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Abstract. While the 3-dimensional analogue of Sperner’s problem in
the plane was known to be complete in class PPAD, the complexity of
2D-SPERNER itself is not known to be PPAD-complete or not. In
this paper, we settle this open problem proposed by Papadimitriou [9]
fifteen years ago. The result also allows us to derive the computational
complexity characterization of a discrete version of the 2-dimensional
Brouwer fixed point problem, improving a recent result of Daskalakis,
Goldberg and Papadimitriou [4]. Those hardness results for the simplest
version of those problems provide very useful tools to the study of other
important problems in the PPAD class.

1 Introduction

The classical lemma of Sperner [11], which is the combinatorial characterization
behind Brouwer’s fixed point theorem, states that any admissible 3-coloring of
any triangulation of a triangle has a trichromatic triangle. Naturally, it defines
a search problem 2D-SPERNER of finding such a triangle in an admissible
3-coloring for an exponential size triangulation, typical of problems in PPAD,
a complexity class introduced by Papadimitriou to characterize mathematical
structures with the path-following proof technique [10]. Many important prob-
lems, such as the Brouwer fixed point, the search versions of Smith’s theorem, as
well as the Borsuk-Ulam theorem, belong to this class [10]. The computational
complexity issue for those problems is of interest only when the search space is
exponential in the input parameter.

For problem 2D-SPERNER as an example, with an input parameter n, we
consider a right angled triangle with a side length N = 2n. Its triangulation is
into right angled triangles of side length one. There is a (3-coloring) function
which, given any vertex in the triangulation, outputs its color in the coloring.
The color function is guaranteed to be admissible and is given by a polynomial-
time Turing machine. The problem is to find a triangle that has all three colors.
Its 3-dimensional analogue 3D-SPERNER is the first natural problem proved
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to be PPAD-complete [10]. Whether the 2-dimensional case is complete or not
was left as an open problem. Since then, progress has been made toward the
solution of this problem: In [7], Grigni defined a non-oriented version of 3D-
SPERNER and proved that it is PPA-complete. Friedl, Ivanyos, Santha and
Verhoevenproved showed [5,6] that the locally 2-dimensional case of Sperner’s
problem is complete in PPAD. Despite those efforts, the original 2-dimensional
Sperner’s problem remains elusive.

In this article, we prove that 2D-SPERNER is PPAD-complete and thus
settle the open problem proposed by Papadimitriou [9] fifteen years ago. Fur-
thermore, this result also allows us to derive the PPAD-completeness proof of a
discrete version of the 2D fixed point problem (2D-BROUWER). Our study is
motivated by the complexity results in [1] and [8] for finding a discrete Brouwer
fixed point in d-dimensional space with a function oracle. The combinatorial
structure there is similar to the one here. It was proved that, for any d ≥ 2, the
fixed point problem for the oracle model unconditionally requires an exponential
number (in consistency with d) of queries. Although the computational models
in these two problems are different, we moved into the direction of a hardness
proof expecting that the complexity hierarchy in Sperner’s problem may have a
similar structure with respect to the dimension.

The class PPAD is the set of problems that are polynomial-time reducible to
the problem called LEAFD [10]. It considers a directed graph of an exponen-
tial number, in the input parameter n, of vertices, numbered from 0 to N − 1
where N = 2n. Each vertex has at most one incoming edge and at most one
outgoing edge. There is a distinguished vertex, 0, which has no incoming edge
and has one outgoing edge. The required output is another vertex for which the
sum of its incoming degree and outgoing degree is one. To access the directed
graph, we have a polynomial-time Turing machine which, given any vertex as
an input, outputs its possible predecessor and successor. In examination into
the PPAD-completeness proof of problem 3D-SPERNER, we found that the
main idea is to embed complete graphs in 3-dimensional search spaces [10]. Such
an embedding, obviously impossible in the plane, would allow us to transform
any Turing machine which generates a directed graph in LEAFD to a Turing
machine which produces an admissible coloring on a 3-dimensional search space
of 3D-SPERNER.

We take a different approach for the proof which can be clearly divided into
two steps. First, we define a new search problem called RLEAFD (restricted-
LEAFD). While the input graph has the same property as those in problem
LEAFD (that is, both the incoming degree and outgoing degree of every vertex
are at most one), it is guaranteed to be a sub-graph of some predefined planar
grid graph. The interesting result obtained is that, even with such a strong res-
triction, the problem is still complete in PPAD. In the second step, we reduced
RLEAFD to 2D-SPERNER and proved that the latter is also complete. The
main idea represents an improved understanding of PPAD reductions and may
be of general applicability in related problems.
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The completeness result of 2D-SPERNER allows us to deduce that a dis-
crete version of the two dimensional Brouwer fixed point search problem is also
PPAD-complete. The discrete version considers a function g on a 2D grid such
that, for every point p in the grid, g(p) is equal to p plus an incremental vector
with only three possible values: (1, 0), (0, 1) and (−1,−1). A fixed point is a set
of four corners of an orthogonal unit square such that incremental vectors at
those point include all the three possibilities, an analogue to that of the three
dimensional case introduced in [4]. Such a definition of a fixed point, which is
different from the original Brouwer fixed point but is related to Sperner’s lemma,
has a natural connection with approximation [8], and is consistent in spirit with
the recent algorithmic studies on discrete fixed points [1]. On a first careful look
at the new definition, its natural link to the Sperner’s fully colored triangle is
only in one direction. We overcome the difficulty in the other direction to show
the reduction is indeed complete.

The PPAD-completeness of both 2D-SPERNER and 2D-BROUWER,
in their simplicities, can serve better benchmarks as well as provide the much
needed intuition to derive completeness proofs for complicated problems, such
as in the subsequent result of non-approximability (and also smoothed com-
plexity) of the bimatrix game Nash Equilibrium [3]. In particular, an important
key lemma in the non-approximability result is a PPAD-completeness proof of
a discrete fixed point problem on high-dimensional hypergrids with a constant
side length, which can be most conveniently derived from our hardness result on
the 2D discrete fixed point problem.

2 Preliminaries

2.1 TFNP and PPAD

Definition 1 (TFNP). Let R ⊂ {0, 1}∗ × {0, 1}∗ be a polynomial-time com-
putable, polynomially balanced relation (that is, there exists a polynomial p(n)
such that for every pair (x, y) ∈ R, |y | ≤ p(|x |)). The NP search problem QR

specified by R is this: given an input x ∈ {0, 1}∗, return a string y ∈ {0, 1}∗ such
that (x, y) ∈ R, if such a y exists, and return the string “no” otherwise.

An NP search problem QR is said to be total if for every x ∈ {0, 1}∗, there
exists a y ∈ {0, 1}∗ such that (x, y) ∈ R. We use TFNP to denote the class of
total NP search problems.

An NP search problem QR1 ∈ TFNP is polynomial-time reducible to problem
QR2 ∈ TFNP if there exists a pair of polynomial-time computable functions
(f, g) such that, for every input x of QR1 , if y satisfies (f(x), y) ∈ R2, then
(x, g(y)) ∈ R1. We now define a total NP search problem called LEAFD [10].

Definition 2 (LEAFD). The input of the problem is a pair (M, 0k) where M
is the description of a polynomial-time Turing machine which satisfies: 1). for
any v ∈ {0, 1}k, M(v) is an ordered pair (u1, u2) where u1, u2 ∈ {0, 1}k ∪{no};
2). M(0k) = {no, 1k} and the first component of M(1k) is 0k. M generates a
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A0

A1

A2

Fig. 1. The standard 7 × 7 triangulation of a triangle

directed graph G = (V, E) where V = {0, 1}k. An edge uv appears in E iff v is
the second component of M(u) and u is the first component of M(v).

The output is a directed leaf (with in-degree + out-degree = 1) other than 0k.

PPAD [9] is the set of total NP search problems that are polynomial-time
reducible to LEAFD. From its definition, LEAFD is complete for PPAD.

2.2 2D-SPERNER

One of the most interesting problems in PPAD is 2D-SPERNER whose to-
tality is based on Sperner’s Lemma [11]: any admissible 3-coloring of any trian-
gulation of a triangle has a trichromatic triangle.

In problem 2D-SPERNER, we consider the standard n × n triangulation
of a triangle which is illustrated in Figure 1. Every vertex in the triangulation
corresponds to a point in Z

2. Here A0 = (0, 0), A1 = (0, n) and A2 = (n, 0)
are the three vertices of the original triangle. The vertex set Tn of the n × n
triangulation is defined as Tn = {p ∈ Z

2 | p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ n }. A
3-coloring of the n × n triangulation is a function f from Tn to {0, 1, 2}. It is
said to be admissible if 1) f(Ai) = i, for all 0 ≤ i ≤ 2; 2) for every point p on
segment AiAj , f(p) �= 3 − i − j.

A unit size well-oriented triangle is a triple Δ = (p0,p1,p2) where pi ∈ Z
d

for all 0 ≤ i ≤ 2. It satisfies either p1 = p0 + e1, p2 = p0 + e2 or p1 = p0 − e1,
p1 = p0 − e2. In other words, the triangle has a northwest oriented hypotenuse.
We use S to denote the set of all such triangles.

From Sperner’s Lemma, we define problem 2D-SPERNER as follows.

Definition 3 (2D-SPERNER[9]). The input instance is a pair (F, 0k) where
F is a polynomial-time Turing machine which produces an admissible 3-coloring
f on T2k . Here f(p) = F (p) ∈ {0, 1, 2}, for every vertex p ∈ T2k .

The output is a trichromatic triangle Δ ∈ S of coloring f .

In [9], it was shown that 2D-SPERNER is in PPAD. They also defined a
3-dimensional analogue 3D-SPERNER of 2D-SPERNER and proved that
it is PPAD-complete. The completeness of the 2-dimensional case was left as
an open problem.
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3 Definition of Search Problem RLEAFD

Before the definition of problem RLEAFD, we describe a class of planar grid
graphs {Gi}i≥1, where Gn = (Vn, En) and vertex set

Vn =
{

u ∈ Z
2

∣
∣
∣ 0 ≤ u1 ≤ 3(n2 − 2), 0 ≤ u2 ≤ 3(2n − 1)

}
.

Informally speaking, Gn is a planar embedding of the complete graph Kn with
vertex set { 0, 1... n− 1 }. For every 0 ≤ i < n, vertex i of Kn corresponds to the
vertex (0, 6i) of Gn. For every edge ij ∈ Kn, we define a path Eij from vertex
(0, 6i) to (0, 6j). To obtain the edge set En of Gn, we start from an empty graph
(Vn, ∅), and then add all the paths Eij . There are O(n2) vertices in Vn, which
are at the intersection of two paths added previously. Since Kn is not a planar
graph when n ≥ 5, there is no embedding which can avoid those crossing points.
For each of those crossing points, we add four more edges into En.

We define En formally as follows. En can be divided into two parts: E1
n and

E2
n such that En = E1

n ∪ E2
n and E1

n ∩ E2
n = ∅. The first part E1

n = ∪ij∈KnEij

and path Eij is defined as follows.

Definition 4. Let p1,p2 ∈ Z
2 be two points with the same x-coordinate or the

same y-coordinate. Let u1,u2 ... um ∈ Z
2 be all the integral points on segment

p1p2 which are labeled along the direction of p1p2. We use E(p1p2) to denote
the path which consists of m − 1 directed edges : u1u2, u2u3, ... um−1um.

Definition 5. For every edge ij ∈ Kn where 0 ≤ i �= j < n, we define a
path Eij as E(p1p2) ∪ E(p2p3) ∪ E(p3p4) ∪ E(p4p5), where p1 = (0, 6i),
p2 = (3(ni + j), 6i), p3 = (3(ni + j), 6j + 3), p4 = (0, 6j + 3) and p5 = (0, 6j).

One can show that, every vertex in Vn has at most 4 edges (including both
incoming and outgoing edges) in E1

n. Moreover, if u has 4 edges, then 3 |u1 and
3 |u2. We now use {ui}1≤i≤8 to denote the eight vertices around u. For each
1 ≤ i ≤ 8, ui = u + xi where x1 = (−1, 1), x2 = (0, 1), x3 = (1, 1), x4 = (1, 0),
x5 = (1,−1), x6 = (0,−1), x7 = (−1,−1) and x8 = (−1, 0). If u ∈ Vn has 4
edges in E1

n, then it must satisfy the following two properties:

1. either edges u4u,uu8 ∈ E1
n or u8u,uu4 ∈ E1

n;

2. either edges u2u,uu6 ∈ E1
n or u6u,uu2 ∈ E1

n.

Now for every vertex u ∈ Vn which has 4 edges in E1
n, we add four more

edges into En. For example, if u4u,uu8,u2u,uu6 ∈ E1
n (that is, the last case

in Figure 2), then u4u5,u5u6,u2u1,u1u8 ∈ E2
n. All the four possible cases are

summarized in Figure 2.
An example (graph G3 ) is showed in Figure 3. We can draw it in two steps.

In the first step, for each ij ∈ K3, we add path Eij into the empty graph. In the
second step, we search for vertices of degree four. For each of them, 4 edges are
added according to Figure 2. One can prove the following property of Gn.
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u u u u

Fig. 2. Summary of cases in the construction of E2
n

Lemma 1. Every vertex in Gn has at most 4 edges. There is a polynomial-time
Turing machine M∗ such that, for every input instance (n,u) where u ∈ Vn, it
outputs all the predecessors and successors of vertex u in graph Gn.

We use Cn to denote the set of graphs G = (Vn, E) such that E ⊂ En and for
every u ∈ Vn, both of its in-degree and out-degree are no more than one.

The new problem RLEAFD is similar to LEAFD. The only difference is
that, in RLEAFD, the directed graph G generated by the input pair (K, 0k)
always belongs to C2k . By Lemma 1, one can prove that RLEAFD ∈ PPAD.

Definition 6 (RLEAFD). The input instance is a pair (K, 0k) where K is the
description of a polynomial-time Turing machine which satisfies: 1). for every
vertex u ∈ V2k , K(u) is an ordered pair (u1,u2) where u1,u2 ∈ V2k ∪ {no}; 2).
K(0, 0) = (no, (1, 0)) and the first component of K(1, 0) is (0, 0). K generates a
directed graph G = (V2k , E) ∈ C2k . An edge uv appears in E iff v is the second
component of K(u), u is the first component of K(v) and edge uv ∈ E2k .

The output of the problem is a directed leaf other than (0, 0).

4 RLEAFD Is PPAD-Complete

In this section, we will describe a polynomial-time reduction from LEAFD to
RLEAFD and prove that RLEAFD is also complete in PPAD.

Let G be a directed graph with vertex set {0, 1...n − 1} which satisfies that
the in-degree and out-degree of every vertex are at most one. We now build the
graph C(G) ∈ Cn in two steps. An important observation here is that C(G) is
not a planar embedding of G, as the structure of G is mutated dramatically in
C(G). However, it preserves the leaf nodes of G and does not create any new
leaf node. Graph C(G) is constructed as follows.

1. Starting from an empty graph (Vn, ∅), for every ij ∈ G, add path Eij ;
2. For every u ∈ Vn of degree 4, remove all the four edges which have u as an

endpoint and add four edges around u using Figure 2.

One can check that, for each vertex in graph C(G), both of its in-degree and
out-degree are no more than one, and thus, we have C(G) ∈ Cn. For example,
Figure 4 shows C(G) where G = ({0, 1, 2}, {02, 21}). The following lemma is
easy to check.
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Fig. 3. The planar grid graph G3 Fig. 4. Graph C(G) ∈ C3

Lemma 2. Let G be a directed graph with vertex set {0, ...n−1} which satisfies
that the in-degree and out-degree of every vertex are at most one. For every
vertex 0 ≤ k ≤ n − 1 of G, it is a directed leaf of G iff u = (0, 6k) ∈ Vn is a
directed leaf of C(G). On the other hand, if u ∈ Vn is a directed leaf of C(G),
then u1 = 0 and 6 |u2.

Lemma 3. Search problem RLEAFD is PPAD-complete.

Proof. Let (M, 0k) be an input instance of search problem LEAFD, and G be
the directed graph specified by M . We can construct a TM K which satisfies the
conditions in Definition 6. The construction is described in the full version [2].
It’s tedious, but not hard to check that, pair (K, 0k), as an input of RLEAFD,
generates graph C(G) ∈ C2k . On the other hand, Lemma 2 shows that, given a
directed leaf of C(G), we can locate a directed leaf of G easily.

5 2D-SPERNER Is PPAD-Complete

In this section, we will present a polynomial-time reduction from RLEAFD to
2D-SPERNER and finish the completeness proof of 2D-SPERNER.

Let (K, 0k) be an input instance of RLEAFD and G ∈ C2k be the directed
graph generated by K. We will build a polynomial-time Turing machine F that
defines an admissible 3-coloring on T22k+5 . Given a trichromatic triangle Δ ∈ S,
a directed leaf of G can be found easily. To clarify the presentation here, we use
u, v, w to denote vertices in V2k , and p, q, r to denote vertices in T22k+5 .

To construct F , we first define a mapping F from V2k to T22k+5 . Since G ∈
C2k , its edge set can be uniquely decomposed into a collection of paths and
cycles P1, P2, ... Pm. By using F , every Pi is mapped to a set I(Pi) ⊂ T22k+5 .
Only vertices in I(Pi) have color 0 (with several exceptions around A0 ). All
the other vertices in T22k+5 are colored carefully with either 1 or 2. Let Δ ∈ S
be a trichromatic triangle of F and p be the point in Δ with color 0, then the
construction of F guarantees that F−1(pi) ∈ V2k is a directed leaf of G, which
is different from (0, 0).
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Firstly, the mapping F from V2k to T22k+5 is defined as F(u) = p where
p1 = 3u1 + 3 and p2 = 3u2 + 3. For each uv ∈ E2k , we use I(uv) to denote the
set of four vertices in T22k+5 which lie on the segment between F(u) and F(v).
Let P = u1... ut be a simple path or cycle in G2k where t > 1 ( if P is a cycle,
then u1 = ut ), then we define I(P ) = ∪t−1

i=1 I(uiui+1) and O(P ) ⊂ T22k+5 as

O(P ) =
{

p ∈ T22k+5 and p /∈ I(P )
∣
∣ ∃ p′ ∈ I(P ), ||p − p′ ||∞ = 1

}
.

If P is a simple path, then we decompose O(P ) into {sP , eP } ∪ L(P ) ∪ R(P ).
Here sP = F(u1) + (u1 − u2) and eP = F(ut) + (ut − ut−1). Starting from
sP , we enumerate vertices in O(P ) clockwise as sP ,q1...qn1 , eP , r1...rn2 , then

L(P ) =
{
q1,q2... qn1

}
and R(P ) =

{
r1, r2... rn2

}
.

If P is a simple cycle, then we decompose O(P ) into L(P ) ∪ R(P ) where L(P )
contains all the vertices on the left side of the cycle and R(P ) contains all the
vertices on the right side of the cycle.

As the graph G specified by (K, 0k) belongs to C2k , we can uniquely decom-
pose its edge set into P1, ... Pm. For every 1 ≤ i ≤ m, Pi is either a maximal
path (that is, no path in G contains Pi ), or a cycle in graph G. For both cases,
the length of Pi is at least 1. One can prove the following two lemmas.

Lemma 4. For every 1 ≤ i �= j ≤ m, (I(Pi) ∪ O(Pi)) ∩ (I(Pj) ∪ O(Pj)) = ∅.
Lemma 5. Let (K, 0k) be an input instance of problem RLEAFD and G ∈ C2k

be the directed graph specified, we can construct a polynomial-time TM MK in
polynomial time. Given any vertex p ∈ T22k+5 , it outputs an integer t: 0 ≤ t ≤ 5.
Let the unique decomposition of graph G be P1, P2...Pm, then: if ∃ i, p ∈ I(Pi),
then t = 1; if ∃ i, p ∈ L(Pi), then t = 2; if ∃ i, p ∈ R(Pi), then t = 3; if ∃ i,
p = sPi , then t = 4; if ∃ i, p = ePi , then t = 5; otherwise, t = 0.

Turing machine F is described by the algorithm in Figure 5. For example, let
G ∈ C2 be the directed graph generated by pair (K, 01), which is illustrated
in Figure 6, then Figure 7 shows the 3-coloring F on T128. As T128 contains so
many vertices, not all of them are drawn in Figure 7. For every omitted vertex
p ∈ T128, if p1 = 0, then F (p) = 1, otherwise, F (p) = 2.

One can prove the following two properties of TM F : 1). the 3-coloring f
specified by F is admissible; 2). let Δ ∈ S be a trichromatic triangle and p be
the vertex in Δ with color 0, then u = F−1(p) is a directed leaf of G, which is
different from (0, 0). By these two properties, we get the following theorem.

Theorem 1. Search problem 2D-SPERNER is PPAD-complete.

6 2D-BROUWER Is PPAD-Complete

Recently, Daskalakis, Goldberg and Papadimitriou [4] proved that the problem
of computing Nash equilibria in games with four players is PPAD-complete. In



On the Complexity of 2D Discrete Fixed Point Problem 497

Turing Machine F with input p = (p1, p2) ∈ T22k+5

1: if p1 = 0 then

2: case p2 ≤ 3, output 0 ; case p2 > 3, output 1

3: else if p1 = 1 then

4: case p2 = 3, output 0 ; case p2 = 4, output 1 ; otherwise, output 2

5: else if p1 = 2 and p2 = 3 then

6: output 0

7: let t = MK(p). case t = 1, output 0 ; case t = 2, output 1 ; otherwise, output 2

Fig. 5. Behavior of Turing Machine F

Fig. 6. Graph G2 and G ∈ C2

A 0

Fig. 7. F : black – 0, gray – 1, white – 2

the proof, they define a 3-dimensional Brouwer fixed point problem and proved
it is PPAD-complete. By reducing it to 4-Nash, they show that the latter one
is also complete in PPAD.

In this section, we first define a new problem 2D-BROUWER which is a
2-dimensional analogue of the 3-dimensional problem in [4]. By reducing 2D-
SPERNER to 2D-BROUWER, we prove the latter is PPAD-complete.

For every n > 1, we let

Bn =
{

p = (p1, p2) ∈ Z
2

∣
∣
∣ 0 ≤ p1 < n − 1 and 0 ≤ p2 < n − 1

}
.

The boundary of Bn is the set of points p ∈ Bn with pi ∈ {0, n − 1} for some
i ∈ {1, 2}. For every p ∈ Z

2, we let Kp = {q ∈ Z
2 | qi = pi or pi + 1, ∀ i ∈
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Turing Machine F ′ with input p = (p1, p2) ∈ B3n

1: let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2

2: if (i, j) = (0, 0), (1, 0) or (0, 1) then

3: F ′(p) = F (q) where q1 = l and q2 = k

4: else if (i, j) = (1, 1), (2, 0) or (2, 1) then

5: F ′(p) = F (q) where q1 = l + 1 and q2 = k

6: else [when j = 2 ]

7: F ′(p) = F (q) where q1 = l and q2 = k + 1

Fig. 8. The construction of Turing machine F ′

{1, 2} }. A 3-coloring of Bn is a function g from Bn to {0, 1, 2}. It is said to be
valid if for every p on the boundary of Bn: if p2 = 0, then g(p) = 2; if p2 �= 0
and p1 = 0, then g(p) = 0; otherwise, g(p) = 1.

Definition 7 (2D-BROUWER). The input instance of 2D-BROUWER is
a pair (F, 0k) where F is a polynomial-time TM which produces a valid 3-color-
ing g on B2k . Here g(p) = F (p) ∈ {0, 1, 2} for every p ∈ B2k . The output is a
point p ∈ B2k such that Kp is trichromatic, that is, Kp has all the three colors.

The reason we relate this discrete problem to Brouwer’s fixed point theorem
is as follows. Let G be a continuous map from [0, n − 1] × [0, n − 1] to itself.
If G satisfies a Lipschitz condition with a large enough constant, then we can
construct a valid 3-coloring g on Bn such that:

1. For every point p ∈ Bn, g(p) only depends on G(p);

2. Once getting a point p ∈ Bn such that Kp is trichromatic, one can immedi-
ately locate an approximate fixed point of map G.

Details of the construction can be found in [1].
Notice that the output of 2D-BROUWER is a set Kp of 4 points which

have all the three colors. Of course, one can pick three vertices in Kp to form a
trichromatic triangle Δ, but it’s possible that Δ /∈ S. Recall that every triangle
in S has a northwest oriented hypotenuse. In other words, the hypotenuse of
the trichromatic triangle in Kp might be northeast oriented. As a result, 2D-
BROUWER could be easier than 2D-SPERNER.

Motivated by the discussion above, we define a problem 2D-BROUWER∗

whose output is similar to 2D-SPERNER. One can reduce 2D-SPERNER
to 2D-BROUWER∗ easily and prove the latter is complete in PPAD.

Definition 8 (2D-BROUWER∗). The input instance is a pair (F, 0k) where
F is a polynomial-time Turing machine which generates a valid 3-coloring g on
B2k . Here g(p) = F (p) ∈ {0, 1, 2} for every p ∈ B2k .

The output is a trichromatic triangle Δ ∈ S which has all the three colors.
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e1

e2 c3

c3 c3 c3

c1

c1

c4

c3 c4 c4

c1 c2c2

c2c2c2

3l 3l+ 1 3l+ 33l+ 2

3k

3k+ 1

3k+ 2

3k+ 3

Fig. 9. F ′: c1 = F (l, k), c2 = F (l + 1, k), c3 = F (l, k + 1) and c4 = F (l + 1, k + 1)

We now give a reduction from 2D-BROUWER∗ to 2D-BROUWER.
Let (F, 0k) be an input pair of problem 2D-BROUWER∗, and n = 2k. In

Figure 8, we describe a new Turing machine F ′ which generates a 3-coloring on
B3n. For integers 0 ≤ l, k < n, Figure 9 shows the 3-coloring produced by F ′

on {3l, 3l + 1, 3l + 2, 3l + 3} × {3k, 3k + 1, 3k + 2, 3k + 3} ⊂ B3n. Clearly, F ′

is also a polynomial-time TM, which can be computed from F in polynomial
time. Besides, F ′ generates a valid 3-coloring on B3n. We prove that, for every
p ∈ B3n such that set Kp is trichromatic in F ′, one can recover a trichromatic
triangle Δ ∈ S in F easily.

Let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2. By examining Figure 9,
we know that either (i, j) = (0, 1) or (i, j) = (2, 1). Furthermore,

1. if (i, j) = (0, 1), then Δ = (p0,p1,p2) ∈ S is a trichromatic triangle in F ,
where p0 = (k, l), p1 = p0 + e1 and p2 = p0 + e2;

2. if (i, j) = (2, 1), then Δ = (p0,p1,p2) ∈ S is a trichromatic triangle in F ,
where p0 = (k + 1, l + 1), p1 = p0 − e1 and p2 = p0 − e2.

Finally, we get an important corollary of Theorem 1.

Theorem 2. Search problem 2D-BROUWER is PPAD-complete.

7 Concluding Remarks

All the PPAD-completeness proofs of Sperner’s problems before rely heavily
on embeddings of complete graphs in the standard subdivisions. That is, edges
in the complete graph correspond to independent paths which are composed
of neighboring triangles or tetrahedrons in the standard subdivision. Such an
embedding is obviously impossible in the plane, as complete graphs with order
no less than 5 are not planar. We overcome this difficulty by placing a carefully
designed gadget (which looks like a switch with two states) at each intersection
of two paths. While the structure of the graph is mutated dramatically (e.g.
Figure 4), the property of a vertex being a leaf is well maintained.
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An important corollary of the PPAD-completeness of 2D-SPERNER is
that, the computation of discrete Brouwer fixed points in 2-dimensional spaces
(2D-BROUWER) is also PPAD-complete. Our new proof techniques may
provide helpful insight into the study of other related problems: Can we show
more problems complete for PPA and PPAD? For example, is 2D-TUCKER
[10] PPAD-complete? Can we find a natural complete problem for either PPA
or PPAD that doesn’t have an explicit Turing machine in the input? For ex-
ample, is SMITH [10] PPA-complete? Finally and most importantly, what is
the relationship between complexity classes PPA, PPAD and PPADS?
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