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Abstract—A (worst-case) 2-source extractor is a deterministic
algorithm that transforms pairwise independent weak random
sources into almost uniform random strings. Despite non-
constructive proofs that such objects exist with almost optimal
parameters, it has been a longstanding open problem to construct
‘explicit’ (aka efficient) functions for sources of ‘small’ constant
entropy rate. In particular, best known constructions either
require entropy rate of at least 0.4999 (due to Bourgain), or
one source must remain with constant entropy rate above half
(due to Raz).

Motivated by cryptographic applications, we observe that if
one source is a leaky source (or it contains a few deterministically
extractable entropy), then we will be able to efficiently extract
almost all entropy from both sources with nearly optimal entropy
loss. Further, our extractor (for leaky sources) does not suffer
from the half entropy rate barrier, and it works for all linear (and
even sub-linear) entropy sources. The extractor is constructed
using the technique of alternating extraction by Dziembowski
and Pietrzak (FOCS 2007). Finally, we show that the extractor
is almost a worse-case extractor (for the same parameters) in the
sense that it only fails for a negligible fraction of sources.

I. INTRODUCTION

The research of randomness extraction mainly focuses on
construction of efficient functions, called (explicit) randomness
extractors, such that when applied on any distributions with
nontrivial amount of min-entropy one obtains output distribu-
tion statistically close to uniform. It has wide application in
many areas of computer science, such as cryptography and
derandomization.

SEEDED EXTRACTORS. For a general weak source, ran-
domness can be extracted efficiently using (necessarily) a
short random seed [1]. Shaltiel’s survey [2], [3] gave an
informative overview of some recent developments in this
area, and Lu et al. [4] and Guruswami et al. [5] presented
the current state-of-art constructions. It is possible to remove
the need of random seed by considering various types of
structured sources, such as bit-fixing- (more generally, affine-
and polynomial-) sources ([6], [7], [8], [9] and see [3] for
more references) and sources samplable by small circuits [10]
or generated in small space [11].

TWO-SOURCE EXTRACTORS AND THEIR APPLICATIONS.
Another line of research focused on deterministic extraction
from several independent sources, which originated in the
work of von Neumann [12], and got renewed interests recently
in [13], [14], [15], [16], [17]. In this paper, we focus on the
(most challenging) case of two-source extractors. Chor and
Goldreich [18] used inner product as 2-source extractor for
equal-length sources of entropy rate above 1/2, with some

improvements made in [19]. Raz [15] showed how to extract
almost all entropy where one source has constant entropy
rate more than 1/2 and the other can be of only logarithmic
min-entropy. Bourgain [20] gave a breakthrough construction
for sources of entropy rate 0.4999. Therefore, known results
are far from reaching the existential bounds proven using
non-constructive proofs (e.g. counting argument, probabilistic
method). We mention also several conditional constructions
for arbitrary linear entropy sources: the one by Chor and
Goldreich [18] based on a conjecture on the Paley Graph,
the construction by Kalai, Li and Rao [21] assuming one-
way permutations with exponential hardness, and the more
recent construction by Zewi and Ben-Sasson [22] based on
the Approximate Duality Conjecture. Two-source extractors
have found useful cryptographic applications in many recent
works, such as leakage-resilient schemes and protocols for
secret sharing and storage [23], [24], [25], public-key encryp-
tion [26], and distributed computation [24]. However, as no
unconditional 2-source extractors are known for entropy rate
below 0.4999, none of the aforementioned schemes tolerate
leakages of portion beyond 0.5001.

MOTIVATING SCENARIO. In this paper, we investigate 2-
source extractors for two conditional sources (X ,ZX ) and
(Y ,ZY ), where X is independent of (Y ,ZY ), Y has arbitrary
linear min-entropy conditioned on ZY , and (X ,ZX ) is a leaky
source, namely X is uniformly random (e.g. X is a secret
key) and it remains with linear entropy given ZX , which can
be correlated to both X and ZY . We note that we impose no
restriction on (Y ,ZY ), which can be any linear entropy source,
e.g., Y can be of min-entropy rate 0.0001 with an empty ZY ,
or Y can be a leaky source with any 0.9999 portion leaked
through ZY . The only restriction is that X must be uniform
by itself (and we will show this condition can be relaxed).

OVERVIEW OF OUR RESULTS. In this paper, we provide
an efficient 2-source extractor for the above problem, using
the technique of alternating extraction by Dziembowski and
Pietrzak [27]. The technique is simple (without deep tech-
niques such as the sum-product theorem) and the results are
nearly optimal in terms of entropy loss and the amount of
entropy extracted. We now sketch the simplified version of
the main results, and it already explains the main idea. For
concreteness let H̃∞(X|ZX) = k1 and H̃∞(Y |ZY ) = k2
(definition deferred to Section II-A). As X is uniformly
random, by applying a strong extractor on Y (using X as
seed) one obtains k2− 2 log(1/ε)−O(1) bits that are ε-close
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to uniform conditioned on ZY , X , and ZX (which is implied
by X). Instantiating the strong extractor with the state-of-art
construction [5] (see Theorem 3.1), we proceed to another
seeded extraction (using the extracted k2 − 2 log(1/ε) bits as
a seed) to get further k1 − 2 log(1/ε)−O(1) bits from X . In
summary, one extracts k1+k2−4 log(1/ε)−O(1) bits that are
2ε-close to uniform (conditioned on ZX and ZY ), provided
that the first extracted k2 − 2 log(1/ε) − O(1) bits must
provide a long enough seed for the second extraction, which
is easily satisfied for linear entropy sources. In summary,
the 2-source extractor extracts nearly all entropy from the
sources with (asymptotically) optimal entropy loss. We can
further generalize the above results. For example, the condition
that (X ,ZX ) must be a leaky source is not necessary, it is
sufficient to have that X contains a poly-logarithmic amount of
randomness for which efficient deterministic extractors exist.
In addition, the two sources do not have to be of the same
length, they can be linearly or even polynomially related.

CONNECTION TO WORST-CASE 2-SOURCE EXTRACTORS.
While explicit worst-case two-source extractors for arbitrary
linear sources remain unknown, we show a connection to this
problem: our extractor is a worst-case two-source extractor
(for almost the same parameters) for all Y ’s of min-entropy
k2, and almost all (an overwhelming portion of) X’s of min-
entropy k1. Otherwise said, the pathological cases for which
the extractor fails are of negligible fraction.

II. BACKGROUND

A. Preliminaries

NOTATION AND DEFINITION. Formally, a source X of length
n, denoted by |X| = n, is a random variable over {0, 1}n.
We let Un denote the uniform distribution over {0, 1}n. We
write x← X to denote the operation of sampling a random x
according to X . We use X∼Y to denote identically distributed
X and Y . For a randomized function f , we write f(x; r) to
denote the output of f on input x with random coin r. The min-
entropy of X is defined as H∞(X)

def
= − log(maxx Pr[X =

x]), and X with k bits of min-entropy is referred to as (n,k)
source. The min-entropy rate of an (n,k) source is defined as
ratio k/n. We say that X is ε-close to Y if their statistical
distance, defined by

SD(X,Y )
def
= 1

2

∑
x |Pr[X = x]− Pr[Y = x]|

= maxD | Pr[D(X) = 1]− Pr[D(Y ) = 1] |

is upper bounded by ε, where the maximum is taken over all
(including computationally unbounded) distinguishers D. In
the conditional case, we write SD(X,Y |Z) as shorthand for
SD((X,Z), (Y,Z)).

Definition 2.1 (Worst-Case Extractor): We say that an effi-
cient function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong
worst-case (n, k, ε)-seeded extractor (for space {0, 1}n), if for
any X with H∞(X) ≥ k, and for S ∼ Ud, we get

SD( Ext(X;S) , Um | S) ≤ ε

where S denotes the coins of Ext (called the seed), the value
d is called the seed length of Ext, and value L = k −m is
called the entropy loss of Ext.

SEED LENGTH AND ENTROPY LOSS When one is concerned
with randomness extraction from a general weak source, a
random seed is necessary and entropy loss is inevitable. We
already know lower bounds results from [28] that any non-
trivial seeded extractor must satisfy seed length d = log(n−
k)+2 log(1/ε)−O(1) and entropy loss L = 2 log(1/ε)−O(1).
The bounds are tight as there are explicit constructions [4], [5]
that match both bounds simultaneously.

LEAKY SOURCES AND AVERAGE-CASE EXTRACTORS A
leaky source is a joint distribution (X ,Z) where X is uniformly
distributed on its own (without Z), and X has some average
min-entropy left conditioned on Z. This is defined as

H̃∞(X|Z)
def
= − log (Ez←Z [ maxx Pr[X = x|Z = z] ])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
where Ez←Z denotes the expected value over z ← Z, and
measures the maximal predictability of X by an adversary
that may observe a correlated variable Z.

Definition 2.2 (Average-Case Extractor): We say that an
efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a strong average-case (n, k, ε)-seeded extractor (for space
{0, 1}n), if for S ∼ Ud, and for all (X,Z) such that X is
distributed over {0, 1}n and H̃∞(X|Z) ≥ k, we get

SD( Ext(X;S) , Um | Z, S) ≤ ε .

It is easy to see the equivalence between worst-case- and
average-case- extractors. On the one hand, an average-case-
extractor is also an worst-case one for the same parameters
(by considering empty side information); on the other hand,
a worst-case extractor is also an average-case extractor for
slightly worse parameters using Markov’s inequality (see also
[29] for tighter parameters). Therefore, there seems no easy
way that we could construct efficient average-case 2-source
extractors for leaky sources to beat the worst-case 2-source
counterparts. However, notice that we have a useful restriction
(by definition of leaky source) that X is uniformly distributed,
and we exploit this condition to get more efficient construc-
tions in the average-case.

TWO-SOURCE EXTRACTORS. Analogously, we define worst-
case- and average-case- exactors below:

Definition 2.3 (Two-Source Extractor): We say that an ef-
ficient function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is
a worst-case (n1, n2, k1, k2, ε)-2-source extractor (for space
{0, 1}n1 × {0, 1}n2 ), if for all independent (n1,k1)-source X
and (n2,k2)-source Y , we get

SD( 2Ext(X,Y ) , Um) ≤ ε

Similarly, 2Ext is an average-case (n1, n2, k1, k2, ε)-2-source
extractor (for space {0, 1}n1 × {0, 1}n2 ) if for all inde-
pendent (X ,ZX ) and (Y ,ZY ) with H̃∞(X|ZX) ≥ k1 and
H̃∞(Y |ZY ) ≥ k2 respectively, we have

SD( 2Ext(X,Y ) , Um | ZX , ZY ) ≤ ε
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where in both cases the entropy loss of 2Ext is the value L =
k1 + k2 −m.

B. Related Work

Dziembowski and Pietrzak [27] studied the problem of
alternating extraction, where randomness is extracted alternat-
ingly from two independent leaky sources against adaptively
chosen leakages. Our work can be viewed as a special (two-
round, deterministic) case of theirs by removing the use of
random seed (in [27] a public random seed is provided at the
beginning). The work of [30], [31] considered practically effi-
cient constructions of key derivation functions (KDFs) based
on the extract-then-expand approach, where the extractor is
built from cryptographic primitives (rather than using existing
combinatorial extractors). Their work is incomparable to ours
as their extractors also work for computationally unpredictable
sources (without any min-entropy) by relying on idealized
assumptions such as modeling SHA-1 as random oracles. It
is also observed by Bourgain [20] that although the inner
product does not work for sources of entropy rate below 1/2
in general, there are essentially very few counterexamples for
which it fails. Thus, the construction of [20] proceeds by first
encoding each source in some way and then applying the inner
product, such that the constructed extractor works for sources
of entropy rate 0.4999. In Section III-D (where we show our
extractor is also worst-case extractor for almost all sources),
we take a complementary approach. That is, we compromise
a bit of generality to make the extractor distill nearly all
entropy from almost (an overwhelming portion of) all pairwise
independent low-entropy sources with optimal entropy loss.

C. Basic Facts and Lemmas

We recall the following facts and lemmas about statistical
distance and min-entropy, which will be used in our proofs.

Fact 2.1: For all random variables X and Y over the same
set S, and for any function f for space S, it holds that

SD(f(X), f(Y )) ≤ SD(X,Y ) .

Fact 2.2 (Triangle Inequality): For all random variables X ,
Y , and Z over the same set S, we have

SD(X,Y ) ≤ SD(X,Z) + SD(Y, Z) .

Lemma 2.1 ([32]): For joint random variables (X,ZX)
where ZX has at most 2λ possible values, we have

H̃∞(X|ZX) ≥ H∞( (X,ZX) )− λ ≥ H∞(X)− λ .

III. MAIN RESULTS

A. Basic Tools

The main technical tool we use are strong seeded extractors,
and we will instantiate them with a construction from [5] (as
we will see, such instantiation is crucial for the resulted 2-
source extractor to have desirable entropy loss and low entropy
threshold at the same time). As mentioned, the strong worst-
case extractor presented in [5] achieved asymptotically optimal
seed length and entropy loss. In fact, the extractor is already

average-case for the same parameters, which we stated as
Theorem 3.1 below. For completeness, we reproduce its simple
proof for completeness.

Theorem 3.1 (The GUV Extractor [5]): For all integers
n ≥ k > m > 0, and for any ε > 0 such that
m ≤ k − 2 log(1/ε) − O(1), there is an explicit
construction of a strong average-case (k, ε)-seeded
extractor Guv : {0, 1}n × {0, 1}d → {0, 1}m, where
d = log n+O(log k · log(k/ε)).

Proof: Let Xz
def
= (X|Z = z), then

SD ((Guv(X;S), S, Z), (Um, S, Z))

= Ez←Z [SD((Guv(Xz;S), S), (Um, S))]

≤ Ez←Z
[ √

2−H∞(Xz)+O(1) · 2m
]

≤
√
Ez←Z [2−H∞(Xz)+O(1) · 2m] = 2

−k+m+O(1)
2 ≤ ε,

where the first inequality follows from the fact that Guv
is a strong worst-case extractor for the same parameters as
stated above (see [5]), and the second inequality follows from
Jensen’s inequality, i.e., E

[√
T
]
≤
√

E [T ].
Another tool we use are deterministic extractors. Recall that

the simplifying statement of our results (see Section I) assumes
that (X ,ZX ) is a leaky source so that the uniformly random
X can be used as a seed for randomness extraction from Y .
We can relax this requirement to that X is nearly uniform on
some known (or even unknown) d-dimensional subspace (see
Theorem 3.1 for the value of d), where d just needs to be
logarithmic in the length of X . For better generalization, we
assume that efficient deterministic functions exist for X to get
sufficient amount of nearly uniform randomness. We refer the
readers to [3] for a survey of the rich literature of deterministic
extractors.

B. Main Theorem

The main results of this paper are stated as Theorem 3.2
below:

Theorem 3.2 (The Main Results): For all integers
n1, n2, k1, k2, d,m, and for any ε > 0 such that

1) n1 ≥ d = log n2 +O(log k2· log(k2/ε)),
2) n1 ≥ k1 ≥ 2 log(1/ε) +O(1),
3) n2 ≥ k2 ≥ 2 log(1/ε) + log n1 +O(log k1· log(k1/ε)),
4) m = k1 + k2 − 4 log(1/ε)−O(1).

there is an explicit construction of an average-case (n1, n2,
k1, k2, ε)- 2-source extractor for all pairwise-independent
joint distributions (X ,ZX ) and (Y ,ZY ) with H̃∞(X|ZX)
≥ k1, H̃∞(Y |ZY ) ≥ k2, provided that efficient determin-
istic function DExt : {0, 1}n1 → {0, 1}d exists such that
SD(DExt(X), Ud) ≤ ε. .

CONSTRUCTIVE PROOF. We give an explicit construction:

avg2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

(x, y) 7→ (s2, s3),

where s2 := Guv(y;DExt(x)) , s3 := Guv(x; s2) ,
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and show that avg2Ext is an average-case (n1,n2,k1,k2, ε)-
2-source extractor. First, by assumption

SD(S1
def
= DExt(X), Ud) ≤ ε . (1)

we use S1 as seed for randomness extraction from Y to get:

SD((S1,Guv(Y ;S1), ZY ), (S1, U|S2|, ZY )) ≤ SD( (S1,Guv(Y ;S1), ZY ) , (Ud,Guv(Y ;Ud), ZY ) )︸ ︷︷ ︸
≤ε by Equation (1)

+ SD( (Ud,Guv(Y ;Ud), ZY ) , (Ud, U|S2|, ZY ) )︸ ︷︷ ︸
≤ε by Theorem 3.1

+ SD( (Ud, U|S2|, ZY ) , (S1, U|S2|, ZY ) )︸ ︷︷ ︸
≤ε by Equation (1)

≤ 3ε .

Define a (not necessarily efficient) sampler samp that on in-
put s1 produces (x, zx) as output, where the output is sampled
from the conditional distribution ( (X,ZX) | DExt(X) = s1 ).
Applying samp to the S1 in the above inequality, we get:

SD( (X,ZX ,Guv(Y ;S1), ZY ) , (X,ZX , U|S2|, ZY ) ) ≤ 3ε
(2)

Write S2
def
= Guv(Y ;S1), and use it as seed for extraction from

X , we have

SD( (S2, S3
def
= Guv(X;S2)), (U|S2|, U|S3|) | ZX , ZY ) )

≤ SD( (S2,Guv(X;S2)), (U|S2|,Guv(X;U|S2|) | ZX , ZY ) )︸ ︷︷ ︸
≤ 3ε by Equation (2)

+ SD( (U|S2|,Guv(X;U|S2|)), (U|S2|, U|S3|) | ZX , ZY )︸ ︷︷ ︸
≤ε by Theorem 3.1

≤ 4ε ,

which completes the proof for the error bound 1. By Theo-
rem 3.1, we have |S1| = d, |S2| = k2−2 log(1/ε)−O(1), and
|S3| = k1−2 log(1/ε)−O(1), and the parameter conditions #1
and #3 follow from that each of S1 and S2 must provide a long
enough seed for the Guv extractor respectively, and conditions
#2 and #4 are due to |S3| ≥ 0 and m = |S2| + |S3|.

C. Leakage-Resilient Cryptographic Applications

Theorem 3.3: For all integers n1, n2, k1, k2,m, and for
any ε > 0 as stated in Theorem 3.2, there is an efficient
function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m such that for
X∼Un1 and Y∼Un2 , and for all functions f1 : {0, 1}n1 ×
{0, 1}n2−k2 → {0, 1}n1−k1 , and f2 : {0, 1}n2 → {0, 1}n2−k2

we have

SD( 2Ext(X,Y ) , Um | f1(X, f2(Y )), f2(Y ) ) ≤ ε .

Proof: By Lemma 2.1, we have H̃∞(Y | f2(Y )) ≥ k2,
H̃∞(X | f1(X, f2(Y ))) ≥ k1, and thus the conclusion imme-
diately follows from Theorem 3.2. Note that here deterministic
extractor is trivial as X is uniform by itself.

1We can omit the factor 4 from the derived bound by letting ε = 4ε, and
hence log(1/ε)=log(1/ε)− 2, where the additive factor 2 will be absorbed
by the big-O notations.

(1−o(1))-FRACTION LEAKAGE TOLERANCE. The parameter
constraints (see #1−#4 in Theorem 3.2) are quite loose, and
the extractor is actually secure against a (1−o(1))-fraction of
arbitrary leakages from X and Y (of full entropy), provided
that they leak independently. This already covers leakages
of any constant fraction, or even arbitrarily close to 1, e.g.
1 − 1√

n
. To see this, we let n1 = n2 = n, k1 = k2 =

√
n,

and thus we set ε = 2−t for t ∈ Ω(
√
n/log n) satisfying

all parameters constraints. Moreover, it extracts almost all
randomness, namely the entropy loss 4 log(1/ε) + O(1) is
optimal (up to factor 2).

D. Almost a Worst-Case Two-Source Extractor

As we additionally require that X is uniform (or determin-
istically extractable), the above extractor may not be a worst-
case 2-source extractor in general. However, we show that as
a worst-case extractor it only fails with a negligible fraction
of flat sources, for which we call it almost extractors2 defined
as the following:

Definition 3.1 (Almost a Worst-Case 2-Source Extractor):
We say that an efficient function 2Ext : {0, 1}n1×{0, 1}n2 →
{0, 1}m is a (1 − ε1)-almost worst-case (n1, n2, k1, k2, ε2)-
2-source extractor (for space {0, 1}n1 ×{0, 1}n2 ), if for all Y
with H∞(Y ) ≥ k2, and independently for at least a (1− ε1)-
fraction of X ∈ {Xi | Xi ∈ {0, 1}n1 ,H∞(Xi) ≥ k1}, we
have

SD( 2Ext(X,Y ) , Um ) ≤ ε2 .

Corollary 3.1: For all integers n1, n2, k1, k2,m, and for
any ε > 0 as stated in Theorem 3.2, there is an explicit
construction of a (1 −

√
ε)-almost worst-case (n1,n2,k1,k2,√

ε)- 2-source extractor.
Proof: Consider two joint distributions (X, I) and

(Y,ZY ). For (Y ,ZY ), we let Y to be arbitrary source with
H∞(Y ) = k2, and let ZY be empty (and thus be omitted).
Let {Xi | Xi is uniform over Si ⊂ {0, 1}n1 , |Si| = 2k1} be
the finite set of all ‘flat’ sources of min-entropy k1, indexed by
i. Define (X, I) such that i←I is uniformly selected from the
indices of the above set, and let X be the selected source (i.e.

2The same terminology is used in [33] to refer to a somewhat different
object, namely a condenser whose output has almost full entropy.
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Xi). Then, we have H∞(Xi) = k1 for every i, and X∼Un1

by Claim 3.1. It follows from Theorem 3.2 that there is an
efficient function 2Ext such that

SD( 2Ext(X,Y ), Um | I) ≤ ε .

By Markov’s inequality, there is a set S such that Pr[I ∈ S] ≥
1 −
√
ε, and for every i ∈ S SD( 2Ext(X,Y ), Um | I =

i) ≤
√
ε. This completes the proof.

Claim 3.1: For all integers 0≤k1<n1, let X be
an equal convex combination of all sources from
{Xi | Xi is uniform over Si ⊂ {0, 1}n1 , |Si| = 2k1},
then X is uniformly distributed over {0, 1}n1 .

Proof of Claim 3.1. Every string x ∈ {0, 1}n1 contributes
equally to the combined X , and thus Pr[X = x] = 2−n1 . �

Therefore, for the same parameters (except that ε drops to
√
ε),

there is an efficient function which deviates from a perfect
worse-case two-source extractor on at most a

√
ε-fraction of

all sources.
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[30] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin, “Ran-
domness extraction and key derivation using the cbc, cascade and
hmac modes,” in Advances in Cryptology—CRYPTO 2004, ser. LNCS,
M. Franklin, Ed., vol. 3152. Springer-Verlag, 15–19 Aug. 2004, pp.
494–510.

[31] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The
HKDF Scheme,” in Advances in Cryptology - CRYPTO 2010, ser. LNCS,
T. Rabin, Ed., vol. 6223. Springer-Verlag, 2010, pp. 631–648.

[32] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM Journal on Computing, vol. 38, no. 1, pp. 97–139, 2008.

[33] A. Rao, “A 2-source almost-extractor for linear entropy,” in APPROX-
RANDOM, 2008, pp. 549–556.

2012 IEEE Information Theory Workshop

456


