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Abstract—Benes networks are constructed with simple switch
modules and have many advantages, including small latency and
requiring only an almost linear number of switch modules. As
circuit-switches, Benes networks are rearrangeably non-blocking,
which implies that they are full-throughput as packet switches,
with suitable routing.

Routing in Benes networks can be done by time-sharing per-
mutations. However, this approach requires centralized control
of the switch modules and statistical knowledge of the traffic
arrivals. We propose a backpressure-based routing scheme for
Benes networks, combined with end-to-end congestion control.
This approach achieves the maximal utility of the network and
requires only four queues per module, independently of the size
of the network.

Index Terms—Benes Network, Dynamic Control, Stochastic
Network Optimization, Queueing

I. INTRODUCTION

Data centers have gradually become one of our most impor-

tant computing resources. For instance, search engines, web

emails such as Gmail and Hotmail, social network websites

such as Facebook, and data processing applications such

as Hadoop are provided by data centers. Consequently, the

networking of servers and resource allocation in data centers

have become important problems.

We develop a networking solution, a Benes packet network,

which consists of a Benes architecture, a flow utility max-

imization mechanism, and a backpressure-based scheduling

algorithm. Specifically, we propose interconnecting the data

center servers using a Benes network built with simple com-

modity switch modules. We formulate the resource allocation

objective as a network flow utility maximization problem

to guarantee a fair share of the network resources. Lastly,

we develop a low-complexity backpressure-based scheduling

algorithm, called Grouped-Backpressure (G-BP), to achieve

the optimal system performance. The G-BP algorithm is

provably optimal and automatically handles changing traffic.

Our approach only requires each switch module to maintain

four queues, independently of the network size, and hence can

easily be implemented in practice.

Many papers explore networking solutions for data centers.

[1] designs scheduling algorithms for three-stage non-blocking

switching fabrics. [2] proposes using a random graph based ap-

proach to enable incremental network growth for data centers.

[3] proposes a network architecture based on Clos network and

random traffic splitting. [4] develops a hierarchical network

structure for data centers. [5] uses the preferential attachment

approach to design network topologies for data centers. [6]

proposes a fat-tree based network architecture. [7] develops

a MapReduce-like system based on a cube-like architecture

to exploit the in-network aggregation possibilities. [8] designs

optical networks for data centers. However, we note that the

aforementioned works mostly focus on designing the network

architecture and achieving uniform load balancing. Hence,

the proposed solutions do not immediately apply to problems

where different flows have different service requirements.

Moreover, the solutions developed in the above works lack

system performance guarantees.

In this work, we aim at obtaining a network solution that

combines practicality, generality, provable optimality, and low

complexity. Specifically, we propose interconnecting the data

center servers by a Benes network. As circuit-switches, Benes

networks are known to be rearrangeably non-blocking and can

easily be built with only an almost linear number of simple

switch modules in the network size [9], [10]. Thus, adopting

the Benes network architecture not only guarantees high

system throughput and low end-to-end packet delay (if routing

and scheduling are done properly), but also eliminates the need

for employing expensive switch devices whose cost does not

scale easily as the data center size increases. Under the Benes

network architecture, we establish a mathematical formulation

for determining the allocation of network resources to cope

with the heterogeneity of the data traffic service requirements.

Our formulation leverages the network utility maximization

framework [11], [12], which has been proven to be a general

mechanism for handling network resource allocation problems.

Finally, to reap the full benefits of the Benes network

architecture and the resource allocation framework in a prac-

tical manner, we develop a routing and scheduling algorithm

that has provable system performance guarantees and a very

low implementation complexity. Our algorithm is constructed

based on the recently developed backpressure network opti-

mization technique [13], combined with an end-to-end con-

gestion control mechanism. However, different from previous

backpressure algorithms, e.g., [14], [15], [16], which either

require that the number of queues each switch module has to

maintain is proportional to the network size, or only apply to

problems with single-path routing, our algorithm uses a novel

traffic grouping idea and allows us to use only four queues

per switch module regardless of the network size. Moreover,

our algorithm automatically explores all the possible routes

to fully utilize network capacity. These distinct features make

our algorithm very suitable for practical implementation.

This paper is organized as follows. In Section II, we present
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the system model and state our objective. In Section III, we

set up the notations. Then, we explain the intuition of our

design approach and describe all the needed components of

the Group-Backpressure (G-BP) algorithm in Section IV. We

present the G-BP algorithm and analyze its performance in

Section V. Simulation results are presented in Section VI. We

conclude the paper in Section VII.

II. SYSTEM MODEL

We consider the system shown in Fig. 1, where a Benes

network connects a set of communicating servers. In this

system, each rectangle is a switch module having two input

and two output links. Each link has a capacity of 1 packet/slot.

The smaller nodes are the servers. Traffic flows are generated

from the servers on the left, called input servers, and are going

to the servers on the right, called output servers. 1 We assume

that the system operates in slotted time, i.e., t ∈ {0, 1, 2, ...}.

R1

R2n−1

C2n−1C1 CnS D

Fig. 1. A 16 × 16 Benes network connecting 16 input servers S to 16
output servers D. The rectangles are the switch modules that form the Benes
network. Ri refers to row i of the Benes network and Cj refers to column j.

A. Admission control and flow utility

We label the flows according to their source and destination

servers. Specifically, we call the traffic entering from input

server s and going to output server d the (s, d) flow. We use

Asd(t) to denote the number of (s, d) packets generated at

input server s at time t. For every (s, d) flow, the random

variables {Asd(t), t = 0, 1, . . .} are i.i.d. and have mean

λsd = E
[
Asd(t)

]
. Our results can be extended to incorporate

much more general arrival processes, e.g., Makov-modulated

arrivals. We also assume that there exists some finite constant

Amax such that 0 ≤ Asd(t) ≤ Amax for all (s, d) and all t.
In every time slot t, each input server performs admission

control to determine how many packets to inject into the

network. We denote 0 ≤ Rsd(t) ≤ Asd(t) the number of

(s, d) flow packets actually admitted by input server s for

transmission at time t. We then denote the average rate of the

(s, d) flow packets by rsd, defined as: 2

rsd � lim
T→∞

1

T

T−1∑
t=0

E
[
Rsd(t)

]
. (1)

Each (s, d) flow is associated with a utility function Usd(rsd),
which is concave increasing in its average rate rsd. We assume

1It is straightforward to include bi-directional traffic flows.
2Throughout this paper, we assume that all the limits exist.

that the utility functions have finite first derivatives and denote

β their maximum value, i.e.,

β � max
sd

U ′sd(0). (2)

B. Stability and objective

In this paper, we say that a queue with queue size process

{Q(t) ≥ 0, t = 0, 1, 2, ...} is stable if:

lim sup
T→∞

1

T

T−1∑
t=0

E
[
Q(t)

]
< ∞. (3)

Then, we say that a network is stable if all the queues in the

network are stable, and call a routing and scheduling policy

that ensures network stability a stabilizing policy. We use Λn

to denote the capacity region of a 2n×2n Benes network, being

the set of arrival vectors under which there exist stabilizing

routing and scheduling policies.

Depending on the routing and scheduling algorithm, the net-

work queueing structure can be quite different. Our objective

is to find a low-implementation-complexity stabilizing routing

and scheduling policy that maximizes the aggregate flow utility

of the network, i.e.,

max : U(r) �
∑
s,d

Usd(rsd) (4)

s.t. r ∈ Λn,

where r = (rsd, ∀ (s, d)) with rsd being the average rate of

the (s, d) flow defined in (1). We denote by ropt the rate vector

that achieves the optimal utility over all stabilizing policies.

Note that our formulation (4) is indeed very general. The

heterogeneity of traffic flow service requirements can easily be

taken into account by designing appropriate utility functions.

Also note that, although our system model is similar to those

in [14], in our paper, the queueing structure is also part of the

algorithm design problem.

C. Discussion

The problem of optimal routing and scheduling in a Benes

network can be solved by using the well-known backpressure

routing algorithm [13]. However, this approach requires each

node to maintain a separate queue for each output server. Thus,

each node has to maintain 2n queues, which is not practical

when the size of the Benes network (number of servers)

increases. Recent works [15] and [16] propose backpressure-

based algorithms that use much fewer queues. However, the

algorithm in [15] requires the network nodes to maintain a

separate queue for each cluster of the network nodes and needs

a pre-defined clustering algorithm, whereas the method in

[16] is designed for single-path routing. Below, we develop a

novel low-complexity approach called Grouped-Backpressure

(G-BP). Our approach allows us to use only four queues per

node regardless of the network size.

III. BENES NETWORK STRUCTURE AND LABELING

In this section, we explain the structure of Benes networks

and set up our notations.
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A. Benes network construction

Here we explain how a 2n×2n Benes network is constructed

[9] [10]. First, start with a basic 2 × 2 Benes network as in

Fig. 2(a). Then, construct a 2n×2n Benes network as follows:

(Step I)-Concatenation: Vertically concatenate two 2n−1 ×
2n−1 Benes networks. Call them the upper subnetwork and

the lower subnetwork, e.g., m3 and m4 in Fig. 2(b). Then,

horizontally place two columns of 2n−1 basic 2× 2 modules,

one on each side of the concatenated subnetworks. Call the

modules on the left of the concatenated subnetworks the input
switch modules, e.g., m1 and m2, and the modules on the right

the output switch modules, e.g., m5 and m6.

(Step II)-Connect input modules: Connect the upper output

link of the input module in row k to the kth input link of the

upper subnetwork, and connect its lower output link to the kth

input link of the lower subnetwork.

(Step III)-Connect output modules: Connect the kth output

link of the upper subnetwork to the upper input link of the kth

output module, i.e., the output module in row k, and connect

the kth output link of the lower subnetwork to the lower input

link of the kth output module.

a

b

(a) A basic 2 × 2
Benes network

m1 m3 m5

m2 m4 m6

1

2

3

4

1

2

3

4

(b) A 4× 4 Benes network

2n−1 × 2n−1

2n−1 × 2n−1

Input switch output switch

(c) A general 2n × 2n Benes network

Fig. 2. The structure of Benes networks.

B. Labeling a Benes network with servers

We now specify how we label a 2n × 2n Benes network.

We denote Bn the 2n×2n Benes network (excluding the input

and output servers). Then, we divide the Benes network into

rows and columns. In a 2n × 2n Benes network, there are

2n−1 rows, denoted by {Ri, i = 1, ..., 2n−1}. We then denote

the 2n− 1 columns by {Cj , j = 1, ..., 2n− 1}. For any node

m in the Benes network, we use im and jm to denote its

row number and column number. For the input and output

servers connecting to the Benes network, we label them using

their row numbers. The set of input servers are denoted by

S = {1, 2, ..., 2n} and the set of output servers are denoted

by D = {1, 2, ..., 2n}. Note that both S and D have 2n rows

(the small squares in Fig. 1). As in Section III-A, we call the

nodes in C1 the input switch modules and the nodes in C2n−1

the output switch modules.

From the construction rules of Benes networks and the way

the servers are connected to the Benes network, we see that

for every node m ∈ Bn, there are two nodes in column Cjm+1

to which it connects (for a node m ∈ C2n−1, it connects to two

nodes in D). We denote the node with a smaller row number

by mu and the other one by ml. There are also two nodes in

column Cjm−1 that connect to m (if m ∈ C1, there are two

nodes in S connecting to it). We denote these two nodes by

Mm. Among these nodes, those that have m as their next

hop with a smaller row number are denoted by Mu
m, and the

other nodes having m as their next hop node with a larger row

number are denoted by Ml
m, i.e.,

Mu
m = {m′ ∈ Cjm−1 | m′u = m},

Ml
m = {m′ ∈ Cjm−1 | m′l = m}.

Note that Mu
m and Ml

m may contain more than one node, e.g.,

Mu
m3

in Fig. 2. For m ∈ C1, we simply use Mm to denote the

input servers that connect to it. For each input server s ∈ S ,

we use m(s) to denote the node in C1 it connects to. We call

the servers in rows 1 to 2n−1 the upper division servers, and

call all the other servers the lower division servers. We then

call a flow whose destination is an upper division server an

upper division flow. Otherwise it is a lower division flow.

For a 2n×2n Benes network Bn, we define the nodes in Cn
as the partition nodes. Below, we denote the upper outgoing

link of a switch module by link a and the lower outgoing

link by link b (see Fig. 2(a)). We use Oa
m to denote the set

of output servers that can be reached by traversing the upper

outgoing link a of node m and use Ob
m to denote the set of

output servers that can be reached by traversing link b.

IV. INTUITION AND KEY COMPONENTS OF

GROUPED-BACKPRESSURE

In this section, we present the idea and all the needed

components for our Grouped-Backpressure algorithm (G-BP),

which will be used to achieve the optimal flow utility under

the Benes network architecture.

A. The idea

The idea of Grouped-Backpressure is to “group” all the

flows into two mixed flows, the upper division flow and the

lower division flow. Then, we construct a scheme for routing

the mixed traffic in the first half of the network based on a

fictitious reference system. This approach allows us to use

very few queues per node. However, due to traffic mixing,

we lose the ability to control each individual flow inside the

network. Hence, the flows can be routed arbitrarily inside

the network, in which case certain nodes may receive more

traffic than they can handle and become unstable. In order to

resolve this problem, we impose a special queueing structure

at each node to ensure that routing and scheduling is done in a

fully symmetric manner. With this approach, we guarantee that

every flow is split into sub-flows with equal rates and routed
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through the partition nodes. In the second half of the network,

by Lemma 3, each packet will traverse a unique path to its

destination. Hence, we will do a “free-flow” routing. Using

the symmetric structure of the Benes network, we then show

that the G-BP algorithm can stabilize the network and achieve

maximum utility. Our approach is demonstrated in Fig. 3.

Controlled with backpressure 
based on a fictitious system

Free-flow forwarding

Fig. 3. Pictorial illustration of G-BP. The 1st half of the network is controlled
by a backpressure-like algorithm based on a fictitious reference system. The
2nd half of the network uses a “free-flow” scheme for packet delivery.

B. A fictitious reference system

In order to guide the routing and scheduling of the grouped

traffic, we create a fictitious reference system as follows.

1) Remove all the nodes in columns n+ 1 to 2n− 1.

2) Create two fictitious destination nodes D1 and D2 .

3) Connect each partition node, i.e., a node in Cn, to D1

with a link of capacity 1 packet/slot and to D2 with a

link of capacity 1 packet/slot.

An example of the fictitious system is shown in Fig. 4 for a

16× 16 Benes network. The fictitious system will be used as

a reference system to guide us on serving the grouped traffic.

Specifically, we will design a backpressure-based algorithm for

the fictitious system, and use the exact same actions to control

the nodes in columns 1 to n− 1 in the physical system. This

approach has the useful property that it allows us to use only

4 queues per node.

Fictitious
destinations

D1

D2

R1

R2n−1

C1 CnS

Fig. 4. The fictitious reference system for the 16× 16 Benes network.

C. Queue structure and load balancing

Since in the reference system we only have 2 destinations

and do not distinguish flows inside the network, if routing is

not done carefully, it can happen that most of the traffic going

to an output port is routed to a single partition node and causes

instability of the node. In order to resolve this issue, we impose

a special queueing structure on the switch nodes to balance

all the traffic, so that each flow is equally split among all

possible paths and routed to the partition nodes. Doing so, we

guarantee that as long as the traffic rate is supportable (will

be explained later), no node will be overwhelmed.

We now specify our queueing structure for both the fictitious

system and the physical system:

1) Input servers in both systems: For each input server s ∈
S , we maintain 2 queues per node as follows:

• QU
s (t): number of upper division flow packets stored at

input server s;

• QL
s(t): number of lower division flow packets stored at

input server s.

These two queues evolve according to the following dynamics:

QTs (t+ 1) =
[
QTs (t)− μTs,m(s)(t)

]+
+RTs (t). (5)

Here the notation T ∈ Ωs � {U, L} denotes the “type” of

the traffic at the input servers, μTs,m(s)(t) is the rate allocated

to serve type T traffic at server s, and RTs (t) denotes the

aggregate arrival to QTs (t), i.e.,

RU
s (t) =

∑
d≤2n−1

Rsd(t), RL
s(t) =

∑
d>2n−1

Rsd(t). (6)

2) Switch modules in columns 1 to n− 1 in both systems:
We maintain 4 queues per node as follows:

• QUU
m (t): number of upper division flow packets that will

be routed through mu;

• QUL
m (t): number of upper division flow packets that will

be routed through ml;

• QLU
m (t): number of lower division flow packets that will

be routed through mu;

• QLL
m (t): number of lower division flow packets that will

be routed through ml.

Now define ΩB � {UU,UL, LU, LL} and use T ∈ ΩB to

denote the type of these queues at the switch nodes. We see

that the queues evolve according to the following dynamics:

QTm(t+ 1) (7)

≤
[
QTm(t)− μTm,m(T )(t)

]+
+RTm(t), ∀ T ∈ ΩB .

Here m(T ) is the next hop node corresponding to the type T
traffic, i.e., m(T ) = mu for T ∈ {UU, LU} and m(T ) = ml

otherwise. μTm,m(T )(t) is the rate allocated to serve type T
packets at switch module m. RTm(t) is the input to QTm(t),
given by:

RUU
m (t) = Xm(t)RU

m(t), RUL
m (t) = (1−Xm(t))RU

m(t), (8)

RLU
m (t) = Ym(t)RL

m(t), RLL
m (t) = (1− Ym(t))RL

m(t), (9)

where RU
m(t) and RL

m(t) are the aggregate upper and lower

division arrivals to node m, i.e.,

RU
m(t) =

∑
m′∈Mu

m

μUU
m′,m(t) +

∑
m′∈Ml

m

μUL
m′,m(t), (10)

RL
m(t) =

∑
m′∈Mu

m

μLU
m′,m(t) +

∑
m′∈Ml

m

μLL
m′,m(t). (11)

The variables Xm(t) and Ym(t) are i.i.d. Bernoulli variables

taking values 0 or 1 with equal probabilities, introduced for

ensuring an equal division of the flow rates. Note that we have
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used inequality in (7). This is because the actual packet arrivals

to QTm(t) may be less than RTm(t) as the upstream nodes may

not have enough packets to fulfill the allocated transmission

rates. Our queueing structure and traffic splitting scheme are

demonstrated in Fig. 5.

Node s

QU
s (t)

QL
s(t)

RU
s (t)

RL
s(t)

Node m

QUU
m (t)

QUL
m (t)

QLU
m (t)

QLL
m (t)

Xm(t) = 1

Xm(t) = 0

Ym(t) = 1

Ym(t) = 0

Node s'

QU
s′(t)

QL
s′(t)

RU
s′(t)

RL
s′(t)

RU
m(t)

RL
m(t)

Fig. 5. The queueing structure and traffic splitting method.

3) Partition nodes in the fictitious system: Each node m ∈
Cn maintains only two queues QD1

m (t) and QD2
m (t) with the

following dynamics:

QDi
m (t+ 1) ≤

[
QDi

m (t)− μm,Di
(t)

]+
+RDi

m (t). (12)

Here RD1
m (t) = RU

m(t) and RD2
m (t) = RL

m(t) are the aggregate

arrivals defined in (10) and (11).

4) Nodes in columns n to 2n− 1 in the physical system:
Each node m ∈ ∪2n−1

j=n Cj maintains two First-In-First-Out

(FIFO) queues Qa
m(t) and Qb

m(t), one for the upper output

link a and the other for the lower output link b (see Fig.

2(a)). The arrivals are placed into the queues according to

their destinations, i.e.,

Qa
m(t+ 1) =

[
Qa

m(t)− μm,mu(t)
]+

+
∑

m′∈Mm

μa
m′,m(t),(13)

Qb
m(t+ 1) =

[
Qb

m(t)− μm,ml
(t)

]+
+

∑
m′∈Mm

μb
m′,m(t). (14)

Here μa
m′,m(t) =

∑
s

∑
d∈Oa

m
μ̃sd
m′,m(t), where μ̃sd

m′,m(t)

denotes the actual number of flow (s, d) packets sent from

m′ to m at time t, and μb
m′,m(t) =

∑
s

∑
d∈Ob

m
μ̃sd
m′,m(t)

denotes the number of packets that need to traverse the lower

outgoing link b to their destinations.

Notice that in both systems, each partition node only

maintains two queues and does not further split the traffic.

This is because in the fictitious system, the next hop nodes

of a partition node are D1 and D2, whereas in the physical

system, the flow (s, d) packets at the partition nodes will be

delivered to output server d following a unique path according

to Lemma 3.

D. The arrival admission queue

Since the arrivals to the network are dynamic, in order

to perform packet admission in a fair manner, we introduce

an auxiliary variables γsd(t) and create the following virtual

admission queue for every flow (s, d):

Hsd(t+ 1) =
[
Hsd(t)−Rsd(t)

]+
+ γsd(t). (15)

Intuitively, γsd(t) indicates how many flow (s, d) packets

should have been admitted into the network. However, due

to the randomness of the arrivals, this may not be feasible at

every time t. Hence, the admission queue Hsd(t) is created to

ensure that in the long run, the admitted packets have a rate

that is no smaller than the rate they should have got.

E. The output regulation queue
Here we specify the last component needed for our algo-

rithm. Note that the above subsections have been dealing with

reducing the number of queues per node and balancing the

traffic inside the Benes network. In order to guarantee stability

of the network, one also needs to ensure that the total traffic

going to any output port of the Benes network does not exceed

its capacity. To do so, we create the following regulation queue
for each output port d ∈ {1, ..., 2n} (or equivalently, output

server d):

qd(t+ 1) =
[
qd(t)− (1− η)

]+
+
∑
s

Rsd(t). (16)

That is, the input to this queue are all the admitted packets

destined for output port d, and the service rate of the queue is

1− η for some small η > 0 for all time. The intuition here is

that if these virtual queues are stable, then the average traffic

rate for any output port is no more than 1− η. The reason we

have the small η “slack” is to ensure queue stability for the

nodes in columns n to 2n− 1 in the physical network.

V. THE GROUPED-BACKPRESSURE ALGORITHM (G-BP)

In this section, we present the construction of the G-BP
algorithm and its performance.

A. Constructing G-BP
For notation purposes, we first define the aggregate network

queue vector of the fictitious network as follows:

Z(t) =
(
QTs (t), ∀ s, T ∈ Ωs, Q

T
m(t), ∀m ∈ ∪n−1

j=1 Cj , T ∈ ΩB ,

QD1
m (t), QD2

m (t), ∀m ∈ Cn, Hsd(t), ∀ (s, d), qd(t), ∀ d
)
.

Then, we define the following Lyapunov function:

L(t) � 1

2

∑
s,T ∈Ωs

[QTs (t)]
2 +

1

2

∑
m∈∪n−1

j=1 Cj

∑
T ∈ΩB

[QTm(t)]2 (17)

+
1

2

∑
m∈Cn

∑
i=1,2

[QDi
m (t)]2 +

1

2

∑
s,d

[Hsd(t)]
2 +

1

2

∑
d

[qd(t)]
2.

Now define a Lyapunov drift as follows:

Δ(t) � E

[
L(t+ 1)− L(t) | Z(t)

]
. (18)

Using the facts that 0 ≤ Asd(t) ≤ Amax and that all the link

capacities in the network are bounded, we obtain the following

lemma for the drift. In the lemma, the parameter V ≥ 1 is a

control parameter offered by the algorithm to control the flow

utility performance.
Lemma 1: Under any control policy, the following property

holds for the drift at any time t:

Δ(t)− V E

[∑
s,d

Usd(γsd(t)) | Z(t)

]
(19)

≤ B −
∑
d

qd(t)(1− η)−
∑

m∈Cn,i
QDi

m (t)E

[
μm,Di

(t) | Z(t)

]

−
∑
s,d

E

[
V Usd(γsd(t))−Hsd(t)γsd(t) | Z(t)

]
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−
∑
s

∑
d≤2n−1

E

[
Rsd(t)

[
Hsd(t)− qd(t)−QU

s (t)
]
| Z(t)

]

−
∑
s

∑
d>2n−1

E

[
Rsd(t)

[
Hsd(t)− qd(t)−QL

s(t)
]
| Z(t)

]

−
∑
s

E

[
μU
s,m(s)(t)

[
QU

s (t)−
1

2
QUU

m(s)(t)−
1

2
QUL

m(s)(t)
]
| Z(t)

]

−
∑
s

E

[
μL
s,m(s)(t)

[
QL

s(t)−
1

2
QLU

m(s)(t)−
1

2
QLL

m(s)(t)
]
| Z(t)

]

−
∑

m∈Cn−1

∑
T ∈{UU, UL}

E

[
μTm,m(T )(t)

[
QTm(t)−QD1

m(T )(t)
]
| Z(t)

]

−
∑

m∈Cn−1

∑
T ∈{LU, LL}

E

[
μTm,m(T )(t)

[
QTm(t)−QD2

m(T )(t)
]
| Z(t)

]

−
∑

m∈∪n−2
j=1 Cj

∑
T ∈{UU, UL}

E

[
μTm,m(T )(t)

[
QTm(t)− 1

2
QUU

m(T )(t)

−1

2
QUL

m(T )(t)
]
| Z(t)

]

−
∑

m∈∪n−2
j=1 Cj

∑
T ∈{LU, LL}

E

[
μTm,m(T )(t)

[
QTm(t)− 1

2
QLU

m(T )(t)

−1

2
QLL

m(T )(t)
]
| Z(t)

]
.

Here B = Θ(1) is a constant given by:

B =
1

2
[2n(10n− 2) +A2

max(2
3n−1 + 22n+1 + 23n)], (20)

and the expectation is taken over the random arrivals as well

as the potential randomness in the actions. ♦
Proof: Due to space consideration, we omitted the proof.

Please see [17].

Note that since the Benes network size is Θ(2n), the n value

is only logarithmic in the network size. Hence, B is indeed

only polynomial in the network size. Also note that the above

lemma is for the fictitious system. Based on the above lemma,

we now describe our algorithm for the physical system. In the

algorithm, we will operate the nodes in S and ∪n−1
j=1 Cj in the

physical system exactly as we operate them in the fictitious

system. For these nodes, the actions will be chosen in every

time slot to minimize the right-hand-side (RHS) of the drift

expression (19). For all the modules in columns n to 2n− 1,

we simply do a free-flow routing.

Grouped-Backpressure (G-BP) At every time slot t, ob-

serve A(t) and Z(t), and perform the following:

• Auxiliary Variable Selection: For every (s, d) flow,

choose γsd(t) to solve:

max : V Usd(γsd(t))−Hsd(t)γsd(t) (21)

s.t. 0 ≤ γsd(t) ≤ Amax.

• Admission Control: For every input server s: If d ≤
2n−1, i.e., an upper division flow, choose Rsd(t) =
Asd(t) if Hsd(t) − qd(t) − QU

s (t) > 0; else choose

Rsd(t) = 0. If d > 2n−1, i.e., a lower division flow,

choose Rsd(t) = Asd(t) if Hsd(t)− qd(t)−QL
s(t) > 0;

else choose Rsd(t) = 0.

• Routing and Scheduling:
– For any node m ∈ ∪n−1

j=1 Cj ∪ S: define the follow-

ing weights for the outgoing link [m,mu]:

WU
m,mu

(t) � max

[
QUU

m (t)− Q̃U
mu

(t), 0

]
, (22)

W L
m,mu

(t) � max

[
QLU

m (t)− Q̃L
mu

(t), 0

]
, (23)

where Q̃U
mu

(t) and Q̃L
mu

(t) are defined as:

Q̃U
mu

(t) =

{
1
2Q

UU
mu

(t) + 1
2Q

UL
mu

(t) jm ≤ n− 2,
QD1

mu
(t) jm = n− 1,

(24)

Q̃L
mu

(t) =

{
1
2Q

LU
mu

(t) + 1
2Q

LL
mu

(t) jm ≤ n− 2,
QD2

mu
(t) jm = n− 1.

(25)

Then, we choose the service rates μUU
m,mu

(t) and

μLU
m,mu

(t) for link [m,mu] to solve:

max : μUU
m,mu

(t)WU
m,mu

+ μLU
m,mu

(t)W L
m,mu

(26)

s.t. μUU
m,mu

+ μLU
m,mu

≤ 1, μUU
m,mu

, μLU
m,mu

∈ {0, 1}.
To solve for μUL

m,ml
(t) and μLL

m,ml
(t), we replace

QUU
m (t) and QLU

m (t) with QUL
m (t) and QLL

m (t) in (22)

and (23). Also, we replace mu and D1 with ml and

D2 in (24) and (25). If m = s ∈ S , we simply

replace QUU
m (t) and QUL

m (t) with QU
s (t) and QL

s(t)
in (22) and (23), and replace mu by m(s) in (24)

and (25).

– For every node m ∈ ∪2n−1
j=n Cj : Each module serves

each FIFO queue for each outgoing link according

to (13) and (14) with μm,mu(t) = μm,ml
(t) = 1 for

all time.

• Queue Updates: In the fictitious system, choose the

service rates μm,D1
(t) and μm,D2

(t) to solve:

max : QD1
m (t)μm,D1

(t) +QD2
m (t)μm,D2

(t) (27)

s.t. μm,D1
(t), μm,D2

(t) ∈ {0, 1}.
Then, update all the queues in both the fictitious system

and the physical system according to their dynamics. ♦
We note that G-BP only controls the first half of the physical

system with the backpressure actions. All the nodes in columns

n to 2n−1 simply serve the flows with a “free-flow” manner,

i.e., always serve the flows at the maximum rate. This is

different from the usual backpressure algorithms that control

all the queues in the network to ensure stability.

B. Performance analysis

In this section, we prove that G-BP achieves a near-optimal

performance. To carry out our analysis, we first have the

following theorem, which characterizes the capacity region of

a Benes network. In the theorem, we use r = (rsd, ∀ (s, d))
to denote the vector of arrival rates, where rsd represents the

average rate of the (s, d) flow.

Theorem 1: [9] [10] The capacity region of the Benes

network Bn is given by:

Λn = {r |
2n∑
s=1

rsd ≤ 1,

2n∑
d=1

rsd ≤ 1, rsd ≥ 0, ∀ s, d}. �
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We now show that under the special structure of the Benes

network, our queueing structure and traffic splitting scheme

generate a balanced routing across the network. This is sum-

marized in the following lemma, where we use μTm,m(T ) to

denote the time average transmission rates of the type T traffic

from m to m(T ). Specifically,

μTm,m(T ) � lim
T→∞

1

T

T−1∑
t=0

E
[
μ̃Tm,m(T )(t)

]
.

Here μ̃Tm,m(T )(t) denotes the actual number of type T packets

sent over the link [m,m(T )] at time t. Similarly, we use μsd
m

to denote the average rate of the flow (s, d) packets going

through a node m, i.e.,

μsd
m � lim

T→∞
1

T

T−1∑
t=0

E
[
μ̃sd
m,mu

(t) + μ̃sd
m,ml

(t)
]
,

where μ̃sd
m,mu

(t) and μ̃sd
m,ml

(t) denote the actual numbers of

flow (s, d) packets sent from node m to node mu and node

ml at time t, respectively.

Lemma 2: If the fictitious network is stable, then,

(a) For every node m ∈ ∪n−1
j=1 Cj ,

μUU
m,mu

= μUL
m,ml

, μLU
m,mu

= μLL
m,ml

. (28)

(b) The average rate of any (s, d) flow packets going through

any partition node m ∈ Cn satisfies μsd
m = rsd/2

n−1. ♦
Proof: See Appendix A.

We now present the performance results of G-BP. Recall

that β is defined in (2) to be the maximum first derivative

among all utility functions, and that ropt ∈ Λn denotes the

optimal solution to our utility maximization problem.

Theorem 2: (i) Both the fictitious network and the physical

network are stable under G-BP. (ii) Denote rG-BP the time

average rate vector achieved by G-BP. We have:

U(rG-BP) ≥ U(ropt)− B

V
− 2nβη. � (29)

Proof: A sketch of our proof is given in Appendix B. For

full details, please see [17].

From (29), we see that the utility performance of G-BP
can arbitrarily approach the optimal as we increase V and

decrease η. However, doing so will increase the average

network delay. Hence, there is a natural tradeoff between the

utility performance and the network delay.

Note that though the performance results in Theorem 2 look

similar to previous results in [14], the proof is indeed quite

different. This is because in our case, we impose a special

queueing structure on the network, and the second half of the

network uses a free-flow routing. These two features make the

analysis very different from the usual backpressure algorithms.

C. Discussion on implementation

We note that the G-BP algorithm can easily be implemented

in a fully distributed manner. Specifically, one can maintain

the virtual admission queues at the input servers and maintain

the virtual output regulation queues at the output servers using

counters, as shown in Fig. 6. With this arrangement, the aux-

iliary variable selection step can easily be done locally at the

input servers, and the routing and scheduling step can easily be

done by each node exchanging queue information only with

its four neighbors. The admission control step requires the

input servers to know the regulation queue sizes. This can be

achieved by message passing the regulating queue sizes along

the network using prioritized packets. Similarly, the update of

the regulation queues requires the knowledge of the arrivals for

the output ports. This can be approximated by using the local

arrivals to the output servers as the input to the regulation

queues. Though message passing and queue approximation

may incur performance loss in practice, we will see in the

simulation section that, the G-BP algorithm is indeed very

robust and can still achieve near-optimal performance even

under different message passing delays and the regulation

queue approximation.

Benes Network

qd(t)∑
s

R̃sd(t) 1− η
∑

d≤2n−1

Rsd(t)

QU
s (t)

μUs,m(s)(t)Asd(t)

γsd(t) Rsd(t)

Hsd(t)

qd(t)

Hsd(t) qd(t)

Use local 
arrivals

Message passing

Fig. 6. Implementation of G-BP. The virtual admission queues are main-
tained at the input servers, while the virtual regulation queues are maintained
at the output servers. Message passing is used to send regulation queue
information through the network for admission control. The regulation queues
can use the local arrivals to the output servers as the input.

VI. SIMULATION

In this section, we present the simulation results of G-BP
on a 24 × 24 size Benes network. For simplicity, we assume

that Asd(t) = Amax = 2 for all time.

In the simulation, we assume that every flow has a utility

function log(1 + rsd). In every time slot, each flow can

admit 0, 1 or 2 packets. We simulate the system for V ∈
{5, 10, 20, 50, 100} and η = 0.01. Each simulation is run for

105 slots. To test the robustness of G-BP against the delay

and sparsity in message passing and the regulation queue ap-

proximation, we simulate four different cases. (i) The original

G-BP algorithm, where the message passing delay is zero and

the regulation queue is exact. (ii) The case when the input to

the regulation queue qd are the actual packet arrivals to the

output server d (the service rate is still 1− η), and admission

control at time t uses qd(t − (2n − 1)) instead of qd(t). (iii)

Similar to the second case, but admission control at time t
uses qd(t−5(2n−1)). (iv) Similar to the second case, but the

regulation queue information is only sent every 5(2n−1) slots

and has a delay of 5(2n−1). That is, admission control at time

t uses qd(t0) where t0 = max[(	 t
5(2n−1)
 − 1)5(2n− 1), 1].

Fig. 7 shows the performance of the G-BP algorithm. Here

the average delay (in number of slots) is computed using the

set of packets that are delivered when the simulation ends.

For all simulations, this set contains more than 99.9% of the

total packets that enter the network. We see that as we increase
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Fig. 7. The aggregate flow utility and average packet delay under G-BP.
One can see that G-BP works very well even with message passing delay
and regulation queue approximation.

the V value, the aggregate flow utility quickly converges to its

optimal value. However, doing so also leads to a linear increase

of the average packet delay. We also see from the figure

that, G-BP is indeed very robust to the delay and sparsity

in message passing, and the regulation queue approximation.

In Fig. 8, we plot a recorded queue process of the network

under G-BP for V = 10. In this case, we change each

flow’s utility function to wsd log(1+ rsd) in the middle of the

simulation, where wsd takes values 1, 2 or 3 equally likely.

We see that after the change, G-BP quickly adapts to the

new utility functions and performs admission and routing

accordingly.
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Fig. 8. The total network queue size under G-BP with V = 10.

Finally, we also evaluate the average packet delay as a

function of the network size, to test the scalability of the

algorithm. As comparison, we also simulate an “enhanced”

G-BP algorithm, in which we replace all the queue values in

the algorithm with the queue value plus the node’s hop count to

the destination, i.e., its column number. The idea is to create

“bias” towards the packet destinations. This enhancement is

similar to the EDRPC algorithm developed in [18]. We can

see from Fig. 9 that the average packet delay under G-BP
scales as Θ(n2). Since the Benes network size is Θ(2n), this

implies that the average delay grows only logarithmically in
the network size.

Note that in Fig. 9 we have plotted the average delay in

number of slots. To get some physical understanding of the

results, assume that each packet has 500 bytes and each link

has a capacity of 1 Gbit/second, which are both quite common

in practice. Then, every slot is 4 microseconds. We see that
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Fig. 9. Average delay as a function of the network size under V = 10.

the average packet delay under Benes network with G-BP
is roughly 1 millisecond when the network size is 128× 128.

This demonstrates the good delay performance of our network

design approach.

VII. CONCLUSION

In this work, we develop a novel networking solution called

Benes packet network, which consists of a Benes network built

with simple commodity switches, a flow utility maximization

mechanism, and a Grouped-Backpressure (G-BP) routing and

scheduling algorithm. We show that this combination can

achieve a near-optimal flow utility and ensure small end-to-

end delay for the traffic flows. Our approach also only requires

each switch module to maintain at most four queues regardless

of the network size, and can easily be implemented in practice

in a fully distributed manner.
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APPENDIX A – PROOF OF LEMMA 2

For our analysis, we will first present an important fact and

a lemma regarding the structure of the Benes network. First,

from the construction rules of the Benes networks, we first

have the following observation:

Fact 1: For a 2n × 2n Benes network, its partition nodes

coincide with the partition nodes of its two 2n−1 × 2n−1

subnetworks. ♦
We then have the following simple lemma, which can be

seen from the construction rules of Benes networks.

Lemma 3: (a) Starting from any partition node m ∈ Cn,

there is a unique path to any output server d ∈ D. (b) For

every node m ∈ Cn+l, l ≥ 0, we have:

Oa
m = {κm2n−l + 1, ..., (κm +

1

2
)2n−l}, (30)

Ob
m = {(κm +

1

2
)2n−l + 1, ..., (κm + 1)2n−l}, (31)

where κm � (im − 1) mod 2l. �
Now we prove Lemma 2.

Proof: (Lemma 2) We first prove Part (a). From the

queueing dynamic equation (7), we see that for any node

m ∈ ∪n−1
j=1 Cj , the input rates into QUU

m (t) and QUL
m (t) are

equal because of random splitting. Similarly, the input rates
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into QLU
m (t) and QLL

m (t) are the same. Hence, if the fictitious

network is stable, the output rates from these queues are equal

to their input rates [13]. Therefore (28) holds.

Now we prove Part (b) by induction. First it holds for any

4× 4 Benes network. This is because if the fictitious network

is stable, then the input switch modules split the incoming

flows equally into the two partition nodes (see Fig. 2).

Now suppose the same is true for a 2n−1 × 2n−1 Benes

network, we want to show that it also holds for a 2n × 2n

Benes network.

To see this, note from Fig. 2 that each 2n×2n Benes network

consists of two 2n−1 × 2n−1 subnetworks, 2n−1 input switch

modules and 2n−1 output switch modules. According to the

structure of the Benes network, any input switch module has

one link connecting to the upper 2n−1×2n−1 subnetwork and

the other one connecting to the lower 2n−1×2n−1 subnetwork.

From Part (a), we see that half of a flow’s rate will be routed

through the upper subnetwork and the other half will be

routed through the lower subnetwork. Now consider the upper

subnetwork and view the flow traffic into this subnetwork as

its own external input. Since this subnetwork is also stable, the

flow’s traffic will be equally split and routed via its partition

nodes by induction. Since all the partition nodes coincide

according to Fact 1, we see that the lemma follows.

APPENDIX B – PROOF SKETCH OF THEOREM 2

Here we provide a proof sketch for Theorem 2. The full

details can be found in [17]. Our proof consists of two parts.

(Part A - Stability) We start by showing that all the queues

at the input servers are stable. This is done by noticing that,

since U ′sd(·) < β, whenever Hsd(t) > V β, G-BP will set

γsd(t) = 0. Hence, using the fact that 0 ≤ γsd(t) ≤ Amax for

all time, we have:

0 ≤ Hsd(t) ≤ V β +Amax, (32)

for all (s, d) flows and for all time. Then, we see from

the admission control rules that, for d ≤ 2n−1, only when

qd(t)+QU
s (t) < Hsd(t) will qd(t) and QU

s (t) get new arrivals

(similar for QL
s(t)). This shows that qd(t) and QU

s (t) will also

be deterministically upper bounded. Proceeding in this manner

and using the routing and scheduling rules of G-BP, we can

show that all the queues in the fictitious network are bounded,

and hence stable.

To prove that the second half of the physical network is

stable, we use the fact that all the regulation queues are stable.

This implies that the total traffic rate going to any output server

is no more than 1− η. Then, using Lemmas 2 and 3, and the

structure of the Benes network, we show that each queue in

∪2n−1
j=n Cj of the physical network has an input rate of no more

than 1− η, while the service rate is always 1. Now using the

fact that at any time, the number of packets entering a queue

is finite, we show that all the queues in ∪2n−1
j=n Cj are stable.

(Part B - Utility) To prove the utility performance,

we first construct a sequence of admission control vectors

{R(A,k) = (RA,k
sd , ∀ s, d)}∞k=1 with probabilities {p(A,k)}∞k=1

for every arrival rate vector A, and a set of auxiliary variables

{γsd, ∀ s, d} that satisfy: (i) γsd = rsd � E
[∑

k p
(A)
k R

(A,k)
sd

]
,

(ii) r = (rsd, ∀ s, d) ∈ Λn, and (iii)
∑

sd Usd(γsd) ≥
U(ropt)−βη2n. Then, we show that since r ∈ Λn, there exists

a stationary and randomized routing and scheduling policy

Π that can support the rate r over the network in a fully
symmetric manner, i.e., each flow is equally split by every

node when routed to the next hop nodes. Having established

the above two steps, we then plug the above admission control

vectors, the auxiliary variables, and the policy Π into the RHS

of the drift expression (19) to obtain:

Δ(t)− V E

[∑
s,d

Usd(γ
G-BP
sd (t)) | Z(t)

]

≤ B − V U(ropt) + V ηβ2n. (33)

We then use (33) and a telescoping sum argument to show that∑
s,d Usd(γ

G-BP
sd ) ≥ U(ropt)−B/V −βη2n, where γG-BP

sd is the

average of γG-BP
sd (t) under G-BP. Finally, using the fact that

all the admission queues are stable, we have rG-BP
sd ≥ γG-BP

sd for

all (s, d), which then implies
∑

s,d Usd(r
G-BP
sd ) ≥ U(ropt) −

B/V − βη2n and proves the theorem.
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