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Abstract Existing action recognition algorithms require a
set of positive exemplars to train a classifier for each action.
However, the amount of action classes is very large and the
users’ queries vary dramatically. It is impractical to pre-
define all possible action classes beforehand. To address
this issue, we propose to perform action recognition with
no positive exemplars, which is often known as the zero-shot
learning. Current zero-shot learning paradigms usually train
a series of attribute classifiers and then recognize the target
actions based on the attribute representation. To ensure the
maximum coverage of ad-hoc action classes, the attribute-
based approaches require large numbers of reliable and
accurate attribute classifiers, which are often unavailable
in the real world. In this paper, we propose an approach
that merely takes an action name as the input to recognize
the action of interest without any pre-trained attribute clas-
sifiers and positive exemplars. Given an action name, we
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first build an analogy pool according to an external ontol-
ogy, and each action in the analogy pool is related to the
target action at different levels. The correlation information
inferred from the external ontology may be noisy. We then
propose an algorithm, namely adaptive multi-model rank-
preserving mapping (AMRM), to train a classifier for action
recognition, which is able to evaluate the relatedness of each
video in the analogy pool adaptively. As multiple mapping
models are employed, our algorithm has better capability
to bridge the gap between visual features and the semantic
information inferred from the ontology. Extensive experi-
ments demonstrate that our method achieves the promising
performance for action recognition only using action names,
while no attributes and positive exemplars are available.

Keywords Action recognition · Semantic correlation ·
Adaptive multi-model rank-preserving mapping (AMRM)

1 Introduction

Video collections on the Web contain a multitude of actions
and events. Current work in computer vision and multime-
dia has explored the problem of action recognition in the
real world videos and made significant progress over the last
decade. In literature, reliable low-level features such as STIP
(Laptev et al. 2008), MoSIFT (Chen and Hauptmann 2009),
dense trajectory (Wang et al. 2011) and improved dense tra-
jectory (Wang and Schmid 2013), combined with a modern
machine learning algorithmsuch asSupportVectorMachines
(SVMs), have achieved promising recognition results.

To obtain good performances in action recognition, exist-
ing approaches require sufficient positive exemplars to train
a series of action classifiers. However, due to the large num-
ber of action classes, it is difficult to obtain adequate positive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0893-6&domain=pdf


62 Int J Comput Vis (2016) 120:61–77

exemplars that exactly match a target action. Fortunately,
recent progress shed light on circumventing the challenge of
reducing human labor for supervision. Wang et al. (2012)
developed a semi-supervised learning algorithm, aiming to
improve the action recognition performance when the num-
ber of positive exemplars is few. InMa et al. (2014), proposed
to adapt the knowledge of clean, lab generated action data to
recognize the action in the real world videos. Liu et al. (2011)
proposed to recognize actions by a piece of well-structured
attribute lists, which is probably the first attempt to recognize
actions only using texts. To recognize an action, however,
users have to indicate whether each of the attributes is pos-
itive, which involves tedious human interactions (Liu et al.
2011). For example, to recognize the action walking, they
need to define that the attributes such as arm pendulum-like
motion and translation motion are positive, but the attributes
like torso up-down motion and torso twist are negative. In
addition, the description template designed in Liu et al.
(2011) is static, making it difficult to scale up to a variety
of ad-hoc actions. Therefore, in the experiments of Liu et al.
(2011), action classes are restricted to a few simple ones such
as walk and jump forward, in the clean and lab-generated
video datasets such as the KTH dataset (Laptev et al. 2008)
and the Weizmann dataset (Blank et al. 2005). It remains
unclear how to recognize the complex actions such as soccer
penalty, with a limited number of pre-specified attributes.

Pattern recognition based on visual attributes (Farhadi
et al. 2009; Lampert et al. 2009; Rohrbach et al. 2010; Akata
et al. 2013; Yu et al. 2013; Ma et al. 2013; Cai et al. 2012;
Wang et al. 2012) has received much attention in the com-
puter vision and multimedia fields over the past decade. The
term “attribute” often refers to human-nameable properties
that are shared across different classes. As discussed in object
categorization (Farhadi et al. 2009; Lampert et al. 2009),

action recognition (Liu et al. 2011) and multimedia event
recognition (Liu et al. 2013), the ability of characterizing
objects and actions by attributes is not only helpful for recog-
nizing available objects, actions and events, but also powerful
for recognizing classes that have never been seen before, for
which no positive exemplars are available. This problem is
also called zero-shot learning.

One main challenge of attribute-based zero-shot learning
arises from lack of well-defined reliable attribute classifiers.
Previous research (Ma et al. 2013) has revealed the inher-
ent uncertainty in terms of the accuracy and reliability of
attribute representation. As action recognition directly relies
on the attribute representation, the performance will degrade
if attribute classifiers are inaccurately trained. In addition,
to ensure the maximum coverage of action types, we need
to build a large number of attribute classifiers, which in turn
requires a lot of labeling efforts.Moreover, it remains unclear
how many attributes will be sufficient and what kinds of
attributes will be particularly suitable for an unknown action.
Thus, it is a non-trivial task of designing a static attribute
pool for different actions, because actions are dynamic and
diverse.

After carefully analyzing different classes of actions, we
find that a series of action classes may share some elements if
they are semantically similar to each other. Instead of explic-
itlymodeling the shared information by using attribute repre-
sentation, we propose to learn a series of mapping functions
which preserve the semantic correlation between an unseen
action class and the known training classes. In this paper, we
propose to leverage the knowledge froman external ontology,
i.e., wikipedia, and train a series of rank-preserving mapping
functions for action recognition. As the example illustrated
in Fig. 1, if we ask to retrieve videos that are highly related to
field hockey penalty, related to soccer juggle, but unrelated to

Fig. 1 An example of
recognizing the target action
soccer penalty. The action of
soccer juggle and field hockey
penalty are related to soccer
penalty at different levels
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basketball, it is very likely that the videos of soccer penalty
will be returned before the videos of volleyball spiking and
even field hockey penalty. Compared to the attribute-based
approaches, our method does not depend on the attribute-
based representation that require additional annotations but
still unreliable to obtain. The semantic correlations mined
from the external knowledge base may contain certain noise
mainly because some words in action names may occur less
frequently in wikipedia, such as yo yo, dunk, salsa and so on.
In addition, the real world videos may have dramatic vari-
ations even though they have the same semantic labels. To
relieve the noise, we propose to adaptively adjust the ranking
scores on a per video basis. Inspired by Carreira et al. (2012),
the feature of each video is represented via second-order
pooling, which can preserve the spatial structures. Instead of
converting the matrix feature into a high-dimensional vector,
we directly map the high-order matrix representation to the
action classes for efficient recognition. To enhance the flex-
ibility of the mapping function, multiple models are trained
simultaneously.Ourworkmakes the following contributions:

– We propose a principled AMRM framework for zero-
shot action recognition, which is flexible, efficient, and
able to adaptively utilize the training exemplars on a per
video basis. If available, positive samples could also be
added in the proposed framework to further improve the
recognition performance.

– Our algorithm does not require pre-trained attribute clas-
sifiers that are often noisy and unreliable, thereby avoid-
ing the tedious human interactions of defining reliable
attributes and labeling high-quality attribute exemplars.

– We conduct extensive experiments to demonstrate the
effectiveness of our approach for the unseen action recog-
nition and achieve promising results on the large-scale
UCF101 and TRECVID MED 2011 datasets.

The rest of the paper is organized as follows. In Sect. 2,
we review the related work of zero-shot learning and
action recognition. In Sect. 3, we formulate our adaptive
multi-model rank-preserving mapping (AMRM) approach
in detail. Experimental settings and evaluation results are
presented in Sect. 4. Section 5 concludes the paper.

2 Related Work

Our framework involves two research directions: zero-shot
learning and action recognition, which will be presented in
this section, respectively.

2.1 Zero-Shot Learning

The task of zero-shot learning is to recognize classes that
have never been seen before. Namely, there are no pos-

itive exemplars available. Thus it requires the ability of
transferring knowledge from classes that we have train-
ing data to classes that no training data are available.
A popular solution to zero-shot learning is to embed an
intermediate layer, referred as attribute, in the algorithmic
architecture. Most recent methods harvest the attributes by
manual labelling (Farhadi et al. 2009; Lampert et al. 2009;
Yu et al. 2013) mining knowledge from other domains
(Rohrbach et al. 2010), or extracting the features them-
selves (Yu et al. 2013; Liu et al. 2011). After obtaining
attributes, the effectiveness of knowledge transferring always
depends on the performances of trained classifiers inde-
pendently (Lampert et al. 2009) or the mapping function
between low-level features and attribute labels (Akata et al.
2013).

To alleviate the burden of annotating attributes, a first
line of research considered to treat the training object/action
classes as a special kind of attributes, and directly transfer
them to the unseen classes. Given an unseen object/action
class, these approaches firstly identify the related classes
from the available classes by knowledge transfer from class
hierarchical relationship, wikipedia, or web image search
engine, as described in Torresani et al. (2010), Liu et al.
(2013), Hauptmann et al. (2007), Rohrbach et al. (2011),
and Kankuekul et al. (2012). And then they train their clas-
sifiers individually and combine their scores on the testing
data to justify their fit to the unseen class. For example, if
we want to recognize an unseen action front crawl swim-
ming, which is related to actions breaststroke and crawl,
one would run two classifiers and combine them (breast-
stroke & crawl) to indirectly get a classifier for recognizing
the unseen classes. However, this may not be the most
effective or efficient solution. Conjunctions of actions breast-
stroke and crawl may have a very characteristic appearance,
and combine these two classes together to train one clas-
sifier should result in more accurate and faster recognition
results for the unseen action class. However, it is difficult
to define all possible combinations and weighting schemes
for different action classes beforehand, which serves as the
motivation of our work. A second line of research tried to
learn a visual-semantic embedding function (Socher et al.
2013; Frome et al. 2013) for the zero-shot object recog-
nition. However, it remains unclear how to extend these
framework to conduct zero-shot video activity recogni-
tion, mainly due to the complexity and diversity of video
data.

Our idea of zero-shot action recognition is also related to
sentence generation task (Guadarrama et al. 2013; Sun et al.
2015). Given a video, they try to provide a title or description
to describe it. However, the goal of our paper is different, as
we deal with the opposite direction of ranking videos that
match the query.
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Fig. 2 The pipeline of our approach. Using action names, we first build an analogy pool, consisting a series of videos which are semantically
similar to the target action, and then apply the adaptive multi-model rank-preserving mapping (AMRM) model to train a classifier for the target
action recognition

2.2 Action Recognition

The problem of action recognition has been widely explored
in the community of computer vision and multimedia. A
detailed survey can be found in Jiang et al. (2013). Recently,
researches focus on realistic datasets collected from movies
(Laptev et al. 2008) and web videos (Reddy and Shah 2013).
UCF101 (Soomro et al. 2012) is a large-scale action recog-
nition dataset and has driven more difficult action recogni-
tion. Most successful approaches are based on some local
space-time forms of features that are then represented by bag-
of-word (BOW) histograms or fisher vector (FV). They are
finally fed into a SVMclassifier to train specific action recog-
nition models. In Wang et al. (2013), Wang et al. proposed
to use dense trajectories and motion boundary descriptors
for action recognition, which achieved good performances
on a variety of datasets. In addition, several mid-level repre-
sentations also draw attention in action recognition. Action
bank (Sadanand and Corso 2012) has been proposed as a
new mid-level feature based on atomic action. Besides, sev-
eralworks proposed attributes as themid-level representation

and also applied it to zero-shot action recognition (Laptev
2005; Rohrbach et al. 2012; Fu et al. 2014, 2015), and few-
shot (Rohrbach et al. 2013) action recognition. However,
they relied on manually-defined and data-driven attributes,
so it is not applicable for large-scale setting. Recently, in
order to improve action recognition performances when the
number of positive exemplars is few, Wang et al. (2012) pro-
posed a semi-supervised learning approach, and then Yang
et al. (2014) proposed a semi-supervised active learning
approach. Duan et al. (2012) proposed a domain adapta-
tion approach by leveraging loosely labeled videos.However,
these approaches still require positive exemplars.

3 Action Recognition by Class Names

The framework of our approach is shown in Fig. 2. We first
infer a series of ranking scores, one for each action class in
the analogy pool, by leveraging external knowledge.Ahigher
ranking score indicates that the corresponding video is more
closely related to the target action. In particular, we use the
ontology wikipedia as a knowledge base to achieve this goal.
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Once the ranking scores of the analogy videos are obtained,
we then propose to train a function to map the visual features
to the ranking scores. The ranking preserving mapping func-
tion is then used as a classifier for action recognition. The
ranking scores directly inferred from wikipedia is noisy. To
ameliorate this impediment, we propose to adjust the ranking
scores adaptively. Multiple models are used to constitute the
mapping function to have a larger space for optimization.

3.1 Knowledge-Based Ranking

In order to infer the relation between source video classes and
the target action, we expect to merely use action names to
build an analogy pool. Our solution is to leverage the exter-
nal ontology, such as wikipedia and WordNet, to calculate
semantic correlations between action names, according to
which a ranking score is assigned to each video in the analogy
pool. However, mining semantic relationship from WordNet
between verbs (actions) is more difficult than discovering
relationship between nouns (objects), as verbs do not have the
same well-built ontological relationship found with nouns.
Therefore, we explore the semantic relationship between
action class names through wikipedia, since wikipedia is the
largest online collaboratively built encyclopedia with more
than three million articles for English version. It contains
pages for concepts and each page provides a detailed and
human-edited descriptions of the corresponding concept.

We apply the Explicit Semantic Analysis (ESA) mea-
sure (Gabrilovich andMarkovitch 2007) tomeasure semantic
correlations between action names. Each wikipedia concept
is represented as a vector of frequencies that words occur
in the corresponding article. Entries of these vectors are
assigned with values using the t f -id f scheme. Then we
build an inverted index, which maps each word into a list
of concepts in which it appears. Given a text fragment, the
semantic interpreter iterates over the text words, retrieves
corresponding entries from the inverted index, and merges

them into a weighted vector that represents the given text.
Let G = {d1, d2, . . . , dn} be the input texts, such as action
names. Each is represented as t f -id f vectors. Denote wi

as the weight of word di , and C = {c1, . . . , cN } as whole
concepts, where N is the total number of wikipedia con-
cepts. m j ∈ RN×1 is an inverted index entry for word di ,
and m j quantifies the strength of correlation of word di with
wikipedia conceptsC . Then, the semantic interpretation vec-
tor v ∈ RN×1 for text G is defined as

v =
∑

di∈G
wi · m j . (1)

Entries of this vector reflect the relevance of the correspond-
ing concepts to textG. Toobtain semantic correlationof a pair
of text fragments, we compute cosine similarities between
their vectors. Taking a training action name i and a testing
action name j for an example, we firstly do stemming and
lemmatization for these two names, and then represent them
as two concept vectors vi ∈ RN×1 and v j ∈ RN×1. Finally
we compute cosine distance between two vectors as the text
label of training sample i , denoted as

yi = vi
T · v j

||vi || · ||v j || , (2)

where || · || denotes the norm of a vector. In this way, we
can figure out whether each action class in the training set
is related to the target action or not, and then form the well-
built analogy pool that consists of related action names and
candidate pool (corresponding videos). The framework is
illustrated in Fig. 3.

3.2 Second-Order Pooling

As reported inCarreira et al. (2012), the second-order pooling
method has not only obtained better performances but also

Pre-
processing

Compute
Vector
Cosine

Distance

Semantic 
Interpreter

Semantic 
correlation: 0.166

. . .

. . .
. . .

. . .
. . .

Fig. 3 The framework of computing semantic correlation between two action names
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saved more computational efforts than other feature coding
approaches, such as bag-of-words (BOW) and Fisher Vector
(FV) (Sánchez et al. 2013; Oneata et al. 2013), we adopt it
in our paper.

Denote the collection of features for a video i as Xi ∈
Rd×ni , where d is the dimension of local features and ni
is the number of local features for the video i . Following
Carreira et al. (2012), we pool the local features to form the
global features as follows

Gi = log(Xi · Xi
T ). (3)

After the second-order pooling, each video is represented
by a feature matrix Gi ∈ Rd×d .

3.3 Adaptive Multi-model Rank-preserving Mapping
(AMRM)

After selecting the related classes in the training set, we
employ an adaptive multi-model rank-preserving mapping
(AMRM) framework to train a classifier for the target action
recognition.

Different from Carreira et al. (2012), which converts the
second-order matrix representation to high-dimension vec-
tors followed by a SVMclassifier, we propose to directlymap
the second-order representations to the semantic space. The
reasons lie in that vectorization suffers fromsomedrawbacks.
Firstly, the spatial relationship of images and the temporal
relationship of frames may be destroyed. Secondly, it causes
the higher dimensionality and increases the computational
complexity.

To begin with, we denote X = [X1, . . . , Xn] ∈ Rp×q×n

as the training set, where Xi ∈ Rp×q is the matrix feature
for i-th videos and n is the number of the training video. Let
Y = [y1, . . . , yn] ∈ R1×n be the ranking scores, where yi ∈
[0, 1]. One direct way to replace the traditional vector-based
projection is to introduce a tensor counterpart, e.g. rTj Xi s j ,

where r j ∈ Rp×1 and s j ∈ Rq×1 are the left and right projec-
tion vectors. As p+ q is much smaller than p× q, using the
2D representations for action recognition ismuch faster at the
prediction stage than converting it to a vector representation.

Using a single model could be too restrictive. For exam-
ple, p and q value in a tensor base rsT only have p + q
degrees of freedom. In practice, itmay increase the regression
errors. To handle that, we introduce m couples of projection
vectors. They are denoted as {r j }mj=1 and {s j }mj=1. This is dif-
ferent from the traditional single mapping model as several
mapping models are integrated. In this way, these mapping
models work collaboratively in the learning process, which
provides us with larger space to search the optimal solu-
tions. In a consequence, the recognition performance can be
effectively enhanced. The multi-model mapping (MM) can
be formulated as

min
r j ,s j

n∑

i=1

⎛

⎝
m∑

j=1

rTj Xi s j − yi

⎞

⎠
2

+ μ

m∑

j=1

||r j sTj ||2Fro, (4)

where || · ||Fro denotes the Frobenius norm of amatrix. In our
setting, the value of yi is computed from text sources, and
the larger value of yi means that the i-th training data is more
related to the target class. However, as analyzed in the previ-
ous section, the labels extracted from external ontology may
contain noise. In order to better differentiate video classes,
we use a vector A = [a1, a2, . . . , an] ∈ R1×n to indicate
the degree of relatedness between the training data and the
target class. If Xi belongs to the highly related action class,
ai = 1; If Xi belongs to the related action class, ai = 0; If
Xi belongs to the unrelated class, ai = −1.

In order to adaptively infer a ranking score for each
source video, we also introduce a new non-negative variables
E = [e1, . . . , en] ∈ R1×n to be simultaneously optimized.
Thus the ranking scores are Ŷ = Y + A � E , where �
is Hadamard product, i.e. the entry-wise product. Therefore,
given a highly related exemplar Xi , its adaptive ranking score
should be ŷi = yi + ei . If Xi is a related action exemplar, its
adaptive ranking score should be the same as yi ; And if Xi

is an unrelated exemplar, its adaptive ranking score should
be ŷi = yi − ei . Moreover, we also introduce the variable
F = [ f1, . . . , fn] ∈ R1×n to relax the label constraint in
order to handle the noises in semantic correlation. Then we
learn the parameters {r j }mj=1 and {s j }mj=1 by solving the fol-
lowing optimization

min
r j ,s j ,F,E

n∑

i=1

⎛

⎝
m∑

j=1

rTj Xi s j − ( fi + ai � ei )

⎞

⎠
2

+ λ(F − Y )(F − Y )T + μ

m∑

j=1

||r j sTj ||2Fro,

s.t. E > 0, (5)

where the first term minimizes the empirical error loss
between the projection of the low-level features and the adap-
tive ranking scores, and the second term is the distances
between the ranking scores and the text labels obtained from
text resources. The last term is the regularization on r j and
s j .μ and λ are the tradeoff parameters. As the ranking scores
F+ A�E are parameters in the optimization, the model can
utilize the related exemplars on per exemplar basis. Taking
a training sample Xi for an example, its action class is the
highly-related video class, but itself is less related to the tar-
get action. Then a smaller ei will be added from fi to reduce
the least regression errors. Finally, the learned projections
{r j }mj=1 and {s j }mj=1 can be used to compute the recognition
scores of testing data. The detailed optimization method is
presented in the following section.
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3.4 Optimization

We apply the iterative approach to solve the objective func-
tion in (5)
(1) Fix s j and optimize r j and F .

Denote b j
i = Xi s j and Ds = diag(sT1 s1 Ip, s

T
2 s2 Ip, . . . ,

sTmsm Ip), where diag(·) denotes the diagonal matrix and Ip ∈
Rp×p is an identity matrix. The formulation can be rewritten
as

min
r j ,F,E

n∑

i=1

⎛

⎜⎜⎝( rT1 rT2 · · · rTm )

⎛

⎜⎜⎝

b1i
b2i· · ·
bmi

⎞

⎟⎟⎠ − fi − ai � ei

⎞

⎟⎟⎠

2

+ λ(F−Y )(F−Y )T +μ( rT1 rT2 · · · rTm )Ds

⎛

⎜⎜⎝

rT1
rT2
· · ·
rTm

⎞

⎟⎟⎠ .

(6)

Let R = (rT1 , rT2 , . . . , rTm )T ∈ Rpm×1 and Bi = (b1i
T
, b2i

T
,

. . . , bmi
T )T ∈ Rpm×1. Then we reformulate the objective

function as

min
F

n∑

i=1

(RT Bi − fi − ai � ei )
2

+ λ(F − Y )(F − Y )T + μRT Ds R. (7)

Denote B = [B1, B2, . . . , Bi ] ∈ Rpm×n and tr(·) as the trace
of matrix. Then the optimization can be put as

min
R,F,E

tr
(
(RT B − F − A � E)T (RT B − F − A � E)

)

+ λ(F − Y )(F − Y )T + μRT Ds R. (8)

It can be further written as

min
R,F,E

tr
(
RT (BBT + μDs)R

)
− 2tr

(
BT R(F + A � E)

)

+ tr
(
(F + A � E)T (F + A � E)

)

+ λ(F − Y )(F − Y )T . (9)

Vanishing the derivative of Formula (9) with respect to R
yields

2(BBT + μDs)R − 2B(F + A � E)T = 0. (10)

Then we get

R = (BBT + μDs)
−1B(F + A � E)T

=Gs B(F + A � E)T , (11)

where Gs = (BBT + μDs)
−1. Substituting R into For-

mula (9), we derive

min
R,F,E

−tr
(
(F + A � E)BTGs

T B(F + A � E)T
)

+ tr
(
(F + A � E)T (F + A � E)

)

+ λ(F − Y )(F − Y )T . (12)

Vanishing the derivative of Formula (12) with respect to F
gives

(F + A � E)(−BTGT
s B + In) + λ(F − Y ) = 0. (13)

Then we get

F =(λY − A � E + A � EBTGs
T B)(−BTGs

T B

+ (λ + 1)In)
−1. (14)

Optimizing E is equivalent to the following problem

min
E>0

tr
(
(RT B − F − A � E)T (RT B − F − A � E)

)
.

(15)

The optimal solution to Formula (15) can be obtained by

ei = max
(
(RT Bi − fi )/ai , 0

)
. (16)

(2) Fix r j and optimize s j and F .

We denote c ji = XT
i r j , S = (sT1 , sT2 , . . . , sTm )T , Ci =

(c1i , c
2
i , . . . , c

m
i )T ∈ Rqm×1, C = [C1,C2, . . . ,Ci ] ∈

Rqm×n , Dr = diag(rT1 r1 Iq , . . . , rTmrm Iq). The formulation
in (5) can be rewritten as

min
S,F,E

tr
(
(STC − F − A � E)T (STC − F − A � E)

)

+ λ(F − Y )(F − Y )T + μST Dr S. (17)

Setting the derivatives of Formula (17) with respect to S to
be zeros, we get

S = (CCT+μDr )
−1C(F+A � E)T =GrC(F+A � E)T ,

(18)

where Gr = (CCT + μDr )
−1. Substituting S into For-

mula (17), we get

min
S,F,E

−tr
(
(F + A � E)CTGrC(F + A � E)T

)

+ tr
(
(F + A � E)T (F + A � E)

)

+ λ(F − Y )(F − Y )T . (19)
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Vanishing the derivative of Formula (19) with respect to F
yields

(F + A � E)(−CTGT
r C + In) + λ(F − Y ) = 0. (20)

Then we can get

F =(λY − A � E + A � ECTGr
TC)(−CTGT

r C

+ (λ + 1)In)
−1, (21)

and E is the projection

ei = max
(
(STCi − fi )/ai , 0

)
. (22)

To proceed, the optimizations of R, S, F and E are cyclically
iterated until it converges. The predicted recognition score

of test data xk is computed by
m∑
j=1

rTj xks j . For convenience

of readers’ reference, we list the specific procedures of our
AMRM in Algorithm 1.

Algorithm 1 AMRM Algorithm
Input:
Training data X ∈ Rp×q×n,
Training data label Y ∈ Rn,
Training data related label A ∈ Rn.
Parameters μ and λ.

Initialize S , E and F .
while relative error > ε do
Updating parameter:
Update Ft+1 using Eq. (14).
Update Rt+1 using Eq. (11).
Update Et+1 using Eq. (16).
Update Ft+1 using Eq. (21).
Update St+1 using Eq. (18).
Update Et+1 using Eq. (22).

end while

Output: Parameter R and S.

4 Experiment

We conduct the experiments on the large-scale action
recognition dataset UCF101 and video activity recognition
TRECVID MED 2011 dataset. The experimental settings,
evaluation criteria, experimental results and the discussions
have been presented in this section.

4.1 Experiment on UCF101 Dataset

4.1.1 Dataset

We first test our algorithm on the publicly available dataset
UCF101 (Soomro et al. 2012), which is a large dataset for
human action recognition. UCF101 consists of 101 action
classes, 13K clips and 27 hours of video data, which makes it
muchmore diverse than other datasets for action recognition.
The videos in UCF101 were downloaded from YouTube,
containing poor lighting, cluttered background, and severe
camera motion. Frames of example videos are shown in
Fig. 8. These videos have also been divided into five types:
human-object interaction, body motion only, human-human
interaction, playing musical instruments and sports. The rea-
sons that we choose UCF101 as experimental dataset are as
follows:

– As it is collected for YouTube, it contains real actions
and poses significant challenges on action recognition.

– It contains nearly complete action classes in other action
recognition datasets.

– It can be divided into different action types, which is
suitable for our large-scale zero-shot learning task.

4.1.2 Feature Representation

Improved Dense Trajectory (IDT) features have been proved
to be the most reliable features for action recognition and
multimedia event recognition, which consist of different
descriptors (HOG, HOF, MBHx and MBHy) to capture the
shape and temporal motion information of videos. We adopt
the improved trajectories proposed by Wang and Schmid
(2013) to extract low-level features for each video in the
UCF101 dataset with default parameters, that is, frames of
length 15 for each trajectory on a dense grid with 5 pixel
spacing. Inspired by recent success in image segmentation
(Carreira et al. 2012), we pool the local features as Sect. 3.2
to form the global features. The pooled feature is normalized
by subtracting the average value of the whole trajectories.
To better evaluate the role of different features, we also sep-
arately apply the second-order pooling to the four types of
trajectory descriptors.

4.1.3 Experimental Setting and Results

Our goal is action recognition that no positive exemplars are
available.Wedivide theUCF101dataset into twodisjoint sets
to make the problem more challenging. One set contains ten
action classes for testing. The other set contains 91 classes
for training. We apply Average Precision (AP) and mean
Average Precision (mAP) as evaluation criteria. To visualize
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Table 1 The mean Average
Precision (mAP) comparisons
with using few positive
exemplars for 5 trials on
UCF101 dataset

MAP Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

0 shot (ours) 0.7204 0.7124 0.8764 0.7724 0.8346

0 shot (Rohrbach et al. 2011) 0.5314 0.5138 0.6121 0.5968 0.7033

1 shot (Wang and Schmid 2013) 0.3118 0.3215 0.4062 0.3052 0.3674

2 shots (Wang and Schmid 2013) 0.4652 0.4321 0.5218 0.3987 0.4896

3 shots (Wang and Schmid 2013) 0.5013 0.4895 0.6053 0.4265 0.5517

4 shots (Wang and Schmid 2013) 0.5678 0.5496 0.6620 0.4958 0.6270

5 shots (Wang and Schmid 2013) 0.6078 0.5772 0.7432 0.5367 0.7759

1 shot (Wang et al. 2012) 0.3557 0.3834 0.4896 0.3576 0.4476

2 shots (Wang et al. 2012) 0.5576 0.4759 0.5766 0.5552 0.5872

3 shots (Wang et al. 2012) 0.6145 0.5464 0.6490 0.6014 0.6665

4 shots (Wang et al. 2012) 0.6478 0.6149 0.7765 0.6847 0.7365

5 shots (Wang et al. 2012) 0.6942 0.6742 0.8386 0.7437 0.8143

The best results are highlighted in bold

the performance, we also show the highest ranking results
for each test class in the UCF101 dataset in Fig. 8.

We set three baselines to evaluate the effectiveness of
the proposed approach. (1) Direct similarity based approach
(Rohrbach et al. 2011, 2010; Liu et al. 2013); These
approaches consider the known classes as attributes. (2) Fully
supervised action recognition approach with few positive
exemplars (Wang and Schmid 2013), (3) Semi-supervised
approach with few positive exemplars (Wang et al. 2012).

In the direct similarity based zero-shot experiment, we
implement the approach on our own, since it is quite straight-
forward. We first split the action classes into 91 training
and 10 testing classes. For each training class, we use the
videos belonging to that class as positive data and the videos
belonging to other training classes as negative data, to train
a binary classifier. In the testing phase, we select five related
action classes in the training set based on semantic similar-
ity scores with each testing classes as described in Rohrbach
et al. (2011, 2010), and then combine them to recognize the
testing videos. For n-shot (n positive exemplars are avail-
able) experiments, we utilize the randomly selected 1, 2, 3,
4 and 5 positive videos from the target action and other cate-
gory videos to train the target action classifier. In our AMRM
zero-shot experiments, we use 20 related action classes (no
positive) to train the target action class. The top three action
classes in analogy pool, we assign them with ai = 1. The
top four to ten action classes, we assign them with ai = 0.
The remaining 10 action classes, we assign them ai = −1.
We perform six trial experiments by randomly splitting the
training classes and testing classes. One trial is used for tun-
ing the free parameters μ and λ. We keep the testing classes
of the first trial have no overlap with other five trials. The
search ranges of parameters are λ ∈ {0.1, 1, 10, 100} and
μ ∈ {0.1, 1, 10, 100, 1000}. To be noted, the five positive
data used in the 5-shot experiment are excluded from the test-

ing set in all experiments, so the testing data are the same in
each trial. We then report the remaining five trial experimen-
tal results by setting optimal value λ = 1 and μ = 10. The
mAP scores for each trail are reported in Table 1. We can see
that the mAP scores of our method are between 0.8764 and
0.7124, not only significantly beat the attribute representation
approaches, but also outperform the state-of-art supervised
and semi-supervised action recognition approaches that use
1, 2, 3, 4 and 5 positive exemplars.

For the consistent evaluation of zero-shot action recogni-
tion, we have selected ten testing classes for public compari-
son:1 apply lipstick, boxing punching bag, floor gymnastics,
front crawl, horse riding, playing violin, soccer penalty,
throw discus, trampoline jumping and volleyball spiking.
Thus our testing set consists of 1400 videos of those class
actions, while the 12,000 videos of the remaining 91 classes
can be used for training. Additionally, we also encourage the
use of the dataset for the regular complex large-scale zero-
shot action recognition setting. In particular, we expect the
splits of the UCF101 dataset to be suitable to test the perfor-
mances of zero-shot action recognition, because the choice of
testing classes covers different action types and some classes
also look visual similar, which makes the action recognition
difficult.

We firstly show the compared results with the direct sim-
ilarity based approach. From Table 2, we can find that the
proposed approach achieves better performances for all the
action classes than the direct similarity based approach. It
further validates our claim that the proposed approach can
address the inaccuracy of the attribute classifiers and then
is more suitable for the zero-shot action recognition. We
then show the compared results for each action class using
five positive exemplars in Table 2. It can be found that the
proposed method achieves the highest accuracies for seven

1 Trial 5 in Table 1.
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Table 2 Comparisons with
baseline approaches on UCF101
dataset (trial 5)

Action name 0 shot (%)
(Rohrbach et al.
2011)

0 shot
(ours) (%)

5 shots (%)
Wang and Schmid
(2013)

5 shots (%)
(Wang et al. 2012)

Apply lipstick 79.63 95.73 82.09 86.32

Boxing punching bag 68.32 72.92 83.93 76.94

Floor gymnastics 76.33 86.83 81.35 83.71

Front crawl 87.26 99.88 92.57 94.22

Horse riding 67.22 74.85 66.07 70.34

Playing violin 58.55 61.69 84.75 86.21

Soccer penalty 83.22 96.45 86.36 87.65

Throw discus 65.89 76.47 64.58 74.86

Trampoline jumping 74.48 82.94 82.46 88.35

Volleyball spiking 42.47 86.88 51.71 65.69

mAP 70.33 83.46 77.59 81.43

The best results are highlighted in bold
Average Precision (AP) per class and mean Average Precision (mAP) over all classes

Table 3 Action recognition
with different descriptors on
UCF 101 dataset (trial 5)

Target action MMhog (%) MMhof (%) MMmbhx (%) MMmbhy (%)

Apply lipstick 81.03 79.88 74.55 67.75

Boxing punching bag 70.74 35.34 47.10 43.84

Floor gymnastics 34.97 30.68 49.96 36.90

Front crawl 97.18 92.11 84.78 89.09

Horse ride 34.13 40.61 67.95 26.84

Play violin 26.23 18.40 32.47 40.24

Soccer penalty 29.88 35.25 33.56 25.34

Throw discus 37.29 39.91 43.77 37.46

Trampoline jump 21.15 9.26 15.32 11.23

Volleyball spike 28.56 25.97 16.91 21.77

mAP 46.12 40.74 46.64 40.05

The best results are highlighted in bold
Average Precision (AP) per class and mean Average Precision (mAP) over all classes

testing classes among the whole ten classes when the number
of the positive exemplars increases to be 5. To further validate
the effectiveness of adaptive multi-model rank-preserving
mapping (AMRM) approaches, we also compare the aver-
age precision (AP) results for each testing class with the
vector-basedKernelRidgeRegression (KR) (Vovk 2013) and
the multi-model mapping (MM) method in Fig. 6. To better
evaluate the proposed method, we also report the results on
different features in Table 3 and multiple models in Fig. 4 for
the zero-shot action recognition task. To test the framework
of our ranking approach, we also conduct an experiment by
replacing the trajectory features to the C3D (Tran et al. 2014)
features, and use the kernel ridge regression as ranking func-
tion. Experiment results on Table 4 shows that multi-model
mapping (MM) approach by using trajectory feature is better
than the Kernel Ridge Regression approach by using C3D
features. Nevertheless, simple late fusing the decision score

of multi-model mapping (MM) which use trajectory features
and the Kernel Ridge Regression approach that takes C3D
feature as input will further improve the zero-shot action
recognition performances.

4.1.4 Matrix Mapping Versus Vector Mapping

As discussed in the previous section, matrix form may be
a more natural representation of images and video frames
to reflect their structures. However, most existing classifica-
tion algorithms require that an image or video is represented
by a vector, which is usually obtained by concatenating all
rows (or columns) of an imagematrix. Aiming to preserve the
second-order spatial structures within images while reducing
the computational complexity, we propose the second-order
mapping-based methods. In our experiment setting, we also
compare the mAP value between the multi-model map-
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Fig. 4 Mean average precision
(mAP) value w.r.t. number of
models (m in Eq. (5)) on
UCF101 dataset (trial 5)
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Fig. 5 Derived ranking scores
of source videos a–d basketball
shooting, e jumping rope, and f
ice dancing for recognizing the
target action volleyball spiking

ping (MM) with the vector-based Kernel Ridge Regression
method (KR) (Vovk 2013) in Fig. 6. It can be seen that the
matrix representation form can achieve better recognition
results.

4.1.5 Different Descriptors

In this section, we analyze the role of different descriptors for
the zero-shot action recognition using multi-model mapping
approach, namely HOG (MMhog), HOF (MMhof), MBHx
(MMmbhx), and MBHy (MMmbhy), as shown in Table 3.
From the experimental results, we can easily find that action
recognition for some new classes may rely more on the
similarities of the objects and the scenes, such as apply lip-
stick that often occurs with human face, and front crawl
that often occurs in the water. And some classes may rely
more on the similarities of motion, such as boxing punch-
ing box, that is very similar to boxing speed bag and punch,
and volleyball spiking that is similar to jumping and basket-
ball.

4.1.6 Multiple Models Versus Single Model

Wealso demonstrate the relationship between the recognition
performances and the number of models in Fig. 4. It can
be observed that the performances are improved with the
increment of model numbers. In other words, using multiple
models is better than a single model to map the second-order
representation to semantic labels.

4.1.7 With Adaptive Labels Versus Without Adaptive Labels

We first use some examples to show how the proposed
AMRM method adaptively assigns ranking scores to related
exemplars. As Fig. 5 shows, the highly related class to the
target action volleyball spiking isbasketball shootingFig. 5a–
d, the related action class is jumping rope Fig. 5e, and the
unrelated action is ice dancing Fig. 5d. Their semantic cor-
relations computed fromwikipedia is 0.166, 0.113 and 0.014,
respectively. However, the learned ranking scores are differ-
ent. It can be viewed that the proposed approach can better
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Fig. 6 Average Precision (AP) comparisons between kernel ridge regression (KR), multi-model mapping (MM) and adaptive multi-model rank-
preserving mapping (AMRM) on UCF101 dataset (trial 5). The higher scores indicate the better results

separate different classes and adaptively utilize the training
exemplars on a per video basis. For example, videos Fig. 5a–
d are all named as basketball shooting, but (a) and (b) in
Fig. 5 are more related to the target action. Therefore, they
are assigned the higher ranking scores for training. In Fig. 6,
we can see that ourAMRMmethod using the optimal ranking
scores for training improves the performance significantly.

4.1.8 Known Classes Versus Unknown Classes

In this section, we test the performance of our approachwhen
testing data contains videos of highly related action classes
in the analogy pool. The objective is to evaluate whether the
proposed ranking-based approach can also distinguish the
testing classes from related training classes. In this exper-
iment, we intentionally add videos belonging to the three
highly related action classes that used for training into the
testing set. Therefore, there are five types of videos: (1) tar-
get action: the action class that we want to recognize; (2)
known action-1: the most highly related action class used
for training which are selected from the analog pool by the
method discussed in Sect. 3.1; (3) known action-2: the sec-
ond highly related action class used for training; (4) known
action-3: the third highly related action class used for train-
ing; (5) others: the remaining nine unknown testing classes.
We use the original ranking model to rank all the videos in
the testing set. We use the number of top N returned videos
to evaluate if our approach is able to discriminate the highly
related action and the target action.

We first report the experiment results when N is 10, 20
and 50 in Table 5.We also report themean class classification
accuracy for top 50 returned videos (Macc@50) in Table 6.
It can be observed that the videos of target action are not
only ranked higher than the unknown testing classes, but

Table 4 The mean Average Precision (mAP) of action recognition
using different features and ranking approach on UCF 101 dataset (trial
5)

KRC3D MMtraj KRC3D + MMtraj

64.54 % 67.83% 72.28%

The best result is highlighted in bold

also ranked higher than highly related known action which
are used for training. This observation indicates that our
approach is able to discriminate target action from highly
related known classes. However, we also observe that highly
related known actions are ranked higher than other videos,
but it is reasonable because they aremore similar to the target
action than other videos.

4.1.9 How Many Background Actions Are Needed?

For the attribute-based approaches, nearly all the classes
should be used to train attribute models, which costs much
memory and training time. However, in the experiments, we
find that not all the source action classes are useful for our
second-order mapping-based zero-shot action recognition
method. After the most related action classes are selected,
the variety and number of other action classes that are used as
negative data, does not influence the results at all. Therefore
our approach ismore robust and efficient for large-scale zero-
shot learning task. More action classes used can improve the
experiment results slightly, butwill lose the efficiency. There-
fore, to balance the action recognition performance and the
algorithm efficiency, we use 20 action classes to train a clas-
sifier for recognizing a novel action class. It takes about 1
min for training a novel action classifier and less than 10 s to
predict 1400 videos using a PC with 3.4 GHz CPU and 32G
memory in MATLAB 2012.

123



Int J Comput Vis (2016) 120:61–77 73

Table 5 Number of videos in
the top N ranking list. Known-1,
known-2 and known-3 mean the
3 highly related action classes
that we used to train the ranking
model for each target action
class

Action class Metric target class Known-1 Known-2 Known-3 Others

Apply lipstick N = 10 7 2 1 0 0

N = 20 13 4 2 0 1

N = 50 34 8 4 1 3

Boxing punching bag N=10 6 2 1 0 1

N = 20 11 3 2 1 3

N = 50 31 7 4 3 5

Floor gymnastics N=10 8 1 1 0 0

N = 20 14 3 2 0 1

N = 50 36 6 4 2 2

Front crawl N=10 9 1 0 0 0

N = 20 18 2 0 0 0

N = 50 42 6 1 0 1

Horse ride N=10 6 3 0 0 1

N = 20 11 7 0 0 2

N = 50 30 13 2 0 5

Play violin N = 10 5 2 1 1 1

N = 20 10 3 2 2 3

N = 50 27 6 6 5 6

Soccer penalty N=10 9 1 0 0 0

N = 20 16 2 1 0 1

N = 50 44 3 2 0 1

Throw discus N=10 6 1 1 1 1

N = 20 12 3 2 1 2

N = 50 28 6 6 5 5

Trampoline jump N=10 6 1 1 1 1

N = 20 13 2 2 1 2

N = 50 33 5 4 4 4

Volleyball spike N=10 7 1 0 0 2

N = 20 14 2 1 0 3

N = 50 35 5 3 2 5

Others means the original 9 action classes used for testing

Table 6 Mean class classification accuracy for top 50 returned videos
(Macc@50)

Setting Original Mix

Macc@50 74.83% 68.00%

Mix/originalmeanswhether the test set ismixedwith the training videos
or not

4.2 Experiment on Multimedia Event Detection

4.2.1 Dataset

To further evaluate the effectiveness of the proposed algo-
rithm, we conduct experiments on a more challenging
dataset, i.e., theTRECVIDMED2011development dataset.2

2 http://www.nist.gov/itl/iad/mig/med11.cfm.

This dataset contains 9746 unconstrained web videos with
large variations in duration, quality and resolution. Follow-
ing Lan et al. (2012) and Tang et al. (2013), we use the ten
official testing events (E006−E015) outlined by the National
Institute of Standards and Technology (NIST) to evaluate
the performance against the baseline approaches. For each
event, NIST also releases a text description called the event
kit, which includes an event name and key evidences that are
expected to be observed in the videos. The event names are
listed in Table 7.

4.2.2 Experiment Settings

In all experiments, we followed the split up defined in Lan
et al. (2012), and use all the videos in the test set to compare
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Table 7 The video event
detection results compared with
the baseline approaches on
MED 2011 dataset

Event name 0-shot (Rohrbach et al. 2011) 0-shot (ours) 5-shot (SVM) 5-shot (KR)

Birthday party 0.074 0.149 0.087 0.094

Changing a vehicle tire 0.015 0.038 0.043 0.059

Flash mob gathering 0.193 0.302 0.264 0.279

Getting a vehicle unstuck 0.033 0.055 0.091 0.117

Groom an animal 0.096 0.197 0.132 0.146

Making a sandwich 0.031 0.091 0.065 0.071

Parade 0.226 0.343 0.267 0.281

Parkour 0.213 0.399 0.337 0.344

Repairing an appliance 0.066 0.167 0.146 0.159

Work on a sewing project 0.071 0.147 0.115 0.123

mAP 0.102 0.189 0.155 0.167

The best results are highlighted in bold

the performance. We compare the baseline of direct similar-
ity based zero-shot approach (Rohrbach et al. 2011, 2010;
Liu et al. 2013), and the fully supervised n-shots approaches
using improved dense trajectory (Wang and Schmid 2013)
with Fisher Vector encoding (Oneata et al. 2013), which is
reported as the best single feature for video event detection
(Oneata et al. 2013). For all the zero-shot experiments, we
take the textual event name and key evidence described in
the event kit as the input and use the videos in the UCF101
dataset as training data. No positive training videos in the
MED 2011 development dataset contained.

Direct similarity based zero-shot event detection For
direct similarity based approach, we firstly train action detec-
tors for the 101 action classes defined in the UCF101 dataset.
For each action class, we use all the videos belonging to
this class as positive data, and randomly sample 5000 videos
from other action classes as negative data to train a binary
classifier. For all the action classifiers training, where lin-
ear SVM are used, we employ fivefold cross validations
for parameter tuning. The search ranges of this parameter
are {0.01, 0.1, 1, 10, 100}. Finally, in order to get the action
detection score, we directly apply the action detectors to the
testing videos. Thus each video in the testing set is rep-
resented as a 101 dimensional vector, and each dimension
corresponds to the detection score of a known action class.
In the testing time, given an event name, we use the top five
related action classes to retrieve videos.

N-shots approaches In the n-shots experiment, we use n
positive videos which are randomly selected from the train-
ing set as positive data and all the null videos as negative
data to train a binary classifier for each event. Following Lan
et al. (2013), we use Support Vector Machines (SVMs) and
Kernel Ridge Regression (KR) as classifiers. To alleviate the
influence of variances between positive videos, we repeat

experiments on ten groups of randomly-generated training
data. The average mAP are then reported in Table 7.

AMRM approach We use 20 related action classes to
train the classifier for each event. We assign ai = 1 for the
top three action classes in analogy pool.We assign ai = 0 for
the top four to ten action classes. The remaining ten action
classes are assigned by ai = −1. We also use the same
parameters (λ = 1 and μ = 10) obtained in Sect. 4.1.3 to
train the event detector.

4.2.3 Experiment Result and Discussion

From Table 7, we can see that our approach outperforms
the direct similarity based approach for all events, and out-
perform 5-shots supervised approaches for 8 events out of
the ten events. This result confirms that AMRM is a gen-
eral approach for the zero-shot video analysis. A possible
explanation that our algorithm fails in two events is due to
the lack of related action classes in the UCF101 dataset. We
show the relationship between the recognition precision and
the mean Semantic Correlation (mSC) of the target event
and the top three highly related source actions in Table 8. It
can be found that the recognition performance will degrade,
if the semantic correlations between the target action and all
source actions are all relatively low. For example, there are no
vehicle related concepts in the UCF101 dataset, which make
the performance of certain events, such as Changing a vehi-
cle tire and Getting a vehicle unstuck rather low. We argue
that this is still reasonable, since the zero-shot recognition
is considerable difficult and can hardly be solved without
transferring knowledge from potentially related actions as
described in Rohrbach et al. (2011). However, as the num-
ber of source action classes increases, we believe that the
performance will be improved.
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Table 8 The relationship
between semantic relatedness
(mSC) and recognition precision
(AP) on MED 2011 dataset

Event name mSC AP Event name mSC AP

Birthday party 0.68 0.149 Making a sandwich 0.61 0.091

Changing a vehicle tire 0.16 0.038 Parade 0.93 0.343

Flash mob gathering 0.85 0.302 Parkour 0.84 0.399

Getting a vehicle unstuck 0.18 0.055 Repairing an appliance 0.53 0.167

Groom an animal 0.59 0.197 Work on a sewing project 0.49 0.147
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Fig. 7 Mean average precision (mAP) value w.r.t. number of positive
samples on UCF101 and MED 2011 datasets

4.3 Beyond Zero-Shot Learning

In this section, we report results when learning with few
examples (few-shots). The goal is to show that, the proposed

AMRM approach could also incorporate few-labels and ben-
efit few-shots action recognition.

In this experiment, we assume that we have few (e.g 1,
3, 5) positive samples for each action class plus the samples
from other known action classes. We simply set the label yi
of the positive exemplar xi as 1 and its degree of related-
ness ai is set to 1.5, which indicates that it is more relevant
than the exemplars belonging to other related action classes.
We show results in Fig. 7. It can be seen that our proposed
AMRM framework can easily incorporate the positive exem-
plars and consistently improve the recognition performance
both on the UCF101 and TRECVID MED 2011 datasets,
which further validates the principle of our framework. In
addition, compared with the results of N-shot approaches in
Tables 1 and 7, we can find the proposed AMRM is also
an effective approach to improve N-shot action recognition
performances.

Fig. 8 a–j represent the highest ranking results for testing class apply
lipstick, boxing punching bag, floor gymnastics, front crawl, playing
violin, horse riding, soccer penalty, throw discus, trampoline jumping
and volleyball spiking in the UCF101 dataset. Uniquely characterized

classes are well identified, e.g. apply lipstick and front crawl. Confu-
sions occur between visually similar classes, e.g. floor gymnastics and
trampoline jump
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5 Conclusion

In this paper, we proposed an approach that merely takes
an action name as the input to recognize the action of
interest without any attribute classifiers and positive exem-
plars. Given an action name, we first built an analogy pool
consisting of a series of related actions that share certain
common elements to the target action. According to the
correlations inferred from the external ontology wikipedia,
we then applied an adaptive multi-model rank-preserving
mapping (AMRM) algorithm to train a classifier for action
recognition. We showed that manual supervision can be
fully replaced by tapping into linguistic sources in princi-
ple (Fig. 8). Extensive experiments have been carried out to
validate our claims and confirmed our intuition that transfer-
ring knowledge from external knowledge bases and using the
related source videos is an efficient and effective approach
to perform action recognition. In future, we will explore the
potentials of our approach to other visual recognition tasks,
such as object recognition.
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