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Discrete Gravity on Random Tensor Network and Holographic Rényi Entropy

Muxin Han1, 2 and Shilin Huang3
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2Institut für Quantengravitation, Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany

3Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

In this paper we apply the discrete gravity and Regge calculus to tensor networks and Anti-de Sitter/conformal
field theory (AdS/CFT) correspondence. We construct the boundary many-body quantum state |Ψ〉 using random
tensor networks as the holographic mapping, applied to the Wheeler-deWitt wave function of bulk Euclidean
discrete gravity in 3 dimensions. The entanglement Rényi entropy of |Ψ〉 is shown to holographically relate to
the on-shell action of Einstein gravity on a branch cover bulk manifold. The resulting Rényi entropy S n of |Ψ〉
approximates with high precision the Rényi entropy of ground state in 2-dimensional conformal field theory
(CFT). In particular it reproduces the correct n dependence. Our results develop the framework of realizing
the AdS3/CFT2 correspondence on random tensor networks, and provide a new proposal to approximate CFT
ground state.

PACS numbers:

I. INTRODUCTION

The tensor network is a quantum state of many-body sys-
tem constructed by contracting tensors according to a network
graph with nodes and links (FIG.1). It is originated in con-
dense matter physics because tensor network states efficiently
compute the ground states of many-body quantum systems
[1, 2]. In addition, tensor networks have wide applications
to quantum information theory by its relation to error correc-
tion code and quantum entanglement [3], and recently relate
to quantum machine learning [4], as well as neuroscience [5].

One of the most fascinating developments of tensor net-
works is the recent relation to the AdS/CFT correspondence
and emergent gravity program [6, 7]. The AdS/CFT corre-
spondence proposes that the quantum gravity theory on d-
dimensional Anti-de Sitter (AdS) spacetime is equivalent to a
conformal field theory (CFT) living at the (d−1)-dimensional
boundary of AdS. It offers a dictionary between the observ-
ables of the d-dimensional bulk gravity theory and those of
the (d − 1)-dimensional boundary CFT. Properties of the bulk
gravity and geometry may be reconstructed or emergent from
the boundary CFT, known as the emergent gravity program
[8, 9]. As an important ingredient of AdS/CFT, the bulk geom-
etry relates holographically to the entanglement in the bound-
ary CFT, via the Ryu-Takayanagi (RT) formula

S EE(A) =
Armin

4GN
, (1)

which identifies the entanglement entropy S EE(A) of a (d−1)-
dimensional boundary region A with the area Armin of the bulk
(d − 2)-dimensional minimal surface anchored to A [10–15].
GN is the Newton constant in d dimensions. S EE(A) satisfy-
ing RT formula is referred to as the holographic entanglement
entropy (HEE) [16–22]

Tensor networks can be understood as a discrete version of
the AdS/CFT correspondence [23–30]. Tensor network states
approximate CFT states at the boundary, while the structure
of tensor networks emerges an bulk dimension built by lay-
ers of tensors. Tensors in the tensor network correspond to
local degrees of freedom in the bulk [31–33]. The feature

FIG. 1: An example of tensor network with rank-6 tensors.
The tensor network state |Ψ〉 is given by an expansion with cer-
tain basis in the Hilbert space of many-body system |Ψ〉 =∑
{ai ,γl}

∏
p(Tp)γ1 γ2 ... ai ...|a1, a2, · · · aN〉. The coefficients is constructed

by distributing a rank-6 tensor Tp at each 6-valent node p, such that
each tensor index associates to a link adjacent to p. Connecting 2
nodes by a link means contracting the corresponding indices γl.

of tensor network makes it an interesting tool for realizing
the AdS/CFT correspondence constructively from many-body
quantum states. Among many recent progress, one of the most
interesting results is reproducing HEE on tensor network.

There has been two recent approaches of realizing RT for-
mula on tensor networks, [24] using tensor networks with per-
fect tensors, and [25] using random tensor networks. Given a
boundary region A containing a number of open links of the
tensor network, entanglement entropies of tensor networks in
both approaches reproduce an analog of RT formula (See e.g.
[34–42] for some more recent developments)

S EE(A) = Min(#cut) · ln D, (2)

where Min(#cut) is the minimal number of tensor network
links cut by a surface anchored to A. D is the bond dimension
(range of tensor index). The random tensor network approach
has a relation to loop quantum gravity (LQG) and quantum
geometry ([43–46] for reviews), which relates Eq.(2) to the
geometrical RT formula Eq.(1) [47].

However it is known that both approaches suffer the issue of
flat entanglement spectrum. Although the entanglement (Von
Neumann) entropy Eq.(2) is consistent with the RT formula,
Rényi entropies S n(A) from both approaches are all identical
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FIG. 2: A simple trivalent tensor network with 2 nodes and 5 links
(4 open links). The tensor network is dual to a triangulation with 2
triangles.

to Eq.(2) with trivial n dependence. But the RT formula of
Rényi entropy has a nontrivial n dependence since the CFT
Rényi entropy does [15]. For instance, in any 2d CFT (CFT2),
the ground state has the universal Rényi entropy [48]

S n(A) =

(
1 +

1
n

)
c
6

ln
(

lA

δ

)
, (3)

where c is the central charge, lA is the length of the region A,
and δ is a UV cut-off. It manifests that Rényi entropies of CFT
ground state have nontrivial n dependence.

The mismatch of Rényi entropies implies that both tensor
network states in [24, 25] fail to approximate the CFT ground
state. The reason behind it is not hard to see: In AdS/CFT,
the CFT ground state (at strong-coupling) is dual to the bulk
semiclassical AdS spacetime geometry. However the tensor
networks designed in [24, 25] only consider the geometry of
a spatial slice in AdS, without any input about time evolution.
On the other hand, in the continuum AdS/CFT context, the
correct entanglement spectrum are obtained by considering
the spacetime geometry, and taking into account the dynamics
given by the Einstein equation [11, 12, 14, 15]. Therefore the
issue of entanglement spectrum is equivalent to the issue of
dynamical input in tensor networks.

In this work, we resolve the above issue by having dynam-
ical input in random tensor network states. We construct the
state |Ψ〉 which is proposed as an approximation to the CFT
ground state. As is anticipated by our proposal, |Ψ〉 indeed
reproduces correctly the RT formula and CFT ground state
Rényi entropy S n with correct n dependence.

In this paper, we focus on 2d CFT and 3d bulk spacetime
(AdS3/CFT2) in Euclidean signature. The CFT state |Ψ〉 is
constructed by implementing bulk gravity dynamics to ran-
dom tensor network states studied in [32]. Random tensor net-
works constructed in [32] have random tensors at each node
p, and have labels ap,p′ on links (p, p′). Each ap,p′ labels the
non-maximal entangled state |ap,p′〉 on each link. The tensor
network is dual to a tiling of 2d spatial slice Σ (FIG.2). The
entanglement entropy of |ap,p′〉 relates to the length L` of the
edge ` intersecting (p, p′). Thus each random tensor network
as boundary CFT state, denoted by |~a〉, determines a set of
edge lengths L` in the bulk. When the tiling is a triangula-
tion, edge lengths uniquely determines a discrete geometry on
Σ which approximates the continuum. On the other hand, |~a〉
form an overcomplete basis in the boundary Hilbert space. So

FIG. 3: (Triangulated) 3-manifolds M in (a), M̄ in (b), and M1 in (c).

CFT states are written as

|Ψ〉 =
∑
~a

Φ(~a)|~a〉. (4)

where the coefficients Φ(~a) can be understood as a wave func-
tion of bulk geometry. Eq.(4) is a holographic mapping from
the bulk state Φ to the boundary state Ψ.

As mentioned above, CFT ground state is expected dual to
a physical state in the bulk which corresponds to semiclassical
spacetime geometry. But the labels ~a in Φ(~a) only relates to
the geometry of 2d spatial slice Σ. To let Φ(~a) encode space-
time geometry, we propose Φ(~a) to be the Wheeler-deWitt
wave function. Namely, Φ(~a) is a path integral of (Euclidean)
Einstein gravity on spacetime M whose boundary contains Σ

(FIG.3(a)). The geometry on Σ determined by ~a is the bound-
ary condition of the path integral. Quantum mechanically,
Φ(~a) sums all possible bulk spacetime geometries satisfying
the boundary condition. In the semiclassical limit, it localizes
at the classical AdS spacetime in 3d. The semiclassical limit
relates to the large bond dimension of tensor network.

Since ~a are data of discrete geometry, Φ(~a) is the discrete
version of Wheeler-deWitt wave function: It is a path inte-
gral of Regge calculus. Regge calculus is a discretization of
Einstein gravity by triangulating spacetime geometries [49].
The discrete spacetime geometry is given by the edge lengths
in the triangulation, known as the Regge geometry. Φ(~a) is
a sum over all (Euclidean) Regge geometries on the space-
time M, weighted by the exponentiated Einstein-Regge action
[50]. The detailed explanations of Φ(~a) and random tensor
networks are presented in Section II.

The Rényi entropy S n(A) of |Ψ〉 at arbitrary n ≥ 1 is com-
puted in Section III. The computation involves averages of the
random tensors at nodes p in tensor networks [25]. Thanks to
the relation between Φ(~a) and the path integral on M, S n(A)
relates to the path integrals of gravity on branch cover 3-
manifolds made by 2n copies of M. We derives that in the
bulk semiclassical limit,

S n(A) '
1

1 − n
[IBulk(Mn) − nIBulk(M1)] , (5)
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FIG. 4: The (triangulated) manifold Mn (n = 2) made by gluing 2n
copies of M.

where IBulk(Mn) is the on-shell gravity action evaluated at the
bulk solution on the branch cover manifold Mn (FIG.4). The
bulk solution has the Zn replica symmetry. Eq.(5) has been an
assumption in AdS/CFT derivations of HEE in e.g. [11, 12,
14, 15]. But it is now derived from |Ψ〉 and random tensor
networks. As a result, we show that S n(A) reproduces the RT
formula for holographic Rényi entropy for 2d CFT (Hung-
Myers-Smolkin-Yale formula in [14])

S n(A) '
(
1 +

1
n

)
Armin

8GN
. (6)

Here Armin is the geodesic length in AdS3. The above result
of S n(A) gives the Rényi entropy Eq.(3) of CFT2 ground state
with correct n dependence.

Section IV analyzes the bound on the fluctuation of Rényi
entropy from the random average value S n(A), which shows
in the bulk semiclassical limit the fluctuation is generically
small.

This work applies discrete geometry method such as Regge
calculus to study tensor networks (See [51] for other applica-
tion of discrete gravity in AdS/CFT). |Ψ〉 encodes the dynam-
ics of bulk geometries, which is given by the discrete Einstein
equation. It is interesting to further understand how the bulk
dynamics might relate to the dynamics of boundary CFT, and
whether a boundary CFT Hamiltonian might be induced from
the bulk dynamics. It is also interesting to compare our pro-
posal of CFT ground state |Ψ〉 to the existing approach such as
multiscale entanglement renormalization ansatz (MERA) [7].
The understanding of these aspects should develop tensor net-
work models to realize the AdS/CFT correspondence at the
dynamical level. The research on these aspects is currently
undergoing.

II. RANDOM TENSOR NETWORK AND
WHEELER-DEWITT WAVE FUNCTION

In this work we consider trivalent random tensor network
states. A tensor network is viewed as a discrete 2d spatial
slice Σ of 3d bulk spacetime. It is made by a large number
of trivalent random tensors |Vp〉 ∈ H⊗3 ≡ Hp at each tensor

network node p. The Hilbert space H is of dimension D. We
decompose H into a number of subspaces H ' ⊕aVa and
denote dim(Va) ≡ d[a]. Each internal link (p, p′) of the tensor
network associates with a maximal entangled state in Va ⊗ Va
of certain a,

|ap,p′〉 ≡
∑
µ,ν

aµν|µ〉p ⊗ |ν〉p′ =
∑
µ∈Va

1
√

d[a]
|µ〉p ⊗ |µ〉p′ (7)

where |µ〉p is a basis in H . It satisfies 〈ap,p′ |bp,p′〉 = δab. A
class of random tensor networks |~a〉 can be defined by the
(partial) inner product between |Vp〉 at all p and |ap,p′〉 on all
internal links

|~a〉 = ⊗p,p′〈app′ | ⊗p |Vp〉. (8)

The inner product takes place in H at each end point p or p′

of each link. |~a〉 is a state in the boundary Hilbert spaceHN∂ ,
where N∂ is the number of open links.

The label ~a relates to the amount of entanglement on each
internal link (p, p′). The entanglement entropy S (|ap,p′〉) of
|ap,p′〉 is ln d[ap,p′ ], where d[ap,p′ ] is effectively the bond di-
mension on (p, p′) in |~a〉.

The above class of tensor network states is proposed in [32],
in which it is shown that {|~a〉}~a form an overcomplete basis of
the boundary Hilbert space. Thus the state in the boundary
Hilbert space |Ψ〉 can be expanded by {|~a〉}~a

|Ψ〉 =
∑
~a

Φ(~a)|~a〉. (9)

Here we understand the trivalent tensor network to be dual
to a triangulation of the spatial slice Σ (FIG.2). Namely, each
node p located at the center of a triangle ∆p in the triangula-
tion. Each link (p, p′) intersects transversely an internal edge
` shared by 2 triangles ∆p,∆p′ . Open links in tensor network
intersect transversely the edges at the boundary of triangula-
tion.

The label ~a is understood as the discrete geometry in the
bulk of Σ [32], in the sense that the edge length L` of ` in-
tersecting (p, p′) is proportional to the entanglement entropy
S (|ap,p′〉) on each link:

L` ≡ 4`P ln d[ap,p′ ] (10)

Here `P = GN~ is the Planck length in 3d. In this proposal,
the bulk geometry is understood as emergent from the entan-
glement in tensor network state. The relation can be obtained
from the recent proposal of understanding tensor networks as
the effective theory from coarse graining quantum gravity at
Planck scale [47], in which one derives that the bond dimen-
sion d[ap,p′ ] of tensor network |~a〉 satisfies d[ap,p′ ] ' eL`/4`P .

By the relation between ~a and bulk geometry, Eq.(9) is a
boundary state by summing over all bulk spatial geometry on
Σ, while Φ(~a) is a wave function of bulk geometry. Eq.(9)
defines a holographic mapping from the bulk states of geom-
etry to the boundary states of CFT. We propose the following
boundary state |Ψ〉whose bulk wave function Φ(~a) (pre-image
of the holographic mapping) is an Wheeler-deWitt wave func-
tion in 3d Euclidean gravity. Namely Φ(~a) is a path integral of
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gravity on a 3d solid cylinder M, whose boundary includes Σ

in addition to the boundary where CFT lives (FIG.3(a)). The
geometry ~a is the boundary condition on Σ in the path integral.
The path integral may also depend on the boundary conditions
at other boundaries of M. But we make those boundary condi-
tions implicit since they play no role in the following analysis.

Since ~a gives a discrete geometry with a set of edge lengths
L`, more precisely, Φ(~a) is a discrete version of the Wheeler-
deWitt wave function. Indeed, we consider a sufficiently
refined triangulation of M, and impose discrete metrics on
the triangulation. Namely each tetrahedron in the triangula-
tion carries a 3d hyperbolic geometry with constant curva-
ture −L−2

AdS . Tetrahedron edges are geodesics in the hyper-
bolic space, and have edge lengths L`. The set of edge lengths
{L`} on the triangulation defines a discrete metric of Regge
geometry [49, 50, 52]. We define Φ(~a) to be a path integral of
discrete gravity on the triangulation by summing over all L`
in the bulk of M

Φ(~a) :=
∑
L`

e−S Regge(M) (11)

The boundary condition at Σ is L`⊂Σ = 4`P ln d[ap,p′ ]. We use∑
L` instead of integration because L` are assumed as discrete

data, to be consistent with L`⊂Σ. S Regge(M) is the Regge ac-
tion of Euclidean gravity on the triangulated 3-manifold M
evaluated at the discrete metric {L`}:

S Regge(M) = −
1

8π`P

 ∑
`⊂bulk(M)

L` ε` +
∑
`⊂∂M

L` Θ` −
V(M)
L2

AdS

 .
ε` is the bulk deficit angle hinged at the bulk edge `. ε` is
a discretization of the bulk curvature. Each bulk edge ` is
shared by a number of tetrahedra t. In each t, the dihedral
angle between 2 faces joint at ` is denoted by θ(t, `). The
deficit angle is defined by

ε` = 2π −
∑
t, `⊂t

θ(t, `), ` ⊂ bulk. (12)

Each boundary edge ` is shared by 2 boundary triangles. Θ`

is the angle between their outward pointing normals, equiva-
lently

Θ` = π −
∑
t, `⊂t

θ(t, `), ` ⊂ boundary. (13)

Θ` relates to the boundary extrinsic curvature. The 1st term in
S Regge is the discretization of Ricci scalar term of Einstein-
Hilbert action, while the 2nd term is the discretization of
Gibbons-Hawking boundary term [53]. The last term is the
cosmological constant term where V(M) is the total volume
of M. All quantities ε`, Θ`, and V(M) are determined by edge
lengths L`. The AdS radius LAdS is determined by `P and the
central charge of CFT by LAdS = 2

3 c`P [54].
In order to be the boundary condition of Regge geometry,

L`⊂Σ = 4`P ln d[ap,p′ ] have to be the edge lengths of hyper-
bolic triangles, which triangulate Σ. L`⊂Σ have to be a discrete
metric of Σ, which constrains the possible data ~a entering the
sum in Eq.(9).

Note that the definition of Φ(~a) involves the length scale `P
in order to make Regge action dimensionless.

Applying Φ(~a) in Eq.(11) to the holographic mapping
Eq.(9), we obtain a boundary CFT state |Ψ〉, and we propose
the resulting |Ψ〉 to be the ground state of the boundary CFT,
in the bulk semiclassical regime `P � L`. The motivation of
our proposal is the following: As `P � L`, the bond dimen-
sions are large ln d[a] � 1. And the path integral Φ(~a) local-
izes at the solution of equation of motion (deriving equation
of motion uses the Schläfli identity of hyperbolic tetrahedra
−δV(t)/L2

AdS =
∑
`⊂t L`δθ(t, `), see e.g. [52])

ε` = 0, ∀ ` ⊂ bulk(M). (14)

Vanishing ε` everywhere means that the 3d Regge geometry
is a smooth Euclidean AdS3. So Φ(~a) is a semiclassical wave
function of bulk AdS3 geometry. The holographic mapping is
expected to map the bulk semiclassical state of AdS3 to the
ground state of boundary CFT2.

In the following discussion, we check our proposal by com-
puting the Rényi entropies S n of the state |Ψ〉. We show that
|Ψ〉 indeed reproduces correctly the Rényi entropies of CFT
ground state with the correct n dependence, in the regime
`P � L`.

III. RÉNYI ENTROPIES

We compute Rényi entropies S n of the state |Ψ〉 by specify-
ing a boundary region A ⊂ ∂Σ which contains a subset of open
links. Recall that |Ψ〉 is made by random tensors at nodes, the
n-th Rényi entropy is given by an average over random tensors
[25]

S n(A) =
1

1 − n
ln

tr(ρn
A)

(trρA)n
. (15)

The fluctuation away from the average is discussed in Section
IV. ρA is the reduced density matrix by tracing out the degrees
of freedom located in the complement Ā = ∂Σ \ A. tr(ρn

A) can
be conveniently written in terms of the pure density matrix
ρ = |Ψ〉〈Ψ|

tr(ρn
A) = tr

[
(ρ ⊗ · · · ⊗ ρ)C(n)

A

]
, (16)

where the trace is taken in n copies of boundary Hilbert space.
C

(n)
A cyclicly permutes the states of region A, leaving the states

of Ā invariant:

C
(n)
A

(
|µ(1)
`
〉A|µ

(1)〉Ā ⊗ · · · ⊗ |µ
(n)〉A|µ

(n)〉Ā

)
= |µ(2)

`
〉A|µ

(1)〉Ā ⊗ · · · ⊗ |µ
(n)〉A|µ

(n−1)〉Ā ⊗ |µ
(1)〉A|µ

(n)〉Ā.(17)

where |µ〉 forms a basis in the boundary Hilbert space.
Define the pure state density matrix ρP = |E~a,Φ〉〈E~a,Φ|where

|E~a,Φ〉 =
∑
~a Φ(~a) ⊗p,p′ |app′〉

tr(ρn
A) = tr

[(
ρ⊗n

P ⊗p |Vp〉〈Vp|
)⊗n
C

(n)
A

]
. (18)
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where the trace is taken in allHp ≡ H⊗3 at all nodes.
The random average trρn

A relates to average 2n copies of
random tensors |Vp〉 at each node p. Taking an arbitrary ref-
erence state |0p〉 ∈ Hp, the random tensor |Vp〉 = Up|0p〉 with
Up unitary transformation on H⊗3 ≡ Hp. The Haar random
average is given by [25, 55]:

(
|Vp〉〈Vp|

)⊗n
=

∫
dUp

(
Up|0p〉〈0p|U

†
p

)⊗n

=
1

Cn,p

∑
gp∈Symn

gp ∈ H⊗n
p ⊗H

∗
p
⊗n (19)

where dUp is the Haar measure on the group of all unitary
transformations.

∑
gp∈Symn

sums over all permutations gp act-
ing on H⊗n

p . The overall constant Cn,p =
∑

gp∈Symn
trgp =

(dimHp + n − 1)!/(dimHp − 1)!.
Inserting this result in trρn

A, the average trρn
A becomes a sum

over all permutations {gp} at all polyhedra p, where each term
associates to a choice of gp at each p. It is straight-forward
to compute that (see Appendix A for details) for large bond
dimension D � 1, the sum over {gp} is dominated by the
contribution from {gp} satisfying the following boundary con-
dition

gp
(
{µ(1)
`
}Ā · · · {µ

(n)
`
}Ā

)
=

(
{µ(1)
`
}Ā · · · {µ

(n)
`
}Ā

)
gp

(
{µ(2)
`
}A · · · {µ

(n)
`
}A{µ

(1)
`
}A

)
=

(
{µ(1)
`
}A · · · {µ

(n)
`
}A

)
(20)

i.e. for polyhedra p connecting to ∂Σ, gp = I if p is adjacent
to Ā, while gp = (C(n))−1 if p is adjacent to A. Each {gp}
corresponds to the following contribution (N∂ is the number
of boundary open links)

(Dn)N∂

∑
{~b(i)};{~a(i)};{~µ(i)}

Φ∗(~b(1)) · · ·Φ∗(~b(n)) Φ(~a(1)) · · ·Φ(~a(n))

∏
p,p′

b(1)∗
gp(µ

(1)
p ),gp′ (µ

(1)
p′

)
· · · b(n)∗

gp(µ
(n)
p ),gp′ (µ

(n)
p′

)
a(1)
µ(1)
p ,µ

(1)
p′

· · · a(n)
µ(n)
p ,µ

(n)
p′

(21)

where a(i)
µ(i)
p ,µ

(i)
p′

, b(i)
ν(i)
p ,ν

(i)
p′

come from the ith copy of ρP in Eq.(18).

Given {gp} satisfying the boundary condition Eq.(20), {gp}
contains different domains on Σ with different permutations.
We denote by Rg the closed region in which p ∈ Rg are of
constant gp = g. Rg ∩ Rg′ ≡ Sg,g′ denotes the domain wall
shared by Rg,Rg′ with two different permutations g , g′.

Locally at each link (p, p′), the result of summing over
µ(i)
p , µ

(i)
p′

depends on whether gp and gp′ are the same or not,
i.e. whether the link (p, p′) intersect with any domain wall.
When gp = gp′ = g, (p, p′) located inside a single domain,
using Eq.(7)∑

{µ(i)
p ,µ

(i)
p′
}

n∏
i=1

b(i)∗
g(µ(i)
p ),g(µ(i)

p′
)
a(i)
µ(i)
p ,µ

(i)
p′

=

n∏
i=1

δag(i)
p,p′

,b(i)
p,p′

(22)

which identifies b(i) and ag(i) in Φ(~a(i)),Φ(~b(i))∗.
For gp , gp′ , (p, p′) cross the domain wall Sgp,gp′ we con-

sider the permutation g−1
p gp′ , in which the set of cycles is de-

noted by C(g−1
p gp′ ). For each cycle c ∈ C(g−1

p gp′ ), the cycle

length (the number of involved elements i ∈ c) is denoted by
nc, satisfying

∑
c nc = n.

∑
{µ(i)
p ,µ

(i)
p′
}

n∏
i=1

b(i)∗
gp(µ

(i)
p ),gp′ (µ

(i)
p′

)
a(i)
µ(i)
p ,µ

(i)
p′

=
∏

c∈C(g−1
p gp′ )

d[a(c)]1−nc
∏
i∈c

δagp (i)
p,p′

,b(i)
p,p′
δ

a
gp′ (i)

p,p′
,b(i)
p,p′

. (23)

All agp(i), agp′ (i), b(i) within a cycle c are identified to be a(c).
In particular, if gp = I, gp′ = (C(n))−1,∑
{µ(i)
p ,µ

(i)
p′
}

b(1)∗
µ(1)
p ,µ

(n)
p′

b(2)∗
µ(2)
p ,µ

(1)
p′

· · · b(n)∗
µ(n)
p ,µ

(1)
p′

a(1)
µ(1)
p ,µ

(1)
p′

a(2)
µ(2)
p ,µ

(2)
p′

· · · a(n)
µ(n)
p ,µ

(n)
p′

= d[a]1−n
n∏

i=1

δa(i)
p,p′

,b(i)
p,p′
δa(i)
p,p′

,b(i+1)
p,p′

(24)

which identify all a(i), b(i) to be a.
Inserting the above results, we obtain tr(ρn

A) as a sum over
all possible {gp} as D � 1,

trρn
A '

∏
p

1
Cn,p

(Dn)N∂ (25)

∑
{gp}

∑
{~a(i)},{~b(i)}

n∏
i=1

Φ∗(~b(i))Φ(~a(i))
∏

(p,p′)1S

∏
i

δagp (i)
p,p′

,b(i)
p,p′∏

Sg,g′

∏
c∈C(g−1g′)

∏
(p,p′)⊂Sg,g′

e(1−nc) ln d[ap,p′ (c)]
∏
i∈c

δagp (i)
p,p′

,b(i)
p,p′
δ

a
gp′ (i)

p,p′
,b(i)
p,p′

In the above formula, (p, p′) ⊂ Sg,g′ means that the link (p, p′)
intersects the domain wall Sg,g′ .

Thanks to the Wheeler-deWitt wave function Φ(~a) in
Eq.(11) as a path integral on a triangulated manifold M, we
are able to make an interpretation of Eq.(25) as a sum of path
integrals on different manifolds. Recall that ~a is the boundary
condition of the path integral on M. The product of 2n copies
of Φ(~a(i)) and Φ∗(~b(i)) is a path integral on the product of 2n
copies of M and M̄ (FIG.3(b)), with identical triangulations.
δs in Eq.(25) identifying boundary conditions a(i), b( j) effec-
tively glue the path integrals on copies of M and M̄. In other
words, 2n copies of M and M̄ are glued in certain manner. The
path integral is defined on the resulting manifold.

For (p, p′) 1 S, i.e. p, p′ are inside a single domain Rg,
δag(i)
p,p′

,b(i)
p,p′

glues the i-th copy of M̄ with the g(i)-th copy of M.
This pattern of gluing happens in the domain Rg. However
in a different domain Rg′ , the gluing pattern is different: the
i-th copy of M̄ is glued with the g′(i)-th copy of M. There-
fore the gluing in both domains results in branch cuts, where
the domain wall Sg,g′ gives 1d branch curves containing all
branch points. Taking all domains with different permutations
into account, each {gp} determines a manifold M{gp} made by
gluing n copies of M and n copies of M̄. M{gp} has a number
of branch cuts. FIG.4 illustrates a simple situation with n = 2,
where there are 2 domains of the identity I and cyclic C(2).
The domain wall is a branch curve with Z2 symmetry. This
situation can be easily generalized to a general domain wall
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Sg,g′ and a cycle c in g−1g′. Indeed, each domain wall Sg,g′

becomes χ(g−1g′) branching curves Sg,g′ (c), where χ(g−1g′)
is the number of cycles in g−1g′. Each branch curve Sg,g′ (c)
associates to a cycle c ∈ C(g−1g′), and has a local Znc symme-
try.

At each branch curve Sg,g′ (c) where 2nc copies of M and M̄
meet, Regge actions in Φ∗(~b(i)),Φ(~a(i)) contribute boundary
terms L`Θ` to each ` ⊂ Sg,g′ (c). In addition, thanks the ex-
ponential in Eq.(25) which contributes (1− nc) ln d[ap,p′ (c)] =

(1 − nc) L`
4`P

by Eq.(10), the total contribution to each Sg,g′ (c)
precisely makes a new bulk term of Regge action:

1
4`P

(1 − nc)
∑
`⊂S

L` +
1

8π`P

∑
`⊂S

L`

2πnc −
∑
t, `⊂t

θ(t, `)


=

1
8π`P

∑
`⊂S

L`

2π −∑
t, `⊂t

θ(t, `)

 =
1

8π`P

∑
`⊂S

L`ε` (26)

On the other hand, it is easy to see that when M glues to M̄
inside a domain Rg, a pair of boundary terms from S Regge(M)
and S Regge(M̄) again makes a bulk term of Regge action on the
glued manifold [53].

As a result, tr(ρn
A) is written as a sum of discrete path inte-

grals of Regge actions on different manifolds M{gp}:

tr(ρn
A) '

∏
p

1
Cn,p

(Dn)N∂

∑
{gp}

∑
{L`}

e−S Regge(M{gp }). (27)

It allows us to translate the Rényi entropy of boundary CFT to
the bulk geometry.

As is mentioned above, we consider the regime `P � L`.
On each M{gp}, the dominant contribution comes from the so-
lution of equation of motion

ε` = 0, ∀ ` ⊂ bulk(M{gp}) (28)

It implies that as the leading contribution, the geometry on
M{gp} is smooth AdS3 everywhere. The on-shell action gives

∑
{L`}

e−S Regge(M{gp }) ∼ e
− 1

8π`P

V(M{gp })
L2

AdS
+boundary terms

(29)

Focus on a given M{gp}, locally at each Sg,g′ (c) of a given
cycle c, the geometry has a local Znc symmetry at both contin-
uum level and discrete level, because we use the same triangu-
lation on all copies of M and M̄. We cut a local neighborhood
Nnc at Sg,g′ (c) from M{gp}, and make a Znc quotient. The orb-
ifold is denoted by N̂nc = Nnc/Znc . The geometry on N̂nc has a
conical singularity at Sg,g′ (c) with deficit angle 2π

(
1 − 1

nc

)
. In

the language of [15], the geometry we derive is back-reacted
by a cosmic brane with tension Tnc = nc−1

4nc`P
, located at Sg,g′ (c).

We may analytic continue nc by considering arbitrary conical
singularity or brane tension.

The geometry of branch curve Sg,g′ (c) is determined by the
equation of motion as in [12]. Both on-shell geometries on Nnc

and N̂nc are AdS3, except the conical singularity of N̂nc . N̂nc

is a fundamental domain in Nnc of Zn. N̂nc may be obtained

by cutting Nnc into nc identical pieces, pick up one piece, fol-
lowed by identifying its 2 cut boundaries. N̂nc is AdS3 away
from the singularity. So the glued boundaries can be chosen to
be identical hyperbolic surfaces intersecting at the singularity.
The singularity Sg,g′ (c) as the intersection has to be a geodesic
(hyperbola) in the hyperbolic plane. The length LSg,g′ (c)(nc) of
Sg,g′ (c) explicitly depends on nc. Since the triangulation of M
has been fixed, we only consider Sg,g′ (c) made by the edges
in the triangulation. Otherwise the equation of motion cannot
be satisfied and the domain wall Sg,g′ (c) doesn’t give leading
order contribution.

Consider the volume of N̂nc . We analytic continue nc and
compute the derivative. By Schläfli identity of hyperbolic
tetrahedra and keeping ε` = 0 fixed in the bulk

−1
L2

AdS

∂nc V
(
N̂nc

)
=

∑
`⊂Sg,g′ (c)

L`∂nc

(
2π
nc

)
= −

2π
n2

c
LSg,g′ (c)(nc)

Integrating the above relation gives

−
V

(
N̂nc

)
L2

AdS

= −
V (N1)
L2

AdS

−

∫ nc

1

2π
q2 LSg,g′ (c)(q) dq (30)

where N1 has no singularity at Sg,g′ (c).
Because the geometry is smooth AdS3 on N̂nc away from

Sg,g′ (c), to compute LSg,g′ (c)(q), we use the metric on N̂q in the
hyperbolic foliation [13, 14]:

ds2 =

 r2

L2
AdS

−
1
q2

 L2
AdS dτ2 +

dr2

r2

L2
AdS
− 1

q2

+ r2du2. (31)

The periodicity of τ is τ ∼ τ + 2π. r satisfies r ≥ LAdS /q.∫
du is the geodesics length in the hyperbolic plane with unit

curvature. Sg,g′ (c) is located at the origin r = LAdS /q. Define
1

2qLAdS
ξ2 = r − LAdS /q and consider the limit ξ → 0

ds2 ∼
ξ2

q2 dτ2 + dξ2 +

(
ξ2

2qLAdS
+

LAdS

q

)2

du2, (32)

which manifests the conical singularity at ξ → 0. The length
of Sg,g′ (c) is given by

LSg,g′ (c)(q) =
LAdS

q

∫
Sg,g′ (c)

du ≡
LAdS

q
lSg,g′ , (33)

where lSg,g′ is the geodesic length of Sg,g′ evaluated in the hy-
perbolic plane with unit curvature. lSg,g′ is independent of c.
As a result,

−

∫ nc

1

2π
q2 LSg,g′ (c)(q) dq =

1 − n2
c

n2
c

πLAdS lSg,g′ (34)

The volume of Nc: V(Nnc ) = ncV
(
N̂nc

)
, i.e. nc times

Eq.(34). When we glue back Nnc in M{gp}. The first term
in Eq.(34) gives ncV (N1), and effectively replaces Nnc by nc
copies of N1, which resolves the branch curveSg,g′ (c) in M{gp}.
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When all branch curves are resolved, M{gp} reduces to n copies
M1. Therefore when we sum all domain walls and all cycles,

−V
(
M{gp}

)
8π`PL2

AdS

=
−nV (M1)
8π`PL2

AdS

+
∑
Sg,g′

∑
c∈C(g−1g′)

1 − n2
c

nc

LAdS

8`P
lSg,g′ (35)

It is shown in Appendix B that the maximum of Eq.(35) hap-
pens at {gp} with only a single domain wall S separating I in
RĀ and (C(n))−1 in RA, where RA (or RĀ) is the region bounded
by the boundary region A (or Ā) and the domain wall (FIG.3).
We denote the corresponding M{gp} by Mn

−1
8π`P

V (Mn)
L2

AdS

=
−n

8π`P

V (M1)
L2

AdS

+
1 − n2

n
LAdS

8`P
lS (36)

The contribution of any other M{gp} is much less than Eq.(36),
with the gap of order L`/`P = 4 ln d[a] � 1.

As a result, the dominant contribution of tr(ρn
A) in Eq.(27)

is given by

tr(ρn
A) '

∏
p

1
Cn,p

(Dn)N∂ e
− 1

8π`P
V(Mn )
L2

AdS
+boundary terms

(37)

Let’s move to the denominator tr(ρA)n in Eq.(15), which can
be computed in a very similar manner, since

tr(ρA)n = tr
[(
ρ⊗n

P ⊗p |Vp〉〈Vp|
)⊗n

]
. (38)

which different from Eq.(18) by removing C(n)
A in the trace.

We still use the Haar random average Eq.(19), and write
tr(ρA)n as a sum over all permutations {gp} at all nodes. How-
ever because C(n)

A is absent, as D � 1 the dominant config-
urations of {gp} satisfy the boundary condition that gp = I at
the entire boundary. Thus suppose {gp} has different domains
with different gp, domain walls are detached from the bound-
ary, and contain closed curves.

Using the same argument as the above, we can write tr(ρA)n

as a sum of path integral of Regge action on different M{gp},
similar to Eq.(27). domain walls become the branch curves in
M{gp}, which contain closed curves. However, since the inter-
section of two hyperbolic surfaces cannot give closed branch
curves, M{gp} with closed branch curves doesn’t admit AdS3
geometry. Thus the equation of motion doesn’t have any so-
lution, except gp = I identically without any domain wall. As
a result tr(ρA)n is dominant at the configuration that gp = I
everywhere

tr(ρn
A) '

∏
p

1
Cn,p

(Dn)N∂ e
− n

8π`P

V(M1)
L2

AdS
+boundary terms

. (39)

The boundary terms are identical to the ones appearing in
Eq.(37).

We find that the average Rényi entropy is given by

S n(A) '
1

1 − n
[ln Z(n)∞ − n ln Z(1)∞] (40)

where up to a term ln
(∏
p (Dn)N∂/Cn,p

)
,

ln Z(n)∞ ≡ −
1

8π`P

V (Mn)
L2

AdS

+ boundary terms (41)

is the on-shell action of Einstein gravity on 3-manifold Mn.
The relation Eq.(40) has been an assumption in the existing
derivation of RT formula from AdS/CFT [11, 12, 15]. But
it is now derived from the state Eq.(9) using random tensor
networks.

Using Eq.(15), we obtain the RT formula of Rényi entropy
for CFT2, which has the nontrivial n dependence.

S n(A) '
(
1 +

1
n

)
LAdS

8`P
lS (42)

where LAdS lS corresponds to Armin the geodesic length in
AdS3 in Eq.(1). The usual RT formula is recovered as n→ 1.
The above result reproduces the Renyi entropy computed by
Hung-Myers-Smolkin-Yale in [14] using the AdS/CFT as-
sumptions. To see it is indeed the right Rényi entropy of the
boundary CFT2, recall the central charge of CFT relates to
LAdS and `P by c =

3LAdS
2`P

, and lS relates to length lA of bound-
ary interval A by lS ' 2 ln(lA/δ) in Poincaré patch, where δ is
a UV cut-off. It gives

S n(A) '
(
1 +

1
n

)
c
6

ln
(

lA

δ

)
(43)

which matches precisely the Rényi entropy Eq.(3) of CFT2
with correct n dependence [48].

IV. BOUND ON FLUCTUATION

In this section we examine the fluctuation of the Rényi en-
tropy S n(A) from the above average value S n(A), to qualify
how well is the approximation. We show that in the regime
`P � L` the fluctuation is generically small. The method used
in the following is similar to [25].

We denotes by Z(n) = tr(ρn
A) and Z(n)∞ the average value

of Z(n) as `P � L` (same as in Eq.(41)). We consider the
following fluctuation of Z(n):(

Z(n)
Z(n)∞

− 1
)2

=

 Z(n)2

Z(n)2
∞

− 1

 − 2
 Z(n)

Z(n)∞
− 1


≤

 Z(n)2

Z(n)2
∞

− 1

 (44)

Z(n) ≥ Z(n)∞ because in the approximation we made as `P �

L`, the neglected terms in the sums are all non-negative.
Z(n)2 is computed in a similar way as the above, using the

random average formula Eq.(19), changing n by 2n. It leads
to that the dominant contribution of Z(n)2 is again given by a
sum over permutations {gp} at all p, whose boundary condition
is gp = I in Ā and gp = (1 · · · n)(n + 1 · · · 2n) in A. Hence
Z(n)2 is also written as a sum of path integrals on different
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M{gp}. The situation of a single domain wall separating I in
RĀ and (1 · · · n)(n + 1 · · · 2n) in RA gives again the dominant
contribution. The 3-manifold M{gp} in this case is simply 2
copies of Mn. As a result,

Z(n)2

Z(n)2
∞

=
∏
p

C2n,p

C2
n,p

[
1 + O

(
`P

L`

)]
,

C2n,p

C2
n,p
≤ 1 (45)

which implies the following bound(
Z(n)

Z(n)∞
− 1

)2

≤ O
(
`P

L`

)
(46)

Bounding the fluctuation of Z(n) by ε/4 has the following
probability by Markov inequality,:

Prob
(∣∣∣∣∣ Z(n)

Z(n)∞
− 1

∣∣∣∣∣ ≥ ε

4

)
≤

(
Z(n)

Z(n)∞
− 1

)2(
ε
4

)2 ≤ O
(
`P

ε2L`

)
. (47)

Similar conclusion can be drawn for Z(1)n. Bounds on the
fluctuations of Z(n),Z(1)n implies the bound on the fluctuation
of S n(A). The probability of violating the following bound is
of O

(
`P/ε

2L`
)

∣∣∣S n(A) − S n(A)
∣∣∣ ≤ 1

n − 1

(∣∣∣∣∣∣ ln Z(n)
Z(n)∞

∣∣∣∣∣∣ +

∣∣∣∣∣∣ln Z(1)n

Z(1)n
∞

∣∣∣∣∣∣
)

≤ ε (48)

where we have used that | ln(1±ε/4)| ≤ ε/2 for small ε. When
`P/L` � ε2, the above bound of fluctuation is satisfied with a
high probability 1 − O

(
`P/ε

2L`
)
.
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Appendix A: Compute tr(ρn
A)

Insert the random average Eq.(19) into tr(ρn
A) in Eq.(18).

Each choice of permutations {gp} corresponds to the following
contribution in tr(ρn

A):

〈µ(1)
`
|A〈µ

(1)
`
|Ā〈E~a,Φ| ⊗ · · · ⊗ 〈µ

(n)
`
|A〈µ

(n)
`
|Ā〈E~a,Φ|

⊗pgp |E~a,Φ〉|µ
(2)
`
〉A|µ

(1)
`
〉Ā ⊗ · · · ⊗ |E~a,Φ〉|µ

(1)
`
〉A|µ

(n)
`
〉Ā.

µ` labels a basis in H at an boundary open link dual to a
boundary triangle edge `. The sum over all µ(i)

`
and the ten-

sor product over all boundary ` has been omitted in the above
formula.

Firstly we compute the operator ⊗pgp acting on the right.
Using the expression of |E~a,Φ〉,∏

p

gp |E~a,Φ〉|µ
(2)
`
〉A|µ

(1)
`
〉Ā ⊗ · · · ⊗ |E~a,Φ〉|µ

(1)
`
〉A|µ

(n)
`
〉Ā

=
∑

{~a(i)},{~µ(i)}

Φ(~a(1)) · · ·Φ(~a(n))
∏
p,p′

a(1)
µ(1)
p ,µ

(1)
p′

· · · a(n)
µ(n)
p ,µ

(n)
p′

⊗pgp
( ∣∣∣{µ(1)

p }, {µ
(2)
`
}A, {µ

(1)
`
}Ā

〉
⊗ · · · ⊗

∣∣∣{µ(n)
p }, {µ

(1)
`
}A, {µ

(n)
`
}Ā

〉 )
Taking the inner product gives∑
{~b(i)};{~ν(i)}

∑
{~a(i)};{~µ(n)}

∑
{µ(i)
`
}A;{µ(i)

`
}Ā

Φ∗(~b(1)) · · ·Φ∗(~b(n)) Φ(~a(1)) · · ·Φ(~a(n))

∏
p,p′

b(1)∗
ν(1)
p ,ν

(1)
p′

· · · b(n)∗
ν(n)
p ,ν

(n)
p′

∏
p,p′

a(1)
µ(1)
p ,µ

(1)
p′

· · · a(n)
µ(n)
p ,µ

(n)
p′

∏
p

δ
{ν(i)
p }, gp{µ

(i)
p }

δ(
{µ(1)
`
}A···{µ

(n)
`
}A

)
, gp

(
{µ(2)
`
}A···{µ

(n)
`
}A{µ

(1)
`
}A

) δ(
{µ(1)
`
}Ā···{µ

(n)
`
}Ā

)
, gp

(
{µ(1)
`
}Ā···{µ

(n)
`
}Ā

).
The last two δs associates gps close to the boundary regions A
and Ā respectively. To maximize the sum

∑
{µ(i)
`
}A;{µ(i)

`
}Ā

, gp close
to A has to be a cyclic permutation, and gp close to Ā has to be
an identity. So we obtain the boundary condition in Eq.(20).
Eq.(21) is obtained by performing the sum over {ν(i)

p }.

Appendix B: Domain Walls in Symn Spin Model

In this section, we prove that the configuration {gp} with a
single domain wall indeed gives the leading contribution to∑
{gp}. Let’s consider a more generic case shown in FIG.5(a),

where more than one domain-walls are created in the bulk of
Σ. We are going to show that this configuration always con-
tribute less than a single domain-wall.

FIG. 5: shows the space Σ with boundary ∂Σ divided into regions A
and Ā. Σ contains the domain-walls (1), (2), · · · , (8), which divide
the bulk of Σ into regions I, II, · · · , VI. Each bulk region associates a
permutation gI,II,··· ,VI , with gI = I and gII = (C(n))−1.

Given the multi-domain-wall configuration, each domain-
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wall carries the contribution proportional to

lSg,g′

∑
c∈C(g−1g′)

1 − n2
c

nc
(B1)

in Eq.(35) where lS is the geodesic length on the hyper-
bolic plane with unit curvature. Given trivalent intersection
of domain-walls, which separate three domains with permu-
tations g1, g2, g3 (FIG.6), we have the following “triangle in-
equality” (see Appendix C for a proof)∑

c∈C(g−1
1 g3)

1 − n2
c

nc
≥

∑
c∈C(g−1

1 g2)

1 − n2
c

nc
+

∑
c∈C(g−1

2 g3)

1 − n2
c

nc
. (B2)

It implies each trivalent intersection gives the following con-
tribution

lS13

∑
c∈C(g−1

1 g3)

1 − n2
c

nc
+ lS12

∑
c∈C(g−1

1 g2)

1 − n2
c

nc
+ lS23

∑
c∈C(g−1

2 g3)

1 − n2
c

nc

≤
∑

c∈C(g−1
1 g3)

1 − n2
c

nc

[
lS13 + min

(
lS12 , lS23

)]
which is less than a single domain wall contribution.

For any intersection with e.g. 4 domain walls, one can al-
ways shift the end point of one domain wall away from the
intersection and obtain a smaller lS (greater contribution to
Eq.(35)). It reduces the 4-valent intersection back to trivalent
situation, which implies the contribution after the above shift
is still smaller than the single domain wall configuration. The
same argument applies to the intersection with larger number
of domain walls.

Therefore we find that the contribution of the multi-
domain-wall configuration is less or equal to the single
domain-wall configuration

lSg,g′

∑
c∈C(g−1g′)

1 − n2
c

nc
≤

1 − n2

n
lS. (B3)

FIG. 6: A trivalent intersection of domain walls has less contribution
than a single domain wall.

Appendix C: Proof of triangle inequality (B2)

For every permutation g ∈ Symn (in the following discus-
sion, we assume that n ≥ 2), we can decompose g as

g =

k∏
i=1

ci,

where ci ∈ Symn are disjoint cycles such that
∑k

i=1 nci = n.
Denote

C(g) = {c1, . . . , ck}

as the set of disjoint cycles whose product is g.
Let d : Symn → R be a function which satisfies that there

exists a function f ∈ C2[1,+∞) such that

(i) f ′′(x) ≤ 0 for x ≥ 1.

(ii)
(

f (x)
x

)′
≥ 0 for x ≥ 1.

(iii) For each permutation g ∈ Symn, we have

d(g) =
∑

c∈C(g)

f (nc),

We say d is a norm on Symn, and f is the generator of d.

Lemma 1. Let f be a generator of a norm d on Symn, then
f (1) = 0.

Proof. Let g = (1)(2 . . . n), then d(g) = f (1) + f (n − 1) =

f (1) + d(g), hence f (1) = 0. �

Lemma 2. f ′(x) ≥ 0.

Proof. Let g(x) = f (x)/x. We have f ′(x) = [x · g(x)]′ =

x · g′(x) + g(x) ≥ g(x) =
∫ x

1 g′(x) ≥ 0. �

Lemma 3. Let f be a generator of a norm on Symn. For every
x1, . . . xk ≥ 1, we have

∑k
i=1 f (xi) ≤ f (

∑k
i=1 xi).

Proof. We have

k∑
i=1

f (xi) =

k∑
i=1

xi
f (xi)

xi
≤

k∑
i=1

xi
f (
∑k

i=1 xi)∑k
i=1 xi

= f (
k∑

i=1

xi).

�

Lemma 4. Let f be a generator of a norm on Symn. For every
x1, . . . xk ≥ 1, we have

∑k
i=1 f (xi) ≥ f (

∑k
i=1 xi − k + 1).

Proof. When k = 2, we have

f (x1) + f (x2) =
∫ x1

1 f ′(x)dx +
∫ x2

1 f ′(x)dx

≥
∫ x1

1 f ′(x)dx +
∫ x1+x2−1

x1
f ′(x)dx = f (x1 + x2 − 1).

Suppose the argument holds when k = k′. When k = k′ + 1,
we have

k′+1∑
i=1

f (xi) ≥ f (
k′∑

i=1

xi − k′ + 1) + f (xk′+1) ≥ f (
k′+1∑
i=1

xi − k′).

�

Theorem 1. Let d : Symn → R be a norm on Symn whose
generator is f , g ∈ Symn be a permutation, c ∈ Symn be a
cycle. Then we have d(cg) ≤ d(c) + d(g).
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Proof. Let A ⊆ C(g) be the set of all cycles in C(g) that are
disjoint with c. Then we have A ⊆ C(cg). Let B1 = C(g) \ A,
B2 = C(cg) \ A. We have

d(c) + d(g) − d(cg)
= f (nc) +

∑
r∈B1

f (nr) −
∑

r∈B2

f (nr)

Let N =
∑

r∈B1
nc =

∑
r∈B2

nc. By Lemma 3, we have∑
r∈B2

f (nr) ≤ f (N).

By lemma 2,4 and the fact that |B1| ≤ nc, we have∑
r∈B1

f (nr) ≥ f (N − |B1| + 1) ≥ f (N − nc + 1).

Therefore

d(c) + d(g) − d(cg) ≥ f (nc) + f (N − nc + 1) − f (N) ≥ 0.

�

Theorem 2. Let d : Symn → R be a norm on Symn whose
generator is f . For g1, g2 ∈ S n, we have d(g1g2) ≤ d(g1) +

d(g2).

Proof. Let C(g1) = {c1, . . . , ck}. We have

d(g1g2) = d((
k∏

i=1

ci)g2) ≤ d(c1) + d((
k∏

i=2

ci)g2)

≤ . . . ≤

k∑
i=1

d(ci) + d(g2) = d(g1) + d(g2).

�

Corollary 1. The function

d : Symn → R, d(g) =
∑

c∈C(g)

1 − n2
c

nc

is a norm on Symn.

Proof. It is sufficient to show that f (x) = x2−1
x is a generator.

We have

(
f (x)

x

)′
=

2
x3 ≥ 0

when x ≥ 1, and

f ′′(x) = −
2
x3 ≤ 0.

�
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