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Unification of nonclassicality measures in interferometry
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From an operational perspective, nonclassicality characterizes the exotic behavior in a physical process which
cannot be explained with Newtonian physics. There are several widely used measures of nonclassicality, including
coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists
evidence of fundamental connections among the three measures. However, the sources of nonclassicality are still
regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of
defining a unified nonclassicality with an operational motivation founded on the capability of interferometry.
Nonclassicality appears differently as coherence, discord, and entanglement in different scenarios with local
measurement, weak basis-independent measurement, and strong basis-independent measurement, respectively.
Our results elaborate how these three measures are related and how they can be transformed from each other.
Experimental schemes are proposed to test the results.
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I. INTRODUCTION

Nonclassicality may come in various shapes in different
scenarios. One of the earliest forms of nonclassicality is the
coherent superposition of a single quantum system. Quoting
Einstein, “God does not play dice with the world” [1], it is
nowadays widely believed that the intrinsic randomness in
a quantum measurement is a key feature that distinguishes
the quantum theory from classical ones. From the perspective
of quantum resource, intrinsic randomness comes from break-
ing the coherence of quantum states [2,3]. The superposition
or interference of distinguishable states—coherence—thus can
be regarded as a mark for single-partite nonclassicality [4,5].

In the past few decades or so, quantum information theory
has been well developed. In quantum information process-
ing, the existence of nonclassicality has been witnessed by
specific tasks that can be fulfilled by quantum processes, but
not by any classical process. For instance, Bell inequalities,
satisfied by the classical theory, can be violated with certain
quantum settings [6,7]; quantum correlations enable extend-
ing secret keys between two remotely separated users [8,9],
which is impossible with classical processes; and quantum
computing can tackle classically intractable problems [10].
In these and many other tasks, entanglement, which mea-
sures a special form of correlation of multipartite quantum
systems, has been recognized as the central element that is
responsible for the advantage of the quantum process [11].
Entanglement has become the most widely used measure of
nonclassicality [12,13].

Besides entanglement, another important nonclassicality
measure in quantum information processing is discord. As a
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general measure for multipartite quantum correlation, discord
plays an important role in remote state preparation [14] and
quantum metrology [15], and reveals quantum advantages in
other tasks [16,17]. In those tasks, entanglement might not be
detected and the quantum advantage might be associated to the
existence of discord.

In this work, we focus on the nonclassicality theories of
coherence, discord, and entanglement [11,18,19]. There are
many examples indicating fundamental connections between
the three nonclassicality measures. For quantum correlation,
including entanglement and discord, it is shown that all
nonclassical correlations can be activated into distillable entan-
glement [20,21]. Recently, enormous efforts have been devoted
to investigate the relation between coherence and quantum
correlation. For instance, the trade-off between coherence
and correlation measures has been analyzed under different
scenarios [22–27]. Also, considering incoherent operations,
it is shown that coherence can be converted into quantum
correlation [28,29]. In addition, coherence and quantum corre-
lation are shown to play important roles in several information
tasks, such as frozen quantumness [30–32] and quantum state
merging [33–35].

From these observations, we see that coherence, discord,
and entanglement are deeply connected concepts. This hints
that the three nonclassicality measures may play similar roles
in quantum information tasks. Our work supports this intuition
by unifying nonclassicality measure in a simple information
task, i.e., the three measures play a similar role in the same task
only with different conditions. A challenge of this unification
lies in the fact that coherence characterizes nonclassicality of
a single system, while entanglement and discord character-
ize multipartite quantum correlations. In addition, difficulties
also stem from the fact that coherence is defined on a spe-
cific measurement basis, while entanglement and discord are
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TABLE I. Properties of a generalized nonclassicality quantifier.

(Q1) Vanishes for classical state: Q(σ ) = 0,∀σ ∈ C.
Stronger condition: (Q1′) Q(σ ) = 0 iff σ ∈ C.

(Q2) Monotonicity: classical operation cannot increase
nonclassicality,
(Q2a) Q(ρ) � Q(�C(ρ)), (Q2b)
Q(ρ) � ∑

n pnC(ρn).

independent of the (local) basis. Furthermore, although discord
and entanglement both describe multipartite correlation, their
similarities and differences are not fully understood.

Tracing back the origin of the mystery of quantum mechan-
ics, it is the wave-particle duality that first confused physicists,
including Einstein. From today’s viewpoint, Einstein’s quote
indicates that he disagreed with Born’s probability interpre-
tation of wave functions [2]. It has long been well known,
before the birth of quantum mechanics, that the wave property
of a physical subject can be demonstrated by interference. In
fact, it is Young’s double-slit experiment that confirms the
wave property of light. We follow this track to unify various
notions of nonclassicality. In our work, we operationally
identify nonclassicality measures based on the capability of
interferometry. Under different scenarios, we show that the
associated nonclassicality measures are coherence, discord,
and entanglement.

II. BACKGROUND AND DEFINITION

A. Preliminaries

We first review a general nonclassicality framework, which
consists of the definitions of classical or nonclassical states,
classical operations, and nonclassicality quantifiers [36,37].
Focusing on an operational task, the corresponding nonclas-
sicality is witnessed when quantum behavior that cannot be
explained classically is observed. A state σ is called classical
when it exhibits no quantum behavior. Denote the set of
classical states by C = {σ }; then a state ρ that does not
belong to C is called nonclassical or quantum. Besides the
definition of classical states, a nonclassicality framework is
completed by defining classical operations and quantifiers
of the nonclassicality. Based on the definition of classical
state, classical operation �C should be physically realizable,
i.e., it is a completely positive trace preserving (CPTP) map,
and, in the meantime, cannot generate nonclassicality from
classical states, i.e., �C(σ ) ∈ C,∀σ ∈ C. In Kraus representa-
tion, classical operation is defined by �C(σ ) = ∑

n K̂nσ K̂
†
n ⊂

C,∀σ ∈ C, where {K̂n} is a series of Kraus operators satisfying∑
n K̂

†
nK̂n = I . Extra constraints can be added to the definition

of classical operations. For instance, we can further require
that classical operation cannot generate nonclassicality even
under postselection, K̂nσ K̂

†
n/Tr[K̂nσ K̂

†
n] ⊂ C,∀σ ∈ C. With

classical states and operations, the amount of nonclassicality
can be given by a real-valued function of states, Q(ρ). Gener-
ally, a nonclassicality quantifier should satisfy the properties in
Table I. Extra requirements such as convexity or other physical
conditions can be added.

(a)

(b)

|1〉

|2〉

state preparation phase encoding measurement

FIG. 1. Double-slit experiment of an electron. (a) Interference
pattern is observed when the electron is in a superposition of the
path basis, J = {|1〉 , |2〉}. (b) A general interferometry process that
consists of state preparation, phase encoding, and measurement.
The nonclassicality of the prepared state is witnessed when an
interference pattern, i.e., nonzero phase information, is observed from
the measurement outcome.

From the previous paragraph, we can see that a key step
in the construction of a general nonclassicality framework
lies in distinguishing classical and nonclassical states. In this
work, we concentrate on identifying the classical states of
four different nonclassicality measures, i.e., coherence [4,5],
basis-dependent (BD) discord [38], discord [38,39], and entan-
glement [12], of which BD discord plays as a bridge that links
coherence and quantum correlation. We will show a unified
framework based on interferometry, in which these sources of
nonclassicality naturally arise.

B. Double-slit experiment

As an illustrative example, we consider the double-slit
experiment of an electron, shown in Fig. 1(a), as our first
operational task. Classically, the electron will go through either
path |1〉 or |2〉 and display no interference pattern, while when
the electron is in a superposition of the two paths, the quantum
behavior of interference can be observed. Schematically [see
Fig. 1(b)], the double-slit experiment can be regarded as
an interferometry process that probes the phase difference
between different paths. Considering this superposition as a
quantum feature, while considering a mixture of two paths
as classical states, the interferometry capability is thus a
traditional signature of nonclassicality.

C. Interferometry capability and nonclassicality

The double-slit experiment can be generalized to observe
the phase behavior on dA paths (labeled by A) and, in the
meantime, the particle potentially has dB internal degrees of
freedom (labeled by B). In this case, we focus on a dA ×
dB-dimensional Hilbert space HAB = HA ⊗ HB with bases
JA = {|jA〉}jA=1,2,...,dA

and JB = {|jB〉}jB=1,2,...,dB
for path and
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internal degrees of freedom, respectively. In principle, systems
A and B can also be regarded as two individual subsystems.

An interferometry process generally consists of three
stages: state preparation, phase encoding, and measurement.
After state preparation, an initial state ρAB from HAB is
prepared. By denoting φjA

as the accumulated phase for path
|jA〉, the phase-encoding process can be described by a unitary
operation,

UJA,φA
=

dA∑
jA=1

e−iφjA |jA〉 〈jA| ⊗ IB, (1)

with φA = (φ1,φ2, . . . ,φdA
) and IB being the identity matrix

of the internal degrees of freedom. After phase encoding,
the state evolves to ρ ′

AB = UJA,φA
ρABU

†
JA,φA

. In the measure-
ment phase, we consider a general positive-operator valued
measure (POVM) {M1,M2, . . . ,MD| ∑i Mj = I,Mj � 0} on
ρ ′

AB , where D is the number of POVM elements. The mea-
surement outcome is denoted as a random variable XM .

Under the generalized interferometry process, the nonclas-
sical or quantum behavior is defined by the interferometry
capability, i.e., the ability of probing the phase information
φA. A state ρAB is called classical when the measurement
outcome XM is independent of the phase information φA,
i.e., I (XM,φA) = 0, for any possible measurement. Here, we
consider φA as a random variable and I (X,Y ) is the mutual
information of two random variables. On the other hand, a
state is considered nonclassical or quantum if one can acquire
nonzero information of the phase with a proper measurement.
We will show in the following that the interferometry capability
is powered by coherence and BD discord. That is, one can
acquire nonzero information of the phase if and only if the
input state has coherence or BD discord.

D. Adversarial scenario

While discord and entanglement are basis-independent
nonclassicality measures, we have to consider interferometry
without a fixed basis. In practice, this corresponds to the
case where the phase-encoding basis varies with time or is
even unknown [15]. Such a practical issue is equivalent to
the worst-case scenario where an adversary, Eve, controls
the phase-encoding basis according to her local information
ρE to minimize the phase information that can be learned
from the measurement result. It is thus also interesting to
investigate the interferometry capability, i.e., nonclassicality,
of quantum states under the adversary’s control. In such an
adversarial scenario, a state ρAB is called quantum only when
the measurement outcome XM has nonzero phase information,
i.e., minE I (XM, 	φA) > 0, where the minimization is over
all possible manipulations by the adversary, who may share
entanglement with ρAB and control the phase-encoding basis
as described below.

We consider that the adversary first measures her local
system ρE to generate a basis choice e; then she rotates the
phase-encoding basis to J e

A = {|je
A〉 = U

†
e |jA〉} by applying

the rotation U
†
e based on e. We assume that the measurement

outcome e is revealed to the interferometry measurement.
Otherwise, it is not hard to see that the adversary can always
destroy the interferometry capability for any input state ρAB .

FIG. 2. Interferometry process under adversarial scenarios.
(a) The weak adversary is not entangled with system AB, while (b)
the strong adversary shares maximal entanglement with system AB.
The adversary measures her local system to generate a basis choice e,
based on which she rotates the phase-encoding basis JA to an arbitrary
one, J e

A = {|j e
A〉 = U †

e |jA〉}, by acting a unitary operation Ue =∑
jA

|jA〉 〈j e
A| on system A. That is, ρe

AB = UJA,φA
UeρABU †

e U
†
JA,φA

=
UeUJe

A
,φA

ρABU
†
J e
A

,φA
U †

e with U
†
J e
A

,φA
= U †

e UJA,φA
Ue. The solid and

dashed lines represent classical and quantum states, respectively. Note
that a strong adversary is strictly more powerful than a weak adversary.

In this work, we consider two different ways that the adversary
generate the basis choices, as shown in Fig. 2. The adversary
is called weak when her local system E is not entangled
with system AB and strong when system ABE is maximally
entangled. As the phase-encoding basis is unknown for each
basis choice, we identify such interferometry capability by
weak and strong basis-independent nonclassicality measures
for weak and strong adversaries, respectively. We will show in
the following that the nonclassicality measures for weak and
strong adversaries are discord and entanglement, respectively.

E. Four types of classical states

Now, we briefly summarize the definitions of the four
nonclassicality measures. Coherence is defined for a single
quantum system on a specific measurement basis [4,5]. Con-
sidering the space of the path and the phase-encoding basis JA,
a state σ

JA

A is called incoherent state when

σ
JA

A =
dA∑

jA=1

pjA
|jA〉 〈jA| , (2)

and is called a coherent state otherwise.
For BD discord [38], we consider the joint state ρAB of path

and internal degrees of freedom. A state has no BD discord on
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JA iff

σ
JA

AB =
dA∑

jA=1

pjA
|jA〉 〈jA| ⊗ ρ

jA

B , (3)

where pjA
� 0,

∑
jA

pjA
= 1, and ρ

jA

B is an arbitrary state
from HB .

Quantum correlation also defines the nonclassicality mea-
sures of a joint system. The set of states that has zero discord
[38,39] is defined by the union of the zero BD-discord state of
all local bases,

C =
⋃
JA

{
σ

JA

AB

}
, (4)

where σ
JA

AB is defined in Eq. (A7) for basis JA.
A state that has no entanglement is called a separable state,

which is given by

σAB =
∑

j

pjρ
j

A ⊗ ρ
j

B. (5)

III. INTERFEROMETRY CAPABILITY REVEALS
NON-CLASSICALITY

In this section, we investigate the relation between the
existence of nonclassicality and interferometry capability. We
show that coherence, BD discord, discord, and entanglement
are necessary and sufficient resources for demonstrating the
interferometry capability in different scenarios. Here we only
discuss the necessary argument and present the rigourous
derivations in the Appendix.

For quantum coherence, we consider the interferometry
process without the presence of an adversary. When the Hilbert
spaces of path and internal degrees of freedom are uncorrelated,
the input state can be expressed as ρAB = ρA ⊗ ρB and the
interferometry ability is independent of the internal degrees of
freedom. Focusing on the path state, i.e., system A, we prove
that coherence is the resource for demonstrating interferometry
capability.

Result 1 (coherence). State σA displays no interferometry
capability [i.e., I (XM, 	φA) = 0,∀M] iff σA is an incoherent
state on basis JA, i.e., σA = ∑dA

jA=1 pjA
|jA〉 〈jA|.

This result is more rigorously expressed in Theorem 1 and
the proof can be found in the Appendix. The intuition is that
when the input state σA is incoherent on the phase-encoding
JA, the state after phase encoding, i.e., σ ′

A = UJA,φA
σAU

†
JA,φA

,
is identical to the input state σA and hence is independent of
the phase information. On the other hand, as long as the input
state has nonzero coherence, phase information can be encoded
and read out by a proper measurement. The result holds for
general interferometry tasks. As an example, consider a special
case where only a finite number of different phases is chosen.
The probability of guessing the phase information correctly
is quantitatively characterized by the robustness of coherence.
We refer to Ref. [40] for details.

In general, when the input state has correlation between the
path and internal degrees of freedom, we can similarly prove
the following statement. The intuition follows the argument
of coherence similarly. That is, the state displays no interfer-
ometry capability if it can be represented as a convex mixture

of states that is a product of an incoherent state in system A

and any state B. We refer to Theorem 2 in the Appendix for a
detailed discussion.

Result 2 (BD discord). State σ
JA

AB displays no interferometry
capability iff σ

JA

AB has zero BD discord on basis JA, i.e., σJA

AB =∑dA

jA=1 pjA
|jA〉 〈jA| ⊗ ρ

jA

B .
In the presence of an adversary, correlation between the path

and internal degrees of freedom is necessary for displaying
quantum behavior. Under a weak adversary, the prepared state
is independent of the adversary’s intervention, i.e., the prepared
state will not be affected by the adversary’s measurement.
Therefore, different measurements of the adversary only cor-
respond to the same case where there is one, but unknown,
phase-encoding basis J ′

A = {|j ′
A〉}. In this case, an uncorrelated

state σAB = ρA ⊗ ρB becomes classical when J ′
A = {|j ′

A〉}
is chosen in which ρA has a spectral decomposition ρA =∑

j ′
A
λj ′

A
|j ′

A〉 〈j ′
A|. In general, states with zero discord, as

defined in Eq. (4), display zero interferometry capability under
a weak adversary. This is because the adversary can always
choose a phase-encoding basis J ′

A in which a zero-discord state
also has zero BD discord. We refer to Theorem 3 for details of
the proof.

Result 3 (discord). State σAB displays no interferometry
capability under a weak adversary iff σAB has zero discord,
i.e., it is a zero BD-discord state of any local basis.

Consider a strong adversary, who holds a purification of
|φ〉ABE with ρAB = tr[|φ〉ABE 〈φ|ABE]. She can rotate the
phase-encoding basis according to the measurement result on
her local quantum system E. Since the local measurement
on E will effectively collapse the remaining system to a
decomposition of ρAB = ∑

e pe |ψAB〉e 〈ψAB |e, she can thus
rotate the measurement basis to J e

A individually for each
measurement outcome e. Therefore, as long as ρAB can be
decomposed into a convex combination of BD-discord states
of all measurement bases, i.e., a separable state defined in
Eq. (5), it cannot be used for interferometry under a strong
adversary. As rigorously expressed in Theorem 4, we can
also relate interferometry capability under strong adversary
to entanglement.

Result 4 (entanglement). State σAB displays no interfer-
ometry capability under a strong adversary iff σAB has zero
entanglement, i.e., σAB = ∑

j pjρ
j

A ⊗ ρ
j

B .

IV. EXAMPLES: PHOTONIC SETUP

Here, we present a photonic setup for demonstrating the
relation between nonclassicality and interferometry capability.
Focusing on Fig. 3(a), we can test that the coherence on
two paths {|0〉 , |1〉} is necessary for probing the phase φ.
When the beam splitter is replaced by a random switch, which
selects the path according to a random bit, the prepared state
will be in a mixture of the two paths and hence display no
quantum effects. In Fig. 3(b), we consider that the phase-
encoding basis can be controlled by a weak adversary. Under
this scenario, the phase information cannot be obtained when
the adversary selects an appropriate basis. In Fig. 3(c), we
consider interferometry with internal degrees of freedom, i.e.,
polarization. Even though the local state of the path contains no
coherence, the correlation between path and polarization can
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FIG. 3. Photonic setups of four interferometry processes: (a) assisted with coherence of paths, (b) under adversary’s attacks, (c) with
correlation between path and polarization, and (d) with correlation and under adversary’s attack. BS: beam splitter; |0〉, |1〉: two paths; HWP:
half wave plate; |H 〉: horizontal polarization; |V 〉: vertical polarization; H: Hadamard gate.

still be used for probing the phase information. In Fig. 3(d),
we consider an adversarial scenario. In this picture, we can see
that the quantum correlation of the prepared state guarantees
the interferometry capability.

V. DISCUSSION

As summarized in Table II, we derive a unified framework
for coherence, BD discord, discord, and entanglement and
show them as the resource for demonstrating the interfer-
ometry capability in different scenarios. Our work supplies
a general framework for unifying nonclassicality measures
via the interferometry process. Although we only focus on
coherence, discord, and entanglement of discrete-variable
quantum states, we expect that the result can be extended

to other nonclassicality measures such as negativity of the
Wigner function [41] and contextuality [42,43]. Besides, we
can also consider general continuous-variable systems instead
of discrete-variable systems and the nonclassicality measures.
Furthermore, combining our results with the channel-state
duality [44], the framework of defining the nonclassicality
measures of quantum processes might also be a potential
direction for future work.

In Ref. [45], the authors relate the coherence quantifier to
the visibility of the interference pattern. As an example, the l1
norm coherence quantifier is related to interferometry visibility
[45], which is also formulated to define the set of discorded
states and construct an entanglement monotone [46]. Based
on our unified framework of nonclassicality, we will consider
in a future project the quantifiers for different nonclassicality

TABLE II. Different measures for nonclassicality based on interferometry.

Nonclassicality System Basis Adversary Classical states Example

Coherence A JA basis No Eq. (2) Fig. 3(a)
BD-discord AB JA basis No Eq. (3) Fig. 3(c)
Discord AB Basis independent Weak Eq. (4) Fig. 3(d)
Entanglement AB Basis independent Strong Eq. (5) Fig. 3(d)
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measures. We will show that the BD-discord, discord, and
entanglement quantifiers can be constructed from an arbitrary
coherence quantifier.

Finally, quantum coherence has been shown as the resource
for randomness generation [3,47]. Based on the connection be-
tween coherence, discord, and entanglement, another research
direction is to investigate the role of discord and entanglement
in randomness generation.
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APPENDIX: NONCLASSICALITY FOR
INTERFEROMETRY FRAMEWORK

In this Appendix, we will discuss the nonclassicality that
is defined by the power of interferometry that consists of state
preparation, phase encoding, and measurement.

1. Coherence

First, we focus on a generald-dimensional Hilbert space and
a classical computational basis J = {|j 〉}j=1,2,...,d . As we only
focus on system A, we abbreviate the subscript A in this part.

The phase-encoding process is defined by a unitary operator,

UJ,φ =
d∑

j=1

e−iφj |j 〉 〈j | , (A1)

where φj is an additional phase for basis |j 〉, and φ =
(φ1,φ2, . . . ,φd ). For any input state ρ, it evolves to ρ ′ =
UJ,φρU

†
J,φ after the information-encoding process. Then a

measurement is performed on state ρ ′ to extract the phase
information φ. For a given unitary operator UJ,φ , we can
define that the measurement exhibits an interference pattern
as follows:

Definition 1. A quantum state ρ can probe the phase
information of process UJ,φ when there exists a general
positive-operator valued measure M = {M1,M2, . . . ,MD} that
can be performed to extract the information of φ. Here, D

denotes the number of POVM elements.
Definition 2. Denote the measurement outcome of a mea-

surement by a random variable XM ; then the measurement have
no information of the phase φ and is defined by I (XM,φ) = 0.

For a state that cannot probe phase information, we define
it to be classical.

Definition 3. A state σJ is called classical on the classical
computational basis J , if and only if it cannot probe the phase
information for any information-encoding process defined in
Eq. (A1).

Otherwise, we call the state a quantum state, which has
the ability to probe the phase information. For the classical

computational basis J , we can identify all classical states,
which is summarized in the following theorem.

Theorem 1. A quantum state σJ is classical on the classical
computational basis J if and only if

σJ =
d∑

j=1

pj |j 〉 〈j | , (A2)

where pj is non-negative and
∑d

j=1 pj = 1.
To prove Theorem 1, we first prove the following lemma:
Lemma 1. A quantum state σJ is classical if and only if

UJ,φσJ U
†
J,φ = σJ . (A3)

Proof. First we prove the “if” part. We notice that after
an arbitrary phase encoding, the output state stays invariant
since the probability distribution of a measurement outcome
only depends on σJ , that is, {XM (σJ )}. Consider that σJ

is independent with the phase-encoding method φ; hence
{XM (σJ )} is also independent with φ, that is, I (XM,φ) = 0.

To prove the “only if” part, we look at the converse negative
proposition and focus on a unitary UJ,φ that has different
φj for different j . Here, we prove that if UJ,φσJ U

†
J,φ 
=

σJ , then I (XM,φ) 
= 0, that is, there exists a measure-
ment M to learn information of φ. When focusing on the
density matrix of σJ = ∑

j,k pj,k |j 〉 〈k| and UJ,φσJ U
†
J,φ =∑

j,k p′
j,k |j 〉 〈k|, UJ,φσJ U

†
J,φ 
= σJ implies that there ex-

ists j0,k0 such that pj0,k0 
= p′
j0,k0

= e−i(φj0 −φk0 )pj0,k0 . In this
case, one can perform a POVM {(|j0〉 + |k0〉)(〈j0| + 〈k0|),I −
(|j0〉 + |k0〉)(〈j0| + 〈k0|)}, and the corresponding probability
distribution XM is

p0 = p′
j0,j0

+ p′
k0,k0

+ p′
j0,k0

+ p′
k0,j0

,

p1 = 1 − p0, (A4)

where p0 is a function of φj0 and φk0 . For different φj0 and φk0 ,
XM will also be different. Therefore, XM depends on φ and
I (XM,φ) 
= 0. �

With Lemma 1, we can now prove Theorem 1.
Proof. First, we prove the “if” part. After the unitary

operation UJ,φ , it is easy to verify that the state σJ in Eq. (A2)
is unchanged. By Lemma 1, we thus prove that σJ is classical.

To prove the “only if” part, we can first make use of
Lemma 1. Thus we only need to show that any state satisfying
UφσJ U

†
φ = σJ should be represented as in Eq. (A2). This is

true because

UJ,φσJ U
†
J,φ =

d∑
j,k=1

pj,kUJ,φ |j 〉 〈k| U †
J,φ

=
d∑

j,k=1

e−i(φj −φk )pj,k |j 〉 〈k| . (A5)

To have UJ,φσJ U
†
J,φ = σJ , we thus require e−i(φj −φk )pj,k =

pj,k . That is, we have e−i(φj −φk ) = 1, or pj,k = 0. As these two
equations should be fulfilled for all φj and φk , we thus have
pj,k = 0 for j 
= k. Relabelling pj,j by pjA

, we thus proved
our result. �

It is easy to check that the classical state defined in Eq. (A2)
is exactly the incoherent state defined in Eq. (2). Therefore,
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the nonclassicality of a single quantum system based on
interferometry power is equivalent to the nonclassicality of
quantum coherence.

2. Basis-dependent discord

In this part, we focus on a general bipartite dA ⊗ dB-
dimensional Hilbert space and a classical computational basis
JA = {|jA〉}j=1,2,...,d on system A. The phase is only locally
encoded on system A on the JA basis, which can be described
by

UJA,φA
=

dA∑
jA=1

e−iφjA |jA〉 〈jA| ⊗ IB, (A6)

where IB is the identity matrix of system B.
The unitary operation defined in Eq. (A6) can be understood

as a natural generalization of the one defined in Eq. (A1),
where the only difference is that we consider the other system
B. In this case, although the information is only encoded in
systemA, we consider general measurement on joint systemsA

and B.
Definition 4. A quantum state ρAB can probe the phase

information of process UJA,φA
when a quantum measurement

MAB = {M1,M2, . . . ,MD| ∑j Mj = I,Mj � 0} on the joint
system AB can be performed to extract the information of φA.

Compared to Definition 1, the only difference is that we
allow joint measurement on both systems A and B to extract
the phase information. In this case, a locally classical state may
also exhibit a global interference pattern if other systems are
also considered.

For a quantum state ρ
JA

AB that cannot probe the phase
information in UA

JA,φA
, we define it to be locally classical on

system A.
Definition 5. A quantum state σ

JA

AB is called locally (system
A) classical on the classical computational basis J if and only
if it cannot probe the phase information φA in the phase-
encoding process UJA,φA

with any measurement MAB , that is,
I (XM,AB,φA) = 0.

In the following, if not specified, by saying locally classical,
we mean it is local on system A. Similar to the single-system
case, we can also identify all locally classical states as the state
has zero basis-dependent discord.

Theorem 2. A quantum state σ
JA

AB is locally classical on the
classical computational basis JA if and only if

σ
JA

AB =
dA∑

jA=1

pjA
|jA〉 〈jA| ⊗ ρ

jA

B , (A7)

where pjA
� 0, pjA

= 1, ρ
jA

B is a density matrix on system B.
To prove Theorem 2, we need a Lemma similar to Lemma 1
Lemma 2. A quantum state σ

JA

AB is locally classical if and
only if

UJA,φA
σ

JA

ABU
†
JA,φA

= σ
JA

AB. (A8)

Proof. The proof is also very similar to the proof of Lemma
1. The “if” part follows directly. To prove the “only if”
part, we also look at the converse negative proposition,
where we prove that if UJA,φA

σ
JA

ABU
†
JA,φA


= σ
JA

AB , then

I (XM,AB,φA) 
= 0. Focusing on the density matrix of σ
JA

AB =∑
j,k,m,n pj,k,m,n |j 〉 〈k| ⊗ |m〉 〈n| and UJA,φA

σ
JA

ABU
†
JA,φA

=∑
j,k,m,n e−i(φj −φk)pj,k,m,n |j 〉 〈k| ⊗ |m〉 〈n|, UJA,φA

σ
JA

ABU
†
JA,φA


= σ
JA

AB implies that there exists j0,k0,m0,n0 such that
pj0,k0,m0,n0 
= p′

j0,k0,m0,n0
= e−i(φj0 −φk0 )pj0,k0,m0,n0 . In this

case, one can perform a POVM, {(|j0〉 + |k0〉)(〈j0| +
〈k0|) ⊗ (|m0〉 + |n0〉)(〈m0| + 〈n0|),I − (|j0〉 + |k0〉)(〈j0| +
〈k0|) ⊗ (|m0〉 + |n0〉)(〈m0| + 〈n0|)}, and the corresponding
probability distribution XM,AB is

p0 =
∑
m,n

(
p′

j0,j0,m,n + p′
k0,k0,m,n + p′

j0,k0,m,n + p′
k0,j0,m,n

)

+
∑
j,k

(
p′

j,k,m0,m0
+ p′

j,k,n0,n0
+ p′

j,k,m0,n0
+ p′

j,k,n0,m0

)
,

p1 = 1 − p0, (A9)

where p0 is a function of φj0 and φk0 for arbitrary m and n.
Therefore, I (XM,AB,φA) 
= 0. �

With Lemma 2, we can now prove Theorem 2.
Proof. The proof of Theorem 2 is very similar to the proof of

Theorem 1. The “if” part follows directly. To prove the “only
if” part, we can first make use of Lemma 2. Thus we only
need to show that any state satisfying UJA,φA

σ
JA

ABU
†
JA,φA

= σ
JA

AB

should be represented as in Eq. (A7). This is true because

UJA,φA
σ

JA

ABU
†
JA,φA

=
∑

j,k,m,n

pj,k,m,nUJA,φA
|j 〉 〈k| ⊗ |m〉 〈n| U †

JA,φA

=
∑

j,k,m,n

e−i(φj −φk )pj,k,m,n |j 〉 〈k| ⊗ |m〉 〈n| . (A10)

To have UJA,φA
σ

JA

ABU
†
JA,φA

= σ
JA

AB , we thus require
e−i(φj −φk)pj,k,m,n = pj,k,m,n. That is, we have e−i(φj −φk ) = 1,
or pj,k,m,n = 0. As these two equations should be fulfilled for
all φj and φk , we thus have pj,k,m,n = 0 for j 
= k. Relabelling
pj,k,m,n by pjA

, we thus have

σ
JA

AB =
∑
j,m,n

pj,m,n |jA〉 〈jA| ⊗ |m〉 〈n| . (A11)

Suppose we perform a local (on system A) projective measure-
ment on basis J ; then a measurement outcome j indicates a
postselected state ρ

j

B of system B,

ρ
jA

B = 1

pjA

∑
m,n

pj,m,n |m〉 〈n| , (A12)

where pjA
= ∑

m,n pj,m,n. Then, it is easy to verify that

σ
JA

AB =
∑
jA

pjA
|jA〉 〈jA| ⊗ ρ

jA

B , (A13)

which proves Eq. (A7). �

3. Discord

In this part and the next part, we introduce an adversary who
has the ability of manipulating the phase-encoding basis. In this
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case, we will also find the corresponding classical states within
the interferometry framework. A weak adversary, as mentioned
in the main text, measures her local system ρE which is not
entangled with ρAB and gets an outcome e. She then applies
a rotation Ue according to e on the phase-encoding basis |jA〉,
i.e., J e

A = {|je
A = U

†
e |jA〉〉}. Since ρE is not entangled with

ρAB , her different measurement results will not change ρAB .
In the following analysis, we consider a fixed Ue since the
adversary reveals Ue to the interferometry measurement in
each round. The phase-encoding process is the same as that
in Eq. (A6).

Definition 6. A state σw
AB is called a classical state against a

weak adversary if and only if the phase information φA cannot
be probed with any measurement MAB in the presence of a
weak adversary, that is, I (XM,AB,φA) = 0.

Theorem 3. A quantum state σw
AB is a classical state against

a weak adversary if and only if

σw
AB =

⋃
JA

σ
JA

AB, (A14)

where σ
JA

AB is defined by Eq. (A7). σ
JA

AB is a union of the zero
BD-discord state of all local bases.

Proof. First we prove the “if” part. For a state σw
AB

and an arbitrary fixed UeE, the output state will be σ
J ′

A

AB =∑
j ′
A
pj ′

A
|j ′

A〉 〈j ′
A| ⊗ ρ

j ′
A

B . Using Theorem 2, there is no inter-

ferometry power for σ
J ′

A

AB .
To prove the “only if” part, for an arbitrary Ue and

the output state σ
J ′

A

AB , if the interferometry power is zero,
i.e., I (XM,AB,φA) = 0, we can use Theorem 2 again and

σ
J ′

A

AB should have the form σ
J ′

A

AB = ∑
j ′
A
pj ′

A
|j ′

A〉 〈j ′
A| ⊗ ρ

j ′
A

B ∈
σw

AB . �

4. Entanglement

In this part, we consider a strong adversary who holds a
purification |φ〉ABE of system AB. Similar to the weak version,
she performs a unitary operation Ue on the phase-encoding
basis |jA〉 according to her local measurement outcome. The
phase-encoding process is the same as that in Eq. (A6).

Definition 7. A state σ s
AB is called a classical state against

a strong adversary if and only if the phase information φA

cannot be probed with any measurement MAB in the presence
of a strong adversary, that is, I (XM,AB,φA) = 0.

Lemma 3. A separable state is a convex combination of zero
BD-discord states of different measurement basis.

Proof. For an arbitrary separable state given in Eq. (A15),
we show that it can be represented as a convex combination

of zero BD-discord states of different measurement basis. We
only need to make use of the spectral decomposition of ρA

j =∑
k λnjk

|njk〉 〈njk|, where {|njk〉} forms an orthogonal basis.
Therefore,

σAB =
d∑

j=1

pjρ
j

A ⊗ ρ
j

B

=
d∑

j=1

pj

∑
kj

λnjk
|njk〉 〈njk| ⊗ ρ

j

B

=
∑

k

λk

⎛
⎝

d∑
j=1

pj |njk〉 〈njk| ⊗ ρ
j

B

⎞
⎠. (A15)

Next, we need to prove that any convex combination of zero
BD-discord states of different measurement basis is a separable
state or, equivalently, is not entangled. This is true because
zero BD-discord states are separable states and any convex
combination of separable states is still separable. �

Theorem 4. A quantum state σ s
AB is a classical state against

a strong adversary if and only if

σ s
AB =

∑
j

pjρ
j

A ⊗ ρ
j

B, (A16)

which is a separable state.
Proof. To prove the “if” part, using Lemma 3, we

rewrite the separable state σ s
AB = ∑

j pjρ
j

A ⊗ ρB
J as σ s

AB =∑
e pe

∑dA

je
A=1 pje

A
|je

A〉 〈je
A| ⊗ σ

je
A

B . Eve can always let her an-
cilla be correlated with σ s

AB to form a three-party state
ρABE = ∑

e pe |e〉 〈e| ⊗ (
∑dA

je
A=1 pje

A
|je

A〉 〈je
A| ⊗ σB

jA
). After a

measurement on her ancilla, the state of party AB becomes∑dA

je
A=1 pje

A
|je

A〉 〈je
A| ⊗ σ

je
A

B , which is a zero BD-discord state.
Using Theorem 2, there is no interferometry power, i.e.,
I (XM,AB,φA) = 0.

Then we prove the “only if” part. If I (XM,AB,φA) =
0, the state of party AB is

∑dA

je
A=1 pje

A
|je

A〉 〈je
A| ⊗ σ

je
A

B ac-
cording to Theorem 2. Recall that the adversary chooses
Ue according to her measurement outcome e. The state of
party AB before Ue will also be a zero BD-discord state,∑dA

jA=1 pjA
|jA〉 〈jA| ⊗ σ

jA

B . Ignoring the measurement out-
come e, the reduced state of party AB is a mixed zero
BD-discord state,

∑
e pe

∑dA

jA=1 pjA
|jA〉 〈jA| ⊗ σ

jA

B . And the
state of party AB before Eve’s measurement will also be∑

e pe

∑dA

jA=1 pjA
|jA〉 〈jA| ⊗ σ

jA

B , which is a separable state.�
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