path. Another reason is that FSD uses product-type
reward function, which does’t suffer the weight assignment error
for balancing the link rewards and the vertex rewards.

2. Clear ratio VS. Tracking accuracy V.S. Cost saving ratio
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Figure 7: Metering Noise VS. Tracking Accuracy

Then we investigate how the clear ratio of the MDOP algorithm
affects the state tracking accuracy. For focusing on the effects of
clear ratios, the metering noise σ is set to zero, so all the errors
are caused by the decoding ambiguities. For the same load tree
settings in Fig.7, the tracking accuracy vs. clear ratio and corre-
sponding cost saving ratio are plotted in Fig. 8. The results show
interesting features of this lightweight metering problem. The cost
saving ratio increases slowly with the reduction of the clear ratio,
and reaches a saturated status when the clear ratio is less than 0.6.
The tracking errors increase very quickly with the clear ratio. The
different trends of the curves indicate some good region for choos-
ing the clear ratio, in which the tracking error is small and most
deployment costs can be saved, as the region 0.8 to 1 in the figure.
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3. Experiments on Powernet Data Set
Above experiments assume appliances have static power patterns.
We conduct further experiments using the Powernet data to relax
this assumption. We use the data of Sep-30-2011 which contains
feasible data of 65 appliances. Some appliances are not open on
that day and some appliances have very small power are not used.
We firstly evaluate the power patterns of these appliances. By sta-
tistical analysis on 500 samples for each appliance, the Std/Mean
for each appliance is evaluated, which is plot in Fig.9. It can be
seen that more than 75% appliances have Std/Mean less than 0.1,
indicating the power consumption of appliances in real applications
are not highly dynamic.
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Figure 9: Power Std/Mean for 65 appliances in Powernet
.

Since the dataset doesn’t provide the load tree structure. We off-
line train each appliance’s power pattern by the average energy
consumption over 10 minutes, and randomly generate a load tree
to assign 65 appliances randomly to the leaves. Smart meters are
deployed by MDOP with r = 1 on the generated load tree. In on-
line phase, when an appliance is on, its energy consumption is not
static but follows its energy consumption trace in the data set. The
meters measure the past 30 seconds moving average of the mixed
real-time energy consumption of its subtree to decode the states of
appliances. The state tracking performances by FSD and Viterbi
are plotted in Fig.10. The decoding accuracy is generally around
20% for FSD, which shows potential of the proposed framework
considering its current rough model and large cost saving ratio. We
checked the errors and found the main reason is because the vari-
ation range of some large power alliances in the same mono-meter
tree covers the on/off events of the small power appliances. Such
problems can be further resolved by improving meter deployment
scheme to consider both the mean and the variance of different elec-
trical appliances, which will be studied in future work.

6. CONCLUSION AND FUTURE WORK
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.

This paper presents a lightweight metering and sequence decoding
framework for tracking the on/off states of electrical appliances.
The rationale is that the power patterns of appliances can be learned
off-line and the switching events of the electrical appliances in
a short interval are sparse. FSD, a fast state sequence decoding
algorithm is proposed by off-line tree splitting, state vector pre-
ordering, online forward search and backward search algorithms. It
facilitates a polynomial time decoding algorithm which overcomes
the complexities of disambiguating 2N states. By entropy-based
analysis, a “clear ratio" is proposed to bridge the deployment cost
and the tracking accuracy, which can be seen as a parameter to de-
scribe the decoding accuracy requirement. Based on it, MDOP, a
polynomial time deployment algorithm is proposed to deploy the
minimal number of smart meters for a given requirement of the
clear ratio. The experimental results show the effectiveness and
good performances of the proposed methods.

This work contains some basic assumptions, such as the power pat-
terns are static, the state transition probabilities are i.i.d. In future
work, more complex power patterns and robust deployment algo-
rithm will be studied. The state transitions can be further modeled
by Hidden Semi Markov Model to consider the work duration dis-
tributions of the appliances. Detection of transient signals can help
to extract the occasion of the switching events, and the group de-
pendence of on/off switching events can further increase the decod-
ing accuracy.
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APPENDIX
In this section, we prove that the objective function in (2), can be
transformed approximately to the objective function in (3). Mathe-
matically,

E{(Zt,i −∑
j∈S(i) Xt,jPt,j)

2}
=Z2

t,i−2Zt,j

∑
j∈S(i)Xt,jPt,j+E{∑j∈S(i)Xt,jPt,j}2

=(Zt,i −∑
j∈S(i) Xt,jPt,j)

2 +Δ,

(21)

where

Δ =E(
∑

j∈S(i) Xt,jPt,j)
2 − (

∑
j∈S(i) Xt,jPt,j)

2

=
∑

j∈S(i) X
2
t,jδj .

(22)

Note that X2
t,j = Xt,j , and δj ≈ αPt,j , we have

E{(Zt,i −∑
j∈S(i) Xt,jPt,j)

2}
=Z2

t,i − (2Zt,j − α)
∑

j∈S(i) Xt,jPt,j

+ (
∑

j∈S(i) Xt,jPt,j)
2

=(Zt,i − α/2−∑
j∈S(i) Xt,jPt,j)

2 + Λ,

(23)

where Λ = αZt,i − α2/4, is a constant.
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