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Abstract— We prove that the problem of computing an Arrow-
Debreu market equilibrium is PPAD-complete even when all traders
use additively separable, piecewise-linear and concave utility func-
tions. In fact, our proof shows that this market-equilibrium problem
does not have a fully polynomial-time approximation scheme, un-
less every problem in PPAD is solvable in polynomial time.

1. INTRODUCTION

One of the central developments in mathematical econo-
mics is the general equilibrium theory, which provides the
foundation for competitive pricing [1], [36]. When special-
ized to exchange economies, it considers an exchange market
in which there are m traders and n divisible goods, where
trader ¢ has an initial endowment of w; ; > 0 of good j,
and a utility function u; : R} — R. The individual goal of
trader ¢ is to obtain a new bundle of goods that maximizes
her utility. This new bundle can be specified by a column
vector x; € R’ in which the jth entry z; ; is the amount
of good j that trader ¢ is able to obtain after the exchange.
Naturally, the exchange should satisfy . z; ; < ", w; ;,
for all good j € [m)].

The pioneering equilibrium theorem of Arrow and Debreu
[1] states that if all the utility functions uy,. . .,u,, are quasi-
concave, then under some mild conditions, the market has
an equilibrium price p = (p1,...,pn) € R : At this price,
independently, each trader can sell her initial endowment
virtually to the market to obtain a budget and then buys a
bundle of goods with this budget from the market — which
contains the union of all goods — that maximizes her utility.
The equilibrium condition guarantees that the supply equals
the demand and hence the market clears: every good is sold
and every trader’s budget is completely spent.

The existence proof of Arrow and Debreu, based on Ka-
kutani’s fixed point theorem [29], is non-constructive in the
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view of polynomial-time computability. Despite the progress
both on algorithms for and on the complexity-theoretic un-
derstanding of market equilibria, several fundamental ques-
tions, including some seemingly simple ones, remain unset-
tled. Vijay Vazirani [32] wrote:

“Concave utility functions, even if they are addi-
tively separable over the goods, are not easy to
deal with algorithmically. In fact, obtaining a
polynomial time algorithm for such functions is
a premier open question today.”

A function u(x) : R? — R is said to be additively separable
and concave, if there exist n real-valued concave functions
fis.-., fn such that u(z1,...,2,) = 37, fi(z;). Noting
that every concave function f; can be approximated by a
piecewise linear and concave (PLC) function, Vazirani [32]
further asked whether one can find an equilibrium price in
a market with additively separable PLC utility functions in

" polynomial time; or whether the problem is PPAD-hard. This
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open question has been echoed in several work since then
[13], [25], [21], [38].

1.1. Our Contribution

In this paper, we settle the computational complexity of
finding an approximate Arrow-Debreu equilibrium in a mar-
ket with additively separable PLC utilities. We show that this
market-equilibrium problem is PPAD-complete.

For a positive integer ¢t > 0 we say a real-valued function
f is t-segment piecewise linear over Ry = [0, 4+00), if f is
continuous and R can be divided into ¢ sub-intervals such
that f is linear over every sub-interval. If every trader’s uti-
lity is an additively separable and ¢-segment PLC function,
then we refer to the market as a t-linear market. Clearly, a
market with linear utilities is a 1-linear market. In contrast
to the fact that an Arrow-Debreu equilibrium of a 1-linear
market can be computed in polynomial time [18], [31], [12]
[14], [26] we show that finding an approximate equilibrium
in a 2-linear market is PPAD-complete via a reduction from
SPARSE BIMATRIX: the problem of finding an approximate
Nash equilibrium in a sparse two-player game [5] (see 2.1
for the definition).
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Our construction of the PPAD-complete markets has sev-
eral nice technical elements. First, we introduce a family of
simple linear markets {M,,} with n goods, which we refer
to as the price-regulating markets. They have the following
nice price-regulation property: If p is a normalized ' ap-
proximate equilibrium price vector of M,,, then p;. € [1,2]
for all k € [n]. This price-regulation property allows us to
encode n free variables x1,..., 1, between 0 and 1 using
the n entries of p by setting x), = p, — 1, k € [n].

As a key step in our analysis, we prove that this price-
regulation property is stable with respect o small perturba-
tions: When new traders are added into M,, without intro-
ducing new goods, the price-regulation property remains to
hold as long as the total amount of goods they carry with
them is small compared to those of the traders in M,,. We
then show how to set the endowments and utilities of these
new traders so that we can control the flows of goods in the
new market and set new constraints that every approximate
equilibrium price vector p must satisfy.

Using the stability of the price-regulating markets {M,, }
we give a reduction from a two-player game to a 2-linear
market M: Given any n x n two-player game (A,B), we
construct an additively separable PLC market M by adding
new traders — whose endowments are relatively small —
to Ma,,4 2, the price-regulating market with 2n + 2 goods.

We use the first 2n entries of p to encode a pair of prob-
ability distributions (x,y), where

keln]. (1)

We then develop a novel way to enforce the Nash equilib-
rium constraints over A, B, x and y by carefully specifying
the behaviors of the new traders.

In doing so, we get a market M with the property that,
from any approximate equilibrium p of M, the pair (x,y)
encoded in p (after normalization) is an approximate Nash
equilibrium of (A, B). Moreover, if (A, B) is sparse, then
the relation of which traders are interested in which goods
in M is also sparse.

In the construction, the price-regulation property plays a
critical role. It enables us to design the utility functions of
the new traders so that we know exactly their preferences
over the goods with respect to any approximate equilibrium
price p, even though we have no idea in advance about the
entries of p when constructing M.

We anticipate that our reduction techniques will help to
resolve more complexity questions concerning other inter-
esting families of markets such as the general CES and the
hybrid linear-Leontief markets [6]. Recently, the techniques
developed in this paper were further improved to show that
even for the much simpler model of Fisher [2] (see Section
1.2.1), finding an approximate market equilibrium remains
to be PPAD-complete [7], [39].

zp=pr—1 and yr=pnyr— 1,

'We say p is normalized if its smallest nonzero entry is equal to 1.
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1.2. Related Work

The computation of an equilibrium price in an exchange
market has been a very challenging problem in mathemati-
cal economics [32]. The matter is more complex since some
markets only have irrational equilibria, making the compu-
tation of exact market equilibria with a finite-precision al-
gorithm impossible.

One approach to handle irrationality is to express market
equilibria in some simple algebraic form. However, it turns
out that finding an exact equilibrium price in general is not
computable [34].

One can also use some notion of approximate equilibria.
There are various notions of approximate market equilibria:
Some require that the approximation solution lies within a
small geometric distance from an exact equilibrium point
[19], while others only require that the individual optimality
condition and/or the supply-demand condition are approxi-
mately satisfied. Following Scarf [35] we consider the latter
notion of approximate market equilibria in this paper.

1.2.1. Algorithms for market equilibria: Scarf pioneered
the algorithmic development of computing general competi-
tive equilibria [35],[36]. His approach combined numerical
approximation with combinatorial insights used in Sperner’s
lemma [37] for fixed points and in Lemke and Howson’s
algorithm for two-player Nash equilibria. Although his al-
gorithm may not always run in polynomial time, Scarf’s
work has profound impact to computational economics.

Building on the success of convex programming [18],
polynomial-time algorithms have been developed for some
special markets whose sets of market equilibria enjoy some
degree of convexity. For Arrow-Debreu markets with linear
utility functions, Nenakov and Primak gave a polynomial-
time algorithm [31], and there are now several polynomial-
time algorithms for computing/approximating market eq-
uilibria with linear utility functions [12], [14], [26], [20],
[27], [15], [41]. Other polynomial-time algorithms for sp-
ecial markets include Eaves’s algorithm for Cobb-Douglas
markets [17]; and Devanur and Vazirani’s FPTAS for mar-
kets with spending constraint utilities [16], building on the
algorithm for Fisher’s model by Vazirani [38]. The convex
programming based approach has also been extended to all
markets whose utility functions satisfy weak gross substitu-
tability (WGS) by Codenotti, Pemmaraju, and Varadarajan
[10]. In [9], Codenotti, McCune, and Varadarajan showed
that for markets satisfying WGS, there is a price-adjustment
mechanism called raonnement that converges to an approx-
imate equilibrium efficiently.

A closely related market model is Fisher’s model [2]. In
this model, there are two types of traders: producers and
consumers. Bach consumer comes to the market with a bud-
get and a utility function. Each producer comes to the market
with an endowment of goods, and will sell them to the
consumers for money. A market equilibrium is then a price



vector for goods so that if every consumer spends all her
budget to maximize her utility, then the market clears. An
(approximate) market equilibrium in a Fisher’s market with
CES utility functions [18], [41], [40], [14], [28] or with some
special class of piecewise linear utility functions [40] can be
computed in polynomial time.

However, progress on Arrow-Debreu markets whose sets
of equilibria do not enjoy convexity has been relatively slow.
There are only a few algorithms in this category. Devanur
and Kannan [13] gave a polynomial-time algorithm for PLC
markets with a constant number of goods. Codenotti et. al.
[8] gave a polynomial-time algorithm for markets with CES
functions when the elasticity of substitution s > 1/2.

1.2.2. Complexity of equilibria: In [33], Papadimitriou
introduced the complexity class PPAD. He also proved that
the problem of finding a Nash equilibrium in a two-player
game and the problem of computing an approximate fixed
point are both members of PPAD.

Recently, there has been a sequence of developments that
characterized the computational complexity of several equi-
librium problems in game theory. Daskalakis, Goldberg and
Papadimitriou [23] proved that the problem of computing
an exponentially-precise Nash equilibrium of a four-player
game is PPAD-complete. Chen and Deng [3] then showed
that finding a two-player Nash equilibrium is also PPAD-
complete. Chen and Deng’s result, together with an earlier
reduction of [11], implies that finding an equilibrium in an
Arrow-Debreu market with Leontief utilities is PPAD-hard.
On the approximation front, Chen, Deng, and Teng proved
that it is PPAD-complete to find a polynomially-precise ap-
proximate equilibrium in two-player or multi-player games
[4]. Huang and Teng then extended it to Leontief market
equilibria [25]. Their result implies that the market equili-
brium problem with CES utility functions is PPAD-hard, if
the elasticity of substitution s is sufficiently small.

2. PRELIMINARIES

2.1. Complexity of Nash Equilibria in Sparse Games

A two-player game is defined by the payoff matrices A
and B of its two players. In this paper, we assume that both
players have n choices of actions and thus, A and B are
square matrices with n rows and columns. We use A™ to
denote the set of probability distributions of n dimensions.

Definition 1 (Well-Supported Nash Equilibria). For € > 0,
(x,y) is an e-well-supported Nash equilibrium of (A,B),
if X,y € A" and for all i # j € [n], we have

(2
(3)

where we use A; and B; to denote the ith row vector of A
and the ith column vector of B, respectively.

Ain+6<Aij = z; =0, and
xB;,+e<xB; = y; =0,
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Definition 2. We say a two-player game (A, B) is normal-
ized if every entry of A and B is between —1 and 1. We say
a two-player game (A, B) is sparse if every row and every
column of A and B have at most 10 nonzero entries.

We let SPARSE BIMATRIX denote the problem of finding
an n~%-well-supported Nash equilibrium in an n X n sparse
normalized two-player game. By [5], it is PPAD-complete.

2.2. Markets with Additively Separable PLC Urtilities

Let G = {G1,...,G,} denote a set of n divisible goods
and 7 = {T1,...,T.,} denote a set of m traders. For each
T;, we use w; € R’ to denote her endowment and u;(-) to
denote her utility function. We will focus on markets with
additively separable, piecewise linear and concave utilities.

A continuous function (-) from R to Ry is said to be
t-segment piecewise linear and concave (PLC), if 7(0) =0
and there exists a tuple [0 > 601 > ... > 0; > 0;0 < a1 <
as < ... < ay] of length 2¢ + 1, such that

1. For any ¢ € [0 : t — 1], the restriction of f over
[ai, ai+1] (ap = 0) is a segment of slope 6;;

2. The restriction of f over [as, +00) is a ray of slope 6.

The tuple [0, 01, ...,0:a1,0a2,...,a4 is called the repre-
sentation of r(-). We say 7(-) is strictly monotone if ¢; > 0
and it is a-bounded for some oo > 1 if @ > 6y and 6; > 1.

Definition 3. A function u(-) : R} — Ry is said to be an
additively separable PLC function if there exist a set of n
PLC functions m1(-), ..., mn(-) : Ry — Ry such that

u(x) =3 e Ti(®5), forallx € RY.

In such a market, we use 7; ;(-) : Ry — Ry to denote the
PLC function of T; with respect to G; and thus, we have

ui(X) = X e Tig(ws), forall x e RY.

We let p € R} denote a price vector, where p # 0 and p;
is the price of G;. We always assume that p is normalized.
Given p, we use OPT(4,p) to denote the set of allocations
that maximize wu;(-):

OPT(i, p) = argmax XERT, X p<Wi-p u;(X).

We use X = {x; € R} :4 € [m]} to denote an allocation
of the market. For every T; € 7, x; € R’}r is the amount of
goods that T; receives.

Definition 4 (Arrow-Debreu [1]). A market equilibrium is
a non-zero price vector p € RY} such that there exists an
allocation X which has the following properties: 1). Every
trader gets an optimal bundle: For every T; € T, we have
x; € OPT(i,p),; and 2). The market clears: For any Gj,

Dicim) Tid < Lie(m) Wis

If pj > O, then we have 3 ¢, Tij = 2 ic[m) Wi~



In general, not every market has an equilibrium, mainly
due to some technical issues with traders with zero income.
For the additively separable PLC markets considered in this
paper, the following condition guarantees the existence of a
market equilibrium. It is a corollary of Maxfield [30], and
the proof can be found in the appendix.

Definition 5 (Economy Graphs [30]). Given an additively
separable PLC market M, we define a directed graph G
(T, E) as follows. The vertex set of G is exactly T, the set
of traders in the market. For every rwo traders T, # T; € T
we have an edge from T; 1o T} if there exists an integer k€
[n] such that wiy > 0 and 7;.(-) is strictly monotone. In
another word, trader T; possesses a good that Tj wants. G
is called the economy graph of the market [30], [8]. We say
the market is strongly connected if G is strongly connected.

Theorem 1. Let M be an Arrow-Debreu market with addi-
tively separable PLC utility functions. If it is strongly con-
nected, then a market equilibrium p exists.

Moreover, if all the parameters of M are rational num-
bers, then it has a rational market equilibrium. The number
of bits needed 1o describe it is polynomial in the input size
of M (i.e., the number of bits needed to describe M).

Besides, every quasi-equilibrium of M (see the appendix
for definition) must also be a market equilibrium.

2.3. Definition of the Sparse Market Equilibrium Problem

By Theorem 1, the following problem MARKET is well-
defined: The input of the problem is an additively separable
PLC market M that is both rational and strongly connected;
and the output is'a rational market equilibrium of M.

In the rest of this section, we define SPARSE MARKET, a
very restricted version of MARKET. The main result of the
paper is that SPARSE MARKET is PPAD-complete.

First the input of SPARSE MARKET is an additively sepa-
rable PLC market which not only is strongly connected but
also satisfies the following three conditions.

We say an additively separable PLC market is a-bounded
for some a > 1, if for all T; and Gj, 7 ;(-) is either the
zero function (r; j(z) = 0 for all ) or a-bounded. We call
an additively separable PLC market a 2-linear market if for
every T; and G, 7 ;(-) has at most two segments. Finally,
we say an additively separable PLC market is t-sparse, for
some integer ¢ > 0, if 1) For every T; € T, |supp(w;)| <t
and 2) For every T; € T, the number of j € [n] such that
ri.;(-) is not the zero function is at most t. In other words,
every trader owns at most ¢ goods at the beginning and is
interested in at most ¢ goods.

We use the following notion of approximate equilibria:

Definition 6 (Approximate Market Equilibrium). Given an

additively separable PLC market M, we say p € N is an

e-approximate market equilibrium of M for some € > 0, if

there exists an allocation X = {x; € R’ : i € [m]} such
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that x; € OPT(i,p) for all i € [m]; and the market clears
approximately: For every G € g,

Zie[m] Tij — Z'[E[m] Wi, j S € Z'[G[‘ul.] Wi,j-

We remark that there are various notions of approximate
market equilibria. The reason we adopted the one above 1s
to simplify the analysis. The construction in section 4 works
for some other notions of approximate equilibria, e.g., the
one that allows the allocation to be approximately optimal
for each trader.

We let SPARSE MARKET denote the following problem:
The input is a 2-linear market M that is strongly connected
97-bounded and 23-sparse; and the output is an ™ '*-appro-
ximate equilibrium of M, where n is the number of goods.
It is tedious but not hard to show that SPARSE MARKET is
in PPAD2. Besides, one can replace the constant 27 here by
any constant larger than 1 and our main result, Theorem 2,
below still holds. The constant 23, however, is related to the
constant 10 in Definition 2.

Theorem 2 (Main). SPARSE MARKET is PPAD-complete.

Theorem 2 also implies that the problem of computing an
approximate quasi-equilibrium (see the appendix for defini-
tion) in an Arrow-Debreu market with additively separable
PLC utilities is PPAD-complete.

3. A PRICE-REGULATING MARKET

We now construct the price-regulating markets {M,,} for
every positive integer n > 2. M,, has n goods and satisfies
the following strong price regulation property.

Property 1 (Price Regulation). A price vector p € R} isa
normalized n™'-approximate market equilibrium of M,, if
and only if 1 < px < 2, for all k € [n].

We start with some notation. The goods in M,, are G =
{Gi,...,Gy}, and the traders are 7 = {Ts:s e S},

where S = {s=(i,j):1<i#j<nj

For each Ty, we use ws € R’} to denote her endowment,
us(-) : R — R to denote her utility, 7s.k(+) to denote her
PLC function with respect to Gy, k € [n], and OPT(s, p)
to denote the set of bundles that maximize her utility with
respect to p.

21n [22]. the author showed how to construct a continuous map from any
market with quasi-concave utilities such that the set of fixed points of the
map is precisely the set of equilibria of the market. When the market is
additively separable PLC. one can show that the continuous map is indeed
Lipschitz continuous. As a result, one can reduce the problem of finding an
approximate market equilibrium to the problem of finding an approximate
fixed point in a Lipschitz continuous map. This implies a reduction from
SPARSE MARKET to the discrete fixed point problem studied in [24] (also
see [4] for the high-dimensional version) which is in PPAD, and thus, the
former is also in PPAD.



M,, is linear, in which for all s € S and k € [n], 75 x(-)
is a ray starting at (0,0). In the construction below, we use
rs.1(-) < [6] to denote the action of setting 7s x(-) to be the
linear function of slope ¢ > 0.

Construction of M,,: First, we set wg. For every pair s =
(i,4) € S, we have ws; = 1/n; and ws x = 0 for all other
k € [n].

Second, we set the PLC functions 7 (-). For every s =
(i,7) € S and k € [n], we have 75 x(-) <= [0] where § =0
ifk#d,70=1ifk=j;and 0 =2if k =1i.

It is easy to check that M,, constructed above is strongly
connected, 2-bounded and 2-sparse.

Proof of Property 1: One of the directions is trivial. If
1§pk§2forallk€[n},thenX:{xS:ws:SES}
is an optimal market clearing allocation at price p.

The other direction is less trivial. Let p be a normalized
n~l-approximate equilibrium of M,,, and X’ be an optimal
allocation that clears the market approximately. First, it is
easy to check that p;, must be positive for all k € [n] since
otherwise, we have zs , = +oo for all s = (¢,7) such that
k =i or j, contradicting the market clearing condition.

Since p is normalized, we have p;, > 1, for all k € [n).
Assume for contradiction that Property 1 is not true, then
without loss of generality, we assume that p; = maxy px >
2 and py = ming py. = 1. To reach a contradiction, we focus
on the amount of G; each trader gets in the allocation X

First, if 1 ¢ {i,j} where s = (7,7), then we have zs; =
0; Second, if i = 1 and j = 2, then x5 ; = 0 since 2/p; <

1/p2 and trader T likes G better than G; with respect to

the price vector p; Third, if j = 1, then we have z5; = 0
since 1/p; < 2/p; and T likes G; better than G1; Finally,
for every s = (4,7) with ¢ = 1 and j # 2, we always have
zs1 < 1/n since the budget of Ty is exactly (1/n)-p1. As
a result, we have

ZSGS Ts1 < (n - 2)/17,

which contradicts the assumption that p is an n~!-approxi-
mate market equilibrium. |

and ) gws1=(n— 1)/n,

4. FROM SPARSE BIMATRIX TO SPARSE MARKET

In this section, we give a reduction from SPARSE BIMA-
TRIX to SPARSE MARKET.

Given an n X n sparse and normalized two-player game
(A, B), we build an additively separable PLC market M by
adding more traders to the price-regulating market Moy, 2.
There are 2n + 2 goods in M: G = {G1,...,G2n42}, and
the traders 7 in M are

T == {TS,TU,TWTZ-:sGS,uEU,vEV,iE [2n]},

where § = {(i,j):1<i#j<2n+2},U={(,41):
1<i#j<n}andV={(i,5,2): 1<i#j<n}.
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The traders T, s € S, have almost the same initial en-
dowments ws and PLC functions rs ;(-) as in Mo, 0. We
only slightly modify the parameters to ease the analysis.

For each T' € 7, we will set her PLC function 7(-) with
respect to Gy, € G to one of the following functions:

1) r(-) is the zero function: r(z) = 0 for all z > 0
(denoted by 7(-) <= [0]);

2) r(-)isaray: r(z) =60 -z forall z >0
(denoted by 7(-) <= [6]); or

3) r(-) is a 2-segment PLC function with representation
[0o,61; a1] (denoted by 7(-) <= [6o, 61; a1)).

4.1. Setting up the Market

4.1.1. Traders Ty, where s € S: Fors = (i,j) € S, we
set the vector wg as follows: ws; = 1/n; and wg . = 0 for
all other k € [2n + 2]. We set the PLC functions 7 x(-) as
follows: rs ;(-) < [0] and 6 = 1if k = j; 0 = 2 if k = 3;
and 6 = 0 for all other k € [2n + 2].

4.1.2. Traders Ty, where u € U: We let u= (,7,1) be
atriple in U with 1 <14 # j < n. We let A; and A; denote
the ith and jth row vectors of A. We define C and D to be
the following two n-dimensional vectors: For k € [n],

(Ck, Di) = (Aix — Aj,0) if Ajp — Ajx 2 0;
(Ck, D) = (0, Aj  — A; 1) otherwise.

and

By definition, we have C—D = A;— A ; while both vectors
C and D are non-negative. Moreover, because A is sparse,
the number of non-zero entries in either C or D is at most
20, and each entry is between 0 and 2. We also let E, I be
the following non-negative numbers: Let C = 3, ¢, Ck
and D =} () D, then

(E,F)=(D-C,0)if D>C; and 4
(E,F) = (0,C — D) otherwise.
It is clear that E,F > 0, and £ + C = F' + D. Moreover,
since C and D are sparse, we have E, F' < 20 - 2.
Using C and E, we set the vector wy, of Ty, as follows:
1) wyui =1/n% wur = Wa2ns2 =0, Vk # i€ [n];
2) Wantk = Cr/n° Yk € [n]; and wy 2n41 = E/n°.
The number of nonzero entries in wy, is at most 22.
Using D and F, we set ry k(). k € [2n+ 2|, as follows:
1) rui(-) < [9,1;1/n); rux(-) < [0, VK # i € [n);
2) Tu2n+2(:) = [3);
3) Tun+k(-) < [0], VK € [n] with Dy, = 0;
4) run+k(’) < [27,1; D/n®], VE € [n] with Dy > 0;

5) Tuont1(-) < [0] if F = 0;
and Ty on41(") < [27,1; F/n®] if F > 0.



Also note that the number of & € [2n + 2] such that 7y x(-)
is not the zero function is at most 23.

We give some intuition for the construction above. First
the use of the constants 1,3,9,27 is to enforce Ty, where
u = (4,7,1), to have a fixed preference over the goods (see
the proof of Lemma 4 for the preference of Tyw) even if we
do not know the prices of the goods in p. This is possible
because the same price-regulation property: 1 < pp < 2 for
all k, still holds for any approximate market equilibrium p
of M (Lemma 1). The price-regulation property also allows
us to encode a pair of vectors (x,y) using (1).

Second, the role of Ty is to implement the Nash equi-
librium constraint (2). The idea is that, if A;y” < Ajy7,
then the preference of 7}, guarantees that the amount of G|
she buys is less than the amount of G; she possesses in her
endowment. Then using the market clearing condition, we
show that for traders Ty, s € S, the amount of G; they buy
must be more than the amount of G; they possess in their
endowments. Intuitively this implies that the price p; of G|
in the approximate equilibrium is low and indeed, we show
that p; must be 1 and thus, z; = p; — 1= 0.

4.]1.3. Traders T\, where v € V: The behavior of T is
similar except that it works on B. Let v = (i,5,2) € V. We
let B; and B, denote the ith and jth column vectors of B.
Similarly, we define vectors C and D: For k € [n],

(Cx, Di) = (Bk,i — Bk,,0) if Bxi — By,; 2 0;
(C},«, D}\) = (0, B]\-_‘j — Bk,i) otherwise.

and

As a result, we have C—D = B; —B; while C, D are non-
negative and sparse. We also define £, F' > 0 in a similar
way so that 0 < E, F' < 40 and

E + Zke[n] Ck - F + Zk€[n] Dk.
Using C and E, we set the vector wy of Ty to be
1) Wy nti =1/n% and wy npk = Wy 2n42 =0
for all other k € [n];

2) wy g = Ci/n® for all k € [n]; and wy 2ny1 = E/n°.
Using D and F, we set 7y (+), k € [2n + 2], as follows:

1) Tvngi(-) < [9,1;1/n%); and 7y nix () < [0]
for all other k € [n];
TV,211.+2(') ~ [3]1
rv k(-) < [0], Vk € [n] with Dy = 0;
rv x(+) < [27, 1; Dy /n®), Vk € [n] with Dy > 0;

T‘v,2n+1(') ~ [O] if /= O
and 7y ont1(") < [27,1; F/n®] if F > 0.

2)
3)
4)
5)

Again we have |supp(wy )| < 22 and the number of indices
k such that ry j(+) is not the zero function is at most 23.
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4.1.4. Traders T;, where i € [2n]: For each i € [2n], we
set the endowment w; of 7T; as follows: w; 241 = l/nlz;
and w; = 0, for all other k € [2n + 2|. We set her PLC
functions 7 1.(+), k € [2n+ 2], as follows: 7 ;(-) <= [1]; and
7 x(-) < [0] for all other k € [2n + 2].

4.2. From Approximate Market Equilibria to
Approximate Nash Equilibria

By definition, it is easy to verify that M is a 2-linear ad-
ditively separable PLC market which is strongly connected,
27-bounded and 23-sparse. Let N = 2n + 2 be the number
of goods. To prove Theorem 2, we only need to show that
given any N ~!3-approximate equilibrium p of M, one can
construct an n~%-well-supported Nash equilibrium (x,y) of
(A, B) in polynomial time.

To this end, we use x’ and y’ to denote the following n-
dimensional vectors: =}, = pi — 1 and y;, = P, x — 1 for all
k € [n]. Then, we normalize (x’,y’) to get a pair (x,y) of
probability distributions (we will show that x’,y’ # 0):

Tk = ‘/L.;\'/Z'ie[‘n] 7;1 and Yr = yi‘/ZiE[n] y:’ (5)

for every k € [n].

Theorem 2 follows from Theorem 3 which we will prove
in Section 5 (since every N ~!3-approximate equilibrium is
also an n~13-approximate equilibrium by definition.)

3_approximate market equilib-

6_

Theorem 3. If p is an n~
rium of M, then (x,y) constructed above must be an n~
well-supported Nash equilibrium of (A, B).

5. CORRECTNESS OF THE REDUCTION

In this section, we prove Theorem 3. Let p be a norma-
lized n~'2-approximate market equilibrium of M. By the
same argument used earlier, one can show that p; must be
positive for all k € [2n + 2]|. As a result, we have px > 1
for all k¥ and ming pr = 1. Let X be an optimal allocation
with respect to p that clears the market approximately: X' =
{as,au,8v,8; : 8 € S,u € U,v € V,i € [2n]}.

We start with the following notation. Let 7/ C 7 be a
subset of traders and k € [2n + 2|. Then we use wi[7'] to
denote the amount of good Gy, that traders in 7" possess at
the beginning; and ax[7 '] to denote the amount of good G,
that 77 receives in the final allocation X.

By the construction of M, we have 2 < wy[7] < 3 for
all k € [2n + 2]. We further divide the traders 7 into two
groups: 77 = {Ts : s € S} and 7o = T — 7. Then by the
definition of approximate equilibria, we have for all &,

lwi[T1] = ak[T1] + wi[T2] — ax[T2]| < 3/n'°. (6)

First, we prove that, the price vector p must still satisfy
the price-regulation property as in the price-regulating mar-
ket Mg, 4o. The proof mainly uses the fact that traders in
7, possess almost all the goods in M.



Lemma 1 (Price Regulation). Yk € 2n+2], 1 <p;, < 2.

Proof: Assume for contradiction that p does not satis-
fies the price-regulation property. Without loss of generality,
we assume that p; = maxy, pr > 2 and po = 1. By the same
argument used in the proof of Property 1, we have

1
<2n-.--—

wi[T1] = (2n+1)- and  a1[7q] -

n

and thus, w1 [71] = a1[71] > 1/n. By (6), we have

1 3
wl[TZ} - (11[7??] < — + SER
As a result, we have
1 3 1 3
, > o2 > 2
o] z wi[P] + n n¥ " n b @

because w; {TQ] > (. However, this cannot be true since the
amount of goods the traders in 75 possess at the beginning
is much smaller compared to 1/n. Even if they spend all
the money on G, a1[73] is at most

1
—2 -
on™) < ~

. 9 - Wk 71
Dipean 2 0 o 5 iy

2 ke[2n+2]

since p; = maxy py. This contradicts with (7). |

Next, we prove two very useful relations between p; and
wi[T2] — ax[T2], k € [2n + 2],

Lemma 2. Ler p be a normalized n™3-approximate market
equilibrium and X be un optimal allocation that clears the
market approximately. If wi|Tz] — ax[T2] > 3/n'® for some
k € [2n+ 2], then pr, = 1.

Proof: Without loss of generality, we prove the lemma
for the case when k = 1. By (6) we have w; [71] —a1[T1] <
0. This means that in the market participated by traders T,
the amount of G; which they would like to buy is strictly
more than the amount of GG; they possess at the beginning.
Intuitively, this implies that the price p; of G is lower than
what it should be, and indeed we show below that p; = 1.

First, by the construction, only the following traders T,
s € S, are interested in G1:

S1={s=(1,5):j#1} and S:={s=(3,1):¢%# 1}.
However, we have
ai [TS,S (S Sl] < wy [TS,S € 51] = wl[Tl]

due to the budget limitation. As a result, there must exist an
s = (i,1) € Sy such that as; > 0. Since ag is an optimal
bundle for T with respect to p, we have

1/p1 > 2/pi

By Lemma 1 the price-regulation property, we conclude that
p1 = 1 and the lemma is proved. |

= p1 <Pif2

Lemma 3. Let p be a normalized n™*3-approximate market

equilibrium and X be an optimal allocation that clears the
market approximately. If wi.[Tz] — ax[T2]) < —3/n*3 for some
k € [2n+ 2], then p;, = 2.

Proof: Without loss of generality, we prove the lemma
for the case when k& = 1. By (6) we have w; [71] —a1[71] >
0. This means that in the market participated by traders 75,
the amount of G; which they would like to buy is strictly
less than the amount of G; they possess at the beginning.
Intuitively this implies that the price p; of G is higher than
what it should be, and indeed we show below that p; = 2.

Because a;[7;] < wi[77], there must exist a j € [2n + 2]
with j # 1 such that s = (1, j) and as1 < ws 1. (Otherwise
a1[71] > w1[7:1].) This implies that trader T spends some
of its money to buy G; and thus,

1/pj > 2/m

By Lemma 1 the price-regulation property, we conclude that

= p1>2-pj.

p1 = 2 and the lemma is proved. i
We also need the following lemma.
Lemma 4. Let u = (i,5,1) € U and v’ = (j,4,1) € U,

then wy i + Wy k > Qu,k + Gu k for all k € 2n + 1].
Let v = (i,7,2) € Vand v' = (j,i,2) € V, then wy j, +
Wy k = Gy k + Gyr i, for all k € [2n + 1].

Proof: Without loss of generality, we only prove the
first part of Lemma 4 for the case when u = (1,2,1) and
u’ = (2,1,1). Let C and D denote the following two n-
dimensional vectors: For k € [n],

(Cr,Dy) = (A1 — A2 i, 0) if Ay — A2 > 0;

(Ck, Dk) = (07A2,k = Al,k) otherwise.

(®)

We also define £ and F as in (4). By the construction,

Wa,n+k = Ck/n57 Wu! nt+k = Dk/ns, for all k € [TL],

— _ 4 — 5 — 5
Wy,1 = Wu' 2 = 1/n y Wu2n+4+1 = E/TL y  Wu’ 2n4+1 = F/TL y
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and all other entries of w, and wy are 0.

We focus on the preference of 7;,. After selling its initial
endowment, the budget of Ty, is ©(1/n*) by Lemma 1 since
the total amount of goods she possesses is ©(1/n*). The
PLC utilities my i (-) of Ty are designed carefully, so that
even though we do not know what exactly p is, we know
the behavior of 7y, due to the price-regulation property: Ty
first buys the following bundle of goods from the market

{Di/n® of Gnik and F/n® of Gony1:k € [n]}.  (9)

Because D has at most 20 nonzero entries and every entry
is between 0 and 2, the cost of this bundle is O(1/n°%). Ty
then buys as much G; as she can up to 1/n?, and spends
all the money left, if any, on Gopyo.

The behavior of Ty, is similar.



Ty first buys the following bundle from the market:

{Cy/n® of Gpyr and E/n® of Ganyy : k € [n]}.  (10)

Ty then buys as much G5 as she can up to 1/n* and spends
all the money left, if any, on Gap 2.

Now we are ready to prove the lemma. The case when
k € [n] but k # 1,2 is trivial because

Wy k = Wy’ k = Qu,k = Qur k= 0.
When k = 1, we have wy 1 + ww 1 = 1/n%, ayw,1 =0 and
au1 < 1/n* Lemma 4 then follows. The case when k = 2
can be proved similarly. For the case of n+ k, k € [n], and
for the case of 2n + 1, we have
Wa,n+k = Cl\:/nsy Wa! n+k = Dkt/n5u Qu,n+k = D},-,/’flS,
Qu’ n+k = Ck/n57 Wy 2n+1 = E/,,,L57 Wy’ 2n+1 = F/7157
Ay 2n+1 = _F/’IIE'7 and Ay’ 2n+1 = E/TLS,

and Lemma 4 follows. This finishes the proof. |

Combining Lemma 4 and Lemma 2, we immediately get
the following important corollary concerning p2n41.
Corollary 1. po,4+1 =1

Proof: By Lemma 4, we have
Wan+1 [Tu :uelU UV] > aon+t1 [Tu cueUU V].
However, by the construction, we also have
W2n+1 [Ti RAS [Qn]] =2n-(1/n'?) =2/n"!

and asn+1(T; : 7 € [2n]] = 0. As a result, we have

w2n+1[T2] - a‘En—{»l[B] > 3/77'13-

It then follows from Lemma 2 that pop4+1 = 1. [ |

Let x’ and y’ denote the vectors where zj, = px — 1 and
Yi = Pntk — 1. By Lemma 1, we have 0 < zj,y; < 1 for
all k € [n]. We state the following two properties of x’ and
y’ and use them to prove Theorem 3.

Property 2. For all 1 <1i# j <n, we have

(1)
12)

(A; —A))yT < —e = 2/ =0; and
x'(B; =~ By) < ~& = y=0,
where € = n~8, A; denotes the ith row vector of A, and
B, denotes the ith column vector of B.
Property 3. 34, € [n] such that z; = 1 and y; = 1.

Now we assume that x’ and y’ satisfy both properties. In
particular, Property 3 implies that x',y" # 0. As a result,
we can normalize them to get two probability distribution x
and y using (5). Theorem 3 then follows.

Proof of Theorem 3: As both x and y are probability
distributions, we only need to prove that (x,y) satisfies (2)

w1
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and (3) for all 7 # j € [n]. We only prove (2) here. Assume
A;yT + e < AjyT, then by Property 3

(Ai = Ay = (Ai = AG)yT - Fepm Vi < —€

By Property 2, we have z; = 0 and thus, z; = 0. [

Proof of Property 2: We prove (11) fori =1 and j =
2. The other part can be proved similarly.
Letu=(1,2,1),and u’ = (2,1,1). Let C and D be the
two nonnegative vectors defined in (8) and E and F' be the
two nonnegative numbers defined in (4).
Assume (A; — Ap)y'T < —¢, then the money of T}, left
after purchasing the bundle in (9) is

1 G

Pl'n—4+ an+k (n—5—
ke[n]

By Corollary 1, pap41 = 1. Using C —D = A; — A and

E+chk: :F+Zka7

the money of Ty, left is

1 1 1
—+Egzyxﬁ'(ck*Dk)<P1'ﬁ—
k€ [n]

E

) + Don+1 - <—
n

F

[

na)

Dy,

n°

5

€

P1-
75

nd
This implies that the amount ay ; of G that T, buys is
au1 < 1/n* —¢/(pmn°) < 1/n* —1/(2n').

Since wy 1 = 1/n%, we have wy 1 — au1 > 1/(2n').
On the other hand, it is easy to check that w1 = 0 and
ay,1 = 0. By Lemma 4, we have

[Tu:ueUUV]-—ai[Tu:ueUUV]>1/(2n'). (13)

Next we bound w1 [T; : i € [2n]] — a1[T} : i € [2n]]. By the
construction, we have

a[Ti:ie2n]] =an=1- w1 ,2n41/p1 < 1/n'?
and thus,
wy [T; i € 2n]] — a1[Ti - i € [2n]] > —1/n'%.

Combining (13) we have w;[T2] — a1[72] > 3/n'3. It then
follows from Lemma 2 that 2} = 0. |

Proof of Property 3: Let £ € [n] be one of the indices
that maximize A¢y’?. We prove Property 3 by showing that
z, = 1. Without loss of generality, we assume £ = 1.

First, we consider a pair v = (¢,7,2), v/ = (4,%,2) in V.
In the proof of Lemma 4, we actually showed that

Wy, nt+k + Wu' ntk = Guntk + Qu’ ntk,
for all u = (4,4,1) and v’ = (4,¢,1) in U, and all k € [n].
Similarly, we have wy 1 + wWyv/1 = @v,1 + Gy 1.

Second, for any u = (i,7,1) € U, we have wy 1 = Gu,1-
This is because: If ¢ # 1, then wy1 = au,1 = 0; if 7 = 1,



then the money of Ty, left after buying the bundle of goods
in (9) is at least py/n?, $0 wy,1 = Gu,1- As a result,

wi[Ty:ueUUV]=a[Tu:ueUUV].

However, the amount of G that T} buys is

Pont1 - W1 2n41/P1 = 1/(2n*?).

As a result, we have

w1 [T,z € {Qn]] — a1 [T;,i e [271}] < —1/(21112).

Finally, we have w;[75] — a1[T2] < —3/n'". By Lemma 3

we conclude that p; = 2 and thus, 2} = 1.
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APPENDIX
In the appendix, we prove Theorem 1.
First, we prove that under the conditions of Theorem 1,
M has at least one quasi-equilibrium. Then we show that
any quasi-equilibrium of M is indeed a market equilibrium.

Definition 7. A quasi-equilibrium of M is a price vector
p € R’} such that there exists an allocation X = {x; €
R% : 1 € [m]} which has the following properties:

1) The market clears: For every good G; € G,
Zie[m] Li,j < Z?’E[m.] Wi,j5

]f pj > 0, then Zie['yn] Tij = Zié[m] Wi, 55
2) For every T;, at least one of the following is true:
a) x; € OPT(i,p); or
b) p-x; =p-w; =0 (zero income).
One can also define c-approximate quasi-equilibria simi-
larly as in Definition 6.

The only difference between market equilibria and quasi-
equilibria is that in the latter, we do not require the optima-
lity of allocations for traders who have a zero income: If a
trader has a zero income, then we can assign her any bundle
of zero cost. However, if p is a quasi-equilibrium and the
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income of every trader is positive with respect to p, then by
definition p must be also a market equilibrium.

In [30], Maxfield gave a set of conditions that are suffi-
cient for the existence of a quasi-equilibrium in an Arrow-
Debreu market. We use the following simplified version:

Theorem 4 ([30]). M has a quasi-equilibrium p if
1) For each trader T; € T, its utility function u; : R}, —

R is both continuous and quasi-concave; and
2) For each trader T; € T, u;(-) is non-satiable, i.e., for
any x € R, there exists a vector y € R such that

ui(y) > ui(x).

Proof of Theorem 1: First, it is not hard to check that
if M is an additively separable PLC market that is strongly
connected, then it satisfies all the conditions in Theorem 4.
As a result, M has a quasi-equilibrium p.

We use X = {x; € R : i € [m]} to denote an allocation
that clears the market. Because p # 0, there is at least one
trader in 7, say 73, has a positive income.

Second, we show that for every trader, its income is posi-
tive and thus p is indeed an equilibrium of M. Suppose this
is not true, then there is at least one trader 75 whose income
is zero. Since the economy graph is strongly connected, there
is a directed path from 7% to 73. As a result, there must be
a directed edge T37} on the path such that the income of T3
is zero and the income of Ty is positive. By definition, there
exists a j € [n] such that the amount of G; that T3 owns
at the beginning is positive and the PLC utility function of
T4 with respect to G; is strictly monotone. However, since
the income of T3 is zero, we have p; = 0. Therefore, the
amount of G; that Tj wants to buy is +o0, contradicting
the assumption that p is a quasi-equilibrium of M (because
the income of T} is positive but the bundle she receives is
not optimal).

Now we have proved the existence of a market equilib-
rium. The second part of Theorem 1 follows from the work
of Devanur and Kannan [13] (also see [39]). In [13] the au-
thors proposed an algorithm for computing an equilibrium
in an additively separable PLC market. (When the number
of goods is constant, its running time is polynomial.) They
divide the search space R’} of p into “cells” C' C R} using
hyperplanes. Then for each cell C, there is a rational linear
program LPc which characterizes the set of equilibria in C:
p € C is an equilibrium iff it is a feasible solution to LP¢.
Moreover, the size of LP¢ for any cell C, is polynomial in
the input size of M.

Now let p be a market equilibrium of M, which is not
necessarily rational. We let C* denote the cell that p lies in
then p must be a feasible solution to LP¢-. Since LPc~ is
rational, it must have a rational solution p* and the number
of bits one needs to describe p* is polynomial in the size
of LPc- and thus, is polynomial in the input size of M.
Theorem 1 follows since p* is also an equilibrium. |
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