
Learning Optimal Strategies to Commit to∗

Binghui Peng† and Weiran Shen† and Pingzhong Tang† and Song Zuo‡
†Institute for Interdisciplinary Information Sciences, Tsinghua University

‡Google Research
pbh15@mails.tsinghua.edu.cn,{emersonswr,kenshinping}@gmail.com,szuo@google.com

Abstract

Over the past decades, various theories and algorithms have
been developed under the framework of Stackelberg games
and part of these innovations have been fielded under the sce-
narios of national security defenses and wildlife protections.
However, one of the remaining difficulties in the literature is
that most of theoretical works assume full information of the
payoff matrices, while in applications, the leader often has no
prior knowledge about the follower’s payoff matrix, but may
gain information about the follower’s utility function through
repeated interactions. In this paper, we study the problem of
learning the optimal leader strategy in Stackelberg (security)
games and develop novel algorithms as well as new hardness
results.

Introduction
Computing solution concepts in game theory has been one of
the most important research agendas at the interface of com-
puter science and economics. Over the past twenty years,
various solution concepts have been investigated through the
lens of computation, such as Nash equilibrium (Conitzer and
Sandholm 2008; Chen, Deng, and Teng 2009; Daskalakis,
Goldberg, and Papadimitriou 2009; Chen et al. 2017; Chen,
Tang, and Wang 2017), Stackelberg equilibrium (Conitzer
and Sandholm 2006; Letchford and Conitzer 2010; Zuo
and Tang 2015), correlated equilibrium (Papadimitriou and
Roughgarden 2008; Jiang and Leyton-Brown 2011).

Among these solution concepts, of particular interest to
the AI community is the computation of Stackelberg equi-
librium, also known as the optimal strategy to commit to, for
several well-known successful applications of this solution
concept to the domain of security, established by the pioneer
work of Tambe (2011).

In a two-player normal-form game, a commitment is a
mixed strategy announced by one player, called the leader.
The other player, called the follower, responds to the leader’s
commitment according to its rationality model and both

∗The authors thank the anonymous reviewers for their helpful
comments. This paper is supported in part by the National Nat-
ural Science Foundation of China Grant 61561146398, a China
Youth 1000-talent Program, and an Alibaba Innovative Research
Program.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

players derive payoffs. The problem is to find the leader’s
best commitment.

When the follower is perfectly rational, i.e., choosing a
pure strategy that maximizes its payoff given the commit-
ment, the algorithmic problem has been nicely solved by
Conitzer and Sandholm (2006). The idea is to solve a se-
quence of LPs (that optimizes leader’s commitment), one
for each follower’s pure strategy, constrained on that strat-
egy being the best response for the follower.

The above algorithm has been adapted to a number of re-
alistic applications, for example, the LAX airport security
resource allocation (Pita et al. 2008), Boston coastal protec-
tion (Jain et al. 2010), and other security game applications
(An et al. 2011; Xu et al. 2015; Yin et al. 2015). However,
there are a number of limitations that prevent the algorithm
from being further applied. One of such serious limitations is
that in real applications, the payoff matrices are rarely given
as inputs (Camerer, Ho, and Chong 2004).

This paper aims to resolve this issue. In our setting, the
leader has no prior knowledge about the follower’s payoff
matrix, yet still tries to figure out the optimal strategy to
commit to. In order to do so, the leader could gain knowl-
edge about the follower’s utility function from interactions
with the follower. We summarize this interaction as a re-
sponse oracle, where the leader can commit to a mixed strat-
egy and get the best response of the follower via a sample of
response oracle. We believe that the response oracle is rare
and valuable in real life and our goal is to minimize the num-
ber of samples needed to identify the optimal commitment.

Our Contributions
Prior to our work, Letchford, Conitzer, and Munagala (2009)
first study this problem and give a sampling algorithm for
this problem. However, their algorithm works well only
when the smallest volume of the feasible region for the fol-
lower’s action is large, otherwise, their algorithm would be
no better than brute force search in the worst case. To be
more specific, the sample complexity in Letchford, Conitzer,
and Munagala (2009) is O(V −1n log n + mn2L), where
m,n,L, V is the number of the leader’s and the follower’s
actions, the representation precision and the volume of the
smallest feasible region, respectively. We note that the term
V −1 can be of O(2mL), with exponential dependence on
both L and m in the worst case and their algorithm is inef-

ficient even when the leader only has two actions. The main
inefficiency comes from their procedure for identifying all
effective actions for the follower. We aim to tackle this prob-
lem in this paper and we develop novel algorithms as well
as hardness results regarding the sample complexity. Our al-
gorithm is quite general and flexible. With some extensions,
it also applies to other Stackelberg games, e.g., the security
game. To summarize, we make the following contributions
in this paper.

• For general Stackelberg games, we propose an algorithm,
named SEPARATE-SEARCH, whose sample complexity is
poly(m,n,L)Ext(A). Ext(A) is the number of extreme
points which is independent of L. Thus,we can get rid of
the exponential dependence on L. Moreover, when m is
a constant, the sample complexity is polynomial in L and
n, the same holds for n, i.e., when n is a constant, it is
polynomial in L and m. Thus when m or n is constant, our
algorithm can be considered to be efficient. However, we
note that when n = Θ(m), Ext(A) is still O(exp(m)).

• We derive hardness results which show that the exponen-
tial dependence of m is inevitable. More specifically, we
show that there exists an instance such that any algorithm
must take at least Ω(exp(m)) samples to compute the op-
timal strategy. Furthermore, the lower bound construction
indicates that Ext(A) many queries are necessary in that
case and thus our algorithm is tight.

• We point out several applications of SEPARATE-SEARCH.
Especially, in the application of security games, an exten-
sion of SEPARATE-SEARCH only requires O(n3L) sam-
ples to identify the optimal strategy to commit, which im-
proves the Õ(n6.5L)1 sample complexity by Blum, Hagh-
talab, and Procaccia (2014). Furthermore, our algorithm is
much simpler than their algorithm.

Related Work
Our work is most relevant to Letchford, Conitzer, and Mu-
nagala (2009), where the authors develop the first sampling
algorithm for learning the optimal strategy in Stackelberg
games. However, as pointed out in the previous section, their
algorithm is highly inefficient when some feasible regions
have small volumes. The other most relevant prior work is
Blum, Haghtalab, and Procaccia (2014), where the authors
give the first efficient sampling algorithm for security games.
Their approach is different from ours and they invoke an op-
timization method from Kalai and Vempala (2006). More
specifically, they need to optimize a linear function over a
convex region, when only an initial point and the member-
ship query are given. The optimization method in Kalai and
Vempala (2006) is quite powerful and elegant, but it is in-
evitably costly.

There are a bunch of other prior works (Balcan et al. 2015;
Marecki, Tesauro, and Segal 2012; Haghtalab et al. 2016;
Sinha, Kar, and Tambe 2016; Blum, Haghtalab, and Procac-
cia 2015) that intend to provide theoretical guarantees re-
garding learning problems in Stackelberg (security) games

1Õ(·) omits logarithmic terms of m,n, L

under different settings. Balcan et al. (2015) study the prob-
lem in the context of no-regret learning, where the defender
is not playing with the same fixed attacker, but with an ad-
versary attacker. They compare the online algorithm with the
best fixed mixed strategy in hindsight and a low regret bound
is derived in their paper.

Haghtalab et al. (2016) and Sinha, Kar, and Tambe (2016)
study the problem in the PAC model. In particular, Haghta-
lab et al. (2016) assume that the attacker has bounded ratio-
nality and conclude that polynomial number of adversary re-
sponses to three defender strategies that are sufficiently dif-
ferent from each other are sufficient to learn the attacker’s
utility with high accuracy. The assumption of bounded ra-
tionality is crucial since repeating a leader’s strategy would
allow the algorithm to obtain the utility information for all
targets, which does not hold for the perfect rational attacker.

For more details about theoretical learning approaches
with regard to the Stackelberg (security) game, we refer
readers to the survey of Blum, Haghtalab, and Procac-
cia (2015).

Another line of works focus on providing practical learn-
ing algorithm (Yang et al. 2014; Amin, Singh, and Well-
man 2016; Kamra et al. 2018; Ling, Fang, and Kolter 2018;
Shen, Tang, and Zuo 2018). Practical learning and optimiza-
tion algorithms, like deep learning (Goodfellow et al. 2016)
and gradient descent, play important roles in these algo-
rithms. Different from our work, most of these work only
provide experiment results and are lack of theoretical guar-
antees.

Preliminary
Stackelberg Games In a standard Stackelberg game, there
are two players who choose their strategies one after another.
The player who moves first is called the leader and the other
one is called the follower. Formally, we use L and F to de-
note the sets of pure strategies of the leader and the follower,
respectively. Throughout the paper, we only consider finite
Stackelberg games, i.e., the sets L and F are both finite. In
addition, we use U l and U f to denote the utility functions
of the leader and the follower, each of which maps a pair of
strategies (l, f) ∈ L× F to a real number.

The strategy chosen by the leader is also called the com-
mitment of the leader, which is usually a mixed strategy,
i.e., a probabilistic distribution p over the strategy set L. In
contrast, the strategy chosen by the follower, called the re-
sponse, is usually a pure strategy. When the follower chooses
the response, the leader’s commitment p is already chosen,
hence the choice of the response won’t affect the commit-
ment.

The equilibrium of the game is called Stackelberg equilib-
rium, where the leader commits to the optimal commitment
in the sense that its expected utility is maximized if the fol-
lower best responds to the commitment. Formally, a pair of
commitment and response (p∗, f∗) is a Stackelberg equilib-
rium, if

p∗ ∈ arg max
p∈∆L

El∼p[U l(l, f∗(p))], f∗ = f∗(p∗),

where ∆L is the set of the probability distributions over the
leader’s strategy set L and

f∗(p) = arg max
f∈F

El∼p[U f(l, f)]

is the best response to commitment p.2 Note that in general,
the leader’s optimal commitment is not necessarily a best
response to the follower’s response.

We slightly abuse notation and define U l(p, f) and
U f(p, f) to be the expected utilities of the leader and the fol-
lower under commitment p and response f , i.e.,

U l(p, f) = El∼p[U l(f)], U f(p, f) = El∼p[U f(l, f)].

The standard way of finding a Stackelberg equilibrium
(Conitzer and Sandholm 2006) is through solving a series
of linear programs for ∀j ∈ [n] and choose the strategy that
maximizes the leader’s utility.

maxU l(p, j)

s.t. U f(p, j′) ≤ U f(p, j) ∀j′ 6= j, j′ ∈ [n]
m∑
i=1

pi = 1

pi ≥ 0 ∀i ∈ [m],

where n = |F| is the number of the follower’s actions and
m = |L| is the number of the leader’s actions.

For ease of presentation, we use the following definition:

Definition 1 (Effective actions and feasible regions). Fol-
lower action ai is an effective action, if there exists a leader
commitment p, such that ai is a best response to p. Also,
given a follower’s action ai, the corresponding feasible re-
gion, denoted byPi is the set of all leader commitments such
that ai is the follower’s best response.

It is easy to see that any two feasible regions are disjoint,
and that Pj is a convex region (may be empty) induced by
at most m+n half planes. The separating plane between Pi

and Pj refers the hyperplane where the utility for playing ai
and aj are the same for the follower.

Stackelberg Security Games A Stackelberg security
game is a special Stackelberg game with some specific struc-
tures between the strategy sets and utility functions. More
specifically, in the canonical setting of Stackelberg security
game, there is a set of targets T = {1, . . . , n} and the de-
fender (leader) commits to an allocation of resources to pro-
tect the targets from the attacker (follower).

More formally, we use the following standard notation to
describe the Stackelberg security game.

• Resources. The resources are described by a set R. When
there are different types of resources, there is a function
A : R 7→ 2D, where A(r) is the set of schedules to which
resource r can be assigned.

2When there are multiple best responses, we follow the conven-
tion and break ties in favor of the leader, i.e., the follower always
chooses the one that maximizes the leader’s expected utility.

• Schedules. The set of schedules D is a collection of sub-
sets of targets, i.e., D ⊆ 2T . For every D ∈ D, targets in
D can be simultaneously protected by one resource. We
say t is covered if t ∈ D. Furthermore, we make the as-
sumption that D is subset close, i.e., if D ∈ D, then all
subsets for D are also contained in D.

• Utility. If a target t is attacked, the defender’s utility is
Ud
c (t) if t is covered, and Ud

u(t) if not. Similarly, the
attacker’s utility is U a

c (t) if t is covered, and U a
u(t) if

not. It is commonly assumed that Ud
c (t) ≥ Ud

u(t) and
U a
c (t) ≤ U a

u(t). We note that it makes no difference to
the players’ utilities whether a target is covered by one
resource or by more than one resources.

A pure strategy for the defender is a valid allocation of
resources for schedules, we use Q to denote the set of pure
strategies with q = |Q|. Let p be the coverage probability of
the targets. Define Mn×q to be a binary matrix where Mti =
1 if target t is covered in the i-th pure strategy. Then we say
p is implementable if there exists a mixed strategies s such
that p = Ms and

∑q
i=1 si = 1.

Response Oracle As we discussed in the introduction, in
practice, the leader’s knowledge about the follower’s utility
function U f can be very limited. However, the leader is still
able to learn the optimal commitment from interactions.

In this paper, we summarize the experience from interac-
tions as a response oracleR. The oracle will output the best
response R(p) when the leader makes a query p (a commit-
ment) to it. The leader then determines the optimal commit-
ment by making queries to the response oracle. In particular,
we allow the queries to be adaptive, meaning that the leader
could adaptively choose queries based on the results from
past queries.

Formally, we make the following assumption about the
response oracleR and utility functions:

• The follower’s utility are non-degenerated, i.e., no (m+1)
separating planes or boundary planes intersect into one
point. Moreover, no separating planes coincide.

• We assume that the game can be specified using limited
amount of precision. More precisely, all the entries in the
follower utility matrix are in [−1, 1] (we can always scale
the matrix) and can be presented by L bits. Moreover, the
feasible region Pi for all actions i ∈ F has a volume of
either 0 (empty) or at least 2−nL.

• When there are more than one best responses for the fol-
lower, we can choose any one as we want.

We make the second assumption because if we allow the
feasible region of an action a ∈ F to be arbitrary small,
then it would take infinitely many samples in order to check
whether action a is effective.

We focus on the number of such queries made by the
leader. We say that a sampling scheme is efficient if the sam-
ple complexity is poly(m,n,L).

Previous Results Before proceeding to our main results,
we provide a quick summary of some previous results under

this setting. Some of them may serve as subroutines of our
algorithm.

The following result comes from (Letchford, Conitzer,
and Munagala 2009), it states that for any two actions
a1, a2 ∈ F, if we already know a feasible point for each
of them, but do not know the separating hyperplane between
them. Then with polynomial number of samples, we are able
to either find a new separating hyperplane (not necessarily
the one between them) or discover a new effective action in
F. Formally, we have

Theorem 2. (Restate, (Letchford, Conitzer, and Munagala
2009)) Given two effective actions a1 and a2 for the follower
and the corresponding feasible points p1, p2, if the separat-
ing hyperplane between P1 and P2 is still unknown, then
with O(mL) samples, we can either find a new separating
hyperplane, or discover a new effective action in F.

We call the algorithm mentioned above FIND-
SEPARATING-PLANE. Notice that we may not find the
separating hyperplane between P1 and P2, it is possible that
a new separating plane is found.

Learning Stackelberg Game Strategies
We present our main algorithm SEPARATE-SEARCH in this
section. Briefly speaking, for each action fi ∈ F, i ∈ [n], we
maintain an upper bound Ui on the feasible region Pi. This
upper bound shrinks as we discover a new separating hyper-
plane between fi and other effective actions. Meanwhile, we
also maintain a lower bound Li on Pi, which is the convex
hull of all already identified points contained in Pi. More
specifically, during the algorithm, we would first figure out
the separating hyperplanes between the action we already
discovered and we use Ui to denote the possible feasible re-
gion for action fi ∈ F induced by these separating hyper-
planes. Recall that the major difficulty lies in discovering
all effective actions, we overcome this by searching through
all extreme points in the current upper bound Ui. Thus each
time we can either reduce the difference between Ui and Li,
or discover a new effective action. By doing this, we can
get rid of the exponential dependence on L. The formal de-
scription of our algorithm SEPARATE-SEARCH is shown in
Algorithm 1.

We use m(S) to denote the volume of a set S. During the
algorithm, the set F maintains all the effective actions for
the follower which have already been discovered.

To present the sample complexity of our algorithm, we
need the following definition.

Definition 3. For i ∈ [n], we define Ext(Ai) to be the num-
ber of intersecting points induced by the separating hyper-
planes between ai and ai′(∀i′ 6= i, i′ ∈ [n]) and the bound-
ary of P . With slight abuse of notation, we use Ext(Ai) to
denote the set of this points. Furthermore, we define Ext(A)
as

Ext(A) =

n∑
i=1

Ext(Ai).

With Theorem 2, we are now ready to prove the main re-
sult in this section.

Algorithm 1 SEPARATE-SEARCH

1: Ui ← P,Li ← ∅,∀i ∈ [n].
2: . Ui(Li) is an upper bound(lower bound) on the

feasible region for the follower action ai.
3: Let the leader randomly adopt an strategy p inside P ,

observe follower response ai and F ← {ai}, Li ← p.
4: while ∃Ui 6= Li and ∪i∈[n]Li 6= P do
5: while ∃i, j ∈ [n] such that m(Ui

⋂
Uj) 6= 0 and

ai, aj ∈ F do
6: FIND-SEPARATING-PLANE(Ui,Uj ,Li,Lj).
7: end while
8: if ∃Ui 6= Li and i ∈ F then
9: EXHAUSTIVE-SEARCH(Ui,Li).

10: end if
11: end while
12: return L1, · · · Ln

Algorithm 2 EXHAUSTIVE-SEARCH

Require: Ui,Li

1: for every extreme point p? of Ui and p? /∈ Li do
2: Let the leader adopt p? and observe f = f∗(p?).
3: if f = ai then
4: Li ← CONVEXHULL(Li, p

?).
5: else if f = aj(j 6= i) then
6: Lj ← CONVEXHULL(Lj , p

?).
7: F ← F ∪ {aj}.
8: return
9: end if

10: end for
11: return

Theorem 4. With O(mn2L+Ext(A)) samples, SEPARATE-
SEARCH could identify feasible regions for all ac-
tion in F with high probability. Moreover, Ext(A) is
bounded by n

(
m+n
m

)
. Thus, the sample complexity for

SEPARATE-SEARCH is no worse than O(m2nL+n
(
m+n
m

)
).

We first make the following claim, which will be useful in
proving the above theorem.

Claim 5. During the algorithm, for all i ∈ [n], Ui, Li is
convex. Moreover, we have Li ⊆ Pi ⊆ Ui.

Proof. Ui is convex since Ui is the intersection of the half-
planes induced by separating hyperplanes and boundary of
P . Li is convex because Li is formed as the convex hull of
known points in Pi. Initially, Li is empty and Ui is P . No-
tice that Ui shrinks only when a new separating hyperplane
is found, and we know Pi is contained in the same side (with
Ui) of this hyperplane. Thus we always havePi ⊆ Ui. Mean-
while, notice that all the extreme points of Li are contained
in Pi, and we know that Pi is also convex, thus we can con-
clude that Li ⊆ Pi.

Proof of Theorem 4. According to Claim 5, we know that
Ui (Li) is indeed an upper (lower) bound on Pi. Another
easy observation is that during the execution of SEPARATE-
SEARCH, we always maintain ∪i∈[n]Ui = P since the

union ∪i∈[n]Ui = P would not be changed by FIND-
SEPARATING-PLANE. Consequently, at the end of our al-
gorithm, we must have ∪i∈[n]Li = P , since Ui = Li for
all i ∈ [n] would also implies ∪i∈[n]Li = P . As a con-
sequence, by Claim 5 and the fact that ∪i∈[n]Pi = P , we
conclude that when SEPARATE-SEARCH stops, it identifies
feasible regions for all ai ∈ F . Furthermore, SEPARATE-
SEARCH must stop since in each round, we either discover
a new effective action, or we ensure that Li = Ui for a new
action ai.

For the sample complexity, each time we invoke FIND-
SEPARATING-PLANE, we discover either a new effective
action, or a new separating hyperplane. By Theorem 2, the
number of samples required is at most (n2 + n)O(mL) =
O(n2mL). The main cost of the SEPARATE-SEARCH comes
from the EXHAUSTIVE-SEARCH . For i ∈ [n], we only sam-
ple the extreme points of Ui and Ui is induced by separat-
ing hyperplanes between ai and other action in F, as well
as the boundary hyperplanes of P . This number is bounded
by Ext(Ai). Moreover, for each Ui, we sample its extreme
points once. Thus the total number of samples comes from
EXHAUSTIVE-SEARCH is bounded by O(Ext(A)). More-
over, for each i ∈ [n], there are n − 1 possible separat-
ing hyperplanes from other actions and m + 1 hyperplanes
from P (P is a simplex), thus the number of extreme points
Ext(Ai) can be at most

(
m+n
m

)
, which further indicates that

Ext(A) can be at most n
(
m+n
m

)
, when m = Θ(n), Ext(A)

is O(exp(n)).

A direct corollary is that when m or n is constant, i.e., the
number of action for the leader or the follower is constant,
SEPARATE-SEARCH is efficient, i.e., the required number of
sample is poly(m,n,L).

Corollary 6. When the number of action for the leader
or the follower is constant, the sample complexity for
SEPARATE-SEARCH is poly(m,n,L).

Hardness results
In this section, we provide some negative results about learn-
ing the optimal strategy in the Stackelberg game. More
specifically, we prove that there is no efficient algorithm
to compute the optimal commitment for the leader, i.e., we
need to draw exponentially many samples in the worst case.
These hardness results indicate that the results in the previ-
ous section is in fact the best we can do.

Roughly speaking, the difficulty mainly lies in discover-
ing the new effective action and the fact that we need to fully
identify the feasible region for all actions in the worst case.
More specifically, consider the following situation: we have
not yet discovered any feasible point for an action ai ∈ F
and we also have not fully identified the feasible region Pi′

for another action ai′ ∈ F, but we have an upper bound on
Pi′ , say Ui′ . Then we may need to check every extreme point
of Ui′ before we can conclude either Pi′ = Ui′ or Pi does
not intersect with Ui′ . Intuitively, the reason is that the feasi-
ble region might “hide” in the corner of any extreme point of
Ui′ . Furthermore, these possible feasible regions are disjoint
thus the only thing we could do is to exhaustively search

through all the extreme points. Finally, in order to prove an
exponential lower bound, we need to show that the number
of extreme points is exponential in m and n.

Formally, we have the following result.
Theorem 7. For any algorithm, there exists an instance
such that the algorithm must take at least 2Ω(m) samples
to compute the optimal strategy to commit to.

Let’s first prove the following lemma before going to the
proof of Theorem 7.
Lemma 8. For any algorithm, there exists an instance such
that the algorithm must take at least 2Ω(m) samples to de-
termine whether a particular follower action a? is effective.

Proof. Consider the following Stackelberg game, where the
leader has m actions and the follower has m+2 actions. The
utility function of the follower is

U f(ai) = (− 2
m−2 , · · · ,−

2
m−2︸ ︷︷ ︸

i−1

, 1,− 2
m−2 , · · · ,−

2
m−2︸ ︷︷ ︸

n−i

), i ≤ m

U f(am+1) =

(
− 1

N3
,− 1

N3
, · · · ,− 1

N3

)
U f(a?) =

1

N2
XS

where S ⊆ [m] with |S| = m/2 or 0, and XS is a vector of
length m whose i-th element is 1 if i ∈ S and−N otherwise.

Assume that N ≥ m3 is an arbitrarily large constant and
all the parameters are known to the leader except S.

Let RS be the set of leader’s commitments such that a? is
a best response, i.e., RS = {x : a? is a best response to x}.
• If S = ∅, a? is not effective hence RS = ∅;
• If S 6= ∅, the feasible region RS 6= ∅.

Then any (x1, · · · , xm) ∈ RS must satisfy

∀i ∈ [m], xi +
∑
j 6=i

(
− 2

m− 2

)
xj ≤ max{U f(a?)} =

1

N2

since the utility of choosing ai,∀i ∈ [m] cannot exceed that
of choosing a?. Thus

1

N2
≥ xi +

∑
j 6=i

(
− 2

m− 2

)
xj =

m

m− 2
xi −

2

m− 2

∑
j

xj

=
m

m− 2
xi −

2

m− 2

=⇒ xi ≤
m− 2

mN2
+

2

m
<

1

N2
+

2

m
. (∗)

Similarly, for action am+1, we have

− 1

N3

∑
i∈[m]

xi ≤
1

N2

∑
i∈S

xi −
1

N

∑
i 6∈S

xi,

which yields ∑
i∈S

xi ≥ 1− 1

N
− 1

N2
. (∗∗)

Note that for any S with |S| = m/2, by condition (∗) and
(∗∗),

∀i ∈ S, xi >
2

m
− m + 2

2N
− 1

N2
,

∀i /∈ S, xi ≤
1

N
+

1

N2
.

In particular, for N > m3 (m > 1), 2/m− (m + 2)/2N −
1/N2 > 1/N + 1/N2. Therefore, for any S1 6= S2, RS1

∩
RS2

= ∅.
In other words, to distinguish the cases with S being

empty or non-empty, one must sample at least one x ∈ RS′

for all possible non-empty S′. Therefore for any determinis-
tic distinguisher,

(
m

m/2

)
= 2Ω(m) samples are needed.

For randomized distinguishers, we apply Yao’s minimax
principle (Yao 1977) and assign the following distribution to
the inputs

p(S) =

{
1
2 S = ∅

1

2(m
m/2)

|S| = m/2 .

With this randomized input, we can check that for any
randomized algorithm, the sample complexity is at least
2Ω(m).

Now, we prove Theorem 7.

Proof of Theorem 7. Consider the following utility matrix
for the leader:

a1 a2 · · · am+1 a?

1 1 · · · 1 k
1 1 · · · 1 k
...

... · · ·
...

1 1 · · · 1 k

where k is a sufficiently large constant.
Then for any algorithm that computes the optimal (or even

approximately optimal) leader strategy, it can also answer
whether a? is effective or not by determining whether the
leader’s utility is sufficiently larger than 1. Then such an
algorithm must take at least 2Ω(m) samples according to
Lemma 8.

Notice that the RS in the above proof is in fact a small
region around the extreme points of feasible region of am+1,
as pointed out in the above construction, we need to check
all of the extreme points in order to make sure the feasibility
of a?, which matches the upper bound of Theorem 4.

Security games
The main inefficiency of SEPARATE-SEARCH comes from
EXHAUSTIVE-SEARCH , which plays an exhaustive search
for all extreme points. However, as pointed out by Theorem
7, this inefficiency is inevitable and intrinsic to the problem.
Nevertheless, we could make the problem tractable by two
kinds of relaxations. In this section we explore this possi-
bility and derive efficient sampling schemes. The first kind
of relaxation is to make some structural assumption on the

game we are playing, while the second is to assume that we
have access to other source of data, e.g. noisy estimation
of the follower’s utility matrix. We discuss the first relax-
ation in this section and we defer the second relaxation to
the appendix. Furthermore, we demonstrate that SEPARATE-
SEARCH can serve as a general framework to solve sampling
(learning) problems in Stackelberg games, by making some
modifications to EXHAUSTIVE-SEARCH , we can possibly
make SEPARATE-SEARCH efficient.

Analysis
In this section, we consider the security game and develop
an efficient algorithm for the security game. The sample
complexity we obtain is O(n3L), a significant improvement
over Õ(n6.5L) developed by Blum, Haghtalab, and Procac-
cia (2014). Moreover, our algorithm is much simpler than
theirs, which involves a costly sub-procedure of optimizing
a linear function over an unknown convex region, given the
initial feasible point and the membership oracle.

Before we proceed, we make the following observation
about the difference between security games and general
Stackelberg games. In security games we no longer use the
polytope of all pure strategies as the initial feasible region,
since the dimension could become exponentially large. In-
stead, we consider P as the polytope of all feasible coverage
vector. P is convex and it is in a space of dimension n. How-
ever, for now, the feasible region P is no longer a simple
simplex, i.e., it can have more than n + 1 facets.

Nevertheless, the next thing we are going to show is that
replacing EXHAUSTIVE-SEARCH with SECURITY-SEARCH
(shown in Algorithm 3) can make SEPARATE-SEARCH ef-
ficient in terms of sample complexity. We need to point
out that SECURITY-SEARCH is computationally inefficient.
However, this inefficiency is inevitable for security games.
Korzhyk, Conitzer, and Parr (2010) show that it is NP-hard
to compute the optimal strategy even when schedules have
size 2. The key insight for Algorithm 3 is that we do not need
to search over the entire polytope Ui, instead, one sample is
enough. The reason is that we know directly which extreme
point could be in the feasible region of another action, if
there is one. The formal description for SECURITY-SEARCH
is in Algorithm 3.

Algorithm 3 SECURITY-SEARCH

Require: Ui,Li

1: Solve the following linear program and denote the solu-
tion by p.

max pi s.t. p ∈ Ui (1)

2: ∀j ∈ [n], set p?j ← pj if j ∈ F , and p?j ← 0 otherwise.
3: Let the defender adopt p? and observe f = f?(p?).
4: if f = ai then
5: Li ← Ui.
6: else
7: Suppose f = ai′ , thenLi′ ← p? andF ← F∪{ai′}.
8: end if
9: return

Now we have the following theorem.
Theorem 9. For security games with n targets and rep-
resentation length of L, w.h.p., the modified SEPARATE-
SEARCH requires O(n3L) samples to identify feasible re-
gions for all actions for the attacker.

Similar to Claim 5, Ui (Li) is still convex and serves as
an upper (lower bound) on Pi. the following Claim 10 and
Claim 11 serve as the key elements for the proof.
Claim 10. The strategy p? is contained in Ui.

Proof. Intuitively, p? is implementable since the schedule is
subset close, which means we can mask an arbitrary coor-
dinate j of p by replacing all schedule D containing j with
D\{j}. Formally, for any pure strategy q, define C(q) to be
the set of targets covered by q, it is easy to see that C(q) is
subset close, i.e., for any T ⊆ C(q), we have another pure
strategy q′ such that C(q′) = T . Now suppose p = Ms, and
for q ∈ Q, we set

s?q =

{
0 if C(q)

⋂
(F\F) 6= ∅∑

C(q̃)=C(q)+T, T⊆F\F
sq̃ otherwise

First of all, s? is a valid strategy, since∑
q∈Q

s?q =
∑
q∈Q

C(q)⊆F

∑
C(q̃)=C(q)+T

T⊆F\F

sq̃ =
∑
q∈Q

sq = 1

Then, it is easy to verify that for i ∈ F\F ,

p?i = 0

and for i ∈ F ,

p?i =
∑

q∈Q Miq · s?q
=

∑
q∈Q,C(q)

⋂
(F\F)=∅

Miq · s?q

=
∑

q∈Q,C(q)
⋂

(F\F)=∅
Miq

(∑
C(q̃)=C(q)+T,T⊆F\F

sq̃

)
=
∑

q∈Q Miq · sq
= pi

Therefore, p? is implementable. Moreover, according to Al-
gorithm 1, when SECURITY-SEARCH is called, all Ui’s do
not intersect with one another, and Ui contains all defender
strategies that the attacker choosing ai is the best response
in F . Given defender strategy p?, the attacker would prefer
to attack the target i to any other target i′ ∈ F , because the
utility of attacking any target i depends only on pi and we
know p?i = pi, which implies p ∈ Ui.

Claim 11. If f = ai, then Li = Ui.

Proof. For any j ∈ F\F , we claim that

p? = arg min
p∈Ui

(U a(p, i)− U a(p, j)) (2)

As a consequence, for any p ∈ Ui and any j ∈ F\F ,

U a(p, i)− U a(p, j) ≥ U a(p?, i)− U a(p?, j) ≥ 0

where the second inequality comes from f = ai. For any
j ∈ F ,

U a(p, i)− U a(p, j) ≥ 0

since we have already separated i and j. Combining the
above two equations, we know that ∀p ∈ Ui choosing ai
is always the best response for the attacker, with which we
can conclude that Ui = Li.

To prove (2), notice that for j ∈ F\F , p?j = 0, and

U a(p, j) = pjU
a
c (j) + (1− pj)U

a
u(j)

= U a
u(j) + (U a

u(j)− U a
c (j))pj ,

thus U a(p, j) is decreasing with pj . Consequently p? al-
ready maximizes U a(p, j) in Ui. On the other hand, since
p?i = pi, we have U a(p, i) = U a(p?i , i). Furthermore, we
choose p according to (1) and it minimizes U a(p, i) over Ui,
thus p? also minimize U a(p, i). So

U a(p, i) ≥ U a(p?, i) ≥ U a(p?, j) ≥ U a(p, j),

where the second equation holds because f = ai.

Proof of Theorem 9. Combining Claim 10 and Claim 11
would directly imply the correctness of the modified
SEPARATE-SEARCH.

Finally, consider the sample complexity for the mod-
ified SEPARATE-SEARCH, since each call of SECURITY-
SEARCH only requires one sample and it would either dis-
cover a new effective action of the follower or fully iden-
tify the feasible region of a discovered action, thus we make
at most 2n calls to SECURITY-SEARCH . Consequently, the
worst case complexity is dominated by FIND-SEPERATING-
PLANE, which is O(n3L).

Conclusion
In this paper, we propose an algorithm for finding the op-
timal strategy to commit to for the leader in Stackelberg
games. Although our algorithm still has exponential depen-
dence on m in the worst case, it makes exponential improve-
ment over previous results and gets rid of the exponential
dependence on L. Moreover, it is guaranteed to be efficient
in certain cases. Furthermore, we also give an impossibility
result showing that the inefficiency (the exponential depen-
dence on m) is intrinsic to the problem itself. Our algorithm
is quite general, when applied to security games, which have
richer structures than general Stackelberg games, it gives a
better sample complexity than previous results.

One interesting future research direction is to further ap-
ply our algorithm SEPARATE-SEARCH to other related prob-
lems that dealing with uncertainties in Stackelberg (security)
games. In the appendix, we point out a possible extension,
which utilizes other source of data as well, and derive some
preliminary results.

References
Amin, K.; Singh, S.; and Wellman, M. P. 2016. Gradient
methods for stackelberg security games. In UAI, 2–11.
An, B.; Pita, J.; Shieh, E.; Tambe, M.; Kiekintveld, C.; and
Marecki, J. 2011. Guards and protect: Next generation
applications of security games. ACM SIGecom Exchanges
10(1):31–34.

Balcan, M.-F.; Blum, A.; Haghtalab, N.; and Procaccia,
A. D. 2015. Commitment without regrets: Online learning
in stackelberg security games. In ACM EC, 61–78. ACM.
Blum, A.; Haghtalab, N.; and Procaccia, A. D. 2014. Learn-
ing optimal commitment to overcome insecurity. In NIPS,
1826–1834.
Blum, A.; Haghtalab, N.; and Procaccia, A. D. 2015. Learn-
ing to play stackelberg security games.
Camerer, C. F.; Ho, T.-H.; and Chong, J.-K. 2004. A cog-
nitive hierarchy model of games. The Quarterly Journal of
Economics 119(3):861–898.
Chen, L.; Lin, F.; Tang, P.; Wang, K.; Wang, R.; and Wang,
S. 2017. K-memory strategies in repeated games. In AA-
MAS, 1493–1498.
Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the com-
plexity of computing two-player nash equilibria. Journal of
the ACM (JACM) 56(3):14.
Chen, L.; Tang, P.; and Wang, R. 2017. Bounded rationality
of restricted turing machines. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, 444–450.
Conitzer, V., and Sandholm, T. 2006. Computing the opti-
mal strategy to commit to. In Proceedings of the 7th ACM
conference on Electronic commerce, 82–90. ACM.
Conitzer, V., and Sandholm, T. 2008. New complexity re-
sults about nash equilibria. Games and Economic Behavior
63(2):621–641.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a nash equilibrium.
SIAM Journal on Computing 39(1):195–259.
Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y.
2016. Deep learning, volume 1. MIT press Cambridge.
Haghtalab, N.; Fang, F.; Nguyen, T. H.; Sinha, A.; Procac-
cia, A. D.; and Tambe, M. 2016. Three strategies to success:
Learning adversary models in security games. In IJCAI, vol-
ume 16, 308–314.
Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.; Rathi, S.; Tambe,
M.; and Ordónez, F. 2010. Software assistants for random-
ized patrol planning for the lax airport police and the federal
air marshal service. Interfaces 40(4):267–290.
Jiang, A. X., and Leyton-Brown, K. 2011. Polynomial-
time computation of exact correlated equilibrium in com-
pact games. In Proceedings of the 12th ACM conference on
Electronic commerce, 119–126. ACM.
Kalai, A. T., and Vempala, S. 2006. Simulated annealing for
convex optimization. Mathematics of Operations Research
31(2):253–266.
Kamra, N.; Gupta, U.; Fang, F.; Liu, Y.; and Tambe, M.
2018. Policy learning for continuous space security games
using neural networks. In AAAI-18.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complex-

ity of computing optimal stackelberg strategies in security
resource allocation games. In AAAI, volume 10, 805–810.
Letchford, J., and Conitzer, V. 2010. Computing optimal
strategies to commit to in extensive-form games. In Pro-
ceedings of the 11th ACM conference on Electronic com-
merce, 83–92. ACM.
Letchford, J.; Conitzer, V.; and Munagala, K. 2009. Learn-
ing and approximating the optimal strategy to commit to.
In International Symposium on Algorithmic Game Theory,
250–262. Springer.
Ling, C. K.; Fang, F.; and Kolter, J. Z. 2018. What game
are we playing? end-to-end learning in normal and extensive
form games. In IJCAI-18, 396–402.
Marecki, J.; Tesauro, G.; and Segal, R. 2012. Playing
repeated stackelberg games with unknown opponents. In
IJCAI-12, 821–828.
Papadimitriou, C. H., and Roughgarden, T. 2008. Comput-
ing correlated equilibria in multi-player games. Journal of
the ACM (JACM) 55(3):14.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed armor protection: the application of a game theo-
retic model for security at the los angeles international air-
port. In IJCAI-08, 125–132.
Shen, W.; Tang, P.; and Zuo, S. 2018. Computer-aided
mechanism design: designing revenue-optimal mechanisms
via neural networks. CoRR abs/1805.03382.
Sinha, A.; Kar, D.; and Tambe, M. 2016. Learning adversary
behavior in security games: A pac model perspective. In
AAMAS, 214–222.
Tambe, M. 2011. Security and game theory: algorithms,
deployed systems, lessons learned. Cambridge University
Press.
Xu, H.; Rabinovich, Z.; Dughmi, S.; and Tambe, M. 2015.
Exploring information asymmetry in two-stage security
games. In AAAI, 1057–1063.
Yang, R.; Ford, B.; Tambe, M.; and Lemieux, A. 2014.
Adaptive resource allocation for wildlife protection against
illegal poachers. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems,
453–460. International Foundation for Autonomous Agents
and Multiagent Systems.
Yao, A. C.-C. 1977. Probabilistic computations: Toward a
unified measure of complexity. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, 222–227. IEEE.
Yin, Y.; Xu, H.; Gan, J.; An, B.; and Jiang, A. X. 2015.
Computing optimal mixed strategies for security games with
dynamic payoffs. In IJCAI, 681–688.
Zuo, S., and Tang, P. 2015. Optimal machine strategies to
commit to in two-person repeated games. In AAAI, 1071–
1078.

