
MORE EFFICIENT ALGORITHMS FOR CLOSEST STRING AND
SUBSTRING PROBLEMS ∗

BIN MA† AND XIAOMING SUN‡

Abstract.

The closest string problem and the closest substring problem are all natural theoretical computer
science problems and find important applications in computational biology. Given n input strings, the
closest string (substring) problem finds a new string within distance d to (a substring of) each input
string and such that d is minimized. Both problems are NP-complete. In this paper we propose
new algorithms for these two problems. For the closest string problem, we developed an exact
algorithm with time complexity O(n|Σ|O(d)), where Σ is the alphabet. This improves the previously
best known result O(ndO(d)), and results into a polynomial time algorithm when d = O(log n).
By using this algorithm, a PTAS for closest string problem is also given with time complexity

O(nO(ε−2)), improving the previously best known O(nO(ε−2 log 1
ε
)) PTAS. A new algorithm for the

closest substring problem is also proposed. Finally, we prove that a restricted version of the closest
substring has the same parameterized complexity as closest substring, answering an open question
in the literature.

1. Introduction. The closest string and substring problems have been recently
studied extensively in computational biology [16, 18, 22, 13, 24, 12, 23, 15, 7, 11,
29, 4, 26, 30]. The two problems have a variety of applications in bioinformatics,
such as universal PCR primer design [20, 16, 5, 27, 12, 31], genetic probe design [16],
antisense drug design [16, 4], finding unbiased consensus of a protein family [2], and
motif finding [16, 12, 30, 3, 9]. In all these applications, a common task is to design
a new DNA or protein sequence that is very similar to (a substring of) each of the
given sequences. In the first three applications, the designed DNA sequence can bind
to each of the given DNA sequences in order to perform its designated functions. In
the last two applications, the designed sequence acts as an unbiased representative of
all the given sequences. The common task has been formulated as the closest string
problem and the closest substring problem.

Given n length-m strings s1, s2, . . ., sn, and a radius d, the closest string problem
seeks for a new length-m string s such that d(s, si) ≤ d. Here d(·, ·) is the Hamming
distance. The closest substring problem seeks for a length L (L < m) string t such
that for every i = 1, 2, . . . , n, there is a substring ti of si with length L such that
d(t, ti) ≤ d. The problems may also be described as optimization problems where the
objectives are to minimize the radius d.

Unfortunately, both of these two problems are NP-complete [10, 16]. In addition
to many heuristic algorithms without any performance guarantee (for example [19,
23, 24]), researchers have developed approximation algorithms and fixed-parameter
algorithms for the two problems. Approximation algorithms sacrifice the quality of the
solution in order to achieve polynomial time [14]. A polynomial time approximation

∗A preliminary version has appeared in the Proceedings of the 12th Annual International Con-
ference on Research in Computational Molecular Biology (RECOMB’08).

†School of Computer Science, University of Waterloo, 200 University Ave. W, Waterloo, ON,
Canada N2L3G1. Email: binma@uwaterloo.ca. Supported in part by China National High-tech
R&D Program (863) 2008AA02Z313, China NSF 60553001, China National Basic Research Program
2007CB807900,2007CB807901, NSERC and Canada Research Chair.

‡Center for Advanced Study and Institute for Theoretical Computer Science, Tsinghua Uni-
versity, Beijing, China 100084. Email: xiaomings@tsinghua.edu.cn. Supported in part by
China National NSF 60553001, 60603005, 60621062, and the National Basic Research Program
2007CB807900,2007CB807901.

1

scheme (PTAS) achieves ratio 1 + ε in polynomial time for any fixed ε > 0. Fixed-
parameter algorithms find optimal solutions with time complexity f(k) · nc for a
constant c and any function f [6]. Here k is a parameter naturally associated to the
input instance.

For fixed-parameter algorithms, Stojanovic et. al [29] provided a linear time
algorithm for d = 1. Gramm et. al [13] provided the first fixed-parameter algorithm
for closest string with running time O(nm + ndd+1). Therefore, for small values of d
their algorithm can solve closest string in acceptable time. In this paper we present a
novel algorithm that finds the optimal solution of closest string problem with running
time O

(
nm + nd · (16|Σ|)d

)
. When the alphabet size is a constant and d = O(log n),

this gives a polynomial time algorithm for the closest string problem.
The closest substring problem appeared to be harder than closest string in terms

of parameterized complexity. For unbounded alphabet size, it has been shown that the
problem is W [1]-hard even if all d, n, L are parameters [8, 9]. The W [1]-hardness indi-
cates that the problem unlikely has a fixed-parameter polynomial time algorithm [6].
For |Σ| being a constant or a parameter, the problem is W [1]-hard even if both d and
n are parameters [22]. For a more complete review of the parameterized complexities
of the closest substring problem, we refer the readers to [9, 22, 25]. Marx [22] gave
a |Σ|d(log d+2)(nm)log d+O(1) algorithm for the closest substring problem. In this pa-
per we present a new algorithm for closest substring with improved time complexity
O

(
(16|Σ|)d · nmdlog de+1

)
.

For approximation algorithms, Lanctot et. al [16] gave the first polynomial time
approximation algorithm with approximation ratio 4

3 + o(1). Li et. al [17] provided a
PTAS for closest string with time complexity O(mnO(ε−5)). Ma [21] provided a PTAS
for closest substring problem. These two PTAS results were collected in [18]. There
have been many negative comments regarding the large exponent of the PTAS [9, 3,
11, 13, 22]. By using a lemma in [22] and an idea of [17], Andoni et. al [1] proposed a
PTAS to obtain a much better time complexity O(mnO(ε−2 log 1

ε)). By combining our
new fixed-parameter algorithm, in Section 5 we provide a simpler PTAS with further
improved time complexity O(mnO(ε−2)).

Noticing the hardness of closest substring problem, Moan and Rusu [25] studied
a more restricted version of closest substring. They put a diameter constraint on top
of the original closest substring problem by further requiring the pairwise distances
between substrings in the solution do not exceed a diameter D for some D < 2d. They
hoped that such a constraint may reduce the parameterized complexity of closest
substring when D is close enough to d. The condition for this to happen is left as a
main open problem in [25]. In this paper we answer this question by proving that such
condition does not exist. That is, for any given ε > 0, all parameterized complexity
results of closest string preserve in the constrained instances for D < (1 + ε)d.

2. Preliminaries and Notations. Let Σ be an alphabet with constant size
|Σ|. Suppose s is a string over Σ. |s| denotes the length of s. s[i] denotes the i-th
letter of s. Therefore, s = s[1]s[2] . . . s[m], where m is the length of s. Let s and t be
two strings with the same length m, d(s, t) denotes the Hamming distance between
s and t. Use [1,m] to denote the set {1, 2, . . . ,m}. For P = {i1, i2, . . . , ik} ⊆ [1,m],
define s|P = s[i1]s[i2] . . . s[ik] and dP (s, t) = d(s|P , t|P). Let Q = [1,m]\P . From the
definition of Hamming distance, clearly d(s, t) = dP (s, t)+dQ(s, t). Let Q(s, t) denote
the set of positions where s and t agree, i.e., Q(s, t) = {j | s[j] = t[j]}. Similarly, for
k given strings s1, s2, . . . , sk of same length, Q(s1, s2, . . . , sk) denotes the position set
where all strings agree. Let P (s, t) denote the position set where s and t disagree.

2

Let s1, s2, . . ., sn be n strings of length m. The closest string problem asks for a
string center s such that d = maxn

i=1 d(s, ti) is minimized. The minimum value of d is
called the radius of the n input strings. D = max1≤i,j≤n d(si, sj) is called the diameter
of the n input strings. Let L ≤ m. The closest substring problem asks for a length-L
string center s and a length-L substring ti of each si, such that d = maxn

i=1 d(s, ti) is
minimized.

In this paper we will also study a more generalized version of closest string prob-
lem, the neighbor string problem: Given n strings s1, s2, . . ., sn with length m, and
n nonnegative integers d1, d2, . . ., dn, the neighbor string problem seeks for a length
m string s such that d(s, si) ≤ di for every 1 ≤ i ≤ n. An instance of the neighbor
string problem is given by 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.

3. O
(
nm + nd · (16|Σ|)d

)
Algorithm for Closest String Problem. Param-

eterized complexity has been used to tackle NP-hard problems [6]. In principle, a
fixed-parameter polynomial time algorithm is a well-structured superpolynomial al-
gorithm such that the superpolynomial factor is only with respect to one parameter of
the given instance. Many NP-hard problems have been found to be fixed-parameter
tractable, which means that an algorithm with running time f(k) · nc exists to solve
the problem. Here k is a parameter naturally associated with the problem; n is the
size of the input and c is a constant. Clearly f(k) must be superpolynomial if P 6=
NP. The hope is that this f(k) will not grow too fast, and parameter k is small for
practical instances; and hence the problem can be solved efficiently in practice.

Gramm et al. [13] provided a fixed-parameter polynomial time algorithm for clos-
est string when the radius d is used as the fixed parameter. For a given instance
{s1, s2, . . . , sn} and a given value d, their algorithm finds a center string s such that
d(s, si) ≤ d in O(nm + ndd+1) time, if such a string exists.

In this section we provide a new algorithm for closest string problem with time
complexity O(nm+nd·(16|Σ|)d). When the alphabet size is a constant, our algorithm
is exponentially faster than the previous algorithm. In order to design the algorithm
for closest string, let us focus on the more generalized neighbor string problem.

Lemma 3.1. 1 Let 〈(s1, d1), . . . , (sn, dn)〉 be an instance of the neighbor string
problem. If j satisfies d(s1, sj) > dj, then for Q = Q(s1, sj) and any solution s of the
neighbor string problem, dQ(s, s1) < d1

2 .
Proof. Let s be a solution, i.e. d(s, si) ≤ di for i = 1, 2, . . . , n. Let P = [1,m] \Q.

Then each character in P contributes at least 1 to d(s, s1)+d(s, sj), and each character
in Q where s is not equal to s1 (and sj) contributes exactly 2. Since d(s, s1)+d(s, sj) ≤
d1 + dj and |P | > dj , the lemma follows.

Next we give an algorithm for the neighbor string problem in Figure 3.1. The
idea of the algorithm is the following. Suppose there is si0 such that d(s1, si0) > di0 .
Let Q = Q(s1, si0) be the positions where s1 and si0 agree. P = [1, |s1|] \ Q. Then
we can “guess” the solution s on P , and construct a new neighbor string problem
〈(s1|Q, e1) . . . , (sn|Q, en)〉. Because of Lemma 3.1, the new instance is such that e1 <
d1
2 . Thus, we can use the same algorithm to solve the new instance and the algorithm
stops after at most blog d1c recursions. Because each recursion reduces d1 by half, a
careful analysis will show that the blog d1c recursions take O

(
poly(nm)×O(|Σ|)O(d)

)
time for d = max di.

Theorem 3.2. Let d = max1≤i≤n di. If there is a solution s such that d(s, si) ≤

1Lemma 3.1 uses similar idea as Lemma 2.2 in [22]. However the lemma in [22] cannot be directly
used in our algorithms.

3

Algorithm StringSearch
Input: An instance of neighbor string 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.
Output: String s such that d(s, si) ≤ di (i = 1, . . . , n), or NULL if there
is no solution.
1. Try to find i0 such that d(s1, si0) > di0 .
2. If step 1 fails, return s1.
3. Let Q = Q(s1, si0), P = [1, |s1|] \Q.
4. For every possible string t of length |P | such that d(t, s1|P) ≤ d1 and
d(t, si0 |P) ≤ di0

4.1 Let ei = di − d(t, si|P) for i 6= 1, and e1 = min{d1 −
d(t, s1|P), dd1/2e − 1};
4.2 Use StringSearch to find the solution u of
〈(s1|Q, e1), (s2|Q, e2), . . . , (sn|Q, en)〉;
4.3 If u 6= NULL then let s|P = t and s|Q = u and return s.
5. Return NULL.

Fig. 3.1. The algorithm StringSearch.

di (1 ≤ i ≤ n), then algorithm StringSearch in Fig. 3.1 outputs a solution s′ such
that d(s′, si) ≤ di in time O(mn + nd · T (d, d1)), where the size of the search tree

T (d, d1) ≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 22d1 .

Proof. First let us prove the correctness of the algorithm. It is easy to verify that
when the algorithm returns a non-null string in either line 2 or line 4.3, the string is
a solution of the input instance. Let us prove that when there is a solution of the
input instance, then the algorithm can find it. We prove this by using induction on
d1. If d1 = 0 then clearly the algorithm is correct. When d1 > 0 and line 1 finds i0
successfully, by Lemma 3.1, the Q and P defined in line 3 are such that there is a
solution s satisfying d(s|Q, s1|Q) ≤ e1. Therefore, this s is such that d(s|Q, si|Q) ≤ ei

for 1 ≤ i ≤ n. As a result, when t = s|P in line 4, by induction, the recursive call to
Algorithm StringSearch at line 4.2 will find u such that d(u, si|Q) ≤ ei for 1 ≤ i ≤ n.
Then it is easy to verify that the s returned in line 4.3 is a desired solution.

Next let us examine the time complexity of the algorithm StringSearch. We
estimate the size (number of leaves) of the search tree first. In line 4, assume t is
an eligible string and d(t, s1|P) = k. Then |P | = d(s1|P , si0 |P) ≤ d(t|P , s1|P) +
d(t|P , si0 |P) ≤ di0 + k ≤ d + k. Therefore, there are at most

(|P |
k

)
(|Σ| − 1)k ≤(

d+k
k

)
(|Σ| − 1)k such strings t. For each of them, the size of the subtree rooted at t of

the search tree is bounded by T (d,min{d1 − k, dd1/2e − 1}). k can take values from
0 to d1. Therefore, the search tree size satisfies

T (d, d1) ≤
d1∑

k=bd1/2c+1

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

+
bd1/2c∑
k=0

(
d + k

k

)
(|Σ| − 1)kT (d, dd1/2e − 1) (3.1)

Clearly T (d, 0) = 1 because in this case s1 is the solution. We prove by induction
4

that for d̃ ≥ 1,

T (d, d̃) ≤ 22d̃

(
d + d̃

d̃

)
(|Σ| − 1)d̃. (3.2)

It is easy to verify that when d̃ = 1, T (d, 1) ≤ (d+1)(|Σ|−1)+1, the statement is
true. When d̃ = 2, because of (3.1), T (d, 2) ≤

(
d+2
2

)
(|Σ| − 1)2 + (d + 1)(|Σ| − 1) + 1 ≤

2
(
d+2
2

)
(|Σ| − 1)2, the statement is also true. Next we suppose d1 > 2 and eq. (3.2) is

true for 0 ≤ d̃ < d1. We bound the two terms of (3.1) separately. Let k0 = bd1/2c+1.
The first term is

d1∑
k=k0

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)k ·

(
d + d1 − k

d1 − k

)
(|Σ| − 1)d1−k · 22(d1−k)

=
(

d + d1

d1

)
(|Σ| − 1)d1

d1∑
k=k0

(
d1

k

)
· 22(d1−k) (3.3)

≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 2d1−1

d1∑
k=k0

(
d1

k

)
≤

(
d + d1

d1

)
(|Σ| − 1)d1 · 22d1−2. (3.4)

Here the equality (3.3) is because
(
d+d1

k

)
×

(
d+d1−k

d1−k

)
= (d+d1)!

k!(d+d1−k)! ×
(d+d1−k)!
(d1−k)!d! =

(d+d1)!
d1!d! × d1!

(d1−k)!k! =
(
d+d1

d1

)
×

(
d1
k

)
. The rest of the proof is to bound the second term

by 3
(
d+d1

d1

)
(|Σ| − 1)d1 · 22d1−2. The second term is

k0−1∑
k=0

(
d + k

k

)
(|Σ| − 1)k0T (d, d1 − k0)

≤
k0−1∑
k=0

(
d + k

k

)
(|Σ| − 1)k0 ·

(
d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1−k0 · 22(d1−k0)

=
(

d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

k0−1∑
k=0

(
d + k

k

)
≤

(
d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

(
d + k0

k0

)
.

So we only need to prove(
d + d1 − k0

d1 − k0

)(
d + k0

k0

)
2−2k0 ≤ 3

4
·
(

d + d1

d1

)
,

5

or equivalently, (
d + d1 − k0

d1 − k0

)(
d1

k0

)
≤ 3

4
· 22k0

(
d + d1

d1 − k0

)
. (3.5)

(3.5) is true because(
d + d1 − k0

d1 − k0

)
≤

(
d + d1

d1 − k0

)
,

(
d1

k0

)
≤ 1

2
· 2d1+1 <

3
4
· 22k0 .

Hence (3.2) is correct.
At each leaf, the time complexity of line 1 is O(nm). By carefully remembering

the previous distances and only update the O(d) positions changed, this can be done
in O(nd) time. The total running time is dominated by the leaves. Therefore, the
time complexity of the algorithm is O(nm + nd · T (d, d1)).

Corollary 3.3. StringSearch solves the closest string problem in time

O
(
nm + nd · 24d(|Σ| − 1)d

)
.

Remark: In line 4 of the algorithm StringSearch, one cannot only enumerate the
string t of which each letter is taken from either s1 or si0 . This is because when
d(s1, si0) < d1 + di0 , the solution s may be different from both s1 and si0 . For this
reason, all letters in Σ need to be tried, resulting in a time complexity related to |Σ|.

4. More Efficient Algorithm For Closest Substring. In [22], an algorithm
with running time |Σ|d(log2 d+2)N log2 d+O(1) is given, where N is the total length of the
input strings. In this section we improve it to O

(
n|Σ|O(d)mdlog2 de+1

)
. That is, the

log2 d factor at the exponent of |Σ|d(log2 d+2) is removed. Moreover, the total length
N is replaced by the length m of the longest input string.

Again, in order to develop an algorithm for closest substring, we attempt to solve
a more generalized version of closest substring. For convenience, we call the new
problem partial knowledge closest substring. An instance of the partial knowledge
closest substring problem is given by 〈{s1, s2, . . . , sn}, d, d1, L,O, t̃〉, where O ⊂ [1, L]
and t̃ is a string of length |O|. The problem is to find a string t of length L, such that
t|O = t̃, d[1,L]\O(t, s1) ≤ d1, and for every i, d(t, ti) ≤ d for at least one substring ti
of si.

Theorem 4.1. Algorithm SubstringTry in Fig. 4.1 finds a solution for closest
substring with time complexity

O
(
nL + nd · 24d|Σ|d ·mdlog2 de+1

)
.

Proof. (Sketch) When all the input strings have the same length L, a care-
ful comparison between Algorithm SubstringSearch and the previous Algorithm
StringSearch can see that the two algorithms are equivalent. The only difference
is made when |si| > L. Then the “guess” operation in line 4 requires the algorithm
to try all possible substrings of si0 . This expands the search tree size by a factor of
at most m. Because of Lemma 3.1, the recursion of Algorithm SubstringSearch is
at most dlog2 de levels. This increases the search tree size by a factor of mdlog2 de.
Combining with Corollary 3.3, the theorem is proved.

6

Algorithm SubstringSearch
Input: 〈{s1, s2, . . . , sn}, d, L,O, t̃〉 such that |s1| = L.
Output: A solution t of the partial knowledge closest substring, or NULL
if there is no solution.
1. Let O′ = [1..L]\O. Let s be a string such that s|O = t̃ and s|O′ = s1|O′ .
2. Try to find i0 such that d(s, ti0) > di0 for every substring ti0 of si0 .
3. If line 1 fails, return s.
4. Guess a substring ti0 of si0 .
5. Let P = P (s1, ti0) \O.
6. For every possible string t of length |P | such that d(t, s1|P) ≤ d1 and
d(t, ti0 |P) ≤ d− d(t̃, ti0 |O)
6.1 Let t′ be a string such that t′|O = t̃ and t′|P = t.
6.2 Let e1 = min{d1 − d(t, s1|P), dd1/2e − 1}.
6.3 Use SubstringSearch to find solution u of
〈{s1, s2, . . . , sn}, d, e1, L,O ∪ P, t′|O∪P 〉.
6.4 If 6.3 is successful then return u.
7. Return NULL.
Algorithm SubstringTry
Input: 〈{s1, s2, . . . , sn}, d, L〉.
1. for every length L substring t1 of s1,
1.1 call SubstringSearch with 〈{t1, s2, . . . , sn}, d, d, L, ∅, e〉.

Fig. 4.1. The algorithms SubstringSearch and SubstringTry.

5. More Efficient PTAS for Closest String. In [17, 18], a PTAS for closest
string problem was given. To achieve approximation ratio 1 + ε, the running time of
the algorithm was O

(
mnO(ε−5)

)
. Apparently this PTAS has only theoretical value

as the degree of the polynomial grows very fast when ε gets small. By using the
Lemma 2.2 in [22] and an idea of [17, 18], Andoni et. al [1] proposed a PTAS in [17]
to get much better time complexity O(mnO(ε−2 log 1

ε)). The proof in [1] argued that
when d = Ω(log n/ε2), a standard linear programming relaxation method can solve
the closest string problem with good approximation ratio. When d = O(log n/ε2),
one can exhaustively enumerate all the possibilities of positions in the solution where
r of the input strings do not agree. However, by using Lemma 2.2 of [22], r can be
reduced from the original O(1

ε) in [18] to O(log 1
ε).

With our new fixed-parameter algorithm that runs O
(
mn + nd · (16|Σ|d)

)
time,

we can further reduce the time complexity by the following algorithm: Use the fixed-
parameter algorithm to solve d = O(log n/ε2), and use the standard linear program-
ming relaxation to solve the case d = Ω(log n/ε2). It is easy to verify that this provides
a simple O(m · nO(ε−2)) PTAS.

Theorem 5.1. Closest string has a PTAS that achieves approximation ratio 1+ε
with time O(m · nO(ε−2)).

6. Hardness result. Together with the development of fixed-parameter poly-
nomial time algorithms, W-hierarchy has been developed to prove fixed-parameter
intractability [6]. The W[1]-hardness results reviewed in Section 1 indicate that the
closest substring problem unlikely has fixed-parameter polynomial time algorithms
even if both d and n are fixed-parameters. More parameterized complexity results
about the closest substring problem can be found in [9, 22, 25].

7

Moan and Rusu [25] studied a variant of the closest substring problem by adding
a constraint on the diameter of the solution, and hoped that the constraint can
help reduce the parameterized complexity of the problem. The constraint is called
the bounded Hamming distance (BHD) constraint in their paper. Then the BHD-
constrained closest substring (BCCS) problem is defined as follows.

BCCS Given a set of n strings s1, s2, . . . , sn, substring length L, radius d, and
diameter D. Find length-L substring ti of each si, i = 1, 2, . . . , n, and a new length-L
string t, such that d(ti, tj) ≤ D, and d(t, ti) ≤ d.

Clearly, d ≤ D ≤ 2d. For any c ≥ 4
3 , Moan and Rusu proved that the diameter

constraint D ≤ c · d does not reduce the complexity of closest substring problem.
More precisely, with any c ≥ 4

3 , all parameterized complexity results for closest sub-
string preserve for BCCS when using any non-empty subset of the following values as
parameters: the radius d, the alphabet size |Σ|, the number of input strings n, the
length of desired substrings L.

However, Moan and Rusu pointed out that in computational biology, D is usually
significantly smaller than 2d. Therefore, they hoped that when D

d is very close to 1,
the BCCS problem might become easier than the original closest substring problem.
If this is true, BCCS can be used to solve the practical closest substring problems.
The finding of the necessary condition for that BCCS problem becomes easier is left
as the “main open question” of the paper [25]. In this section, we answer this question
negatively with the following theorem.

Theorem 6.1. For any constant ε > 0, with the diameter constraint D ≤ (1+ε)d,
all parameterized complexity (W [l]-hardness) results for closest substring preserve for
BCCS when using any non-empty subset of the following values as parameters: the
radius d, the alphabet size |Σ|, the number of input strings n, the length of desired
substrings L.

Proof. The proof is done in three steps: First, we construct an instance of closest
string with radius d̃ and diameter D̃ = (1 + o(1))d̃. Then, we show that an instance
of closest substring with radius d and diameter D can be “merged” with an instance
of the closest string with radius d̃ and diameter D̃, so that the new instance has
radius d + d̃ and diameter D + D̃. Thirdly, by letting d̃ � d and D̃ � D, we get
an instance such that the diameter is very close to the radius. Thus, we reduce the
closest substring problem to BCCS, and hence prove the theorem. The details are
given in the following.

Step I
First let us construct an instance I1 of the closest string problem with very close

radius and diameter. Let k be an even number. Examine the instance with k binary
strings x1, x2, . . . , xk. Each xi has length L̃ =

(
k

k/2

)
. For each column j, exactly half

of x1[j], x2[j], . . . , xk[j] take value 0 and the other half take value 1. Hence there are
in total

(
k

k/2

)
ways to assign values to a column. Each of the

(
k

k/2

)
columns takes a

distinct way.
Claim 1 The radius of the constructed instance is d̃ = L̃/2.
Proof. Because of the construction, each string has half of the L̃ letters as 0.

Therefore, d(0L̃, xi) = L̃/2 for every xi. Therefore, the radius is at most L̃/2.
On the other hand, for any center string x, at each column, the total number of

differences between xi (i = 1, 2, . . . , k) and the center string is exactly k/2. Therefore,∑k
i=1 d(x, xi) = kL̃/2. Consequently, maxk

i=1 d(x, xi) ≥ L̃/2. The claim is proved.
Now let us examine the diameter of the constructed instance. For every two

strings xi and xj , the Hamming distance is the number of columns such that xi and
8

xj take different values. This is equivalent to the number of ways to split k elements
into two equal-sized subsets, ensuring that elements i and j are separated. With
simple combinatorics, this number is 2

(
k−2
k
2−1

)
. Therefore,

D̃

d̃
=

2
(

k−2
k
2−1

)
L̃/2

=
4
(

k−2
k
2−1

)(
k

k/2

) =
k

k − 1

In order to avoid the exponential growth of D̃ and d̃ with respect to k, we note
that D̃ and d̃ can be enlarged while keeping the same ratio D̃

d̃
by replacing each xi

by xixi . . . xi︸ ︷︷ ︸
K

, i.e., the concatenation of K copies of xi. In the rest of the proof we

consider I1 as such an enlarged instance, and the value K is to be determined later.
The notations diameter D̃, radius d̃, input string xi, and string length L̃ all correspond
to the enlarged instance.

Step II
Let I = 〈{s1, . . . , sn}, L, d〉 be an instance of the closest substring. We construct

a new instance in the following.
For each si (i = 1, . . . , n) and each xj (j = 1, . . . , k), let

sij = X si[1..L]xj XYijX si[2..L + 1]xj XYijX . . . XYijX si[m− L + 1..m]xj X.

Here X and Yij are binary strings (to-be-constructed) that serve as separators. The
new instance is then

I2 = 〈{sij |i = 1, . . . , n, j = 1, . . . , k}, 2|X|+ L + L̃, d + d̃〉.

The X separators will ensure that they are aligned together in a solution, and the Yij

separators will ensure that a solution does not include two adjacent si[k..L + k − 1]
segments. X and Yij are designed as follows.

For N > 0, let K = {kN2 +k(k+1)/2 | k = 1, 2, . . . , N−1}. Then K is a Golomb
ruler, where the difference between every pair of numbers in K is distinct. Let X be a
length-N3 binary string on alphabet {∗,#} such that X[k] = ∗ if and only if k ∈ K.
Denote X[k + N3] = X[k]. Then for every k, we have

d(X, X[k..N3 + k − 1]) ≥ N − 2. (6.1)

Therefore, for sufficiently large N , a solution must align X exactly together.
Similarly to K, we can design nk sets Kij ⊂ [1,M], (i = 1, . . . , n, j = 1, . . . , k),

such that (i) |Kij | = N ′ and (ii) |k1−k2| = |k′1−k′2| for {k1, k2} ⊂ Kij and {k′1, k′2} ⊂
Ki′j′ ⇒ {k1, k2} = {k′1, k′2} and i = i′ and j = j′. We leave the proof to the readers.
Let Yi,j be a length-M binary 0-1 string such that Yi,j [k] = 1 if and only if k ∈ Kij .
Denote Yij [k + M] = Yij [k]. Then for any k, we have

d(Yij , Yi′j′ [k..M + k − 1]) ≥ N ′ − 1. (6.2)

Thus, for sufficiently large N ′, a solution cannot include the Yij segment.
Claim 2 I has a solution with radius ≤ d and diameter ≤ D if and only if I2

has a solution with radius ≤ d + d̃ and diameter ≤ D + D̃.
Proof. Suppose I has a solution si[li..li + L − 1], i = 1, . . . , n with radius d and

diameter D. Then the substrings Xsi[li..li + L − 1]xjX, i = 1, . . . , n, j = 1, . . . , k

9

are a solution of I2. It is easy to verify that the radius and diameter are bounded by
d + d̃ and D + D̃, respectively.

Now we prove the other direction. From the construction of X and Yij , we know
that the solution of I2 contains only one si[k..L+k−1] from each sij , and is such that
X from different strings are aligned exactly together. Further, without making the
solution worse, we can easily modify the solution by “sliding” so that every substring
has the form Xsi[li..li + L − 1]xjX for some li. Next we show that si[li..li + L − 1]
(i = 1, 2, . . . , n) is the desired solution for I.

Let Xss̃X be the center of Xsi[li..li + L− 1]xjX with radius d + d̃. Because d̃ is
the radius of I1, there is j0 such that d(s̃, xj0) = d̃. Therefore, d(Xss̃X, Xsi[li..li +
L− 1]xj0X) ≤ d + d̃ derives that d(s, si[li..li + L− 1]) ≤ d for every i.

Similarly, there are j0 and j1 such that d(xj0 , xj1) = D̃. Therefore, d(Xsi[li..li +
L−1]xj0X, Xsi′ [li′ ..li′+L−1]xj0X) ≤ D+D̃ derives that d(si[li..li+L−1], si′ [li′ ..li′+
L− 1]) ≤ D for every i and i′.

The claim is proved.
Step III

For any ε > 0, we let k = d 2
ε + 1e and K =

⌈
4D

(k
k/2)ε

⌉
in the construction of I1.

Then d̃ = K
2 ·

(
k

k/2

)
≥ 2D

ε . Then in instance I2, the ratio between the diameter and
radius is

D + D̃

d + d̃
≤ D

d̃
+

D̃

d̃
≤ ε

2
+

k

k − 1
≤ 1 + ε

Thus, we successfully reduce the closest substring problem to the closest substring
problem with the constraint that the diameter is within 1 + ε times the radius. The
number n, length m of the input strings are increased only by a constant factor
determined by ε. The new length L and radius d of the substrings are polynomials of
the old L and d. Therefore, all the W -complexities of the closest substring problem
still hold with the diameter constraint D ≤ (1+ ε)d for any small ε > 0. The theorem
is proved.

7. Discussion. The closest string and closest substring are two problems moti-
vated and well-studied in computational biology. We proposed a novel technique that
leads to more efficient fixed-parameter algorithm for closest string. This is also the
first polynomial algorithm for the problem when d = O(log n). The same technique
is then used to give a more efficient algorithm for closest substring. As a consequence
of the fixed-parameter algorithm, we presented a more efficient PTAS of the closest
string problem. At last, we showed that a restricted version of the closest substring
problem has the same parameterized complexity as the original closest substring prob-
lem. This answers an open question raised in [25].

An interesting observation is that the approximation and fixed-parameter strate-
gies work complementarily for different d values. For smaller d < log2 n and bi-
nary strings, our fixed-parameter algorithm has time complexity O(nm + nd · 24d) =
O(nm + n5 log2 n). For larger d > c lnn/ε2 for some constant c, the linear pro-
gramming relaxation’s time complexity is dominated by the time to solve a linear
programming of m variables and nm coefficients, which is again a low-degree polyno-
mial. This scenario can be intuitively explained as follows. When d is small and n
is large, each input string puts a strong constraint on the solution, and consequently
removes a large portion of the search space in a fixed-parameter algorithm. Therefore,

10

it is easier to design a fixed-parameter algorithm. Conversely, when d is large and
n is small, the constraint superimposed by each input string is weaker and there are
fewer constraints. Therefore, it is easier to find an approximate solution to roughly
satisfy those constraints.

But when d falls in between log2 n and c lnn/ε2, the polynomial will have high
degree for the fixed-parameter algorithm, and the approximation ratio of the linear
programming relaxation may exceed 1+ ε. The instances with d in this range seem to
be the “hardest” instances of the closest string problem. However, because the fixed-
parameter algorithm has polynomial (although with high degree) running time on
these instances, a proof for the “hardness” of these instances seems to be difficult too.
We leave the finding of a more efficient (approximation) algorithm for log2 n < d <
c lnn/ε2 as an open problem. Another open problem is the finding of O(poly(nm)cd)
time algorithm for unbounded alphabet size and a constant c.

Acknowledgement. Bin Ma’s work was partially done when he visited Professor
Andrew Yao in ITCS at Tsinghua University in 2006 and 2007, and when he was
an associate professor at the University of Western Ontario. The authors thank
an anonymous referee for suggesting a more intuitive presentation of the proof of
Lemma 3.1.

REFERENCES

[1] A. Andoni, P. Indyk, and M. Patrascu. On the optimality of the dimensionality reduction
method. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 449–458, 2006.

[2] A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing bias from consensus sequences. In
Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching, Lecture
Notes In Computer Science(1264), pages 247 – 261, 1997.

[3] J. Davila, S. Balla, and S. Rajasekaran. Space and time efficient algorithms for planted motif
search. In International Conference on Computational Science (2), pages 822–829, 2006.

[4] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. Genetic design of drugs without side-effects. SIAM
Journal on Computing 32(4), pages 1073–1090, 2003.

[5] J. Dopazo, A. Rodŕıguez, J.C. Sáiz, and F. Sobrino. Design of primers for PCR amplification
of highly variable genomes. CABIOS, 9:123–125, 1993.

[6] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.
Springer-Verlag, New York, 1999.

[7] P. A. Evans and A. D. Smith. Complexity of approximating closest substring problems. In
FCT, pages 210–221, 2003.

[8] P.A. Evans, A.D. Smith, and H.T. Wareham. On the complexity of finding common approxi-
mate substrings. Theoretical Computer Science, 306(1-3):407–430, 2003.

[9] M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif
search problems. Combinatorica, 26(2):141–167, 2006.

[10] M. Frances and A. Litman. On covering problems of codes. Theoretical Computer Science,
30:113–119, 1997.

[11] J. Gramm, J. Guo, and R. Niedermeier. On exact and approximation algorithms for distin-
guishing substring selection. In FCT, pages 159–209, 2003.

[12] J. Gramm, F. Hüffner, and R. Niedermeier. Closest strings, primer design, and motif search.
In L. Florea et al. (eds), Currents in Computational Molecular Biology, poster abstracts
of RECOMB 2002, pages 74–75, 2002.

[13] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for closest string
and related problems. Algorithmica, 37:25–42, 2003.

[14] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, Boston, 1996.

[15] Y. Jiao, J. Xu, and M. Li. On the k-closest substring and k-consensus pattern problems. In
Combinatorial Pattern Matching: 15th Annual Symposium (CPM 2004), 3109 volume of
Lecture Notes in Computer Science, pages 130–144, 2004.

[16] K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string search problems. In

11

Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 633–642, 1999.

[17] M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In Proceedings of the
31st ACM Symposium on Theory of Computing, pages 473–482, 1999.

[18] M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal of the
ACM, 49(2):157–171, 2002.

[19] X. Liu, H. He, and O. Sýkora. Parallel genetic algorithm and parallel simulated annealing
algorithm for the closest string problem. In Advanced Data Mining and Applications,
LNCS 3584, pages 591–597, 2005.

[20] K. Lucas, M. Busch, S. MÖssinger, and J.A. Thompson. An improved microcomputer program
for finding gene- or gene family-specific oligonucleotides suitable as primers for polymerase
chain reactions or as probes. CABIOS, 7:525–529, 1991.

[21] B. Ma. A polynomial time approximation scheme for the closest substring problem. In Pro-
ceedings of the 11th Symposium on Combinatorial Pattern Matching, pages 99–107, 2000.

[22] D. Marx. The closest substring problem with small distances. In Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 63–72, 2005.

[23] H. Mauch, M. J. Melzer, and J. S. Hu. Genetic algorithm approach for the closest string
problem. In Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference
(CSB), pages 560–561, 2003.

[24] C. N. Meneses, Z. Lu, C. A. S. Oliveira, and P. M. Pardalos. Optimal solutions for the closest-
string problem via integer programming. INFORMS Journal on Computing, 2004.

[25] C. Moan and I. Rusu. Hard problems in similarity searching. Discrete Applied Mathematics,
144:213–227, 2004.

[26] F. Nicolas and E. Rivals. Complexities of the centre and median string problems. In Proceedings
of the 14th Annual Symposium on Combinatorial Pattern Matching, pages 315–327, 2003.

[27] V. Proutski and E.C. Holme. Primer master: A new program for the design and analysis of
PCR primers. CABIOS, 12:253–255, 1996.

[28] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing
integer program. Journal of Computer and System Sciences, 37:130–143, 1988.

[29] N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time algorithm for
the 1-mismatch problem. In Proceedings of the 5th International Workshop on Algorithms
and Data Structures, pages 126–135, 1997.

[30] L. Wang and L. Dong. Randomized algorithms for motif detection. Journal of Bioinformatics
and Computational Biology, 3(5):1039–1052, 2005.

[31] Y. Wang, W. Chen, X. Li, and B. Cheng. Degenerated primer design to amplify the heavy
chain variable region from immunoglobulin cDNA. BMC Bioinformatics, 7(Suppl 4):S9,
2006.

12

