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Abstract. Every pseudorandom generator is in particular a one-way
function. If we only consider part of the output of the pseudorandom
generator is this still one-way? Here is a general setting formalizing this
question. Suppose G : {0, 1}n → {0, 1}�(n) is a pseudorandom generator
with stretch �(n). Let MR ∈ {0, 1}m(n)×�(n) be a linear operator com-
putable in polynomial time given randomness R. Consider the function

F (x,R) =
(
MRG(x), R

)

We obtain the following results.

– There exists a pseudorandom generator s.t. for every positive con-
stant μ < 1 and for an arbitrary polynomial time computable MR ∈
{0, 1}(1−μ)n×�(n), F is not one-way.

Furthermore, our construction yields a tradeoff between the hard-
ness of the pseudorandom generator and the output length m(n). For
example, given α = α(n) and a 2cn-hard pseudorandom generator
we construct a 2αcn-hard pseudorandom generator such that F is
not one-way, where m(n) ≤ βn and α+ β = 1− o(1).

– We show this tradeoff to be tight for 1-1 pseudorandom generators.
That is, for any G which is a 2αn-hard 1-1 pseudorandom generator,
if α + β = 1 + ε then there is MR ∈ {0, 1}βn×�(n) such that F is a
Ω(2εn)-hard one-way function.

Keywords: cryptographic hardness, one-way function, pseudorandom
generator.

1 Introduction

A one-way function is a function easy to compute but hard to invert. A pseudo-
random generator is an efficient deterministic algorithm that stretches a short
random seed to a longer one which is hard to distinguish from random. They
are both fundamental primitives in private-key cryptography.
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We tend to believe that one-wayness is a weaker notion than pseudorandom-
ness. One reason is that every pseudorandom generator is in particular a one-way
function, but the other direction fails dramatically. In this paper we consider
the effect on the one-wayness of a pseudorandom generator when “hashing” its
output. A natural way to formalize this is to consider the application of an effi-
ciently sampleable linear operator, which also captures (but a minor issue1) uni-
versal families of hash functions and certain randomness extractors. Formally,
let G : {0, 1}n → {0, 1}�(n), �(n) > n be a pseudorandom generator, and fix
an arbitrary polynomial time algorithm that on input R it outputs a matrix
MR ∈ {0, 1}m(n)×�(n). Consider the following “hashing method”:

FG(x,R) =
(
MRG(x), R

)

We study the effect of the size of m(n) on the one-wayness of FG. In fact, all of
our results hold for affine F(x,R) =

(
MRG(x) + bR,R

)
as well.

1.1 Previous Work and Motivation

Studying relations among basic cryptographic primitives is fundamental for cryp-
tography. Since the seminal work of H̊astad-Impagliazzo-Levin-Luby [HILL89],
the first to construct a pseudorandom generator from any one-way function,
there is a line of excellent works (e.g. [HRV10, HHR06a, HHR06b]) improving
its efficiency. Questions regarding the other direction have so far been neglected2.

Instead of asking whether one-wayness is preserved when hashing the output
of every pseudorandom generator, we can ask the weaker question of whether
there exists a pseudorandom generator that has this property. Suppose that it
was possible to apply a simple length-shrinking hash (e.g. a projection) on the
output of an NC0 pseudorandom generator, then via the work of Applebaum-
Ishai-Kushilevitch [AIK04, AIK05] we can build several cryptographic primitives
in a streaming fashion. Streaming Cryptography [KGY89, BJP11], not to be con-
fused with stream ciphers, concerns the computation of cryptographic primitives
with a device that has small working memory, e.g. logarithmic or sub-linear, and
it makes a small number of passes, e.g. poly-logarithimic, over its input. Our re-
sults rule out a natural class of constructions in Streaming Cryptography.

1.2 Our Results

We have obtained both negative and positive results. We show that there exists a
pseudorandom generator where if we apply a length-shrinking, even by a constant
factor, linear operator on its output then this is not a one-way function. Our
construction (Theorem 1) yields a tradeoff between the hardness of this generator
and the shrinkage factor. Theorem 1 is also, in particular, about universal families

1 Applying a random linear operator does not exactly yield a universal family of hash
functions just because of its value at 0.

2 This is not surprising, since a pseudorandom generator is in particular a one-way
function.
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of hash functions. In Theorem 2 we show that our construction is optimal, in
the sense that if instead we use any generator which is a little harder, or if the
shrinkage factor is a little bigger, then the resulting function is one-way.

Theorem 1. Suppose G is a pseudorandom generator with hardness sG(·). Then
for every constant μ > 0 and δ > 0, and for an arbitrary polynomial �(n), there
is a pseudorandom generator

G∗ : {0, 1}n → {0, 1}�(n)

such that FG∗
(x,R) = (MRG

∗(x), R) is not one-way, where MR ∈ F
m(n)×�(n)
2 is

polynomial time computable using randomness R with m(n) ≤ (1 − μ)n. More-
over, G∗ preserves the injectivity of G and has hardness at least sG(μn− nδ).

The “moreover” part makes the theorem stronger. Also, preserving injectivity in
this theorem finds application in explaining a subtle issue regarding the optimal
output length of hash functions in the first step of [HILL89] construction (see
Section 4 in [HILL89], or p.138 in [Gol01]).

A variant of Theorem 1 shows that when MR is restricted to random projec-
tions with m(n) = O( n

log(n) ) (i.e. just sampling m(n) bits from the output of G),

then there exists (another) G∗ s.t. FG∗
is invertible in non-uniform NC2.

On the other hand, we prove that when hashing a 2cn-hard pseudorandom
generator to a little more than (1− c)n bits then its one-wayness is preserved.

Theorem 2. Suppose f : {0, 1}n → {0, 1}�(n) is a 2cn-hard 1-1 pseudorandom
generator. Let F := F f(x, h) =

(
h(f(x)), h

)
, where h : {0, 1}�(n) → {0, 1}m(n)

is a hash function from a universal family of hash functions S
m(n)
�(n) . If m(n) ≥

(1− c+ ε)n for constant ε ∈ (0, c
5 ), then F is one-way with hardness 2εn.

In fact, the above theorem holds true if instead of a pseudorandom generator we
consider f to be an injective one-way function.

1.3 Outline

In Section 2, we introduce notations, definitions, and basic facts. In Section 3, we
construct G∗ from a pseudorandom generator G such that FG∗

is not one-way
when hashing down its output by a constant factor. In Section 4 we show that for
every 1-1 pseudorandom generator f with hardness 2cn and m(n) ≥ (1− c+ ε)n,
F f preserves the one-wayness and has hardness at least 2εn. We conclude in
Section 5 with some further research directions.

2 Preliminary

2.1 Notation and Definitions

Probability Notation. For probability distributions X,Y , we denote by X ∼ Y
that X and Y are identically distributed. x← X denotes that x is sampled from
X , and x ∈R S denotes that x is sampled uniformly from S. Un denotes the uni-
form distribution over {0, 1}n. The statistical distance between two distributions
X and Y is defined as Δ(X,Y ) = 1

2

∑
z |Pr[X = z]− Pr[Y = z]|.
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Universal Families of Hash Functions. Let Sm
n denote a set of functions from

{0, 1}n to {0, 1}m. Let Hm
n be a random variable uniformly distributed over Sm

n .
Sm
n is called a universal family of hash functions if following conditions hold:

– Sm
n is a pairwise independent family of mappings: for every x �= y, Hm

n (x)
and Hm

n (y) are independent and both identically to Um.
– Sm

n has a succinct representation: ∀h ∈ Sm
n , the description of h is poly(n,m).

– Sm
n can be efficiently evaluated: there is a polynomial time algorithmH such

that for every h ∈ Sm
n , x ∈ {0, 1}n, H(h, x) = h(x).

Specifically, h(x) = M · x + b is a universal family of hash functions when the
matrix M and vector b are uniformly distributed. Actually, h(x) = M ·x satisfies
all above conditions except that Hm

n (x) is not uniformly distributed when x = 0.

Cryptographic Primitives. Here are the definitions of one-way functions, pseu-
dorandom generators, and k-wise independent distributions. The definitions are
for uniform adversaries, however our results hold in the non-uniform setting as
well (c.f. [Gol01, Vad11]).

A one-way function f : {0, 1}∗ → {0, 1}∗ is a polynomial time computable
function where no probabilistic polynomial time algorithm A inverts f with
non-negligible probability; i.e. for every k and any polynomial time algorithm
A, Prx←Un [A(f(x), 1

n) ∈ f−1(f(x))] < n−k holds for sufficiently large n.
Furthermore, we say that f has hardness s(n) if for every sufficiently large

input of length n, f cannot be inverted with probability ≥ 1
s(n) by any adversary

A which runs in time ≤ s(n). Obviously, f is a one-way function if f has super-
polynomial hardness s(n).

A pseudorandom generator G is a polynomial time computable function which
stretches every n-bit input to an output of length �(n) > n, such that no proba-
bilistic polynomial time algorithm D can distinguish between U�(n) and G(Un);

i.e. for every k andD, |Pr[D(G(Un), 1
n) = 1]−Pr[D(U�(n), 1

n) = 1]| < n−k when
n is sufficiently large. We call � the stretch of G. Similar to one-way functions
we define an s(n)-hard pseudorandom generator.

We subscript a string σ ∈ {0, 1}n with R ⊆ {1, . . . , n}, and we write σR,
to denote the substring of σ keeping exactly the bits indexed by R. In this
notation, a function h is called k-wise independent if for every K ⊆ {1, . . . , n}
where |K| = k we have that h(Un)K ∼ Uk.

Circuit Classes. We denote by NC2 the functions computed by non-uniform
families of poly-size boolean circuits with multiple outputs, where the gates are
of constant fan-in and the depth of the circuit is O(log2 n) for input length n.

2.2 Basic Facts and Lemmas

Below is a well-known fact (implicitly shown in [LR87], also see e.g. [Gol01]).

Lemma 1. Let G be a pseudorandom generator. Then, G is a one-way function.
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The following lemma states that a uniform randomly chosen matrix has a good
chance of being row independent. In fact, more general results hold for n × n
matrices (see e.g. [BKW97, Muk84]). The proof of the following lemma is an
easy exercise and is omitted here.

Lemma 2. Uniformly at random pick a p×q matrix N over F2; i.e. N ∈R F
p×q
2 .

Then, N has full row-rank with probability at least 1− 2p−q.

A deep result due to Mulmuley [Mul87] (which derandomizes [BvzGH82]) states
that Gaussian elimination for linear systems over F2 can be done in uniform NC2.
Later on, when applying this lemma in our paper, we introduce non-uniformity
for a different reason.

Lemma 3 ([Mul87]). Gaussian elimination can be done in uniform NC2.

3 Length-Shrinking Linear Operators Destroy
One-Wayness: A Shrinkage-Hardness Tradeoff

We prove Theorem 1. That is, given a pseudorandom generator G of hardness
sG(n) we construct a pseudorandom generator G∗ of almost the same hardness
sG∗(n) = sG

(
(μ− o(1))n

)
for some constant μ, such that an application of any

efficiently sampled linear operator, which outputs (1 − μ)n bits, on the output
of G∗ does not preserve one-wayness.

First we introduce the construction of G∗. It is easy to see that it preserves
pseudorandomness and injectivity; i.e. if G is 1-1 then G∗ is also 1-1.

Construction 1. Construct G∗ as

G∗(x1, x2, x3) = (Ĝ(x1) + (PG(x3) · x2), x2, x3) (1)

|x1| = n1, |x2| = n2, |x3| = n3, n1 + n2 + n3 = n. Ĝ(x1) = G(z)(x1)|{1,2,··· ,�′(n)}
where G(z) means z iterated compositions of G with itself such that |G(z)(x1)| ≥
�′(n) = �(n) − n2 − n3. PG(x3) is an �′(n) × n2 pseudorandom matrix whose
entries are generated by iteratively applying G on x3. All operations are over F2.

By definition of Ĝ, |Ĝ(x1)| = �′(n). That is, |G∗(x1, x2, x3)| = �′(n) +n2 +n3 =
�(n). Since we XOR Ĝ(x1) with PG(x3) · x2, then sG(n1) lower bounds the
hardness of G∗(x). We can choose n3 to be an arbitrarily small polynomial in
n. The parameters n1 and n2 determine a tradeoff between the hardness of the
pseudorandom generator G∗ and the shrinking length. This tradeoff is not a
minor issue. If we were to choose arbitrarily close to 1 the constants in the
hardness and in the shrinking length then a modification of [HILL89] would
have shown that exponentially hard pseudorandom generators, unconditionally,
do not exist (this is not an immediate argument).
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The following lemma is the main ingredient of the proof of Theorem 1.

Lemma 4. Let FG∗
(x,R) = (MRG

∗(x), R) and let G∗(x1, x2, x3) be as in Con-
struction 1. Let MR ∈ {0, 1}m(n)×�(n),m(n) < n2, be computable in polynomial
time given R. Then, there is a probabilistic polynomial time algorithm A s.t.

Pr
y,R

[FG∗
(A(y,R)) = (y,R)] > 1− 2−(n2−m(n)) − poly(

1

sG(n3)
)

Proof. Recall that G∗(x1, x2, x3) =
(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
, where x =

(x1, x2, x3) and x1, x2, x3 has length n1, n2, n3 respectively. Then,

FG∗
(x,R) =

(
MRG

∗(x), R
)
=

(
MR(Ĝ(x1) + (PG(x3) · x2), x2, x3), R

)

Therefore for the goal FG∗
(x,R) = (y,R), it suffices to find an x such that

MR

(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
= y (2)

We analyze further the structure of the above matrix equation. Without loss of
generality, we may assume that MR is already in reduced row echelon form, after
applying Gaussian elimination, and it has full row-rank (easy to guarantee by
deleting all zero rows). To match the form of the column vector

(
Ĝ(x1)+(PG(x3)·

x2), x2, x3

)
, we partition MR into MR = (M1|M2|M3) where the sub-matrices

M1,M2,M3 have �′(n), n2 and n3 columns respectively. Then

MR =
(
M1 M2 M3

)
=

⎛

⎝
M ′1 M ′′2 M ′′′3
0 M ′2 M ′′3
0 0 M ′3

⎞

⎠

where M ′1,M
′
2 and M ′3 have full row-rank. Note that depending on MR, it is

possible that M ′2,M
′
3 and M ′′3 are empty (i.e. size 0, instead of having 0-entries).

Equation (2) can be rewritten as a linear system in x2,

⎧
⎨

⎩

(
M ′1PG(x3)+ M ′′2

)
x2 = y1 +M ′′′3 x3 +M ′1Ĝ(x1)

M ′2 x2 = y2 +M ′′3 x3

0 = y3 +M ′3x3

(3)

Now the problem reduces to finding a solution x to (3). We present an adversary
A which finds a solution to the above system.
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A : Inverting FG∗
(on input (y,R)):

1 Compute MR with input R;
2 Do Gaussian elimination on the left of (MR|y);
3 Delete zero-rows and return “No answer” if detecting a row (0, 0, · · · , 0, 1);
4 Compute M ′1,M

′
2,M

′′
2 ,M

′
3,M

′′
3 ,M

′′′
3 ;

5 Set x1 to a fixed value u, say n1 zeros;
6 Uniformly at random pick v from {x3

∣
∣M ′3x3 = y3} ⊆ {0, 1}n3

(v ← Un3 if M ′3 is empty);

7 Compute PG(v) and Ĝ(u);

8 Consider:

(
M ′1PG(v) +M ′′2

M ′2

)
x2 =

(
y1 +M ′1Ĝ(u) +M ′′′3 v

y2 +M ′′3 v

)
;

9 Solve x2 and output (x,R) = ((u, x2, v), R).
Output “Fail” if there is no solution.

It is easy to verify that A runs in polynomial time and the output is a pre-
image of (y,R). Now, we analyze the probability that A succeeds. It suffices to
calculate the probability that A outputs “Fail”, which is upper bounded by the

probability thatM =

(
M ′1PG(v) +M ′′2

M ′2

)
does not have full row-rank. LetM′ =

(
M ′1 · U�′(n)×n2

+M ′′2
M ′2

)
. Since M ′1,M ′2 have full row-rank, M′ ∼

(
Ur1×n2

M ′2

)

does not have full row-rank with probability at most
∑

1≤i≤r1
2r2+i−1

2n2
< 2r1+r2

2n2
=

2−(n2−r1−r2) by Lemma 2, where r1, r2 is the number of rows in M ′1,M
′
2 respec-

tively. Moreover, the gap between the probability Pr[M has full row-rank] and
Pr[M′ has full row-rank] is bounded by poly( 1

sG(n3)
), since otherwise there ex-

ists a polynomial time distinguisher for PG(v) and U�′(n)×n2
with advantage

poly( 1
sG(n3)

). So we have

Pr[M has full row-rank] ≥ Pr[M′ has full row-rank]− poly(
1

sG(n3)
)

≥ 1− 2−(n2−r1−r2) − poly(
1

sG(n3)
).

Since MR has m(n) rows in total, which implies r1 + r2 ≤ m(n),

Pr
y
[A succeeds] ≥ Pr[M has full row-rank] ≥ 1− 2−(n2−m(n)) − poly(

1

sG(n3)
)

Thus complete our proof of Lemma 4.

Corollary 1. If m(n) ≤ n2 − ω(log(n)) and n3 = nΩ(1), then FG∗
(x,R) =(

MRG
∗(x), R

)
is not (even weakly) one-way.
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Let n1 = μn−nδ, n2 = (1−μ)n+ log2(n), and n3 = n−n1−n2 = nδ − log2(n)
in Construction 1 and m(n) = n2 − log2(n) = (1 − μ)n. Applying Lemma 4
and Corollary 1, we conclude the proof of Theorem 1. In general, hashing down
the output of a pseudorandom generator by a constant factor does not preserve
one-wayness, even if the pseudorandom generator is exponential hard.

Regarding the roles of n1, n2, n3 in above argument, we first notice that n3

is the least important one since we only need sG(n3) super-polynomial. In most
common cases of interest sG(·) is monotonically increasing (hence, s−1G is well

defined), it suffices to set n3 = s−1G (nω(1)) which could be as small as logO(1)(n)
for exponential sG. Meanwhile, the difference n2 − m(n) is also negligible. It
turns out n1+m(n) = n− o(n). Recalling that G∗ has hardness sG(n1), there is
the tradeoff between the hardness of G∗ and the output length of MR. Letting
n1 = αn,m(n) = βn, we get α+ β = 1− o(1) as stated in the abstract.

Special Case of Random Projections. When MR is a projection of length O( n
logn )

we construct a simpler pseudorandom generator G∗ where FG∗
is invertible in

NC2. For this we combine the “strong pseudorandom” (cryptographic) object G
with a “weak pseudorandom” object, a k-wise independent generator. Specifi-
cally, let G∗(x1, x2) = (Ĝ(x1) +Hx2) where H realizes a k-wise generator with
k = Θ( n

log(n) ). See Proposition 6.5 in [ABI86] and Chap. 7.6 in [MS77] for details.

Lemma 5. Let m(n) ≤ k, where k as above. Then,FG∗
(x,R) =

(
MRG

∗(x), R
)

can be inverted in NC2.

The adversary is a modification of A which appears in the proof of Lemma 4.
In particular, in Step 4, only M ′1 matters since other matrices are 0-sized; in
Step 6,7,8, PG(v) is replaced by H and the linear system in Step 8 becomes
M ′1Hx2 = y1 + Ĝ(u). Although Ĝ is polynomial time computable, we can non-
uniformly hardwire the value of Ĝ on a constant one for each input length. Since
u can be fixed, then by Lemma 3 we have that M ′1H is invertible in NC2.

4 Tightness of the Construction

Even if we assume that a pseudorandom generator of hardness 20.99n exists,
Theorem 1 says that then there is a generator of hardness 20.99αn such that
when applying a linear map on its output shrinking it down to βn many bits
then this is not one-way, for α+β = 1−o(1). We show that this tradeoff between
α and β is tight, i.e. when α+β = 1+ ε and a 1-1 generator f has hardness 2αn,
then F f forms a 2εn-hard one-way function.

For the proof of Theorem 2 we apply the following well-known lemma, but in
a non-uniform setting.

Lemma 6 ([Gol01], also [HILL89, Sip83, GL89]). Let m < � be integers,
Sm
� be a universal family of hash functions, and b,δ be two reals such that m ≤

b ≤ � and δ ≥ 2−
b−m

2 . Suppose that X� is a random variable distributed over
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{0, 1}� such that for every x, it holds Pr[Xn = x] ≤ 2−b. Then for every ξ ∈
{0, 1}m and for all but at most 2−(b−m)δ−2 fraction of the h’s in Sm

� , it holds
that

Pr
X�

[h(X�) = ξ] ∈ (1± δ)2−m

Proof (Proof of Theorem 2). We present the proof for a non-uniform adversary,
simpler to present but already a rather involved argument. Fix one efficient
construction of sampling from a universal family of hash functions (e.g. choose
one from [Vad11]). Now F is well-defined for a given f . Assume that F is not
a 2εn-hard one-way function. Let A be a probabilistic algorithm which runs in
time TA = O(2εn) and inverts F with probability pA(n), i.e.

Pr
x←Un,h←RS

m(n)

�(n)

[A(h(f(x)), h) ∈ F−1(h(f(x)), h)] = pA(n) >
1

2εn

We show that f is not 2cn-hard with oracle access to A. That is, we construct
a non-uniform adversary Af that given y ← f(Un), Af computes x′ such that
f(x′) = y in time O(2cn) and with probability at least Ω(2−cn).

Af is defined as follows: with the non-uniform advice h0 ∈ S
m(n)
�(n) , Af first

computes (h0(y), h0), then applies A to compute x′ such that h0(f(x
′)) = h0(y).

Therefore, Af runs in time O(TA) = O(2εn) = O(2cn). In what follows we
denote by x′ = x′(h(y), h) the output of A on input (h(y), h). Now, we calculate
the probability that Af outputs x′. We will determine later how to find h0, and
in fact why h0 exists.

Pr
y←f(Un)

[Af inverts f on y] = Pr
y←f(Un)

[x′ = A(h0(y), h0), f(x
′) = y] (4)

= Pr
x←Un

[f(x′) = f(x)] (5)

where in the last equation we omit how x′ is derived and its dependence.

Pr
x←Un

[f(x′) = f(x)]

=
∑

z∈h0(f({0,1}n))
Pr

x←Un

[h0(f(x)) = z] Pr
x←Un

[f(x′) = f(x)
∣
∣h0(f(x)) = z]

=
∑

z∈h0(f({0,1}n))
Pr

x←Un

[h0(f(x)) = z] Pr
x∈R(h0◦f)−1(z)

[x = x′ = x′(z, h0)]

f(x′) = f(x) is equivalent to x′ = x since f is 1-1. From this point on, x′(z, h0)
is uniquely defined from z and h0. So we can take it out of the probability.

=
∑

z∈h0(f({0,1}n))

|(h0 ◦ f)−1(z)|
2n

· ( 1

|(h0 ◦ f)−1(z)| · I[h0(f(x
′(z, h0))) = z]

)

=
1

2n

∑

z∈h0(f({0,1}n))
I[h0(f(x

′)) = z] =
1

2n

∑

z∈{0,1}m
I[h0(f(x

′)) = z] (6)
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where I[h0(f(x
′)) = z] is the indicator of the event “h0(f(x

′)) = z for x′ =
A(z, h0)”. Note that the sum

∑
z∈{0,1}m I[h0(f(x

′)) = z] corresponds to the

number of z’s that A inverts (z, h0).
However, when fixing h0, the probability “A succeeds” is

Pr
x←Un

[A inverts (h0(f(x)), h0)] =
∑

z∈{0,1}m
Pr

x←Un

[h0(f(x)) = z]I[h0(f(x
′)) = z]

(7)

Notice that (7) is the probability of “A succeeds on
(
h0(f(Un)), h0

)
”, while (6)

counts the number of z’s that A inverts
(
z, h0

)
. These two are related in the

following sense. Remember that hashing down a weak random source smooths
the distribution, hence h0(f(Un)) seems close to Um. In this sense, we make an
estimation with error upper bounded by their statistical distance.

∣
∣ Pr
x←Un

[A inverts (h0(f(x)), h0)]− 1

2m

∑

z∈{0,1}m
I[h0(f(x

′)) = z]
∣
∣

=
∣
∣

∑

z∈{0,1}m
Pr

x←Un

[h0(f(x)) = z] · I[h0(f(x
′)) = z]−

∑

z∈{0,1}m

1

2m
I[h0(f(x

′)) = z]
∣
∣

≤
∑

z∈{0,1}m

∣
∣ Pr
x←Un

[h0(f(x)) = z]− 1

2m

∣
∣ · I[h0(f(x

′)) = z]

=2Δ
(
h0(f(Un)), Um

)
(8)

Plugging (8) into (6), it immediately leads to the lower bound

Pr
x←Un

[f(x′) = f(x)]

≥2m−n( Pr
x←Un

[A inverts (h0(f(x)), h0)]− 2Δ
(
h0(f(Un)), Um

))
(9)

Now, our goal is to show that there exists a choice for h0 in (9) giving the Ω( 1
2cn )

lower bound.

Claim. There is a (good) h0 ∈ S
m(n)
�(n) such that

– Property 1: Δ
(
h0(f(Un)), Um

)
< 2 · 2 1+εn−(n−m)

3 ;

– Property 2: Prx←Un [h0(f(x
′)) = h0(f(x))] ≥ 2−(1+εn).

For Property 1, it suffices for concluding the proof to have δ = 2
1+εn−(n−m)

3 and

Pr
ξ←Um

[Pr[h0(f(Un)) = ξ] /∈ (1± δ) · 2−m] < 21+εn−(n−m)δ−2

Let δ = 2
1+εn−(n−m)

3 , b = n,m = m(n), � = �(n) and X = f(Un) as in Lemma 6.
Since m ≤ b ≤ �(n) and f is 1-1 (PrX [X = z] ≤ 1

2n for every z), we have

that ∀ξ ∈ {0, 1}m and for all but at most 2−(n−m)δ−2 fraction of the h’s in
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S
m(n)
�(n) , it holds Pr[h(f(Un)) = ξ] ∈ (1 ± δ) · 2−m. Let B(h, ξ) denote the event

Pr[h(f(Un)) = ξ] /∈ (1± δ) · 2−m, then taking probability over ξ and h,

Pr
ξ←Um,h←S

m(n)

�(n)

[B(h, ξ)] ≤ 2−(n−m)δ−2

=⇒ Pr
h←S

m(n)

�(n)

[ Pr
ξ←Um

[B(h, ξ)] ≥ 21+εn−(n−m)δ−2] ≤ 1

21+εn
(10)

Thus, Prξ←Um [Pr[h(f(Un)) = ξ] /∈ (1± δ) · 2−m] < 21+εn−(n−m)δ−2 holds for at

least 1− 1
21+εn fraction of the h’s in S

m(n)
�(n) . In particular, Property 1 is satisfied

by that many h’s.
For Property 2, we lower bound the probability that A performs not so bad

for a randomly chosen h, i.e. Pr
h←S

m(n)

�(n)

[Prx←Un [h(f(x
′)) = h(f(x))] ≥ 1

21+εn ].

Let Eh denote the event that Prx←Un [h(f(x
′)) = h(f(x))] ≥ 2−1−εn, we have

2−εn ≤ pA(n) = Pr
h←S

m(n)

�(n)
,x←Un

[h(f(x′)) = h(f(x))]

=Pr
h
[Eh] Pr

x
[h(f(x′)) = h(f(x))

∣
∣Eh] + Pr

h
[Eh] Pr

x
[h(f(x′)) = h(f(x))

∣
∣Eh]

≤ Pr
h←S

m(n)

�(n)

[Eh] · 1 + Pr
h←S

m(n)

�(n)

[Eh] · 2−1−εn < Pr
h←S

m(n)

�(n)

[Eh] + 2−1−εn

=⇒ Pr[Eh] > 2−1−εn

Hence, we lower bound the probability of h having Property 2 as follows

Pr
h←S

m(n)

�(n)

[ Pr
x←Un

[h(f(x′)) = h(f(x))] ≥ 2−1−εn] = Pr
h←S

m(n)

�(n)

[Eh] > 2−1−εn

The following calculation shows that an h0 as required exists.

Pr
h←S

m(n)

�(n)

[h satisfies both Property 1 and 2] > (1− 1

21+εn
) + 2−1−εn − 1 = 0

Using this h0 in (9), and recalling that m = m(n) = (1− c+ ε)n, we obtain

Pr
x←Un

[f(x′) = f(x)] ≥ 2−1−cn − 2(7+(5ε−4c)n)/3 = Ω(2−cn)

Note that the running time of Af is bounded by O(2cn), contradicting that f is
2cn hard. In conclusion, F (x, h) =

(
h(f(x)), h

)
is one-way, and its hardness is

at least 2εn.

5 Conclusions and Open Questions

We have showed that “hashing” the output of a pseudorandom generator to a
constant fraction of its input length, in general, destroys its one-wayness. We
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prove this in the form of a tradeoff between cryptographic hardness and output
length of the hash. We also show that this tradeoff is tight.

An interesting question is whether there exists a pseudorandom generator of
reasonable hardness where one-wayness is preserved when hashing its output.
This question remains open. We speculate that is a difficult mathematical prob-
lem. For example, an interesting direction would be to show that this question is
equivalent to constructing 2n

ε

-hard one-way functions; i.e. a problem essentially
about Ω(2n

ε

) circuit lower bounds.
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