
Improved distance sensitivity oracles via tree partitioning

Ran Duan1 and Tianyi Zhang2

1Institute for Interdisciplinary Information Science, Tsinghua University, China,
duanran@mail.tsinghua.edu.cn

2Institute for Interdisciplinary Information Science, Tsinghua University, China,
zhangty12@mails.tsinghua.edu.cn

Abstract

We introduce an improved structure of distance sensitivity oracle (DSO). The task is to pre-process a
non-negatively weighted graph so that a data structure can quickly answer replacement path length for
every triple of source, terminal and failed vertex. The previous best algorithm constructs in time 1Õ(mn)
a distance sensitivity oracle of size O(n2 logn) that processes queries in O(1) time. As an improvement,
our oracle takes up O(n2) space, while preserving O(1) query efficiency and Õ(mn) preprocessing time.
One should notice that space complexity and query time of our novel data structure are asymptotically
optimal.

1 Introduction
Let G = (V,E) be a directed graph with n vertices and m edges, and edge weights ω : E → R+ ∪ {0}. We
wish to pre-process the graph and build a distance sensitivity oracle that answers for every triple of (s, t, f)
the length of replacement path from s to t that circumvents the assumed failed vertex f . We call any data
structure that answers such queries distance sensitivity oracle (DSO).

A close relative of this DSO problem is that we consider edge failures instead of vertex failures. In this
paper, we are only concerned with failed vertices, though all our structures can be easily extended (see [9]) to
handle edge-failure queries without any loss in space / time efficiency.

Motivation for vertex failures is routing where network nodes occasionally undergo crash failures. In the
face of single node-failures, we might not afford to re-compute all-pair shortest paths from scratch before the
failed node comes back on-line. A distance sensitivity oracle may lend us help in the sense that re-computing
APSP becomes unnecessary. Motivation for edge failures comes from in Vickery pricing [18], where one wishes
to measure, for every pair of source and target as well as a failed edge, by how much the shortest distance
would rise if this designated edge were to shut down.

1.1 Existing algorithms
The naive approach is that we pre-compute and store the length of all O(n3) possible replacement path lengths,
which incurs intolerable space complexity. [11] proposes the first DSO that occupies only near-quadratic
space. More specifically, [11]’s DSO has space complexity O(n2 log n) and O(1) query time. Space complexity
of constant query time DSO has not been improved ever since.

DSO in [11] demands a somewhat high preprocessing time complexity of O(mn2), which was improved
to Õ(mn

3
2) in the journal version [9] while the space complexity was blown up to O(n2.5). Cubic time

preprocessing algorithm was first obtained by [5] and shortly improved from Õ(n2
√
m) to Õ(mn) in [6], while

maintaining O(n2 log n) space and O(1) query time. Note that O(n2 log n) and Õ(mn) are basically optimal
up to poly-logarithmic factors, as discussed in [6]. Therefore, surpassing [6]’s construction time has been
deemed hard from then.

1Õ(·) suppresses poly-logarithmic factors.

1

ar
X

iv
:1

60
5.

04
49

1v
1

 [
cs

.D
S]

 1
5

M
ay

 2
01

6

Since the publication of [6], the community’s interest has diverged to seeking truly sub-cubic preprocessing
time algorithms. F. Grandoni and V. Williams ([14]) obtained truly sub-cubic preprocessing time bound
O(Mn2.88), if one should tolerate a sub-linear query time of O(n0.7); here all edge weights are assumed to be
integers within interval [−M,M].

1.2 Our contributions
In this paper we present a DSO construction that improves upon [6].

Theorem 1.1. For any directed non-negatively weighted graph G = (V,E, ω), a DSO with O(n2) space
complexity and O(1) query time exists. Also, such DSO can be preprocessed in time Õ(mn).

In Bernstein & Karger’s work ([6]), the space / query time was O(n2 log n) and O(1). So compared with
[9]’s result, our construction shaves off the last log n factor in the space complexity, leading to a quadratic
space consumption, while preserving constant time query efficiency. Plus, our DSO can also be constructed
in Õ(mn) time as in [6], which is nearly optimal. One should notice that the space complexity of our DSO is
asymptotically optimal. To see that, we argue that merely answering all-pairs distances requires Ω(n2) space.
Consider when G is a complete directed graph with distinct edge weights drawn from (1, 2]. In this case, for
any s, t ∈ V , the shortest path from s to t is simply the edge (s, t) ∈ E. Hence, to answer the distance from
s to t, the data structure can do nothing but store ω(s, t); otherwise ω(s, t) can never be precisely known.
Thereby, the total storage is at least |E| = Ω(n2). For other lower bounds in undirected graphs, see [20].

The observation comes from Demetrescu’s original work. [11]’s construction basically applies the idea
of sparse table, where each pair of source and target are associated with O(log n) sparse table entries, thus
resulting in a total storage of O(n2 log n). The preliminary idea is that we do not store sparse table entries at
every source-terminal pair. More specifically, for each single source shortest path tree (SSSP), we designate
only a proportion of all tree vertices which are associated with sparse table entries, hence making our data
structure even sparser. The set of all designated vertices should be carefully chosen with respect to the
topological structure of the SSSP tree.

With the sparser data structure, we can answer queries (s, t, f) when f keeps distance from both of s
and t. So the bottleneck lies in degenerated cases where f is very close to one of the endpoints s or t. For
degenerated cases, we can use much smaller sparse tables to cover short paths, resulting in a DSO that only
occupies O(n2 log log n) space. To obtain an optimum of O(n2) space complexity, we would need to apply a
tabulation technique (more known as the “Four Russians” [3]).

Our preprocessing algorithm heavily relies on the notion of admissible functions from [5]. The idea is that
we substitute “bottleneck” vertices for intervals in the original construction, without harming the correctness
of query algorithm. In this way, we make the DSO easier to initialize.

1.3 Related work
There are several generalizations of the distance sensitivity problem. In [12], the authors considered the
scenario where two instead of one vertices could fail. The paper presented a distance oracle with O(n2 log3 n)
space complexity and O(log n) query time. As it turned out, things got far more complicated than single
vertex-failures, and sadly no non-trivial polynomial preprocessing algorithms were known.

There are works (e.g., [21][8][10][2]) mainly concerned with dynamically maintaining all pairs shortest
paths (APSP). Such data structures can solve distance problems if subsequent failures are cumulative, but
update time would be as large as O(n2.75).

If one should sacrifice preciseness for space efficiency, one may consider approximate distance oracles for
vertex failures. [19] considered approximating the replacement path lengths where a single vertex could crash.
In [7], the authors focused on data structures that approximately answer minimal distance of constrained
paths that do not pass through a designated set of failed edges. For fully dynamic approximate APSP, one
can refer to [15]; especially, for planar graphs, [1] may provide useful results.

There are remotely related problems such as (partially) dynamic single-source shortest paths and reacha-
bility. Papers [17] and [16] discussed these topics in depth. Some other loosely related work concerns the
construction of spanners and distance preservers resilient to one edge / node failure.

2

2 Preliminaries
Suppose we are given a directed graph G = (V,E, ω) with non-negative edge weights ω : E → R+ ∪ {0}. In
this section, we summarize the notations or assumptions that are used throughout this paper. More or less,
we inherit the conventions from [12].

• Our data structures & algorithms are implemented on Ω(log n)-word RAM machines. We will leverage
its strength in computing the most significant set bit ([13]). Although in previous works on DSO ([8],
[9], [5], [6]) Ω(log n)-word RAM model was not explicitly assumed, this assumption was not expendable
since their algorithms required memory indexing and computing logarithms in constant time.

• We call a data structure 〈f(n), g(n)〉, if its space complexity is at most f(n) and its query time is at
most g(n).

• For each pair of s, t ∈ V , the weighted shortest path from s to t is unique. This assumption is without
loss of generality since we can add small perturbations to break ties (e.g., [9], [6]).

• For each pair of s, t ∈ V , let st denote the shortest path from s to t.

• Let p be a simple path. Denote by ‖p‖ and |p| the weighted and un-weighted length of path p.

• For each s ∈ V , let Ts be the single-source shortest path tree rooted at s; let T̂s be the single-source
shortest path tree rooted at s in the reverse graph Ĝ where every directed edge in G is reversed.

• For each query (s, t, f), we only consider the case when f lies on the path st, because verification can
be done by checking whether ‖st‖ = ‖sf‖+ ‖ft‖.

• For each vertex set A, let st � A denote the shortest path from s to t that avoids the entire set A.
For instance, st � {f} (abbreviated as st � f) denotes the replacement path, and st � [u, v] refers to
the shortest path that skips over an entire interval [u, v] ⊆ st. Here for [u, v] to be a properly defined
interval on st, it is required that both of u and v are on st, and either u = v, or u lying between s and
v.

• Let s⊕ i and s	 i be the ith vertex after and before s on some path that can be learnt from context.

By uniqueness of shortest paths, it is easy to verify that any path of the form st � f or st � [u, v] must
diverge from and converge with st for once ([9]), with divergence on path sf and convergence on ft. Let
∆s,t,f and ∇s,t,f be the vertices at which divergence and convergence take place, respectively. More often
than not, we ignore those indices s, t, f and simply write ∆,∇.

3 The sparse table technique
In this section, we review the 〈O(n2 log n), O(1)〉 DSO devised in [9]. Basically, its design utilizes the idea of
sparse table.

3.1 Data structure
For every pair of s, t ∈ V , build the following.

Note. Indices i, j are non-negative integers throughout this paper.

(i) The values of ‖st‖ and |st|.

(ii) For every s, t and 2i < |st|, the value of ‖st � (s⊕ 2i)‖ and ‖st � (t	 2i)‖.

(iii) For every s, t and 2i+1 < |st|, the value of ‖st � [s⊕ 2i, s⊕ 2i+1]‖ and ‖st � [t	 2i+1, t	 2i]‖.

(iv) Level ancestor data structures ([4]) for every Ts and T̂s.

3

Briefly discuss the space complexity. Evidently (i) takes O(n2) space; both of (ii) and (iii) have space
complexity O(n2 log n); for (iv), by linear space construction of level ancestor data structure from [4], each
Ts (T̂s) arouses a storage of O(n), leading to a total space complexity of O(n2) ranging over all s. Thus, the
overall space is O(n2 log n).

3.2 Query algorithm
For each query (s, t, f), without loss of generality assume that |sf | ≤ |ft|. If |sf | or |ft| is a power of 2,
then ‖st � f‖ has already been computed during preprocessing (ii). Otherwise, let i, j be the maximum
non-negative integers such that 2i < |sf |, 2j < |ft|.
Note. Both of i, j can be computed in constant time on Ω(log n)-word RAM machines: i (j) is equal to the
index of the most significant set bit of |sf | − 1 (|ft| − 1), and according to [13] the most significant set bit
can be computed in constant time on a Ω(log n)-word RAM.

Consider the following cases.

(1) st � f skips the entire [s⊕ 2i, s⊕ 2i+1] which contains f .
As we know from (iii), ‖st � [s⊕ 2i,⊕2i+1]‖ can be directly retrieved.

(2) st � f passes through s⊕ 2i.
By definition of i, it must be that f 	 2i lies between s and s ⊕ 2i. So in the case that st � f passes
through s⊕ 2i, it must also pass through f 	 2i. Thereby, ‖st � f‖ = ‖s(f 	 2i)‖+ ‖(f 	 2i)t � f‖; both
terms are retrievable from storage in constant time.

(3) st � f passes through s⊕ 2i+1.
By definition of i, j, 2j+1 ≥ |ft| ≥ |sf | > 2i, which leads to j ≥ i. Therefore, because f comes after s⊕2i,
f ⊕ 2j lies in range [s⊕ 2i+1, t). Since st � f passes through s⊕ 2i+1, it is guaranteed to also pass through
f ⊕ 2j . Decomposing ‖st � f‖ = ‖s(f ⊕ 2j) � f‖+ ‖(f ⊕ 2j)t‖, both terms are already pre-computed.

So far we have completed discussion of the 〈O(n2 log n), O(1)〉 DSO in [9].

4 Admissible functions and the triple path lemma
Our query algorithms will be frequently using the triple path lemma from [5]. This lemma is based on the
notion of admissible functions.

Definition 4.1 ([5]). A function F
[u,v]
s,t is admissible if ∀f ∈ [u, v], we have ‖st � [u, v]‖ ≥ F

[u,v]
s,t ≥ ‖st � f‖.

Definition 4.2 ([5]). Two important admissible functions are maxf∈[u,v]{‖st � f‖} and ‖st � [u, v]‖. We call
them bottleneck and interval admissible functions, respectively.

Lemma 4.1 (The triple path lemma ([5])). Let [u, v] be an interval on st, and f ∈ [u, v] be a vertex. For any
admissible function F

[u,v]
s,t , ‖st � f‖ = min{‖su‖+ ‖ut � f‖, ‖sv � f‖+ ‖vt‖, F [u,v]

s,t }.

Proof. On the one hand, ‖st � f‖ is always smaller or equal to min{‖su‖+ ‖ut � f‖, ‖sv � f‖+ ‖vt‖, F [u,v]
s,t }.

This is because, by definition 3.1 F
[u,v]
s,t ≥ ‖st � f‖; also it is easy to see that both of ‖su‖+ ‖ut � f‖ and

‖sv � f‖+ ‖vt‖ are ≥ ‖st � f‖.
On the other hand, we argue ‖st � f‖ ≥ min{‖su‖ + ‖ut � f‖, ‖sv � f‖ + ‖vt‖, F [u,v]

s,t }. If st � f passes
through either u or v, then ‖st � f‖ would be equal to either ‖su‖ + ‖ut � f‖ or ‖sv � f‖ + ‖vt‖, which is
≥ min{‖su‖+ ‖ut � f‖, ‖sv � f‖+ ‖vt‖, F [u,v]

s,t }. Otherwise st � f skips over the entire interval [u, v] and thus
‖st � f‖ = ‖st � [u, v]‖ ≥ F

[u,v]
s,t ≥ min{‖su‖+ ‖ut � f‖, ‖sv � f‖+ ‖vt‖, F [u,v]

s,t }.

4

5 The tree partition lemma
Our novel DSO begins with the following lemma. This lemma also appeared in [14].

Lemma 5.1 (Tree partition). Given a rooted tree T , and any integer 2 ≤ k ≤ n = |V (T)|, there exists a subset
of vertices M ⊆ V (T), |M | ≤ 3k − 5, such that after removing all vertices in M , the tree T is partitioned
into sub-trees of size ≤ n/k. We call every u ∈M an M -marked vertex, and M a marked set. Plus, such M
can be computed in O(n log k) time.

Proof. We prove this claim by an induction on k.

• Basis k = 2.
We argue that deleting one vertex from T can decompose the entire tree into sub-trees of size ≤ n/2.

First, we can compute the size of sub-tree rooted at every vertex by a traversal, which takes linear time.
Then, consider the following procedure. To locate the one that needs to be deleted, start the search at
root and travel down the tree. We will be met with two possible cases.

(1) If the sizes of all the sub-trees rooted immediately below our current position are < n/2, then we
stop and return with the vertex at current position.

(2) Otherwise, we step onto the child whose corresponding sub-tree has ≥ n/2 vertices.

The procedure is guaranteed to terminate since the maximum sub-tree size rooted below the current
position always decreases every time we step onto a child. Correctness is also ensured because during
the process we maintain the invariant that if the current vertex is deleted from tree, the component
containing the parent vertex is of size ≤ n/2. Time complexity of this procedure is O(n), because the
searching visits every vertex no more than once.

• Induction for k ≥ 3.
Apply the lemma with parameter dk2 e ∈ [2, k), and the tree T is broken into sub-trees of size ≤ n/dk2 e.
The total number of sub-trees whose sizes are > n/(2dk2 e) is at most 2dk2 e − 1. Applying the base
case with parameter 2, we can further decompose all those “larger” sub-trees into sub-trees of size
≤ n/(2dk2 e) ≤ n/k with no more than 2dk2 e − 1 deletions. The total number of deletions would thus be
≤ 2dk2 e − 1 + 3dk2 e − 5 ≤ 3k − 5; the last inequality holds for all k ≥ 3.

Running time of this algorithm for general k satisfies recursion T (k) = T (dk/2e) +O(n), which leads to
T (k) = O(n log k).

The high-level idea of our data structure is that we reduce the computation of an arbitrary ‖st � f‖ to a
“shorter” ‖uv � f‖; here we say “short” in the sense that either |uf | or |fv| is small. The tree partition lemma
helps us with the reduction. Basically, we apply the lemma twice with different parameters so that either
uf or fv becomes “short” enough, and then we can directly retrieve the length of replacement path from storage.

For the rest of this paper, we say a replacement path st � f is L-short with respect to marked set M and
Ts (T̂t), if t (s) and f lie within the same sub-tree after we remove the entire marked vertex set M ; here M
guarantees that each sub-tree has size < L. Sometimes we don’t explicitly refer to the corresponding M when
discussing L-shortness, and nor do we specify which tree, Ts or T̂t, is being partitioned. These conditions are
supposed to be easily learnt from context.

6 Reducing to log2 n-short paths
We devise an O(n2)-space data structure that computes all non-log2 n-short paths in constant time.

5

6.1 Data structure
Just like in section 3, our DSO first pre-computes all values of ‖st‖ and |st|, which accounts for O(n2)

space. Then, for each s ∈ V , apply lemma 5.1 in Ts (T̂s) to obtain a marked set Ms (M̂s) with parameter
dn/(L− 1)e, where 2 ≤ L ≤ n is an integer to be set later. So Ms (M̂s) is of size O(n/L), and the size of
each sub-tree is < L. Consider the following structures. Note that we always build same structures in the
reverse graph.

Note. The un-weighted distances between two adjacent marked vertices in Ts (T̂s) are ≤ L.

For any pair of s, t such that t ∈Ms, suppose we are met with Ms-marked vertices u1 → u2 → · · · · · · →
uk = t along the path st in Ts. Our data structure consists of several parts.

(i) For each k − 2i ∈ [1, k − 1], the value of ‖st � uk−2i‖.

(ii) For each k − 2i ∈ [1, k − 2], the value of ‖st � [uk−2i , uk−2i+1]‖.

(iii) Let vl → · · · · · · → v1 be the sequence of all M̂t-marked vertices along the path st. Then for each
properly defined interval [vl−2i , uk−2j] on the path st, store the value of ‖st � [vl−2i , uk−2j]‖.

(iv) For each f such that |ft| ≤ 2L or |sf | ≤ 2L, the value of ‖st � f‖.

From now on we drop the assumption that t is Ms-marked.

(v) For every pair (s, t) of different vertices, let x be t’s nearest Ms-marked Ts-ancestor, and y be s’s nearest
M̂t-marked T̂t-ancestor. If intervals (s, x] and [y, t) intersect, then we pre-compute and store ‖st � [y, x]‖.
Also, store addresses of x, y, if such ancestors exist.

(vi) Build a tree upon all Ms ∪ {s}’s vertices as follows. In this tree, u is v’s parent if and only if in Ts u
is v’s nearest ancestor that belongs to Ms ∪ {s}. Then pre-compute and store the level-ancestor data
structure of this tree. Note again that we also build similar structures for M̂s ∪ {s} in the reverse graph.

Conduct a simple space complexity analysis for each part of the data structure.

(i) takes up space O(n2 log n
L) since we have O(log n) choices for the index i, and every |Ms| = O(n/L).

(ii) uses O(n2 log n
L) for a similar reason in the previous part.

(iii) demands O(n2 log2 n
L) space since we have O(log2 n) choices for the pair of (i, j).

(iv) entails an O(n2) space consumption since each Ms-marked t is associated with O(L) entries, and there
are O(n/L) Ms-marked vertices t.

(v) induces O(n2) space complexity.

(vi) takes O(n2/L) total space, each tree of size O(n/L).

Therefore, the overall space complexity from (i) through (vi) is equal to O(n2 log2 n
L + n2). Taking

L = log2 n, it becomes O(n2).

6.2 Query algorithm
We prove the following reduction lemma in this sub-section.

Lemma 6.1. The data structure specified in section 6.1 can compute ‖st � f‖ in O(1) time if st � f is not
L-short with respect to Ms or M̂t.

6

Proof. A constant time verification for L-shortness is easy: we check if f lies below the nearest Ms-marked
Ts-ancestor of t, and similarly if f lies below the nearest M̂t-marked T̂t-ancestor of s.

Firstly we argue that it is without loss of generality to assume that t is Ms-marked. The reduction
proceeds as follows.

Let x and y be vertices defined as in (v). Since st � f is not L-short, f ∈ (s, x] ∩ [y, t), and thus [y, x] is a
properly defined interval on path st. By the triple path lemma, one has:

‖st � f‖ = min{‖sx � f‖+ ‖xt‖, ‖sy‖+ ‖yt � f‖, ‖st � [y, x]‖}

Here we use the interval admissible function ‖st � [y, x]‖. Noticing that the third term ‖st � [y, x]‖ is already
covered in (v) from 6.1, we are left with ‖sx � f‖ and ‖yt � f‖. By definition, x is Ms-marked and y is
M̂t-marked, and thus we complete our reduction.

Let u1 → u2 → · · · · · · → up = t be the sequence of all Ms-marked vertices along st. We can assume that
p > 1; otherwise ‖st � f‖ has already been computed in structure (iv).

It is not hard to find the interval [ua, ua+1) that contains f . On the one hand, ua is easily retrieved: if f
not Ms-marked, then ua is its nearest marked ancestor stored in (v); otherwise, ua = f . On the other hand,
ua+1 can be found by querying the level-ancestor data structure (vi) at node t in tree rooted at s.

Let vq → vq−1 → · · · · · · → v1 be the sequence of all M̂t-marked vertices on st. It is also safe to assume
q > 1; otherwise, we have |st| ≤ 2L and then using (iv) we can directly compute ‖st � f‖. Similar to the
previous paragraph, locate the interval (vb+1, vb] that includes f . We only need to consider the case when
a + 1 < p and b + 1 < q, since otherwise ‖st � f‖ can be directly retrieved from structure (iv).

Find maximum indices i, j ≥ 0 such that q− 2i ≥ b+ 1, p− 2j ≥ a+ 1. Applying the triple path lemma
with respect to [vq−2i , up−2j] in terms of interval admissible function, ‖st � f‖ must be the minimum among
the following three distances.

(1) ‖st � [vq−2i , up−2j]‖.
This value is directly retrievable from (iii) in section 6.1.

(2) ‖sup−2j � f‖+ ‖up−2j t‖.
Note that since we are interested in the minimum among (1)(2)(3) which gives us ‖st � f‖, we can
substitute any value for (2) that lies in range [‖st � f‖, ‖sup−2j � f‖+ ‖up−2j t‖].
By definition of j, ua+2j lies between up−2j and t, and hence we know that the concatenation of paths
sup−2j � f and up−2j t passes through ua+2j . Thus, it must be

‖sup−2j � f‖+ ‖up−2j t‖ ≥ ‖sua+2j � f‖+ ‖ua+2j t‖ ≥ ‖st � f‖

So instead of computing the original (2), we are actually calculating ‖sua+2j � f‖+ ‖ua+2j t‖.
We focus on the case when f 6= ua; the case where f = ua is easy in that we can directly query
‖sua+2j � ua‖ using (i).

Applying the triple path lemma for a third time to sua+2j � f and interval [ua, ua+1], we further divide
it into three cases.

(a) ‖sua+2j � [ua, ua+1]‖+ ‖ua+2j t‖.
This can be computed by a single table lookup in (ii).

(b) ‖sua+1 � f‖+ ‖ua+1t‖.
Since ua+1 is Ms-marked, ‖sua+1 � f‖ is stored in structure (iv), and thereby ‖sua+1 � f‖+ ‖ua+1t‖
is computed effortlessly.

(c) ‖sua‖+ ‖uat � f‖.
If ua itself is M̂t marked, then (iv) directly help us out since ‖uat � f‖ is already pre-computed as
|uaf | ≤ L.

7

Otherwise, suppose v is ua’s nearest M̂t-marked ancestor in Ts (if any). To locate such v, we can try
to find the interval (vc+1, vc] that contains ua, in a similar fashion of finding intervals [ua, ua+1) and
(vb+1, vb]; after that we assign v ← vc+1.
If such v does not exist, then s and ua lie in the same sub-tree of T̂t after removing M̂t. Noticing
that |sf | < |sua+1| = |sua|+ |uaua+1| ≤ 2L, (iv) can finish up ‖st � f‖ by a single table look-up. If v
exists, then by ‖sua‖+ ‖uat � f‖ ≥ ‖sv‖+ ‖vt � f‖ ≥ ‖st � f‖, it suffices to compute ‖vt � f‖, which
also has already been pre-computed in (iv) due to |vf | = |vua|+ |uaf | ≤ 2L.

(3) ‖svq−2i‖+ ‖vq−2it � f‖.
The only difficult part is ‖vq−2it � f‖. Similar arguments in the previous case (2) will still work.

7 An 〈O(n2 log log n), O(1)〉 construction
In this section, we present an ordinary way of handling L-short paths, resulting in an 〈O(n2 log logn), O(1)〉
DSO. On a high level, we directly apply the sparse table construction as in section 3, which is from [9]. But since
the sparse table only needs to cover L-short paths, the space requirement shrinks to O(logL) = O(log log n)
for every pair of s, t ∈ V . Hence the total space complexity would be O(n2 log log n).

7.1 Data structure
For any pair of s, t ∈ V , besides ‖st‖, |st|, build the following structures.

(i) For every 2i ≤ min{4L, |st|}, store ‖st � (s⊕ 2i)‖ and ‖st � (t	 2i)‖.

(ii) For every 2i+1 ≤ min{4L, |st|}, store ‖st � [s⊕ 2i, s⊕ 2i+1]‖ and ‖st � [t	 2i+1, t	 2i]‖.

(iii) Level ancestor data structures of Ts and T̂s.

Since L = log2 n, the total space of this structure is equal to O(n2 logL) = O(n2 log log n). Note that
this structure is basically identical to the one from section 3, except for the additional bound 4L on the
power-of-two’s 2i. Therefore, when |st| ≤ 4L, ‖st � f‖ can be retrieved in O(1) time according to the
correctness guaranteed by [9].

7.2 Query algorithm
We prove the following lemma, showing how our data structure covers all L-short paths.

Lemma 7.1. For any st � f such that |sf | ≤ L or |ft| ≤ L, ‖st � f‖ can be computed in O(1) time by the data
structure presented in section 7.1.

Proof. By the symmetry of our data structure, we can assume without loss of generality that |sf | ≤ L. It
is also convenient to suppose that |sf | is not a power of 2, otherwise ‖st � f‖ is directly retrievable from
(i) in 7.1. If |st| ≤ 4L, then query algorithm in section 3 can answer ‖st � f‖ in constant time. Now let
us assume |st| > 4L. Let i be the largest index such that 2i < |sf |. Apply the triple path lemma for
replacement path st � f and interval [s⊕ 2i, s⊕ 2L] and consider the following three distances. Note that
since 2i < |sf | ≤ L < 2L, f lies between s⊕ 2i and s⊕ 2L.

(1) ‖s(s⊕ 2i)‖+ ‖(s⊕ 2i)t � f‖.
By definition of i, f 	 2i lies between s and s⊕ 2i. Then we have

‖s(s⊕ 2i)‖+ ‖(s⊕ 2i)t � f‖ ≥ ‖s(f 	 2i)‖+ ‖(f 	 2i)t � f‖ ≥ ‖st � f‖

Thereby it is legal to substitute ‖s(f 	 2i)‖+ ‖(f 	 2i)t � f‖ for (1). According to the construction in
7.1, both terms can be retrieved from memory in constant time.

8

(2) ‖s(s⊕ 2L) � f‖+ ‖(s⊕ 2L)t‖.
The former term is computable in constant time because |s(s⊕ 2L)| = 2L < 4L.

(3) ‖st � [s⊕ 2i, s⊕ 2L]‖.
Since 2i+1 < 2|sf | ≤ 2L, st � f actually skips over the interval f ∈ [s⊕ 2i, s⊕ 2i+1]. Therefore,

‖st � [s⊕ 2i, s⊕ 2L]‖ ≥ ‖st � [s⊕ 2i, s⊕ 2i+1]‖ ≥ ‖st � f‖

Substituting ‖st � [s⊕ 2i, s⊕ 2i+1]‖ for (3), we retrieve it via a single table look-up in (ii) in constant
time.

By definition, every L-short path st � f satisfies |sf | ≤ L or |ft| ≤ L. So by the above lemma, data
structure introduced in section 7.1 answers every L-short path query. Together with the structures in section
6.1, it makes an 〈O(n2 log log n), O(1)〉 DSO.

8 Two-level partition
In this section, we obtain an 〈O(n2), O(1)〉 construction of DSO. The high-level idea is that we further
partition every sub-tree into even smaller ones, and then we apply a tabulation (“Four Russians”) technique to
store all answers. More specifically, we apply the tree-partitioning lemma for the second time and break each
SSSP tree into sub-trees of size ≤ log log2 n. Then we devise data structures to reduce log2 n-short paths to
log log2 n-short paths. Finally, the tabulation technique kicks in when it comes to log log2 n-short paths.

8.1 Data structure
Let L′ ≤ L be a parameter to be set later. For each SSSP tree Ts (T̂s), compute its tree partition with
parameter dn/(L′ − 1)e by Lemma 5.1, and let M ′s (M̂ ′s) be the corresponding marked set. For any L-short
path st � f , without loss of generality assume that t, f lie in the same sub-tree of Ts after removing Ms, and
let r be the root of this sub-tree. Note that similar structures are also built for the case when s, f lie in the
same sub-tree of T̂t.

(i) If t is not M ′s-marked.
Let u be t’s nearest M ′s-marked ancestor below r (if such u exists), and store the value of ‖st � [r, u]‖.

(ii) If t is M ′s-marked.
Let u1 → u2 → · · · · · · → uk = t be the sequence of all M ′s-marked ancestor along the directed path rt.
Note that k < L = O(log2 n). Then for each k− 2i ∈ [1, k− 1], store the value of ‖st � [r, uk−2i]‖. After
that, for each f ∈ [uk−1, uk) (define u0 = r), store the value of ‖st � f‖.

(iii) Build upon the marked set M ′s all structures from (i) to (vi) in section 6.1. The only difference is that
we impose an additional constraint that |st| ≤ L on structures (i) through (iii). It is not hard to verify
that the space complexity of this part becomes O(n2 log2 L

L′ + n2) = O(n2 log log2 n
L′ + n2). So if st � f is

non-L′-short, with |st| ≤ L, then applying lemma 6.1, ‖st � f‖ can be answered in constant time.

Note that the space complexity of (i) and (ii) in section 8.1 is equal to O(n2 log log n
L′ + n2). Together

with (iii), the overall space complexity of the data structure is O(n2 + n2 log log n
L′ + n2 log log2 n

L′). Taking
L′ = log log2 n, the space becomes O(n2).

8.2 Reduction algorithm
We prove the following lemma.

Lemma 8.1. Given an L-short replacement path st � f , the data structure in sections 8.1 and 6.1 can reduce
‖st � f‖ to a constant number of ‖uv � f‖’s, where uv � f ’s are L′-short with respect to M ′u or M̂ ′v.

9

Proof. Constant time verification of L′-shortness is easy. So we only need to consider when st � f is not
L′-short.

We first argue that we will only need to concentrate on situations where t is M ′s-marked. Here is the
reduction. If t is not M ′s-marked, locate t’s nearest M ′s-marked ancestor u below f . Vertex u must exist,
since otherwise st � f itself would become an L′-short path. Recall that r is the root of the sub-tree after
removing Ms, and since st � f is L-short, f must be after r in st.

We apply the triple path lemma on st � f and interval [r, u].

(1) ‖sr‖+ ‖rt � f‖.
In this case, we only need to consider ‖rt � f‖.
If rt�f is not L′-short, then since |rt| is guaranteed to be ≤ L, similar to the proof of lemma 6.1, ‖rt�f‖
can be computed in O(1) time by (iii).

If rt � f is L′-short, then we deliver rt � f as one result of the reductions.

Note. Here rt � f ’s L′-shortness is defined by M ′r or M̂ ′t , with respect to tree Tr or T̂t.

(2) ‖st � [r, u]‖.
We retrieve this distance directly from (i) in section 8.1.

(3) ‖su � f‖+ ‖ut‖.
The reduction ends here. Next we will continue to work out ‖su � f‖.

Now we can assume without loss of generality that t is M ′s-marked. Let u1 → u2 → · · · · · · → up = t
be the sequence of all M ′s-marked vertices along the path rt. Suppose f ∈ [ua, ua+1), a ≥ 0 (u0 = r). If
a + 1 = p, then (ii) enables us to directly query ‖st � f‖. Otherwise, let i be the maximum index such that
p− 2i ≥ a + 1. Invoke again the triple path lemma on st � f and interval [r, up−2i].

(1) ‖sr‖+ ‖rt � f‖.
This can be solved in a similar fashion as in the previous case (1).

(2) ‖st � [r, up−2i]‖.
(ii) gives us ‖st � [r, up−2i]‖ in constant time.

(3) ‖sup−2i � f‖+ ‖up−2it‖. Such a replacement path is guaranteed to pass through ua+2i+1. Thereby,

‖sup−2i � f‖+ ‖up−2it‖ ≥ ‖sua+2i+1 � f‖+ ‖ua+2i+1t‖ ≥ ‖st � f‖

So it suffices to compute ‖sua+2i+1 � f‖+ ‖ua+2i+1t‖. Invoking the triple path lemma on sua+2i+1 � f
and interval [r, ua+1], we divide it into the following three cases.

(a) ‖sua+1 � f‖+ ‖ua+1ua+2i+1‖.
‖sua+1 � f‖ can be retrieved from (ii).

(b) ‖sr‖+ ‖rua+2i+1 � f‖.
If rua+2i+1 � f is not L′-short, then by |rua+2i+1| ≤ L, ‖rua+2i+1 � f‖ can be calculated in O(1)
time by (iii) in section 8.1, similar to the proof of lemma 6.1.
If rua+2i+1 � f is L′-short, then we deliver it as one result of the reductions.

Note. Here rua+2i+1 � f ’s L′-shortness is defined by M ′r or M̂ ′ua+2i+1
, with respect to tree Tr or

T̂ua+2i+1
.

(c) ‖sua+2i+1 � [r, ua+1]‖.
‖sua+2i+1 � [r, ua+1]‖ can be found from memory storage of (ii) in section 8.1.

10

8.3 Tabulation
In this sub-section, we handle all L′-short paths. Recall that the notation ∆s,t,f ,∇s,t,f refers to divergence
and convergence of replacement path st � f . We will simply write ∆,∇ because indices s, t, f can be learnt
from context.

Let st � f be an L′-short path; without loss of generality assume that t, f lie in the same sub-tree, the
corresponding marked set being M ′s. One observation is that we only need to focus on cases where |s∆| ≤ L:
if the divergence comes after s⊕ L, then it admits the decomposition ‖st � f‖ = ‖su‖+ ‖ut � f‖, u being s’s
nearest M̂t-marked ancestor in tree T̂t. Since |ft| ≤ L′ < L < 2L, ‖ut � f‖ can be found in (iv) from section
6.1.

For each sub-tree T partitioned by marked set M ′s, we in-order sort all its vertices. The aggregate
divergence / convergence information within this sub-tree can be summarized as an L′ × L′ matrix, each
element being a pair (|s∆|, |∇t|) corresponding to a replacement path st � f , ∀t, f ∈ V (T). Since we
only consider the case when |s∆| ≤ L, the total number of choices for this matrix is no more than
(L · L′)(L′)2 < L2(L′)2 = 24 log log5 n < O(2log n) = O(n).

Construct an indexable table of all possible configurations of such matrices. The space of this table is
≤ O(n · (L′)2) = o(n1.1). Then associate each sub-tree with an index of its corresponding matrix in the
table, which demands a storage of O(n/L′) indices, totalling o(n) space for every s. Thus the overall space
complexity associated with tabulation is o(n2).

Now the L′-short ‖st � f‖ can be computed effortlessly. After indexing the corresponding matrix in
the table, we can extract (|s∆|, |∇t|) directly from this matrix, and then recover ∆,∇ from level-ancestor
data structures. Finally, decompose the replacement path as ‖st � f‖ = ‖s∆‖ + ‖∆∇ � (∆,∇)‖ + ‖∇t‖.
Noticing that ∆∇� f = ∆∇� (∆,∇), thereby the value of ‖∆∇� f‖ is equal to any admissible function value
F

[∆⊕1,∇	1]
∆,∇ . Hence, storing a ‖uv � [u⊕ 1, v 	 1]‖ for every pair of u, v will suffice for querying ‖st � f‖ once

divergence and convergence vertices are known.

9 Concluding remarks
It is also convenient to slightly extend our data structure to retrieve the entire replacement path in O(|st � f |)
time, for any query (s, t, f): for each entry in our DSO of the form ‖st �A‖, A being a vertex set, store the
first edge of the path st �A. This adjustment does not affect our asymptotic space complexity. In this way,
for any (s, t, f), the DSO can answer not only ‖st � f‖, but also the first edge, say (s, s′) ∈ E, of replacement
path st � f . To recover the entire st � f , we recur on s′t � f . Since each iteration reveals a single edge, the
total time would be O(|st � f |).

So far we have devised an 〈O(n2), O(1)〉 DSO. Clearly both of the space complexity and query efficiency
have reached asymptotic optima; also its preprocessing time is Õ(mn) (see appendix), which is nearly optimal.

References
[1] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles for planar

graphs via forbidden-set distance labels. In Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, pages 1199–1218, New York, NY, USA, 2012. ACM.

[2] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-pairs shortest paths: Breaking the
o(n) barrier. In APPROX-RANDOM, pages 1–16, 2014.

[3] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. On economical construction of the
transitive closure of a directed graph. Soviet Mathematics—Doklady, 11(5):1209–1210, 1970.

[4] M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004.

[5] A. Bernstein and D. Karger. Improved distance sensitivity oracles via random sampling. In Proceedings
19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 34–43, 2008.

11

[6] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and edges. In Proceedings
41st Annual ACM Symposium on Theory of Computing (STOC), pages 101–110, 2009.

[7] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles and
routing schemes. Algorithmica, 63(4):861–882, August 2012.

[8] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. J. ACM,
51(6):968–992, 2004.

[9] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. Oracles for distances avoiding a
failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[10] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with real edge
weights. J. Comput. Syst. Sci., 72(5):813–837, August 2006.

[11] Camil Demetrescu and Mikkel Thorup. Oracles for distances avoiding a link-failure. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 838–843,
Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[12] R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In Proceedings 20th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 506–515, 2009.

[13] M. L. Fredman and D. E. Willard. Surpassing the information-theoretic bound with fusion trees.
J. Comput. Syst. Sci., 47(3):424–436, 1993.

[14] Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles via fast
single-source replacement paths. In FOCS, pages 748–757. IEEE Computer Society, 2012.

[15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate all-pairs
shortest paths: Breaking the o(mn) barrier and derandomization. In FOCS 2013 54th Annual IEEE
Symposium on Foundations of Computer Science, Proceedings 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science FOCS 2013, pages 538–547, Los Alamitos, CA, October 2013. IEEE.

[16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In 46th ACM Symposium on
Theory of Computing (STOC 2014), June 2014.

[17] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A subquadratic-time algorithm for
decremental single-source shortest paths. In SODA 2014, Philadelphia, January 2014. SIAM.

[18] J. Hershberger and S. Suri. Vickrey prices and shortest paths: what is an edge worth? In Proceedings
42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 252–259, 2001. Erratum,
Proc. 43rd FOCS, p. 809, 2002.

[19] Neelesh Khanna and Surender Baswana. Approximate shortest paths avoiding a failed vertex: Optimal
size data structures for unweighted graphs. In 27th International Symposium on Theoretical Aspects of
Computer Science, STACS 2010, March 4-6, 2010, Nancy, France, pages 513–524, 2010.

[20] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. In Proceedings of
the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS ’10, pages 815–823,
Washington, DC, USA, 2010. IEEE Computer Society.

[21] M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proceedings 37th
ACM Symposium on Theory of Computing (STOC), pages 112–119, 2005.

12

A Preprocessing algorithm

In this section, we present a preprocessing algorithm that runs in Õ(mn) time. Basically, computing
replacement path that skips an entire interval is hard. To eschew such hardness, we employ the idea of
admissible functions [5] and change replacement paths of the form st � [u, v] to certain st � f ones without
harming the correctness of query algorithms. Indeed, the data structure we constructs here is not exactly
the one we have described, but an equivalent one. Then, to build our DSO, we first apply the randomized
preprocessing algorithm from [6] that runs in time O(mn log n + n2 log2 n) to obtain a less space-efficient
DSO. Finally, using this intermediate DSO we can compute the 〈O(n2), O(1)〉 DSO in Õ(mn) time.

Note. Although invoking [6]’s algorithm as a black-box may introduce randomness, rest are entirely determin-
istic. So if we apply the deterministic but slightly less efficient preprocessing algorithm that also appeared in
[6], our initializing algorithm can then become deterministic, still with Õ(mn) time bound.

A.1 Preliminary
Values of ‖st‖ and |st| can be handled by invoking standard all-pairs shortest paths (APSP) algorithms,
which will not be our bottleneck. Computing Interval admissible function values is time consuming. In
our preprocessing algorithm, instead of computing entry values of the form ‖st � [u, v]‖, we compute
maxf∈[u,v]{‖st�f‖}; namely we replace every interval admissible function value demanded by our DSO with its
bottleneck counterpart. For example, in (ii) from 6.1, what we actually compute is maxf∈[uk−2i ,uk−2i+1] ‖st � f‖.
All the query / reduction algorithms need to be adapted accordingly. This is not hard because the triple
path lemma holds for arbitrary admissible functions.

Hence, our 〈O(n2), O(1)〉 DSO is mostly composed of entries of the form maxf∈[u,v] ‖st � [u, v]‖. Once all
such entries are computed, other parts (say, tabulation) become easy. Therefore we only need to deal with
entries that take the form of maxf∈[u,v] ‖st � [u, v]‖.

The idea is to build an oracle that answers any query maxf∈[u,v] ‖st � f‖ in O(log n) time; note that this
oracle is more powerful than ordinary DSO. As we will see, this stronger oracle can be constructed in time
Õ(mn). Firstly we invoke [6]’s algorithm that builds an 〈O(n2 log n), O(1)〉 DSO in Õ(mn) time, by which
queries of ‖st � f‖ can be computed in constant time. However, we cannot afford to peek every value of
‖st � f‖, f ∈ [u, v] in order to obtain maxf∈[u,v] ‖st � f‖, since otherwise the preprocessing time would be
blown up to an undesirable Ω(n3). Fortunately, an important sub-routine from [6]’s algorithm directly helps
us out: instead of grid-searching along the interval [u, v], one can perform a certain kind of binary search on
[u, v] to identify the bottleneck f that maximizes ‖st � f‖.

We inherit some notations from [6]. For any interval [u, v] on the shortest path st, as well as a presumably
failed vertex f ∈ [u, v], define:

MTC(s, t, f, u, v)
∆
= min{‖su‖+ ‖ut � f‖, ‖sv � f‖+ ‖vt‖}

So by the triple path lemma, ‖st � f‖ = min{MTC(s, t, f, u, v), ‖st � [u, v]‖}. A key observation from
[6] is that, the bottleneck vertex f always maximizes the first term MTC(s, t, f, u, v), because the second
term ‖st � [u, v]‖ is independent of f . Therefore, in order to locate bottleneck vertex f , it is equivalent to
maximizing MTC(s, t, f, u, v).

The following lemma will also be useful.

Lemma A.1 ([6]). If ‖su‖+ ‖ut � f‖ > ‖sv � f‖+ ‖vt‖, then sv � f skips over u.

A.2 Data structure
In this section, we introduce the structures of our stronger oracle that answers any queries of form
maxf∈[u,v] ‖st � f‖.

Generally speaking, we apply a scaling technique that deals with intervals [u, v] of different sizes. For any
1 ≤ i ≤ log2 n, For every reverse SSSP tree T̂t, apply the tree partition lemma 5.1 with L = 2i and obtain a
marked set Bi

t, |Bi
t| = O(n/2i). For any marked vertex s ∈ Bi

t, construct an array of length 2i+2, for each
f ∈ (s, s⊕ 2i+1] fill in the |sf |th entry with value ‖st � f‖ (again note that this value is retrievable in constant

13

time via the intermediate DSO from [6]). If |st| ≤ 2i+2, we simply cover the entire st. After that, build a
range maximum query data (RMQ) structure on this array, which allows us to locate the bottleneck vertex
in constant time on any interval within (s, s⊕ 2i+2]. Symmetrically, we compute set marked B̂i

s associated
with each SSSP tree Ts and build a similar RMQ.

For each i, the construction time is only O(n · n/2i · 2i+2) = O(n2). So the overall construction time is
Õ(n2).

A.3 Query algorithm
In this section, we show how bottleneck vertices can be efficiently computed using data structures in the
previous section.

Suppose we wish to compute a bottleneck vertex in [u, v] on st. Assume 2i+1 ≤ |uv| < 2i+2, i > 0. Since
|uv| ≥ 2i+1, both of B̂i

s ∩ ((u + v)/2, v] and Bi
t ∩ [u, (u + v)/2] are non-empty. Using level ancestor data

structures we can locate a vertex u′ ∈ Bi
t ∩ [u, (u + v)/2] and v′ ∈ B̂i

s ∩ ((u + v)/2, v].
To finish up, now we can directly apply the poly-log time sub-routine from [6] to locate the bottleneck

vertex on interval [u′, v], as described in a recursive procedure FindBot below, where s, t, u′, v are deemed
global parameters, and the input [x, y] ⊆ [u′, v] is a sub-interval. The bottleneck vertex on interval [u, v′] can
be computed in a symmetrical way.

Algorithm 1: FindBot([x, y]) from [6]
1 if |xy| ≤ 2 then
2 compute the botttleneck vertex in the trivial way and return;

3 q ← (x + y)/2, namely the mid-vertex on xy;
4 b← the bottleneck vertex with respect to interval [q, y] on u′t, using RMQ;
5 if ‖su′‖+ ‖u′t � b‖ ≤ ‖sv � b‖+ ‖vt‖ then
6 w ← FindBot([x, q));
7 return arg maxb,w{MTC(s, t, b, u′, v),MTC(s, t, w, u′, v)};
8 else
9 return FindBot([q, y]);

Clearly the running time is O(log n). Therefore, our query algorithm is O(log n). Correctness follows
from exactly the same arguments as in [6], but for completeness we restate the proof below.

We show that FindBot([u′, v]) finds a vertex f that maximizes MTC(s, t, f, u′, v). Consider an arbitrary
level of recursion with input [x, y]. Let’s focus on line-5. If the branching condition holds true, then it suffices
to prove that the bottleneck vertex with respect to interval [q, y] is b itself. In fact, for any f ∈ [q, y], we have:

MTC(s, t, f, u′, v) ≤ ‖su′‖+ ‖u′t � f‖ ≤ ‖su′‖+ ‖u′t � b‖ = MTC(s, t, b, u′, v)

The second inequality is guaranteed by the function of RMQ.
Alternatively, if the branching condition is false, namely ‖su′‖+ ‖u′t � b‖ > ‖sv � b‖+ ‖vt‖, we argue that

the bottleneck vertex cannot be in interval [x, q). For any f ∈ [x, q), we have:

MTC(s, t, f, u′, v) ≤ ‖sv � f‖+ ‖vt‖ ≤ ‖sv � b‖+ ‖vt‖ = MTC(s, t, b, u′, v)

The second inequality holds because according to lemma A.1, sv � b skips over u′, thus the entire interval
[u′, q] which subsumes f , and this yields ‖sv � f‖ ≤ ‖sv � b‖.

14

	1 Introduction
	1.1 Existing algorithms
	1.2 Our contributions
	1.3 Related work
	2 Preliminaries
	3 The sparse table technique
	3.1 Data structure
	3.2 Query algorithm

	4 Admissible functions and the triple path lemma

	5 The tree partition lemma
	6 Reducing to log2 n-short paths
	6.1 Data structure
	6.2 Query algorithm

	7 An "426830A O(n2loglogn), O(1)"526930B construction
	7.1 Data structure
	7.2 Query algorithm

	8 Two-level partition
	8.1 Data structure
	8.2 Reduction algorithm
	8.3 Tabulation

	9 Concluding remarks
	A Preprocessing algorithm
	A.1 Preliminary
	A.2 Data structure
	A.3 Query algorithm

