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In 1998, Allouche, Peyrière, Wen and Wen considered the Thue–Morse sequence, and 
proved that all the Hankel determinants of the period-doubling sequence are odd integers. 
We speak of t-extension when the entries along the diagonal in the Hankel determinant 
are all multiplied by t. We prove that the t-extension of each Hankel determinant of the 
period-doubling sequence is a polynomial in t, whose leading coefficient is the only one to 
be an odd integer. Our proof makes use of the combinatorial set-up developed by Bugeaud 
and Han, which appears to be very suitable for this study, as the parameter t counts the 
number of fixed points of a permutation. Finally, we prove that all the t-extensions of the 
Hankel determinants of the regular paperfolding sequence are polynomials in t of degree 
less than or equal to 3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Thue–Morse sequence (or the infinite Thue–Morse word, the Thue–Morse morphism) is widely studied in Theoretical 
Computer Science (see, for example, [17,9,19]) and has many applications in different fields. In 1998, Allouche, Peyrière, 
Wen and Wen considered the Thue–Morse sequence, and proved that all the Hankel determinants of the period-doubling 
sequence (which is derived from the Thue–Morse sequence) are odd integers [4]. This result allowed Bugeaud [5] to prove 
that the irrationality exponents of the Thue–Morse–Mahler numbers are exactly 2.

In the present paper we are interested in trying to understand better why the late determinants are odd integers. We 
speak of t-extension when the entries along the diagonal in the Hankel determinant are all multiplied by t . We prove 
that the t-extension of each Hankel determinant of the period-doubling sequence is a polynomial in t , whose leading 
coefficient is the only one to be an odd integer. Clearly, our result generalizes the APWW theorem. The proof makes use of 
the combinatorial set-up developed by Bugeaud and Han [6].

The t-extension of the Hankel determinants introduced in the paper is a new concept for studying the automatic se-
quences. As another example, we prove that all the t-extensions of the Hankel determinants of the regular paperfolding 
sequence are polynomials in t of degree less than or equal to 3.
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Hankel determinant is a very classical mathematical subject widely studied in Linear Algebra, Combinatorics, Number 
Theory and Algorithmics (see, for example, [14,20,15,11,10]). Let x be an indeterminate. We identify each sequence

c = (c0, c1, c2, . . .)

with its generating function

C = C(x) = c0 + c1x + c2x2 + · · ·
In general, the constant term c0 will be equal to 1. For k ≥ 1 and p ≥ 0 let

H p
k (C) = H p

k (c) :=

∣∣∣∣∣∣∣∣
cp cp+1 · · · cp+k−1

cp+1 cp+2 · · · cp+k
...

...
. . .

...

cp+k−1 cp+k · · · cp+2k−2

∣∣∣∣∣∣∣∣
(1)

be the (p, k)-order Hankel determinant of the series C(x) or of the sequence c = (c0, c1, c2, . . .). We write Hk(C) := H0
k (C)

for short. The Thue–Morse sequence e = (1, −1, −1, 1, . . .) can be defined by the generating function

P2(x) =
∞∑

k=0

ekxk =
∞∏

k=0

(
1 − x2k)

. (2)

Then, the period-doubling sequence d = (1, 0, 1, 1, 1, 0, . . .) is derived from the Thue–Morse sequence by defining

dk = 1

2
|ek − ek+1| (k ≥ 0). (3)

The result obtained by Allouche, Peyrière, Wen and Wen can be stated as follows [4].

Theorem 1. For every positive integer k the Hankel determinant Hk(d) of the period-doubling sequence d is an odd integer. In other 
words,

Hk(d) ≡ 1 (mod 2). (4)

Coons [7] considered the series

G0,0(x) :=
∞∑

n=0

x2n−1

1 − x2n (5)

and proved that all the Hankel determinants Hk(G0,0) of the power series G0,0(x) are odd integers. As shown in [6], Coons’s 
result is essentially equivalent to Theorem 1.

Let t be a parameter. We speak of t-extension when the entries along the diagonal in the (p, k)-order Hankel determinant 
are all multiplied by t . In other words, we define the t-Hankel determinant of the formal power series C(x) = c0 + c1x +
c2x2 + · · · (or of the sequence c = (c0, c1, c2 . . .)) by

H p
k (c, t) := H p

k (C, t) :=

∣∣∣∣∣∣∣∣
cpt cp+1 · · · cp+k−1

cp+1 cp+2t · · · cp+k
...

...
. . .

...

cp+k−1 cp+k · · · cp+2k−2t

∣∣∣∣∣∣∣∣
. (6)

Obviously, the above t-Hankel determinant (6) is a polynomial in t of degree less than or equal to k, which is equal to the 
traditional Hankel determinant (1) when t = 1. Again, we write Hk(C, t) := H0

k (C, t). Our main result is stated as follows.

Theorem 2. For every positive integer k the t-Hankel determinant Hk(d, t) of the period-doubling sequence d is a polynomial in t of 
degree k, whose leading coefficient is the only one to be an odd integer. In other words,

Hk(d, t) ≡ tk (mod 2). (7)

In the following table we reproduce the first few values of the t-Hankel determinants of the period-doubling sequence d. 
We see that all the coefficients are even integers, except the coefficient of tk . When t = 1 we recover Theorem 1.
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k Hk(d, t) Hk(d, t) (mod 2) Hk(d,1)

0 1 1 1
1 t t 1
2 t2 t2 1
3 t3 − 2t t3 −1
4 t4 − 4t2 t4 −3
5 t5 − 6t3 + 2t2 + 4t t5 1
6 t6 − 8t4 + 4t3 + 12t2 − 8t t6 1
7 t7 − 12t5 + 10t4 + 24t3 − 24t2 t7 −1
8 t8 − 16t6 + 16t5 + 48t4 − 64t3 t8 −15

Actually, Theorem 1 has three proofs. The first one is due to Allouche, Peyrière, Wen and Wen by using determinant 
manipulation [4], which consists of proving sixteen recurrence relations between determinants. The second one is a combi-
natorial proof derived by Bugeaud and Han [6]. The third proof is very short by using the Jacobi continued fraction algebra 
[13]. For proving Theorem 2 it seems the method used in the second proof is more suitable, as the parameter t counts the 
number of fixed points of permutations (see Eq. (23)).

Some basic notations and properties on permutations and involutions are collected in Section 2, including the statement 
of the key combinatorial result, namely, Theorem 5. The proof of the main result (Theorem 2) is found in Section 3, after 
proving Theorem 5.

The regular paperfolding sequence r = (1, 1, 0, 1, 1, 0, 0, . . .) can be defined by the generating function [1,2]

G0,2(x) =
∑
n≥0

rnxn =
∞∑

n=0

x2n−1

1 − x2n+2 . (8)

Coons and Vrbik conjectured [8] and Guo, Wu and Wen [12] proved the following result.

Theorem 3. The parities of the Hankel determinants of the regular paperfolding sequence r are periodic of period 10. More precisely, 
we have

(
Hk(r) (mod 2)

)
k≥0 = (1,1,1,0,0,1,0,0,1,1)ω, (9)

where uω is the infinite sequence obtained by repeating u an infinity of times (see, for example, [18, p. 14]).

Our second result is stated next.

Theorem 4. For every positive integer k the t-Hankel determinant Hk(r, t) of the regular paperfolding sequence r is a polynomial in t
of degree less than or equal to 3.

Theorem 4 is proved in Section 4. In the following table we reproduce the first few values of the t-Hankel determinants 
of the regular paperfolding sequence r. We see that all the Hk(r, t)’s are polynomials of degree less than or equal to 3.

k Hk(r, t) k Hk(r, t)

0 1 5 −t3 + 2t2 + 2t − 2
1 t 6 2t2 − 2t − 4
2 −1 7 3t3 − 6t2 − 7t + 6
3 −2t 8 −9t2 + 12t + 16
4 −t2 + 2t + 1 9 −15t3 + 20t2 + 46t − 40

As earlier mentioned, Theorem 2 is a t-extension of Theorem 1. However, Theorem 3 cannot be obtained from Theorem 4
by specializing t = 1. The following problem remains unsolved.

Problem. Find a true t-extension of Theorem 3. In other words, find a property of the t-Hankel determinants of the regular paperfolding 
sequence, which implies relation (9) when t = 1.

2. Permutations and involutions

A combinatorial set-up, based on permutations and involutions, for studying the Hankel determinants of the period-
doubling sequence was introduced in [6]. We propose a refinement of such a combinatorial set-up for studying t-Hankel 
determinants. The following infinite sets of integers play an important role.
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N =N = {0,1,2,3, . . .},
J = {

(2n + 1)22k − 1
∣∣ n,k ∈ N

} = {0,2,3,4,6,8,10,11,12,14, . . .},
J∗ = {

(2n + 1)22k − 1
∣∣ n,k ∈ N,k > 0

} = {3,11,15,19,27,35, . . .},
K = N \ J = {

(2n + 1)22k+1 − 1
∣∣ n,k ∈ N

} = {1,5,7,9,13,17, . . .},
L = N \ J∗ = K ∪ {2n | n ∈ N} = {0,1,2,4,5,6,7,8,9,10,12, . . .},
P = {

k
∣∣ k ≡ 0,3 (mod 4)

} = {0,3,4,7,8,11,12,15,16, . . .},
Q = {

k
∣∣ k ≡ 1,2 (mod 4)

} = {1,2,5,6,9,10,13,14,17, . . .}.
For each infinite set A let A|m be the finite set composed of the smallest m integers in A.

Let Sm = S{0,1,...,m−1} be the set of all permutations on N|m . A permutation is represented by the product of its disjoint 
cycles. For example, the permutation σ = (0, 5)(1)(2, 6, 3)(4, 8)(7) is an element from S9. An involution is a permutation
σ such that σ = σ−1. Equivalently, a permutation σ is an involution if each cycle of σ is either a fixed point (b) or a 
transposition (c, d). For instance, σ = (0, 5)(1)(2, 6)(3)(4, 8)(7) ∈ S9 is an involution.

Definition 1. For each set B , a transposition (c, d) is said “in B” if c + d ∈ B . In this case, we write (c, d) ∈ B .

Definition 2. For a non-negative integer k and two sets of positive integers A, B such that A is finite, let μ(A, k, B) be the 
number of involutions σ in SA having exactly k transpositions such that all transpositions of σ are in B .

The following key result is useful for proving Theorem 2 (see Section 3).

Theorem 5. For m ≥ 1 and k ≥ 0, we have

μ(N|m,k, J ) ≡
{

1 (mod 2), if k = 0;
0 (mod 2), if k ≥ 1.

(10)

The proof of Theorem 5 is given in Section 3, with the help of several lemmas stated in the end of this section.

Lemma 6. For m ≥ 1 and k ≥ 0 we have

μ(N|m,k, J ) = μ(P |m,k, L) (11)

and

μ
(

P |m,k, J∗) = μ
(

Q |m,k, J∗). (12)

Proof. We define two transformations:

β : N → P ; � 	→
{

2�, if � is even;
2� + 1, if � is odd;

δ : P → Q ; � 	→
{

� + 1, if � is even;
� − 1, if � is odd.

The transformation β is a bijection of N|m onto P |m , and can be extended to the set of all involutions on N|m by applying 
β on every letter of the involutions. For example

β
(
(7)(0,5), (6,3), (1), (8,2), (4)

) = (15)(0,11)(12,7)(3)(16,4)(8).

We now claim that, for any c, d ∈ N|m , the transposition (c, d) is in J if and only if (β(c), β(d)) is in L. The proof of 
this claim works by distinguishing the parities of c and d: (i) if c and d are even, then β(c) = 2c and β(d) = 2d, so that 
β(c) + β(d) is even and is in L; (ii) if c and d are odd, then β(c) = 2c + 1 and β(d) = 2d + 1, so that β(c) + β(d) is even 
and is in L; (iii) if c + d ∈ J and one of the integers c, d is even, the other being odd. Then,

β(c) + β(d) = 2c + 2d + 1 = 2 × (
(2n + 1)22k − 1

) + 1 = (2n + 1)22k+1 − 1 ∈ L.

The converse is proved in the same manner. Thus, Eq. (11) holds.
The transformation δ is a bijection of P |m onto Q |m , and can be extended to the set of all involutions on P |m by applying 

δ on every letter of the involutions. For example

δ
(
(15)(0,11)(12,7)(4)(16,3)(8)

) = (14)(1,10)(13,6)(5)(17,2)(9).
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If the transposition (c, d) is in J∗ and c, d ∈ P , then one of the integers c, d is even, the other being odd. Hence,

δ(c) + δ(d) = c − 1 + d + 1 = c + d ∈ J∗.

Thus, Eq. (12) is proved. �
Lemma 7. For each k ≥ 0 we have

μ
(
N|2n,k, J∗) ≡

{
0 (mod 2), if k is odd;
μ(P |n,k/2, J∗) (mod 2), if k is even.

(13)

Proof. It is easy to see that, if c + d ∈ J∗ , then c + d ≡ 3 (mod 4). Thus, both c and d belong either to P or to Q . Hence,

μ
(
N|2n,k, J∗) =

∑
i+ j=k

μ
(

P |n, i, J∗) μ
(

Q |n, j, J∗) (14)

=
∑

i+ j=k

μ
(

P |n, i, J∗) μ
(

P |n, j, J∗). (15)

The last identity holds by Lemma 6. When k = 2� + 1 is odd, the right-hand side of Eq. (15) is equal to

2
�∑

i=0

μ
(

P |n, i, J∗) μ
(

P |n,2� + 1 − i, J∗) ≡ 0 (mod 2).

When k = 2� is even, we have∑
i+ j=2�

μ
(

P |n, i, J∗) μ
(

P |n, j, J∗)

= 2
�−1∑
i=0

μ
(

P |n, i, J∗) μ
(

P |n,2� − i, J∗) + μ
(

P |n, �, J∗) μ
(

P |n, �, J∗)
≡ μ

(
P |n,k/2, J∗) (mod 2).

This completes the proof. �
In what follows, the notation a ≡ b means that the integers a and b are congruent modulo 2 when nothing else is 

specified.

Lemma 8. For m ≥ 1 and k ≥ 1 we have

k∑
i=0

μ
(

P |m, i, J∗)(m − 2i

2k − 2i

)
≡ μ(P |m,k, L) (mod 2). (16)

Proof. Recall that μ(A, k, B) is the number of involutions σ in SA having exactly k transpositions such that all trans-
positions of σ are in B . For two disjoint sets of integers B1 and B2, we define μ(A, k1, k2, B1, B2) to be the number of 
involutions σ in SA having exactly k1 transpositions in B1 and k2 transpositions in B2 such that all transpositions are in 
B1 ∪ B2. So that μ(A, 0, k2, B1, B2) = μ(A, k2, B2).

Let i and j be two non-negative integers such that 0 ≤ i ≤ j ≤ k. Consider the set I j of involutions σ on P |m having 
exactly j transpositions in J∗ and k − j transpositions in L and no other transposition. Then, the cardinality of I j is 
equal to μ(P |m, j, k − j, J∗, L). A marked involution with i colored transpositions is obtained from an involution σ ∈ I j by 
coloring i transpositions among the j transpositions in J∗ . Let Ii, j be the set of all those marked involutions with i colored 
transpositions. The cardinality of Ii, j is equal to 

( j
i

)
μ(P |m, j, k − j, J∗, L). Hence, the cardinality of the set of all marked 

involutions Ii,• = Ii,i + Ii,i+1 + · · · + Ii,k , where the plus sign “+” means the disjoint union, is equal to

k∑
j=i

(
j

i

)
μ

(
P |m, j,k − j, J∗, L

)
. (17)

On the other hand, the marked involutions in Ii,• can be enumerated as follows. Consider the involutions on P |m that have 
exactly i transpositions in J∗ , which are said to be colored. There are μ(P |m, i, J∗) such involutions. Then randomly choose 
2k − 2i letters from the remaining m − 2i original fixed points on P |m , to generate another k − i transpositions, which are 
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either in J∗ or in L. We get a marked involution which has exactly i + (k − i) = k transpositions. Hence, the cardinality of 
the set Ii,• is equal to

μ
(

P |m, i, J∗)(m − 2i

2k − 2i

)
(2k − 2i − 1)(2k − 2i − 3) · · · 3 · 1. (18)

Hence, the two quantities (17) and (18) are equal. We have successively

k∑
i=0

μ
(

P |m, i, J∗)(m − 2i

2k − 2i

)

≡
k∑

i=0

μ
(

P |m, i, J∗)[(
m − 2i

2k − 2i

)
(2k − 2i − 1)(2k − 2i − 3) · · · (3)(1)

]

=
k∑

i=0

k∑
j=i

(
j

i

)
μ

(
P |m, j,k − j, J∗, L

)

=
k∑

j=0

( j∑
i=0

(
j

i

))
μ

(
P |m, j,k − j, J∗, L

)

=
k∑

j=0

2 jμ
(

P |m, j,k − j, J∗, L
)

≡ μ
(

P |m,0,k, J∗, L
)

= μ(P |m,k, L).

This completes the proof. �
Remark. The only property on L and J∗ actually required for the proof of Lemma 8 is that they are complementary. In 

other words, we have the following more general statement.2

Lemma 9. For any finite set A ⊂ N, any set B ⊂ N and any positive integer k ≥ 1 we have

k∑
i=0

μ(A, i, B)

(
#A − 2i

2k − 2i

)
≡ μ(A,k, N \ B) (mod 2),

where #A denotes the cardinality of the set A.

3. Proofs of Theorems 5 and 2

Firstly, we establish two lemmas about congruences for binomial coefficients.

Lemma 10. For n, k ≥ 0 we have

∑
i+ j=k

(
n

2i

)(
n

2 j

)
≡

{
0 (mod 2), if k is odd;(n

k

)
(mod 2), if k is even.

(19)

Proof. If k = 2� + 1 is odd, then

∑
i+ j=2�+1

(
n

2i

)(
n

2 j

)
= 2

�∑
i=0

(
n

2i

)(
n

4� + 2 − 2i

)
≡ 0 (mod 2).

If k = 2� is even, then

2 This remark is kindly pointed out by one anonymous referee.
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∑
i+ j=2�

(
n

2i

)(
n

2 j

)
= 2

�−1∑
i=0

(
n

2i

)(
n

4� − 2i

)
+

(
n

2�

)(
n

2�

)

≡
(

n

k

)
(mod 2).

This completes the proof. �
Lemma 11. For n, m, k ≥ 0 such that n + m is odd, we have

∑
i+ j=k

(
n

2i

)(
m

2 j

)
≡

(
n + m

2k

)
(mod 2). (20)

Proof. We have(
n + m

2k

)
=

∑
i+ j=2k

(
n

i

)(
m

j

) [
Vandermonde’s identity

]

=
∑

i+ j=k

(
n

2i

)(
m

2 j

)
+

∑
i+ j=k−1

(
n

2i + 1

)(
m

2 j + 1

)
.

Since 
( 2a

2b+1

)
is even for any positive integers a and b [16],(

n

2i + 1

)(
m

2 j + 1

)
≡ 0 (mod 2), (21)

if n or m is even. This is true because n + m is odd. Eq. (20) holds. �
Secondly, we prove Theorem 5 by induction.

Proof of Theorem 5. When k = 0, the quantity μ(N|m, k, J ) counts the involutions σ without any transposition. It means 
that every letter of σ is a fixed point, so that μ(N|m, 0, J ) = 1.

To prove identity (10) for k ≥ 1 proceed by induction on m. Clearly μ(N|m, k, J ) ≡ 0 (mod 2) for k ≥ 1 and m = 1, 2. 
Notice that any transposition of type (even, even) or (odd, odd) is in J since J contains all even integers. Let k1 + k2 = k. An 
involution σ having exactly k transpositions in J can be generated from an involution τ having exactly k1 transpositions 
in J∗ by adding k2 transpositions in J \ J∗ = {2n | n ∈ N}. The latter k2 transpositions are of type (even, even) or (odd, odd), 
and are easy to count by using binomial coefficients. Two cases are to be considered.

(i) When m = 2n is even and k ≥ 1 we have

μ(N|2n,k, J )

=
∑

k1+k2=k

μ
(
N|2n,k1, J∗) ∑

i+ j=k2

[(
n − k1

2i

)
(2i − 1)(2i − 3) · · ·1

(
n − k1

2 j

)
(2 j − 1)(2 j − 3) · · · 1

]

≡
∑

k1+k2=k

μ
(
N|2n,k1, J∗) ∑

i+ j=k2

(
n − k1

2i

)(
n − k1

2 j

)
(mod 2).

If k is odd, then one of the k1, k2 is odd and the other is even. By Lemma 10 and Lemma 7, μ(N|2n, k, J ) ≡ 0 (mod 2). 
If k = 2� is even, then

μ(N|2n,k, J )

=
∑

k1+k2=2�

μ
(
N|2n,k1, J∗) ∑

i+ j=k2

(
n − k1

2i

)(
n − k1

2 j

)

≡
∑

k1+k2=�

μ
(
N|2n,2k1, J∗) ∑

i+ j=2k2

(
n − 2k1

2i

)(
n − 2k1

2 j

)
[by Lemma 7]

≡
∑

μ
(

P |n,k1, J∗)(n − 2k1

2k2

)
[by Lemmas 7 and 10]
k1+k2=�
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≡ μ(P |n, �, L) [by Lemma 8]

= μ(N|n,k/2, J ) [by Lemma 6]

≡ 0 (mod 2) [by induction].

(ii) When m = 2n + 1 is odd and k ≥ 1, we successively have

μ(N|2n+1,k, J )

=
∑

k1+k2=k

μ
(
N|2n+1,k1, J∗) ∑

i+ j=k2

[(
n + 1 − k1

2i

)
(2i − 1)(2i − 3) · · · 1

(
n − k1

2 j

)
(2 j − 1)(2 j − 3) · · · 1

]

≡
∑

k1+k2=k

μ
(
N|2n+1,k1, J∗) ∑

i+ j=k2

(
n + 1 − k1

2i

)(
n − k1

2 j

)

≡
∑

k1+k2=k

μ
(
N|2n+1,k1, J∗)(2n + 1 − 2k1

2k2

)
,

where the last identity is obtained by using Lemma 11. As mentioned in the proof of Lemma 7, two integers c and d
such that c + d ∈ J∗ belong either to P or to Q . If m ≡ 1 (mod 4), then N|2n+1 = P |n+1 + Q |n (recall that the plus sign 
“+” means the disjoint union) and

μ
(
N|2n+1,k1, J∗) =

∑
r+s=k1

μ
(

P |n+1, r, J∗)μ(
Q |n, s, J∗).

If m ≡ 3 (mod 4), then N|2n+1 = P |n + Q |n+1 and

μ
(
N|2n+1,k1, J∗) =

∑
r+s=k1

μ
(

Q |n+1, r, J∗)μ(
P |n, s, J∗)

=
∑

r+s=k1

μ
(

P |n+1, r, J∗)μ(
Q |n, s, J∗),

where the last identity is obtained by Lemma 6. Hence

μ(N|2n+1,k, J )

≡
∑

k1+k2=k

[ ∑
r+s=k1

μ
(

P |n+1, r, J∗)μ(
Q |n, s, J∗)](

2n + 1 − 2k1

2k2

)
.

Applying Lemmas 6 and 11 to the above quantity we get

μ(N|2n+1,k, J )

≡
∑

k1+k2=k

[ ∑
r+s=k1

μ
(

P |n+1, r, J∗)μ(
P |n, s, J∗) ∑

i+ j=k2

(
n + 1 − 2r

2i

)(
n − 2s

2 j

)]

=
∑

r+s+i+ j=k

μ
(

P |n+1, r, J∗)(n + 1 − 2r

2i

)
μ

(
P |n, s, J∗)(n − 2s

2 j

)

=
∑

k1+k2=k

[ ∑
r+i=k1

μ
(

P |n+1, r, J∗)(n + 1 − 2r

2i

) ∑
s+ j=k2

μ
(

P |n, s, J∗)(n − 2s

2 j

)]

≡
∑

k1+k2=k

μ(P |n+1,k1, L)μ(P |n,k2, L) [by Lemma 8]

≡
∑

k1+k2=k

μ(N|n+1,k1, J )μ(N|n,k2, J ) [by Lemma 6]

≡ 0 (mod 2) [by induction].

This completes the proof. �
Lastly, Theorem 2 on the t-extensions of the Hankel determinants of the period-doubling sequence is proved as follows. 

Keep in mind the infinite set
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J = {
(2n + 1)22k − 1

∣∣ n,k ∈ N
} = {0,2,3,4,6,8,10,11,12,14, . . .},

and the period-doubling sequence d = (1, 0, 1, 1, 1, 0, . . .) defined by:

dk = 1

2
|ek − ek+1| (k ≥ 0).

In [3] Allouche et al. proved the following result (see also [6]).

Lemma 12. For k ≥ 0, the integer dk is equal to 1 if, and only if, k is in J .

Proof of Theorem 2. It is well known that the Leibniz formula expresses the determinant of a square matrix A =
(aij)i, j=0,...,k−1 in terms of permutations:

det(A) =
∑

σ∈Sk

(−1)inv(σ )a0,σ (0)a1,σ (1) · · ·ak−1,σ (k−1), (22)

where inv(σ ) is the number of inversions of σ defined by

inv(σ ) = #
{
(i, j)

∣∣ 0 ≤ i < j ≤ k − 1,σ (i) > σ( j)
}
.

Let k be a positive integer and D(x) be the generating function of the period-doubling sequence

D(x) =
∑
n≥0

dnxn = 1 + x2 + x3 + x4 + x6 + · · ·

By (22), the t-Hankel determinant Hk(D, t) is equal to∑
σ∈Sk

tfix(σ )(−1)inv(σ )d0+σ (0)d1+σ (1) · · ·dk−1+σ (k−1), (23)

where fix(σ ) is the number of fixed points of σ defined by

fix(σ ) = #
{

i
∣∣ 0 ≤ i ≤ k − 1,σ (i) = i

}
.

By Lemma 12 the product

d0+σ (0)d1+σ (1) · · ·dk−1+σ (k−1) (24)

is equal to 1 if i + σ(i) ∈ J for i = 0, 1, . . . , k − 1, and is equal to 0 otherwise. Let σ be a permutation such that σ �= σ−1. 
We have inv(σ ) = inv(σ−1) and fix(σ ) = fix(σ−1). Accordingly, they have the same contribution to summation (23), and 
can be deleted. Hence

Hk(D, t) ≡
∑
σ

tfix(σ )d0+σ (0)d1+σ (1) · · ·dk−1+σ (k−1) (mod 2), (25)

where the sum is over the set of all involutions σ on N|k . Notice that each of the fixed points of an involution σ produces 
a 1 factor in the product (24) as all even numbers are in J . By (25) and Theorem 5,

Hk(D, t) ≡
k/2�∑
i=0

tk−2iμ(N|k, i, J ) ≡ tkμ(N|k,0, J ) = tk.

This completes the proof. �
4. Regular paperfolding sequence

We define the infinite set

R = {
(4k + 1)2n − 1

∣∣ n,k ∈ N
} = {0,1,3,4,7,8,9,12,15,16, . . .}.

Notice that, for each integer m in the set R , there are unique integers n and k such that (4k + 1)2n − 1 = m. Recall the 
regular paperfolding sequence r = (rk)k≥0 defined by (8). The following lemma is a well-known description of the regular 
paperfolding sequence (see, for example, [2, Theorem 6.5.2]). Its proof is included for the sake of completeness.

Lemma 13. For each k ≥ 0 the integer rk is equal to 1 if and only if k is in R, and is equal to 0 otherwise.
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Proof. By definition of (8), we have

G0,2(x) =
∑
n≥0

rnxn =
∞∑

n=0

x2n−1

1 − x2n+2

=
∞∑

n=0

x2n−1
(∑

k≥0

(
x2n+2)k

)

=
∑

n,k≥0

x4k·2n+2n−1.

Thus the lemma holds. �
Proof of Theorem 4. As discussed in Section 3, the t-Hankel determinant Hk(r, t) is equal to∑

σ∈Sk

tfix(σ )(−1)inv(σ )r0+σ (0)r1+σ (1) · · · rk−1+σ (k−1). (26)

By Lemma 13 the product

r0+σ (0)r1+σ (1) · · · rk−1+σ (k−1) (27)

is equal to 1 if i + σ(i) ∈ R for i = 0, 1, · · · , k − 1, and is equal to 0 otherwise.
Recall the three representations for permutations: the one-line, two-line and product of disjoint cycles. For example, we 

write

σ ∈S9 = 516280374 =
(

012345678
516280374

)
= (0,5)(1)(2,6,3)(4,8)(7).

Consider a permutation σ such that the associated product (27) is non-zero having at least 4 fixed points, i.e., fix(σ ) ≥ 4. 
It is easy to see that an even number m is in R if and only if m ≡ 0 (mod 4), so that all fixed points are even. Since the 
number of odd integers in {0, 1, . . . , k − 1} is equal to k/2�, there are at least 3 columns of type 

(odd
odd

)
in the two-line 

representation of the permutation σ . Let 
( i1

j1

)
, 
( i2

j2

)
and 

( i3
j3

)
be the first three such columns. By the Pigeonhole Principle, 

there are at least two numbers among j1, j2, j3 which are congruent modulo 4. Without loss of generality, we assume 
that j1 and j2 are congruent modulo 4. (When all three numbers are congruent, we also choose j1 and j2.) We define 
another permutation τ obtained from σ by exchanging j1 and j2 in the bottom line, i.e., τ = ( j1, j2) ◦ σ . This procedure is 
reversible. By comparing the two permutations σ and τ we have the following properties:

(1) inv(σ ) = inv(τ ) ± 1, so that (−1)inv(σ ) = −(−1)inv(τ ) .
(2) i1 + j2 ∈ R and i2 + j1 ∈ R . Since i1 + j1 and i2 + j2 are in R and are even, hence must be congruent to 0 modulo 4. 

Consequently, i1 + j2 and i2 + j1 are congruent to 0 modulo 4 and are in R .
(3) fix(σ ) = fix(τ ), i.e., no fixed point has been created. Since i1 + j2, i2 + j1 are congruent to 0 modulo 4 (see above item) 

and i1, i2, j1, j2 are odd integers, we have i1 �= j2 and i2 �= j1.

Thus, the contributions by σ and τ in the summation (26) compensate each other. We can delete the pair {σ , τ } from the 
symmetry group Sk . The value of the t-Hankel determinant Hk(r, t) defined by (26) does not change. After deleting all the 
permutations such that fix(σ ) ≥ 4, all remaining permutations have at most 3 fixed points. Hence, the t-Hankel determinant 
Hk(r, t) is a polynomial in t of degree less than or equal to 3. �
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