
Theoretical Computer Science 370 (2007) 240–253
www.elsevier.com/locate/tcs

On searching a table consistent with division posetI

Yongxi Chenga,∗, Xi Chena, Yiqun Lisa Yinb

a Department of Computer Science, Tsinghua University, Beijing 100084, China
b Independent Security Consultant, Greenwich CT, USA

Received 5 April 2006; received in revised form 18 October 2006; accepted 31 October 2006

Communicated by E. Pergola

Abstract

Suppose Pn = {1, 2, . . . , n} is a partially ordered set with the partial order defined by divisibility, that is, for any two elements
i, j ∈ Pn satisfying i divides j , we have i ≤Pn j . A table An = {ai |i = 1, 2, . . . , n} of real numbers is said to be consistent with
Pn , provided that for any two elements i, j ∈ {1, 2, . . . , n} satisfying i divides j , ai ≤ a j . Given a real number x , we want to
determine whether x ∈ An , by comparing x with as few entries of An as possible. In this paper, we investigate the complexity
τ(n), measured by the number of comparisons, of the above search problem. We present a 55n

72 + O(ln2 n) search algorithm for An

and prove a lower bound (3
4 +

17
2160)n + O(1) on τ(n) using an adversary argument.

c© 2006 Elsevier B.V. All rights reserved.

Keywords: Search algorithm; Complexity; Partially ordered set; Divisibility

1. Introduction

Suppose P = {1, 2, . . . , n} is a partially ordered set (poset), we say a table A = {ai |i = 1, 2, . . . , n} of n real
numbers consistent with P , provided that for any i, j ∈ P satisfying i ≤P j , ai ≤ a j . Given a table A of real numbers
which are consistent with a known poset P , and given a real number x , we would like to determine whether x ∈ A, by
making a series of comparisons between x and certain elements ai ∈ A. The problem is considered in a model using
pairwise comparisons of the form x : ai (ai ∈ A) as the basic operations. These comparisons have ternary outcomes
x < ai , x = ai , or x > ai . Our aim is to make as few comparisons as possible. The complexity of the problem is
defined to be the minimum(over all search algorithms for P) of the maximum number of comparisons required in the
worst-case.

In this article, we consider the above search problem for the case where the partial order is defined by divisibility.
Let Pn = {1, 2, . . . , n} be a poset with a partial order such that, for any two elements i, j ∈ Pn satisfying i divides

I This work was supported in part by National Natural Science Foundation of China Grant 60553001 and National Basic Research Program of
China Grant 2007CB807900, 2007CB807901.

∗ Corresponding author. Tel.: +86 10 62797304.
E-mail addresses: cyx@mails.tsinghua.edu.cn (Y. Cheng), xichen00@mails.tsinghua.edu.cn (X. Chen), yiqun@alum.mit.edu (Y.L. Yin).

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.027

http://www.elsevier.com/locate/tcs
mailto:cyx@mails.tsinghua.edu.cn
mailto:xichen00@mails.tsinghua.edu.cn
mailto:yiqun@alum.mit.edu
http://dx.doi.org/10.1016/j.tcs.2006.10.027

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 241

j , i ≤Pn j . Thus, we can say a table An = {ai |i = 1, 2, . . . , n} of real numbers is consistent with Pn if for any
two elements i, j ∈ {1, 2, . . . , n} satisfying i divides j , ai ≤ a j . Denote by τ(n) the complexity of the problem of
searching for a given real number x in An . We will investigate both the upper bounds (i.e., search algorithms for An)
and the lower bounds on τ(n), and our main result is the following:

Theorem 1.1. For n ≥ 1, c1n + O(1) ≤ τ(n) ≤ c2n + O(ln2 n), where c1 and c2 are constants, and c1 =
3
4 +

17
2160 ≈

0.758, c2 =
55
72 ≈ 0.764.

Throughout the paper, we denote by dxe (the ceiling of x) the least integer that is not less than x , and denote by
bxc (the floor of x) the largest integer that is not greater than x .

2. Related work

In [5,6], Linial and Saks have studied the above class of search problems for the general finite partially ordered set
P . In [5] some general bounds on the complexity are provided; more precise results are also presented for the case
that P is a product of chains and that P is a rooted forest. In [6] it was proved that, for general finite partially ordered
sets, the information theoretically bound for the complexity is tight up to a multiplicative constant.

There are different perspectives on the problem of searching for posets. In [2], the authors have studied the tradeoff
between the preprocessing time and the subsequent search time in a partial order. Let P(n) be the worst-case cost of
a preprocessing algorithm, which builds some partial orders, and let S(n) be the maximum number of comparisons
required to answer a membership query. They proved that P(n)+n log2 S(n) ≥ (1+o(1))n log2 n for any comparison-
based algorithm.

A different notion of searching a poset was studied in [1,3]. They considered searching for a given element x in a
poset P , instead of searching for a given real number in a table of real numbers consistent with P . In this case, for
each comparison x : pi (pi ∈ P), there are two possible outcomes: ‘yes’ indicates that x is ‘below’ pi (less than
or equal to pi); ‘no’ indicates that x is not below pi . The aim is to find the optimal search strategy. In spite of the
similarity in the definitions, this turns out to be quite a different model. In [1], the authors have given a polynomial
time algorithm for posets that have tree structures. In [3], the authors proved that the problem is NP-hard in general,
and they also gave a (1 + o(1))-approximation algorithm under the random graph model and a 6.34-approximation
algorithm under the uniform model; both of these run in polynomial time.

3. Easy bounds on τ(n)

First, we give an easy lower bound 3n
4 on τ(n) and a simple asymptotical cn algorithm searching An , where

c ≈ 0.81 is a constant.

3.1. Lower bounds (3/4)n

It is easy to see that the following simple response strategy for the adversary can guarantee that at least 3n
4

comparisons of the form x : ai (ai ∈ An) are required to determine whether x ∈ An , for any search algorithm.
Response Strategy RS1: when the algorithm asks about x : ai , i = 1, 2, . . . , b n

2 c, answer x > ai ; when the
algorithm asks about x : ai , i = b

n
2 c + 1, . . . , n, answer x < ai .

Focus on the subset A∗
n = {ai |

n
4 < i ≤ n} of An ; if the adversary answers queries in the above manner, the

algorithm needs the comparison of x with each element ai ∈ A∗
n to determine whether x = ai ; it thus needs at least

3n
4 comparisons. In fact, the set P∗

n = {i ∈ Pn|
n
4 < i ≤ n} is a section (see [5]) of Pn , and there is no ordered chain

that has a length more than two in P∗
n .

Remark 3.1. The following is a further exposition of the above argument for the lower bounds (3/4)n. For any
algorithm searching An , we answer the queries x : ai according to RS1, for any step S to which the algorithm had
been implemented, if there exists ak ∈ A∗

n such that the algorithm doen not compare x with ak , consider the following
two assignments to An :

Assignment 1: ai = x − 1 for 1 ≤ i ≤
n
2 ; ai = x + 1 for n

2 < i ≤ n.
Assignment 2: The same as Assignment 1, except that ak = x (notice that n

4 < k ≤ n).

242 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

It is easy to see that for both the above assignments, An is consistent with Pn , and when the assigned array An is
searched by the same algorithm to step S, the answers will be the same as in RS1. Notice that x /∈ An in Assignment
1, and x ∈ An in Assignment 2; however, the algorithm could not distinguish the above assignments if they were only
implemented to step S. It follows that no search algorithm could determine whether x ∈ An if it hasn’t compared all
the elements in A∗

n with x .

3.2. A simple search algorithm

We will give an asymptotical cn algorithm searching An based on a binary search, where c =
∑

∞

t=0
1

22t ≈ 0.81 is

a constant. Define Bi = {a j ∈ An| j = (2i − 1) × 2k (≤ n), k = 0, 1, . . .}, i = 1, 2, . . . , dn/2e. Then B1, B2, . . . ,
Bdn/2e is a partition of An , and each Bi is in linear ordering. The algorithm runs as follows:

Algorithm 1 (Searching Table An). Binary search B1, B2, . . . , Bdn/2e one by one.

Now, we analyze the number of comparisons required by Algorithm 1. For each Bi , the binary search needs at
most dlog2(|Bi | + 1)e comparisons, i = 1, 2, . . . , dn/2e. Since 1 ≤ |Bi | ≤ blog2 nc + 1, and the number of the sets
Bi that have exactly k elements is less than (n

2k+1 + 1), it follows that the total number of comparisons required by
Algorithm 1 is at most:

s1(n) =

blog2 nc+1∑
k=1

(n
2k+1 + 1

)
dlog2(k + 1)e

<

∞∑
k=1

n
2k+1 dlog2(k + 1)e +

blog2 nc+1∑
k=1

dlog2(k + 1)e

= n ·

∞∑
t=0

1
22t + O(ln n · ln ln n).

4. Upper bounds 55n
72 + O(ln2 n) on τ(n)

In this section, we present a 55n
72 + O(ln2 n) search algorithm for An , by partitioning An into 2-dimensional layers

and then searching them one by one.
Let In = {i |1 ≤ i ≤ n, i does not have factor 2 or 3}. For each i ∈ In , extend ai to a subset of An , L i , such that

L i = {ai×2k×3s ∈ An|k, s = 0, 1, 2, . . .}. For instance, for n = 15, we have subsets L1, L5, L7, L11, L13, and

L1 =

a1 a2 a4 a8
a3 a6 a12
a9

 L5 =

[
a5 a10
a15

]
L7 =

[
a7 a14

]
L11 =

[
a11

]
L13 =

[
a13

]
.

It is easy to see that all these subsets L i (which sometimes will be referred to as layers), i ∈ In , form a partition of
An .

An algorithm searching for a real number x in an m × n (m, n ≥ 1) monotone matrix (a matrix with entries
increasing along each row and each column) was described in [5], which repeats comparing x with the element e at
the top right corner of the current matrix, and either the first row or the rightmost column of the current matrix will be
eliminated depending on whether x > e or x < e; thus the algorithm requires at most m+n−1 comparisons (see [4,5]
for the lower bounds on the number of comparisons required for this problem when m = n). Based on this algorithm
and the fact that a layer is a “triangular” portion of a monotone matrix, we can apply the above “m + n − 1” algorithm
searching for a layer. Furthermore, for some of the layers we can do slightly better by exploiting the properties of the
layers.

Lemma 4.1. If a layer L with |L| /∈ {1, 2, 3, 5}, then one can search x in L using at most m + n − 2 comparisons,
where m and n are the numbers of rows and columns of L, respectively.

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 243

Proof. See Appendix A. �

By Lemma 4.1 we can obtain an improved search algorithm for An .

Algorithm 2 (Searching Table An). Search all layers L i one by one. If |L i | ∈ {1, 2, 3, 5}, search L i using the
“m + n − 1” algorithm in [5]; otherwise, search L i using the “m + n − 2” algorithm in Lemma 4.1.

Next, we analyze the number of comparisons required by Algorithm 2. Define r(L i) and c(L i) to be the numbers
of rows and columns of L i respectively. The total number of comparisons required by Algorithm 2 is at most

s2(n) =

∑
i∈In , |L i |∈{1,2,3,5}

(r(L i) + c(L i) − 1) +

∑
i∈In , |L i |/∈{1,2,3,5}

(r(L i) + c(L i) − 2)

=

∑
i∈In

r(L i) +

∑
i∈In

c(L i) − 2
∑
i∈In

1 +

∑
i∈In , |L i |∈{1,2,3,5}

1.

Clearly, r(L i) ≤ 1 + log3 n for any i ∈ In . The number of layers L i with r(L i) = p is less than (2n
3p+1 + 1), since

3p−1i ≤ n, 3pi > n and i has no factor 2 or 3. Similarly, c(L i) ≤ 1 + log2 n for any i ∈ In , and the number of layers
L i with c(L i) = q is less than (n

3×2q + 1). It follows that:

∑
i∈In

r(L i) <

1+log3 n∑
p=1

(
2n

3p+1 + 1
)

p <

∞∑
p=1

2np
3p+1 +

1+log3 n∑
p=1

p =
n
2

+ O(ln2 n),

∑
i∈In

c(L i) <

1+log2 n∑
q=1

(
n

3 × 2q + 1
)

q <

∞∑
q=1

nq
3 × 2q +

1+log2 n∑
q=1

q =
2n
3

+ O(ln2 n).

In addition,
∑

i∈In
1 = |In| =

n
3 + O(1), and∑

i∈In , |L i |∈{1,2,3,5}

1 =

∑
i∈In , n

2 <i≤n

1 +

∑
i∈In , n

3 <i≤ n
2

1 +

∑
i∈In , n

4 <i≤ n
3

1 +

∑
i∈In , n

8 <i≤ n
6

1 =
19n
72

+ O(1).

Therefore, s2(n) ≤
55n
72 + O(ln2 n).

5. Lower bounds (3
4 +

1
432)n + O(1) on τ(n)

In this section, we prove a lower bound (3
4 +

1
432)n + O(1) on τ(n), by using an adversary argument. Thus, the

previous easy lower bound 3n
4 is not the best possible.

5.1. The main idea in constructing lower bounds

Recall the response strategy RS1 for the adversary given in Section 3, which guarantees that at least 3n
4 comparisons

are needed to determine whether x ∈ An for any search algorithm. We can view RS1 in the following way:
In Algorithm 2, An is partitioned into layers L i . For each row R in each layer, if R has only one element, we pick

this element and say that it forms a unit; if R has at least two elements, we pick the last two elements as a unit. We will
call a unit consisting of one or two elements a 1-unit or 2-unit, respectively. In total. 3n

4 elements are picked, which
form exactly the subset A∗

n = {ai |
n
4 < i ≤ n} of An . We can now restate the response strategy RS1 as follows:

The response strategy for the elements in a 1-unit: for n
2 < i ≤ n, i is odd, when the algorithm asks about x : ai ,

answer x < ai .

{ pai }



244 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

The response strategy for the elements in a 2-unit: for n
4 < i ≤

n
2 , when the algorithm asks about x : ai , answer

x > ai ; when the algorithm asks about x : a2i , answer x < a2i .
.

. . . { aiy , pa2i }

.


The response strategy for the elements not in any unit: for 1 ≤ i ≤

n
4 , when the algorithm asks about x : ai , answer

x > ai .
In general, if an algorithm compares x with ai and gets the result x < ai , then all the elements ak with k divisible

by i are known to be larger than x , and thus could be eliminated from consideration, we say that these elements are
cut by ai . Similarly, if the algorithm gets the result x > ai , then all the elements ak with k that divide i are known to
be smaller than x and could be eliminated, we also say that these elements are cut by ai .

It is easy to see that under the response strategy RS1, any element that belongs to a particular unit could not be cut
by any other element. Therefore, if the strategy RS1 is adopted by the adversary, for any search algorithm in order to
determine whether x ∈ An , the 3n

4 comparisons of x with all the elements in all the units are necessary, thus obtaining
the lower bound 3n

4 .
Hereafter, for a response strategy, the notation ‘aiy’ means that when queried by any algorithm with the comparison

x : ai , answer x > ai , and we say that ai cuts to the left up; ‘pai ’ means that when queried by the comparison x : ai ,
answer x < ai , and we say that ai cuts to the right bottom.

A natural thought for constructing better lower bounds could be: If more elements from each row are picked, can
we prove that more than 3n

4 comparisons are required? Picking three elements from a row makes no difference, since
all the elements in a row are in linear order, and two comparisons are sufficient to search three ordered elements.
Therefore, at least four elements should be chosen from some rows, to guarantee that at least three comparisons are
required to search for x in them.

We will pick elements in the following way. If there are less than four elements in a row, we pick all the elements
as a unit; if there are at least four elements in a row, we pick the last four elements as a unit. However, in general, we
could no longer guarantee, as we do under the strategy RS1, that each of the elements picked cannot be cut by other
elements. Actually, we cannot even guarantee that any element picked would not be cut by the elements in the other
units. An element that cannot be cut by any element outside its unit, under some response strategy, can guarantee
the number of comparisons required by any search algorithm. We call this kind of element essential (notice that an
essential element may be cut by other elements in the same unit). Next, we will present a more effective response
strategy, in which there are sufficient essential elements to guarantee that more than 3n

4 comparisons are required, for
any search algorithm.

5.2. Units and special units

Let us start with some definitions. As described above, there is exactly one unit in each row of each layer. If in
a row there are less than four elements, all these elements form a unit; if in a row there are at least four elements,
the last four elements form a unit. A unit consisting of one, two, three, or four elements is called 1-unit, 2-unit, 3-
unit, or 4-unit respectively. E.g., in the below layer (1), we have a 1-unit {a9i }, a 3-unit {a3i , a6i , a12i }, and a 4-unit
{a2i , a4i , a8i , a16i }.

Next, we introduce an important subcollection of the units defined above, called special units, which is the key to
the proof of new lower bounds.

Definition 5.1. Special units: A unit u is called a special unit if u is the 4-unit in a layer L i with |L i | = 9 (i.e., a layer
L i with i ∈ Sn , where Sn = {i | n

18 < i ≤
n
16 , i is not divisible by 2 or 3}). We denote by 4-units a special unit.

Since the form of a layer L i is determined by its number of elements, |L i |, a layer containing a special unit must
have the following form (the marks ‘y’ and ‘p’ indicating the cut directions of the elements will be explained later in

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 245

the new response strategy, RS2). Each such layer contains exactly one special unit, {a2i , a4i , a8i , a16i }, in its first row.
ai , { a2iy , pa4iy , pa8iy , pa16i }

a3iy , pa6i , pa12i

pa9i

 (1)

A unit that is not a special unit is called a general unit, thus all 1-units, 2-units, and 3-units are general units, and
subcollections of 4-units are general units.

Special units can help establish better lower bounds as we will prove later that, under the response strategy RS2
described below, all elements in special units are essential; thus each special unit guarantees at least three necessary
comparisons for any search algorithm, which is one more than the two necessary comparisons guaranteed by the 2-unit
in its row under RS1. Consequently, the lower bound 3n

4 can be improved by the number of special units, |Sn|.

5.3. New response strategy

Now, we are ready to describe the new response strategy for the adversary, and show that it can guarantee that at
least (3

4 +
1

432)n + O(1) comparisons are required for any search algorithm to determine whether x ∈ An .
Response Strategy RS2:

For the elements not in a unit: for 1 ≤ i ≤
n
16 , when the algorithm asks about x : ai , answer x > ai .

For the elements in a 1-unit: for n
2 < i ≤ n, i is odd, when the algorithm asks about x : ai , answer x < ai .

{ pai }

 (2)

For the elements in a 2-unit: for n
4 < i ≤

n
2 , i is odd, when the algorithm asks about x : ai , answer x > ai ; when

the algorithm asks about x : a2i , answer x < a2i .
.

{ aiy , pa2i }

. . .

 (3)

The 3-units are partitioned into two classes according to the number of elements of the next row below them, which
are denoted by 3-unit1’s and 3-unit2’s respectively.

For the elements in a 3-unit1 (the 1st class of 3-units whose next row contains one element): for n
6 < i ≤

n
4 , i is

odd, when the algorithm asks about x : ai , answer x > ai ; when the algorithm asks about x : a2i or x : a4i , answer
x < a2i or x < a4i respectively.

.

{ aiy , pa2i , pa4i }

pa3i

 (4)

For the elements in a 3-unit2 (the 2nd class of 3-units whose next row contains two elements): for n
8 < i ≤

n
6 , i is

odd, when the algorithm asks about x : ai or x : a2i , answer x > ai or x > a2i respectively; when the algorithm asks
about x : a4i , answer x < a4i .

.

{ aiy , a2iy , pa4i }

a3iy , pa6i

 (5)

246 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

There are two classes of 4-units, general 4-units and special 4-units, which are denoted by 4-unitg’s and 4-units’s
respectively.

For the elements in a 4-unitg (general 4-unit): for n
16 < i ≤

n
8 , i /∈ 2Sn (where 2Sn = {2 j | j ∈ Sn}, and see

Definition 5.1 for Sn), when the algorithm asks about x : ai or x : a2i , answer x > ai or x > a2i respectively; when
the algorithm asks about x : a4i or x : a8i , answer x < a4i or x < a8i respectively.

.

. . . { aiy , a2iy , pa4i , pa8i }

.

 (6)

For the elements in a 4-units (special 4-unit): for i ∈ Sn , {a2i , a4i , a8i , a16i } is a special unit, the response strategy
for the elements in a special unit is adaptive, depending on the order of comparisons with x made by the search
algorithm, to guarantee that at least three comparisons are needed to determine whether x ∈ {a2i , a4i , a8i , a16i }.

If the algorithm first asks about x : a2i , answer x > a2i . Then a2i will be eliminated, and the remaining three
elements will follow the strategy {a4iy, pa8i , pa16i } for possible subsequent comparisons with x .

If the algorithm first asks about x : a4i , answer x > a4i . Then a2i and a4i are known to be smaller than x and will
be eliminated, and the remaining two elements will follow the strategy {a8iy, pa16i }.

If the algorithm first asks about x : a8i , answer x < a8i . Then a8i and a16i will be eliminated, and the remaining
two elements will follow the strategy {a2iy, pa4i }.

If the algorithm first asks about x : a16i , answer x < a16i . Then a16i will be eliminated, and the remaining three
elements will follow the strategy {a2iy, a4iy, pa8i }.
We denote the response strategy of the elements in a special unit by {a2iy, pa4iy, pa8iy, pa16i }, see (1).

5.4. Lower bounds (3
4 +

1
432)n + O(1) on τ(n)

Recall that we called an element ai ∈ An essential under the strategy RS2, if ai belongs to some unit u (i.e.,
i > n

16), and any element not in u cannot cut ai under RS2.
Define set En = {all elements of 1-units} ∪ {all elements of 2-units} ∪ {all the first and second elements of 3-unit1’s}
∪ {all the second and third elements of 3-unit2’s} ∪ {all the second and third elements of 4-unitg’s} ∪ {all elements of
4-units’s}. We can prove the following lemma.

Lemma 5.1. Under the response strategy RS2, all the elements of En are essential.

Proof of Lemma 5.1. See Appendix B. �

By Lemma 5.1 and the response strategy RS2, each essential element in the general units needs one comparison
with x to determine whether it equals x . For each special unit u, at least three comparisons between x and its elements
are needed to determine whether x ∈ u. By comparing the 1-units and 2-units picked for RS1 in Section 5.1, we can see
that under the strategy RS2, each row containing a general unit contributes the same number of necessary comparisons
as it contributes under RS1. While for each row containing a special unit, it contributes one more necessary comparison
than it does under RS1. Therefore, the lower bound 3n

4 could be improved by the number of special units, |Sn|, which
is |{i :

n
18 < i ≤

n
16 , i is not divisible by 2 or 3}| = (n

16 −
n
18) ×

1
3 + O(1) =

n
432 + O(1). Thus, we get a new lower

bound (3
4 +

1
432)n + O(1).

Remark 5.2. Similarly to Remark 3.1 in Section 3.1, we can give a further exposition of the above lower bound
arguments. That is, for any search algorithm that doesn’t make sufficiently many comparisons, we can give two
explicit assignments to An (one contains x and the other doesn’t) such that the algorithm cannot distinguish them; thus
it cannot determine whether x ∈ An . Since the ideas are the same, we append the detailed discussion in Appendix C.

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 247

6. Improved lower bounds (3
4 +

17
2160)n + O(1) on τ(n)

By recognizing more special units, we can extend the above method to obtain a better lower bound (3
4 +

17
2160)n +

O(1) on τ(n). The units are defined in the same way as in Section 5.2, and we will introduce three classes of special
units.

Definition 6.1. The 1st class of special units (4-units,1): A unit u is of the 1st class of special units if u is the 4-unit
in a layer L i with |L i | = 9 and i is not divisible by 5.

The definition of 4-units,1 is just Definition 5.1 of 4-units with the extra restriction that i is not divisible
by 5. A layer L i containing a 4-units,1 must have the form (1), each such layer contains exactly one special
unit {a2i , a4i , a8i , a16i } in its first row. The subscripts j = 2i of the first elements of all 4-units,1’s form a set
Sn,1 = { j (= 2i)| n

9 < j ≤
n
8 , j is divisible by 2, but is not divisible by 3, 4 or 5}.

Definition 6.2. The 2nd class of special units (4-units,2): A 4-unit u is of the 2nd class of special units if it has the
following properties:

1. u is the 4-unit in the first row of a layer L j with j not divisible by 5.
2. The first row of L j has at least six elements and has two more elements than the second row of L j .

The layers containing a 4-units,2 must have the following form (7), where the symbol ‘•’ indicates that there must
exist an element at the position. Each such layer contains exactly one special unit, {ai , a2i , a4i , a8i }, in its first row.
The subscripts i of the first elements of all 4-units,2’s form a set Sn,2 = {i | n

12 < i ≤
n
8 , i is divisible by 4, but is not

divisible by 3 or 5}.
. . . • • { aiy pa2iy pa4iy pa8i }

. . . •y •y pa3i pa6i

.

 (7)

Definition 6.3. The 3rd class of special units (4-units,3): A 4-unit u = {ai , a2i , a4i , a8i } is of the 3rd class of special
units if it is in a layer L j with j not divisible by 5, and has the following properties:

1. The subscript of its first element, i , is divisible by 36 (i.e., in L j , there are at least two rows above u, and at least
two columns before the first element ai of u).

2. Denote by R the row containing u in L j . The next row above R has two more elements than R, and the next row
below R has two less elements than R.

A 4-units,3 in a layer must have the following form (8) (see Lemma D.1 in Appendix D), here we only list the
subscripts.

. .

. • • • •

. 4i
3 y 8i

3 y p 16i
3 p 32i

3

. { iy p2iy p4iy p8i}

. . . •y •y p3i p6i

. . . • • p9i

.



(8)

248 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

The subscripts i of the first elements of all 4-units,3’s form a set Sn,3 = {i | n
12 < i ≤

3n
32 , i is divisible by 4 and 9, but

is not divisible by 5}.

Based on the above newly defined special units, we have the following response strategy:
Response Strategy RS∗

2: In RS∗

2, the response strategy for the elements in general units, special units and not in
any units are the same as their strategy in RS2 respectively, with only a different partition of 4-units into general units
and special units.

Similarly, define set E∗
n ={all elements of 1-units} ∪ {all elements of 2-units} ∪ {all the first and second elements of

3-unit1’s} ∪ {all the second and third elements of 3-unit2’s} ∪ {all the second and third elements of 4-unitg’s} ∪ {all
elements of special units 4-units,1’s, 4-units,2’s and 4-units,3’s}. We can prove the following lemma:

Lemma 6.1. Under RS∗

2, all elements of E∗
n are essential.

Proof of Lemma 6.1. See Appendix D. �

Using similar arguments as in Section 5.4, the lower bound 3n
4 could be improved by the number of the newly

defined special units, |Sn,1| + |Sn,2| + |Sn,3|, which is(n
8

−
n
9

)
×

1
4

×
2
3

×
4
5

+ O(1) +

(n
8

−
n
12

)
×

1
4

×
2
3

×
4
5

+ O(1) +

(
3n
32

−
n
12

)
×

1
4

×
1
9

×
4
5

+ O(1)

=
17n
2160

+ O(1).

Remark 6.2. By simply replacing RS2 and En by RS∗

2 and E∗
n respectively, the argument in Appendix C can be

directly applied here for the new lower bound (3
4 +

17
2160)n + O(1).

7. Concluding remarks and open problems

In this paper, we investigate the complexity, τ(n), of the problem of searching a table consistent with division
posets. Our main result is the following: For n ≥ 1, c1n + O(1) ≤ τ(n) ≤ c2n + O(ln2 n), where c1 and c2 are
constants, and c1 =

3
4 +

17
2160 ≈ 0.758, c2 =

55
72 ≈ 0.764. It may be of interest to further close the gap.

Notice that in the model presented in this paper. we only allow comparisons of the form x : ai , i.e., all comparisons
must involve x . If we also allow pairwise comparisons among the elements of An , then the techniques used in this
paper to prove lower bounds will not apply directly. It may be interesting to investigate the complexity of the search
problem in this new model.

Acknowledgments

The authors are grateful to Andrew C. Yao for introducing this interesting problem and for his insightful comments,
and to Xiaoming Sun and Chen Wang for helpful discussions. Also, the authors would like to thank the referees for
their valuable suggestions and comments.

Appendix A. Proof of Lemma 4.1

It is easy to see that the form of L is determined by its cardinality |L|. First, we prove two lemmas that will be
useful later.

Lemma A.1. In any layer, the difference of the lengths of any two consecutive rows must be 1 or 2.

Proof of Lemma A.1. We prove the lemma by contradiction. Otherwise, at least one of the following two situations
exists:[

. . . ai

. . . a3i

] [
. . . ai a2i a4i a8i . . .

. . . a3i

]
However, according to the definition of layers, the left one cannot happen because the element a2i should be in the
layer, and the right one cannot happen because the element a6i should be in the layer. Thus the lemma holds.

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 249

Lemma A.2. In any layer, there cannot be three consecutive rows with lengths successively increased by one.

Proof of Lemma A.2. Once again, we proceed by contradiction. Otherwise, the following situation must be the case: . . . ai a2i a4i
. . . a3i a6i
. . . a9i


However, this cannot happen since the element a8i should be in the layer. The lemma holds. �

Now, we are ready to prove Lemma 4.1. By Lemma A.1, we have the following two cases:
Case 1. The first row of L has two more elements than the second row. Since |L| ≥ 4, L must have the following form . . . ai a2i a4i

. . . a3i

. . .


First compare x with a2i .

If x < a2i , then a2i and a4i are known to be greater than x , and will be eliminated from L , leaving a portion of an
m × (n − 2) monotone matrix, which can be searched using at most m + (n − 2) − 1 comparisons. In total, at most
m + n − 2 comparisons are needed.

If x > a2i , then all elements in the first row except a4i are known to be smaller than x , and will be eliminated.
Then we compare x with a4i and eliminate it, leaving a portion of an (m − 1) × (n − 2) monotone matrix, which can
be searched using at most (m − 1) + (n − 2) − 1 comparisons. In total, at most m + n − 2 comparisons are needed.
Case 2. The first row of L has one more element than the second row. We can assume |L| ≥ 8, since for |L| = 4, 6,

or 7 it is easy to verify that the first row of L has two more elements than the second row, which belong to Case 1.
When |L| ≥ 8, by Lemmas A.2 and A.1 the second row of L has two more elements than the third row, thus L must
have the following form:

. . . ai a2i a4i a8i

. . . a3i a6i a12i

. . . a9i

. . .


First, compare x with a4i .

If x < a4i , then the two rightmost columns are known to be greater than x and will be eliminated, leaving a portion
of an m × (n − 2) monotone matrix, which can be searched using at most m + (n − 2) − 1 comparisons. In total, at
most m + n − 2 comparisons are needed.

If x > a4i , then all the elements in the first row except a8i are known to be smaller than x , and will be eliminated.
Then, compare x with a8i and eliminate it, leaving a portion of an (m − 1) × (n − 1) monotone matrix whose first
row has two more elements than the second row. Thus, it reduces to the situation of Case 1, which needs at most
(m − 1) + (n − 1) − 2 comparisons. In total, at most m + n − 2 comparisons are needed.
Therefore, in either case m + n − 2 comparisons suffice.

Appendix B. Proof of Lemma 5.1

We prove the lemma by contradiction. Suppose that, under RS2, a j ∈ En is not essential, i.e., there exists an
element ai ∈ An that cuts a j , and ai is not in the unit containing a j . We have the following two cases:
Case 1. ai and a j are in one layer. If ai does not belong to any unit, then i ≤ n/16 and ai always cuts to the left
up. If ai cuts an element a j , then 2 j ≤ i , 32 j ≤ 16i ≤ n, which implies that a2 j , a4 j , a8 j , a16 j all exist in the row
containing a j , and thus a j cannot be in a unit. Therefore, ai cannot cut any element in a unit. If ai belongs to a special
unit, 4-units , notice the form and the response strategy of special units, (1), and it is easy to see that ai cannot cut
any element a j ∈ En in a different unit in the same layer. If ai belongs to a general unit, we have the following eight
subcases:

1. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai }, and 2i > n. If ai cuts an element
a j , then j ≥ 2i > n, which contradicts with j ≤ n. Thus ai cannot cut any element.

250 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

2. ai is the second last (first) element of a 2-unit, then it cuts to the left up, {aiy, a2i }. If ai cuts a j ∈ En in the same
layer, then a j must be the first element of a row above ai . In addition, a j must be in the next row R above ai (since
by Lemma A.2 the rows above R have at least 5 elements, if a j is in a unit in those rows, then a j cannot be the first
element of that row). By Lemma A.1, R has 3 or 4 elements. If R has 3 elements, then it is a 3-unit2 and its first
element does not belong to En . If R has 4 elements, then it is a 4-unitg and its first element does not belong to En .

3. ai is the second last (second) element of a 3-unit1, then it cuts to the right bottom, {ai/2, pai , a2i }. Notice the form
of 3-unit1, (4), ai cannot cut any element in a different unit in the same layer.

4. ai is the second last (second) element of a 3-unit2, then it cuts to the left up, {ai/2, aiy, a2i }. Since the row below ai
has two elements, then by Lemmas A.1 and A.2, the next row above ai , R, has 5 elements. Thus, if ai cuts a j ∈ En
in the same layer, a j must be in R, and is the first element of the 4-unit U of R. Notice the form of the special
units, (1), in which the bottom row has one element. Therefore, U is not a special unit and its first element does not
belong to En .

5. ai is the second last (third) element of a 4-unitg , then it cuts to the right bottom, {ai/4, ai/2, pai , a2i }. Denote by U
the 4-unitg which ai is in. Notice the form of the general units, (6); a j must be the last element of R, where R is
the next row below ai and has one less element than the row containing ai . If R has at least four elements, then a j
must be the last element of a 4-unitg , thus a j /∈ En . Otherwise, R must have exactly three elements, and then a j
must be the third element of R. Since R has one less element than the next row above it, by Lemmas A.1 and A.2,
the next row below R has one element, and it follows that R is a 3-unit1; thus its third element a j /∈ En .

6. ai is the third last (first) element of a 3-unit (3-unit1 or 3-unit2), then it cuts to the left up, {aiy, a2i , a4i }. If ai cuts
a j ∈ En in the same layer, then a j must be the first element of R, where R is the next row above ai . In addition,
R must contain exactly four elements. Notice the form of the special units, (1); R is not a 4-units , and thus its first
element a j /∈ En .

7. ai is the third last (second) element of a 4-unitg , then it cuts to the left up, {ai/2, aiy, a2i , a4i }. In this case, a j must
be in the next row above ai , R. In addition, R has one more element than the row containing ai , and a j is the first
element of the 4-unit U in R. Notice the form of the special units, (1); U is not a 4-units , and thus its first element
a j /∈ En .

8. ai is the fourth last (first) element of a 4-unitg , then it cuts to the left up, {aiy, a2i , a4i , a8i }. If ai cuts an element
a j , then 2 j ≤ i , 16 j ≤ 8i ≤ n, which implies that a2 j , a4 j , a8 j , a16 j all exist in the row containing a j , and thus
a j cannot be in a unit. Therefore, ai cannot cut any element in a unit.

Case 2. ai and a j are in different layers. We first prove the following lemma that will be useful later.

Lemma B.1. For any a j1 , a j2 ∈ An in different layers, if j1 divides j2, then the quotient is at least 5.

Proof of Lemma B.1. Suppose that a j1 ∈ L i1 with j1 = i1 × 2k1 × 3s1 , a j2 ∈ L i2 with j2 = i2 × 2k2 × 3s2 , where
L i1 and L i2 are different layers (i.e., i1 6= i2) and j1 divides j2. Since i1, i2 have no factor 2 or 3, we have k1 ≤ k2 and
s1 ≤ s2, and i1 divides i2 with quotient at least 5. It follows that j1 divides j2 with quotient at least 5. �

There are seven subcases in Case 2.

1. ai does not belong to any unit. Then i ≤
n
16 and ai always cuts to the left up, and by using the same argument as at

the beginning of Case 1, ai cannot cut any element in a unit.
2. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai }, and 2i > n. By using the same

argument as in subcase 1 of Case 1, ai cannot cut any element.
3. ai is the second last element of a unit and cuts to the left up, {. . . , aiy, a2i }. By Lemma B.1, if ai cuts a j ∈ En

in a different layer then 5 j ≤ i , 10 j ≤ 2i ≤ n, thus a2 j , a4 j , a8 j all exist in the row containing a j . If a j ∈ En ,
a j can only be the first element of some special unit, it follows that j/2 ∈ Sn = {k ∈ In|

n
18 < k ≤

n
16 } (see

Definition 5.1), thus 9 j > n, which contradicts with 10 j ≤ n.
4. ai is the second last element of a unit and cuts to the right bottom, {. . . , pai , a2i }. Thus 4i > n. By Lemma B.1, if

ai cuts a j ∈ En in a different layer, then j ≥ 5i > n, which contradicts j ≤ n.
5. ai is the third last element of a unit and cuts to the left up, {. . . , aiy, a2i , a4i }. By Lemma B.1, if ai cuts a j ∈ En

in a different layer then 5 j ≤ i , and thus 20 j ≤ 4i ≤ n. It follows that a2 j , a4 j , a8 j , a16 j all exist in the row
containing a j ; thus a j cannot be in a unit, which contradicts a j ∈ En .

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 251

6. ai is the third last element of a unit and cuts to the right bottom. In this case, ai must be the second element of
a special unit, {ai/2, pai , a2i , a4i }. It follows that i/4 ∈ Sn = {k ∈ In|

n
18 < k ≤

n
16 }, thus i > 2n

9 . However, by
Lemma B.1, if ai cuts a j ∈ En in a different layer, then j ≥ 5i > 9i

2 > n, which contradicts j ≤ n.
7. ai is the fourth last element of a unit, i.e., the first element of a 4-unit, {aiy, a2i , a4i , a8i }. Then ai always cuts to

the left up, and by using the same argument as in subcase 8 of Case 1, ai cannot cut any element in a unit.

Appendix C. Further exposition of the lower bound arguments

For any algorithm searching An , we answer the queries x : ai according to RS2, for any step S to which the
algorithm had been implemented, consider the following assignment to An (in which x /∈ An).
Assignment to An:

For the elements ai ’s not in the special units, under RS2 they have a fixed answer when compared with x . Assign
x − 1 to ai if the answer is “x > ai ”, and assign x + 1 to ai if the answer is “x < ai ”.

For the special units, there are two cases:
Case 1. If, to step S, the special unit u has at least one element that has been compared with x by the algorithm,

then from RS2 the elements in u will also have fixed answers (though the answers may be different depending on
which element has been first compared with x). Assign x − 1 to ai ∈ u if the answer is “x > ai ”, and assign x + 1 to
ai ∈ u if the answer is “x < ai ”.

Case 2. If, to step S, the special unit u = {a2iy, pa4iy, pa8iy, pa16i } has no element that has been compared with x
by the algorithm, we assign x − 1 to its first and second elements a2i and a4i , and assign x + 1 to its third and fourth
elements a8i and a16i .

Lemma C.1. The above assignment is consistent with Pn , and when the assigned array An is searched by the same
algorithm to step S, the answers will be the same as in RS2.

Proof of Lemma C.1. It is easy to see that, up to step S, the answers will be the same as in RS2. For their consistency
with Pn , we will give a proof by contradiction.

Assume that in the above assignment there exists ai = x − 1 and a j = x + 1 with j |i . Notice that the above
assignment has the property that if an element is assigned x − 1, then it can cut to the left up in RS2; if an element
is assigned x + 1, then it can cut to the right bottom in RS2. It follows that in RS2, ai cuts a j . Therefore, either a j is
not an essential element, or, ai and a j are in the same unit. However, if a j is not an essential element and is assigned
x + 1 in the above assignment, so a j must be the last element of a 3-unit1 or a 4-unitg , which is contradictory since
we will have i ≥ 2 j > n. If ai and a j are in the same unit, the only possibility is that they are in a special unit
{a2ky, pa4ky, pa8ky, pa16k}, and i = 8k, j = 4k, but it is easy to see that this cannot happen in the above assignment.

�

For any step S to which the search algorithm has been implemented, define the set (of remained essential elements)
Re(S) = {ai ∈ En| up to step S, ai has neither been compared with x by the algorithm nor been cut by any other
elements in the same unit}. If Re(S) is not empty, we can modify the above assignment by one element in the following
way, such that in the modified assignment x ∈ An .
Modified Assignment to An:

Consider an arbitrary unit u containing an element ak ∈ Re(S), define u′
= {ai ∈ u ∩ En| up to step S, ai has

neither been compared with x by the algorithm nor been cut by any other elements in u}. Notice that u′ is not empty
since ak ∈ u′.

If u′ is still a full special unit containing four elements, modify the assignment of its second element from x − 1 to
be x ;

Otherwise, all the elements in u′ have fixed answers. If there exist elements in u′ having fixed answer “<x”, modify
the assignment of the element in u′ with the largest subscript having the answer “<x” to be x ;

Else, there must exist elements in u′ having the fixed answer “>x”, and we modify the assignment of the element
in u′ with the smallest subscript having the answer “>x” to be x .

Lemma C.2. The above modified assignment is consistent with Pn , and when the re-assigned array An is searched
by the same algorithm to step S, the answers will be the same as in RS2.

252 Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253

Proof of Lemma C.2. Since the modified element has not been queried by the algorithm to step S, the answers will
still be the same as in RS2. For the consistency with Pn , by Lemma C.1 any possible inconsistency between two
elements of An must involve the modified element, and there are two possible cases of inconsistency:

Case 1. In the above modification, we have ai modified from x − 1 to be x , which results in an inconsistency
with a j . It must be the case that a j = x − 1 (if a j = x + 1, ai and a j will form an inconsistency with the original
assignment, which is a contradiction) and i | j . Notice that a j = x − 1 implies that in RS2, a j can cut to the left up.
Thus a j cuts ai . Since ai ∈ u′ is essential, a j must be in the same unit containing ai . However, this cannot happen in
the above modification, since if a j = x − 1 with j > i exists we will not modify ai .

Case 2. In the above modification, we have ai modified from x + 1 to be x , which results in inconsistency with
a j . Similarly, it must be the case that a j = x + 1 and j |i . a j = x + 1 implies that in RS2, a j can cut to the right
bottom. Thus a j cuts ai . Since ai is essential, again a j must be in the same unit containing ai . However, this also
cannot happen in the above modification, since if a j = x + 1 with j < i exists. we will not modify ai . �

By the above arguments, if Re(S) is not empty, the algorithm cannot distinguish between the above two
assignments; thus it cannot determine whether x ∈ An . In other words, if the response strategy RS2 is adopted
by the adversary, for any search algorithm to determine whether x ∈ An , the algorithm must be implemented to a step
such that Re(S) is empty.

Suppose Re(S) is empty. For any ai ∈ En in a general unit, since ai cannot be cut by any other elements (including
the elements in the same unit), ai must cost one comparison with x ; for any special unit u, by the response strategy of
special units in RS2, if each element of u either has been compared with x or has been cut by other elements in u, at
least three comparisons between x and the elements in u are required. Therefore, the lower bound (3

4 +
1

432)n + O(1)

is justified.

Appendix D. Proof of Lemma 6.1

We prove the lemma by contradiction. Suppose that, under RS∗

2, a j ∈ E∗
n is not essential, i.e., there exists an

element ai ∈ An that cuts a j , and ai is not in the unit containing a j . We have the following two cases:
Case 1. ai and a j are in one layer. If ai does not belong to any unit, then ai always cuts to the left up, and using the
same argument at the beginning of Case 1 in the proof of Lemma 5.1, ai cannot cut any element in a unit. If ai belongs
to a special unit of the first or the second class, i.e., a 4-units,1 or 4-units,2, notice the forms of these special units,
(1) and (7); it is easy to see that ai cannot cut any element a j ∈ E∗

n in a different unit in the same layer (for the case
where ai is in a 4-units,2, notice that the second row of any layer cannot contain a special unit). For the case where ai
belongs to a special unit of the third class, i.e. a 4-units,3, we first give the two lemmas that will be useful. Similarly
as Lemma A.2, we have the following:

Lemma D.1. In any layer, there cannot be four consecutive rows with lengths successively increased by 2.

The correctness of Lemma D.1 can be easily seen by noticing that in the third, fourth, fifth and sixth row in (8), 9i
exists in the layer since 9i < 32i

3 .

Lemma D.2. If R is the next row above or below a 4-units,3 in the same layer, then R does not contain a special unit.

Lemma D.2 is true since by the definition of 4-units,3, R is not the first row of its layer; thus it cannot contain a
4-units,1 or a 4-units,2; and by Lemma D.1, R either has one less element than the next row above R or has one more
element than the next row below R; thus it cannot contain a 4-units,3.

By Lemma D.2, if ai belongs to a 4-units,3, ai cannot cut any element a j ∈ E∗
n in a different unit in the same layer.

If ai belongs to a general unit, then similarly to in Case 1 in the proof of Lemma 5.1, we have the eight subcases.
For all these subcases, we can show that, using the same arguments in Lemma 5.1 correspondingly (sometimes when
comes to special units, we only need to replace them with the newly defined special units 4-units,1, 4-units,2 and
4-units,3), ai cannot cut a j ∈ E∗

n .
Case 2. ai and a j are in different layers. We first give the following two lemmas that will be useful later:

Lemma D.3. For any a j1 , a j2 ∈ An in different layers, if j1 divides j2, and j2 is not divisible by 5, then the quotient
is at least 7.

Y. Cheng et al. / Theoretical Computer Science 370 (2007) 240–253 253

Lemma D.4. If i is the subscript of a first element in a special unit 4-units,1, 4-units,2 or 4-units,3, then 12i > n.

Lemma D.3 can be proved in a similar way to Lemma B.1, and Lemma D.4 is true since by the definitions of
4-units,1’s, 4-units,2’s and 4-units,3’s, the row containing a special unit always has two more elements than the next
row below it.

Similarly to Case 2 in the proof of Lemma 5.1, we have the following seven subcases. Except subcase 3 and subcase
6, we can apply the same arguments in Lemma 5.1 to all the following subcases correspondingly.

1. ai does not belong to any unit. By using the same argument given at the beginning of Case 1 in the proof of
Lemma 5.1, ai cannot cut a j ∈ E∗

n .
2. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai }. By using the same argument as

in subcase 1 of Case 1 in the proof of Lemma 5.1, ai cannot cut a j ∈ E∗
n .

3. ai is the second last element of a unit and cuts to the left up, {. . . , aiy, a2i }. By Lemma B.1, if ai cuts a j ∈ E∗
n in

a different layer, we have 5 j ≤ i , 10 j ≤ 2i ≤ n; thus a2 j , a4 j , a8 j all exist in the row containing a j . If a j ∈ E∗
n ,

a j can only be the first element of a special unit. We have two possibilities for ai .
(a) ai is the first element of a 2-unit or the second element of a 3-unit2. In this case, a j must be the first element of

a 4-units,1, since otherwise in the row containing a j , there will be at least two elements before a j , and thus ai
cannot cut a j . However, by the form of 4-units,1, (1), if a j is the first element of a 4-units,1, then 9 j > n, and
this contradicts 10 j ≤ n. Thus, this possibility is eliminated.

(b) ai is the third element of a special unit. By the definition of the new defined special units, i is not divisible by
5. Thus, by Lemma D.3, 7 j ≤ i , 14 j ≤ 2i ≤ n. However, by Lemma D.4, if a j is the first element of a special
unit, then 12 j > n, which contradicts 14 j ≤ n.

4. ai is the second last element of a unit and cuts to the right bottom, {. . . , pai , a2i }. Using the same argument as in
subcase 4 of Case 2 in the proof of Lemma 5.1, ai cannot cut a j ∈ E∗

n .
5. ai is the third last element of a unit and cuts to the left up, {. . . , aiy, a2i , a4i }. Using the same argument as in

subcase 5 of Case 2 in the proof of Lemma 5.1, ai cannot cut a j ∈ E∗
n .

6. ai is the third last element of a unit and cuts to the right bottom. In this case, ai must be the second element of a
special unit, {ai/2, pai , a2i , a4i }. By the form of 4-units,1, (1), ai cannot be in a 4-units,1, since otherwise we have
9 × i/2 > n, it follows that j ≥ 5i > n. Therefore, ai can only be the second element of a 4-units,2 or 4-units,3;
thus, i is divisible by 8. By Lemma D.4, 12 × i/2 > n, and thus 6i > n; since j ≥ 5i it must be the case that
j = 5i . Thus 2 j = 10i > 6i > n, a j must be the last element of a unit. Since i is divisible by 8, j = 5i is also
divisible by 8; thus a j/2, a j/4, a j/8 all exist in the row containing a j , and it follows that a j is the last element of a
4-unit. Therefore, if a j ∈ E∗

n , a j must be the last element of a special unit. By the definitions of the newly defined
special units, j is not divisible by 5, which contradicts j = 5i .

7. ai is the fourth last element of a unit, i.e., the first element of a 4-unit, {aiy, a2i , a4i , a8i }. Using the same argument
as in subcase 8 of Case 1 in the proof of Lemma 5.1, ai cannot cut a j ∈ E∗

n .

References

[1] Y. Ben-Asher, E. Farchi, I. Newman, Optimal search in trees, SIAM Journal on Computing 28 (6) (1999) 2090–2102.
[2] A. Borodin, L.J. Guibas, N.A. Lynch, A.C. Yao, Efficient searching using partial ordering, Information Processing Letters 12 (2) (1981) 71–75.
[3] R. Carmo, J. Donadelli, Y. Kohayakawa, E. Laber, Searching in random partially ordered sets, Theoretical Computer Science 321 (1) (2004)

41–57.
[4] R.L. Graham, R.M. Karp, Calif., 1968. unpublished.
[5] N. Linial, M. Saks, Searching ordered structures, Journal of Algorithms 6 (1985) 86–103.
[6] N. Linial, M. Saks, Every poset has a central element, Journal of Combinatorial Theory, Series A 40 (1985) 195–210.

	On searching a table consistent with division poset
	Introduction
	Related work
	Easy bounds on tau (n)
	Lower bounds (3/4)n
	A simple search algorithm

	Upper bounds 55n72+O(ln2 n) on tau (n)
	Lower bounds (34+1432)n+O(1) on tau (n)
	The main idea in constructing lower bounds
	Units and special units
	New response strategy
	Lower bounds (34+1432)n+O(1) on tau (n)

	Improved lower bounds (34+172160)n+O(1) on tau (n)
	Concluding remarks and open problems
	Acknowledgments
	Proof of Lemma 4.1
	Proof of Lemma 5.1
	Further exposition of the lower bound arguments
	Proof of Lemma 6.1
	References

