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In this brief report, we consider the equivalence between two sets of m + 1 bipartite
quantum states under local unitary transformations. For pure states, this problem cor-
responds to the matrix algebra question of whether two degree m matrix polynomials
are unitarily equivalent; i.e. UAiV

† = Bi for 0 ≤ i ≤ m where U and V are uni-
tary and (Ai, Bi) are arbitrary pairs of rectangular matrices. We present a randomized

polynomial-time algorithm that solves this problem with an arbitrarily high success
probability and outputs transforming matrices U and V .
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1 Introduction

With entanglement being one key component in the design and operation of quantum com-

puters, it has become natural to treat entanglement as a resource which we extract from

quantum systems and put to use. Under this interpretation, much research has been devoted

to quantifying the amount of entanglement present in the state of a given system [1]. However,

it was soon realized that no single quantification or entanglement measure can fully capture

a state’s non-classical properties, and thus one must first stipulate a relative measure when

asking how much entanglement some state possesses [2]. A common property of all meaning-

ful measures is that entanglement between two subsystems cannot increase on average when

manipulations are local, or applied to each subsystem distinctly; global actions are required

to increase entanglement [3]. Because of the reversibility in unitary evolution, an immediate

consequence of this is that for all entanglement measures, entanglement remains constant

under local unitary operations (LU). As a result, studying LU equivalence is important since

it identifies states that have the same amount of entanglement.
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With this motivation, we investigate the question of when two sets of bipartite states are

simultaneously related by a local unitary operation. While we will focus primarily on pure

states, a precise statement of the general problem is the following: given two sets of states

{ρ0, ..., ρm} and {σ0, ..., σm} shared between parties Alice and Bob, when is it possible for the

duo to apply a fixed local unitary operation that pairwise transforms ρi
LU→ σi for 0 ≤ i ≤ m?

In the specific case of just a single pure state pair ρ and σ, LU equivalence is decided by an

equivalence in eigenvalues of the reduced density matrices [4]. This generalizes to the theory

of polynomial invariants when more than two parties are considered [5, 6]. In the case of

bipartite mixed states, equivalence between ρ and σ is determined by a set of trace invariants

for certain classes of states [7, 8], but the full solution to bipartite mixed state LU equivalence

still remains open. The generalization of these questions to simultaneous LU equivalence

between multiple pairs of states has yet to be addressed, and such an investigation nicely

complements previous work on simultaneous state transformations under global operations

[9, 10, 11] and simultaneous stochastic local state transformations between two pairs of pure

states [12].

Upon first inspection, when the two sets {ρ0, ..., ρm} and {σ0, ..., σm} consist of pure states,
it seems relatively simple to decide whether there are fixed U and V such that ρi

U⊗V→ σi for

all i. This is because if there exists at least one state trA(ρi) having only one-dimensional

eigenspaces (i.e. its eigenspectrum is non-degenerate), then the action of both U and V

is fixed: they must map the eigenvectors to eigenvectors. However, as soon as degeneracy

appears, the problem becomes highly non-trivial and there exists no previously known so-

lution. We are motivated to study these non-generic cases because in quantum information

they correspond to some of the most interesting physical scenarios, such as when the ρi or σi
are maximally entangled. For instance, the task of teleportation [13], entanglement distilla-

tion/dilution [14], and quantum channel coding [15] all use states pure states with reduced

density matrices having degenerate eigenvalues.

In this report, we present a randomized polynomial-time algorithm that decides whether

any two sets of bipartite pure states can be made equivalent by a fixed local unitary operation.

For sets of N -partite mixed states, the algorithm can be used to decide whether each pair

is simultaneously equivalent under the same unilocal unitary operation. These are special

operations in which just a single party applies a local unitary while the other subsystems

are left unperturbed. Our algorithm applies to sets of any size and the probability of failure

can be made arbitrarily small since the randomness arises from a polynomial identity testing

subroutine in the algorithm. Finally, we note that our result can also decide general (not

just unilocal) LU equivalence between two bipartite mixed states having distinct eigenvalues.

This is because if ρ =
∑

i ci|φi〉〈φi| with ci > ci+1 and σ =
∑

i c
′
i|φ′i〉〈φ′i| with c′i > c′i+1, then

ρ and σ are LU iff ci = c′i and |φi〉, |φ′i〉 are LU equivalent for all i. Hence, we see that LU

equivalence between these mixed states reduces to the problem of converting one set of pure

states to another by a fixed LU operation.

As explained in further detail below, our question of investigation can be phrased as a

purely linear algebraic problem of deciding for m+1 pairs of d1×d2 matrices (Xi, Yi) whether

there exists unitary matrices U and V such that UXiV
† = Yi for all i. To our knowledge, this

problem has not yet been studied either in the linear algebra community, although Radjavi

has solved the special case of square matrices and U = V [16].
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The problem can be phrased in a manner better suited for deeper analysis by introduc-

ing degree m matrix polynomials P(λ) =
∑m

i=0
λiXi and Q(λ) =

∑m

i=0
λiYi. Two matrix

polynomials are called unitarily equivalent if UPV † = Q, and we see that UXiV
† = Yi for

all i if and only if their corresponding matrix polynomials are unitarily equivalent. There is

also a more general notion of matrix polynomial equivalence in which P ∼ Q if there exists

invertible constant matrices A and B such that APB−1 = Q. The underlying technique of

our algorithm also works to decide when two matrix polynomials are equivalent in this latter

sense.

Deciding unitary equivalence of matrix polynomials is one example of a more general

problem which we will consider called the Unitary Equivalence Problem (UEP):

Suppose G1 and G2 are sub-algebras of Cd1×d1 and C
d2×d2 , respectively. For two sets

of matrices {Xi}i=0,...,m and {Yi}i=0,...,m with Xi, Yi ∈ C
d1×d2 , decide if there exists a

unitary solution U and V to the system of equations

χ = {UXiV
† = Yi|U ∈ G1, V ∈ G2}. (1)

The UEP formulation generalizes many different unitary equivalence problems. For in-

stance, if we let G1 = C
d1×d1 and G2 = C

d2×d2 , we recover the question of whether there

exists general unitaries U and V such that UXiV
† = Yi for all pairs (Xi, Yi). If we further-

more consider d1 = d2 with one pair of matrices both being the identity matrix (Id1
, Id1

), the

question becomes whether UXiU
† = Yi for all i. An example of a nontrivial algebra G1 is

the set {M ⊗ Ib :M ∈ C
a×a} where ab = d1.

It is easy to see the connection between UEP and the simultaneous LU equivalence between

bipartite states. The states of a d1 × d2-dimensional bipartite system can be represented as

vectors |ψ〉 in the product space C
d1 ⊗C

d2 , and linear operators on this space correspond to

physical actions on the system. By choosing some basis |i〉1 and |i〉2 for spaces Cd1 and C
d2

respectively, any state can be written as |ψ〉 = (I ⊗ ψ)|Φ〉 where |Φ〉 =
∑d

i=1
|i〉1|i〉2. This

allows for a bipartite pure state |ψ〉 to be identified with the matrix ψ ∈ C
d1×d2 so that the

transformation |ψ〉 → (A⊗B)|ψ〉 corresponds to ψ → AψBT . Consequently, simultaneous LU

equivalence between states {|ψi〉}i=0...m and {|φi〉}i=0...m amounts to whether UψiV
† = φi

for all i. For bipartite mixed states, the UEP is encountered only in the restricted setting of

unilocal equivalence. Since mixed states themselves are represented by elements in C
d1d2×d1d2 ,

unilocal unitary equivalence between states ρ and σ is the question of whether (U⊗Id2
)ρ(U †⊗

Id2
) = σ, which as noted above is an UEP instance. Note that in the case of simultaneous

unilocal equivalence of mixed states, the reduction to UEP applies to systems with an arbitrary

number of parties.

2 The Algorithm

As we will see in greater detail, the UEP can be solved by determining whether or not a

particular system of quadratic equations has a nontrivial solution. One strategy sometimes

helpful for dealing with quadratic constraints is to relax the problem into a system of linear

equations such that a solution to the new equations will solve the original with high prob-

ability. We demonstrate this idea on the problem of deciding whether two d1 × d2 (assume

d2 ≥ d1) matrix polynomials P =
∑m

i=0
λiXi and Q =

∑m

i=0
λiYi are generally equivalent,
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i.e. P ∼ Q. In other words, does the system of equations

χ1 = {AXiB
−1 = Yi|A ∈ C

d1×d1 , B ∈ C
d2×d2 , 0 ≤ i < m} (2)

have a nonzero solution for invertible A and B? Clearly χ1 has such a solution iff there are

nonzero invertible solutions to

χ′
1 = {AXi = YiB|A ∈ C

d1×d1 , B ∈ C
d2×d2 , 0 ≤ i < m}. (3)

There are O(md22) linear equations in χ′
1 which can be solved thus placing constraints on

the O(d22) free variables of A and B. A matrix solution space to χ′
1 is then generated by

expressing A ⊕ B in terms of the remaining free variables, and χ1 has a solution iff there

exists a nonsingular element in this space.

A standard randomized algorithm for deciding whether a matrix subspace has a full rank

element consists of evaluating the degree O(d22) real polynomial |Det(A⊕ B)|2 for randomly

selected values of the free variables. The Schwartz-Zippel Lemma states that for some n-

variate polynomial f(x1, · · · , xn) over a field K and having degree no greater than d, if f

is not identically zero, then Prob[f(x′1, · · · , x′n) = 0] ≤ d
|X| where each x′i is independently

sampled from some finite set X ⊂ K [17, 18, 19].

To use the Schwartz-Zippel Lemma for testing whether |Det(A ⊕ B)|2 is identically zero

with success probability at least 1 − 2d2

2

|X| , one evaluates it on values randomly chosen from

set X ⊂ R and decides a zero identity if and only if the evaluation output is zero. As any

polynomial number of linear equations can be solved in a polynomial amount of time in order

to obtain the space A⊕B, we thus have an efficient method for deciding whether P ∼ Q up to

any probabilistic degree of certainty. We note that the Schwartz-Zippel technique can also be

used in the study of bipartite entanglement distillation from a multipartite-party state [20].

To solve χ, we work analogously to χ1 but with additional constraints enforced. Consider

the system

χ′ = {AXi = YiB,XiB
† = A†Yi|A,A† ∈ G1, B,B

† ∈ G2; , 0 ≤ i < m}. (4)

Then we have

Theorem 1: χ has a solution iff χ′ has an invertible solution A and B.

Proof: If such a solution for χ′ exists, then A†AXi = XiB
†B and AA†Yi = YiBB

†. But

these equations imply p(A†A)Xi = Xip(B
†B) and p(AA†)Yi = Yip(BB

†) where p is any

polynomial function. Let xi denote the distinct eigenvalues from the combined spectrums

λ(A†A)∪λ(B†B). LetX be the Vandermonde matrix of the xi, and v the column matrix whose

entries are
√
xi

−1. Then the entries of X−1v provide the coefficients of a polynomial p(t) such

that p(A†A) =
√
A†A

−1

and p(B†B) =
√
B†B

−1

(see Appendix). Note also that p(A†A) ∈ G1

and p(B†B) ∈ G2. Define unitary matrices U = A
√
A†A

−1 ∈ G1 and V = B
√
B†B

−1 ∈ G2.

Then UXi = AXi

√
B†B

−1

= YiB
√
B†B

−1

= YiV . �

Matrix bases for G1 and G2 will contain no more than d22 elements so that χ′ represents

O(md22) linear constraints on O(d22) free variables. Indeed, two additional variable matrices
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M ,N can be introduced to χ′ giving the equations AXi = YiB, XiN = MYi, B
† = N ,

A† = M , A,M ∈ G1, and B,N ∈ G2. A solution matrix space A ⊕ B is generated, and like

before, a polynomial identity test can be applied to decide with arbitrarily high probability

whether this space contains a nonsingular element. If a nonsingular element is found, use the

A and B to form unitaries U and V as in Theorem 1.

To help demonstrate how the algorithm works, we provide a very simple example. Let

σ1 and σ3 be the Pauli matrices ( 0 1
1 0 ) and

(

1 0
0 −1

)

respectively. Consider the UEP problem

of whether there exists unitaries U and V such that Uσ1V
† = σ3 and Uσ3V

† = σ1. In

terms of quantum states, this problem is equivalent to deciding whether there exists U ⊗ V

such that (U ⊗ V )|ψ1〉 = |ψ3〉 and (U ⊗ V )|ψ3〉 = |ψ1〉, where |ψ1〉 =
√

1

2
(|01〉+ |10〉) and

|ψ3〉 =
√

1

2
(|00〉 − |11〉). By introducing complex matrices A = ( a1 a2

a3 a4
) and B =

(

b1 b2
b3 b4

)

, we

consider the relaxed problem χ′ of deciding whether there exists invertible A and B such that

Aσ1 = σ3B,

σ1B
† = A†σ3,

Aσ3 = σ1B,

σ3B
† = A†σ1. (5)

A solution to this consists of real values such that a1 = b2 = −a4 = b3 and a2 = b1 = −b4 = a3.

In other words, the solution is a two-parameter matrix space given by

A⊕B =
(

a b
b −a

)

⊕
(

b a
a −b

)

(6)

for real a and b. An invertible solution to χ′ exists iff | detA⊕B| = (a2−b2)2 is not identically

zero. In this simple example it is easy to see this is not the case. However, for multiple matrices

of greater size, this will not be immediately obvious. Fortunately, the Schwartz-Zippel Lemma

assures us that by evaluating | detA ⊕ B| for randomly chosen values, with arbitrarily high

probability it will be zero iff it is identically zero. In the case that an invertible solution to χ′

exists, a solution to χ can be constructed using the method of Theorem 1. In our example,

for a = 0 and b = 1, we have U = σ1 and V = σ3 so that σ1σ1σ3 = σ3 and σ1σ3σ3 = σ1.

3 Conclusion

In this article we have studied the general problem of determining when a set of matrix

transformations can be simultaneously achieved by a left and right unitary action. Physically,

this corresponds to performing multiple transformations between bipartite pure states with

the same local action and leaving the total entanglement unchanged. Our analysis also extends

to the situation of simultaneous unilocal unitary transformations on N -partite mixed states.

We have developed a polynomial-time randomized algorithm that decides the problem with

high probability and also provides a unitary solution if it exists. In a subsequent work, Miller

and Shi [21] showed that the algorithm in [16] can, in fact, be adapted to solve equations of

the form UXiV
† = Yi deterministically and in polynomial time. However, their approach is

different from ours, as it directly makes use of the unitary constraints, instead of solving an
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invertible equivalence problem. Indeed, our technique here has broader applicability as it can

be adopted to solve questions of general matrix polynomial equivalence P ∼ Q as described

in the introduction.

Related open questions concern simultaneous general LU equivalence between sets of bi-

partite mixed states and of states having more than three parties. However, for this latter

question, it appears the matrix polynomial and randomized techniques used above apply only

to the types of LU equivalence considered in this report.
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Appendix: Further details of Theorem 1

Observe that since A†A⊕B†B is hermitian, we can write A†A⊕B†B =
∑d1−1

i=0
xi|ai〉〈ai|⊕

0d2×d2
+ 0d1×d1

⊕∑d2−1

i=d1
xi|bi〉〈bi| for real and nonzero xi, where 0n×n is the n× n all-zeros

matrix. Then we search for some polynomial p such that

p(A†A)⊕ p(B†B) =

d1+d2−1
∑

i=0

ci(A
†A⊕B†B)i

=
√
A†A

−1

⊕
√
B†B

−1

=

d1−1
∑

i=0

√
xi

−1|ai〉〈ai| ⊕ 0d2×d2

+ 0d1×d1
⊕

d2−1
∑

i=d1

√
xi

−1|bi〉〈bi|. (7)

The action of the RHS on the eigenvectors of A†A and B†B respectively yield the equations√
xi

−1 =
∑d1+d2−1

j=0
cjx

i
j = p(xi) for i = 0, ..., d1 + d2 − 1. This is a polynomial interpolation

problem for which the ci can be found using the Vandermonde matrix technique described

above.


