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Abstract. High-accuracy protein structure modeling demands accurate
and very fast side chain prediction since such a procedure must be re-
peatedly called at each step of structure refinement. Many known side
chain prediction programs, such as SCWRL and TreePack, depend on the
philosophy that global information and pairwise energy function must be
used to achieve high accuracy. These programs are too slow to be used
in the case when side chain packing has to be used thousands of times,
such as protein structure refinement and protein design.

We present an unexpected study that local backbone information can
determine side chain conformations accurately. LocalPack, our side chain
packing program which is based on only local information, achieves equal
accuracy as SCWRL and TreePack, yet runs 4-14 times faster, hence pro-
viding a key missing piece in our efforts to high-accuracy protein struc-
ture modeling.

Keywords: side chain prediction, local backbone features, multiclass
Support Vector Machines.

1 Introduction

Protein side chain packing is a key step towards accurate protein structure mod-
eling and has been studied for three decades [1, 2, 3, 4]. Given the backbone
conformation of a protein, side chain prediction determines the coordinates of
all the side chain atoms. Accurate and very fast side chain prediction is vital
to accurate protein structure modeling since such a procedure needs to be re-
peatedly called at each step of the entire protein structure refinement process,
which usually samples a very large number of backbone conformations. Protein
side chain packing is also an indispensable component of protein design, which
finds a protein sequence that can fold into a given three-dimensional protein
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structure [5, 6]. Whenever a protein backbone conformation (in protein struc-
ture modeling) or its primary sequence (in protein design) is changed, side chain
packing has to be conducted to re-determine the coordinates of the affected side
chain atoms or even all the side chain atoms. Many known side chain predic-
tion programs, such as SCWRL [7] and TreePack [8, 9], predict the positions of
side chain atoms using global information and pairwise energy function, in order
to achieve high accuracy. Thus these programs are too slow to be called tens
of thousands of times in high-accuracy protein structure modeling or protein
design. Therefore, an ultra-fast side chain prediction method is urgently needed.

An important discovery on side chain conformation is that the side chains have
a few frequently occurred conformations (referred to as rotamers) [1,3,7,10,11].
Thus, most side chain prediction methods assume side chains can only take
several highly probable rotamers, while others consider conformations sampled
around rotamers.
Problem Description. Given a finite set of side chain rotamers for each amino
acid type, and a backbone conformation b. Let p denote a possible side chain con-
formation vector indicating the rotamer choice for each residue position. Tradi-
tional side chain prediction problem can be formulated as a combinatorial search
problem:

p∗ = arg min
p

[ESS(p, p) + ESB(p, b) + EBB(b, b)] (1)

where p∗ denotes the optimal side chain conformation, ESS(p, p) is a pairwise en-
ergy item representing interactions among side chain atoms, ESB(p, b) represents
interaction energy between side chain atoms and backbone atoms, and EBB(b, b)
represents backbone-backbone interaction energy. Among them, EBB(b, b) can
be considered as a constant since the backbone conformation is fixed.

Following this formulation, almost all side chain prediction methods employ
a pairwise energy function and a rotamer library, then apply a global or local
search strategy to find the optimal solution for this combinatorial problem.
Rotamer Libraries. A rotamer library is a finite set of rotamers, each of which has
an occurring probability. Rotamer libraries can be either backbone-independent
[2, 12, 13, 14, 15, 16] or backbone-dependent [1, 3, 7, 10, 17, 18, 19], according to
whether the occurring probability of a rotamer is estimated based on backbone
information. Chandrasekaran et al. developed the first backbone-independent li-
brary [12]. Janin et al. [1] and McGregor et al. [3] examined the relationship
between side chain conformation and secondary structure, and then developed
a secondary-structure-dependent rotamer library. Dunbrack et al. developed the
first backbone dihedral angle based rotamer library [17] and refined it by Bayesian
statistical analysis [10].

Backbone-dependent rotamer library is widely used to predict side chain con-
formations [8,9,20,21,22,23,24,25,26]. Rotamer library not only can make side
chain prediction a discrete-optimization problem, but also can provide the prob-
ability of each rotamer in energy function calculation. However, since many side
chain prediction methods use rotamer probabilities in their energy functions,
their performance is sensitive to these values which are hard to be estimated
accurately.
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Energy Functions. The energy functions are considered to be a bottleneck of
existing side chain prediction methods. Although many studies aim to improve
the accuracy of side chain packing energy functions [20, 26, 27, 28, 29], all side
chain predictors claim that their methods can perform much better if the energy
function is more accurate. As mentioned above, energy functions used in side
chain prediction contain both side chain-backbone interaction energy and side
chain-side chain interaction energy.

Roitberg et al. [27] used a mean field approximation, which probably has the
same global minimum as the original system, to direct their search strategy. A
much more accurate energy function was developed by Liang et al [20]. Their
energy function contains contact surface, volume overlap, backbone dependency,
electrostatic interactions, and desolvation energy. In [26], ROSETTA’s energy
function [30], which is the sum of Lennard-Jones potential, rotamer energy,
atomic clash penalty, and hydrogen-bonding potential, was improved by the
tree-reweighted belief propagation (TRBP) technique.

Search Methods. A large number of search methods have been developed to
optimize the energy function and find the side chain conformation with the
minimum energy, such as Metropolis Monte Carlo [31], Gibbs sampling Monte
Carlo [32], genetic algorithm [33], dead-end elimination (DEE) [16, 34], neural
networks [35], simulated annealing [35, 36], graph theory methods [8, 9, 21],
semidefinite programming [23], and integer linear programming [24, 37].

Besides the energy function, search strategy is another bottleneck for side
chain prediction. The side chain prediction problem has been proved to be NP-
hard [38, 39] if pairwise or multi-body energy function is used. Heuristics such
as Monte Carlo or genetic algorithm can find local minimum of an energy func-
tion relatively quickly, but cannot guarantee to find the optimal solution of the
energy function. On the other hand, some global search methods can find the
global optimal solution at the cost of running time. For example, the widely-used
program, SCWRL3.0 [21], can optimize its energy function to its global optimum
by first decomposing a protein backbone structure into some substructures and
then employing a divide-and-conquer strategy to determine the positions of side
chain atoms. SCWRL is not fast enough to be used for iterative refinements and
protein design. Another global search method, TreePack [8, 9], achieves similar
accuracy as SCWRL3.0, but runs much faster. In contrast to SCWRL, TreePack
can decompose a protein structure into much smaller substructures without los-
ing accuracy, and thus reduce running time dramatically. However, both SCWRL
and TreePack are likely to fail in the case when the backbone conformation im-
plies heavy steric atomic clashes and thus cannot be cut into small substructures
without losing accuracy.

In this paper, we present a study on the relationship between local backbone
information and side chain conformations, and develop a side chain packing
program LocalPack. LocalPack predicts the side chain conformations using lo-
cal backbone information only and is as accurate as SCWRL, a program that
uses pairwise energy function and global search method. We first reformulate
side chain packing problem and then solve it using multi-class Support Vector
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Machines (multi-class SVM). Our method has the following three features: 1)
Instead of using the occurring probabilities contained in a rotamer library, our
method only uses the angle values of rotamer candidates. 2) Our method does
not use any pairwise energy function. Instead, only local backbone information
is employed to predict side chain positions. Furthermore, these local backbone
features can be calculated extremely fast. 3) We do not need to optimize an en-
ergy function. By contrast, our method generates a set of linear classifiers based
on local backbone features and then use these classifiers to predict side chain
positions.

The rest of this paper is organized as follows: In Section 2, we introduce our
new formulation of side chain prediction problem. Section 3 describes our multi-
class SVM model and the features used to construct the classification rule. A
cutting plane algorithm is proposed to obtain solutions to the multi-class SVM.
In Section 4, we present some experimental results and compare our method
to existing methods on both native and nonnative backbones. We also analyze
the relative importance of the features in our model. Finally, Section 5 discusses
potential applications and future development of our method.

2 New Formulation for Side Chain Prediction

Given a position on a protein backbone sequence, we can calculate a set of
backbone related local features on this position. Starting from a rotamer library,
our basic assumption is that a certain set of local features can determine the
correct rotamer of the side chain on this position.

Table 1. An example of the basic assumption of this paper: a backbone related feature
vector A can determine the rotamer choice. Except for the last column, the first 6
columns show examples of possible backbone related feature vectors. The last column
shows χ1 rotamer values corresponding to the feature vectors.

Residue Type φ ψ Secondary Stru. Solvent Access. # Contacts χ1 Rotamer
ARG 60◦ 45◦ Helix 82.75% 11 63◦

PHE 112◦ 42◦ Helix 10.23% 4 114◦

GLN 34◦ 16◦ Loop 8.65% 6 125◦

MET 156◦ 107◦ Sheet 65.22% 19 178◦

Let A = {A1, A2, . . . , An} denote the set of feature vectors for a given protein
with length n, where vector Aj = {aj

1, a
j
2, . . . , a

j
k} denote the set of backbone

related features on the j-th position, either continuous values, such as solvent
accessibility, or discrete values, such as secondary structure and amino acid type.
Let R = {r1, r2, ...., rm} denote an arbitrary rotamer set. Table 1 shows some
examples of feature vectors, according to which the rotamer choice for each
residue position is determined.
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Based on our assumption, given a rotamer set R, we can consider side chain
predictor as a function f(Aj) that maps from a given feature vector Aj to a
rotamer. f(Aj) is defined to be

f(Aj) = arg max
i,ri∈R

h(Aj , ri), j = 1, . . . , m (2)

where h(Aj , ri) is a scoring function that evaluates the score of assigning the
rotamer ri to the j-th position with feature vector Aj ∈ A. We aim to find a
function h(Aj , ri) such that f(Aj) matches the correct rotamer choices as well
as possible for all the position j.

The formulation 2 is based on a general rotamer libraryR. Studies on backbone-
dependent rotamer libraries [7, 10, 17, 19] show that side chains do prefer some
rotamers for a fixed amino acid type and a fixed pair of φ, ψ backbone dihedral
angles. This kind of rotamer libraries can also fit into our model easily by removing
the features (amino acid type, φ, ψ) from vector Aj and finding h on a rotamer
library which is a (amino acid type, φ, ψ)-dependent subset of the original rotamer
library R. We will introduce how to find the scoring function h in the next section.

3 A Multi-class SVM Model for the Side Chain
Prediction Problem

3.1 A Multi-class SVM Model

In this paper, we consider side chain prediction problem as described in formu-
lation 2 that is a linear function on feature vector A. That is, h(Aj , ri) = wi ·Aj ,
where wi is a parameter vector for rotamer i that we want to learn. Thus, ac-
cording to formulation 2, side chain prediction problem can be formulated as a
classification problem:

f(Aj) = arg max
i,ri∈R

wi · Aj , j = 1, . . . , n, (3)

in which we want to find such a f that matches correct rotamer choices as well
as possible.

To learn the parameter vectors wi from a training example set S = {(A1,
r1), . . . , (Ap, rp)} with size p, where Aj is the feature vector of a residue and rj

is the experimentally determined rotamer of this residue, we applied a multi-
class Support Vector Machine (multi-class SVM) model. Multi-class Support
Vector Machines provide powerful approaches to deal with the general problem
of learning a mapping from a high dimensional feature space to a discrete set [40].
However, traditional multi-class SVM do not directly fit into the side chain
prediction problem. The reason is that the number of rotamer labels is usually
very large in the real world, which will result in a large number of constraints in
multi-class SVM. This will make the traditional quadratic programming based
algorithm unfeasible to solve the side chain prediction problem.

To solve this large class problem, we applied the idea of loss function � from
structured SVM [41,42], a generalized version of multi-class SVM. Different from
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multi-class SVM, which were developed to solve classification problems on dis-
crete set Y = {1, . . . , k}, structured SVM were developed to solve classification
problems that involve features extracted jointly from the inputs and the outputs,
such as sequences, strings, graphs, or labeled trees. Loss function � is widely
used in structured SVM [41,42] to deal with the case in which |Y| is large. In our
side chain prediction problem, we used the concept of loss function and defined
it to be: � : R×R → {0, 1}, where �(y′, y) returns 0 if y′ = y, and 1 otherwise.
�(y′, y) quantifies how “bad” it is to predict y′ when y is the correct label.

Here we use the loss function � to re-scale the margin as proposed by Taskar et
al. [43] and formulate the problem of finding parameter vectors wi, i = 1, . . . , m
in the form of the following optimization problem:

min
wi,ξj

1
2

m∑

i=1

‖wi‖2 +
C

p

p∑

j=1

ξj (4)

∀j, l wrj · Aj − wl · Aj ≥ �(l, rj) − ξj

where m is the size of rotamer library, p is the size of training set, ξj ≥ 0 are
called slack variables. ‖wi‖ is the norm of vector wi, which determines the size
of margin in SVM. C > 0 is a tradeoff between training error minimization and
margin maximization.

We then apply a cutting plane algorithm described in [41] to solve this op-
timization problem. The basic idea of the algorithm is to find a relatively small
set of constraints without losing too much accuracy. They achieved this goal by
building a nested sequence which successively tights relaxations of the original
problem. It can be proved that:

– Accuracy: the cutting plane algorithm can compute arbitrarily close approx-
imation to the optimal solution.

– Efficiency: the number of steps that the cutting plane algorithm needs to
converge is polynomial on the number of data points.

In practice, the cutting plane algorithm works very well on solving our side
chain prediction problem, which we will show later. For more details about the
algorithm, please refer to [41].

3.2 Model Features

The relationship between side chain conformations and backbone dihedral an-
gles (φ, ψ) has been well studied. Many side chain prediction programs use a
backbone-dependent or backbone-independent rotamer library. This work uses
the backbone-dependent rotamer library [7, 10] developed by Dunbrack et al..
The major problem to be addressed is what kind of backbone structure features
a side chain conformation depends on. Many works [3,19,44] have been done to
analyze the relationship between side chain dihedral angles and local backbone
features, such as backbone dihedral angles, secondary structure and solvent ac-
cessibility. Here we introduce the local structure features used in our prediction
and show how to use them in training and testing.
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backbone dihedral angles. Given an amino acid and a pair of (φ, ψ) angles,
the backbone-dependent rotamer library can provide a set of candidate side
chain conformations. We do not use backbone dihedral angles as features in the
training. Instead, we divide training data point into many groups according to
the amino acid types and φ, ψ angles, and develop a classifier for each group
based on its corresponding rotamer subset.

secondary structure. Secondary structure is local conformation of a protein
backbone. Previous works [3] have shown that secondary structure is highly
relevant to the distribution of side chain dihedral angles. We use P-SEA [45]
to calculate the secondary structure of a given protein backbone. P-SEA can
generate the secondary structure type for each backbone position. Since SVM can
only take numerical values as input, we use the expected occurring probability
of each secondary structure type as its feature value. Let N(α), N(β), N(loop)
denote the numbers of residues in α-helices, β-sheets and loops in a training
data group, and N denote their sum. The expected occurring probabilities are
calculated as N(α)/N , N(β)/N and N(loop)/N , respectively.

solvent accessibility. The accessible surface area is the area of a biomolecule’s
surface that is accessible to a solvent. It can be calculated by using a sphere of a
certain radius to probe the surface of the molecule. A typical radius value is 1.4Å,
which approximates the radius of a water molecule. Solvent-accessible surface of
atoms have been used to predict conformations of side chains in [44], where they
added this term into the energy function during the global optimization and
calculated it iteratively. Their results show that the prediction accuracy can be
significantly improved by adding the solvent term. This implies the importance of
solvent accessibility in modeling side chain conformations. We use Naccess [46] to
calculate the backbone solvent accessibility. The output of Naccess is normalized
value and we use it as one of our features directly.

contact number. The contact number of a residue in a protein structure is a
quantity similar to, but different from solvent accessible surface area. The con-
tact number of a given residue is defined as the number of Cα atoms within a
predefined distance D(= 8Å) to the Cα atom of this given residue. The contact
numbers are scaled to values between 0 and 1 using a standard max-min nor-
malization method, such that the smallest contact number becomes zero and the
largest number becomes one.

4 Results

4.1 Implementation Details

We implemented LocalPack with C++. To improve the efficiency of feature cal-
culation, we used a quick K-nearest-neighbor (KNN) algorithm [47,48] to calcu-
late contact numbers. After extracting backbone related features, such as solvent
accessibility, secondary structure, and contact number, we encoded these features
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into a multi-class SVM model as described in Section 3.1. The SVM model is
trained using SV Mmulticlass [49] with linear kernel function, a program that
solves multi-class SVM problem by applying cutting plane algorithm described
in [41].

We applied 10-fold cross-validation on our training set to estimate the best C
(see Equation 4), a tradeoff between model parameter complexity and tolerable
model training errors. A big C indicates that a small training error is tolerated
but a big model parameter complexity allowed. A model trained using such a
C may not generalize well to the test data. Hsu et al. showed in [50] that by
testing on a sequence of exponentially growing C values, a good model can be
identified in practice. Thus, we tried C = 2−5, 2−4, ..., 220 for each training case,
and determined its best C value.

4.2 Training and Test Set

Selecting reasonable training and test sets is very important for fairly evaluating
the performance of machine learning methods. We used PDB20 as our training
set, in which any two proteins do not share more than 20% sequence identity. We
also removed those proteins in this set with resolution worse than 2Å. This results
in a data set of 3060 proteins. For test set, we used Dunbrack’s benchmark set [7],
which consists of 180 proteins. Since we also used the rotamer library extracted
from a set of 800 proteins [10], we examined the overlap among PDB20, the set
of 800 proteins for rotamer library generation, and Dunbrack’s benchmark set.
It turns out that Dunbrack’s benchmark set contains 87 proteins in PDB20 and
102 in the set of proteins for rotamer library generation. Thus, we removed all
the overlapping proteins from Dunbrack’s benchmark set and obtain a reduced
benchmark set of 78 proteins. It can be seen from Fig.1 that both our PDB20
training set and the reduced test set are good samples of real world proteins in
terms of amino acid composition.
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Fig. 1. The amino acid compositions on PDB20 training set(a), reduced 78 bench-
mark test set(b), and the UniProtKB/Swiss-Prot protein knowledgebase(c), respec-
tively. UniProtKB/Swiss-Prot protein knowledgebase [51] is one of the largest protein
sequence databases. The statistics of UniProtKB/Swiss-Prot was taken on 283,454
protein sequences on Sep.11, 2007.
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We evaluated the performance of our method on both this reduced benchmark
set and Dunbrack’s original benchmark set which has overlapping proteins to our
training set. Not surprisingly, the accuracy of our method is approximately 8%
higher on the Dunbrack’s benchmark set than on the reduced set, while the
accuracy of SCWRL3.0 is consistent on the two benchmark sets. Thus, in the
following experimental studies, we will only evaluate our method on this reduced
benchmark set.

4.3 Prediction Accuracy on Native Backbones

We compared the accuracy of our method to the most widely used program
SCWRL3.0 in terms of χ1 and χ1+2 accuracy. Other widely used programs,
such as Modeller [52], SCAP [11], and TreePack [8, 9], performs no better than
SCWRL3.0 on both the 180 benchmark set and the 78 benchmark set. Due to
the page limitations, we only show the comparison between our method and
SCWRL3.0 in Table 2. A prediction is considered to be correct if its value is
within 40◦ from its experimental value. The prediction accuracy of one amino
acid is calculated as the ratio of the number of correctly predicted side chains
to the total number of side chains of this amino acid type.

As shown in Table 2, the overall accuracy of our method is very close to
that of SCWRL3.0. In fact, the χ1 accuracy of our method is only 0.61% lower
than that of SCWRL3.0, while the χ1+2 accuracy is 0.51% lower. Although our
method is based on local backbone information only, it does not lose any accu-
racy while is much more computationally efficient, which we will show later. In
fact, the χ1 accuracy of our method is higher than SCWRL3.0 on nine out of
the eighteen amino acids, especially LYS, SER and THR. However, our method
is much worse than SCWRL3.0 on CYS, LEU, PHE and TRP. Meanwhile, the
χ1+2 accuracy of our method is higher than SCWRL3.0 on eight out of the
eighteen amino acids. This means local backbone information can also deter-
mine χ2 conformation accurately. On the other hand, results shown in Table 2
also demonstrate that the accuracy of our method is not worse than any global
optimization methods.

We further examined the eight amino acids on which our method did not per-
form well (with χ1 accuracy ≤ 82%). They are ARG, ASN, GLN, GLU, LEU,
LYS, MET and SER. Except for SER, all the other seven amino acids have large
side chain groups as shown in Fig. 2. This result is consistent with the model on
which our method is built. Our method assumes that local backbone informa-
tion can determine side chain conformations. However, if a side chain group is
large, its position will be more likely to be impacted by other side chain groups
around it and thus cannot be completely determined using only local informa-
tion. Thus, for such cases, we probably need more information to determine side
chain conformations. Interestingly, the global optimization method, SCWRL3.0,
which considers all side chain and backbone atoms around one side chain, did
worse than our method on four out of these seven amino acids as shown in red
boxes in Fig. 2.
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Table 2. Prediction accuracy of LocalPack and SCWRL 3.0 on the 78 benchmark set.
A prediction of a side chain is correct if its deviation from the experimental value is no
more than 40◦. χ1 accuracy of one amino acid is the ratio of the number of correctly
predicted χ1 angles to the total number of this amino acid type, while χ1+2 accuracy
of one amino acid is the ratio of the number of side chains with both χ1 and χ2 being
predicted correctly to the total number of this amino acid type.

LocalPack SCWRL 3.0
amino acid χ1 accuracy χ1+2 accuracy χ1 accuracy χ1+2 accuracy

ARG 0.7701 0.6060 0.7558 0.6226
ASN 0.7888 0.7011 0.7956 0.6882
ASP 0.8322 0.7337 0.8218 0.6974
CYS 0.8497 0.8497 0.8915 0.8915
GLN 0.7493 0.5416 0.7449 0.5319
GLU 0.6841 0.5077 0.7084 0.5128
HIS 0.8226 0.7551 0.8382 0.7745
ILE 0.9172 0.7884 0.9114 0.8060
LEU 0.7851 0.7321 0.8996 0.8142
LYS 0.7678 0.5768 0.7199 0.5444
MET 0.8169 0.6097 0.8160 0.6720
PHE 0.8410 0.7740 0.9361 0.8774
PRO 0.8426 0.7701 0.8517 0.7879
SER 0.7556 0.7556 0.6883 0.6883
THR 0.9193 0.9193 0.8855 0.8855
TRP 0.8328 0.6851 0.8843 0.6688
TYR 0.9239 0.8616 0.9171 0.8615
VAL 0.8922 0.8922 0.9075 0.9075

overall 0.8205 0.7314 0.8266 0.7365

Fig. 2. The χ1 accuracy of LocalPack on amino acid types ARG, ASN, GLN, GLU,
LEU, LYS, and MET. The four amino acids on which the accuracy of LocalPack is
higher than that of SCWRL3.0 are marked in red boxes.
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4.4 Feature Importance Analysis

A key step in feature based machine learning study is to evaluate the impor-
tance of each feature encoded. We evaluated the importance of each feature by
removing it from the whole set of features, and testing the accuracy on the rest
feature set. Table 3 shows the χ1 accuracy on different feature sets on amino acid
arginine (ARG). The comparisons on other amino acids or on χ1+2 are similar.
Due to the page limits, we only show the results on χ1 accuracy of ARG here.

Table 3. Feature importance analysis on ARG. The 1st column is the χ1 accuracy
of LocalPack with all 3 features. Starting from the 2nd column, the χ1 accuracy on
feature sets without solvent accessibility, without secondary structure, and without
contact number are listed, respectively.

with all 3 features without solvent accessibility without secondary structure without contact number
χ1 Accuracy 0.7701 0.7226 0.7352 0.7320

It can be seen from Table 3 that all of the three features are important to
our method. More specifically, removing solvent accessibility feature will reduce
the accuracy by 4.8%, while removing secondary structure and contact number
will reduce the accuracy by 3.5% and 3.8%, respectively. This means that sol-
vent accessibility is the most important feature in our method, while secondary
structure is the least. This makes sense becuase the backbone-dependent ro-
tamer library [10] we used has already partially encoded secondary structure
information by considering backbone φ, ψ angles in their statistics.

4.5 Performance on Non-native Backbones

We further evaluated the accuracy of our method on nonnative backbones. We
compared the χ1 accuracy of our method to four commonly used side chain pre-
diction methods: MODELLER, TreePack, SCWRL3.0, and SCAP, on a nonna-
tive backbone test set provide by Xu et al. in [9]. The test set contains prediction
models generated by a protein threading program, RAPTOR [53], on 24 CASP6
test proteins [54]. RAPTOR generated good alignments for most of these tar-
gets. MODELLER [52] was called by RAPTOR to generate model backbones
according to the alignments. Besides, MODELLER is also able to predict side
chains based on a statistical method. SCAP was tested using the CHARMM
force field with the heavy atom model and the largest rotamer library available
to SCAP.

The overall χ1 accuracy is shown in Table 4. The prediction accuracy of our
method is the same as TreePack, and slightly worse than SCWRL3.0, while much
better than MODELLER and SCAP. This indicates that our method also works
well on nonnative backbones.

4.6 Computational Efficiency

Since our method is based on only local backbone features, it can be expected
that our method is much more computationally efficient. TreePack has been
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Table 4. The overall χ1 accuracy of MODELLER, TreePack, SCWRL3.0, SCAP, and
LocalPack on the 24 nonnative test proteins

MODELLER TreePack SCWRL3.0 SCAP LocalPack
χ1 Accuracy 0.428 0.520 0.530 0.488 0.520

Table 5. CPU time comparison of TreePack, SCWRL3.0, and LocalPack on the 78
protein benchmark set

TreePack SCWRL3.0 LocalPack
Time 186 seconds 657 seconds 46 seconds

reported as one of the fastest methods for side chain prediction. Table 5 shows
the total CPU time comparison of TreePack, SCWRL3.0, and our method on
the 78 benchmark set. All three programs are tested on a Debian Linux box with
a 1.7GHz CPU.

From Table 5, it is clear that our method is much faster than both TreePack
and SCWRL3.0. In fact, we are more than 14 times faster than SCWRL3.0,
and more than 4 times faster than TreePack. The average CPU time of our
method on one test protein is 0.58 seconds. We also tested the CPU time of our
method on the original 180 benchmark set, the results are consistent with the
78 benchmark set.

5 Discussions

This paper formulated protein side chain packing as a classification problem and
developed a multi-class SVM method for protein side chain prediction. As far as
we know, this is the first attempt to apply multi-class SVM method to the side
chain prediction problem. Our experimental results demonstrate that this new
method works very well.

This paper demonstrated that protein side chain positions can be predicted
using local backbone information to the same accuracy as those programs em-
ploying pairwise energy functions and computationally-intensive optimization
algorithms, such as SCWRL and TreePack. We hope our discovery will change
the way researchers look at this problem and lead to rapid and accurate protein
side chain packing programs, which are indispensable in high-accuracy protein
structure modeling.

One of the major bottlenecks in protein structure refinement is how to quickly
generate a huge number of possible full-atom conformations so that a full-atom
energy function can be used to pick up the energetically most favorable confor-
mations. Our method enables us to generate a good side chain packing extremely
fast after a change of backbone conformation. Since our method depends on lo-
cal backbone information only, our method can be made even much more faster
when only a local part of a protein structure is refined. This allows us to do
side chain packing at each step of protein structure refinement and thus makes
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it feasible to apply an accurate full-atom energy function to each generated con-
formation.

We plan to further examine the features used in our method to see if more
improvement can be achieved. For example, we only used a feature “contact
number” to describe how many residues are in contact with a given residue.
This feature does not capture the types of amino acids that are in contact with
this given residue. We can extend this single “contact number” to a vector of
twenty contact numbers, each of which is the number of residues, of the same
amino acid type, in contact with this given residue. We only used three types
of secondary structure in our model. This may be enriched by eight types of
secondary structure.

Acknowledgements

We are grateful to Dongbo Bu and Bo Jiang for the thought provoking discussion
and comments. We also want to thank Shuai Cheng Li for helping us prepare the
PDB20 data set. This work is supported by NSERC RGPIN46506 and Canada
Research Chair Program.

References

1. Janin, J., Wodak, S., Levitt, M., Maigret, B.: The conformation of amino acid side
chains in proteins. J. Mol. Biol. 125, 357–386 (1978)

2. Bhat, T.N., Sasisekharan, V., Vijayan, M.: An analysis of side-chain conformation
in proteins. Int. J. Pept. Protein Res. 14, 170–184 (1979)

3. McGregor, M., Islam, S., Sternberg, M.: Analysis of the relationship between side-
chain conformation and secondary structure in globular proteins. J. Mol. Biol. 198,
295–310 (1987)

4. Summers, N.L., Karplus, M.: Construction of side-chains in homology modeling:
Application to the c-terminal lobe of rhizopuspepsin. J. Mol. Biol. 210, 785–810
(1989)

5. Desjarlais, J., Handel, T.: De novo design of the hydrophobic cores of proteins.
Protein Science 4, 2006–2018 (1995)

6. Dahiyat, B., Mayo, S.: Protein design automation. Protein Science 5, 895–903
(1996)

7. Dunbrack, R.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12,
431–440 (2002)

8. Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S.,
Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB
2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

9. Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing.
Journal of ACM 53, 533–557 (2006)

10. Dunbrack, R., Cohen, F.: Bayesian statistical analysis of protein side-chain rotamer
preferences. Protein Science 6, 1661–1681 (1997)

11. Xiang, Z., Honig, B.: Extending the accuracy limits of prediction for side-chain
conformations. J. Mol. Biol. 311, 421–430 (2001)



298 J. Zhang et al.

12. Chandrasekaran, R., Ramachandran, G.: Studies on the conformation of amino
acids. XI. Analysis of the observed side group conformations in proteins. Int. J.
Protein Research 2, 223–233 (1994)

13. Benedetti, E., Morelli, G., Nemethy, G., Scheraga, H.: Statistical and energetic
analysis of sidechain conformations in oligopeptides. Int. J. Peptide Protein Res. 22,
1–15 (1983)

14. Ponder, J., Richards, F.: Tertiary templates for proteins. use of packing criteria
in the enumeration of allowed sequences for different structural classes. J. Mol.
Biol. 193, 775–791 (1987)

15. Kono, H., Doi, J.: A new method for side-chain conformation prediction using a
hopfield network and reproduced rotamers. J. Comp. Chem. 17, 1667–1683 (1996)

16. Maeyer, M., Desmet, J., Lasters, I.: All in one: a highly detailed rotamer library
improves both accuracy and speed in the modelling of sidechains by dead-end
elimination. Fold Des. 2, 53–66 (1997)

17. Dunbrack, R., Karplus, M.: Backbone-dependent rotamer library for proteins: Ap-
plication to side-chain prediction. J. Mol. Biol. 230, 543–574 (1993)

18. Schrauber, H., Eisenhaber, F., Argos, P.: Rotamers: To be or not to be? An analysis
of amino acid sidechain conformations in globular proteins. J. Mol. Biol. 230, 592–
612 (1993)

19. Dunbrack, R., Karplus, M.: Conformational analysis of the backbone-dependent
rotamer preferences of protein sidechains. Nature Struct. Biol. 1, 334–340 (1994)

20. Liang, S., Grishin, N.: Side-chain modeling with an optimized scoring function.
Protein Science 11, 322–331 (2002)

21. Canutescu, A., Shelenkov, A., Dunbrack, R.: A graph-theory algorithm for rapid
protein side-chain prediction. Protein Science 12, 2001–2014 (2003)

22. Peterson, R., Dutton, P., Wand, A.: Improved side-chain prediction accuracy using
an ab initio potential energy function and a very large rotamer library. Protein
Science 13, 735–751 (2004)

23. Chazelle, B., Kingsford, C., Singh, M.: A semidefinite programming approach to
side chain positioning with new rounding strategies. Informs Journal on Comput-
ing 16, 380–392 (2004)

24. Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning
problemsusing linear and integer programming.Bioinformatics 21, 1028–1036 (2005)

25. Jain, T., Cerutti, D., McCammon, J.: Configurational-bias sampling techinique for
predicting side-chain conformations inproteins.ProteinScience15, 2029–2039 (2007)

26. Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learning energy func-
tions for side-chain prediction. In: Speed, T., Huang, H. (eds.) RECOMB 2007.
LNCS (LNBI), vol. 4453, pp. 381–395. Springer, Heidelberg (2007)

27. Roitberg, A., Elber, R.: Modeling side chains in peptides and proteins: Application
of the locally enhanced sampling and the simulated annealing methods to find
minimum energy functions. Chem. Phys. 95, 9277–9287 (1991)

28. Street, A., Mayo, S.: Intrinsic beta-sheet propensities result from van der waals
interactions between side chains and the local backbone. PNAS 96, 9074–9076
(1999)

29. Mendes, J., Nagarajaram, H., Soares, C., Blundell, T., Carrondo, M.: Incorpo-
rating knowledge-based biases into an energy-based side-chain modeling method:
Application to comparative modeling of protein structure. Biopolymers 59, 72–86
(2001)

30. Rohl, C., Strauss, C., Chivian, D., Baker, D.: Modeling structurally variable regions
in homologous proteins with rosetta. Proteins: Structure, Function, and Bioinfor-
matics 55, 656–677 (2004)



Rapid and Accurate Protein Side Chain Prediction 299

31. Holm, L., Sander, C.: Fast and simple monte carlo algorithm for side chain opti-
mization in proteins: Application to model building by homology. Proteins: Struc-
ture, Function and Genetics 14, 213–223 (1992)

32. Vasquez, M.: An evaluation of discrete and continuum search techniques for con-
formational analysis of side-chains in proteins. Biopolymers 36, 53–70 (1995)

33. Tuffery, P., Etchebest, C., Hazout, S., Lavery, R.: A new approach to the rapid
determination of protein side chain conformations. J. Biomol. Struct. Dyn. 8, 1267–
1289 (1991)

34. Desmet, J., Maeyer, M., Hazes, B., Laster, I.: The dead-end elimination theorem
and its use in protein side-chain positioning. Nature 356, 539–542 (1992)

35. Hwang, J., Liao, W.: Side-chain prediction by neural networks and simulated an-
nealing optimization. Protein Eng. 8, 363–370 (1995)

36. Lee, C., Subbiah, S.: Prediction of protein side-chain conformation by packing
optimization. J. Mol. Biol. 217, 373–388 (1991)

37. Eriksson, O., Zhou, Y., Elofsson, A.: Side chain-positioning as an integer program-
ming problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149,
pp. 128–141. Springer, Heidelberg (2001)

38. Akutsu, T.: NP-hardness results for protein side-chain packing. Genome Informat-
ics 8, 180–186 (1997)

39. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)
40. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-

based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)
41. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine

learning for interdependent and structured output spaces. In: The 21st Interna-
tional Conference on Machine Learning, vol. 69, pp. 104–111 (2004)

42. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

43. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. NIPS 16 (2004)
44. Eyal, E., Najmanovich, R., Mcconkey, R.J., Enelman, M., Sobolev, V.: Importance

of solvent accessibility and contact surfaces in modeling side-chain conformations
in proteins. J. Comput. Chem. 25, 712–724 (2004)

45. Labesse,G.,Colloc’h,N.,Pothier, J.,Mornon, J.P.:P-SEA,anewefficient assignment
of secondary structure from Cα trace of proteins. CABIOS 13, 291–295 (1997)

46. Hubbard, S.J., Thornton, J.M.: ‘NACCESS’, Computer Program, Department of
Biochemistry and Molecular Biology, University College London (1993)

47. Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification tech-
niques. IEEE Computer Society Press, Los Alamitos (1990)

48. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice (Neural Information Processing). The MIT Press,
Cambridge (2006)

49. http://svmlight.joachims.org/svm multiclass.html
50. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifica-

tion. Technical report, Taipei (2003)
51. http://ca.expasy.org/sprot/relnotes/relstat.html
52. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial

restraints. J. Mol. Biol. 234, 779–815 (1993)
53. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear

programming. Journal of Bioinformatics and Computational Biology 1, 95–117
(2003)

54. http://predictioncenter.org/casp6/Casp6.html

http://svmlight.joachims.org/svm_multiclass.html
http://ca.expasy.org/sprot/relnotes/relstat.html
http://predictioncenter.org/casp6/Casp6.html

	Rapid and Accurate Protein Side Chain Prediction with Local Backbone Information
	Introduction
	New Formulation for Side Chain Prediction
	A Multi-class SVM Model for the Side Chain Prediction Problem
	A Multi-class SVM Model
	Model Features

	Results
	Implementation Details
	Training and Test Set
	Prediction Accuracy on Native Backbones
	Feature Importance Analysis
	Performance on Non-native Backbones
	Computational Efficiency

	Discussions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




