
Sorting and Selection in Posets

Constantinos Daskalakis∗ Richard M. Karp† Elchanan Mossel‡ Samantha Riesenfeld§

Elad Verbin¶

Abstract

Classical problems of sorting and searching assume an
underlying linear ordering of the objects being com-
pared. In this paper, we study these problems in the
context of partially ordered sets, in which some pairs
of objects are incomparable. This generalization is in-
teresting from a combinatorial perspective, and it has
immediate applications in ranking scenarios where there
is no underlying linear ordering, e.g., conference submis-
sions. It also has applications in reconstructing certain
types of networks, including biological networks.

Our results represent significant progress over pre-
vious results from two decades ago by Faigle and Turán.
In particular, we present the first algorithm that sorts a
width-w poset of size n with optimal query complexity
O(n(w + log n)). We also describe a variant of Merge-
sort with query complexity O(wn log n

w) and total com-
plexity O(w2n log n

w); an algorithm with the same query
complexity was given by Faigle and Turán, but no effi-
cient implementation of that algorithm is known. Both
our sorting algorithms can be applied with negligible
overhead to the more general problem of reconstructing
transitive relations.

We also consider two related problems: finding the
minimal elements, and its generalization to finding the
bottom k “levels”, called the k-selection problem. We

∗Microsoft Research. Research done while the author was a

student in Computer Science at UC Berkeley. Supported by a

Microsoft Research Fellowship, NSF grant CCF-0635319, a Ya-
hoo! gift, and a MICRO grant. email:costis@cs.berkeley.edu.
†Computer Science, UC Berkeley. Supported by NSF grant

CCF-0515259. email:karp@icsi.berkeley.edu.
‡Statistics and Computer Science, UC Berkeley, and Math-

ematics and Computer Science, Weizmann Institute of Science.

Supported by DOD grant N0014-07-1-05-06, NSF grants DMS
0528488 and DMS 0548249, and a Sloan Fellowship in Mathe-

matics. email:mossel@stat.berkeley.edu.
§Computer Science, UC Berkeley. Supported by NSF grant

CCF-0515259. email:samr@eecs.Berkeley.edu.
¶Institute for Theoretical Computer Science, Tsinghua Uni-

versity. Part of this research was done while the author was a
student at Tel Aviv University. Supported by the National Nat-
ural Science Foundation of China Grant 60553001, and the Na-

tional Basic Research Program of China Grants 2007CB807900
and 2007CB807901. email:eladv@tsinghua.edu.cn.

give efficient deterministic and randomized algorithms
for finding the minimal elements with O(wn) query
and total complexity. We provide matching lower
bounds for the query complexity up to a factor of 2
and generalize the results to the k-selection problem.
Finally, we present efficient algorithms for computing a
linear extension of a poset and computing the heights
of all elements.

1 Introduction

Sorting is a fundamental and, by now, well-understood
problem in combinatorics and computer science. Classi-
cally, the problem is to determine the structure of a to-
tally ordered set, and comparison algorithms, in which
direct comparisons between pairs of elements are the
only means of acquiring information about the linear or-
der, form an important subclass. Usually, sorting algo-
rithms are evaluated by two complexity measures: query
complexity, the number of comparisons performed, and
total complexity, the number of basic computational op-
erations of all types performed.

The generalization of the sorting problem to par-
tially ordered sets, or posets, has been considered in the
literature (see, e.g., Faigle and Turán [9] and our discus-
sion of related work in Section 1.2). However, sorting
problems appear to be more intricate for partial orders,
which may explain why there has not been an account of
a query-optimal (possibly inefficient) sorting algorithm.

In this paper we make significant progress on the
problem of sorting posets and related problems. In
particular, we provide the first asymptotically query-
optimal algorithm for sorting and give an efficient algo-
rithm which matches the query complexity of the algo-
rithm by Faigle and Turán (no efficient implementation
of which is known). Moreover, we provide upper and
lower bounds for the problem of finding the minimal el-
ements of a poset and its generalization to selecting the
bottom k-layers, which asymptotically match for k = 1.
Our algorithms gather information about the poset by
querying an oracle; the oracle responds to a query on a
pair of elements by giving their relation or a statement
of their incomparability.

Apart from having an interesting combinatorial

392 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

structure, the generalization of sorting to posets is use-
ful for treating ranking scenarios where certain pairs of
elements are incomparable. Examples include ranking
conference submissions, strains of bacteria according to
their evolutionary fitness, and points in Rd under the
coordinate-wise dominance relation. Note that a query
may involve extensive effort (for example, running an
experiment to determine the relative evolutionary fit-
ness of two strains of bacteria). Hence, query complex-
ity may be just as important as total complexity.

A partial order on a set can be thought of as
the reachability relation of a directed acyclic graph
(DAG). More generally, a transitive relation (which
is not necessarily irreflexive) can be thought of as
the reachability relation of a general directed graph.
In applications, the relation represents the direct and
indirect influences among a set of variables, processes,
or components of a system, such as the input-output
relations among a set of metabolic reactions or the
causal influences among a set of interacting proteins.
We show that, with negligible overhead, the problem of
sorting a transitive relation reduces to the problem of
sorting a partial order. Our algorithms thus allow one
to reconstruct general directed graphs, given an oracle
for queries on reachability from one node to another. As
directed graphs are the basic model for many real-life
networks including social, information, biological and
technological networks (see, e.g., [18]), our algorithms
provide a potential tool for the reconstruction of such
networks.

Partial orders often arise in the classical sorting lit-
erature as a representation of the “information state” at
a general step of a sorting algorithm. In such cases the
incomparability of two elements simply means that their
true relation has not been determined yet. The present
work is quite different in that the underlying structure
to be discovered is a partial order, and incomparability
of elements is inherent, rather than representing tem-
porary lack of information. Nevertheless, the body of
work on comparison algorithms for total orders provides
insights for the present context (e.g. [2, 11, 13, 16, 17]).

1.1 Definitions To precisely describe the problems
considered in this paper and our results, we require some
formal definitions. A partially ordered set, or poset, is
a pair P = (P,�), where P is a set of elements and
� ⊂ P × P is an irreflexive, transitive binary relation.
For elements a, b ∈ P , if (a, b) ∈ �, we write a � b and
we say that a dominates b, or that b is smaller than a.
If a 6� b and b 6� a, we say that a and b are incomparable
and write a 6∼ b.

A chain C ⊆ P is a subset of mutually comparable
elements, that is, a subset such that for any elements

ci, cj ∈ C, i 6= j, either ci � cj or cj � ci. An
ideal I ⊆ P is a subset of elements such that if
x ∈ I and x � y, then y ∈ I. The height of
an element a is the maximum cardinality of a chain
whose elements are all dominated by a. We call the
set {a : ∀ b, b � a or b 6∼ a} of elements of height 0 the
minimal elements. An anti-chain A ⊆ P is a subset
of mutually incomparable elements. The width w(P) of
poset P is defined to be the maximum cardinality of an
anti-chain of P.

A decomposition C of P into chains is a family
C = {C1, C2, . . . , Cq} of disjoint chains such that their
union is P . The size of a decomposition is the number of
chains in it. The width w(P) is clearly a lower bound on
the size of any decomposition of P. We make frequent
use of Dilworth’s Theorem, which states that there is a
decomposition of P of size w(P). A decomposition of
size w(P) is called a minimum chain decomposition.

1.2 Sorting and k-selection The central computa-
tional problems of this paper are sorting and k-selection.
The sorting problem is to completely determine the par-
tial order on a set of n elements, and the k-selection
problem is to determine the set of elements of height at
most k−1, i.e., the set of elements in the k bottom levels
of the partial order. In both problems we are given an
upper bound w on the width of the partial order. (But
see also Section 6 for a relaxation of this assumption.)
In the absence of a bound on the width, the query com-
plexity of the sorting problem is exactly

(
n
2

)
, in view of

the worst-case example in which all pairs of elements
are incomparable. In the classical sorting and selection
problems, w = 1.

Faigle and Turán [9] described two algorithms
for sorting posets, which they term “identification”
of a poset, both of which have query complexity
O
(
wn log n

w

)
. (In fact the second algorithm has query

complexity O(n logNP), where NP is the number of
ideals of the input poset P; it is easy to see that
NP = O(nw) if P has width w, and thatNP = (n/w)w if
P consists of w incomparable chains, each of size n/w.)
The total complexity of sorting has not been considered.
It turns out that the total complexity of the first algo-
rithm of Faigle and Turán depends on the subroutine
for computing a chain decomposition, the complexity of
which was not analyzed in [9]. Furthermore, it is not
clear if there exists a polynomial-time implementation
of the second algorithm.

Boldi et al. [1] have independently considered the
query complexity of a problem related to k-selection:
Given a poset and an integer t, find t elements such
that the maximum height of the elements in the set is
minimized. Their results are not directly comparable

393 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

to ours, since translating from one setting to the other
would require knowledge of the number of elements in
each layer of the poset. A recent paper [19] considers
an extension of the searching and sorting problem to
posets that are either trees or forests.

1.3 Techniques It is natural to approach the prob-
lems of sorting and k-selection in posets by considering
generalizations of well-known algorithms for the case of
total orders, whose running times are closely matched
by proven lower bounds. However, natural generaliza-
tions of classic algorithms do not provide optimal poset
algorithms in terms of total and query complexity.

In the case of sorting, the generalization of Merge-
sort considered here loses a factor of w in its query
complexity compared to the lower bound established
in Theorem 3.2. Surprisingly, we can match the query
complexity lower bound (up to a constant factor) by
carefully exploiting the structure of the poset. We do
not know whether it is possible to achieve optimal query
complexity efficiently, although it is conceivable that
approximate-counting techniques similar to those used
in Dyer et al. [8] could be used to make our query-
optimal EntropySort algorithm (described in Sec-
tion 3.1) efficient.

The seemingly easier problem of k-selection still
poses interesting challenges, particularly in the proofs
of our lower bounds (see, for example, the proofs of
Theorems 4.6 and 4.7, given in the full version of this
paper [7]).

1.4 Main Results and Paper Outline In Sec-
tion 2, we briefly discuss an efficient representation of
a poset. The representation has size O(wn) and per-
mits retrieval of the relation between any two elements
in time O(1). In Sections 3.1 and 3.2, we give an algo-
rithm for sorting a poset with optimal query complex-
ity O(n(logn+w)). We also provide a generalization of
Mergesort with query complexity O(wn log n) and total
complexity O(w2n log n). In Section 4, we give upper
and lower bounds on the query complexity and total
complexity of k-selection within deterministic and ran-
domized models of computation. For the special case
of finding the minimal elements (k = 1), we show that
the query complexity and total complexity are Θ(wn);
the query upper bounds match the query lower bounds
up to a factor of 2. In Section 5, we give a randomized
algorithm, based on a generalization of Quicksort, of ex-
pected total complexity O(n(log n+ w)) for computing
a linear extension of a poset. We also give a randomized
algorithm of expected total complexity O(wn log n) for
computing the heights of all elements in a poset. Fi-
nally, in Section 6, we show that the results on sorting

posets generalize to the case where an upper bound on
the width is not known and to the case of transitive
relations.

2 Representing a poset: the ChainMerge data
structure

Once the relation between every pair of elements in
a poset has been determined, some representation of
this information is required, both for output and for
use in our algorithms. The simple ChainMerge data
structure that we describe here supports constant-time
look-ups of the relation between any pair of elements.
It is built from a chain decomposition.

Let C = {C1, . . . Cq} be a chain decomposition of a
poset P = (P,�). ChainMerge(P, C) stores, for each
element x ∈ P , q indices as follows: Let Ci be the chain
of C containing x. The data structure stores the index
of x in Ci and, for all j, 1 ≤ j ≤ q, j 6= i, the index of
the largest element of chain Cj that is dominated by x.
The performance of the data structure is characterized
by the following lemma (see proof in the full version [7]).

Claim 2.1. Given a query oracle for a poset P = (P,�)
and a decomposition C of P into q chains, building the
ChainMerge data structure has query complexity at
most 2qn and total complexity O(qn), where n = |P |.
Given ChainMerge(P, C), the relation in P of any
pair of elements can be found in constant time.

3 The sorting problem

We address the problem of sorting a poset, which is the
computational task of producing a representation of a
poset P = (P,�), given the set P of n elements, an
upper bound w on the width of P, and access to an
oracle for P. (See Section 6.1 for the case where an
upper bound on the width is not known.) The following
theorem of Brightwell and Goodall [3] provides a lower
bound on the number Nw(n) of posets of width at most
w on n elements.

Theorem 3.1. The number Nw(n) of partially or-
dered sets of n elements and width at most w
satisfies n!

w! 4n(w−1) n−24w(w−1) ≤ Nw(n) ≤
n! 4n(w−1) n−(w−2)(w−1)/2ww(w−1)/2.

Using Theorem 3.1 and our lower bound for finding the
minimal elements of a poset, provided in Theorem 4.6,
we establish a lower bound on the number of queries
required to sort a poset.

Theorem 3.2. Any algorithm which sorts a poset of
width at most w on n elements requires Ω(n(log n+w))
queries.

394 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof. From Theorem 3.1, if w = o
(

n
logn

)
, then

logNw(n) = Θ(n log n + wn); hence Ω(n(log n + w))
queries are required information theoretically for sort-
ing. Theorem 4.6 gives a lower bound of Ω(wn) queries
for finding the minimal elements of a poset. Since sort-
ing is at least as hard as finding the minimal elements,
it follows that Ω(wn) queries are necessary for sorting.
For the case w = Ω

(
n

logn

)
, wn = Ω(n log n+ wn).

3.1 A query-optimal sorting algorithm We de-
scribe a sorting algorithm that has optimal query com-
plexity, i.e., it sorts a poset of width at most w on n
elements using Θ(n log n + wn) oracle queries. Our al-
gorithm is not necessarily efficient, so in Section 3.2 we
consider efficient solutions to the problem.

Before presenting our algorithm, it is worth dis-
cussing an intuitive approach that is different from the
one we take. For any set of oracle queries and responses,
there is a corresponding set of posets, which we call
candidates, that are the posets consistent with the re-
sponses to these queries. A natural sorting algorithm
is to find a sequence of oracle queries such that, for
each query (or for a positive fraction of the queries),
the possible responses to the query partition the space of
posets that are candidates (after the previous responses)
into three parts, at least two of which are relatively
large. Such an algorithm would achieve the information-
theoretic lower bound (up to a constant factor).

For example, the effectiveness of Quicksort for
sorting total orders relies on the fact that most of the
queries made by the algorithm partition the space of
candidate total orders into two parts, each of relative
size of at least 1/4. Indeed, in the case of total orders,
much more is known: for any subset of possible queries
to the oracle, there always exists a query that partitions
the space of candidate total orders into two parts, each
of relative size of at least 3/11 [14].

In the case of width-w posets, however, it could
be the case that most queries partition the space into
three parts, one of which is much larger than the other
two. For example, if the set consists of w incomparable
chains, each of size n/w, then a random query has
a response of incomparability with probability about
1− 1/w. (On an intuitive level, this explains the extra
factor of w in the query complexity of our version of
Mergesort, given in Section 3.2.) Hence, we resort to
more elaborate sorting strategies.

Our optimal algorithm builds upon a straight-
forward algorithm, called Poset–BinInsertionSort,
which is identical to “Algorithm A” of Faigle and
Turán [9]. The algorithm is inspired by the binary
insertion-sort algorithm for total orders. Pseudocode

for Poset–BinInsertionSort is presented in Figure
1. The natural idea behind Poset–BinInsertionSort
is to sequentially insert elements into a subset of the
poset, while maintaining a chain decomposition of the
latter into a number of chains equal to the width w of
the poset to be constructed. A straightforward imple-
mentation of this idea is to perform a binary search on
every chain of the decomposition in order to figure out
the relationship of the element being inserted with every
element of that chain and, ultimately, with all the ele-
ments of the current poset. It turns out that this simple
algorithm is not optimal; it is off by a factor of w from
the optimum. In the rest of this section, we show how to
adapt Poset–BinInsertionSort to achieve the lower
bound given in Theorem 3.2. We show (see straightfor-
ward proof in the full version of this paper [7]):

Lemma 3.1. (Faigle & Turán [9]) Poset–
BinInsertionSort sorts any partial order P of
width at most w on n elements with O(wn log n) oracle
queries.

It follows that, as n scales, the number of queries
incurred by the algorithm is by a factor of w larger
than the lower bound. The Achilles’ heel of the
Poset-BinInsertionSort algorithm is in the method
of insertion of an element—specifically, in the way the
binary searches are performed (see Step 4d of Figure 1).
In these sequences of queries, no structural properties
of P ′ are used for deciding which queries to the oracle
are more useful than others; in some sense, the binary
searches give the same “attention” to queries whose
answer is guaranteed to greatly decrease the number
of remaining possibilities and those whose answer could
potentially be not very informative. On the other hand,
as we discussed earlier, a sorting algorithm that always
makes the most informative query is not guaranteed to
be optimal either.

Our algorithm tries to resolve this dilemma. We
suggest a scheme that has the same structure as the
Poset–BinInsertionSort algorithm, but exploits the
structure of the already constructed poset P ′ in order
to amortize the cost of the queries over the insertions.
The amortized query cost matches the lower bound of
Theorem 3.2.

The new algorithm, named EntropySort, mod-
ifies the binary searches of Step 4d into weighted bi-
nary searches. The weights assigned to the elements
satisfy the following property: the number of queries it
takes to insert an element into a chain is proportional to
the (logarithm of the) number of candidate posets that
will be eliminated after the insertion of the element. In
other words, we spend fewer queries for insertions that
are not informative and more queries for insertions that

395 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm Poset–BinInsertionSort(P)
input: a set P , an oracle for a poset P = (P,�), an upper bound w on width of P
output: a ChainMerge data structure for P

1. P ′ := ({e}, {}), where e ∈ P is an arbitrary element; /* P ′ is the current poset*/
2. P ′ := {e}; R′ := {};
3. U := P \ {e}; /* U is the set of elements that have not been inserted */
4. while U 6= ∅

a. pick an arbitrary element e ∈ U ; /* e is the element to be inserted in P ′*/
b. U := U \ {e};
c. find a chain decomposition C = {C1, C2, . . . , Cq} of P ′, with q ≤ w chains;
d. for i = 1, . . . , q

i. let Ci = {ei1, . . . , ei`i}, where ei`i � . . . � ei2 � ei1;
ii. do binary search on Ci to find the smallest element (if any) dominating e;

iii. do binary search on Ci to find the largest element (if any) dominated by e;
e. based on the results of the binary searches, infer all relations of e with the elements of P ′;
f. add into R′ all the relations of e with the elements of P ′; P ′ := P ′ ∪ {e};
g. P ′ = (P ′,R′);

5. find a chain decomposition C of P ′; build ChainMerge(P ′, C) (no additional queries);
6. return ChainMerge(P ′, C);

Figure 1: pseudo-code for Poset–BinInsertionSort

are informative. In some sense, this corresponds to an
entropy-weighted binary search. To define this notion
precisely, we use the following definition.

Definition 3.1. Suppose that P ′ = (P ′,R′) is a poset
of width at most w, U a set of elements such that
U∩P ′ = ∅, u ∈ U and ER,PR ⊆ ({u}×P ′)∪(P ′×{u}).
We say that P = (P ′ ∪ U,R) is a width w extension of
P ′ on U conditioned on (ER,PR), if P is a poset of
width w, R ∩ (P ′ × P ′) = R′ and, moreover, ER ⊆ R,
R ∩ PR = ∅. In other words, P is an extension of
P ′ on the elements of U which is consistent with P ′, it
contains the relations of u to P ′ given by ER and does
not contain the relations of u to P ′ given by PR. The
set ER is called the set of Enforced Relations and PR
the set of Prohibited Relations.

We give in Figure 2 the pseudocode of Step 4d′ of
EntropySort, which replaces Step 4d of Poset–
BinInsertionSort. The correctness of Entropy-
Sort follows trivially from the correctness of Poset–
BinInsertionSort. We prove next that its query com-
plexity is optimal. Recall that Nw(n) denotes the num-
ber of partial orders of width at most w on n elements.

Theorem 3.3. EntropySort sorts any partial order
P of width at most w on n elements using at most
2 logNw(n) + 4wn = Θ(n log n + wn) oracle queries.
In particular, the query complexity of the algorithm is
at most 2n log n+ 8wn+ 2w logw.

Proof. We characterize the number of oracle calls re-
quired by the weighted binary searches.

Lemma 3.2. (Weighted Binary Search) For every
j ∈ {1, 2, . . . , `i + 1}, if eij is the smallest element
of chain Ci which dominates element e (j = `i + 1
corresponds to the case where no element of chain Ci
dominates e), then j is found after at most 2 · (1 +
log Di

Dij
) oracle queries in Step v. of the algorithm

described above.

Proof of Lemma 3.2: Let λ = Dij

Di
be the length

of the interval that corresponds to eij . We wish to
prove that the number of queries needed to find eij
is at most 2(1 + b log 1

λ c). From the definition of
the weighted binary search, we see that if the interval
corresponding to eij contains a point of the form 2−r ·m
in its interior, where r,m are integers, then the search
reaches eij after at most r steps. Now, an interval of
length λ must include a point of the form 2−r ·m, where
r = 1 + b log 1

λ c, which concludes the proof. �
It is important to note that the number of queries

spent by the weighted binary search is small for uninfor-
mative insertions, which correspond to large Dij ’s, and
large for informative ones, which correspond to small
Dij ’s. Hence, our use of the term entropy-weighted bi-
nary search. A parallel of Lemma 3.2 holds, of course,
for finding the largest element of chain Ci dominated by
element e.

Suppose now that P = {e1, . . . , en}, where
e1, e2, . . . , en is the order in which the elements of P are
inserted into poset P ′. Also, denote by Pk the restric-
tion of poset P onto the set of elements {e1, e2, ..., ek}
and by Zk the number of width w extensions of poset

396 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Step 4d′ for Algorithm EntropySort(P)
4d′. ER = ∅; PR = ∅;

for i = 1, . . . , q
i. let Ci = {ei1, . . . , ei`i}, where ei`i � . . . � ei2 � ei1;
ii. for j = 1, . . . , `i + 1
• set ERj = {(eik, e)|j ≤ k ≤ `i}; set PRj = {(eik, e)|1 ≤ k < j};
• compute Dij , the number of w-extensions of P ′ on U ,

conditioned on (ER ∪ ERj ,PR ∪ PRj);
/* Dij represents the number of posets on P consistent with P ′, (ER, PR),

in which eij is the smallest element of chain Ci that dominates e;
j = `i + 1 corresponds to the case that no element of Ci dominates e;*/

endfor
iii. set Di =

∑`i+1
j=1 Dij ;

/* Di is equal to the total number of w-extensions of P ′ on U conditioned on (ER,PR)*/
iv. partition the unit interval [0, 1) into `i + 1 intervals ([bj , tj))`i+1

j=1 ,
where b1 = 0, bj = tj−1, for all j ≥ 2,
and tj = (

∑
j′≤j Dij′)/Di, for all j ≥ 1.

/* each interval corresponds to an element of Ci or the “dummy” element ei`i+1 */
v. do binary search on [0, 1) to find smallest element (if any) of Ci dominating e:

/* weighted version of binary search in Poset–BinInsertionSort, Step 4dii */
set x = 1/2; t = 1/4; j∗ = 0;
repeat: find j such that x ∈ [bj , tj);

if (j = `i + 1 and ei,j−1 � e) OR (eij � e and j = 0)
OR (eij � e and ei,j−1 � e)

set j∗ = j; break; /* found smallest element in Ci that dominates e */
else if (j = `i + 1) OR (eij � e)

set x = x− t; t = t ∗ 1/2; /* look below */
else

set x = x+ t; t = t ∗ 1/2; /* look above */
vi. eij∗ is the smallest element of chain Ci that dominates e;

set ER := ER ∪ ERj∗ and PR := PR ∪ PRj∗ ;
vii. find the largest element (if any) of chain Ci that is dominated by e:

for j = 0, 1, . . . , `i,
compute D′ij , the number of posets on P consistent with P ′, (ER, PR),

in which eij is the largest element of chain Ci dominated by e;
/* j = 0 corresponds to case that no element of Ci is dominated by e; */

let D′i =
∑`i
j=0D′ij ;

do the weighted binary search analogous to that of Step v;
viii. update accordingly the sets ER and PR;

endfor

Figure 2: Algorithm EntropySort is obtained by substituting Step 4d′ given above for Step 4d of the
pseudo-code in Figure 1 for Poset–BinInsertionSort.

Pk on P \ {e1, . . . , ek} conditioned on (∅, ∅). Clearly,
Z0 ≡ Nw(n) and Zn = 1. The following lemma is suffi-
cient to establish the optimality of EntropySort.

Lemma 3.3. EntropySort needs at most 4w +
2 log Zk

Zk+1
oracle queries to insert element ek+1 into

poset Pk in order to obtain Pk+1.

Proof of Lemma 3.3: Let C = {C1, . . . , Cq} be

the chain decomposition of the poset Pk constructed
at Step 4c of EntropySort in the iteration of the
algorithm in which element ek+1 needs to be inserted
into poset Pk. Suppose also that, for all i ∈ {1, . . . , q},
πi ∈ {1, . . . , `i+1} and κi ∈ {0, 1, . . . , `i} are the indices
computed by the binary searches of Steps v. and vii. of
the algorithm. Also, let Di, Dij , j ∈ {1, . . . , `i+1}, and
D′i, D′ij , j ∈ {0, . . . , `i}, be the quantities computed at

397 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Steps ii., iii. and vii. It is not hard to see that the
following are satisfied

Zk = D1; D′qκq
= Zk+1

Diπi
= D′i,∀i = 1, . . . , q; D′iκi

= Di+1,∀i = 1, . . . , q − 1

Now, using Lemma 3.2, it follows that the total number
of queries required to construct Pk+1 from Pk is at most

q∑
i=1

(
2 + 2 log

Di
Diπi

+ 2 + 2 log
D′i
D′iκi

)
≤ 4w+2 log

Zk
Zk+1

.

�
Using Lemma 3.3, the query complexity of Entropy-
Sort is

n−1∑
k=0

(# queries needed to insert element ek+1)

=
n−1∑
k=0

(
4w + 2 log

Zk
Zk+1

)
= 4wn+ 2 log

Z0

Zn
= 4wn+ 2 logNw(n).

Taking the logarithm of the upper bound in Theo-
rem 3.1, it follows that the number of queries required
by the algorithm is 2n log n+ 8wn+ 2w logw.

3.2 An efficient sorting algorithm We turn to the
problem of efficient sorting. Our Poset-Mergesort
algorithm has superficially a recursive structure similar
to the classical Mergesort algorithm. The merge step is
quite different, however; it makes use of the technical
Peeling algorithm in order to efficiently maintain a
small chain decomposition of the poset throughout the
recursion. The Peeling algorithm, described formally
in Section 3.2.2, is a specialization of the classic flow-
based bipartite-matching algorithm [10] that is efficient
in the comparison model.

3.2.1 Algorithm Poset-Mergesort Given a set
P , a query oracle for a poset P = (P,�), and an
upper bound of w on the width of P, the Poset-
Mergesort algorithm produces a decomposition of P
into w chains and concludes by building a ChainMerge
data structure. To get the chain decomposition, the
algorithm partitions the elements of P arbitrarily into
two subsets of (as close as possible to) equal size;
it then finds a chain decomposition of each subset
recursively. The recursive call returns a decomposition
of each subset into at most w chains, which constitutes
a decomposition of the whole set P into at most 2w
chains. Then the Peeling algorithm of Section 3.2.2 is
applied to reduce the decomposition to a decomposition

of w chains: given a decomposition of P ′ ⊆ P , where
m = |P ′|, into at most 2w chains, the Peeling
algorithm returns a decomposition of P ′ into w chains
using 4wm queries and O(w2m) time. The pseudo-code
of Poset-Mergesort is given in the full version [7],
and its performance is characterized by the following.

Theorem 3.4. Poset-Mergesort sorts any poset
P of width at most w on n elements using at
most 4wn log(n/w)) queries, with total complexity
O(w2n log(n/w)).

3.2.2 The Peeling algorithm We describe an al-
gorithm that efficiently reduces the size of a given de-
composition of a poset. It can be seen as an adapta-
tion of the classic flow-based bipartite-matching algo-
rithm [10] that is designed to be efficient in the oracle
model and has been optimized for reducing the size of
a given decomposition rather than constructing a mini-
mum chain decomposition from scratch [5]. The Peel-
ing algorithm is given an oracle for poset P = (P,�),
where n = |P |, and a decomposition of P into q ≤ 2w
chains. It first builds a ChainMerge data structure
using at most 2qn queries and time O(qn). Every query
the algorithm makes after that is actually a look-up in
the data structure and therefore takes constant time and
no oracle call.

The Peeling algorithm proceeds in a number of
peeling iterations. Each iteration produces a decompo-
sition of P with one less chain, until after at most w
peeling iterations, a decomposition of P into w chains
is obtained. A detailed formal description of the algo-
rithm is given in Figure 3.

Theorem 3.5. Given an oracle for P = (P,�), where
n = |P |, and a decomposition of P into at most 2w
chains, the Peeling algorithm returns a decomposition
of P into w chains. It has query complexity at most
4wn and total complexity O(w2n).

Proof of Theorem 3.5: To prove the correctness of
one peeling iteration, we observe first that it is always
possible to find a pair (x, y) of top elements such that
y � x, as specified in Step 1a, since the size of any anti-
chain is at most the width of P, which is less than the
number of chains in the decomposition. We now argue
that it is possible to find a subsequence of dislodgements
as specified by Step 2a. Let yt be the element defined in
step 3 of the algorithm. Since yt was dislodged by xt, xt
was the top element of some list when that happened.
In order for xt to be a top element, it was either top
from the beginning, or its parent yt−1 must have been
dislodged by some element xt−1, and so on.

We claim that, given a decomposition into q chains,
one peeling iteration produces a decomposition of P into

398 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm Peeling(P, C)
input: an oracle for poset P = (P,�), an upper bound w on the width of P,

and a decomposition C = {C1, . . . , Cq} of P, where q ≤ 2w
output: a decomposition of P into w chains

build ChainMerge(P, C); /* All further queries are look-ups. */
for i = 1, . . . , q

build linked list for chain Ci = ei`i → · · · → ei2 → ei1, where ei`i � · · · � ei2 � ei1;
while q > w, perform a peeling iteration:

1. for i = 1, . . . , q, set C ′i = Ci;
2. while every C ′i is nonempty

/* the largest element of each C ′i is a top element */
a. find a pair (x, y), x ∈ C ′i, y ∈ C ′j , of top elements such that y � x;
b. delete y from C ′j ; /* x dislodges y */

3. in sequence of dislodgements, find subsequence (x1, y1), . . . , (xt, yt) such that:
• yt is the element whose deletion (in step 2b) created an empty chain;
• for i = 2, . . . , t, yi−1 is the parent of xi in its original chain;
• x1 is the top element of one of the original chains;

4. modify the original chains C1, . . . , Cq:
a. for i = 2, . . . , t

i. delete the pointer going from yi−1 to xi;
ii. replace it with a pointer going from yi to xi;

b. add a pointer going from y1 to x1;
5. set q = q − 1, and re-index the modified original chains from 1 to q − 1;

return the current chain decomposition, containing w chains

Figure 3: pseudo-code for the Peeling Algorithm

q − 1 chains. Recall that y1 � x1 and, moreover, for
every i, 2 ≤ i ≤ t, yi � xi, and yi−1 � xi. Observe
that after Step 4 of the peeling iteration, the total
number of pointers has increased by 1. Therefore, if the
link structure remains a union of disconnected chains,
the number of chains must have decreased by 1, since
1 extra pointer implies 1 less chain. It can be seen
that the switches performed by Step 4 of the algorithm
maintain the invariant that the in-degree and out-degree
of every vertex is bounded by 1. Moreover, no cycles are
introduced since every pointer that is added corresponds
to a valid relation. Therefore, the link structure is
indeed a union of disconnected chains.

The query complexity of the Peeling algorithm is
exactly the query complexity of ChainMerge, which is
at most 4wn. We show next that one peeling iteration
can be implemented in time O(qn), which implies the
claim.

In order to implement one peeling iteration in time
O(qn), a little book-keeping is needed, in particular, for
Step 2a. We maintain during the peeling iteration a
list L of potentially-comparable pairs of elements. At
any time, if a pair (x, y) is in L, then x and y are top
elements. At the beginning of the iteration, L consists of
all pairs (x, y) where x and y are top elements. Any time

an element x that was not a top element becomes a top
element, we add to L the set of all pairs (x, y) such that
y is currently a top element. Whenever a top element x
is dislodged, we remove from L all pairs that contain x.
When Step 2a requires us to find a pair of comparable
top elements, we take an arbitrary pair (x, y) out of L
and check if x and y are comparable. If they are not
comparable, we remove (x, y) from L, and try the next
pair. Thus, we never compare a pair of top elements
more than once. Since each element of P is responsible
for inserting at most q pairs to L (when it becomes a
top element), it follows that a peeling iteration can be
implemented in time O(qn). �

4 The k-selection problem

The k-selection problem is the natural problem of find-
ing the elements in the bottom k layers, i.e., the ele-
ments of height at most k − 1, of a poset P = (P,�),
given the set P of n elements, an upper bound w on the
width, and a query oracle. We present upper and lower
bounds on the query and total complexity of k-selection,
for deterministic and randomized computational mod-
els, for the special case of k = 1 as well as the general
case. While our upper bounds arise from natural gener-
alizations of analogous algorithms for total orders, the

399 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

lower bounds are achieved quite differently. We conjec-
ture that our deterministic lower bound for the case of
k = 1 is tight, though the upper bound is off by a factor
of 2.

4.1 Upper bounds We provide deterministic and
randomized upper bounds for k-selection, which are
asymptotically tight for k = 1. The basic idea for the
k-selection algorithms is to iteratively use the sorting
algorithms presented in Section 3 to update a set of
candidates that the algorithm maintains. Due to lack
of space, all proofs are given in the full version [7].

Theorem 4.1. The minimal elements of a poset can
be found deterministically with at most wn queries and
O(wn) total complexity.

Theorem 4.2. There exists a randomized algorithm
that finds the minimal elements in an expected number
of queries that is upper bounded by w+1

2 n+ w2−w
2 (log n−

logw).

Theorem 4.3. The query complexity of the k-selection
problem is at most 16wn+ 4n log (2k) + 6n logw. More-
over, there exists an efficient k-selection algorithm with
query complexity at most 8wn log (2k) and total com-
plexity O(w2n log(2k)).

Theorem 4.4. The k-selection problem has
a randomized query complexity of at most
wn + 16kw2 log n log(2k) and total complexity
O(wn+ poly(k,w) logn).

4.2 Lower bounds We obtain lower bounds for the
k-selection problem both for adaptive and non-adaptive
adversaries. Some of our proofs use the following lower
bound on finding the k-th smallest element of a total
order on n elements:

Theorem 4.5. (Fussenegger-Gabow [12]) The
number of queries required to find the kth small-
est element of an n-element total order is at least
n− k + log

(
n
k−1

)
.

The proof of Theorem 4.5 shows that every compari-
son tree that identifies the kth smallest element must
have at least 2n−k

(
n
k−1

)
leaves, which implies that the

theorem also holds for randomized algorithms.

4.2.1 Adversarial lower bounds We consider ad-
versarial lower bounds for the k-selection problem. In
this model, an adversary simulates the oracle and is al-
lowed to choose her response to a query after receiving
it. A response is legal if there exists a partial order

of width w with which this response and all previous
responses are consistent.

The adversarial algorithm for Theorem 4.6 below
outputs query responses that correspond to a poset P of
w disjoint chains. Along with outputting a response to
a query, the algorithm may also announce for a queried
element to which chain it belongs. In any proof that an
element a is not a smallest element, it must be shown
to dominate at least one other element. The algorithm
is designed so that in order for such a response to be
given, a must first be queried against at least w − 1
other elements with which it is incomparable.

The algorithm for Theorem 4.7 is based on a similar
idea but uses a more specific rule for assigning queried
elements to chains. The responses are designed so that
if many chains are very short, then the number of
pairs declared incomparable must be large. Achieving
this goal is technically challenging; the rather involved
details of this argument are given in the full version [7].
If, on the other hand, few of the chains are very short,
then the Fussenegger-Gabow Theorem implies that the
number of queries required to select the k smallest
elements in each chain must be large.

Theorem 4.6. In the adversarial model, at least
w+1

2 n − w comparisons are needed in order to find the
minimal elements.

Theorem 4.7. Let r = n
2w−1 . If k ≤ r then the number

of queries required to solve the k-selection problem is at
least

(w + 1)n
2

− w(k + log k)− w3

8

+ min
(

(w − 1) log
(

r

k − 1

)
+ log

(
rw

k − 1

)
,

n(r − k)(w − 1)
2r

+ log
(
n− (w − 1)k

k − 1

))
.

4.2.2 Lower bounds in the randomized query
model We also give lower bounds on the number of
queries used by randomized k-selection algorithms. We
conjecture that the randomized algorithm for find-
ing the minimal elements given in the proof of Theo-
rem 4.2 [7] achieves the lower bound.

Theorem 4.8. The expected query complexity of any
algorithm solving the k-selection problem is at least
w+3

4 n− wk + w
(
1− exp

(
− n

8w

)) (
log
(
n/(2w)
k−1

))
.

5 Computing linear extensions and heights

We provide upper bounds for two problems that are
closely related to the problem of determining a partial
order: given a poset, compute a linear extension, and

400 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

compute the heights of all elements. A total order (P,>)
is a linear extension of a partial order (P,�) if, for any
two elements x, y ∈ P , x � y implies x > y.

Our algorithms are analogous to Quicksort, and are
based on a ternary search tree, an extension of the well-
known binary search tree for maintaining elements of a
linear order. We give the proof in the full version [7].

Theorem 5.1. There is a randomized algorithm that,
given a poset of size n and width at most w, computes
a linear extension of the poset and has expected total
complexity O(n log n+ wn).

Theorem 5.2. There is a randomized algorithm that,
given a poset of size n and width at most w, determines
the heights of all elements and has expected total com-
plexity O(wn log n).

6 Variants of the poset model

We discuss sorting in two variants of the poset model
that occur when different restrictions are relaxed. First,
we consider posets for which a bound on the width is
not known in advance. Second, we allow the irreflexivity
condition to be relaxed, which leads to transitive rela-
tions. We show that with relatively little overhead in
complexity, sorting in either case reduces to the problem
of sorting posets.

6.1 Unknown width Recall from Section 3 that
Nw(n) is the number of posets of width at most w on n
elements. We provide the proof of the following in [7].

Claim 6.1. Given a set P of n elements and access
to an oracle for poset P = (P,�) of unknown width
w, there is an algorithm that sorts P using at most
logw (2 logN2w(n) + 8wn) = Θ(n logw (log n+ w))
queries, and there is an efficient algorithm that sorts P
using at most 8nw logw log(n/(2w)) queries with total
complexity O(nw2 logw log(n/w)).

6.2 Transitive relations A partial order is a partic-
ular kind of transitive relation. Our results generalize
to the case of arbitrary transitive relations (which are
not necessarily irreflexive) and are therefore relevant to
a broader set of applications. See [7] for details.

Claim 6.2. Suppose there is an algorithm A that, given
a set P of n elements, access to an oracle O� for
a poset P = (P,�), and an upper bound of w on
the width of P, sorts P using f(n,w) queries and
g(n,w) total complexity. Then there is an algorithm
B that, given P , w, and access to an oracle OD for
a transitive relation (P,D) of width at most w, sorts
(P,D) using f(n,w)+2nw queries and g(n,w)+O(nw)
total complexity.

Acknowledgments We thank Mike Saks for the refer-
ence to [9].

References

[1] P. Boldi and F. Chierichetti and S. Vigna. “Pictures
from Mongolia — Partial Sorting in a Partial World,”
FUN 2007.

[2] G. Brightwell. “Balanced Pairs in Partial Orders,”
Discrete Mathematics 201(1–3): 25–52, 1999.

[3] G. Brightwell and S. Goodall. “The Number of Partial
Orders of Fixed Width,” Order 20(4): 333–345, 2003.

[4] G. Brightwell and P. Winkler. “Counting Linear Ex-
tensions is #P-Complete,” STOC 1991.

[5] Y. Chen. “Decomposing DAGs into Disjoint Chains,”
Database and Expert Systems Applications 2007.

[6] T. M. Cover and J. A. Thomas. Elements of informa-
tion theory. New York: John Wiley & Sons Inc., 1991.

[7] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld,
E. Verbin. “Sorting and Selection in Posets,” ArXiv
Report, 2007.

[8] M. E. Dyer, A. M. Frieze and R. Kannan. “A Random
Polynomial Time Algorithm for Approximating the
Volume of Convex Bodies,” Journal of the ACM, 38(1):
1–17, 1991.

[9] U. Faigle and Gy. Turán. “Sorting and Recognition
Problems for Ordered Sets,” SIAM J. Comput. 17(1):
100–113, 1988.

[10] L. R., Jr., Ford and D. R. Fulkerson. Flows in Net-
works. Princeton University Press, 1962.

[11] M. Fredman. “How good is the information theory
bound in sorting?” Theor. Comput. Sci. 1(4): 355-361,
1976.

[12] F. Fussenegger and H. N. Gabow. “A Counting Ap-
proach to Lower Bounds for Selection Problems,” Jour-
nal of the ACM 26(2): 227–238, 1979.

[13] J. Kahn and J. H. Kim. “Entropy and Sorting,” STOC,
178 – 187, 1992.

[14] J. Kahn and M. Saks. “Balancing poset exten-
sions,”Order 1(2): 113–126,1984.

[15] S. S. Kislitsyn, “A finite partially ordered set and its
corresponding set of permutations,” Matematicheskie
Zametki 4(5): 511–518, 1968.

[16] D. Knuth. The Art of Computer Programming: Sorting
and Searching, Massachusetts: Addison-Wesley, 1998.

[17] N. Linial. “The Information theoretic bound is good
for merging,” SIAM J. Comput. 13(4): 795-801, 1984.

[18] M. E. J. Newman, SIAM Review 45: 167–256, 2003.
[19] K. Onak and P. Parys. Generalization of Binary Search:

Searching in Trees and Forest-Like Partial Orders.
FOCS 2006.

[20] W. Trotter and S. Felsner, “Balancing pairs in partially
ordered sets,” Combinatorics, Paul Erdos is Eighty I:
145–157, 1993.

401 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

