

Lecture Notes in Computer Science 6390
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Oded Goldreich (Ed.)

Property Testing

Current Research and Surveys

13

Volume Editor

Oded Goldreich
Weizmann Institute of Science
Faculty of Mathematics and Computer Science
76100 Rehovot, Israel
E-mail: oded.goldreich@weizmann.ac.il

Library of Congress Control Number: 2010936638

CR Subject Classification (1998): F.2, I.2, F.1, I.3.5, H.3, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16366-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16366-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Property testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property testing has been a subject of intensive research in the last couple of
decades, with hundreds of studies conducted in it and in closely related areas.
Indeed, property testing is closely related to probabilistically checkable proofs
(PCPs), and is related to coding theory, combinatorics, statistics, computational
learning theory, computational geometry, and more.

The current volume provides a taste of the area of property testing. It grew
out of a mini-workshop on property testing that took place in January 2010
in the Institute for Computer Science (ITCS) at Tsinghua University (Beijing).
The mini-workshop brought together a couple of dozen leading researchers in
property testing and related areas. At the end of this mini-workshop it was
decided to compile a collection of extended abstracts and surveys that reflects
the program of the mini-workshop.

Property Testing at a Glance

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept func-
tions that have some predetermined property (i.e., reside in some predetermined
set) and reject any function that is “far” from the set of functions having the
property. Distances between functions are defined as the fraction of the domain
on which the functions disagree, and the threshold determining what is consid-
ered far is presented as a proximity parameter, which is explicitly given to the
tester.

An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions
from Dn to Rn, where |Dn| = n. (Often, one just assumes that Dn = [n] def=
{1, 2, ..., n}.) Thus, in addition to the input oracle, representing a function f :
Dn → Rn, the tester is explicitly given two parameters: a size parameter, de-
noted n, and a proximity parameter, denoted ε.

Definition: Let Π =
⋃

n∈N
Πn, where Πn contains functions defined

over the domain Dn. A tester for a property Π is a probabilistic oracle
machine T that satisfies the following two conditions:

VI Preface

1. The tester accepts each f ∈ Π with probability at least 2/3; that
is, for every n ∈ N and f ∈ Πn (and every ε > 0), it holds that
Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the
tester rejects with probability at least 2/3; that is, for every ε > 0
and n ∈ N, if f : Dn → Rn is ε-far from Πn, then Pr[T f(n, ε) =
0] ≥ 2/3, where f is ε-far from Πn if, for every g ∈ Πn, it holds that
|{e ∈ Dn : f(e) �= g(e)}| > ε · n.

If the tester accepts every function in Π with probability 1, then we say
that it has one-sided error; that is, T has one-sided error if for every
f ∈ Π and every ε > 0, it holds that Pr[T f(n, ε) = 1] = 1. A tester
is called non-adaptive if it determines all its queries based solely on its
internal coin tosses (and the parameters n and ε); otherwise it is called
adaptive.

This definition does not specify the query complexity of the tester, and indeed
an oracle machine that queries the entire domain of the function qualifies as a
tester (with zero error probability...). Needless to say, we are interested in testers
that have significantly lower query complexity.

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case in which the domain and range are associated with some
algebraic structures (e.g., groups, fields, and vector spaces) and studies alge-
braic properties such as being a polynomial of low degree. In the context of
testing graph properties, the functions represent graphs or rather allow certain
queries to such graphs; for example, in the adjacency matrix model, graphs are
represented by their adjacency relation and queries correspond to pairs of ver-
tices where the answers indicate whether or not the two vertices are adjacent in
the graph. (In an alternative model, known as the incidence-list model, graphs
are represented by functions that assign to the pair (v, i) the ith neighbor of
vertex v.)

Current research in property testing focuses mainly on query (and/or sample)
complexity, while either ignoring time complexity or considering it a secondary
issue. The current focus on these information-theoretic measures is justified by
the fact that even the latter are far from being understood. (Indeed, this stands
in contrast to the situation in, say, PAC learning.)

The representation of problems’ instances is crucial to any study of computa-
tion, since the representation determines the type of information that is explicit
in the input. This issue becomes much more acute when one is only allowed par-
tial access to the input (i.e., making a number of queries that result in answers
that do not fully determine the input). An additional issue, which is unique
to property testing, is that the representation may effect the distance measure
(i.e., the definition of distances between inputs). This is crucial because property
testing problems are defined in terms of this distance measure.

Preface VII

The Contents of This Volume

This volume contains extended abstracts of almost all works presented at the
workshop as well as a large number of surveys. The surveys refer to various sub-
areas of property testing and/or to research directions in property testing. Some
of these surveys correspond to presentations that took place in the workshop,
and others were written for this volume by some of the workshop’s participants.
The list of surveys includes:

– Eli Ben-Sasson: Limiting the Rate of Locally Testable Codes
– Eric Blais: Testing Juntas
– Artur Czumaj and Christian Sohler: Sublinear-Time Algorithms
– Oded Goldreich: A Brief Introduction to Property Testing
– Oded Goldreich: Locally Testing Codes and Proofs
– Oded Goldreich: Testing Graph Properties
– Ilan Newman: Property Testing in the “Massively Parameterized” Model
– Krzysztof Onak: Sublinear Graph Approximation Algorithms
– Sofya Raskhodnikova: Transitive-Closure Spanners
– Rocco Servedio: Testing by Implicit Learning
– Madhu Sudan: Invariance in Property Testing

The list of extended abstracts includes:

– Noga Alon: On Fast Approximation of Graph Parameters
– Victor Chen: Testing Linear-Invariant Non-Linear Properties
– Victor Chen: A Hypergraph Dictatorship Test with Perfect Completeness
– Artur Czumaj: Testing Monotone Continuous Distributions on Real Cubes
– Oded Goldreich: Algorithmic Aspects of Property Testing in the Dense

Graphs Model
– Prahladh Harsha: Composition of Low-Error 2-Query PCPs
– Tali Kaufman: Symmetric LDPC Codes and Local Testing
– Swastik Kopparty: Optimal Testing of Reed-Muller Codes
– Michael Krivelevich: Comparing the Strength of Query Types
– Michael Krivelevich: Hierarchy Theorems for Property Testing
– Kevin Matulef: Testing (Subclasses of) Linear Threshold Functions
– Krzysztof Onak: External Sampling
– Krzysztof Onak: The Query Complexity of Edit Distance
– Ronitt Rubinfeld: Maintaining a Large Matching or a Small Vertex Cover
– Michael Saks: Local Monotonicity Reconstruction
– Shubhangi Saraf: Some Recent Results on Testing of Sparse Linear Codes
– Asaf Shapira: Testing Linear Invariant Properties
– Christian Sohler: Testing Euclidean Spanners

The surveys and extended abstracts appearing in this volume were not refereed.
The extended abstracts refer to papers that have either appeared or are likely
to appear in peer-reviewed conferences and journals.

VIII Preface

Acknowledgments

I wish to thank all the authors who have contributed to the current volume as
well as all researchers who have contributed to the research being surveyed in it.

July 2010 Oded Goldreich

Table of Contents

Editor’s Introduction

A Brief Introduction to Property Testing . 1
Oded Goldreich

The Program of the Mini-Workshop . 6
Oded Goldreich

Surveys

Limitation on the Rate of Families of Locally Testable Codes 13
Eli Ben-Sasson

Testing Juntas: A Brief Survey . 32
Eric Blais

Sublinear-time Algorithms . 41
Artur Czumaj and Christian Sohler

Short Locally Testable Codes and Proofs: A Survey in Two Parts 65
Oded Goldreich

Introduction to Testing Graph Properties . 105
Oded Goldreich

Property Testing of Massively Parametrized Problems – A Survey 142
Ilan Newman

Sublinear Graph Approximation Algorithms . 158
Krzysztof Onak

Transitive-Closure Spanners: A Survey . 167
Sofya Raskhodnikova

Testing by Implicit Learning: A Brief Survey . 197
Rocco A. Servedio

Invariance in Property Testing . 211
Madhu Sudan

Extended Abstracts

Testing Monotone Continuous Distributions on High-Dimensional Real
Cubes . 228

Micha�l Adamaszek, Artur Czumaj, and Christian Sohler

X Table of Contents

On Constant Time Approximation of Parameters of Bounded Degree
Graphs . 234

Noga Alon

Sublinear Algorithms in the External Memory Model 240
Alexandr Andoni, Piotr Indyk, Krzysztof Onak, and Ronitt Rubinfeld

Polylogarithmic Approximation for Edit Distance and the Asymmetric
Query Complexity . 244

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak

Comparing the Strength of Query Types in Property Testing: The Case
of Testing k-Colorability. 253

Ido Ben-Eliezer, Tali Kaufman, Michael Krivelevich, and Dana Ron

Testing Linear-Invariant Non-linear Properties: A Short Report 260
Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie

Optimal Testing of Reed-Muller Codes . 269
Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck,
Madhu Sudan, and David Zuckerman

Query-Efficient Dictatorship Testing with Perfect Completeness 276
Victor Chen

Composition of Low-Error 2-Query PCPs Using Decodable PCPs 280
Irit Dinur and Prahladh Harsha

Hierarchy Theorems for Property Testing . 289
Oded Goldreich, Michael Krivelevich, Ilan Newman, and
Eyal Rozenberg

Algorithmic Aspects of Property Testing in the Dense Graphs Model . . . 295
Oded Goldreich and Dana Ron

Testing Euclidean Spanners . 306
Frank Hellweg, Melanie Schmidt, and Christian Sohler

Symmetric LDPC Codes and Local Testing . 312
Tali Kaufman and Avi Wigderson

Some Recent Results on Local Testing of Sparse Linear Codes 320
Swastik Kopparty and Shubhangi Saraf

Testing (Subclasses of) Halfspaces . 334
Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and
Rocco Servedio

Dynamic Approximate Vertex Cover and Maximum Matching 341
Krzysztof Onak and Ronitt Rubinfeld

Table of Contents XI

Local Property Reconstruction and Monotonicity . 346
Michael Saks and C. Seshadhri

Green’s Conjecture and Testing Linear Invariant Properties 355
Asaf Shapira

Author Index . 359

A Brief Introduction to Property Testing

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il

Abstract. This short article provides a brief description of the main

issues that underly the study of property testing. It is meant to serve as

a general introduction to a collection of surveys and extended abstracts

that cover various specific subareas and research directions in property

testing.

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property Testing has been a subject of intensive research in the last couple of
decades, with hundreds of studies conducted in it and in closely related areas.

Gothic
cathedral ?

Fig. 1. Property Testing – An illustration

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 1–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 O. Goldreich

Indeed, Property Testing is closely related to Probabilistically Checkable Proofs
(PCPs), and is related to Coding Theory, Combinatorics, Statistics, Computa-
tional Learning Theory, Computational Geometry, and more.

This brief introduction to the area of Property Testing is confined to concep-
tual issues; that is, it focuses on the main notions and models being studied,
while hardly mentioning the numerous results obtained in the various models.
This deficiency of the current article is corrected by the various surveys and
extended abstracts presented in the current volume. In addition, we refer the
interested reader to two recent surveys of Ron [9,10].

2 The Issues

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept functions
that have some predetermined property (i.e., reside in some predetermined set)
and reject any function that is “far” from the set of functions having the property.
Distances between functions are defined as the fraction of the domain on which
the functions disagree, and the threshold determining what is considered far is
presented as a proximity parameter, which is explicitly given to the tester.

An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions
from Dn to Rn, where |Dn| = n. (Often, one just assumes that Dn = [n] def=
{1, 2, ..., n}.) Thus, in addition to the input oracle, representing a function f :
Dn → Rn, the tester is explicitly given two parameters: a size parameter, de-
noted n, and a proximity parameter, denoted ε.

Definition 1. Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over the

domain Dn. A tester for a property Π is a probabilistic oracle machine T that
satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
n ∈ N and f ∈ Πn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and n ∈ N, if
f : Dn → Rn is ε-far from Πn, then Pr[T f(n, ε)=0] ≥ 2/3, where f is ε-far
from Πn if, for every g ∈ Πn, it holds that |{e ∈ Dn : f(e) �= g(e)}| > ε · n.

If the tester accepts every function in Π with probability 1, then we say that
it has one-sided error; that is, T has one-sided error if for every f ∈ Π and
every ε > 0, it holds that Pr[T f(n, ε) = 1] = 1. A tester is called non-adaptive
if it determines all its queries based solely on its internal coin tosses (and the
parameters n and ε); otherwise it is called adaptive.

Definition 1 does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity.

A Brief Introduction to Property Testing 3

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case that the domain and range are associated with some algebraic
structures (e.g., groups, fields, and vector spaces) and studies algebraic proper-
ties such as being a polynomial of low degree (see, e.g., [3,11]). In the context of
testing graph properties (see, e.g., [4]), the functions represent graphs or rather
allow certain queries to such graphs (e.g., in the adjacency matrix model, graphs
are represented by their adjacency relation and queries correspond to pairs of
vertices where the answers indicate whether or not the two vertices are adjacent
in the graph).1

Ramifications. While most research in property testing refers to distances with
respect to the uniform distribution on the function’s domain, other distributions
and even distribution-free models were also considered. That is, for a (known or
unknown) distribution μ on the domain, we say that f is ε-far from g (w.r.t μ) if
Pre∼μ[f(e) �=g(e)] > ε. Indeed, Definition 1 refers to the case that μ is uniform
over the domain (i.e., Dn).

A somewhat related model is one in which the tester obtains random pairs
(e, f(e)), where each sample e is drawn (independently) from the aforementioned
distribution. Such random (f -labeled) example can be either obtained on top of
the queries to f or instead of them. This is also the context of testing distribu-
tions, where the examples are actually unlabeled and the aim is testing properties
of the underlying distribution (rather than properties of the labeling which is
null here).

A third ramification refers to the related notions of tolerant testing and dis-
tance approximation (cf. [8]). In the latter, the algorithm is required to estimate
the distance of the input (i.e., f) from the predetermined set of instances hav-
ing the property (i.e., Π). Tolerant testing usually means only a crude distance
approximation that guarantees that inputs close to Π (rather than only inputs
in Π) are accepted while inputs that are far from Π are rejected (as usual).

On the current focus on query complexity. Current research in property testing
focuses mainly on query (and/or sample) complexity, while either ignoring time
complexity or considering it a secondary issue. The current focus on these in-
formation theoretic measures is justified by the fact that even the latter are far
from being understood. (Indeed, this stands in contrast to the situation in, say,
PAC learning.)

On the importance of representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).
1 In an alternative model, known as the incidence-list model, graphs are represented

by functions that assign to the pair (v, i) the ith neighbor of vertex v.

4 O. Goldreich

This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natural
representations: the adjacency matrix representation (cf. [4]) and the incidence
lists representation (cf. [5]).

Things get to the extreme in the study of locally testable codes, which may
be viewed as evolving around testing whether the input is “well formed” with
respect to some fixed error correcting code. Interestingly, the general study of
locally testable codes seeks an arbitrary succinct representation (i.e., a code
of good rate) such that well-formed inputs (i.e., codewords) are far apart and
testing well-formness is easy (i.e., there exists a low complexity codeword test).

3 A Brief Historical Perspective

Property testing first appeared as a tool towards program checking (see the
linearity tester of [3]) and the construction of PCPs (see the low-degree tests and
their relation to locally testable codes, as discussed in [11]). In these settings it
was natural to view the tested object as a function, and this convention continued
also in [4], which defined property testing in relation to PAC learning. More
importantly, in [4] property testing is promoted as a new type of computational
problems, which transcends all its natural applications.

While [3,11] focused on algebraic properties, the focus of [4] was on graph
properties. From this perspective the choice of representation became less obvi-
ous, and oracle access was viewed as allowing local inspection of the graph rather
than being the graph itself.2 The distinction between objects and their repre-
sentations became more clear when an alternative representation of graphs was
studied in [5,6]. At this point, query complexity that is polynomially related to
the size of the object (e.g., its square root) was no longer considered inhibiting.
This shift in scale is discussed next.

Recall that initially property testing was viewed as referring to functions that
are implicitly defined by some succinct programs (as in the context of program
checking) or by “transcendental” entities (as in the context of PAC learning).
From this perspective the yardstick for efficiency is being polynomial in the
length of the query, which means being polylogarithmic in the size of the object.
However, when viewing property testing as being applied to (huge) objects that
may exist in explicit form in reality, it is evident that any sub-linear complexity
may be beneficial.

The realization that property testing may mean any algorithm that does not
inspect its entire input seems crucial to the study of testing distributions, which
emerged with [2]. In general, property testing became identified as a study of a
special type of sublinear-time algorithms.
2 That is, in this case the starting point is the (unlabeled) graph itself, and its repre-

sentation as a (labeled) graph by either its adjacency matrix or incidence list is an

auxiliary conceptual step.

A Brief Introduction to Property Testing 5

Another consequence of the aforementioned shift in scale is the decoupling of
the representation from the query types. In the context of graph properties, this
culminated in the model of [7].

Nevertheless, the study of testing properties within query complexity that only
depends on the proximity parameter (and is thus totally independent of the size
of the object) remains an appealing and natural direction. A remarkable result in
this direction is the characterization of graph properties that are testable within
such complexity in the adjacency matrix model [1].

References

1. Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization

of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC, pp.

251–260 (2006)

2. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that Distri-

butions are Close. In: 41st FOCS, pp. 259–269 (2000)

3. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications

to Numerical Problems. JCSS 47(3), 549–595 (1993); Extended abstract in 22nd

STOC (1990)

4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM, 653–750 (July 1998); Extended

abstract in 37th FOCS (1996)

5. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-

mica 32(2), 302–343 (2002); Extended abstract in 29th STOC (1997)

6. Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree

Graphs. Combinatorica 19(3), 335–373 (1999); Extended abstract in 30th STOC

(1998)

7. Kaufman, T., Krivelevich, M., Ron, D.: Tight Bounds for Testing Bipartiteness in

General Graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RAN-

DOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg

(2003)

8. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant Property Testing and Distance Ap-

proximation. JCSS 72(6), 1012–1042 (2006); Preliminary version in ECCC (2004)

9. Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and

Trends in Machine Learning 1(3), 307–402 (2008)

10. Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Foundations

and Trends in TCS 5(2), 73–205 (2010)

11. Rubinfeld, R., Sudan, M.: Robust Characterization of Polynomials with Applica-

tions to Program Testing. SIAM Journal on Computing 25(2), 252–271 (1996)

The Program of the Mini-Workshop

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il

Abstract. This article provides an annotated version of the program

of the mini-workshop on propoerty testing that took place in January

2010 in the Institute for Computer Science (ITCS) at Tsinghua Univer-

sity (Beijing). The mini-workshop brought together a couple of dozen of

leading researchers in Property Testing and related areas.

Editor’s note. The original program is annotated by brief comments that repre-
sent the author’s subjective perspective on the various presentation. In order to
emphasize the subjective nature of these comments, their original informal style
was maintained below.

Session 1 (Friday, January 8, 9:00-10:15) [chair: Oded Goldreich]

– Amy Wang: Welcoming comments.
– Rocco Servedio: Testing by Implicit Learning.
– Kevin Matulef: Testing (subclasses of) Linear Threshold Functions.

Kevin was ill, and so Rocco gave both talks. I am fascinated by the implicit
learning paradigm, which is pivoted on emulating learning algorithms for k-
variable functions by using n-bit long samples with k influential variables. The
emulation proceeds by randomly partitioning the variables to O(k2) sets, iden-
tifying k sets that are likely to each contain a single influential variable, and
converting the n-bit long samples to corresponding k-bit samples. Specifically,
each n-bit sample is converted by determining for each influential set whether
the subset of variables labeled 1 or the subset labeled 0 is influential, and set-
ting the corresponding bit accordingly. Once the learning algorithm outputs a
hypothesis for the k-bit function, it is tested using adequate queries (which are
again emulated correspondingly). The second work shows that, while the class
of all halfspaces is testable in query complexity that is independent of n, testing
some natural subclasses of halfspaces (i.e., “unate reorientations of majority”
where the weights are ±1) requires query complexity that depends on n.

Session 2 (Friday, January 8, 10:45-12:00) [chair: Avrim Blum]

– Eric Blais: Testing juntas and function isomorphism.
– Michael Krivelevich: Hierarchy Theorems for Property Testing

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 6–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Program of the Mini-Workshop 7

Eric motivated the problem of optimizing the complexity of testing juntas by
referring to the wide applicability of juntas (i.e., functions that depend on few
of their inputs). The algorithm presented in Eric’s work is very appealing, and
has query complexity Õ(k/ε), where ε is the proximity parameter. In addition,
Eric advocated a study of the following class of parameterized problems. For a
fixed function g, which is known to the tester, the task is testing whether the
given oracle/function is isomorphic to g (i.e., f equals g under a relabeling of
the indices of the variables). In a sharp shift from the concrete to the general,
Michael presented an overview of results that assert the existence of properties
with arbitrary (reasonable) query complexity bound.

Session 3 (Friday, January 8, 14:00-15:30) [chair: Bernard Chazelle]

– Ilan Newman: A Survey on Property Testing in the “Underlying Graph”
Model or the “Massively Parameterized” Model.

– Sofya Raskhodnikova: Transitive-Closure Spanners with Applications to
Monotonicity Testing.

– Christian Sohler: Testing Euclidean Spanners.

Ilan surveyed works that refer to “massively parameterized” testing problems.
The parameters are huge structures (e.g., graphs) and the problem refers to a
substructure of it (e.g., an assignment to the graph’s edges). In the case of graphs,
the assignment may be viewed as an orientation of the fixed graph or a subgraph
of it. Sofya discussed the notion of transitive-closure spanners (i.e., spanners of
the transitive closure graph), which are implicit in some monotonicity testers.
Christian discussed the notion of geometric graphs, which are graphs embedded
in a Euclidean space Rd, and the corresponding notion of spanners (which are
geometric graphs in which the graphical distance between pairs of vertices is
approximated by their Euclidean distance).

Panel 1 (Friday, January 8, 16:00-17:00) On the Connection of Property Test-
ing to Computational Learning Theory and Computational Geometry. Panelists:
Avrim Blum, Bernard Chazelle, and Rocco Servedio.

Bernard advocated an attempt to provide a sublinear time analysis of dynamic
systems, which may consist of selecting few objects and tracing their activity
during time. Avrim emphasized the high cost of queries (rather than random
examples) in typical learning applications, and I suggested to consider a two-
parameter complexity measure that separates the number of random examples
from the number of actual queries. Rocco suggested to try to relate property
testing to agnostic learning (rather than to standard learning), and highlighted
the open problem of tolerant testing of half planes.

Session 4 (Saturday, January 9, 9:00-10:15) [chair: Shafi Goldwasser]

– Madhu Sudan: Invariance in Property Testing.
– Victor Chen: Testing Linear-Invariant Non-Linear Properties.

8 O. Goldreich

Madhu mused on what makes problems easily testable and suggested that closure
under a rich permutation group plays a major role. This seems supported by the
numerous results regarding algebraic functions (which are all invariant under
suitable affine transformations) and graph properties (which, by definition, are
closed under isomorphism). He surveyed a unified approach that refers to the
former, where the affine transformations refer to the identification of the domain
with a vector space. Victor demonstrated that the approach extends also to non-
linear properties, and Noga commented that an alternative demonstration may
be provided by a property that is a union of two disjoint linear spaces.

Session 5 (Saturday, January 9, 10:45-12:00) [chair: Michael Saks]

– Asaf Shapira: Testing Linear Invariant Properties.
– Noga Alon: On Constant-Time Approximation of Invariants of Bounded De-

gree Graphs.
– Ronitt Rubinfeld: Maintaining a Large Matching or a Small Vertex Cover.
– Krzysztof Onak: External Sampling.

Asaf’s study refers to the paramertized problem of whether a given subset of
[n] is free from containing any solution to a fixed set of linear equations. This
was studied before with respect to a single equation (i.e., x+ y = z), and Asaf’s
work treats any linear system. Noga’s study refers to approximating quanti-
ties such as the independence number of bounded-degree graphs. He shows that
constant-time algorithms can almost match the best approximation bounds that
are previously known for PTAS, and that better bounds cannot be achieved in
constant-time. (This is related to Krzysztof’s presentation in Session 6.) Ronitt’s
work demonstrates that techniques employed in the context of distributed algo-
rithms can be applied to the context of dynamic graph algorithms. This augments
prior connections between constant-round distributed algorithms and constant-
time approximation algorithms (discovered by Parnas and Ron [4]). Ronitt asked
whether a direct relation can be shown between dynamic graph algorithms and
constant-time approximation algorithms. Krzysztof advocated applying “exter-
nal memory cost” measures to property testing algorithms. He showed such a
result for the problem of element distinctness, presenting an algorithm that sam-
ples

√
nB/ε random B-bit blocks.

Session 6 (Saturday, January 9, 14:00-15:30) [chair: Noga Alon]

– Krzysztof Onak: Sublinear Graph Approximation Algorithms.
– Michael Saks: Local Monotonicity Reconstruction.
– Ronitt Rubinfeld: Testing Properties of Distributions (a survey).

A natural setting in which sublinear time algorithms may be useful is in approx-
imating the value of various graph theoretic quantities, especially when these
quantities are hard to determine (e.g., minVC). Parnas, Ron, and Marko [4,3]
focused on maximal matching and minVC, while observing a correspondence
between constant-time approximation algorithms for the size of the maximal in-
dependent set and distributed algorithms that find such sets. Krzysztof surveyed

The Program of the Mini-Workshop 9

further developments along these lines, focusing on the extension of the study to
many other problems (e.g., maximum matching, minimum dominating sets, etc)
and the introduction of new techniques and improved results. The new techniques
are also applicable to various testing problems; see the improvement obtained
over [2] in the context of testing minor-free graphs in the bounded-degree model.
Michael discussed the local reconstruction problem applied to objects for which
there are exponentially many adequate solutions. The problem in this case is
to determine some fixed solution as a function of the corrupted oracle and the
random bits (used in the reconstruction), where in some applications it is desir-
able to use few random bits. Ronitt surveyed the study of testing properties of
distributions, starting with the problem of testing identity to some known distri-
bution (i.e., a parameterized problem), which is solvable by

√
n samples when n

is the domain’s size (and the estimate is via collision probabilities). Testing that
two given distributions (i.e., both distributions are “given” by samples) requires
3-way collisions and so n2/3 samples. In contrast, approximating the distance to
the uniform distribution requires an “almost linear” number of samples.

Panel 2 (Saturday, January 9, 16:00-17:00) On the Connection of Property Test-
ing to Coding Theory, Combinatorics, and Statistics. Panelists: Madhu Sudan,
Noga Alon, and Ronitt Rubinfeld.

Noga focused on the “global vs local” nature of property testing that is closely
related to a main theme in combinatorics initiated by Erdos in the 1950’s. He
noted that a tester of k-colorability is implicit in work of the 1980’s, but the
query bound obtained there is a tower of exponents in the proximity parameter.
Answering a question, Noga kind of suggested the challenge of testing triangle-
freeness in 2O(1/ε)2 queries. (Recall that the currently best known bound is a
tower of exponents in poly(1/ε).) Ronitt reported on the awakening of interest
of statisticians in the effect of the size of the domain (of values). (Traditionally,
Statistics is concerned with the effect of the size of the universe (sample space),
whereas we are concerned with the effect of the number of values actually ob-
tained by samples in this space.) Still there are significant cultural differences,
since in Statistics one often makes (implicit) assumptions about the distribution
and/or assumes that the distribution itself is selected at random among some
possibilities (hence “likelihood” is relevant). Ronitt also pointed out possible ap-
plications to areas that use Statistics such as natural language processing and
data bases. Madhu pointed out that sublinear time algorithms arise naturally
in the context of coding theory. Shafi advocated the study of property testing
of algebraic (and number theoretic) problems beyond linearity and low-degree
properties. A concrete example may be testing that a polynomial (given by its
evaluations) is an irreducible polynomial. Can a tester be significantly more
efficient than polynomial interpolation?

Session 7 (Sunday, January 10, 9:00-10:15) [chair: Ronitt Rubinfeld]

– Prahladh Harsha: Composition of Low-Error 2-Query PCPs using Decodable
PCPs.

10 O. Goldreich

– Victor Chen: A Hypergraph Dictatorship Test with Perfect Completeness.
– Michael Krivelevich: Comparing the Strength of Query Types in Property

Testing.

Prahladh started by relating two-query PCPs to (highly) robust PCPs, and pro-
ceeded in terms of the latter. to two-query PCPs. The new composition of robust
PCPs starts by observing that there is no need to keep the outer proof for con-
sistency, since consistency can be tested by comparing two related inner proofs
(which refer to the same position in the outer proof). This, however, changes
nothing because still consistency can be achieved by modifying less than half
of the total length of both scanned parts. The new idea is to check consistency
among d such parts, which may allow to reduce robustness error to approximately
1/d. Indeed, this is doable, and is what the new composition theorem does, while
relying on the fact that the inner PCP is decodable. My view is that the resulting
two-query low-error PCPs are interesting mainly because decreasing the error to
an arbitrarily small constant (and even below) does not result in increasing the
proof length. Moving from PCPs to codeword tests, Victor surveyed the state of
the art regarding the amortized query complexity of dictatorship testing (with
perfect completeness), which currently stands on soundness error of O(q · 2−q)
per q non-adaptive queries (see [6]). Michael discussed a general framework for
testing graph properties, where distances are normalized by the actual number
of edges and various types of queries are considered. In the work, “group queries”
(akin of “group testing”) are shown to be strictly stronger than the combination
of the standard vertex-pair and neighbor queries.

Session 8 (Sunday, January 10, 10:45-12:00) [chair: Michael Krivelevich]

– Shubhangi Saraf: Some Recent Results on Testing of Sparse Linear Codes.
– Swastik Kopparty: Optimal Testing of Reed-Muller Codes.

Shubhangi advocated viewing locally testable linear codes as a special case of
tolerant testing the Hadamard codewords under some adequate distributions
(specifically, the distribution that is uniform on the corresponding positions of
the Hadamard code). The tolerance condition prevents rejecting a codeword
based on positions that are assigned zero probability. She presented two re-
sults, relating to two notion of tolerant testing (or rather distance approximation
(cf. [5]): the more general result yields a weak notion of approximation and is
obtained under the so-called uniformly correlated condition, whereas a strong no-
tion of approximation requires a stronger correlated condition. A distribution μ

is called k-uniformly correlated if there is a joint distribution of k-tuples such that
each element (in the k-tuple) is distributed as μ but their sum is uniformly dis-
tributed. The stronger condition requires that this holds when these k elements
are independently drawn from μ, which is equivalent to requiring that the code
be sparse and have small Fourier coefficients. Swastik presented an improved
analysis of the AKKLR linearity test (for degree d multi-linear polynomials over
GF(2)) [1], showing that the basic test rejects far away function with constant
probability (rather than with probability Ω(2−d)).

The Program of the Mini-Workshop 11

Session 9 (Sunday, January 10, 14:00-15:30) [chair: Madhu Sudan]

– Eli Ben-Sasson: Limiting the Rate of Locally Testable Codes.
– Tali Kaufman: Symmetric LDPC Codes and Local Testing.
– Artur Czumaj: Testing Monotone Continuous Distributions on High-

Dimensional Real Cubes.
– Krzysztof Onak: The Query Complexity of Edit Distance.
– Sofya Raskhodnikova: Testing and Reconstruction of Lipschitz Functions

with Applications to Privacy.
– Oded Goldreich: Algorithmic Aspects of Property Testing in the Dense

Graphs Model.

Eli surveyed several results that assert that various parameters of LTCs imply
an exponentially vanishing rate. One such result refers to LTCs that are tested
by a small set of constraints (which is only somewhat larger than the dimension
of the dual code). Tali advocated the study of codes that are each characterized
by a short constraint and its orbit under a suitable group. Arthur advocated
the study of testing continuous distributions, focusing on the case that they
are actually discrete (i.e., assume a finite number of possible values). Krzysztof
contrasted the query complexity of testing the edit distance of a given string
(from a fixed string) to the corresponding problem for Ulam distance. Sofya
presented an application of reconstruction procedures (as presented by Michael
Saks in Session 2) to data privacy; specifically, if data privacy is maintained for
functions of a certain type, then we may want to modify the given function to
that class. I tried to call attention to the work “Algorithmic Aspects of Property
Testing in the Dense Graphs Model” (co-authored by Dana), while highlighting
several perspectives and questions that arise.

Panel 3 (Sunday, January 10, 16:00-17:00)

– Prahladh Harsha on decoding in the low-error regime
– Ron Rivest on possible applications of property testing to the security eval-

uation of hashing functions.

Prahladh mused on whether decoding in the low-error regime may find additional
applications in property testing. Ron asked whether property testing techniques
can be employed to the evaluation of the quality of various cryptographic com-
pression functions.

References

1. Alon, N., Krivelevich, M., Kaufman, T., Litsyn, S., Ron, D.: Testing Reed-Muller

codes. IEEE Transactions on Information Theory 51(11), 4032–4038 (2005); An

extended abstract appeared in the proceedings of RANDOM 2003 (under the title

Testing Low-Degree Polynomials over GF(2)

2. Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of Sparse

Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)

12 O. Goldreich

3. Marko, S., Ron, D.: Approximating the Distance to Properties in Bounded-Degree

and General Sparse Graphs. ACM Transactions on Algorithms 5(2) (2009); Ex-

tended abstarct in the proceedings of Random (2006)

4. Parnas, M., Ron, D.: Approximating the Minimum Vertex Cover in Sublinear Time

and a Connection to Distributed Algorithms. TCS 381(1-3), 183–196 (2007); Pre-

liminary version in ECCC (2005)

5. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant Property Testing and Distance Ap-

proximation. JCSS 72(6), 1012–1042 (2006); Preliminary version in ECCC (2004)

6. Tamaki, S., Yoshida, Y.: A Query Efficient Non-Adaptive Long Code Test with

Perfect Completeness. In: ECCC, TR09-074 (2009)

Limitation on the Rate of Families of Locally

Testable Codes

Eli Ben-Sasson

Computer Science Department, Technion — Israel Institute of Technology, Haifa,

32000, Israel

eli@cs.technion.ac.il

Abstract. This paper describes recent results which revolve around the

question of the rate attainable by families of error correcting codes that

are locally testable. Emphasis is placed on motivating the problem of

proving upper bounds on the rate of these codes and a number of inter-

esting open questions for future research are suggested.

Keywords: Locally testable codes, error correcting code, probabilisti-

cally checkable proofs.

1 Introduction

A locally testable code (LTC) is an error correcting code for which membership in
the code can be ascertained, to a high degree of confidence, by a random process
that queries a negligible fraction of a purported codeword. Locally testable codes
lie at the core of all known constructions of probabilistically checkable proofs
(PCPs), from [1,2] to [3], their discovery has inspired the study of property
testing [4], and the construction of such codes has been of great interest to
theoretical computer science in the recent past. Several surveys describe the
concepts around which these codes revolve [5,6], and a number of distinct ways
to obtain such codes are known by now (see Section 1.2). The purpose of this
brief survey, which assumes familiarity with the basic notion of an LTC, is to
explain what is known about the limitations of constructions of such codes, or,
in plain words, what kinds of LTCs are mathematically impossible to obtain.

When studying locally testable codes we are interested in both the classically
studied parameters of error correcting codes, such as rate and relative distance,
as well as in the local-testability parameters of the code, the query complexity or
number of entries read by the testing process, and the completeness and sound-
ness which measure the probability of correctness of this process (these concepts
are defined in the next subsection). We intend to study the interplay between
these two kinds of code-related parameters so let us informally explain what kind
of trade-offs we expect to see. Better local-testability parameters, like smaller
query complexity and larger completeness and soundness parameters should be
expected to negatively affect the classical coding parameters, decreasing the rate
and/or relative distance of the code. We can show that this intuition does indeed

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 13–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 E. Ben-Sasson

hold for certain families of codes, as surveyed later on. But for all the effort that
has gone into the study of LTCs, the fundamental question that motivates our
study (Question 1), regarding the existence of an asymptotically good family of
LTCs, remains wide open. Before we continue we pause to recall the definition
of a locally testable code and the reader familiar with this definition and the
associated notation is encouraged to skip the following subsection.

1.1 Defining Locally Testable Codes

We assume familiarity with the basic definitions of error correcting codes, which
can be found, e.g., in [7]. A code C over alphabet Σ of blocklength n, message-
length k and minimal distance d will be called an (n, k, d)Σ-code. It is a subset of
Σn of size at least |Σ|k which satisfies the condition that for any pair of distinct
codewords w, w′ ∈ C their Hamming distance, defined as the number of entries
on which w and w′ disagree, is at least d. We shall reserve the letter w to denote
codewords and r to denote “received” words, words which are not known to
belong to C. The ith entry of r will be denoted by ri.

Two fundamental parameters of a code are its rate ρ(C) = k/n which measures
the ratio of message to codeword length and the relative distance δ(C) = d/n

which dictates the noise-resilience of the code. We shall be interested in families
of codes {Cn ⊂ Σn | n ∈ Z}. A family of codes is said to be asymptotically good
if all members of it have positive rate and relative distance, i.e., there exist
constants ρ, δ > 0 such that each Cn satisfies ρ(Cn) ≥ ρ and δ(Cn) ≥ δ. Given C
and r ∈ Σn let δC(r) denote the relative (Hamming) distance between r and C,
defined as the minimal fraction of entries of r that need to be changed in order
to obtain a word in C. When δC(r) ≥ ε we say r is δ-far from C and otherwise
say r we say ε-close to it.

When Σ is the q-element finite field Fq (when the size of F is known or
insignificant we use F to denote it) and C is a linear code, i.e., a k-dimensional
subspace of Fn, we shall say C is an [n, k, d]F-code. In this case the distance of
the code is equal to the minimal weight of a nonzero codeword, where the weight
of a word r ∈ Fn is the number of nonzero entries in r.

A locally testable code is an error correcting code — we expect it to have large
relative distance — which comes with a randomized algorithm, called a tester,
that samples a small number of entries of a received word r ∈ Σn and is capable
of distinguishing with nontrivial probability between the “good” case that r is
an uncorrupted codeword, i.e., that r belongs to C (so δC(r) = 0) and the “bad”
case that r is ε-far from C. Since the definition of an LTC is tied to that of a
tester we give both of them together.

Definition 1 (Tester and locally testable code). Let C be an (n, k, d)Σ-
code. A (q, ε, s, c)-tester for C is a randomized algorithm T with oracle access
to a purported codeword r ∈ Σn which operates as follows. The tester T uses
randomness to sample at most q entries of r and outputs a verdict which is either
accept or reject. Denote by T r[R] the output of T on oracle r and random coins
R. We say that T is a q-query tester, or, simply, a q-tester.

Limitation on the Rate of Families of Locally Testable Codes 15

The code C is said to be (q, ε, s, c)-locally testable if it has a q-tester that
satisfies the following completeness and soundness requirements. It the tester
satisfies the (stronger) requirement of strong soundness we say C is a (q, s, c)-
strong locally testable code.

Completeness. If r ∈ C then

Pr
R

[T r[R] = accept] ≥ c.

Soundness. For every r �∈ C that is ε-far from C

Pr
R

[T r[R] = reject] ≥ s.

Strong Soundness. For every r �∈ C

Pr
R

[T r[R] = reject] ≥ s · δC(r).

The parameters q, ε, s, c are known respectively as the query complexity, distance
threshold, soundness and completeness.

When c = 1 we say the code and tester have perfect completeness and in such
cases will often, for simplicity, omit reference to c.

Remark 1 (Distance threshold and high-error, or list-decoding, LTCs). To get
nontrivial LTCs the distance threshold ε should be less than half the relative
distance of the code. Otherwise, it could be the case that there simply are no
words ε-far from it, in which case the trivial tester that accepts all words shows
that the code is (0, ε, 1, 1)-LTC. We shall set the distance threshold to be one
third the minimal distance of the code1 and refer to such a (q, δ(C)/3, s, c)-LTCs
as a LTC for the low-error regime, or, simply, a low-error LTC. The choice of
this name is because if r ∈ Σn is accepted by the tester with probability greater
than 1−s, we know that r is δ(C)/3-close to C, i.e., it has a low fraction of errors.
Another common name for such a LTC is a unique decoding LTC because in the
case just described there is a unique codeword that is closest to r.

For values of ε greater than half the minimal distance of C, we say that C is a
LTC in the high-error, or list-decoding regime. This is because a word accepted
with probability greater than 1 − s, which is known to be ε-close to C, can in
fact be ε-close to list of codewords. In the setting of high-error LTCs the kind
of questions that are of interest revolve around understanding the connection
between the acceptance probability of a received word and its proximity to the
code. We shall not discuss these questions in this survey, due to scarcity of
relevant results on rate limitations of such codes.
1 Some of the LTC rate limitations surveyed here, like [8,9,10], require the distance

threshold to be less than one third the minimal distance. This is due to technical

reasons arising in the proofs. In any case, all known LTC constructions work for

any sufficiently small distance parameter and the standard assumption in property

testing settings is that the distance threshold is an arbitrarily small nonzero constant.

16 E. Ben-Sasson

Remark 2 (Non-adaptivity and perfect completeness). A tester is said to be non-
adaptive if the codeword-entries queried by it depend only on the value of the
random coins (in particular, they do not depend on answers given to earlier
queries). All known LTC constructions are nonadaptive, i.e., the tester associ-
ated with them is nonadaptive. For a family of LTCs with perfect completeness
and constant query complexity adaptivity can be assumed without loss of gener-
ality, by incurring at most a constant factor reduction in the soundness param-
eter. Furthermore, almost all known LTCs are linear and consequently can be
assumed to be nonadaptive and with perfect completeness (cf. Theorem 2), the
notable exception to both linearity and perfect completeness is the “long code”
of [11].

Remark 3 (Soundness and completeness). To get a meaningful definition we
must require s to be greater than 1−c. Otherwise every code can be seen to be a
(0, 0, s, c)-LTC, the tester associated with it rejects all words with probability s,
hence accepts all words, and, in particular, all codewords, with probability ≥ c.

Remark 4 (Running time). Our definition of a tester does not put any limitation
on the running time of the tester. For families of codes with constant query com-
plexity this is not a severe restriction because the tester can always be assumed
to run in (nonuniform) time that is at most polynomial in the blocklength, and
under reasonable assumptions the running time is quasi-linear, i.e., bounded by
npoly log n (cf. [12]). Families of linear codes — almost all known LTCs fall in
this category — can similarly be assumed to require (nonuniform) quasi-linear
running time because they can be tested by “linear testers” (as explained in
Section 2.1). The main advantage to not putting a running-time constraint on
the tester is that it allows us to focus on the code structure and avoid questions
about computational complexity.

1.2 A Brief Survey of Known LTC Constructions

The purpose of this section is to display the abundance and variance of LTC
constructions which should motivate both the search for a common denominator
to all the different ways LTCs are constructed, as well as the study of limitations
of these codes.

LTCs based on low-degree polynomials. The first family of LTCs, due to [13], is the
family of homomorphisms from a finite group G to a subgroup H of G. Formally,
C(G, H) ⊂ HG has one codeword corresponding to each group-homomorphism
φ : G → H and this codeword is the evaluation of φ on all elements of G. This
family was shown to be a low-error LTC in [13]. The special case of G being the
additive group Fn and H = F for a prime field F was shown in [14] to be a locally
testable in the high-error, or list-decoding, regime. The codes thus obtained are
called Hadamard codes and correspond to the code of evaluations of n-variate, de-
gree 1, homogenous polynomials. The generalization to arbitrary degree d polyno-
mials was carried out promptly for the case of d < |F|. This family of codes, known
as Reed-Muller codes, was shown to be locally testable in the low-error regime in

Limitation on the Rate of Families of Locally Testable Codes 17

[15,2], and in the high-error regime by [16,17]. Later on the case of d ≥ |F| was an-
alyzed for the low-error regime by [18,19] and for the high-error regime by [20] for
the special case of d = 2. High-error LTCs based on polynomials of degree d ≥ 3
and d ≥ |F| remains as an interesting open problem.

Group invariant LTCs. An “invariance-based” approach to the construction of
LTCs was implicitly suggested by [18] and explicitly undertaken, for the special
case of affine-invariant codes, by [21] (see also [22,23,24]). More on this ap-
proach can be found in Section 3 and in the survey [25]. Roughly speaking, this
approach is based on finding codes that are invariant under a “sufficiently rich”
group of permutations, and additionally contain some local constraints that all
codewords satisfy. The group-invariance of the code then implies a multitude
of local constraints that all codewords satisfy, and this leads the way to prove
local-testability.

Composed LTCs. Another way to construct LTCs, which among other things
leads to the LTCs achieving the best known rate, relies on the use of probabilis-
tically checkable proofs of proximity (PCPPs) [26,27] (see also [28]). Another
approach that is also described as “combinatorial”, because it relies neither on
properties of low-degree polynomials, nor on group theory, is based on taking a
repeated tensor-product of codes [29]. It should be pointed out that the codes
arising from these methods are low-error LTCs and it remains to see what kind
of LTCs in the high-error regime can emerge from high-soundness PCP compo-
sition techniques like those of [30,31].

Sparse unbiased LTCs. The final family of LTCs we are aware of consists of
sparse, unbiased binary linear codes, i.e., linear codes over Fp for prime p that
have a number of codewords that is only polynomial in the blocklength and for
which all nonzero codewords have relative weight that is very close to 1 − 1

p

[32,33] (see also [34]).

1.3 Why Study Limitations of LTCs?

Before explaining why we think LTC limitations are worth pursuing we post the
fundamental problem underlying our quest.

Question 1 (Do asymptotically good LTCs exist?). Prove or refute the follow-
ing statement: There exists an asymptotically good family of binary error cor-
recting codes {Cn ⊆ {0, 1}n | n ∈ Z} with relative distance δ that is a family of
(q, δ/3, s, c)-LTC, for some integer q and soundness and completeness parameters
satisfying c + s > 1 (see Remark 3).

The main reason to study limits of LTCs is because this seems to be the most
meaningful way to understand the limits of basic PCP-related parameters, most
notably the rate of PCP proofs which we define as the ratio between the length
of an NP-witness for an NP-instance φ , and the length of a probabilistically
checkable proof for φ. The problem with the direct approach to bounding the rate
of PCPs is that any nontrivial lower bound on the rate — even one that proves

18 E. Ben-Sasson

that PCP proof length is greater than zero — implies P �= NP. Since all proofs
of the PCP theorem make use of LTCs, and moreover the rate of the LTC is an
upper bound on the rate of the PCP constructed from it, giving a negative answer
to Question 1 would imply that PCP proofs constructed by current techniques will
not attain constant rate. Anticipating future practical applications use of PCPs in
cryptography and security-related protocols [35,36,37], we see that understanding
the rate of PCPs is very important not just for theoretical purposes.

More broadly, the study of limitations of locally testable codes can be viewed
as a branch of the study of classical tradeoffs for error correcting codes. When
new families of codes are discovered (e.g., linear, cyclic, maximal distance separa-
ble, algebraic geometry, turbo, etc.) it is of great importance to understand how
well they match up with known codes in terms of their basic coding-related pa-
rameters. Locally testable codes possess a highly desirable coding-related prop-
erty, namely, the amount of errors in a received word can be estimated by in-
specting only a tiny fraction of the codeword. This leads to the possibility of
saving computation time, and the energy consumption required by the decoding
algorithm, by getting a quick and roughly accurate estimate of the condition of
received words and asking for a “re-transmit” in case the word is estimated to
be corrupted beyond repair.

Finally, the concept of “locality of computation” is a theme of great interest in
numerous settings of theoretical computer science. This is witnessed by the large
body of work on property testing and on locally decodable codes. Understanding
the limits of LTCs also touches upon questions related to locality of computation
in other settings and one may expect to see more connections between LTC rate
bounds and other areas in which “local computation” is studied.

1.4 Summary of Results Appearing in the Survey

In the next section we focus on linear codes and ask what limitations can be ob-
tained from studying the structure of the set of dual codewords of small weight.
We shall start with random low density parity check codes and use the expander-
structure of the constraint graph associated with these codes to argue in The-
orem 2 that they are not locally testable even when the query complexity is
allowed to be fairly large. Then we shall generalize this result in Theorem 3 and
show that all linear LTCs require that their dual code contain many low-weight
words and, in Theorem 4, that these words must be nontrivially related. We
conclude this section by showing in Theorem 5 that if an LTC has far too many
redundant small-weight dual words then it has bad rate.

In Section 3 we shall investigate the rate limitations of group invariant codes.
These codes include all known “base-case” LTCs, such as Hadamard and Reed-
Muller codes, which serve as the building blocks in more elaborate LTC con-
structions (such as PCPP-based LTCs). We shall see in Theorem 7 that affine-
invariant codes with small dual weight — the most general class of group-
invariant codes known to be locally testable — has bad rate.

Limitation on the Rate of Families of Locally Testable Codes 19

Results not covered by the survey. Two lines of work on limits of LTCs are not
surveyed here. The first set contains the results of [38] which show that 3-query
LTCs arising from PCPP-based constructions cannot obtain close-to-optimal
soundness in the list decoding regime without suffering a significant decrease in
the code-rate. The second line discusses various kinds of 2-query LTCs — linear
[8], near-perfect completeness [39], “unique” [40] and “affine” [41] — and shows
that there is at most a finite number of (2-query) LTCs of each kind.

2 Limiting Rate of Linear LTCs via the Structure of the
Dual Code

This section focuses on limitations on the rate of families of linear LTCs. We
shall focus on the linear space that is dual to the (linear) code C ⊆ Fn, this space
is also known as the dual code and defined as C⊥ = {u ∈ Fn | u ⊥ C} where u ⊥ C
if and only if u ⊥ w for all w ∈ C and u ⊥ w denotes the equality

∑n
i=1 uiwi = 0

(in case of inequality we write u �⊥ w). We shall take particular interest in the
combinatorial structure of the set of dual codewords of small weight. We start by
explaining why focusing on this structure is all that matters for local testability
of linear codes.

2.1 Linear LTCs Are Testable by Linear Testers

A natural way to test whether a word r ∈ Fn belongs to an [n, k, d]F linear code
C ⊂ Fn is to project r onto a set of coordinates I ⊂ {1, . . . , n}, |I| ≤ q and
accept r if and only if this projection, denoted by r|I , agrees with a projection
w|I of some codeword w ∈ C. Writing C|I = {w|I | w ∈ C} we can describe this
natural test as the test that accepts r if and only if r|I ∈ C|I . The operator that
projects r ∈ Fn onto I is a linear operator, by which we mean that for every
a, b ∈ Fn and α, β ∈ F we have (αa + βb)|I = α(a|I) + β(b|I) and this implies
that our natural tester is fact a linear test — its acceptance predicate, defined
as the subset of FI of query-answer tuples accepted by the test, is a linear space,
it is the precisely the linear space C|I .

Accordingly, a linear tester for C is given by a distribution D on subsets I of
size at most q. The following theorem of [42] says that without loss of generality
linear codes are q-query LTCs if and only if they are testable by a linear tester.

Theorem 1 (Linear LTCs have linear testers). If C ⊆ Fn is a linear
(q, ε, s, c)-LTC then C is a (q, ε, s + (1− c), 1)-LTC that can be tested by a linear
tester. (Notice the difference between completeness and soundness is maintained
when moving from an arbitrary tester to a linear one.)

Given this theorem we can go one step further and describe the subsets I ⊂
{1, . . . , n} which correspond to nontrivial linear tests. If I is such that C|I = FI

then the (linear) test associated with I is meaningless — all words must be
accepted by it. On the other hand if C|I is a subspace strictly contained in FI

we do get a nontrivial test, meaning that some words r ∈ Fn \ C will be rejected

20 E. Ben-Sasson

by it. In this case, the space that is dual to C|I , denoted (C|I)⊥, has positive
dimension, so it contains some nonzero words. Any word u ∈ (C|I)⊥ can be
extended to a word in Fn that is dual to C and has its nonzero entries contained
in I — set all entries in {1, . . . , n} \ I to 0 and notice the word thus obtained is
dual to C.

Assuming (C|I)⊥ is nontrivial we can think of another way to test wether r|I ∈
C|I . Instead of querying all entries in I, pick a uniformly random u ∈ (C|I)⊥
and accept r if and only if u ⊥ r. It is easy to see that this test retains perfect
completeness, and we now argue that soundness goes down by a factor of at most
(1− 1

F
). To see this, suppose r �∈ C|I . The set

{
u ∈ (C|I)⊥

∣∣ r ⊥ u
}

is a strict sub-
space of (C|I)⊥, hence it contains at most a (1/|F|)-fraction of (C|I)⊥, so a random
u ∈ (C|I)⊥ will “reject” r (i.e., u �⊥ r) with probability at least (1 − 1/|F|) times
the probability that r|I �∈ C|I . To sum up, if we don’t care too much about the
exact soundness constant then we may assume without loss of generality that a
linear LTC is tested by a tester that is defined by a distribution over C⊥

≤q, the set
of words in the dual code C⊥ that have weight at most q. We record this by the
following corollary of Theorem 2 (cf. [10, Section 2]). In what follows we use u ∼ D

to denote that u is sampled according to the distribution D.

Corollary 1 (Linear codes are testable by a distribution over dual
words of small weight). If C ⊆ Fn is a linear (q, ε, s, c)-LTC then there exists
a distribution D over C⊥

≤q such that for every r that is ε-far from C we have
Pru∼D[u �⊥ r] ≥ s+(1−c)(1−1/|F|)). (Notice the soundness is (1−1/|F|) times
the soundness stated of Theorem 2.)

All this leads us to consider the constraint graph of a tester, a concept that will
play a pivotal role in our analysis. Given U ⊆ C⊥

≤q (U may be a strict subset
of C⊥

≤q) we define the constraint graph induced by U to be the bipartite graph
G({1, . . . , n}, U, E) with left vertex set {1, . . . , n}, right vertex set U and an
edge between i and u if and only if ui �= 0. Given a distribution D as in the
corollary above let supp(D) =

{
u ∈ C⊥ ∣∣ D(u) > 0

}
denote the support of the

tester, it is the set of dual words, or linear tests, actually used by the tester. The
constraint graph induced by a linear tester associated with D is the constraint
graph induced by supp(D).

2.2 Random Low Density Parity Check Codes

Roughly speaking, a linear code whose dual contains many small-weight words
should be hard to construct as the existence of many small-weight words may
reduce other parameters of the code, like its rate. Thus, a good starting point is
to examine the local testability of the family of random low density parity check
(LDPC) codes which are known to be asymptotically good [43]. We shall show
that testers achieving constant soundness for these codes require linear query
complexity, and along the way we shall try to explain the way how this negative
result about local testability is related to the structure of the constraint graphs
associated with random LDPC codes.

Limitation on the Rate of Families of Locally Testable Codes 21

To define our codes we need to describe the concept of a random regular bi-
partite graph. A bipartite graph is said to be (t, q)-regular if all vertices on the
left side have degree at most t and all vertices on the right side have degree at
most q. A random (t, q)-regular graph with n left-hand vertices and m = �tn/q
right-hand ones is obtained as follows. Start with a four-layered graph, the left-
most layer is V , the second and third have tn vertices each, numbered 1, . . . , tn,
and the rightmost layer is U . Connect i ∈ V to the t vertices in the second layer
numbered t(i−1)+1, . . . , ti. Similarly connect vertex number j in U to the q ver-
tices numbered q(j − 1) + 1, . . . , qj in the third layer. (The mth vertex may have
less than q neighbors, in case tn/q is not an integer.) To obtain a random graph,
pick a random permutation on tn elements and use it to construct a matching be-
tween the second and third layers. Finally, collapse each 3-edge-long path between
v ∈ V and u ∈ U to obtain a single edge (collapsing parallel edges when needed),
to obtain a random (t, q)-regular graph with n left vertices.

Definition 2 (Random low density parity check code). The family of
(t, q)-regular random LDPC codes is the distribution on families of linear codes
obtained by picking the nth member in the family according to the following
process. For integers t < q let G = (V, U, E) be a random (t, q)-regular bipar-
tite graph over n left vertices and m = �tn/q right vertices (notice m < n

because t < q). Associate each right-hand side vertex û ∈ U with the vector
u = (u1, . . . , un) ∈ Fn

2 defined by

ui =
{

1 (i, û) ∈ E

0 otherwise.

The LDPC code based on G is the code C = U⊥.

The rate of C is at least n−m
n ≈ 1− t

q because dim(C⊥) ≤ m. It is well-known since
the work of [43] that a family of random LDPC codes is, with high probability,
asymptotically good (cf. [44]). At first glance it may seem that such a family
is locally testable. The set of q-query words U characterizes C by which we
mean that w ∈ C if and only if w ⊥ U . And the random graph G is with high
probability an expander which implies that for any set S ⊂ {1, . . . , n}, |S| = εn

— think of S as indicating the minimal size set of bits that need be flipped in r

to obtain a codeword — the set of indices of nonzero entries of a random u ∈ U

hits S with probability proportional to ε. In spite of all this C is not q-testable.
This much was conjectured already in [45]. Moreover, C is not even testable with
any sublinear query complexity, i.e., a constant fraction of the received word
must be queried in order to distinguish between completely uncorrupted, and
severely corrupted, words. This is shown by the following theorem of [42].

Theorem 2 (Random LDPC codes require linear query complexity).
For integers t < q and constants 1/2 > ε > 0, s > 0 there exists μ > 0 such that
for sufficiently large n, a random (t, q)-LDPC code is, with high probability, not
(μn, ε, s)-locally testable.

22 E. Ben-Sasson

Proof (Sketch). Consider a random LDPC code C based on a random (t, q)-
regular graph G and assume that the constraints U that define it are linearly
independent, which they are, with high probability. This linear independence
implies that for every u ∈ U there exists a word r(u) ∈ Fn

2 such that

r(u) �⊥ u and r(u) ⊥ U \ {u}. (1)

Appealing to the expansion properties of the graph G — which were used in the
first place to argue that C has constant relative distance — we conclude that the
code C−u = (U \ {u})⊥ = {w | w ⊥ (U \ {u})} has good distance because the
constraint graph induced by U \ {u} is still a good expander. This implies that
any word r(u) ∈ C−u \ C is ε-far from C for some constant ε > 0.

What is the probability with which r(u) is rejected by a q′-query tester? Recall
that a linear q′-tester T is defined by a distribution D over C⊥

q′ . Expressing a
potential linear test v ∈ C⊥

q′ as a linear combination of elements from U and
letting U(v) ⊆ U denote the set of elements that have nonzero coefficients in
this expression, we see from Equation (1) that r(u) �⊥ v if and only if u ∈ U(v).
The answer to our question is then

Pr
R

[T r(u)[R] = reject] = Pr
v∼D

[v ⊥ r(u)] = Pr
v∼D

[u ∈ U(v)].

Taking one step further, for the tester defined by the distribution D to reject
each r(u) for u ∈ U , it better be the case that U(v) � u for a random v ∼ D

and uniformly random u ∈ U . This implies that a constant fraction of tests
in supp(D) are, each, a linear combination of a constant fraction of U . Alas,
with high probability, all words in span(U) that are a linear combination of a
constant fraction of U must have large weight. This should sound reasonable
because U is random, so summing up a constant fraction of its elements should
result in a word with pretty large weight. We conclude that any tester that
achieves constant soundness must be a distribution over words that have weight
Ω(n), and this completes the proof (sketch).

2.3 LTCs Require Redundant Testers

Our next result rules out the existence of asymptotically good families of LTCs
that lack sufficient redundancy, a concept we define next. This result can be seen
as a generalization of the previous section to the case of codes that have “too
few” dual words of weight q so let us explain how we quantify the number of
such words and define what we mean by “too few” words.

If C⊥
≤q does not span all of C⊥ then C cannot be a q-query strong LTC because

some non-codeword will be accepted with probability 1. This by itself does not
yet mean that C is not locally testable, as it could be the case that all r �∈ C that
are accepted with probability 1 are, say, (ε/2)-close to C. A far more interesting
case is when C⊥

≤q is a basis for C⊥ but contains no more words. Random (t, q)-
regular codes give one example of such codes because it can be verified that the
only words of weight at most q are those belonging to the linearly independent

Limitation on the Rate of Families of Locally Testable Codes 23

set U . We have already seen that such codes are not locally testable but perhaps
other codes are? Before we continue let us formally define the redundancy of a
code, which is the way we measure how many dual words are out there.

Definition 3 (Redundancy). Given a set U ⊂ Fn let the redundancy of U

be redun(U) = |U | − dim(span(U)). It is the number of elements of U that can
be removed from U without increasing the linear space that is dual to U (which
we think of as a code C). Notice redun(U) = 0 if and only if U is linearly
independent.

Let C be a [n, k, d]F-linear code. For D a distribution over C⊥ (think of D

as a tester for C) let redun(D) = redun(supp(D)). D is said to be a linearly
independent tester if redun(D) = 0 and if moreover supp(D) spans C⊥ we call
D a basis tester for C. Finally, the q-redundancy of C is redunq(C) = redun(C⊥

≤q).

The following theorem of [10] shows that any locally testable code with suffi-
ciently large rate must be tested by redundant testers.

Theorem 3 (Linear LTCs require redundant testers). Let C be an [n, k, d=
δ0n]F-code that is a (q, δ0/3, ε)-LTC. Then

redunq(C) ≥ εk

q
− 1.

Moreover, if D, the tester’s distribution, is uniformly distributed over supp(D),
then

redun(D) ≥ ε − q/k

1 − ε
· (n − k).

The first equation above implies that every asymptotically good family of q-query
LTCs must have linear q-redundancy, to see this set k = ρn where ρ is the rate of
the family of codes. The second equation implies that q-query LTCs with super-
constant size that are testable by a uniform tester, i.e., a tester whose distribution
is uniform over a subset of C⊥

≤q, must have linear redundancy. All algebraic and
affine-invariant codes are testable by uniformly distributed testers, and so are
sparse random unbiased codes but it should be stressed that the LTCs obtained
by using composition techniques, such as PCPP-based and tensor-product ones,
are not necessarily uniform. We point out that both inequalities are known to
be nearly tight (cf. [34]).

It may seem that the limitation placed by Theorem 3 on the minimal redun-
dancy of an LTC can be easily overcome. Even if there are precisely n−k linearly
independent words in C⊥

≤q (this is what happens, for example, with random (t, q)-
regular LDPC codes), there are

(
n−k

2

)
words in C⊥

≤2q — take the sumset of C⊥
≤q

— so clearly this set has superlinear redundancy and for all we know C may be
2q-testable without contradicting our theorem. The following stronger version of
Theorem 3 is immune to the “sumset” trick and seems to say something deeper
about the structure of small weight words of the dual code. To state this theorem
we need a more refined definition of redundancy.

24 E. Ben-Sasson

Definition 4 (Expected redundancy). For U ⊂ Fn, B = {b1, . . . , bt} a lin-
early independent set spanning span(U) (B is not necessarily a subset of U), and
u ∈ U let B(u) be the set of elements of B used to represent u. If u =

∑t
i=1 βibi

then this set is
B(u) = {bi ∈ B | βi �= 0}.

For D a distribution on C⊥
≤q (which we view as a q-query tester for C) let its

expected q-redundancy be

Eredunq(D) = min
B

Eu∼D[|B(u)|]

where the minimum is taken over all bases B ⊂ C⊥
≤q which span C⊥. (Notice B is

not necessarily a subset of supp(D).) The expected q-redundancy of C, denoted
as Eredunq(C), is the minimal expected q-redundancy of a distribution D on C⊥

≤q.

The following is the main theorem of [10].

Theorem 4 (LTCs require testers with large expected redundancy).
Let C be an [n, k, d = δ0n]F-code that is a (q, δ0/3, s)-LTC. Then

Eredunq(C) ≥ sk

q
.

Returning to the example discussed above, the example which assumed C⊥
≤q is

linearly independent and suggested to use a 2q-tester distributed over the sumset
of C⊥

≤q, it is not hard to see that its expected redundancy is 2 and to see this set
B = C⊥

≤q. Theorem 4 thus rules out this case, as well as that of taking as our
tester any distribution over the Ω(k)-wise sum of C⊥

≤q.
Informally, this theorem says is that in order for a linear code to be q-query

testable it must be the case that for any basis B ⊂ C⊥
≤q there exists a linear

number of words in C⊥
≤q \ B that are each a linear combination of a constant

fraction of B. This means that some nontrivial cancelation is going on by which
many small-weight words — a linear number of them — are each a sum of many
words from B.

2.4 Dense LTCs Have Small Rate

In the previous section we saw that linear codes with too few dual words of small
weight are not locally testable. In this section we discuss the opposite extreme,
of codes with too many dual words of small weight. The following definition will
be used to capture the notion of “too many” dual words.

Definition 5 (Dense codes). An [n, k, d]F linear code C is said to be (γ, q)-
dense if for every i ∈ {1, . . . , n} there are at least γnq−2 dual words u of weight
q such that ui �= 0.

For instance, the Hadamard code is (1
2 , 3)-dense because every selection of j ∈

{1, . . . , n} participates in a dual word of weight 3 that touches i.

Limitation on the Rate of Families of Locally Testable Codes 25

Remark 5. A different definition for dense codes can be suggested, one that uses
the total number of weight-q dual words. For instance, we may decide to call a
code C (γ, q)-dense’ if |C⊥

≤q| ≥ γnq−1. This definition is problematic, as seen by
taking the direct product of the Hadamard code with blocklength n, denoted
Hn, with, say, a [n, k = n/poly log n, d]F2-code C0 that is a (3, ε, s)-LTC (codes
with these parameters are known to exist). The resulting code

C = C0 × Hn = {(c, c′) | c ∈ C0, c
′ ∈ Hn}

is a linear 3-query LTC of blocklength 2n and can easily be seen to be (1/4, 3)-
dense’ because H2 is (1/2, 3)-dense’ but the rate of C is at least k/2n. In other
words, we can artificially increase the density’ of an LTC at the price of decreas-
ing its rate by a constant factor.

It turns out that it is sufficient to consider the density of weight-3 and weight 4
words, due to the following claim because (γ, q)-density for q ≥ 3 implies either
(3, γ′)- or (4, γ′)-density for γ′ > 0 depending only on γ. The main theorem of
[46] shows that dense codes have small rate:

Theorem 5 (Dense codes have small rate). For every γ > 0 and integer
q there exists � > 0 depending only on γ and q such that the following holds. If
C is a linear [n, k, d]F2 code that is (γ, q)-dense, then the dimension k of C is at
most log�

n.

The proof relies on results from additive combinatorics and we give a sketch of
it next.

Proof (Sketch). Take a generating matrix A ∈ Fn×k
2 for C, a matrix satisfying

C =
{
Ax

∣∣ x ∈ Fk
2

}
. Let A = {Ai | i ∈ {1, . . . , n}} ⊂ Fk

2 denote the set of rows of
the matrix. The density assumption implies

Pr
a,a′∈A

[a + a′ ∈ A] ≥ γ.

The Balog-Szemerédi-Gowers theorem [47,48], together with the Freiman-Ruzsa
theorem [49,50], imply that A contains a subset A′ of size at least η|A| that
is an η-fraction of some linear subspace of Fk

2 , where η = γpoly(1/γ). In other
words, the set of rows A′ can be viewed, after an appropriate change of basis,
as resulting from taking a constant fraction of the rows of a generating matrix
of the Hadamard code, which is known to have very bad rate. Consider the
residual set A′′ = A\A′. The assumption that each i ∈ {1, . . . , n} touches many
weight-3 words is now used to argue that A′′ is also (γ′, 3)-dense, for γ′ > 0
that depends only on γ, so our argument can be repeated. Continuing in this
manner we reach the conclusion that the generating matrix A can be written,
after a proper change of basis, as a block-diagonal matrix where each block is a
constant fraction of a Hadamard code and Hadamard codes are known to have
bad rate. Consequently, C has small rate and this completes the proof sketch.

26 E. Ben-Sasson

2.5 Question: Narrow the Gap between Redundant and Dense LTC
Limitations

The rate limitations we have showed regarding both redundant, and dense, LTCs,
suggest an interesting avenue for future research — to narrow the gap between
these two cases. For simplicity consider the case of an asymptotically good fam-
ily of smooth 3-query LTCs, i.e., LTCs that have a tester which queries each
codeword entry with the same probability. The results on redundancy show that
each member of the family should have at least a linear number of redundant
weight-3 dual words. The result on dense codes shows that the overall number of
such words is o(n2). Here is a seemingly simpler question that is currently open:

Question 2 (Number of small weight dual words of a linear LTC). Prove or refute
the following conjecture. Suppose {Cn ⊂ {0, 1}n | n ∈ Z} is an asymptotically
good family of linear (3, δ/3, s > 0)-LTCs of relative distance at least δ > 0.
Suppose furthermore that Cn is testable by a tester associated with the uniform
distribution on (Cn)⊥≤3, the set of weight-3 words in C⊥. Then |(Cn)⊥≤3| = ω(n).

3 Limitations on Group-Invariant Codes

We have seen in Section 2.3 that linear LTCs must have dual codes whose small-
weight words show a large degree of nontrivial redundancy. Constructing codes
that have large rate and such a level of redundancy seems like a hard problem,
and one way to get around it is to use codes that are invariant under a “suffi-
ciently rich” group (a concept we explain next), for which the existence of even a
single small-weight dual word immediately implies a large number of such words.

A code C of blocklength n induces a group of automorphisms aut(C), this is
the group of permutations π : {1, . . . , n} → {1, . . . , n} under which the code
is invariant, by which we mean that for every w = (w1, . . . , wn) ∈ C the π-
permuted word π(w) = (wπ(1), . . . , wπ(n)) also belongs to C. It is not hard to
verify that aut(C) is indeed a group and that aut(C⊥) = aut(C). Consequently,
if C⊥ contains a word u of weight q then C⊥

≤q contains {π(u) | π ∈ aut(C)}. Thus,
if aut(C) is sufficiently rich we can hope for C⊥

≤q to be large and redundant and,
if all stars align properly, C will be a q-query LTC and moreover have large rate
and relative distance.

Two notable families of groups that should be mentioned in this context are
doubly transitive and affine-invariant ones. A group of permutations G over n

elements is said to be doubly transitive, or 2-wise transitive, if for every i �= j

and i′ �= j′ ∈ {1, . . . , n} there exists π ∈ G such that π(i) = i′ and π(j) = j′.
A conjecture attributed2 to [18] is that all codes which are invariant under a
doubly transitive group (call them doubly transitive codes) are testable with
query complexity q′ that depends only on the smallest q for which C⊥

≤q spans
C⊥. In particular, this query complexity is conjectured to be independent of the

2 We use the term “attributed” because in [18, Section 5] it appears as an open

question.

Limitation on the Rate of Families of Locally Testable Codes 27

blocklength of C. (The requirement that C⊥
≤q span C⊥, cannot be replaced by

the weaker assumption that q is the minimal distance of C⊥. [51] showed that if
one opts for the weaker assumption then the conjecture is false.) It is shown by
[52] that doubly transitive codes with small dual distance are so-called locally
correctable codes. These codes are a stronger analog of locally decodable codes
(cf. [5,6]), and this implies a polynomial upper bound on their rate of the form of

the form ρ(C) = O

(
log n

(
log n

n

) 2
q+1

)
, as shown in [53]. This raises the following

open problem:

Question 3 (Polynomial rate doubly transitive LTCs). Does there exist a fam-
ily {Cn ⊆ Fn | n ∈ Z} of doubly transitive (q, ε > 0, s, 1)-LTCs that has inverse
polynomial rate, i.e., ρ(Cn) ≥ 1/nO(1)?

A group is said to be affine-invariant if {1, . . . , n} can be identified with a vector
space Km over a finite field K and G is then isomorphic to the group of invertible
affine transformations3 over Km. The family of affine-invariant codes includes
the Hadamard and Reed-Muller codes as well as dual-BCH codes. [21] showed
that, when |K| is small, every affine-invariant family of codes over Km, whose
dual contains a small-weight word, is locally testable. Since every affine group is
doubly transitive, the work of [21] shows that the double-transitivity conjecture
does hold in certain interesting special cases. Later on we shall see that affine-
invariant codes have small rate, and this answers negatively the question above
for this special case.

A third and final family of group invariant codes considered in the literature
is that of cyclic codes, i.e., codes invariant under a cyclic group. All affine invari-
ant codes (including Hadamard and Reed-Muller) are, in particular, cyclic. [9]
showed that a family of cyclic LTCs cannot be asymptotically good, either its
rate or its distance must be less than 1/

√
log n log log n. A long-standing open

problem in coding theory is whether there exists an asymptotically good family
of cyclic codes (cf. [7, Open Problem 9.2]). The result above shows that when
local testability is thrown in as a requirement, then indeed asymptotically good
codes do not exist.

3.1 Affine Invariant LTCs Have Small Rate

In this section we discuss rate limitations of affine-invariant locally testable
codes. More information on this topic can be found in the survey [25]. Recall that
if C is an [n, k, d]F-code affine-invariant code it means we can identify {1, . . . , n}
with Km for some field K which is a finite extension4 of F and such that the
3 The work of [21] actually talks about the semi-group of all affine transformations,

including the non-invertible ones.
4 The more general case of K being an arbitrary field, not necessarily extending F,

has not been addressed so far. However, it seems reasonable to expect that such

codes should not have good rate, regardless of their local testability properties. This

is because Km-affine invariance and F-linearity do not mix well when K is not an

extension of F.

28 E. Ben-Sasson

automorphism group of C contains the affine (semi-)group over Km. The study of
affine invariant LTCs was initiated by [21], as a first step towards characterizing
the class of “algebraic” properties which are testable. This class is also an inter-
esting special case of the doubly transitive conjecture of [18]. Indeed, for such
codes [21] showed that local testability exists as long as the field K is sufficiently
small and the dual code has constant distance, as seen from their main theorem:

Theorem 6 (Affine invariant codes over small fields with constant dual
distance are locally testable). For fields F ⊆ K let C be an [n = |Km|, k, d]F
affine-invariant code such that C⊥ contains a word of weight q0. Then C is(

q = (|K|2q0)|K|2 , s =
1

2(2q + 1)(q + 1)

)
-strongly locally testable

by which we mean that there exists a q-query linear tester that rejects noncode-
words r �∈ C with probability at least s · δC(r).

Now we discuss the rate of such codes. Since affine invariant codes are cyclic,
one could get an inverse logarithmic bound on the rate of affine invariant LTCs
from what is known on cyclic LTCs. A tighter, inverse polynomial, bound on
the rate follows from the result of [52] which says that such codes are locally
decodable (and locally correctable) and the result of [53] which bounds the rate

of locally decodable codes by O

(
log n

(
log n

n

) 2
q+1

)
. The following result of [24]

gives a stronger bound, showing that the dimension of affine-invariant codes is
merely polylogarithmic in the blocklength of the code.

Theorem 7 (Affine invariant LTCs have small rate). Let p be a prime and
r, n, m be positive integers and let F be the field of size pr and K be its degree
�-extension, which is of size pr�. Any affine invariant [n = |Km|, k, d]F-code C
such that C⊥ contains a word of weight q > 0 satisfies

k ≤ (logp n)q−1.

Notice the theorem shows exponential rate even for large fields K, which are
not known to be locally testable. We point out that the theorem as stated in
[24] gives more information on affine-invariant codes with small dual distance,
showing they are subcodes of low-degree polynomials (Reed-Muller codes). We
shall not describe this result, nor shall we go into details of the proof because
quite a lot of algebra is needed to describe it. Instead, we point the interested
reader to the survey [25] and the relevant papers [21,24].

We end this section by pointing out the following interesting question which
addresses the rate of a natural family of codes invariant under a linear group (in
particular, Theorem 7 does not apply to such codes):

Question 4 (Rate of linear invariant codes with small dual distance). Let K be a
finite extension of a finite field F. Let GL(m, K) denote the general linear group
over K, containing all invertible m-dimensional linear transformations over K.

Limitation on the Rate of Families of Locally Testable Codes 29

Let C be an [n = |K|m, k, d]F-linear code that is invariant under GL(m, K) and
suppose C⊥ contains a word of weight q > 0. How large can k be as a function
of the field size |K| and code distance d?

Acknowledgement

Thanks to Michael Viderman for helpful comments on an earlier draft. The
research leading to some of the results surveyed here has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 240258 and from the US-Israel Binational Science
Foundation under grant number 2006104.

References

1. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM 45(1), 70–122 (1998)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

3. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3),

12:1–12:44 (2007)

4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653–750 (1998)

5. Goldreich, O.: Short locally testable codes and proofs (survey). Electronic Collo-

quium on Computational Complexity (ECCC) (014) (2005)

6. Trevisan, L.: Some applications of coding theory in computational complexity.

Quaderni di Matematica 13, 347–424 (2004)

7. MacWilliams, F., Sloane, N.: The theory of error-correcting codes. North-Holland,

Amsterdam (1978)

8. Ben-Sasson, E., Goldreich, O., Sudan, M.: Bounds on 2-query codeword testing.

In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and

APPROX 2003. LNCS, vol. 2764, pp. 216–227. Springer, Heidelberg (2003)

9. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Trans-

actions on Information Theory 51(8), 2849–2858 (2005)

10. Ben-Sasson, E., Guruswami, V., Kaufman, T., Sudan, M., Viderman, M.: Locally

testable codes require redundant testers. In: CCC 2009: Proceedings of the 2009

24th Annual IEEE Conference on Computational Complexity, Washington, DC,

USA, pp. 52–61. IEEE Computer Society, Los Alamitos (2009)

11. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability—

towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

12. Meir, O.: On the efficiency of non-uniform pcpp verifiers. Electronic Colloquium

on Computational Complexity (ECCC) 15(064) (2008)

13. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to

numerical problems. In: STOC, pp. 73–83. ACM, New York (1990)

14. Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.: Linearity testing

in characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795

(1996)

30 E. Ben-Sasson

15. Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in polylog-

arithmic time. In: Proceedings of the Twenty-third Annual ACM Symposium on

Theory of Computing, pp. 21–32. ACM, New York (1991)

16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In: Proceedings of the

Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 475–484.

ACM, New York (1997)

17. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combina-

torica 23(3), 365–426 (2003)

18. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing reed-muller

codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

19. Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J. Com-

put. 36(3), 779–802 (2006)

20. Samorodnitsky, A.: Low-degree tests at large distances. In: Johnson, D.S., Feige,

U. (eds.) STOC, pp. 506–515. ACM, New York (2007)

21. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In:

Ladner, R.E., Dwork, C. (eds.) STOC, pp. 403–412. ACM, New York (2008)

22. Grigorescu, E., Kaufman, T., Sudan, M.: 2-transitivity is insufficient for local testa-

bility. In: IEEE Conference on Computational Complexity, pp. 259–267. IEEE

Computer Society, Los Alamitos (2008)

23. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with ap-

plications to testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX–

RANDOM 2009. LNCS, vol. 5687, pp. 534–547. Springer, Heidelberg (2009)

24. Ben-Sasson, E., Sudan, M.: Limits on the rate of locally testable affine-invariant

codes. Electronic Colloquium on Computational Complexity (ECCC) (108) (2010)

25. Sudan, M.: Invariance in Property Testing. ECCC, TR10-051 (2010)

26. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs

of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),

889–974 (2006)

27. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the

PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

28. Meir, O.: Combinatorial construction of locally testable codes. SIAM J. Com-

put. 39(2), 491–544 (2009)

29. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.

Random Struct. Algorithms 28(4), 387–402 (2006)

30. Moshkovitz, D., Raz, R.: Two-query pcp with subconstant error. J. ACM 57(5)

(2010)

31. Dinur, I., Harsha, P.: Composition of low-error 2-query pcps using decodable pcps.

In: FOCS, pp. 472–481. IEEE Computer Society, Los Alamitos (2009)

32. Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and

testable. In: FOCS, pp. 590–600. IEEE Computer Society, Los Alamitos (2007)

33. Kopparty, S., Saraf, S.: Local list-decoding and testing of random linear codes from

high error. In: Schulman, L.J. (ed.) STOC, pp. 417–426. ACM, New York (2010)

34. Ben-Sasson, E., Viderman, M.: Low rate is insufficient for local testability. In:

Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation

- RANDOM 2010 (September 2010)

35. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended

abstract). In: STOC, pp. 723–732. ACM, New York (1992)

36. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298

(2000)

Limitation on the Rate of Families of Locally Testable Codes 31

37. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.

Comput. 38(5), 1661–1694 (2008)

38. Ben-Sasson, E., Harsha, P., Lachish, O., Matsliah, A.: Sound 3-query PCPPs are

long. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,

A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 686–697.

Springer, Heidelberg (2008)

39. Guruswami, V.: On 2-query codeword testing with near-perfect completeness. In:

Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 267–276. Springer, Heidelberg

(2006)

40. Kol, G., Raz, R.: Bounds on 2-Query Locally Testable Codes with Affine Tests.

ECCC Report TR09-138 (2009)

41. Kol, G., Raz, R.: Locally testable codes analogues to the unique games conjecture

do not exist. ECCC Report TR09-128 (2009)

42. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to

test. SIAM J. Comput. 35(1), 1–21 (2005)

43. Gallager, R.: Low-density parity-check codes. IRE Transactions on Information

Theory 8(1), 21–28 (1962)

44. Sipser, M., Spielman, D.: Expander codes. IEEE Transactions on Information The-

ory 42(6), 1710–1722 (1996)

45. Spielman, D.: Computationally efficient error-correcting codes and holographic

proofs. PhD thesis, MIT (1995)

46. Ben-Sasson, E., Viderman, M.: Dense locally testable codes have bad rate (2010)

(unpublished manuscript)

47. Balog, A., Szemerédi, E.: A statistical theorem of set addition. Combinator-

ica 14(3), 263–268 (1994)

48. Gowers, W.T.: A new proof of szemerèdi’s theorem for arithmetic progressions of

length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

49. Freiman, G.A.: Foundations of a structural theory of set addition, vol. 37. American

Mathematical Society, Providence (1973)

50. Ruzsa, I.Z.: An analog of freiman’s theorem in groups. Astèrique 258, 323–326

(1999)

51. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with ap-

plications to testing. In: Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques, pp. 534–547 (2009)

52. Kaufman, T., Viderman, M.: Locally testable vs. locally decodable codes. In:

Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation

- RANDOM 2010 (2010)

53. Woodruff, D.: New lower bounds for general locally decodable codes. Electronic

Colloquium on Computational Complexity (ECCC) 14(006) (2007)

Testing Juntas: A Brief Survey

Eric Blais

School of Computer Science, Carnegie Mellon University,

Pittsburgh PA 15213, USA

eblais@cs.cmu.edu

Abstract. A function on n variables is called a k-junta if it depends

on at most k of its variables. In this survey, we review three recent

algorithms for testing k-juntas with few queries.

1 Introduction

A function f : {0, 1}n → {0, 1} is said to be a k-junta if it depends on at most k

variables. Juntas provide a clean model for studying learning in the presence of
many irrelevant features [7,10] and have consequently been of particular interest
to the computational learning theory community [7,8,9,10,22,23,25].

As is typical in the machine learning setting, all learning results on k-juntas
assume that the unknown function is a k-junta. In practice, however, it is often
not known a priori whether a function being learned is a k-junta or not. It is
therefore desirable to have an efficient algorithm for testing whether a function
is a k-junta or “far” from being a k-junta before attempting to run any k-junta
learning algorithm.

We consider the problem of testing k-juntas in the standard property testing
framework originally defined by Rubinfeld and Sudan [27]. In this framework,
we say that a function f is ε-far from being a k-junta if for every k-junta g, the
functions f and g disagree on at least an ε fraction of all inputs.

An ε-tester for k-juntas is an algorithm A that queries an unknown function
f on q inputs of its choosing, and then (1) accepts f with probability at least 2/3
when f is a k-junta, and (2) rejects f with probability at least 2/3 when f is ε-far
from being a k-junta. When the algorithm A chooses all its queries in advance
(i.e., before observing the values of the function on any of its previous queries), it
is non-adaptive; otherwise it is adaptive. The main parameter of interest for our
purposes is the number q of queries required by testers for k-juntas. In particular,
the question we study is the following:

What is the minimum number of queries required to ε-test k-juntas?

A simple way to test k-juntas is to learn a target hypothesis k-junta using
membership queries, and to then use a separate set of randomly-chosen queries
to test this hypothesis [18,22]. Such an approach yields a valid tester but requires
O(k log n/ε) queries. In the rest of this survey, we will examine three algorithms
that improve dramatically on this bound by requiring a number of queries that
is independent of n.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 32–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Juntas: A Brief Survey 33

2 Boolean Functions: Preliminaries

2.1 Basic Definitions

Throughout this survey, f : {0, 1}n → {0, 1} represents a (generic) boolean
function. The complement of f is the function f̄ : {0, 1}n → {0, 1} defined by
f̄(x) = 1 − f(x).

Given x = (x1, . . . , xn) and y = (y1, . . . , yn) from {0, 1}n, addition and mul-
tiplication are defined componentwise: x + y = (x1 + y1, . . . , xn + yn) and
x · y = (x1y1, . . . , xnyn). We also define a hybridization operation: for a set
S ⊆ [n], the element z = xS̄yS ∈ {0, 1}n is formed by setting zi = xi for every
i ∈ S̄ = [n] \ S and setting zi = yi for every i ∈ S.

2.2 Notable Boolean Functions

The function that maps all inputs to 0 is the constant zero (or just zero) function;
its complement is the constant one function that maps all inputs to 1. When
there is an index i ∈ [n] such that f is defined by f(x) = xi, then we say that f

is a dictator function. A function is an anti-dictator function if its complement
is a dictator function.

For a set S = {i1, i2, . . . , ik} ⊆ [n], the linear function corresponding to S

is the function χS defined by χS(x) = xi1 + xi2 + · · · + xik
. By convention, we

define χ∅ to be the constant zero function. An alternative characterization of
linear functions is provided by the following proposition.

Proposition 1. A function f : {0, 1}n → {0, 1} is linear if and only if for every
x, y ∈ {0, 1}n, f(x) + f(y) = f(x + y).

For a set S = {i1, i2, . . . , ik} ⊆ [n], the (monotone) monomial function corre-
sponding to S is the function ξS defined by ξS(x) = xi1xi2 · · ·xik

. (I.e., ξS(x) = 1
iff xi1 = · · · = xik

= 1.) As with linear functions, monomials have a useful alter-
native characterization.

Proposition 2. A non-constant function f : {0, 1}n → {0, 1} is a monomial if
and only if for every x, y ∈ {0, 1}n, f(x) · f(y) = f(x · y).

2.3 Influence

For an index i ∈ [n], the influence of the ith variable in the function f is

Inff (i) = Pr
x

[f(x) �= f(x(i))],

where the probability is over the uniform distribution on {0, 1}n and the input
x(i) ∈ {0, 1}n is obtained by flipping the value of the ith variable of x.

The influence of the set S ⊆ [n] in the function f is

Inff (S) = 2 Pr
x,y

[f(x) �= f(xS̄yS)].

A k-junta is a function f for which there are at most k indices i ∈ [n] such that
Inff (i) > 0. Alternatively, f is a k-junta if there exists a set S ⊆ [n] of size
|S| ≤ k such that Inff (S̄) = 0.

34 E. Blais

3 Testing 1-Juntas

We begin with the simplest case: testing 1-juntas. The family of 1-junta func-
tions is small. It contains only the constant functions, the dictator functions,
and the anti-dictator functions. Furthermore, dictator functions have the useful
distinction of being the only non-constant functions that are both linear func-
tions and monomials. This distinction lies at the heart of the 1-junta tester that
we will examine in this section.

3.1 The Algorithm

As suggested above, our main building block for testing 1-juntas is an algorithm
that accepts functions that are both linear and monomials. The characterizations
of linear functions and of monomials from Propositions 1 and 2 suggest the
following simple algorithm for this task:

Linear Monomial Test(f , ε)

1. For O(1/ε) randomly selected pairs x, y ∈ {0, 1}n,
1.1. Verify that f(x) + f(y) = f(x + y).
1.2. Verify that f(x) · f(y) = f(x · y).

2. Accept iff all verifications pass.

Clearly, the Linear Monomial Test always accepts the zero function and
dictator functions. To accept all 1-juntas, it suffices to test f and its complement
f̄ for the property of being a linear monomial:

1-Junta Test(f , ε)

1. Call Linear Monomial Test(f , ε).
2. Call Linear Monomial Test(f̄ , ε).
3. Accept iff one of the above tests accepts.

The 1-Junta Test algorithm always accepts 1-juntas. To establish that it
is a valid tester for 1-juntas, we need to show that it rejects functions that are
ε-far from 1-juntas with high probability. We do so in two steps.

First, we show that the 1-Junta Test rejects functions that are far from
linear with high probability. This statement follows from the robustness of the
linearity characterization in Proposition 1: when a function f is ε-far from linear
and x, y are generated uniformly at random, then f(x) + f(y) �= f(x + y) with
probability at least ε [3,11].

Lemma 3 (Blum et al. [11], Bellare et al. [3]). Let f be ε-far from linear.
Then the 1-Junta Test rejects with probability at least 2/3.

Second, we show that functions that are ε-close to a linear function χS for some
set S of size |S| ≥ 2 are rejected by the monomial test in Line 1.2 of the Linear
Monomial Test with high probability. This is indeed the case, as an elementary
counting argument shows.

Testing Juntas: A Brief Survey 35

Lemma 4 (Bellare et al. [4]). Fix 0 < ε < 1
8 and let f be ε-close to χS for

some set S ⊆ [n] of size |S| ≥ 2. Then the 1-Junta Test rejects with probability
at least 2/3.

Together, Lemmas 3 and 4 show that the 1-Junta Test rejects functions that
are ε-far from 1-juntas with probability at least 2/3. This completes the proof
of correctness of the algorithm. We can also easily verify that the tester makes
only O(1/ε) queries to the input function; this is optimal.

3.2 History

The problem of testing dictator functions was first studied by Bellare, Goldre-
ich, and Sudan [4] in the context of testing the Long Code for constructing
probabilistically-checkable proof (PCP) systems. As pointed out in [26], testing
the Long Code is equivalent to testing dictator functions, and their test for dicta-
tor functions is roughly equivalent to the 1-Junta Test algorithm above.1 The
analysis of the dictator test was further generalized and extended by Parnas,
Ron, and Samorodnitsky [26].

Due to the key role of dictator functions in PCP systems, many other variants
of the dictatorship testing problem have been studied – see [13] in this volume
and the references therein for more information on this topic.

4 Testing k-Juntas

We now turn our attention to the general problem of testing k-juntas for any
value of k ≥ 1. In contrast to the case of 1-juntas, when k ≥ 2 the class of
k-juntas does not have a simple characterization that directly suggests a testing
algorithm. Nonetheless, as we will see in this section it is still possible to test
k-juntas with a small number of queries.

4.1 The Algorithm

The algorithm for testing k-juntas relies on two basic components: the Inde-

pendence Test, and the idea of randomly partitioning the coordinates.
The Independence Test is a simple algorithm for verifying whether a given

function f is independent of a set S ⊆ [n] of coordinates:

Independence Test(f , S)

1. Generate x, y ∈ {0, 1}n uniformly at random.
2. Accept iff f(x) = f(xS̄yS).

1 There is one difference: when testing dictator functions, constant functions must be

rejected. In our case we want to accept them; this simplifies the algorithm slightly.

36 E. Blais

By our definition of influence, the probability that the Independence Test

rejects is exactly 1
2 Inff (S). In particular, when f is independent of the variables

in S, then Inff (S) = 0 and the test always accepts.
A näıve way to use the Independence Test for testing k-juntas is to run the

test (sufficiently many times) on each singleton set S = {1}, {2}, . . . , {n} and to
accept iff at most k of the sets are rejected. This proposed algorithm is indeed
a valid tester for k-juntas, but it requires Ω(n) queries. A simple trick, however,
can dramatically reduce the number of queries required: take a sufficiently fine
partition of the coordinates [n] and run the Independence Test on each part.

k-Junta Test(f , ε)

1. Randomly partition the coordinates into O(k2) buckets.
2. Run Independence Test Õ(k2/ε) times.
3. Accept iff at most k buckets fail the independence test.

Clearly, the k-Junta Test always accepts k-juntas: if there are only k indices
i ∈ [n] for which Inff (i) > 0, then at most k parts in the random partition
will have influence Inff (S) > 0. Conversely, when f is ε-far from being a k-
junta, Fischer et al. [17] showed that with high probability over the choice of the
random partition, at least k + 1 parts have large influence.

Lemma 5 (Fischer et al. [17]). Let f : {0, 1}n → {0, 1} be ε-far from be-
ing a k-junta and s = Θ(k2). Then with high probability a random partition
S1∪̇S2∪̇ · · · ∪̇Ss of [n] will have at least k+1 parts with influence Inff (Sj) > ε/k2.

The proof of Lemma 5 uses Fourier analysis. The rest of the proof of correctness
of the k-Junta Test follows almost immediately. The k-Junta Test uses
Õ(k4/ε) queries. This bound is significant in that it is independent of n; as we
discuss below, however, variants on this algorithm can test k-juntas with fewer
queries.

4.2 History

Fischer, Kindler, Ron, Safra, and Samorodnitsky [17] first studied the problem of
testing juntas and introduced the algorithm presented in this section. They also
designed multiple other testing algorithms that improve on the query complexity
of the k-Junta Test. In particular, by using the Independence Test on
carefully chosen sets of parts in a random partition, they showed that Õ(k2/ε)
queries are sufficient to test k-juntas.

Fischer et al. [17] also introduced the first non-trivial lower bound on the
query complexity of junta testing problem: they showed that for k = o(

√
n),

non-adaptive testing algorithms for testing k-juntas must make at least Ω̃(
√

k)
queries. This lower bound implies a lower bound of Ω(log k) queries for all adap-
tive k-junta testers as well. The lower bound was improved shortly afterwards
by Chockler and Gutfreund [14], who showed that Ω(k) queries are required to
test k-juntas (adaptively or non-adaptively).

Testing Juntas: A Brief Survey 37

The gap between the Ω(k) and Õ(k2/ε) bounds on the query complexity of the
junta testing problem remained unchanged until recently, when a new algorithm
was introduced to test k-juntas with Õ(k1.5/ε) queries [5]. This was followed by
the introduction of another algorithm for testing k-juntas with O(k log k + k/ε)
queries [6]; we examine this algorithm in the next section.

5 Testing k-Juntas Nearly Optimally

The algorithm we saw in the last section relied on the Independence Test.
To improve the query complexity, the algorithm we present in this section relies
on a slightly stronger building block.

5.1 The Algorithm

The starting point for the algorithm is an observation due to Blum, Hellerstein,
and Littlestone [9]: if we have two inputs x, y ∈ {0, 1}n such that f(x) �= f(y),
then the set of coordinates i ∈ [n] for which xi �= yi contains a coordinate that
is relevant in f . Furthermore, by performing a binary search over the hybrid
inputs formed from x and y, we can identify a relevant coordinate with O(log n)
queries.

Even more interestingly, if we have a partition I of [n] and we have a pair of
inputs x, y such that f(x) �= f(y), we can use the same binary search idea to
identify a part that contains a relevant coordinate with only O(log |I|) queries.
We use this idea to create an algorithm that attempts to find a part with a
relevant coordinate as follows:

Find Relevant Part(f , I, S)

1. Generate x, y ∈ {0, 1}n uniformly at random.
2. If f(x) �= f(xS̄yS) then

2.1. Use a binary search to identify a part I ∈ I that contains
a relevant variable;

2.2. Return I.
3. Otherwise, Return ∅.

Note that by the test in Line 2, if the algorithm finds a part with a relevant
variable, that relevant variable is guaranteed to be in S. Also, the probability that
Find Relevant Part succeeds in identifying a relevant part is the probability
that f(x) �= f(xS̄yS), which as we have seen previously is exactly 1

2 Inff (S).
The algorithm we now consider for testing k-juntas uses the Find Relevant

Part in the obvious way: after taking a random partition of the coordinates,
the algorithm calls this routine a large number of times and rejects the input if
it identifies k + 1 distinct parts that contain relevant coordinates.

38 E. Blais

Nearly Optimal k-Junta Test(f , ε)

1. Randomly partition [n] into a partition I with poly(k/ε)
parts and initialize J ← ∅.

2. For each of O(k/ε) rounds,
2.1. J ← J ∪ Find Relevant Part(f, I, J̄).
2.2. If J contains > k parts, quit and Reject.

3. Accept.

As with the algorithms in the previous sections, it is easy to check that this
algorithm always accepts k-juntas. Once again, the non-trivial part of the proof
of correctness involves showing that functions ε-far from k-juntas are rejected
with high probability. The key to proving that statement is the following lemma:

Lemma 6 ([6]). Let f : {0, 1}n → {0, 1} be ε-far from being a k-junta, and let
I be a sufficiently fine partition of [n]. Then with high probability every set J

formed by taking the union of at most k parts of I satisfies Inff (J) ≥ ε/2.

The proof of Lemma 6 can be completed with Fourier analysis. Alternatively, and
more generally, it can also be completed using the Efron-Stein decomposition of
functions [16]. This is the approach taken in [6], and it enables the analysis of
the algorithm to hold even in the more general setting where the algorithm is
testing functions with any finite product domain and any finite ranges for the
property of being k-juntas.2

6 Open Problems and Future Directions

There are many possible directions for future research on testing k-juntas. We
highlight three particularly intriguing open problems.

6.1 Classical vs. Quantum Property Testing

The field of property testing can be extended to allow the tester to use the
quantum oracle model of Beals et al. [2]. The resulting model is called quan-
tum property testing and was first studied by Buhrman, Fortnow, Newman, and
Röhrig [12]. They showed that there are properties that can be tested with sig-
nificantly fewer queries in the quantum model than in the classical model and
that for some other properties, the extra power of the quantum oracle does not
improve the query complexity of the associated testing problem.

The first open problem asks if quantum oracles help when testing juntas: Is there
a gap between the quantum and classical query complexities for testing k-juntas?

Atıcı and Servedio [1] studied the problem of testing juntas in the quantum
model. They showed that in this model, O(k/ε) queries are sufficient and Ω(

√
k)

2 We note that the result in [6] was not the first one to generalize the analysis of a

junta testing algorithm to non-boolean functions; Diakonikolas et al. [15] did so as

well with a more technically intricate argument.

Testing Juntas: A Brief Survey 39

queries are necessary to ε-test k-juntas. At the time that this algorithm was
introduced, it provided a quadratic improvement over the query complexity of
the best classical k-junta tester. Of course, the algorithm presented in Section 5
reduces the gap to be only logarithmic in k, and in fact our strongest lower
bounds in the classical model are not strong enough to guarantee the existence
of a gap in the query complexities.

6.2 Adaptive vs. Non-Adaptive Testing

Gonen and Ron [21], and Goldreich and Ron [19] (see also [20] in this volume)
recently began a systematic study of the benefits of adaptivity for testing prop-
erties in the dense-graph model. They showed that for some properties, there
is a gap between the query complexity of the best adaptive and non-adaptive
testing algorithms, while for other properties no such gap exists.

The current gap between query complexity of the best adaptive and non-
adaptive algorithms for testing k-juntas — O(k log k + k/ε) and Õ(k3/2/ε), re-
spectively — leaves the following basic problem open: Does adaptivity help when
testing k-juntas?

6.3 Improved Testers for Other Properties

Following the work of Fischer et al. [17], junta testers have been used as a basic
building block to design testers for many other properties of boolean functions,
including function isomorphism [17], halfspaces [24], and many concise represen-
tation properties (e.g., being computable by a small decision tree or by a small
circuit, having low Fourier degree) [15] (see also [28] in this volume).

All of the above testing algorithms use one of the k-junta testers presented in
Section 4. The last open problem that we wish to mention is the following: Can
the Nearly Optimal k-Junta Test be used (or extended) to obtain improved
testing algorithms for function isomorphism, halfspaces, or concise representa-
tion properties?

References

1. Atıcı, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas.

Quantum Information Processing 6(5), 323–348 (2007)

2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds

by polynomials. J. of the ACM 48(4), 778–797 (2001)

3. Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity testing

in characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795

(1996)

4. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability –

towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)

5. Blais, E.: Improved bounds for testing juntas. In: Goel, A., Jansen, K., Rolim,

J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp.

317–330. Springer, Heidelberg (2008)

6. Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Symposium on Theory of

Computing, pp. 151–158 (2009)

40 E. Blais

7. Blum, A.: Relevant examples and relevant features: thoughts from computational

learning theory. In: AAAI Fall Symposium on ‘Relevance’ (1994)

8. Blum, A.: Learning a function of r relevant variables. In: Proc. 16th Conference on

Computational Learning Theory, pp. 731–733 (2003)

9. Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of finitely or

infinitely many irrelevant attributes. J. Comp. Syst. Sci. 50(1), 32–40 (1995)

10. Blum, A., Langley, P.: Selection of relevant features and examples in machine

learning. Artificial Intelligence 97(2), 245–271 (1997)

11. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to

numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

12. Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In:

Proc. 14th Symp. on Discrete Algorithms, pp. 480–488 (2003)

13. Chen, V.: Query-Efficient dictatorship testing with perfect completeness. In:

Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 276–279. Springer,

Heidelberg (2010)

14. Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Pro-

cessing Letters 90(6), 301–305 (2004)

15. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A.,

Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foun-

dations of Computer Science, pp. 549–558 (2007)

16. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. of Stat. 9(3), 586–596

(1981)

17. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J.

Comput. Syst. Sci. 68(4), 753–787 (2004)

18. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. of the ACM 45(4), 653–750 (1998)

19. Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs

model. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX–RANDOM

2009. LNCS, vol. 5687, pp. 520–533. Springer, Heidelberg (2009)

20. Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs

model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 295–305.

Springer, Heidelberg (2010)

21. Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense

graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM

2007 and APPROX 2007. LNCS, vol. 4627, pp. 525–539. Springer, Heidelberg (2007)

22. Guijarro, D., Tarui, J., Tsukiji, T.: Finding relevant variables in PAC model with

membership queries. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS

(LNAI), vol. 1720, pp. 313–322. Springer, Heidelberg (1999)

23. Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the Fourier spectrum of

symmetric boolean functions with applications to learning symmetric juntas. In:

Proc. 20th Conference on Computational Complexity, pp. 112–119 (2005)

24. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.A.: Testing halfspaces. In:

Proc. 19th Symp. on Discrete Algorithms, pp. 256–264 (2009)

25. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-

ables. J. Comput. Syst. Sci. 69(3), 421–434 (2004)

26. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J.

Discret. Math. 16(1), 20–46 (2003)

27. Rubinfeld, R., Sudan, M.: Self-testing polynomial functions efficiently and over

rational domains. In: Proc. 3rd Symp. on Discrete Algorithms, pp. 23–32 (1992)

28. Servedio, R.: Testing by implicit learning: a brief survey. In: Goldreich, O. (ed.)

Property Testing. LNCS, vol. 6390, pp. 197–210. Springer, Heidelberg (2010)

Sublinear-time Algorithms�

Artur Czumaj�� and Christian Sohler� � �

1 Department of Computer Science and Centre for Discrete Mathematics and its

Applications (DIMAP), University of Warwick

A.Czumaj@warwick.ac.uk
2 Department of Computer Science, TU Dortmund,

christian.sohler@tu-dortmund.de

Abstract. In thispaperwe survey recent advances in theareaof sublinear-

time algorithms.

Keywords: Sublinear time algorithms, sublinear approximation algo-

rithms.

1 Introduction

The area of sublinear-time algorithms is a new rapidly emerging area of computer
science. It has its roots in the study of massive data sets that occur more and
more frequently in various applications. Financial transactions with billions of
input data and Internet traffic analyses (Internet traffic logs, clickstreams, web
data) are examples of modern data sets that show unprecedented scale. Managing
and analyzing such data sets forces us to reconsider the traditional notions of
efficient algorithms: processing such massive data sets in more than linear time
is by far too expensive and often even linear time algorithms may be too slow.
Hence, there is the desire to develop algorithms whose running times are not
only polynomial, but in fact are sublinear in n.

Constructing a sublinear time algorithm may seem to be an impossible task
since it allows one to read only a small fraction of the input. However, in recent
years, we have seen development of sublinear time algorithms for optimization
problems arising in such diverse areas as graph theory, geometry, algebraic com-
putations, and computer graphics. Initially, the main research focus has been on
designing efficient algorithms in the framework of property testing (for excellent
surveys, see [28,32,33,43,53]), which is an alternative notion of approximation
for decision problems. But more recently, we have seen some major progress
in sublinear-time algorithms in the classical model of randomized and approxi-
mation algorithms. In this paper, we survey some of the recent advances in this
area. Our main focus is on sublinear-time algorithms for combinatorial problems,
especially for graph problems and optimization problems in metric spaces.

� This survey is a slightly updated version of a survey that appeared in Bulletin of
the EATCS, 89: 23–47, June 2006.

�� Research supported by EPSRC award EP/G064679/1 and by the Centre for Dis-

crete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.
� � � Supported by DFG grant SO 514/3-1.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 41–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 A. Czumaj and C. Sohler

Our goal is to give a flavor of the area of sublinear-time algorithms. We focus
on in our opinion the most representative results in the area and we aim to
illustrate main techniques used to design sublinear-time algorithms. Still, many
of the details of the presented results are omitted and we recommend the readers
to follow the original works. We also do not aim to cover the entire area of
sublinear-time algorithms, and in particular, we do not discuss property testing
algorithms [28,32,33,43,53], even though this area is very closely related to the
research presented in this survey.

Organization. We begin with an introduction to the area and then we give some
sublinear-time algorithms for a basic problem in computational geometry [15].
Next, we present recent sublinear-time algorithms for basic graph problems:
approximating the average degree in a graph [27,37], estimating the cost of a
minimum spanning tree [16] and approximating the size of a maximum matching
[51,56]. Then, we discuss sublinear-time algorithms for optimization problems in
metric spaces. We present the main ideas behind recent algorithms for estimating
the cost of minimum spanning tree [21] and facility location [10], and then we
discuss the quality of random sampling to obtain sublinear-time algorithms for
clustering problems [22,49]. We finish with some conclusions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms has been known for a very long time,
but initially it has been used to denote “pseudo-sublinear-time” algorithms,
where after an appropriate preprocessing, an algorithm solves the problem in
sublinear-time. For example, if we have a set of n numbers, then after an
O(n log n) preprocessing (sorting), we can trivially solve a number of problems
involving the input elements. And so, if the after the preprocessing the elements
are put in a sorted array, then in O(1) time we can find the kth smallest element,
in O(log n) time we can test if the input contains a given element x, and also in
O(log n) time we can return the number of elements equal to a given element x.
Even though all these results are folklore, this is not what we call nowadays a
sublinear-time algorithm.

In this survey, our goal is to study algorithms for which the input is taken
to be in any standard representation and with no extra assumptions. Then,
an algorithm does not have to read the entire input but it may determine the
output by checking only a subset of the input elements. It is easy to see that
for many natural problems it is impossible to give any reasonable answer if
not all or almost all input elements are checked. But still, for some number of
problems we can obtain good algorithms that do not have to look at the entire
input. Typically, these algorithms are randomized (because most of the problems
have a trivial linear-time deterministic lower bound) and they return only an
approximate solution rather than the exact one (because usually, without looking
at the whole input we cannot determine the exact solution). In this survey,
we present recently developed sublinear-time algorithm for some combinatorial
optimization problems.

Sublinear-time Algorithms 43

Searching in a sorted list. It is well-known that if we can store the input in a
sorted array, then we can solve various problems on the input very efficiently.
However, the assumption that the input array is sorted is not natural in typical
applications. Let us now consider a variant of this problem, where our goal is to
search for an element x in a linked sorted list containing n distinct elements1.
Here, we assume that the n elements are stored in a doubly-linked list, each list
element has access to the next and preceding element in the list, and the list
is sorted (that is, if x follows y in the list, then y < x). We also assume that
we have access to all elements in the list, which for example, can correspond to
the situation that all n list elements are stored in an array (but the array is not
sorted and we do not impose any order for the array elements). How can we find
whether a given number x is in our input or is not?

On the first glace, it seems that since we do not have direct access to the
rank of any element in the list, this problem requires Ω(n) time. And indeed, if
our goal is to design a deterministic algorithm, then it is impossible to do the
search in o(n) time. However, if we allow randomization, then we can complete
the search in O(

√
n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a set S of Θ(
√

n) elements from the
input. Since we have access to all elements in the list, we can select the set S in
O(

√
n) time. Next, we scan all the elements in S and in O(

√
n) time we can find

two elements in S, p and q, such that p ≤ x < q, and there is no element in S that
is between p and q. Observe that since the input consist of n distinct numbers,
p and q are uniquely defined. Next, we traverse the input list containing all the
input elements starting at p until we find either the sought key x or we find
element q.

Lemma 1. The algorithm above completes the search in expected O(
√

n) time.
Moreover, no algorithm can solve this problem in o(

√
n) expected time.

Proof. The running time of the algorithm if equal to O(
√

n) plus the number
of the input elements between p and q. Since S contains Θ(

√
n) elements, the

expected number of input elements between p and q is O(n/|S|) = O(
√

n). This
implies that the expected running time of the algorithm is O(

√
n).

For a proof of a lower bound of Ω(
√

n) expected time, see, e.g., [15].

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geometric setting. Given
two convex polygons A and B in R2, each with n vertices, determine if they
intersect, and if so, then find a point in their intersection.

1 The assumption that the input elements are distinct is important. If we allow multiple

elements to have the same key, then the search problem requires Ω(n) time. To see

this, consider the input in which about a half of the elements has key 1, another half

has key 3, and there is a single element with key 2. Then, searching for 2 requires

Ω(n) time.

44 A. Czumaj and C. Sohler

It is well known that this problem can be solved in O(n) time, for example,
by observing that it can be described as a linear programming instance in two
dimensions, a problem which is known to have a linear-time algorithm (cf. [26]).
In fact, within the same time one can either find a point that is in the intersection
of A and B, or find a line L that separates A from B (actually, one can even find
a bitangent separating line L, i.e., a line separating A and B which intersects
with each of A and B in exactly one point). The question is whether we can
obtain a better running time.

The complexity of this problem depends on the input representation. In the
most powerful model, if the vertices of both polygons are stored in an array
in cyclic order, Chazelle and Dobkin [14] showed that the intersection of the
polygons can be determined in logarithmic time. However, a standard geometric
representation assumes that the input is not stored in an array but rather A and
B are given by their doubly-linked lists of vertices such that each vertex has as
its successor the next vertex of the polygon in the clockwise order. Can we then
test if A and B intersect?

Chazelle et al. [15] gave an O(
√

n)-time algorithm that uses the approach
discussed above for searching in a sorted list. Let us first sample uniformly at
random Θ(

√
n) vertices from each A and B, and let CA and CB be the convex

hulls of the sample point sets for the polygons A and B, respectively. Using the
linear-time algorithm mentioned above, in O(

√
n) time we can check if CA and

CB intersects. If they do, then the algorithm will get us a point that lies in the
intersection of CA and CB, and hence, this point lies also in the intersection
of A and B. Otherwise, let L be the bitangent separating line returned by the
algorithm (see Figure 1 (a)).

Let a and b be the points in L that belong to A and B, respectively. Let a1

and a2 be the two vertices adjacent to a in A. We will define now a new polygon
PA. If none of a1 and a2 is on the side CA of L then we define PA to be empty.
Otherwise, exactly one of a1 and a2 is on the side CA of L; let it be a1. We
define polygon PA by walking from a to a1 and then continue walking along the
boundary of A until we cross L again (see Figure 1 (b)). In a similar way we
define polygon PB. Observe that the expected size of each of PA and PB is at
most O(

√
n).

It is easy to see that A and B intersect if and only if either A intersects PB

or B intersects PA. We only consider the case of checking if A intersects PB .

(a)

C

CB

A
a

b

L

(b)

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

C

CA

B

b

a
a

L
P

1

A

Fig. 1. (a) Bitangent line L separating CA and CB , and (b) the polygon PA

Sublinear-time Algorithms 45

We first determine if CA intersects PB. If yes, then we are done. Otherwise,
let LA be a bitangent separating line that separates CA from PB. We use the
same construction as above to determine a subpolygon QA of A that lies on
the PB side of LA. Then, A intersects PB if and only if QA intersects PB .
Since QA has expected size O(

√
n) and so does PB, testing the intersection of

these two polygons can be done in O(
√

n) expected time. Therefore, by our
construction above, we have solved the problem of determining if two polygons
of size n intersect by reducing it to a constant number of problem instances of
determining if two polygons of expected size O(

√
n) intersect. This leads to the

following lemma.

Lemma 2. [15] The problem of determining whether two convex n-gons inter-
sect can be solved in O(

√
n) expected time, which is asymptotically optimal.

Chazelle et al. [15] gave not only this result, but they also showed how to apply a
similar approach to design a number of sublinear-time algorithms for some basic
geometric problems. For example, one can extend the result discussed above to
test the intersection of two convex polyhedra in R3 with n vertices in O(

√
n)

expected time. One can also approximate the volume of an n-vertex convex
polytope to within a relative error ε > 0 in expected time O(

√
n/ε). Or even,

for a pair of two points on the boundary of a convex polytope P with n vertices,
one can estimate the length of an optimal shortest path outside P between the
given points in O(

√
n) expected time.

In all the results mentioned above, the input objects have been represented
by a linked structure: either every point has access to its adjacent vertices in
the polygon in R2, or the polytope is defined by a doubly-connected edge list,
or so. These input representations are standard in computational geometry, but
a natural question is whether this is necessary to achieve sublinear-time algo-
rithms — what can we do if the input polygon/polytop is represented by a set
of points and no additional structure is provided to the algorithm? In such a
scenario, it is easy to see that no o(n)-time algorithm can solve exactly any of
the problems discussed above. That is, for example, to determine if two poly-
gons with n vertices intersect one needs Ω(n) time. However, still, we can obtain
some approximation to this problem, one which is described in the framework
of property testing.

Suppose that we relax our task and instead of determining if two (convex)
polytopes A and B in Rd intersects, we just want to distinguish between two
cases: either A and B are intersection-free, or one has to “significantly mod-
ify” A and B to make them intersection-free. The definition of the notion of
“significantly modify” may depend on the application at hand, but the most
natural characterization would be to remove at least ε n points in A and B,
for an appropriate parameter ε (see [20] for a discussion about other geomet-
ric characterization). Czumaj et al. [25] gave a simple algorithm that for any
ε > 0, can distinguish between the case when A and B do not intersect, and
the case when at least ε n points has to be removed from A and B to make
them intersection-free: the algorithm returns the outcome of a test if a random

46 A. Czumaj and C. Sohler

sample of O((d/ε) log(d/ε)) points from A intersects with a random sample of
O((d/ε) log(d/ε)) points from B.

Sublinear-time algorithms: perspective. The algorithms presented in this section
should give a flavor of the area and give us the first impression of what do we
mean by sublinear-time and what kind of results one can expect. In the following
sections, we will present more elaborate algorithms for various combinatorial
problems for graphs and for metric spaces.

3 Sublinear Time Algorithms for Graphs Problems

In the previous section, we introduced the concept of sublinear-time algorithms
and we presented two basic sublinear-time algorithms for geometric problems. In
this section, we will discuss sublinear-time algorithms for graph problems. Our
main focus is on sublinear-time algorithms for graphs, with special emphasizes
on sparse graphs represented by adjacency lists where combinatorial algorithms
are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of the vertices of an undirected
connected graph G = (V, E), i.e., for any vertex v ∈ V we can query for its
degree. Can we achieve a good approximation of the average degree in G by
looking at a sublinear number of vertices? At first sight, this seems to be an
impossible task. It seems that approximating the average degree is equivalent to
approximating the average of a set of n numbers with values between 1 and n−1,
which is not possible in sublinear time. However, Feige [27] proved that one can
approximate the average degree in O(

√
n/ε) time within a factor of 2 + ε.

The difficulty with approximating the average of a set of n numbers can be
illustrated with the following example. Assume that almost all numbers in the
input set are 1 and a few of them are n−1. To approximate the average we need
to approximate how many occurrences of n− 1 exist. If there is only a constant
number of them, we can do this only by looking at Ω(n) numbers in the set. So,
the problem is that these large numbers can “hide” in the set and we cannot
give a good approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitrary set of numbers,
we have a set of numbers that are the vertex degrees of a graph? For example,
we could still have a few vertices of degree n − 1. The point is that in this case
any edge incident to such a vertex can be seen at another vertex. Thus, even
if we do not sample a vertex with high degree we will see all incident edges at
other vertices in the graph. Hence, vertices with a large degree cannot “hide.”

We will sketch a proof of a slightly weaker result than that originally proven
by Feige [27]. Let d denote the average degree in G = (V, E) and let dS denote the
random variable for the average degree of a set S of s vertices chosen uniformly
at random from V . We will show that if we set s ≥ β

√
n/εO(1) for an appropriate

constant β, then dS ≥ (1
2 − ε) ·d with probability at least 1− ε/64. Additionally,

Sublinear-time Algorithms 47

we observe that Markov inequality immediately implies that dS ≤ (1 + ε) · d

with probability at least 1− 1/(1 + ε) ≥ ε/2. Therefore, our algorithm will pick
8/ε sets Si, each of size s, and output the set with the smallest average degree.
Hence, the probability that all of the sets Si have too high average degree is
at most (1 − ε/2)ε/8 ≤ 1/8. The probability that one of them has too small
average degree is at most 8

ε · ε
64 = 1/8. Hence, the output value will satisfy both

inequalities with probability at least 3/4. By replacing ε with ε/2, this will yield
a (2 + ε)-approximation algorithm.

Now, our goal is to show that with high probability one does not underestimate
the average degree too much. Let H be the set of the

√
ε n vertices with highest

degree in G and let L = V \ H be the set of the remaining vertices. We first
argue that the sum of the degrees of the vertices in L is at least (1

2 − ε) times
the sum of the degrees of all vertices. This can be easily seen by distinguishing
between edges incident to a vertex from L and edges within H . Edges incident
to a vertex from L contribute with at least 1 to the sum of degrees of vertices in
L, which is fine as this is at least 1/2 of their full contribution. So the only edges
that may cause problems are edges within H . However, since |H | =

√
ε n, there

can be at most ε n such edges, which is small compared to the overall number
of edges (which is at least n − 1, since the graph is connected).

Now, let dH be the degree of a vertex with the smallest degree in H . Since
we aim at giving a lower bound on the average degree of the sampled vertices,
we can safely assume that all sampled vertices come from the set L. We know
that each vertex in L has a degree between 1 and dH . Let Xi, 1 ≤ i ≤ s, be the
random variable for the degree of the ith vertex from S. Then, it follows from
Hoeffding bounds that

Pr[
s∑

i=1

Xi ≤ (1 − ε) ·E[
s∑

i=1

Xi]] ≤ e
−E[

∑r
i=1 Xi]·ε2

dH .

We know that the average degree is at least dH · |H |/n, because any vertex in
H has at least degree dH . Hence, the average degree of a vertex in L is at least
(1
2 − ε) · dH · |H |/n. This just means E[Xi] ≥ (1

2 − ε) · dH · |H |/n. By linearity of
expectation we get E[

∑s
i=1 Xi] ≥ s · (1

2 − ε) · dH · |H |/n. This implies that, for
our choice of s, with high probability we have dS ≥ (1

2 − ε) · d.
Feige showed the following result, which is stronger with respect to the de-

pendence on ε.

Theorem 1. [27] Using O(ε−1 ·√n/d0) queries, one can estimate the average
degree of a graph within a ratio of (2 + ε), provided that d ≥ d0.

Feige also proved that Ω(ε−1 ·√n/d) queries are required, where d is the average
degree in the input graph. Finally, any algorithm that uses only degree queries
and estimates the average degree within a ratio 2−δ for some constant δ requires
Ω(n) queries.

Interestingly, if one can also use neighborhood queries, then it is possible to
approximate the average degree using Õ(

√
n/εO(1)) queries with a ratio of (1+ε),

as shown by Goldreich and Ron [37]. The model for neighborhood queries is as

48 A. Czumaj and C. Sohler

follows. We assume we are given a graph and we can query for the ith neighbor
of vertex v. If v has at least i neighbors we get the corresponding neighbor;
otherwise we are told that v has less than i neighbors. We remark that one
can simulate degree queries in this model with O(log n) queries. Therefore, the
algorithm from [37] uses only neighbor queries.

For a sketch of a proof, let us assume that we know the set H . Then we can use
the following approach. We only consider vertices from L. If our sample contains
a vertex from H we ignore it. By our analysis above, we know that there are
only few edges within H and that we make only a small error in estimating the
number of edges within L. We loose the factor of two, because we “see” edges
from L to H only from one side. The idea behind the algorithm from [37] is to
approximate the fraction of edges from L to H and add it to the final estimate.
This has the effect that we count any edge between L and H twice, canceling the
effect that we see it only from one side. This is done as follows. For each vertex v

we sample from L we take a random set of incident edges to estimate the fraction
λ(v) of its neighbors that is in H . Let λ̂(v) denote the estimate we obtain. Then
our estimate for the average degree will be

∑
v∈S∩L(1 + λ̂(v)) · d(v)/|S ∩ L|,

where d(v) denotes the degree of v. If for all vertices we estimate λ(v) within
an additive error of ε, the overall error induced by the λ̂ will be small. This
can be achieved with high probability querying O(log n/ε2) random neighbors.
Then the output value will be a (1+ε)-approximation of the average degree. The
assumption that we know H can be dropped by taking a set of O(

√
n/ε) vertices

and setting H to be the set of vertices with larger degree than all vertices in this
set (breaking ties by the vertex number).

(We remark that the outline of a proof given above is different from the proof
in [37].)

Theorem 2. [37] Given the ability to make neighbor queries to the input graph
G, there exists an algorithm that makes O(

√
n/d0 · ε−O(1)) queries and approx-

imates the average degree in G to within a ratio of (1 + ε).

In their paper Goldreich and Ron also discuss the more general question of ap-
proximating average parameters in graphs. They point out that an algorithm’s
ability to approximate a graph parameter is closely related to the type of query
the algorithm may ask. This raises the question, which types of queries are natu-
ral and which graph parameters can be approximated with such natural queries.
Besides the result on the average degree discussed, they also prove that one can
approximate the average distance in an unweighted graph with O(

√
n/εO(1))

time, which can be further improved as a function of the average degree. Their
algorithm is allowed to perform distance queries that output the distance be-
tween any two query vertices in constant time. Their model can be viewed as a
special case of the distance oracle model for metric spaces (see Section 4) as it
considers shortest path metrics of undirected graphs. This restriction allows to
achieve query times sublinear in n, which is impossible for most problems in the
more general model.

Sublinear-time Algorithms 49

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute a minimum spanning
tree. Since the minimum spanning tree is of size linear in the number of vertices,
no sublinear algorithm for sparse graphs can exists. It is also know that no
constant factor approximation algorithm with o(n2) query complexity in dense
graphs (even in metric spaces) exists [40]. Given these facts, it is somewhat
surprising that it is possible to approximate the cost of a minimum spanning
tree in sparse graphs [16] as well as in metric spaces [21] to within a factor of
(1 + ε).

In the following we will explain the algorithm for sparse graphs by Chazelle
et al. [16]. We will prove a slightly weaker result than in [16]. Let G = (V, E) be an
undirected connected weighted graph with maximum degree D and integer edge
weights from {1, . . . , W}. We assume that the graph is given in adjacency list
representation, i.e., for every vertex v there is a list of its at most D neighbors,
which can be accessed from v. Furthermore, we assume that the vertices are
stored in an array such that it is possible to select a vertex uniformly at random.
We assume also that the values of D and W are known to the algorithm.

The main idea behind the algorithm is to express the cost of a minimum span-
ning tree as the number of connected components in certain auxiliary subgraphs
of G. Then, one runs a randomized algorithm to estimate the number of con-
nected components in each of these subgraphs. The algorithm to estimate the
number of connected components is based on a property tester for connectivity
in the bounded degree graph model by Goldreich and Ron [35].

To start with basic intuitions, let us assume that W = 2, i.e., the graph
has only edges of weight 1 or 2. Let G(1) = (V, E(1)) denote the subgraph that
contains all edges of weight (at most) 1 and let c(1) be the number of connected
components in G(1). It is easy to see that the minimum spanning tree has to
link these connected components by edges of weight 2. Since any connected
component in G(1) can be spanned by edges of weight 1, any minimum spanning
tree of G has c(1) − 1 edges of weight 2 and n− 1 − (c(1) − 1) edges of weight 1.
Thus, the weight of a minimum spanning tree is

n − 1 − (c(1) − 1) + 2 · (c(1) − 1) = n − 2 + c(1) = n − W + c(1) .

Next, let us consider an arbitrary integer value for W . Defining G(i) = (V, E(i)),
where E(i) is the set of edges in G with weight at most i, one can generalize the
formula above to obtain that the cost MST of a minimum spanning tree can be
expressed as

MST = n − W +
W−1∑
i=1

c(i) .

This gives the following simple algorithm.

50 A. Czumaj and C. Sohler

ApproxMSTWeight(G, ε)
for i = 1 to W − 1

Compute estimator ĉ(i) for c(i)

output M̃ST = n − W +
∑W−1

i=1 ĉ(i)

Thus, the key question that remains is how to estimate the number of con-
nected components. This is done by the following algorithm.

ApproxConnectedComps(G, s)
{ Input: an arbitrary undirected graph G }
{ Output: ĉ: an estimation of the number of connected components of G }

choose s vertices u1, . . . , us uniformly at random
for i = 1 to s do

choose X according to Pr[X ≥ k] = 1/k

run breadth-fist-search (BFS) starting at ui until either
(1) the whole connected component containing ui

has been explored, or
(2) X vertices have been explored

if BFS stopped in case (1) then bi = 1
else bi = 0

output ĉ = n
s

∑s
i=1 bi

To analyze this algorithm let us fix an arbitrary connected component C and
let |C| denote the number of vertices in the connected component. Let c denote
the number of connected components in G. We can write

E[bi]=
∑

connected component C

Pr[ui ∈ C] ·Pr[X≥|C|]=
∑

connected component C

|C|
n

· 1
|C| =

c

n
.

By linearity of expectation we obtain E[ĉ] = c.
To show that ĉ is concentrated around its expectation, we apply Chebyshev

inequality. Since bi is an indicator random variable, we have

Var[bi] = E[b2
i] − E[bi]2 ≤ E[b2

i] = E[bi] = c/n .

The bi are mutually independent and so we have

Var[ĉ] = Var
[n
s
·

s∑
i=1

bi

]
=

n2

s2
·

s∑
i=1

Var[bi] ≤ n · c
s

.

With this bound for Var[ĉ], we can use Chebyshev inequality to obtain

Pr[|ĉ − E[ĉ]| ≥ λn] ≤ n · c
s · λ2 · n2

≤ 1
λ2 · s .

From this it follows that one can approximate the number of connected com-
ponents within additive error of λn in a graph with maximum degree D in

Sublinear-time Algorithms 51

O(D·log n
λ2·
) time and with probability 1 − �. The following somewhat stronger

result has been obtained in [16]. Notice that the obtained running time is inde-
pendent of the input size n.

Theorem 3. [16] The number of connected components in a graph with
maximum degree D can be approximated with additive error at most ±λn in
O(D

λ2 log(D/λ)) time and with probability 3/4.

Now, we can use this procedure with parameters λ = ε/(2W) and � = 1
4W

in algorithm ApproxMSTWeight. The probability that at least one call to
ApproxConnectedComps is not within an additive error ±λn is at most 1/4.
The overall additive error is at most ±εn/2. Since the cost of the minimum
spanning tree is at least n− 1 ≥ n/2, it follows that the algorithms computes in
O(D ·W 3 · log n/ε2) time a (1± ε)-approximation of the weight of the minimum
spanning tree with probability at least 3/4. In [16], Chazelle et al. proved a
slightly stronger result which has running time independent of the input size.

Theorem 4. [16] Algorithm ApproxMSTWeight computes a value M̃ST
that with probability at least 3/4 satisfies

(1 − ε) · MST ≤ M̃ST ≤ (1 + ε) · MST .

The algorithm runs in Õ(D · W/ε2) time.

The same result also holds when D is only the average degree of the graph
(rather than the maximum degree) and the edge weights are reals from the
interval [1, W] (rather than integers) [16]. Observe that, in particular, for sparse
graphs for which the ratio between the maximum and the minimum weight is
constant, the algorithm from [16] runs in constant time!

It was also proved in [16] that any algorithm estimating MST requires Ω(D ·
W/ε2) time.

3.3 Constant Time Approximation Algorithms for Maximum
Matching

The next result we will explain here is an elegant technique to construct constant
time approximation algorithms for graphs with bounded degree, as introduced
by Nguyen and Onak [51].

Let G = (V, E) be an undirected graph with maximum degree D. Define
a randomized (α, β)-approximation algorithm to be an algorithm that returns
with probability at least 2/3 a solution with cost at most αOpt + βn, where n

is the size of the input and Opt denotes the cost of an optimal solution. For a
graph we will define the input size to be the cardinality of its vertex set. We
will consider the problem of computing the size of maximum matching, i.e., the
size of a maximum size set M ⊆ E such that no two edges are incident to the
same vertex of G. It is known that the following simple greedy algorithm (that
returns a maximal matching) provides a 2-approximation to this problem.

52 A. Czumaj and C. Sohler

GreedyMatching(G)
{ Input: an undirected graph G = (V, E) }
{ Output: a matching M ⊆ E }

M ← ∅
for each edge (u, v) ∈ E do

Let V (M) be the set of vertices of edges in M

if u, v /∈ V (M) then M ← M ∪ {e}
return M

An important property of GreedyMatching is that in the for-loop of the
algorithm the edges are considered in an arbitrary ordering. We further observe
that at any stage of the algorithm, the set M is a subset of the edges that have
already been processed. Furthermore, if we consider an edge e then we know
that neighboring edges can only be in M if they appear in the ordering before
e. Now assume that the edges are inserted in a random order and let us try to
determine for some fixed edge e whether it is contained in the constructed greedy
matching. We could, of course, simply run the algorithm to do so by exploring
the entire graph. However, our goal is to solve it using local computations that
consider only the subgraph of the input graph close to e. In order to determine
whether e is in the matching it suffices to determine for all its neighboring edges
whether they are in M at the time e is considered by the algorithm. If e appears
earlier than all of its neighbors in the random ordering, then we know that e

is in the matching. Otherwise, we have to recursively solve the problem for all
neighbors of e that appear before e in the random ordering. It may seem in the
first place that this reasoning does not help because we now have to determine
for a bigger set of edges whether they are in the matching. However, we also
gained something: all edges we have to consider recursively are known to appear
before e in the random ordering. This makes it less likely that some of their
neighbors again appear even earlier in the sequence, which in turn means that
we have to recurse for fewer of their neighbors. Thus, typically, this process stops
after a constant number of steps.

Let us now try to formalize our findings. We obtain a random ordering of the
edges by picking a priority p(e) for each edge uniformly at random from [0, 1].
The random order we consider is now defined by increasing priorities. The benefit
of this approach is that we do not have to compute a random ordering for the
whole vertex set to run the local algorithm. Instead we can draw p(e) at random
whenever we consider an edge e for the first time. If we now want to determine
whether an edge e is in the matching we only have to recurse with edges having
a smaller priority than e. Thus, we have to follow all paths of decreasing priority
starting at the endpoints of e.

For a fixed path of length k in the graph, the probability that the priorities
along the path are decreasing is 1/k! (this can be seen by the fact that for any
sequence of k distinct priorities just one of them is decreasing; the case that
probabilities are equal occurs with probability 0). Since the input graph has
maximum degree D, the number of paths of length k starting from a vertex v is

Sublinear-time Algorithms 53

at most Dk. Hence, there are at most 2Dk paths starting at the endpoints of an
edge e. For a large enough constant c this implies that for k ≥ 2cD, with (large)
constant probability there is no path of length k starting from an endpoint of e

that has decreasing priorities. This implies that we can determine whether e is
in the matching by looking at all vertices with distance at most 2cD from the
endpoints of e.

Once we have an oracle to determine whether e ∈ M , we can sample edges to
determine whether a given edge e is in M or not. Using a sample of size Θ(D/ε2)
we can approximate the number of edges in the matching up to additive error εn.
This gives a constant-time (2, ε)-approximation algorithm for estimating the size
of maximum matching, assuming D and ε are constant. The algorithm can be
further improved to an (1, ε)-approximation using a more complicated approxi-
mation algorithm that greedily improves the matching using short augmenting
paths. The query complexity of the improved algorithm is 2DO(1/ε)

.
A further improvement has been done in a subsequent work by Yoshida et

al. [56]. In that paper, the authors reduce the query complexity to DO(1/ε2) +
O(1/ε)O(1/ε) time. The source of improvement is here the idea to consider the
edge with lowest priority first. If this edge turns out to be in the matching then
we are already done and do not have to perform the remaining recursive calls.

Theorem 5. [51,56] For any integer 1 ≤ k < n
2 , there is a (1 + 1

k , εn)-
approximation algorithm with query complexity DO(k2)kO(k)ε−2 for the size of
the maximum matching for graphs with n vertices and degree bound D.

3.4 Other Sublinear-time Results for Graphs

In this section, our main focus was on combinatorial algorithms for sparse graphs.
In particular, we did not discuss a large body of algorithms for dense graphs rep-
resented in the adjacency matrix model. Still, we mention the results of approx-
imating the size of the maximum cut in constant time for dense graphs [30,34],
and the more general results about approximating all dense problems in Max-
SNP in constant time [2,8,30]. Similarly, we also would like to mention about
the existence of a large body of property testing algorithms for graphs, which
in many situations can lead to sublinear-time algorithms for graph problems.
To give representative references, in addition to the excellent survey expositions
[28,32,33,43,53], we would like to mention the recent results on testability of
graph properties, as described, e.g., in [3,4,5,6,11,12,19,23,36,46].

4 Sublinear Time Approximation Algorithms for
Problems in Metric Spaces

One of the most widely considered models in the area of sublinear time approxi-
mation algorithms is the distance oracle model for metric spaces. In this model,
the input of an algorithm is a set P of n points in a metric space (P, d). We
assume that it is possible to compute the distance d(p, q) between any pair of

54 A. Czumaj and C. Sohler

points p, q in constant time. Equivalently, one could assume that the algorithm
is given access to the n × n distance matrix of the metric space, i.e., we have
oracle access to the matrix of a weighted undirected complete graph. Since the
full description size of this matrix is Θ(n2), we will call any algorithm with o(n2)
running time a sublinear algorithm.

Which problems can and cannot be approximated in sublinear time in the
distance oracle model? One of the most basic problems is to find (an approxi-
mation) of the shortest or the longest pairwise distance in the metric space. It
turns out that the shortest distance cannot be approximated. The counterexam-
ple is a uniform metric (all distances are 1) with one distance being set to some
very small value ε. Obviously, it requires Ω(n2) time to find this single short
distance. Hence, no sublinear time approximation algorithm for the shortest dis-
tance problem exists. What about the longest distance? In this case, there is a
very simple 1

2 -approximation algorithm, which was first observed by Indyk [40].
The algorithm chooses an arbitrary point p and returns its furthest neighbor q.
Let r, s be the furthest pair in the metric space. We claim that d(p, q) ≥ 1

2 d(r, s).
By the triangle inequality, we have d(r, p) + d(p, s) ≥ d(r, s). This immediately
implies that either d(p, r) ≥ 1

2 d(r, s) or d(p, s) ≥ 1
2 d(r, s). This shows the ap-

proximation guarantee.
In the following, we present some recent sublinear-time algorithms for a few

optimization problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete graph G. A natural question
is whether we can find out anything about the minimum spanning tree of that
graph. As already mentioned in the previous section, it is not possible to find in
o(n2) time a spanning tree in the distance oracle model that approximates the
minimum spanning tree within a constant factor [40]. However, it is possible to
approximate the weight of a minimum spanning tree within a factor of (1+ ε) in
Õ(n/εO(1)) time [21].

The algorithm builds upon the ideas used to approximate the weight of the
minimum spanning tree in graphs described in Section 3.2 [16]. Let us first
observe that for the metric space problem we can assume that the maximum
distance is O(n/ε) and the shortest distance is 1. This can be achieved by first
approximating the longest distance in O(n) time and then scaling the problem
appropriately. Since by the triangle inequality the longest distance also pro-
vides a lower bound on the minimum spanning tree, we can round up to 1 all
edge weights that are smaller than 1. Clearly, this does not significantly change
the weight of the minimum spanning tree. Now we could apply the algorithm
ApproxMSTWeight from Section 3.2, but this would not give us an o(n2)
algorithm. The reason is that in the metric case we have a complete graph, i.e.,
the average degree is D = n− 1, and the edge weights are in the interval [1, W],
where W = O(n/ε). So, we need a different approach. In the following we will
outline an idea how to achieve a randomized o(n2) algorithm. To get a near
linear time algorithm as in [21] further ideas have to be applied.

Sublinear-time Algorithms 55

The first difference to the algorithm from Section 3.2 is that when we develop
a formula for the minimum spanning tree weight, we use geometric progression
instead of arithmetic progression. Assuming that all edge weights are powers of
(1 + ε), we define G(i) to be the subgraph of G that contains all edges of length
at most (1+ε)i. We denote by c(i) the number of connected components in G(i).
Then we can write

MST = n − W + ε ·
r−1∑
i=0

(1 + ε)i · c(i) , (1)

where r = log1+ε W − 1.
Once we have (1), our approach will be to approximate the number of con-

nected components c(i) and use formula (1) as an estimator. Although geomet-
ric progression has the advantage that we only need to estimate the connected
components in r = O(log n/ε) subgraphs, the problem is that the estimator is
multiplied by (1+ε)i. Hence, if we use the procedure from Section 3.2, we would
get an additive error of ε n · (1+ ε)i, which, in general, may be much larger than
the weight of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. We will use a
different graph traversal than BFS. Our graph traversal runs only on a subset of
the vertices, which are called representative vertices. Every pair of representative
vertices are at distance at least ε · (1 + ε)i from each other. Now, assume there
are m representative vertices and consider the graph induced by these vertices
(there is a problem with this assumption, which will be discussed later). Running
algorithm ApproxConnectedComps on this induced graph makes an error of
±λm, which must be multiplied by (1 + ε)i resulting in an additive error of
±λ · (1 + ε)i · m. Since the m representative vertices have pairwise distance
ε · (1 + ε)i, we have a lower bound MST ≥ m · ε · (1 + ε)i. Choosing λ = ε2/r

would result in a (1 + ε)-approximation algorithm.
Unfortunately, this simple approach does not work. One problem is that we

cannot choose a random representative point. This is because we have no a priori
knowledge of the set of representative points. In fact, in the algorithm the points
are chosen greedily during the graph traversal. As a consequence, the decision
whether a vertex is a representative vertex or not, depends on the starting point
of the graph traversal. This may also mean that the number of representative
vertices in a connected component also depends on the starting point of the
graph traversal. However, it is still possible to cope with these problems and use
the approach outlined above to get the following result.

Theorem 6. [21] The weight of a minimum spanning tree of an n-point metric
space can be approximated in Õ(n/εO(1)) time to within a (1+ε) factor and with
confidence probability at least 3

4 .

Extensions: Sublinear-time (2 + ε)-approximation of metric TSP and
Steiner trees. Let us remark here one direct corollary of Theorem 6. By the
well known relationship (see, e.g., [55]) between minimum spanning trees, trav-
elling salesman tours, and minimum Steiner trees, the algorithm for estimating

56 A. Czumaj and C. Sohler

the weight of the minimum spanning tree from Theorem 6 immediately yields
Õ(n/εO(1)) time (2 + ε)-approximation algorithms for two other classical prob-
lems in metric spaces (or in graphs satisfying the triangle inequality): estimating
the weight of the travelling salesman tour and the minimum Steiner tree.

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one can estimate the cost
of the metric uniform facility location problem in Õ(n/εO(1)) time [10]. This
problem is defined as follows. We are given an n-point metric space (P, d). We
want to find a subset F ⊆ P of open facilities such that

|F | +
∑
p∈P

d(p, F)

is minimized. Here, d(p, F) denotes the distance from p to the nearest point in
F . It is known that one cannot find a solution that approximates the optimal
solution within a constant factor in o(n2) time [54]. However, it is possible to
approximate the cost of an optimal solution within a constant factor.

The main idea is as follows. Let us denote by B(p, r) the set of points from P

with distance at most r from p. For each p ∈ P let rp be the unique value that
satisfies ∑

q∈B(p,rp)

(rp − d(p, q)) = 1 .

Then one can show that

Lemma 3. [10]
1
4
· Opt ≤

∑
p∈P

rp ≤ 6 · Opt ,

where Opt denotes the cost of an optimal solution to the metric uniform facility
location problem.

Now, the algorithm is based on a randomized algorithm that for a given point
p, estimates rp to within a constant factor in time O(rp · n · log n) (recall that
rp ≤ 1). Thus, the smaller rp, the faster the algorithm. Now, let p be chosen
uniformly at random from P . Then the expected running time to estimate rp is
O(n log n ·∑p∈P rp/n) = O(n log n · E[rp]). We pick a random sample set S of
s = 100 logn/E[rp] points uniformly at random from P . (The fact that we do not
know E[rp] can be dealt with by using a logarithmic number of guesses.) Then
we use our algorithm to compute for each p ∈ S a value r̂p that approximates
rp within a constant factor. Our algorithm outputs n

s ·∑p∈S r̂p as an estimate
for the cost of the facility location problem. Using Hoeffding bounds it is easy to
prove that n

s ·
∑

p∈S rp approximates
∑

p∈P rp = Opt within a constant factor and
with high probability. Clearly, the same statement is true, when we replace the
rp values by their constant approximations r̂p. Finally, we observe that expected
running time of our algorithm will be Õ(n/εO(1)). This allows us to conclude
with the following.

Sublinear-time Algorithms 57

Theorem 7. [10] There exists an algorithm that computes a constant factor
approximation to the cost of the metric uniform facility location problem in
O(n log2

n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsets (clusters) of similar char-
acteristics are one of the most fundamental problems in computer science, oper-
ations research, and related fields. Clustering problems arise naturally in various
massive datasets applications, including data mining, bioinformatics, pattern
classification, etc. In this section, we will discuss uniform random sampling for
clustering problems in metric spaces, as analyzed in two recent papers [22,49].

(a) (b) (c)

Fig. 2. (a) A set of points in a metric space, (b) its 3-clustering (white points correspond

to the center points), and (c) the distances used in the cost for the 3-median

Let us consider a classical clustering problem known as the k-median problem.
Given a finite metric space (P, d), the goal is to find a set C ⊆ P of k centers
(points in P) that minimizes

∑
p∈P d(p, C), where d(p, C) denotes the distance

from p to the nearest point in C. The k-median problem has been studied in
numerous research papers. It is known to be NP-hard and there exist constant-
factor approximation algorithms running in Õ(n k) time. In two recent papers
[22,49], the authors asked the question about the quality of the uniformly random
sampling approach to k-median, that is, what is the quality of the following
generic scheme:

(1) choose a multiset S ⊆ P of size s i.u.r. (with repetitions),

(2) run an α-approximation algorithm Aα on input S to compute a

solution C∗, and

(3) return set C∗ (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size sample set S will suffice to
obtain a good approximation guarantee. Furthermore, as observed in [49] (see
also [48]), in order to have any approximation guarantee, one has to consider
the quality of approximation as a function of the diameter of the metric space.
Therefore, we consider a model with the diameter of the metric space Δ given,
that is, with d : P × P → [0, Δ].

58 A. Czumaj and C. Sohler

Using techniques from statistics and computational learning theory, Mishra
et al. [49] proved that if we sample a set S of s = Õ

((
α Δ

ε

)2
(k ln n + ln(1/δ))

)
points from P i.u.r. (independently and uniformly at random) and run α-approxi-
mation algorithm Aα to find an approximation of the k-median for S, then with
probability at least 1− δ, the output set of k centers has average distance to the
nearest center of at most 2 ·α ·med(P, k)+ε, where med(P, k) denotes the average
distance to the k-median C, that is, med(P, k) =

∑
v∈P d(v,C)

n . We will now briefly
sketch the analysis due to Czumaj and Sohler [22] of a similar approximation
guarantee but with a smaller bound for s.

Let Copt denote an optimal set of centers for P and let cost(X, C) be the
average cost of the clustering of set X with center set C, that is, cost(X, C) =∑

x∈X d(x,C)

|X| . Notice that cost(P, Copt) = med(P, k). The analysis of Czumaj and
Sohler [22] is performed in two steps.

(i) We first show that there is a set of k centers C ⊆ S such that cost(S, C) is
a good approximation of med(P, k) with high probability.

(ii) Next we show that with high probability, every solution C for P with cost
much bigger than med(P, k) is either not a feasible solution for S (i.e., C �⊆ S)
or cost(S, C) � α · med(P, k) (that is, the cost of C for the sample set S is
large with high probability).

Since S contains a solution with cost at most c · med(P, k) for some small c, Aα

will compute a solution C∗ with cost at most α · c · med(P, k). Now we have to
prove that no solution C for P with cost much bigger than med(P, k) will be
returned, or in other words, that if C is feasible for S then its cost is larger than
α · c · med(P, k). But this is implied by (ii). Therefore, the algorithm will not
return a solution with too large cost, and the sampling is a (c ·α)-approximation
algorithm.

Theorem 8. [22] Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 and ε > 0 be approxi-
mation parameters. If s ≥ c·α

β ·
(
k + Δ

ε·β ·
(
α · ln(1/δ) + k · ln

(
k Δ α
ε β2

)))
for an

appropriate constant c, then for the solution set of centers C∗, with probability
at least 1 − δ it holds the following

cost(V, C∗) ≤ 2 (α + β) · med(P, k) + ε .

To give the flavor of the analysis, we will sketch (a simpler) part (i) of the
analysis:

Lemma 4. If s≥ 3Δα(1+α/β) ln(1/δ)

β·med(P,k)
then Pr

[
cost(S, C∗) ≤ 2 (α+β)·med(P, k)

]≥
1 − δ.

Proof. We first show that if we consider the clustering of S with the optimal set
of centers Copt for P , then cost(S, Copt) is a good approximation of med(P, k).
The problem with this bound is that in general, we cannot expect Copt to be
contained in the sample set S. Therefore, we have to show also that the optimal
set of centers for S cannot have cost much worse than cost(S, Copt).

Sublinear-time Algorithms 59

Let Xi be the random variable for the distance of the ith point in S to the
nearest center of Copt. Then, cost(S, Copt) = 1

s

∑
1≤i≤s Xi, and, since E[Xi] =

med(P, k), we also have med(P, k) = 1
s · E[∑

Xi

]
. Hence,

Pr
[
cost(S, Copt) > (1 + β

α) · med(P, k)
]

= Pr
[∑
1≤i≤s

Xi > (1 + β
α) ·E[∑

1≤i≤s

Xi

]]
.

Observe that each Xi satisfies 0 ≤ Xi ≤ Δ. Therefore, by Chernoff-Hoeffding
bound we obtain:

Pr
[∑

1≤i≤s

Xi > (1 + β/α) · E[∑
1≤i≤s

Xi

]] ≤ e−
s·med(P,k)·min{(β/α),(β/α)2}

3 Δ ≤ δ .

(2)
This gives us a good bound for the cost of cost(S, Copt) and now our goal is to
get a similar bound for the cost of the optimal set of centers for S. Let C be the
set of k centers in S obtained by replacing each c ∈ Copt by its nearest neighbor
in S. By the triangle inequality, cost(S, C) ≤ 2 · cost(S, Copt). Hence, multiset S

contains a set of k centers whose cost is at most 2 · (1 + β/α) · med(P, k) with
probability at least 1 − δ. Therefore, the lemma follows because Aα returns an
α-approximation C∗ of the k-median for S.

Next, we only state the other lemma that describes part (ii) of the analysis of
Theorem 8.

Lemma 5. Let s ≥ c·α
β ·

(
k + Δ

ε·β ·
(
α · ln(1/δ) + k · ln

(
k Δ α
ε β2

)))
for an ap-

propriate constant c. Let C be the set of all sets of k centers C of P with
cost(P, C) > (2 α + 6 β) · med(P, k). Then,

Pr
[∃Cb ∈ C : Cb ⊆ S and cost(S, Cb) ≤ 2 (α + β) med(P, k)

] ≤ δ . ��
Observe that comparing the result from [49] to the result in Theorem 8, Theo-
rem 8 improves the sample complexity by a factor of Δ · log n/ε while obtain-
ing a slightly worse approximation ratio of 2 (α + β) med(P, k) + ε, instead of
2 αmed(P, k) + ε as in [49]. However, since the polynomial-time algorithm with
the best known approximation guarantee has α = 3 + 1

c for the running time of
O(nc) time [9], this significantly improves the running time of [49] for all realistic
choices of the input parameters while achieving the same approximation guar-
antee. As a highlight, Theorem 8 yields a sublinear-time algorithm that in time
Õ((Δ

ε · (k + log(1/δ)))2) — fully independent of n — returns a set of k centers
for which the average distance to the nearest median is at most O(med(P, k))+ε

with probability at least 1 − δ.

Extensions. The result in Theorem 8 can be significantly improved if we as-
sume the input points are in Euclidean space Rd. In this case the approximation
guarantee can be improved to (α + β) med(P, k) + ε at the cost of increasing the
sample size to Õ(Δ·α

ε·β2 · (k d + log(1/δ))).
Furthermore, a similar approach as that sketched above can be applied to study

similar generic sample schemes for other clustering problems. As it is shown in [22],

60 A. Czumaj and C. Sohler

almost identical analysis lead to sublinear (independent on n) sample complexity
for the classical k-means problem. Also, a more complex analysis can be applied
to study the sample complexity for the min-sum k-clustering problem [22].

4.4 Other Results

Indyk [40] was the first who observed that some optimization problems in metric
spaces can be solved in sublinear-time, that is, in o(n2) time. He presented
(1
2 − ε)-approximation algorithms for MaxTSP and the maximum spanning tree

problems that run in O(n/ε) time [40]. He also gave a (2 + ε)-approximation
algorithm for the minimum routing cost spanning tree problem and a (1 + ε)
approximation algorithm for the average distance problem; both algorithms run
in O(n/εO(1)) time.

There is also a number of sublinear-time algorithms for various clustering
problems in either Euclidean spaces or metric spaces, when the number of clus-
ters is small. For radius (k-center) and diameter clustering in Euclidean spaces,
sublinear-time property testing algorithms [1,23] and tolerant testing algorithms
[52] have been developed. The first sublinear algorithm for the k-median prob-
lem was a bicriteria approximation algorithm [40]. This algorithm computes in
Õ(n k) time a set of O(k) centers that are a constant factor approximation to
the k-median objective function. Later, standard constant factor approximation
algorithms were given that run in time Õ(n k) (see, e.g., [47,54]). These sublinear-
time results have been extended in many different ways, e.g., to efficient data
streaming algorithms and very fast algorithms for Euclidean k-median and also
to k-means, see, e.g., [9,13,17,29,38,39,44,45,48]. For another clustering problem,
the min-sum k-clustering problem (which is complement to the Max-k-Cut), for
the basic case of k = 2, Indyk [42] (see also [41]) gave a (1 + ε)-approximation
algorithm that runs in time O(21/εO(1)

n (log n)O(1)), which is sublinear in the
full input description size. No such results are known for k ≥ 3, but recently, [24]
gave a constant-factor approximation algorithm for min-sum k-clustering that
runs in time O(n k (k log n)O(k)) and a polylogarithmic approximation algorithm
running in time Õ(n kO(1)).

4.5 Limitations: What Cannot Be Done in Sublinear-Time

The algorithms discussed in the previous sections may suggest that many opti-
mization problems in metric spaces have sublinear-time algorithms. However, it
turns out that the problems listed in the previous sections are more like excep-
tions than a norm. Indeed, most of the problems have a trivial lower bound that
exclude sublinear-time algorithms. We have already mentioned in Section 4 that
the problem of approximating the cost of the lightest edge in a finite metric space
(P, d) requires Ω(n2), even if randomization is allowed. The other problems for
which no sublinear-time algorithms are possible include estimation of the cost of
minimum-cost matching, the cost of minimum-cost bi-chromatic matching, the
cost of minimum non-uniform facility location, the cost of k-median for k = n/2;
all these problems require Ω(n2) (randomized) time to estimate the cost of their
optimal solution to within any constant factor [10].

Sublinear-time Algorithms 61

(a) L

1

1

R

1

1

d(e) = 1

1

1

(b)

1

R

1

1

d(e) = B

1

1

1

L

Fig. 3. Two instance of the metric matching which are indistinguishable in o(n2) time

and whose cost differ by a factor greater than λ. The perfect matching connecting L
with R is selected at random and the edge e is selected as a random edge from the

matching. We set B = n (λ − 1) + 2. The distances not shown are all equal to n3 λ.

To illustrate the lower bounds, we give two instances of the metric spaces
which are indistinguishable by any o(n2)-time algorithm for which the cost of
the minimum-cost matching in one instance is greater than λ times the one in
the other instance (see Figure 3). Consider a metric space (P, d) with 2n points,
n points in L and n points in R. Take a random perfect matching M between
the points in L and R, and then choose an edge e ∈ M at random. Next, define
the distance in (P, d) as follows:

– d(e) is either 1 or B, where we set B = n (λ − 1) + 2,
– for any e∗M \ {e} set d(e∗) = 1, and
– for any other pair of points p, q ∈ P not connected by an edge from M,

d(p, q) = n3 λ.

It is easy to see that both instances define properly a metric space (P, d). For such
problem instances, the cost of the minimum-cost matching problem will depend
on the choice of d(e): if d(e) = B then the cost will be n − 1 + B > n λ, and if
d(e) = 1, then the cost will be n. Hence, any λ-factor approximation algorithm
for the matching problem must distinguish between these two problem instances.
However, this requires to find if there is an edge of length B, and this is known
to require time Ω(n2), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of the large body of research
known in the area of sublinear-time algorithms in such a short paper. In this
survey, our main goal was to give some flavor of the area and of the types of
the results achieved and the techniques used. For more details, we refer to the
original works listed in the references.

We did not discuss two important areas that are closely related to sublinear-
time algorithms: property testing and data streaming algorithms. For interested
readers, we recommend the surveys in [7,28,32,33,43,53] and [50], respectively.

62 A. Czumaj and C. Sohler

References

1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. SIAM Journal on

Discrete Mathematics 16(3), 393–417 (2003)

2. Alon, N., Fernandez de la Vega, W., Kannan, R., Karpinski, M.: Random sampling

and approximation of MAX-CSPs. Journal of Computer and System Sciences 67(2),

212–243 (2003)

3. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.

Combinatorica 20(4), 451–476 (2000)

4. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization

of the testable graph properties: it’s all about regularity. SIAM Journal on Com-

puting 39(1), 143–167 (2009)

5. Alon, N., Shapira, A.: Every monotone graph property is testable. SIAM Journal

on Computing 38(2), 505–522 (2008)

6. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable

with one-sided error. SIAM Journal on Computing 37(6), 1703–1727 (2008)

7. Alon, N., Shapira, A.: Homomorphisms in graph property testing - A survey. In:

Klazar, M., Kratochvil, J., Loebl, M., Matousek, J., Thomas, R., Valtr, P. (eds.)

Topics in Discrete Mathematics, dedicated to Jarik Nesetril on the occasion of his

60th Birthday, pp. 281–313

8. Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes

for dense instances of NP-hard problems. Journal of Computer and System Sci-

ences 58(1), 193–210 (1999)

9. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local

search heuristics for k-median and facility location problems. SIAM Journal on

Computing 33(3), 544–562 (2004)

10. Bădoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.

In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP

2005. LNCS, vol. 3580, pp. 866–877. Springer, Heidelberg (2005)

11. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse

graphs is testable. In: Proceedings of the 40th Annual ACM Symposium on Theory

of Computing (STOC), pp. 393–402 (2008)

12. Borgs, C., Chayes, J., Lovász, L., Sos, V.T., Szegedy, B., Vesztergombi, K.: Graph

limits and parameter testing. In: Proceedings of the 38th Annual ACM Symposium

on Theory of Computing (STOC) (2006)

13. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clus-

tering problems. In: Proceedings of the 35th Annual ACM Symposium on Theory

of Computing (STOC), pp. 30–39 (2003)

14. Chazelle, B., Dobkin, D.P.: Intersection of convex objects in two and three dimen-

sions. Journal of the ACM 34(1), 1–27 (1987)

15. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM Journal

on Computing 35(3), 627–646 (2006)

16. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning

tree weight in sublinear time. SIAM Journal on Computing 34(6), 1370–1379 (2005)

17. Chen, K.: On k-median clustering in high dimensions. In: Proceedings of the 17th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1177–1185

(2006)

18. Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,

C.: Sublinear-time approximation of Euclidean minimum spanning tree. SIAM

Journal on Computing 35(1), 91–109 (2005)

Sublinear-time Algorithms 63

19. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of non-expanding

bounded-degree graphs. SIAM Journal on Computing 38(6), 2499–2510 (2009)

20. Czumaj, A., Sohler, C.: Property testing with geometric queries. In: Meyer auf

der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg

(2001)

21. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees

in sublinear-time. SIAM Journal on Computing 39(3), 904–922 (2009)

22. Czumaj, A., Sohler, C.: Sublinear-time approximation for clustering via random

sampling. Random Structures and Algorithms 30(1-2), 226–256 (2007)

23. Czumaj, A., Sohler, C.: Abstract combinatorial programs and efficient property

testers. SIAM Journal on Computing, 34(3), 580–615 (2005)

24. Czumaj, A., Sohler, C.: Small space representations for metric min-sum k-

clustering and their applications. Theory of Computing Systems 46(3), 416–442

(2010)

25. Czumaj, A., Sohler, C., Ziegler, M.: Property testing in computational geometry.

In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer, Heidel-

berg (2000)

26. Dyer, M., Megiddo, N., Welzl, E.: Linear programming. In: Goodman, J.E.,

O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn.,

pp. 999–1014. CRC Press, Boca Raton (2004)

27. Feige, U.: On sums of independent random variables with unbounded variance

and estimating the average degree in a graph. SIAM Journal on Computing 35(4),

964–984 (2006)

28. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin

of the EATCS 75, 97–126 (2001)

29. Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proceed-

ings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp.

209–217 (2005)

30. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Com-

binatorica 19(2), 175–220 (1999)

31. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-

rank approximations. Journal of the ACM 51(6), 1025–1041 (2004)

32. Goldreich, O.: Combinatorial property testing (a survey). In: Pardalos, P., Ra-

jasekaran, S., Rolim, J. (eds.) Proc. DIMACS Workshop on Randomization Meth-

ods in Algorithm Design. DIMACS, Series in Discrete Mathetaics and Theoretical

Computer Science, vol. 43, pp. 45–59. American Mathematical Society, Providence

(1997)

33. Goldreich, O.: Property testing in massive graphs. In: Abello, J., Pardalos, P.M.,

Resende, M.G.C. (eds.) Handbook of massive data sets, pp. 123–147. Kluwer Aca-

demic Publishers, Dordrecht (2002)

34. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM 45(4), 653–750 (1998)

35. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-

mica 32(2), 302–343 (2002)

36. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs.

Combinatorica 19(3), 335–373 (1999)

37. Goldreich, O., Ron, D.: Approximating average parameters of graphs. Random

Structures and Algorithms 32(4), 473–493 (2008)

38. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-medians and their ap-

plications. In: Proceedings of the 36th Annual ACM Symposium on Theory of

Computing (STOC), pp. 291–300 (2004)

64 A. Czumaj and C. Sohler

39. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.

Discrete & Computational Geometry 37(1), 3–19 (2007)

40. Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings of

the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 428–434

(1999)

41. Indyk, P.: A sublinear time approximation scheme for clustering in metric spaces.

In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 154–159 (1999)

42. Indyk, P.: High-Dimensional Computational Geometry. PhD thesis, Stanford Uni-

versity (2000)

43. Kumar, R., Rubinfeld, R.: Sublinear time algorithms. SIGACT News 34, 57–67

(2003)

44. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1+ε)-approximation algo-

rithm for k-means clustering in any dimensions. In: Proceedings of the 45th IEEE

Symposium on Foundations of Computer Science (FOCS), pp. 454–462 (2004)

45. Kumar, A., Sabharwal, Y., Sen, S.: Linear time algorithms for clustering problems

in any dimensions. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,

Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1374–1385. Springer, Heidelberg

(2005)

46. Lovász, L., Szegedy, B.: Graph limits and testing hereditary graph properties.

Technical Report, MSR-TR-2005-110, Microsoft Research (August 2005)

47. Mettu, R., Plaxton, G.: Optimal time bounds for approximate clustering. Machine

Learning 56(1-3), 35–60 (2004)

48. Meyerson, A., O’Callaghan, L., Plotkin, S.: A k-median algorithm with running

time independent of data size. Machine Learning 56(1-3), 61–87 (2004)

49. Mishra, N., Oblinger, D., Pitt, L.: Sublinear time approximate clustering. In:

Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pp. 439–447 (2001)

50. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and

Trends in Theoretical Computer Science 1(2) (August 2005)

51. Nguyen, H., Onak, K.: Constant-time approximation algorithms via local improve-

ments. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer

Science (FOCS), pp. 489–498 (2008)

52. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approx-

imation. Journal of Computer and System Sciences 72(6), 1012–1042 (2006)

53. Ron, D.: Property testing. In: Pardalos, P.M., Rajasekaran, S., Reif, J., Rolim,

J.D.P. (eds.) Handobook of Randomized Algorithms, vol. II, pp. 597–649. Kluwer

Academic Publishers, Dordrecht (2001)

54. Thorup, M.: Quick k-median, k-center, and facility location for sparse graphs.

SIAM Journal on Computing 34(2), 405–432 (2005)

55. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2004)

56. Yoshida, Y., Yamamoto, M., Ito, H.: Improved constant-time approximation algo-

rithms for maximum independent sets and maximum matchings. In: Proceedings of

the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 225–234

(2009)

Short Locally Testable Codes and Proofs:

A Survey in Two Parts

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il

Abstract. We survey known results regarding locally testable codes and

locally testable proofs (known as PCPs), with emphasis on the length of

these constructs. Local testability refers to approximately testing large ob-

jects based on a very small number of probes, each retrieving a single bit

in the representation of the object. This yields super-fast approximate-

testing of the corresponding property (i.e., be a codeword or a valid proof).

We also review the related concept of local decodable codes.

The survey consists of two independent (i.e., self-contained) parts that

cover the same material at different levels of rigor and detail. Still, in spite

of the repetitions, there may be a benefit in reading both parts.

Keywords: Error Correcting Codes, Probabilistically Checkable Proofs

(PCP),LocallyTestableCodes, LocallyDecodableCodes, Self-Correction,

Low-Degree Tests, Derandomization, Private Information Retrieval.

This is a revised version of [36].

Part I: A high-level overview

The title of this survey refers to two types of objects (i.e., codes and proofs) and
two adjectives (i.e., local testability and short). A clarification of these terms is
in place.

Codes, proofs and their length. Codes are sets of strings (of equal length), typ-
ically, having a large pairwise distance. Equivalently, codes are viewed as map-
pings from short (k-bit) strings to longer (n-bit) strings, called codewords, such
that the codewords are distant from one another. We will focus on codes with
relative constant distance; that is, every two n-bit codewords are at distance
Ω(n) apart. The length of the code is measured in terms of the length of the
pre-image (i.e., we are interested in the growth of n as a function of k). Turning
to proofs, these are defined with respect to a verification procedure for asser-
tions of a certain length, and their length is measured in terms of the length
of the assertion. The verification procedure must satisfy the natural completeness
and soundness properties: For valid assertions there should be strings, called
proofs, that are accepted (in conjunction with the assertion) by the verification
procedures, whereas for false assertions no such strings may exist. The reader
may envision proof systems for the set of satisfiable propositional formulae (i.e.,
assertions of satisfiability of given formulae).

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 65–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 O. Goldreich

Local testability. By local testability we mean that the object can be tested for
the natural property (i.e., being a codeword or a valid proof) using a small (typ-
ically constant)1 number of probes, each recovering individual bits in a standard
representation of the object. Thus, local testability allows for super-fast testing
of the corresponding objects. The tests are probabilistic and hence the result is
correct only with high probability.2 Furthermore, correctness refers to a relaxed
notion of deciding (which was formulated, in general terms, in the context of
property testing [57,38]): It is required that valid objects be accepted with high
probability, whereas objects that are “far” from being valid should be rejected
with high probability. Specifically, in the case of codes, codewords should be
accepted (with high probability), whereas strings that are “far” from the code
should be rejected (with high probability). In the case of proofs, valid proofs
(which exist for correct assertions) should be accepted (with high probability),
whereas strings that are “far” from being valid proofs (and, in particular, all
strings in case no valid proofs exist) should be rejected (with high probability).3

Our notion of locally testable proofs is closely related to the notion of a
PCP (i.e., probabilistically checkable proof), and we will ignore the difference in
the sequel. The difference is that in the definition of locally testable proofs we
required rejection of strings that are far from any valid proof, also in the case
that valid proofs exists (i.e., the assertion is valid). In contrast, the standard
rejection criteria of PCPs refers only to false assertions. Still, all known PCP
constructions actually satisfy the stronger definition.

The very possibility of local testability. Indeed, local testability of either codes
or proofs is quite challenging, regardless of the issue of length:

– For codes, the simplest example of a locally testable code (of constant relative
distance) is the Hadamard code and testing it amounts to linearity testing.
However, the exact analysis of the natural linearity tester (of Blum, Luby and
Rubinfeld [22]) turned out to be highly complex (cf. [22,6,31,12,13,10,46]).

– For proofs, the simplest example of a locally testable proof is the “inner
verifier” of the PCP construction of Arora, Lund, Motwani, Sudan and
Szegedy [4], which in turn is based on the Hadamard code.

In both cases, the constructed object has exponential length in terms of the
relevant parameter (i.e., the amount of information being encoded in the code
or the length of the assertion being proved).

Local testability at a polynomial blow-up. Achieving local testability by codes
and proofs that have polynomial length turns out to be even more challenging.

1 In this part, we associate local testability with tests that perform a constant number

of probes.
2 It is easy to see that deterministic tests will perform very poorly, and the same holds

with respect to probabilistic tests that make no error.
3 Indeed, in the case the assertion is false, there exist no valid proofs. In this case all

strings are defined to be far from a valid proof.

Short Locally Testable Codes and Proofs 67

– In thecaseof codes, adirect interpretationof low-degree tests (cf. [6,7,35,57,34]),
proposed in [34,57], yields a locally testable code of quadratic length over a suf-
ficiently large alphabet. Similar (and actually better) results for binary codes
required additional ideas, and have appeared only later (cf. [41]).

– The case of proofs is far more complex: Achieving locally testable proof of
polynomial length is essentially the contents of the celebrated PCP Theorem
of Arora, Lund, Motwani, Safra, Sudan and Szegedy [5,4].

We focus on even shorter codes and proofs; specifically, codes and proofs of nearly
linear length. The latter term has been given quite different interpretations, and
here we adopt the most strict interpretation by which nearly linear means linear
up to polylogarithmic factors.

Local testability with a polylogarithmic (length) overhead: The ultimate goal is to
obtain locally testable codes and proofs of minimal length. The currently known
results get very close to obtaining this goal.

Theorem 1. (Dinur [26], building on [20]): There exist locally testable codes
and proofs of length that is only a polylogarithmic factor larger than the relevant
parameter. That is, the length function � : N → N satisfies �(k) = Õ(k) = k ·
poly(log k).

One may wonder whether or not a polylogarithmic overhead in inherent to local
testability of codes and proofs. This is indeed a fundamental open problem.

Open Problem 2. Do there exist locally testable codes and proofs of linear
length?

In the rest of this part of the survey, we motivate the study of short locally
testable objects, comment on the relation between such codes and proofs, and
discuss a somewhat related coding problem.

Motivation for the Study of Short Locally Testable Codes and Proofs

Local testability offers an extremely strong notion of efficient testing: The tester
makes only a constant number of bit probes, and determining the probed lo-
cations (as well as the final decision) is typically done in time that is poly-
logarithmic in the length of the probed object.

The length of an error-correcting code is widely recognized as one of the two
most fundamental parameters of the code (the second one being its distance). In
particular, the length of the code is of major importance in applications, because
it determines the overhead involved in encoding information.

The same considerations apply also to proofs. However, in the case of proofs,
this obvious point was blurred by the indirect, unexpected and highly influential
applications of locally testable proofs (known as PCPs) to the theory of approx-
imation algorithms. In our view, the significance of locally testable proofs (i.e.,
PCPs) extends far beyond their applicability to deriving non-approximability

68 O. Goldreich

results. The mere fact that proofs can be transformed into a format that sup-
ports super-fast probabilistic verification is remarkable. From this perspective,
the question of how much redundancy is introduced by such a transformation is
a fundamental one. Furthermore, locally testable proofs (i.e., PCPs) have been
used not only to derive non-approximability results but also for obtaining posi-
tive results (e.g., CS-proofs [48,53] and their applications [8,24]), and the length
of the PCP affects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of approx-
imation algorithms, we note that the length of PCPs is also relevant to non-
approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived. For
example, suppose (exact) SAT has complexity 2Ω(n). The original PCP Theo-
rem [5,4] only implies that approximating MaxSAT requires time 2nα

, for some
(small) α > 0. The work of [55] makes α arbitrarily close to 1, whereas the results
of [41,21] further improve the lower bound to 2n1−o(1)

and the results of [20,26]
yields a lower bound of 2n/poly(log n).4

On the Relation between Locally Testable Codes and Proofs

Locally testable codes seem related to locally testable proofs (PCPs). In fact,
the use of codes with some “local testability” features is implicit in known PCP
constructions. Furthermore, the known constructions of locally testable proofs
(PCPs) provides a transformation of standard proofs (for say SAT) to locally
testable proofs (i.e., PCP-oracles) such that transformed strings are accepted
with probability one by the PCP verifier. Moreover, starting from different stan-
dard proofs, one obtains locally testable proofs that are far apart, and hence
constitute a good code. It is tempting to think that the PCP verifier yields a
codeword tester, but this is not really the case. Note that our definition of a lo-
cally testable proof requires rejection of strings that are far from any valid proof,
but it is not clear that the only valid proofs (w.r.t the constructed PCP verifier)
are those that are obtained by the aforementioned transformation of standard
proofs to locally testable ones.5 In fact, the standard PCP constructions accept
also valid proofs that are not in the range of the corresponding transformation.

In spite of the above, locally testable codes and proofs are related, and the
feeling is that locally testable codes are the combinatorial counterparts of locally
testable proofs (PCPs), which are complexity theoretic in nature. From that
perspective, one should expect (or hope) that it would be easier to construct
locally testable codes than it is to construct PCPs. This feeling was among
the main motivations of Goldreich and Sudan, and indeed their first result was
along this vein: They showed a relatively simple construction (i.e., simple in

4 Using [54] (or [27]) allows to achieve the lower bound of 2n1−o(1)
simultaneously

with optimal approximation ratios, but this is currently unknown for the better

lower bound of 2n/poly(log n).
5 Let alone that the standard definition of PCP refers only to the case of false asser-

tions, in which case all strings are far from a valid proof (which does not exist).

Short Locally Testable Codes and Proofs 69

comparison to PCP constructions) of a locally testable code of length �(k) = kc

for any constant c > 1 [41, Sec. 3]. Unfortunately, their stronger result, providing
a locally testable code of shorter length (i.e., length �(k) = k1+o(1)) is obtained
by constructing and using a corresponding locally testable proof (i.e., PCP).
Subsequent works have mostly followed this route, with the notable exception
of Meir’s work [51].

Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes.
Here, one is given a slightly corrupted codeword (i.e., a string close to some
unique codeword), and is required to recover individual bits of the encoded in-
formation based on a constant number of probes (per recovered bit). That is, a
code is said to be locally decodable if whenever relatively few location are cor-
rupted, the decoder is able to recover each information-bit, with high probability,
based on a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of strictly sub-exponential length.
Specifically, k information bits can be encoded by codewords of length n =
exp(ko(1)) that are locally decodable using three bit-probes (cf. [29], building
over [61]). The problem is related to the construction of (information theoretic
secure) Private Information Retrieval schemes, introduced in [25].

A natural relaxation of the definition of locally decodable codes requires that,
whenever few location are corrupted, the decoder should be able to recover most
of the individual information-bits (based on a constant number of queries), and
for the rest of the locations the decoder may output a fail symbol (but not the
wrong value). That is, the decoder must still avoid errors (with high probability),
but on a few bit-locations it is allowed to sometimes say “don’t know”. This
relaxed notion of local decodability can be supported by codes that have length
�(k) = kc for any constant c > 1 (cf. [15]).

An obvious open problem is to separate locally decodable codes from relaxed
locally decodable codes. This may follow by either improving the Ω(k1+ 1

q−1)
lower bound on the length of q-query locally decodable codes (of [45]), or by
providing relaxed locally decodable codes of length �(k) = k1+o(1).

Part II: A more detailed and rigorous account

In this part we provide a general treatment of local testability. In contrast to
Part I, here we allow the tester to use a number of queries that is a (typically
small) predetermined function of the length parameter, rather than insisting on
a constant number of queries. The latter special case is indeed an important one.

1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable
proofs) are fundamental to computer science as well as to related disciplines

70 O. Goldreich

such as mathematics and computer engineering. Redundancy is inherent to error-
correcting codes, whereas testing validity is inherent to proofs. In this survey we
also consider less traditional combinations such as testing validity of codewords
and the use of proofs that contain redundancy. The reader may wonder why
we explore these non-traditional possibilities, and the answer is that they offer
various advantages (as will be elaborated next).

Testing the validity of codewords is natural in settings in which one may want
to take an action in case the codeword is corrupted. For example, when storing
data in an error correcting format, one may want to recover the data and re-
encode it whenever one finds that the current encoding is corrupted. Doing so
may allow to maintain the data integrity over eternity, although the encoded
bits may all get corrupted in the course of time. Of course, one can use the
error-correcting decoding procedure associated with the code in order to check
whether the current encoding is corrupted, but the question is whether one can
check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow
for a super-fast testing of whether or not a give string is a valid codeword. In
particular, the tester works in sub-linear time and reads very few of the bits of
the tested object. Needless to say, the answer provided by such a tester can only
be approximately correct, but this would suffice in many applications (including
the one outlined above).

Similarly, locally testable proofs are proofs that allow for a super-fast prob-
abilistic verification. Again, the tester works in sub-linear time and reads very
few of the bits of the tested object. The tester’s (a.k.a. verifier’s) verdict is only
correct with high probability, but this may suffice for many applications, where
the assertion is rather mundane but of great practical importance. In particular,
it suffices in applications in which proofs are used for establishing the correct-
ness of specific computations of practical interest. Lastly, we comment that such
locally testable proofs must be redundant (or else there would be no chance for
verifying them based on inspecting only a small portion of them).

Our focus is on relatively short locally testable codes and proofs, which is not
surprising in view of the fact that we envision such objects being actually used
in practice. Of course, we do not mean to suggest that one may use in practice
any of the constructions surveyed here (especially not the ones that provide
the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the
current concepts and techniques may lead to such applications.

Organization: In Section 2 we provide a quite comprehensive definitional treat-
ment of locally testable codes and proofs, while relating them to PCPs, PCPs
of proximity, and property testing. In Section 3, we survey the main results
regarding locally testable codes and proofs as well as many of the underlying
ideas. In Section 4 we consider locally decodable codes, which are somewhat
complementary to locally testable codes.

Caveat: Our exposition of locally testable/decodable codes is aimed at achiev-
ing the best possible length, regardless of whether or not the code is popular

Short Locally Testable Codes and Proofs 71

(i.e., used in practice). Thus, we do not survey here results that refer to the
testing (and decoding) features of various popular codes, unless these features
are instructive for our aim.

2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester
is an oracle machine, and the object that it tests is viewed as an oracle. For
simplicity, we confine ourselves to non-adaptive probabilistic oracle machines;
that is, machines that determine their queries based on their explicit input (which
in case of codes is merely a length parameter) and their internal coin tosses (but
not depending on previous oracle answers). When talking about oracle access to
a string w ∈ {0, 1}n we viewed w as a function w : {1, ..., n} → {0, 1}.

2.1 Codeword Testers

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k

(output) bits. Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the
elements of {C(x) : x∈{0, 1}k} ⊆ {0, 1}n are called codewords (of C).

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming)
distance between its codewords; that is, minx �=y{Δ(C(x), C(y))}, where Δ(u, v)
denotes the number of bit-locations on which u and v differ. Throughout this
work, we focus on codes of linear distance; that is, codes C : {0, 1}k → {0, 1}n

of distance Ω(n).
The distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ΔC(w),

is the minimum distance between w and the codewords; that is, ΔC(w) def=
minx{Δ(w, C(x))}. For δ ∈ [0, 1], the n-bit long strings u and v are said to be
δ-far (resp., δ-close) if Δ(u, v) > δ ·n (resp., Δ(u, v) ≤ δ ·n). Similarly, w is δ-far
from C (resp., δ-close to C) if ΔC(w) > δ · n (resp., ΔC(w) ≤ δ · n).

Definition 2.1 (codeword tests, basic version): Let C : {0, 1}k → {0, 1}n be a
code of distance d, and let q ∈ N and δ ∈ (0, 1). A q-local (codeword) δ-tester
for C is a probabilistic (non-adaptive) oracle machine M that makes at most q

queries and satisfies the following two conditions:

Accepting codewords (a.k.a. completeness): For any x ∈ {0, 1}k, given oracle
access to w = C(x), machine M accepts with probability 1. That is, Pr[MC(x)

(1k)=1] = 1, for any x ∈ {0, 1}k.
Rejection of non-codeword (a.k.a. soundness): For any w ∈ {0, 1}n that is δ-far

from C, given oracle access to w, machine M rejects with probability at least
1/2. That is, Pr[Mw(1k)=1] ≤ 1/2, for any w ∈ {0, 1}n that is δ-far from C.

We call q the query complexity of M , and δ the proximity parameter.

The above definition is interesting only in case δn is smaller than the covering
radius of C (i.e., the smallest r such that for every w ∈ {0, 1}n it holds that

72 O. Goldreich

ΔC(w) ≤ r). Clearly, r ≥ d/2, and so the definition is certainly interesting in
the case that δ < d/2n, and indeed we will focus on this case. On the other
hand, observe that q = Ω(1/δ) must hold, which means that we focus on the
case that d = Ω(n/q).

We next consider families of codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K , where
n, d : N → N and K ⊆ N, such that Ck has distance d(k). In accordance with
the above, our main interest is in the case that δ(k) < d(k)/2n(k). Furthermore,
seeking constant query complexity, we focus on the case d = Ω(n).

Definition 2.2 (codeword tests, asymptotic version): For functions n, d : N →
N, let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K be such that Ck is a code of distance
d(k). For functions q : N → N and δ : N → (0, 1), we say that a machine M is
a q-local (codeword) δ-tester for C = {Ck}k∈K if, for every k ∈ K, machine M

is a q(k)-local δ(k)-tester for Ck. Again, q is called the query complexity of M ,
and δ the proximity parameter.

Recall that being particularly interested in constant query complexity (and re-
calling that d(k)/n(k) ≥ 2δ(k) = Ω(1/q(k))), we focus on the case that d = Ω(n)
and δ is a constant smaller than d/2n. In this case, we may consider a stronger
definition.

Definition 2.3 (locally testable codes): Let n, d and C be as in Definition 2.2
and suppose that d = Ω(n). We say that C is locally testable if for every constant
δ > 0 there exists a constant q and a probabilistic polynomial-time oracle machine
M such that M is a q-local δ-tester for C.

We will be concerned of the growth rate of n as a function of k, for locally
testable codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K of distance d = Ω(n). More
generally, for d = Ω(n), we will be interested in the trade-off between n, the
proximity parameter δ, and the query complexity q.

2.2 Proof Testers

We start by recalling the standard definition of PCP. (For an introduction to
the subject as well as a wider perspective, see [37, Chap. 9]).

Definition 2.4 (PCP, standard definition): A probabilistically checkable proof
(PCP) system for a set S is a probabilistic (non-adaptive) polynomial-time oracle
machine (called a verifier), denoted V , satisfying

Completeness: For every x ∈ S there exists an oracle πx such that V , on input
x and access to oracle πx, always accepts x; that is, Pr[V πx(x)=1] = 1.

Soundness: For every x �∈ S and every oracle π, machine V , on input x and
access to oracle π, rejects x with probability at least 1

2 ; that is, Pr[V π(x) =
1] ≤ 1/2,

Let Qx(r) denote the set of oracle positions inspected by V on input x and
random-tape r ∈ {0, 1}poly(|x|). The query complexity of V is defined as q(n) def=

Short Locally Testable Codes and Proofs 73

maxx∈{0,1}n,r∈{0,1}poly(n){|Qx(r)|}. The proof complexity of V is defined as p(n)def=
maxx∈{0,1}n{|⋃r∈{0,1}poly(n) Qx(r)|}.

Note that in the case that the verifier V uses a logarithmic number of coin
tosses, its proof complexity is polynomial. In general, the proof complexity is
upper-bounded by 2r · q, where r and q are the randomness complexity and the
query complexity of the proof tester. Thus, the trade-off between the query com-
plexity and the proof complexity is typically captured by the trade-off between
the query complexity and the randomness complexity. Furthermore, focusing
on the randomness complexity allows for better bounds when composing proofs
(cf. §3.2.2).

All known PCP constructions can be easily modified such that the oracle
locations accessed by V are a prefix of the oracle (i.e.,

⋃
r∈{0,1}poly(|x|) Qx(r) ⊆

{1, ..., p(|x|)}, for every x).6 (For simplicity, the reader may assume that this is
the case throughout the rest of this exposition.) More importantly, all known
PCP constructions can be easily modified to satisfy the following definition,
which is closer in spirit to the definition of locally testable codes.

Definition 2.5 (PCP, augmented): For functions q : N → N and δ : N → (0, 1),
we say that a PCP system V for a set S is a q-locally δ-testable proof system if
it has query complexity q and satisfies the following condition, which augments
the standard soundness condition.7

Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-far
from Πx

def= {w : Pr[V w(x)=1] = 1}, machine V , on input x and access to
oracle π, rejects x with probability at least 1

2 .

The proof complexity of V is defined as in Definition 2.4.

Note that Definition 2.5 uses the tester V itself in order to define the set (denoted
Πx) of valid proofs (for x ∈ S). That is, V is used both to define the set of valid
proofs and to test for the proximity of a given oracle to this set. A more general
definition (presented next), refers to an arbitrary proof system, and lets Πx equal
the set of valid proofs (in that system) forx ∈ S.Obviously, itmusthold thatΠx �= ∅
if and only if x ∈ S. Typically, one also requires the existence of a polynomial-time

6 Recall that p denotes the proof complexity of the system. In fact, for every x ∈
{0, 1}n, it holds that

⋃
r∈{0,1}poly(n) Qx(r) = {1, ..., p(n)}.

7 Definition 2.5 relies on two natural conventions:

1. All strings in Πx are of the same length, which equals |⋃r∈{0,1}poly(n) Qx(r)|, where

Qx(r) is as in Definition 2.4. Furthermore, we consider only π’s of this length.

2. If Πx = ∅ (which happens if and only if x �∈ S), then every π is considered δ-far
from Πx.

These conventions will also be used in Definition 2.6.

74 O. Goldreich

procedure that, on input a pair (x, π), determines whether or not π ∈ Πx.8 For
simplicity we assume that, for some function p : N → N and every x ∈ {0, 1}∗, it
holds that Πx ⊆ {0, 1}p(|x|). The resulting definition follows.

Definition 2.6 (locally testable proofs): Suppose that, for some function p :
N → N and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). For functions q :
N → N and δ : N → (0, 1), we say that a probabilistic (non-adaptive) polynomial-
time oracle machine V is a q-locally δ-tester for proofs in {Πx}x∈{0,1}∗ if V has
query complexity q and satisfies the following conditions:

Technical condition: On input x, machine V issues queries in {1, ..., p(|x|)}.
Accepting valid proofs: For every x ∈ {0, 1}∗ and every oracle π ∈ Πx, machine

V , on input x and access to oracle π, accepts x with probability 1.
Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-

far from Πx, machine V , on input x and access to oracle π, rejects x with
probability at least 1

2 .

The proof complexity of V is defined as p,9 and δ is called the proximity parameter.
In such a case, we say that Π = {Πx}x∈{0,1}∗ is q-locally δ-testable, and that
S = {x ∈ {0, 1}∗ : Πx �= ∅} has q-locally δ-testable proofs of length p.

We say that Π is locally testable if for every constant δ > 0 there exists a
constant q such that Π is q-locally δ-testable. In such a case, we say that S has
locally testable proofs of length p.

This notion of locally testable proofs is closely related to the notion of proba-
bilistically checkable proofs (i.e., PCPs). The difference is that in the definition
of locally testable proofs we required rejection of strings that are far from any
valid proof, also in the case that valid proofs exists (i.e., the assertion is valid). In
contrast, the standard rejection criteria of PCPs refers only to false assertions.
Still, all known PCP constructions actually satisfy the stronger definition.10

Needless to say, the new term “locally testable proof” was introduced to match
the term “locally testable codes”. In retrospect, “locally testable proofs” seems
a more fitting term than “probabilistically checkable proofs”, because it stresses
the positive aspect (of locality) rather than the negative aspect (of being proba-
bilistic). The latter perspective has been frequently advocated by Leonid Levin.

2.3 Discussion

We first comment about a few definitional choices made above. Firstly, we chose
to present testers that always accept valid objects (i.e., accept valid codewords
8 Recall that in the case that the verifier V uses a logarithmic number of coin tosses, its

proof complexity is polynomial (and so the “effective length” of the strings in Πx must

be polynomial in |x|). Furthermore, if in addition it holds that Πx = {w : Pr[V w(x)=

1] = 1}, then (scanning all possible coin tosses of) V yields a polynomial-time proce-

dure for determining whether a given pair (x, π) satisfies π ∈ Πx.
9 Note that by the technical condition, the current definition of the proof complexity

of V is lower-bounded by the definition used in Definition 2.4.
10 In some cases this holds only under a weighted version of the Hamming distance,

rather under the standard Hamming distance. Alternatively, these constructions can

be easily modified to work under the standard Hamming distance.

Short Locally Testable Codes and Proofs 75

(resp., valid proofs) with probability 1). This is more appealing than allowing
two-sided error, but the latter weaker notion is meaningful too. A second choice
was to fix the error probability (i.e., probability of accepting far from valid
objects), rather than introducing yet another parameter. Needless to say, the
error probability can be reduced by sequential applications of the tester.

In the rest of this section, we consider an array of definitional issues. First,
we consider two natural strengthenings of the definition of local testability
(cf. §2.3.1). We next discuss the relation of local testability to property test-
ing (cf. §2.3.2), and the relation of locally testable proofs to PCP of proximity
(as defined in [15], cf. §2.3.3). Finally, we discuss the relation between locally
testable codes and proofs (cf. §2.3.4), and the motivation for the study of short
local testable codes and proofs (cf. §2.3.5).11 Finally (in §2.3.6), we mention a
weaker definition, which seem natural only in the context of codes.

2.3.1 Stronger Definitions
The definitions of testers presented so far, allow for the construction of a different
tester for each relevant value of the proximity parameter. However, whenever
such testers are actually constructed, they tend to be “uniform” over all relevant
values of the proximity parameter. Thus, it is natural to present a single tester for
all relevant values of the proximity parameter, provide this tester with the said
parameter, allow it to behave accordingly, and measure its query complexity as
a function of that parameter. For example, we may strengthen Definition 2.3, by
requiring the existence of a function q : (0, 1) → N and an oracle machine M such
that, for every constant δ > 0, all (sufficiently large) k and all w ∈ {0, 1}n(k),
the following conditions hold:

1. On input (1k, δ), machine M makes q(δ) queries.
2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.
3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] ≤ 1/2.

An analogous strengthening applies to Definition 2.6. A special case of interest
is when q(δ) = O(1/δ). In this case, it makes sense to ask whether or not an even
stronger “uniformity” condition may hold. Like in Definitions 2.1 and 2.2 (resp.,
Definitions 2.5 and 2.6), the tester M is not given the proximity parameter (and
so its query complexity cannot depend on it), but we only require it to reject
with probability proportional to the distance of the oracle from the relevant set.
For example, we may strengthen Definition 2.3, by requiring the existence of an
oracle machine M and a constant q such that, for every constant δ > 0, every
(sufficiently large) k and w ∈ {0, 1}n(k), the following conditions hold:

1. On input 1k, machine M makes q queries.
2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.
3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] < 1 − Ω(δ).

11 The text of §2.3.5 is almost identical to a corresponding motivational text that

appears in Part I.

76 O. Goldreich

2.3.2 Relation to Property Testing
Locally testable codes (and their corresponding testers) are essentially special
cases of property testing algorithms, as defined in [57,38]. Specifically, the prop-
erty being tested is membership in a predetermined code. The only difference be-
tween the definitions presented in Section 2.1 and the formulation that is stan-
dard in the property testing literature is that in the latter the tester is given the
proximity parameter as input and determines its behavior (and in particular the
number of queries) accordingly. This difference is eliminated in the first strength-
ening outlined in §2.3.1, while the second strengthening is related to the notion of
proximity oblivious testing (cf. [39]). We note, however, that most of the property
testing literature is concerned with “natural” objects (e.g., graphs, sets of points,
functions) presented in a “natural” form rather than with objects designed arti-
ficially to withstand errors (i.e., codewords of error correcting codes).

Our general formulation of proof testing (i.e., Definition 2.6) can be viewed
as a generalization of property testing. That is, we view the set Πx as a set
of objects having a certain x-dependent property (rather than as a set of valid
proofs for some property of x). In other words, Definition 2.6 allows to consider
properties that are parameterized by auxiliary information (i.e., x), whereas
traditional property testing may be viewed as referring to the case that x only
determines the length of strings in Πx (e.g., Πx = ∅ for every x �∈ {1}∗ or,
equivalently, Πx = Πy for every |x| = |y|).12

2.3.3 Relation to PCPs of Proximity
Our definition of a locally testable proof is related but different from the defi-
nition of a PCP of proximity (appearing in [15]).13 We start by reviewing the
definition of a PCP of proximity.

Definition 2.7 (PCPs of Proximity): A PCP of proximity for a set S with proxim-
ity parameter δ is a probabilistic (non-adaptive) polynomial-time oracle machine,
denoted V , satisfying

Completeness: For every x ∈ S there exists a string πx such that V always accepts
when given access to the oracle (x, πx); that is, Pr[V x,πx(1|x|)=1] = 1.

Soundness: For every x that is δ-far from S ∩ {0, 1}|x| and for every string π,
machine V rejects with probability at least 1

2 when given access to the oracle
(x, π); that is, Pr[Mx,π(1|x|)=1] ≤ 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to
the x-part are counted.

The oracle (x, π) is actually a concatenation of two oracles: the input-oracle x

(which replaces an explicitly given input in the definitions of PCPs and locally
testable proofs), and a proof-oracle π (exactly as in the prior definitions). Note
12 In fact, in the context of property testing, the length of the oracle must always be

given to the tester (although some sources neglect to state this fact).
13 We mention that PCPs of proximity are almost identical to Assignment Testers, de-

fined independently by Dinur and Reingold [28]. Both notions are (important) special

cases of the general definition of a “PCP spot-checker” formulated before in [30].

Short Locally Testable Codes and Proofs 77

that Definition 2.7 refers to the distance of the input-oracle to S, whereas locally
testable proofs refer to the distance of the proof-oracle from the set Πx of valid
proofs of membership of x ∈ S.

Still, PCPs of proximity can be defined within the framework of locally
testable proofs. Specifically, consider an extension of Definition 2.6, where (rel-
ative) distances are measured according to a weighted Hamming distance; that
is, for a weight function ω : {1, ..., n} → [0, 1] and u, v ∈ {0, 1}n, we let
δω(u, v) =

∑n
i=1 ω(i) · Δ(ui, vi). (Indeed, the standard notion of relative dis-

tance between u, v ∈ {0, 1}n is obtained by δω(u, v) when using the uniform
weighting function (i.e., ω(i) = 1/n for every i ∈ {1, ..., n}).) Now, Definition 2.7
can be viewed as a special case of (the extended) Definition 2.6 when applied to
the (rather artificial) set of proofs Π1n = {(x, π) : x ∈ S ∩ {0, 1}n ∧ π ∈ Π ′

x},
where Π ′

x = {π : Pr[V x,π(1|x|) = 1] = 1}, by using the weighted Hamming
distance δω for ω that is uniform on the input-part of the oracle; that is, for
(x, π), (x′, π′) ∈ {0, 1}n+p, we use δω((x, π), (x′, π′)) def= Δ(x, x′)/n, which cor-
responds to ω(i) = 1/n if i ∈ {1, ..., n} and ω(i) = 0 otherwise. Alternatively,
weights can be approximately replaced by repetitions (provided that the tester
checks the consistency of the repetitions).14

We mention that PCPs of proximity (of constant query complexity) yield a
simple way of obtaining locally testable codes. More generally, we can combine
any code C0 with any PCP of proximity V , and obtain a q-locally testable code
with distance essentially determined by C0 and rate determined by V , where
q is the query complexity of V . Specifically, x will be encoded by appending
c = C0(x) by a proof that c is a codeword of C0, and distances will be determined
by the weighted Hamming distance that assigns uniform weights to the first part
of the new code. As in the previous paragraph, these weights can be implemented
by making suitable repetitions.

Finally, we comment that the definition of a PCP of proximity can be extended
by providing the verifier with part of the input in an explicit form. That is,
referring to Definition 2.7, we let x = (x′, x′′), and provide V with explicit input
(x′, 1|x|) and input-oracle x′′ (rather than with explicit input 1|x| and input-
oracle x). Clearly, the extended formulation implies PCP as a special case (i.e.,
x′′ = λ). More interestingly, an extended PCP of proximity for a set of pairs
R (e.g., the witness relation of an NP-set), yields a PCP for the set S

def= {x′ :
∃x′′ s.t. (x′, x′′) ∈ R}.

14 That is, given a verifier V as in Definition 2.7, and denoting by n and p = p(n)

the sizes of the two parts of its oracle, we consider proofs of length t · n + p, where

t = p/o(n) (e.g., t = (p/n) · log n). We consider a verifier V ′ with syntax as in

Definition 2.6 that, on input 1n and oracle access to w = (u1, ..., ut, v) ∈ {0, 1}t·n+p,

where ui ∈ {0, 1}n and v ∈ {0, 1}p, selects uniformly i ∈ {1, ..., t} and invokes

V ui,v(1n). In addition, V ′ performs a number of repetition tests that is inversely

proportional to the proximity parameter, where in each test V ′ selects uniformly

i, i′ ∈ {1, ..., t} and j ∈ {1, ..., n} and checks that ui and ui′ agree on their j-th bit.

Thus, V ′ essentially emulates the PCP of proximity V , and the fact that V satisfies

Definition 2.7 can be captured by saying that V ′ satisfies Definition 2.6.

78 O. Goldreich

2.3.4 Relating Locally Testable Codes and Proofs
Locally testable codes can be thought of as the combinatorial counterparts of the
complexity theoretic notion of locally testable proofs (PCPs). This perspective
raises the question of whether one of these notions implies (or is useful towards
the understanding of) the other.

Do PCPs imply locally testable codes?. The use of codes with features related
to local testability is implicit in known PCP constructions. Furthermore, the
known constructions of locally testable proofs (PCPs) provides a transformation
of standard proofs (for say SAT) to locally testable proofs (i.e., PCP-oracles), such
that transformed strings are accepted with probability one by the PCP verifier.
Specifically, denoting by Sx the set of standard proofs referring to an assertion
x, there exists a polynomial-time mapping fx of Sx to Rx

def= {fx(y) : y ∈ Sx}
such that for every π ∈ Rx it holds that Pr[V π(x) = 1] = 1, where V is the PCP
verifier. Moreover, starting from different standard proofs, one obtains locally
testable proofs that are far apart, and hence constitute a good code (i.e., for
every x and every y �= y′ ∈ Sx, it holds that Δ(fx(y), fx(y′)) ≥ Ω(|fx(y)|)). It
is tempting to think that the PCP verifier yields a codeword tester, but this is
not really the case. Note that Definition 2.5 requires rejection of strings that are
far from any valid proof (i.e., any string far from Πx), but it is not clear that
the only valid proofs (w.r.t V) are those in Rx (i.e., the proofs obtained by the
transformation fx of standard proofs (in Sx) to locally testable ones).15 In fact,
the standard PCP constructions accept also valid proofs that are not in the range
of the corresponding transformation (i.e., fx); that is, Πx as in Definition 2.5
is a strict subset of Rx (rather than Πx = Rx). We comment that most known
PCP constructions can be (non-trivially)16 modified to yield Πx = Rx, and thus
to yield a locally testable code (but this is not necessarily the best way to design
locally testable codes, see one alternative in §2.3.3).

Do locally testable codes imply PCPs?. Saying that locally testable codes are the
combinatorial counterparts of locally testable proofs (PCPs), raises the expecta-
tion (or hope) that it would be easier to construct locally testable codes than it
is to construct PCPs. The reason being that combinatorial objects (e.g., codes)
should be easier to understand than complexity theoretic ones (e.g., PCPs). In-
deed, this feeling was among the main motivations of Goldreich and Sudan, and
their first result (cf. [41, Sec. 3]) was along this vein: They showed a relatively
simple construction (i.e., simple in comparison to PCP constructions) of a lo-
cally testable code of length �(k) = kc for any constant c > 1. Unfortunately,
their stronger result, providing a locally testable code of shorter length (i.e.,
length �(k) = k1+o(1)) is obtained by constructing (cf. [41, Sec. 4]) and using

15 Let alone that Definition 2.4 refers only to the case of false assertions, in which case

all strings are far from a valid proof (which does not exist).
16 The interested reader is referred to [41, Sec. 5.2] for a discussion of typical problems

that arise.

Short Locally Testable Codes and Proofs 79

(cf. [41, Sec. 5]) a corresponding locally testable proof (i.e., PCP). Subsequent
works have mostly followed this route, with the notable exception of Meir’s
work [51], which provides a combinatorial construction of a locally testable code
that does not seem to yield a corresponding locally testable proof.17

2.3.5 Motivation for the Study of Short Locally Testable Codes and
Proofs

Local testability offers an extremely strong notion of efficient testing: The tester
makes only a constant number of bit probes, and determining the probed lo-
cations (as well as the final decision) is typically done in time that is poly-
logarithmic in the length of the probed object. Recall that the tested object is
supposed to be related to some primal object; in the case of codes, the probed
object is supposed to encode the primal object, whereas in the case of proofs the
probed object is supposed to help verify some property of the primal object. In
both cases, the length of the secondary (probed) object is of natural concern,
and this length is stated in terms of the length of the primary object.

The length of codewords in an error-correcting code is widely recognized as
one of the two most fundamental parameters of the code (the second one being
the code’s distance). In particular, the length of the code is of major impor-
tance in applications, because it determines the overhead involved in encoding
information.

As argued in Section 1, the same considerations apply also to proofs. However,
in the case of proofs, this obvious point was blurred by the indirect, unexpected
and highly influential applications of PCPs to the theory of approximation algo-
rithms. In our view, the significance of locally testable proofs (or PCPs) extends
far beyond their applicability to deriving non-approximability results. The mere
fact that proofs can be transformed into a format that supports super-fast prob-
abilistic verification is remarkable. From this perspective, the question of how
much redundancy is introduced by such a transformation is a fundamental one.
Furthermore, locally testable proofs (i.e., PCPs) have been used not only to
derive non-approximability results but also for obtaining positive results (e.g.,
CS-proofs [48,53] and their applications [8,24]), and the length of the PCP affects
the complexity of those applications.

Turning back to the celebrated application of PCP to the study of
approximation algorithms, we note that the length of PCPs is also relevant to
non-approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived from
these PCPs. For example, suppose (exact) SAT has complexity 2Ω(n). The original
PCP Theorem [5,4] only implies that approximating MaxSAT requires time 2nα

,
for some (small) α > 0. The work of [55] makes α arbitrarily close to 1, whereas

17 We mention that the prior work of Ben-Sasson and Sudan [20] also shows some

deviation from this route (i.e., it reversed the course to the “right one”): First codes

are constructed, and next they are used towards the construction of proofs (rather

than the other way around).

80 O. Goldreich

the results of [41,21] further improve the lower bound to 2n1−o(1)
and the results

of [20,26] yields a lower bound of 2n/poly(log n). We mention that the result of [54]
(cf. [27]) allows to achieve the lower bound of 2n1−o(1)

simultaneously with optimal
approximation ratios, but this is currently unknown for the better lower bound of
2n/poly(log n).

2.3.6 A Weaker Definition
One of the concrete motivations for local testable codes refers to settings in
which one may want to re-encode the information when discovering that the
codeword is corrupted. In such a case, assuming that re-encoding is based solely
on the corrupted codeword, one may assume (or rather needs to assume) that
the corrupted codeword is not too far from the code. Thus, the following version
of Definition 2.1 may suffice for various applications.

Definition 2.8 (weak codeword tests): Let C : {0, 1}k → {0, 1}n be a code of
distance d, and let q ∈ N and δ1, δ2 ∈ (0, 1) be such that δ1 < δ2. A weak
q-local (codeword) (δ1, δ2)-tester for C is a probabilistic (non-adaptive) oracle
machine M that makes at most q queries, accepts any codeword, and rejects non-
codewords that are both δ1-far and δ2-close to C. That is, the rejection condition
of Definition 2.1 is modified as follows.

Rejection of non-codeword (weak version): For any w ∈ {0, 1}n such that
ΔC(w) ∈ [δ1n, δ2n], given oracle access to w, machine M rejects with prob-
ability at least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It re-
quires rejection of non-codewords that are somewhat far from the code, but not
the rejection of codewords that are very far from the code. Still, such weak code-
word testers may suffice in some applications. Interestingly, such weak codeword
testers do exist and even achieve linear length (cf. [58, Chap. 5]). We note that
the non-monotonicity of the rejection probability of testers has been observed
before, the most famous example being linearity testing (cf. [22] and [10]).

2.4 A Confused History

There is a fair amount of confusion regarding credits for some of the definitions
presented in this section.18 We refer mainly to the definition of locally testable
codes. This definition (or at least a related notion)19 is arguably implicit in [7]
18 Some confusion exists also with respect to some of the results and constructions

described in Section 3, but in comparison to what will be discussed here the latter

confusion is minor.
19 The related notion refers to the following relaxed notion of codeword testing: For

two fixed good codes C1 ⊆ C2 ⊂ {0, 1}n, one has to accept (with high probability)

every codeword of C1, but reject (with high probability) every string that is far from

being a codeword of C2. Indeed, our definitions refer to the special (natural) case

that C2 = C1, but the more general case suffices for the construction of PCPs (and

is implicitly achieved in most of them).

Short Locally Testable Codes and Proofs 81

as well as in subsequent works on PCP (see §2.3.4). Furthermore, the defini-
tion of locally testable codes has appeared independently in the works of Friedl
and Sudan [34] and Rubinfeld and Sudan [57] as well as in the PhD Thesis of
Arora [3].

3 Results and Ideas

We review the known constructions of locally testable codes and proofs, start-
ing from codes and proofs of exponential length and concluding with codes and
proofs of nearly linear length. We mention that random linear codes (of lin-
ear length) require any codeword tester to read a linear number of bits of the
codeword [18], providing an indication to the non-triviality of local testability.

3.1 The Mere Existence of Locally Testable Codes and Proofs

The mere existence of locally testable codes and proofs, regardless of their length,
is non-obvious. Thus, we start by recalling the simplest constructions known.

3.1.1 The Hadamard Code Is Locally Testable
The simplest example of a locally testable code (of constant relative distance)
is the Hadamard code. This code, denoted CHad, maps x ∈ {0, 1}k to a string,
of length n = 2k, that provides the evaluation of all GF(2)-linear functions at
x; that is, the coordinates of the codeword are associated with linear functions
�(z) =

∑k
i=1 �izi and so CHad(x)� = �(x) =

∑k
i=1 �ixi. Testing whether a string

w ∈ {0, 1}2k

is a codeword amounts to linearity testing. This is the case because
w is a codeword of CHad if and only if, when viewed as a function w : {0, 1}k →
{0, 1}, it is linear (i.e., w(z) =

∑k
i=1 cizi for some ci’s, or equivalently w(y+z) =

w(y) + w(z) for all y, z). Specifically, local testability is achieved by uniformly
selecting y, z ∈ {0, 1}k and checking whether w(y + z) = w(y)+w(z). The exact
analysis of this natural tester, due to Blum, Luby and Rubinfeld [22], turned
out to be highly complex (cf. [22,6,31,12,13,10,46]). Denoting by rej(w) the
probability that the test rejects the string w and by R(δ) be the minimum of
rej(w) taken over all strings that are at distance δ · |w| from CHad, it is known
that R(δ) ≥ Γ (δ), where the function Γ : [0, 0.5] → [0, 1] is defined as follows:

Γ (x) def=

⎧⎪⎪⎨⎪⎪⎩
3x − 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ τ2 where τ2 ≈ 44.9962/128
x + δ(x) τ2 ≤ x ≤ 1/2,

where δ(x) def= 1376x3(1 − 2x)12.

(1)

The lower bound Γ is composed of three different bounds with “phase tran-
sitions” at x = 5

16 and at x = τ2 (where τ2 ≈ 44,9962
128 is the solution to

x + δ(x) = 45/128).20 It was shown in [10] that the first segment of this bound
20 The third segment is due to [46], which improves over the prior bound of [10] that

asserted R(x) ≥ max(45/128, x) for every x ∈ [5/16, 1/2].

82 O. Goldreich

(i.e., for x ∈ [0, 5/16]) is the best possible, and that the first “phase transi-
tions” (i.e., at x = 5

16) is indeed a reality; in other words, R = Γ in the interval
[0, 5/16].21 We highlight the fact that the detection probability of the aforemen-
tioned test does not increase monotonically with the distance (of the string from
the code), since Γ decreases in the interval [1/4, 5/16] (while equaling R in this
interval).

Other codes. We mention that Reed-Muller Codes of constant order are also
locally testable [1]. These codes have sub-exponential length, but are quite pop-
ular in practice. The Long Code is also locally testable [11], but this code has
double-exponential length (and was introduced merely for the design of PCPs).22

3.1.2 The Hadamard-Based PCP of [4]
The simplest example of a locally testable proof (for a set not known to be in
BPP) is the “inner verifier” of the PCP construction of Arora, Lund, Motwani,
Sudan and Szegedy [4], which in turn is based on the Hadamard code. Specif-
ically, proofs of the satisfiability of a given system of quadratic equations over
GF(2) are presented by providing a Hadamard encoding of the outer-product of
a satisfying assignment with itself (i.e., a satisfying assignment α ∈ {0, 1}n is
presented by CHad(β), where β = (βi,j)i,j∈[n] and βi,j = αiαj). Given an alleged

proof π ∈ {0, 1}2n2

, the proof-tester proceeds as follows:

1. Tests that π is indeed a codeword of the Hadamard Code. If the test passes
then w is close to some CHad(β), for an arbitrary β = (βi,j)i,j∈[n].

2. Tests that the aforementioned β is indeed an outer-product of some α ∈
{0, 1}n with itself. Note that the Hadamard encoding of α is supposed to
be part of the Hadamard encoding of β (because

∑n
i=1 ciαi =

∑n
i=1 ciα

2
i

is supposed to equal
∑n

i=1 ciβi,i). So we would like to test that the lat-
ter codeword matches the former one. Specifically, we wish to test whether
(βi,j)i,j∈[n] equals (αiαj)i,j∈[n] (i.e., the equality of two matrices). This can
be done by uniformly selecting (r1, ..., rn), (s1, ..., sn) ∈ {0, 1}n, and compar-
ing

∑
i,j risjβi,j and

∑
i,j risjαiαj = (

∑
i riαi)(

∑
j sjαj).

The above would have been fine if w = CHad(β), but we only know
that w is close to CHad(β). The Hadamard encoding of α is a tiny part of
the latter, and so we should not try to retrieve the latter directly (because
this tiny part may be totally corrupted). Instead, we use the paradigm of
self-correction (cf. [22]): In general, for any fixed c = (ci,j)i,j∈[n], whenever
we wish to retrieve

∑n
i=1 ci,jβi,j , we uniformly select r = (ri,j)i,j∈[n] and

retrieve both w(r) and w(r + c). Thus, we obtain a self-corrected value of
w(c); that is, if w is δ-close to CHad(β) then w(r + c) − w(r) =

∑n
i=1 ci,jβi,j

with probability at least 1 − 2δ (over the choice of r).
21 In contrast, the lower bound provided by the other two segments (i.e., for x ∈

[5/16, 1/2]) is unlikely to be tight, and in particular it is unlikely that the “phase

transitions” at x = τ2 represents the behavior of R itself. Also note that δ(x) >
59(1 − 2x)12 for every x > τ2, but δ(x) < 0.0001 for every x < 1/2.

22 Interestingly, the best results are obtained by using a relaxed notion of local testa-

bility [43,44].

Short Locally Testable Codes and Proofs 83

Using self-correction, we indirectly obtain bits in CHad(α), for α =
(αi)i∈[n] = (βi,i)i∈[n]. Similarly, we can obtain any other desired bit in
CHad(β), which in turn allows us to test whether (βi,j)i,j∈[n] = (αiαj)i,j∈[n].
In fact, we are checking whether (βi,j)i,j∈[n] = (βi,iβj,j)i,j∈[n], by compar-
ing

∑
i,j risjβi,j and (

∑
i riβi,i)(

∑
j sjβj,j), for randomly selected (r1, ..., rn),

(s1, ..., sn) ∈ {0, 1}n.
3. Finally, we need to check whether the aforementioned α satisfies the given

system of equations. Towards this end, we uniformly selects a linear combi-
nation of the equations, and check whether α satisfies the resulting (single)
equation. Note that the value of the corresponding linear expression (in
quadratic (and linear) forms) appears as a bit of the Hadamard encoding of
β, but again we retrieve it from w by using self correction.

One key observation underlying the analysis of Steps 2 and 3 is that for (u1, ..., un)
�= (v1,, vn) ∈ {0, 1}n, if we uniformly select (r1,, rn) ∈ {0, 1}n then
Pr[

∑
i riui =

∑
i rivi] = 1/2. Similarly, for n-by-n matrices A �= B, when r, s ∈

{0, 1}n are uniformly selected (vectors), it holds that Pr[As = Bs] = 2−rank(A−B)

and it follows that Pr[rAs = rBs] ≤ 3/4.

3.2 Locally Testable Codes and Proofs of Polynomial Length

The constructions presented in Section 3.1 have exponential length in terms of
the relevant parameter (i.e., the amount of information being encoded in the
code or the length of the assertion being proved). Achieving local testability by
codes and proofs that have polynomial length turns out to be more challenging.

3.2.1 Locally Testable Codes of Quadratic Length
A direct interpretation of low-degree tests (cf. [6,7,35,57,34]), proposed by Friedl
and Sudan [34] and Rubinfeld and Sudan [57], yields a locally testable code of
quadratic length over a sufficiently large alphabet. Similar (and actually better)
results for binary codes required additional ideas, and have appeared only later
(cf. [41]). We sketch both constructions below, starting with locally testable codes
over very large alphabets (which are defined analogously to the binary case).

We will consider a code C : Σk → Σn of linear distance, with |Σ| � k and
n > k2. For parameters m � d < log k (such that k < dm), consider a finite
field F of size O(d) and an alphabet Σ = F d+1 (see below).23 Viewing the
information as an m-variant polynomial p of total degree d over F , we encode
it by providing its value on all possible lines over Fm, where each such line
is defined by two points in Fm. Actually, the value of p on such a line can
be represented by a univariate polynomial of degree d. Thus, the code maps
log2 |F |(m+d

d) > (d/m)m log |F | bits of information (which may be viewed as
k

def= (d/m)m/(d + 1) ≈ dm−1/mm long sequences over Σ = F d+1) to sequences
23 Indeed, it would have been more natural to present the code as a mapping from

sequences over F to sequences over Σ = F d+1. Following the convention of using the

same alphabet for both the information and the codeword, we just pack every d + 1

elements of F as an element of Σ.

84 O. Goldreich

of length n
def= |F |2m = O(d)2m over Σ. Note that the smaller m, the better the

rate (i.e., relation of n to k) is, but this comes at the expense of using a larger
alphabet. In particular, we consider two instantiations:

1. Using d = mm, we get k ≈ mm2−2m and n = m2m2+o(m), which yields
n ≈ exp(

√
log k) · k2 and log |Σ| = log |F |d+1 ≈ d log d ≈ exp(

√
log k).

2. Letting d = mc for any constant c > 1, we get k ≈ m(c−1)m and n =
m2cm+o(m), which yields n ≈ k2c/(c−1) and log |Σ| ≈ d log d ≈ (log k)c.

As for the codeword tester, it uniformly selects two intersecting lines and checks
that the corresponding univariate polynomials agree on the point of intersection.
Thus, this tester makes two queries (to an oracle over the alphabet Σ). The anal-
ysis of this tester reduces to the analysis of the corresponding low degree test,
undertaken in [4,55].

The above tester uses only two queries, but the entire description (which refers
to codes over a large alphabet) deviates from the bulk of our treatment, which
has focused on a binary alphabet. We comment that 2-query locally testable
binary codes are essentially impossible (cf., [14]), but we have already seem
that 3-query tests are possible. A natural way of reducing the alphabet size of
codes is via the well-known paradigm of concatenated codes [32].24 However, local
testability can be maintained only in special cases. In particular, observe that,
for each of the two queries made by the tester of C, the tester does not need the
entire polynomial represented in Σ = F d+1, but rather only its value at a specific
point. Thus, encoding Σ by an error correcting code that supports recovery of
the said value while using a constant number of probes will do.25 In particular,
for integers h, e such that d + 1 = he, Goldreich and Sudan used an encoding
of F d+1 = Fhe

by sequences of length |F |eh over F , and provided a testing and
recovery procedure that makes O(e) queries [41, Sec. 3.3]. We mention that the
case of e = 1 and |F | = 2 corresponds to the Hadamard code, and that a bigger
constant e allow for shorter codes. The resulting concatenated code, C′, is a
locally testable code over F , and has length n ·O(d)eh = n · exp((e log d) · d1/e).
Using constant e = 2c and setting d = mc ≈ (log k)c, we get n ≈ k2c/(c−1) ·
exp(Õ(log k)1/2) and |F | = poly(log k). Finally, a binary locally testable code is
obtained by concatenating C′ with the Hadamard code, while noting that the
latter supports a “local recovery” property that suffices to emulate the tester
for C′. In particular, the tester of C′ merely checks a linear (over F) equation
24 A concatenated code is obtained by encoding the symbols of an “outer code” (using

the coding method of the “inner code”). Specifically, let C1 : Σk1
1 → Σn1

1 be the outer

code and C2 : Σk2
2 → Σn2

2 be the inner code, where Σ1 ≡ Σk2
2 . Then, the concate-

nated code C : Σk1k2
2 → Σn1n2

2 is obtained by C(x1, ..., xk1) = (C2(y1), ..., C2(yn1)),

where xi ∈ Σk2
2 ≡ Σ1 and (y1, ..., yn1) = C1(x1, ..., xk1). Using a good inner code for

relatively short sequences, allows to transform good codes for a large alphabet into

good codes for a smaller alphabet.
25 Indeed, this property is related to locally decodable codes, to be discussed in Sec-

tion 4. Here we need to recover one out of |F | specific linear combinations of the

encoded (d + 1)-long sequence of F -symbols. In contrast, locally decodable refers to

recovering one out of the original F -symbols of the (d + 1)-long sequence.

Short Locally Testable Codes and Proofs 85

referring to a constant number of F -elements, and for F = GF (2�), this can be
emulated by checking related random linear combinations of the bits representing
these elements, which in turn can be locally recovered (or rather self-corrected)
from the Hadamard code. The final result is a locally testable (binary) code of
nearly quadratic length.26

3.2.2 Locally Testable Proofs of Polynomial Length: The PCP
Theorem

The case of proofs is far more complex: Achieving locally testable proofs of
polynomial length is essentially the contents of the celebrated PCP Theorem of
Arora, Lund, Motwani, Safra, Sudan and Szegedy [5,4]. The construction is anal-
ogous to (but far more complex than) the one presented in the case of codes:27

First one constructs proofs over a large alphabet, and next one composes such
proofs with corresponding “inner” proofs (over a smaller alphabet, and finally a
binary one). Our exposition focuses on the construction of these proof systems
and blurs the issues involved in their composition.28

The first step is to introduce the following NP-complete problem. The input
to the problem consists of a finite field F , a subset H ⊂ F of size �|F |1/15�, an
integer m < |H |, and a (3m + 4)-variant polynomial P : F 3m+4 → F of total
degree 3m|H | + O(1). The problem is to determine whether there exists an m-
variant (“assignment”) polynomial A : Fm → F of total degree m|H | such that
P (x, z, y, τ, A(x), A(y), A(z)) = 0 for every x, y, z ∈ Hm and τ ∈ {0, 1}3 ⊂ H .
Note that the problem-instance can be explicitly described by a sequence of
|F |3m+4 log2 |F | bits, whereas the solution sought can be explicitly described by
a sequence of |F |m log2 |F | bits. We comment that the NP-completeness of the
aforementioned problem can be proved via a reduction from 3SAT, by identifying
the variables of the formula with Hm and essentially letting P be a low-degree
extension of a function f : H3m ×{0, 1}3 → {0, 1} that encodes the structure of
the formula (by considering all possible 3-clauses). In fact, the resulting P has
degree |H | in each of the first 3m variables and constant degree in each of the
other variables, and this fact can be used to improve the parameters below (but
not in a fundamental way).

The proof that a given input P satisfies the aforementioned condition con-
sists of an m-variant polynomial A : Fm → F (which is supposed to be of
total degree m|H |) as well as 3m + 4 auxiliary polynomials Ai : F 3m+1 → F ,
for i = 1, ..., 3m + 1 (each supposedly of degree (3m|H | + O(1)) · m|H |). The
polynomial A is supposed to satisfy the conditions of the problem, and in par-
ticular P (x, z, y, τ, A(x), A(y), A(z)) = 0 should hold for every x, y, z ∈ Hm and

26 Actually, the aforementioned result is only implicit in [41], because Goldreich and

Sudan apply these ideas directly to a truncated version of the low-degree based code.
27 Our presentation reverses the historical order in which the corresponding results (for

codes and proofs) were achieved. That is, the constructions of locally testable proofs

of polynomial length predated the coding counterparts.
28 This section is significantly more complex than the rest of this article, and some

readers may prefer to skip it and proceed directly to Section 3.3. For further details

regarding the proof composition paradigm, the reader is referred to [37, Sec. 9.3.2].

86 O. Goldreich

τ ∈ {0, 1}3 ⊂ H . Furthermore, A0(x, z, z, τ) def= P (x, z, y, τ, A(x), A(y), A(z))
should vanish on H3m+1. The auxiliary polynomials are given to assist the ver-
ification of the latter condition. In particular, it should be the case that Ai

vanishes on F iH3m+1−i, a condition that is easy to test for A3m+1 (assuming
that A3m+1 is a low degree polynomial). Checking that Ai−1 agrees with Ai on
F i−1H3m+1−(i−1), for i = 1, ..., 3m+1, and that all Ai’s are low degree polynomi-
als, establishes the claim for A0. Thus, testing an alleged proof (A, A1, ..., A3m+1)
is performed as follows:

1. Testing that A is a polynomial of total degree m|H |. This is done by selecting
a random line through Fm, and testing whether A restricted to this line
agrees with a degree m|H | univariate polynomial.

2. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai is of total degree d
def=

(3m|H |+O(1)) ·m|H |. Here we select a random line through F 3m+1, and test
whether Ai restricted to this line agrees with a degree d univariate polynomial.

3. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai agrees with Ai−1 on
F i−1H3m+1−(i−1). This is done by uniformly selecting r′ = (r1, ..., ri−1) ∈
F i−1 and r′′ = (ri+1, ..., r3m+1) ∈ F 3m+1−i, and comparing Ai−1(r′, e, r′′) to
Ai(r′, e, r′′), for every e ∈ H . In addition, we check that both functions when
restricted to the axis-parallel line (r′, ·, r′′) agree with a univariate polyno-
mial of degree d.29 We stress that the values of A0 are computed according
to the given polynomial P by accessing A at the appropriate locations (i.e.,
by definition A0(x, z, z, τ) = P (x, z, y, τ, A(x), A(y), A(z))).

4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly selecting
r ∈ F 3m+1, and testing whether F (r) = 0.

The above description (which follows [59, Apdx. C]) is somewhat different than
the original presentation in [4], which in turn follows [6,7,31].30 The above tester
may be viewed as making O(m|F |) queries to an oracle over the alphabet F ,
or alternatively, as making O(m|F | log |F |) binary queries.31 Note that we have
already obtained a highly non-trivial tester. It makes O(m|F | log |F |) queries
in order to verify a claim regarding an input of length n

def= |F |3m+4 log2 |F |.
Using m = log n/ log log n, |H | = log n and |F | = poly(log n), we have obtained
a tester of poly-logarithmic query complexity.

To further reduce the query complexity, one invokes the “proof composition”
paradigm, introduced by Arora and Safra [5]. Specifically, one composes an
“outer” tester (as described above) with an “inner” tester that checks the resid-
ual condition that the “outer” tester determines for the answers it obtains. This
composition is more problematic than one suspects, because we wish the “inner”
29 Thus, effectively, we are self-correcting the values at H (on the said line), based on

the values at F (on that line).
30 The point is that the sum-check, which originates in [50], is replaced by an analogous

process (which happens to be non-adaptive).
31 Another alternative perspective is obtained by applying so-called parallelization

(cf. [49,4]). The result is a test making a constant number of queries that are each

answered by strings of length poly(|F |).

Short Locally Testable Codes and Proofs 87

tester to perform its task without reading its entire input (i.e., the answers to
the “outer” tester). This seems quite paradoxical, since it is not clear how the
“inner” tester can operate without reading its entire input. The problem can be
resolved by using a “proximity tester” (i.e., a PCP of proximity) as an “inner”
tester, provided that it suffices to have such a proximity test (for the answers
to the “outer” tester). Thus, the challenge is to reach a situation in which the
“outer” tester is robust in the sense that, when the assertion is false, the answers
obtained by this tester are far from being convincing (i.e., they are far from any
sequence of answers that is accepted by this tester). Two approaches towards
obtaining such robust testers are known.

– One approach, introduced in [4], is to convert the “outer” tester into one
that makes a constant number of queries over some larger alphabet, and
furthermore have the answer be presented in an error correcting format.
Thus, robustness is guaranteed by the fact that the answers correspond to a
constant-length sequence of codewords, and so any two (properly formatted)
sequences are at constant relative distance of one another.

The implementation of this approach consists of two steps (and is based
on some specifics). The first step is to convert the “outer” tester into one that
makes a constant number of queries over some larger alphabet. This step uses
the so-called parallelization technique (cf. [49,4]). Next, one applies an error
correcting code to these O(1) longer answers, and assumes that the “proximity
tester” can handle inputs presented in this format (i.e., that it can test an
input that is presented by an encoding of a constant number of its parts).32

– An alternative approach, pursued and advocated in [15], is to take advantage
of the specific structure of the queries, “bundle” the answers together and
furthermore show that the “bundled” answers are “robust” in a sense that fits
proximity testing. In particular, the (generic) parallelization step is avoided,
and is replaced by a closer analysis of the specific (outer) tester. We will
demonstrate this approach next.

First, we show how the queries of the aforementioned tester can be “bundled”
(into a constant number of bundles). In particular, we consider the following
“bundling” that accommodates all types of tests (and in particular the m + 1
different sub-tests performed in Steps 2 and 3). Consider

B(x1,, x3m+1) = (A1(x1, x2,, x3m+1), A2(x2,, x3m+1, x1), ..., A3m+1

(x3m+1, x1,, x3m))

and perform all 3m + 1 tests of Step (3) by selecting uniformly (r2, ..., r3m+1) ∈
F 3m and querying B at (e, r2, ..., r3m+1) and (r3m+1, e, ..., r3m) for all e ∈ F .
Thus, all 3m + 1 tests of Step (3) can be performed by retrieving the values of
32 The aforementioned assumption holds trivially in case one uses a generic “proxim-

ity tester” (i.e., a PCP of proximity or an Assignment Tester) as done in [28]. But

the aforementioned approach can be (and was in fact originally) applied with a spe-

cific “proximity tester” that can only handle inputs presented in one specific format

(cf. [4]).

88 O. Goldreich

B on a single axis parallel random line through F 3m+1. Furthermore, note that
all 3m + 1 tests of Step (2) can be performed by retrieving the values of B on a
single (arbitrary) random line through F 3m+1. Finally, observe that these tests
are “robust” in the sense that if, for some i, the function Ai is (say) 0.01-far
from satisfying the condition (i.e., being low-degree or agreeing with Ai−1) then
with constant probability many of the values of Ai on an appropriate random
line will not fit to what is needed. This robustness property is inherited by
B, as well as by B′ (resp., A′) that is obtained by applying a good binary
error-correcting code on B (resp., on A). Thus, we may replace A and the Ai’s
by A′ and B′, and conduct all all tests by making O(m2|F | log |F |) queries to
A′ : Fm × [O(log |F |)] → {0, 1} and B′ : F 3m+1 × [O(log |F |3m+1)] → {0, 1}.
The robustness property asserts that if the original polynomial P had no solution
(i.e., an A as above) then the answers obtained by the tester will be far from
satisfying the residual decision predicate of the tester.

Once the robustness property of the resulting (“outer”) tester fits the proximity
testing feature of the “inner tester”, composition is possible. Indeed, we compose
the “outer” tester with an “inner tester” that checks whether the residual decision
predicate of the “outer tester” is satisfies. The benefit of this composition is that
the query complexity is reduced from poly-logarithmic to polynomial in a double-
logarithm. At this point we can afford the Hadamard-Based proof tester (because
the overhead in the proof complexity will only be exponential in a polynomial in
a double-logarithmic function), and obtain a locally testable proof of polynomial
length.That is,wecompose thepoly(log log)-query tester (actingasanouter tester)
with the Hadamard-Based tester (acting as an inner tester), and obtain a locally
testable proof of polynomial length (as asserted by the PCP Theorem).

Digest: the proof composition paradigm. The PCP Theorem asserts a PCP system
that obtains simultaneously the minimal possible randomness and query complex-
ity (up to a multiplicative factor, assuming that P �= NP). The foregoing con-
struction obtains this remarkable result by combining two different PCPs: the first
PCP obtains logarithmic randomness but uses poly-logarithmically many queries,
whereas the second PCP uses a constant number of queries but has polynomial
randomness complexity. We stress that each of these two PCP systems is highly
non-trivial and very interesting by itself. We also highlight the fact that these PCPs
are combined using a very simple composition method (which refers to auxiliary
properties such as robustness and proximity testing). Details follow.33

Loosely speaking, the proof composition paradigm refers to composing two
proof systems such that the “inner” verifier is used for probabilistically verifying
the acceptance criteria of the “outer” verifier. That is, the combined verifier se-
lects coins for the “outer” verifier, determines the corresponding locations that
the “outer” verifier wishes to inspect (in the proof), and verifies that the “outer”
verifier would have accepted the values that reside in these locations. The latter
verification is performed by invoking the “inner” verifier,without reading the values
residing in all the aforementioned locations. Indeed, the aim is to conduct this
33 Our presentation of the composition paradigm follows [15], rather than the original

presentation of [5,4].

Short Locally Testable Codes and Proofs 89

(“composed”) verification while using much fewer queries than the query complex-
ity of the “outer” proof system. Inparticular, the inner verifier cannot afford to read
its input, which makes the composition more subtle than the term suggests.

In order for the proof composition to work, the combined verifiers should satisfy
some auxiliary conditions. Specifically, the outer verifier should be robust in the
sense that its soundness condition guarantee that, with high probability, the ora-
cle answers are “far” from satisfying the residual decision predicate (rather than
merely not satisfying it).34 The inner verifier is given oracle access to its input
and is charged for each query made to it, but is only required to reject (with high
probability) inputs that are far from being valid (and, as usual, accept inputs that
are valid). That is, the inner verifier is actually a verifier of proximity.

Composing two such PCPs yields a new PCP, where the new proof oracle con-
sists of the proof oracle of the “outer” system and a sequence of proof oracles for the
“inner” system (one “inner” proof per each possible random-tape of the “outer”
verifier). The resulting verifier selects coins for the outer-verifier and uses the cor-
responding “inner” proof in order to verify that the outer-verifier would have ac-
cepted under this choice of coins. Note that such a choice of coins determines lo-
cations in the “outer” proof that the outer-verifier would have inspected, and the
combined verifier provides the inner-verifier with oracle access to these locations
(which the inner-verifier considers as its input) as well as with oracle access to the
corresponding “inner” proof (which the inner-verifier considers as its proof-oracle).

The quantitative effect of such a composition is easy to analyze. Specifically,
composing an outer-verifier of randomness-complexity r′ and query-complexity
q′ with an inner-verifier of randomness-complexity r′′ and query-complexity q′′

yields a PCP of randomness-complexity r(n) = r′(n) + r′′(q′(n)) and query-
complexity q(n) = q′′(q′(n)), because q′(n) represents the length of the input (or-
acle) that is accessed by the inner-verifier. Thus, assuming q′′(m) � m, the query
complexity is significantly decreased (from q′(n) to q′′(q′(n))), while the increase
in the randomness complexity is moderate provided that r′′(q′(n)) � r′(n). Fur-
thermore, the verifier resulting from the composition inherits the robustness
features of the composed verifier, which is important in case we wish to compose
the resulting verifier with another inner-verifier.

3.3 Locally Testable Codes and Proofs of Nearly Linear Length

We now move on to even shorter codes and proofs; specifically, codes and proofs
of nearly linear length. The latter term has been given quite different interpre-
tations, and we start by sorting these out. Currently, this taxonomy is relevant
mainly for second-level discussions and review of some past works.35

34 Furthermore, the latter predicate, which is well-defined by the non-adaptive nature of

the outer verifier, must have a circuit of size bounded by a polynomial in the number

of queries.
35 Things were different when the original version of this text [36] was written. At that

time, only T2-nearly linear length was know for O(1)-local testability, and the T3-

nearly linear result achieved by Dinur [26] seemed a daring conjecture (which was,

nevertheless, stated in [36, Conj. 3.3]).

90 O. Goldreich

3.3.1 Types of Nearly Linear Functions
A few common interpretations of this term are listed below (going from the most
liberal to the most strict one).

T1-nearly linear: A very liberal notion, which seems at the verge of an abuse
of the term, refers to a sequence of functions fε : N → N such that, for every
ε > 0, it holds that fε(n) ≤ n1+ε. That is, each function is actually of the
form n �→ nc, for some constant c > 1, but the sequence as a whole can be
viewed as approaching linearity.

The PCP of Polishchuk and Spielman [55] and the simpler locally testable
code of Goldreich and Sudan [41, Thm. 2.4] have nearly linear length in this
sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers
to individual functions f such that f(n) = n1+o(1). Specifically, for some
function ε : N → [0, 1] that goes to zero, it holds that f(n) ≤ n1+ε(n).
Common sub-types include the following:
1. ε(n) = 1/ log log n.
2. ε(n) = 1/(logn)c for some constant c ∈ (0, 1).

The locally testable codes and proofs of [41,21,15] have nearly linear
length in this sense. Specifically, in [41, Sec. 4-5] and [21] any c > 1/2
will do, whereas in [15] any c > 0 will do.

3. ε(n) = exp((log log n)c)
log n for some constant c ∈ (0, 1).

Note that poly(log log n) < exp((log log n)c) < (log n)o(1), for any con-
stant c ∈ (0, 1).

Indeed, the case in which ε(n) = O(log log n)
log n (or so) deserves a special cate-

gory, presented next.
T3-nearly linear: The strongest notion interprets near-linearity as linearity up

to a poly-logarithmic (or quasi-poly-logarithmic) factor. In the former case
f(n) = Õ(n) def= poly(log n) · n, which corresponds to the case of f(n) ≤
n1+ε(n) with ε(n) = O(log log n)/ logn, whereas the latter case corresponds to
ε(n) = poly(log log n)/ log n (i.e., in which case f(n) ≤ (log n)poly(log log n) ·n).
The recent results of [20,26] refer to this notion.

We note that while [20,26] achieve T3-nearly linear length, the low-error results
of [54,27] only achieve T2-nearly linear length.

3.3.2 Local Testability with Nearly Linear Length
The celebrated gap amplification technique of Dinur [26] is best known for pro-
viding an alternative proof of the PCP Theorem. However, applying this tech-
nique to a PCP that was (previously) provided by Ben-Sasson and Sudan [20]
yields locally testable codes and proofs of T3-nearly linear length. In particular,
the overhead in the code and proof length is only polylogarithmic in the length
of the primal object (which establishes [36, Conj. 3.3]).

Short Locally Testable Codes and Proofs 91

Theorem 3.1 (Dinur [26], building on [20]): There exists a constant q and a
poly-logarithmic function f : N → N such that there exist q-locally testable codes
and proofs of length f(k) ·k, where k denotes the length of the actual information
(i.e., the assertion in case of proofs and the encoded information in case of codes).

The proof of Theorem 3.1 combines the PCP system of Ben-Sasson and Su-
dan [20] with the gap amplification method of Dinur [26]. The latter is reviewed in
§3.3.3. We mention that the PCP system of [20] is based on the NP-completeness
of a certain code (of length n = Õ(k)), and on a randomized reduction of testing
whether a given n-bit long string is a codeword to a constant number of similar
tests that refer to

√
n-bit long strings. Applying this reduction log log n times

yields a PCP of query complexity poly(log n) and length Õ(n), which in turn
yields a 3-query “PCP with soundness error 1 − 1/poly(log n)”.

We mention that in the original version of this survey [36], we conjectured
that a polylogarithmic (length) overhead is inherent to local testability (or, at
least, that linear length O(1)-local testability is impossible). We currently have
mixed feelings with respect to this conjecture (even when confined to proofs),
and thus rephrase it as an open problem.

Open Problem 3.2 Determine whether there exist locally testable codes and
proofs of linear length.

3.3.3 The Gap Amplification Method
Essentially, Theorem 3.1 is proved by applying the gap amplification method
(of Dinur [26]) to the (weak) PCP system constructed by Ben-Sasson and Su-
dan [20]. The latter PCP system has length �(k) = Õ(k), but its soundness
error is 1− 1/poly(log k) (i.e., its rejection probability is at least 1/poly(log k)).
Each application of the gap amplification step doubles the rejection probability
while essentially maintaining the initial complexities. That is, in each step, the
constant query complexity of the verifier is preserved and its randomness com-
plexity is increased only by a constant term (and so the length of the PCP oracle
is increased only by a constant factor). Thus, starting from the system of [20]
and applying O(log log k) amplification steps, we essentially obtain Theorem 3.1.
(Note that a PCP system of polynomial length can be obtained by starting from
a trivial “PCP” system that has rejection probability 1/poly(k), and applying
O(log k) amplification steps.)

In order to describe the aforementioned process weneed to redefinePCP systems
so as to allow arbitrary soundness error. In fact, for technical reasons, it is more
convenient to describe the process as an iterated reduction of a “constraint satis-
faction” problem to itself. Specifically, we refer to systems of 2-variable constraints,
which are readily representedby (labeled) graphs such that the vertices correspond
to (non-Boolean) variables and the edges are associated with constraints.

Definition 3.3 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated

92 O. Goldreich

with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
(standing for violation) the fraction of unsatisfied constraints under the best
possible assignment; that is,

vlt(G, Φ) = min
α:V →Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}
.

(2)

For various functions τ : N → (0, 1], we will consider the promise problem
gapCSPΣ

τ , having instances as above, such that the yes-instances are fully satis-
fiable instances (i.e., vlt = 0) and the no-instances are pairs (G, Φ) for which
vlt(G, Φ) ≥ τ(|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m

(e.g., replace each clause by a vertex, and use edge constraints that enforce
mutually consistent and satisfying assignments to each pair of clauses). Fur-
thermore, the PCP system of [20] yields a reduction of 3SAT to gapCSPΣ0

τ1
for

τ1(m) = 1/poly(log m) where the size of the graph is nearly linear in the length
of the input formula. Our goal is to reduce gapCSPΣ0

τ0
(or rather gapCSPΣ0

τ1
) to

gapCSPΣ
c , for some fixed finite Σ and constant c > 0, where in the case of

gapCSPΣ0
τ1

we wish the reduction to preserve the length of the instance up to a
polylogarithmic factor. The PCP Theorem (resp., a PCP of nearly linear length)
follows by showing a simple PCP system for gapCSPΣ

c . As noted above, the re-
duction is obtained by repeated applications of an amplification step that is
captured by the following lemma.

Lemma 3.4 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time computable function f such that,
for every instance (G, Φ) of gapCSPΣ, it holds that (G′, Φ′) = f(G, Φ) is an
instance of gapCSPΣ and the two instances are related as follows:

1. If vlt(G, Φ) = 0 then vlt(G′, Φ′) = 0.
2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).
3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas in-
stances that violate a ν fraction of the constraints are mapped to instances that
violate at least a min(2ν, c) fraction of the constraints. Furthermore, the mapping
increases the number of edges (in the instance) by at most a constant factor. We
stress that both Φ and Φ′ consists of Boolean constraints defined over Σ2. Thus,
by iteratively applying Lemma 3.4 for a logarithmic (resp., double-logarithmic)
number of times, we reduce gapCSPΣ

τ0
(resp., gapCSPΣ

τ1
) to gapCSPΣ

c .

Outline of the proof of Lemma 3.4: Before turning to the proof, let us
highlight the difficulty that it needs to address. Specifically, the lemma asserts a
“violation amplifying effect” (i.e., Items 1 and 2), while maintaining the alphabet
Σ and allowing only a moderate increase in the size of the graph (i.e., Item 3).

Short Locally Testable Codes and Proofs 93

Waiving the latter requirements allows a relatively simple proof that mimics
(an augmented version of) the “parallel repetition” of the corresponding PCP.
Thus, the challenge is significantly decreasing the “size blow-up” that arises from
parallel repetition and maintaining a fixed alphabet. The first goal (i.e., Item 3)
calls for a suitable derandomization, and indeed we shall use a “pseudorandom”
generator based on random walks on expander graphs. The second goal (i.e.,
fixed alphabet) can be handled by using the proof composition paradigm, which
was outlined in §3.2.2.

The lemma is proved by presenting a three-step reduction. The first step is a
pre-processing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of vlt may decrease
during this step by a constant factor. The heart of the reduction is the second
step in which we increase vlt by any desired constant factor. This is done by
a construction that corresponds to taking a random walk of constant length on
the current graph. The latter step also increases the alphabet Σ, and thus a
post-processing step is employed to regain the original alphabet (by using any
inner PCP systems; e.g., the one presented in §3.1.2). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary
parameters d and t (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in
the course of our argument) are satisfied. Specifically, t will be the last parameter
to be determined (and it will be made greater than a constant that is determined
by all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the
input (G, Φ) of gapCSPΣ to an instance (G1, Φ1) such that G1 is a d-regular
expander graph.36 Furthermore, each vertex in G1 will have at least d/2 self-
loops, the number of edges will be preserved up to a constant factor (i.e.,
|G1| = O(|G|)), and vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple:
essentially, the original vertices are replaced by expanders of size proportional
to their degree, and a big (dummy) expander is “superimposed” on the resulting
graph.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (t-edge long) walk on the expander G1 intersects a
fixed set of edges is closely related to the probability that a random sample of (t)
edges intersects this set. Thus, we may expect such walks to hit a violated edge
with probability that is min(Θ(t ·ν), c), where ν is the fraction of violated edges.
Indeed, the current step consists of reducing the instance (G1, Φ1) of gapCSPΣ

to an instance (G2, Φ2) of gapCSPΣ′
such that Σ′ = Σdt

and the following holds:

36 A d-regular graph is a graph in which each vertex is incident to exactly d edges.

Loosely speaking, an expander graph has the property that each moderately bal-

anced cut (i.e., partition of its vertex set) has relatively many edges crossing it. An

equivalent definition, also used in the actual analysis, is that, except for the largest

eigenvalue (which equals d), all the eigenvalues of the corresponding adjacency ma-

trix have absolute value that is bounded away from d.

94 O. Goldreich

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge
long path in G1 is replaced by a corresponding edge in G2, which is thus a
dt-regular graph.

2. The constraints in Φ2 refer to each element of Σ′ as a Σ-labeling of the
(“distance ≤ t”) neighborhood of a vertex, and mandates that the two cor-
responding labelings (of the endpoints of the G2-edge) are consistent as well
as satisfy Φ1. That is, the following two types of conditions are enforced by
the constraints of Φ2:
(consistency): If vertices u and w are connected in G1 by a path of length

at most t and vertex v resides on this path, then the Φ2-constraint asso-
ciated with the G2-edge between u and w mandates the equality of the
entries corresponding to vertex v in the Σ′-labeling of vertices u and w.

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t start-
ing at u, then the Φ2-constraint associated with the G2-edge that cor-
responds to this path enforces the Φ1-constraint that is associated with
(v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph
corresponds to the low randomness-complexity of selecting a random walk of
length t in G1.)

Turning to the analysis of this step, we note that vlt(G1, Φ1) = 0 implies
vlt(G2, Φ2) = 0. The interesting fact is that the fraction of violated constraints
increases by a factor of Ω(

√
t); that is, vlt(G2, Φ2) ≥ min(Ω(

√
t·vlt(G1, Φ1)), c).

Here we merely provide a rough intuition and refer the interested reader to [26].
We may focus on any Σ′-labeling of the vertices of G2 that is consistent with
some Σ-labeling of G1, because relatively few inconsistencies (among the Σ-
values assigned to a vertex by the Σ′-labeling of other vertices) can be ignored,
while relatively many such inconsistencies yield violation of the “equality con-
straints” of many edges in G2. Intuitively, relying on the hypothesis that G1

is an expander, it follows that the set of violated edge-constraints (of Φ1) with
respect to the aforementioned Σ-labeling causes many more edge-constraints of
Φ2 to be violated (because each edge-constraint of Φ1 is enforced by many edge-
constraints of Φ2). The point is that any set F of edges of G1 is likely to appear
on a min(Ω(t) · |F |/|G1|, Ω(1)) fraction of the edges of G2 (i.e., t-paths of G1).
(Note that the claim would have been obvious if G1 were a complete graph, but
it also holds for an expander.)37

The factor of Ω(
√

t) gained in the second step makes up for the constant factor
lost in the first step (as well as the constant factor to be lost in the last step). Fur-
thermore, for a suitable choice of the constant t, the aforementioned gain yields
an overall constant factor amplification (of vlt). However, so far we obtained
an instance of gapCSPΣ′

rather than an instance of gapCSPΣ , where Σ′ = Σdt

.
The purpose of the last step is to reduce the latter instance to an instance of

37 We mention that, due to a technical difficulty, it is easier to establish the claimed

bound of Ω(
√

t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).

Short Locally Testable Codes and Proofs 95

gapCSPΣ . This is done by viewing the instance of gapCSPΣ′
as a PCP-system,38

and composing it with an inner-verifier using the proof composition paradigm
outlined in §3.2.2. We stress that the inner-verifier used here needs only handle
instances of constant size (i.e., having description length O(dt log |Σ|)), and so
the verifier presented in §3.1.2 will do. The resulting PCP-system uses random-
ness r

def= log2 |G2|+O(dt log |Σ|)2 and a constant number of binary queries, and
has rejection probability Ω(vlt(G2, Φ2)), which is independent of the choice of
the constant t. For Σ = {0, 1}O(1), we can obtain an instance of gapCSPΣ that
has a Ω(vlt(G2, Φ2)) fraction of violated constraints. Furthermore, the size of
the resulting instance (which is used as the output (G′, Φ′) of the three-step
reduction) is O(2r) = O(|G2|), where the equality uses the fact that d and t

are constants. Recalling that vlt(G2, Φ2) ≥ min(Ω(
√

t · vlt(G1, Φ1)), c) and
vlt(G1, Φ1) = Ω(vlt(G, Φ)), this completes the (outline of the) proof of the
entire lemma. ��
Reflection. In contrast to the proof outlined in §3.2.2. which combines two re-
markable constructs by using a simple composition method, the current proof
of the PCP Theorem is based on developing a powerful “combining method”
that improves the quality of the main system to which it is applied. This new
method, captured by the amplification step (Lemma 3.4), does not merely ob-
tain the best of the combined systems, but rather obtains a better system than
the one given. However, the quality-amplification offered by Lemma 3.4 is rather
moderate, and thus many applications are required in order to derive the desired
result. Taking the opposite perspective, one may say that remarkable results are
obtained by a gradual process of many moderate amplification steps.

3.4 Additional Considerations

Our motivation for studying locally testable codes and proofs referred to super-
fast testing, but our actual definitions have focused on the query complexity
of these testers. While the query complexity of testing has a natural appeal,
the hope is that low query complexity testers would also yield super-fast testing.
Indeed, in the case of codes, it is typically the case that the testing time is related
to the query complexity. However, in the case of proofs there is a seemingly
unavoidable (linear) dependence of the verification time on the input length.
This (linear) dependence can be avoided if one considers PCP-of-Proximity (see
Section 2.3.3) rather than standard PCP. But even in this case, additional work
is needed in order to derive testers that work is sub-linear time. The interested
reader is referred to [16,52].

4 Locally Decodable Codes

Locally decodable codes are complimentary to local testable codes. Recall that
the latter are required to allow for super-fast rejection of strings that are far from
38 The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the

instance (G2, Φ2) with probability vlt(G2, Φ2) ∈ [0, 1]).

96 O. Goldreich

being codewords (while accepting all codewords). In contrast, in case of locally
decodable codes, we are guaranteed that the input is close to a codeword, and
are required to recover individual bits of the encoded information based on a
small number of probes (per recovered bit). As in case of local testability, the
case when the operation (in this case decoding) is performed based on a constant
number of probes is of special interest.

Local decodability is of natural practical appeal, which in turn provides ad-
ditional motivation for local testability. The point is that it makes little sense
to try to recover part of the data when the codeword is too corrupt. Thus, one
should first apply local testability to check that the received codeword is not too
corrupt, and apply local decodability only in case the codeword test passes.

4.1 Definitions

We follow the conventions of Section 2.1, but extend the treatment to codes over
any finite alphabet Σ (rather than insisting on Σ = {0, 1}).
Definition 4.1 (locally decodable codes, basic version): Let C : Σk → Σn be
a code, and let q ∈ N and δ ∈ (0, 1). A q-local δ-decoder for C is a probabilistic
(non-adaptive) oracle machine M that makes at most q queries and satisfies the
following condition:

Local recovery from somewhat corrupted codewords: For every i ∈ [k] and x =
(x1, ..., xk) ∈ Σk, and any w ∈ Σn that is δ-close to C(x), on input i and
oracle access to w, machine M outputs xi with probability at least 2/3. That
is, Pr[Mw(1k, i)=xi] > 2/3, for any w ∈ Σn that is δ-far from C(x).

We call q the query complexity of M , and δ the proximity parameter.

Note that the proximity parameter must be smaller than the covering radius of
the code (as otherwise the definition cannot possibly be satisfied (at least for
some w and i)). One may strengthen Definition 4.1 by requiring that the bits of
an uncorrupted codeword be always recovered correctly (rather than with high
probability); that is, for every i ∈ [k] and x = (x1, ..., xk) ∈ Σk, it must hold
that Pr[MC(x)(1k, i) = xi] = 1. Turning to families of codes, we present the
following definition (which potentially allows the alphabet to grow with k).

Definition 4.2 (locally decodable codes, asymptotic version): For functions
n, σ : N → N, let C = {Ck : [σ(k)]k → [σ(k)]n(k)}k∈K . We say that C is a
local decodable code if there exist constants δ > 0 and q and a machine M that
is a q-local δ-decoder for Ck, for every k ∈ K.

We mention that locally decodable codes are related to (information theoretic
secure) Private Information Retrieval (PIR) schemes, introduced in [25]. In the
latter a user wishes to recover a bit of data from a k-bit long database, copies
of which are held by s servers, without revealing any information to any single
server. To that end, the user (secretly) communicates with each of the servers,
and the issue is to minimize the total amount of communication. As we shall
see, certain s-server PIR schemes yield 2s-locally decodable codes of length ex-
ponential in the communication complexity of the PIR.

Short Locally Testable Codes and Proofs 97

Related notions of local recovery. The notion of local decodability is a special
case of a general notion of local recovery, where one may be required to recover
an arbitrary function f : Σk → {0, 1}∗ of the original information based on a
constant number of probes to the (corrupted) codeword. The function f must
be restricted in two ways: Firstly, it should have a small range (e.g., its range
may be Σ), and secondly it should come from a small predetermined set F of
functions. Definition 4.1 may be recast in these terms, by considering the set of
projection functions (i.e., {fi : Σk → Σ} where fi(x1, ..., xk) = xi). We believe
that this is the most natural special case of the general notion of local recovery.
In §3.2.1 we referred to another special case, where the alphabet is associated
with a finite field F and the recovery function fe : F k → F is one out of |F |
possible linear functions (specifically, fe(x1, ..., xk) =

∑k
i=1 ei−1xi, for e ∈ F).39

Another natural case (also used in §3.2.1) is that of the recovery of (correct)
symbols of the codeword, which may be viewed as self-correction. (In this case
each admissible function determines one codeword symbol as a function of the
encoded message.)

4.2 Results

The best known locally decodable codes are of strictly sub-exponential length;
that is, k information bits can be encoded by codewords of length n = exp(ko(1))
that are locally decodable (cf. [29], building on [61]). This result disproves [36,
Conj. 4.4],

Theorem 4.3 (Efremenko [29], building on Yekhanin [61]): For some δ > 0
there exists a code C : {0, 1}k → {0, 1}n that has a 3-local δ-decoder such that n =
exp(2Õ(

√
log k)) = exp(ko(1)). Furthermore, 2d-local decodability can be obtained

with n = exp(2Õ(d
√

log k)).

In this section we only outline a couple of codes of lesser performance. Specif-
ically, we will present longer codes that are O(1)-locally decodable as well as
shorter codes that are poly(log k)-locally decodable.

4.2.1 Locally Decodable Codes of Sub-exponential Length
For any d ≥ 1, there is a simple construction of a 2d-locally 2−d−2-decodable
binary code of length n = 2d·k1/d

. For h = k1/d, we identify [k] with [h]d, and
view x ∈ {0, 1}k as (xi1,...,id

)i1,...,id∈[h]. We encode x by providing the parity
of all xi1,...,id

residing in each of the (2h)d sub-cubes of [h]d; that is, for every
(S1, ..., Sd) ∈ 2[h] × · · · × 2[h], we provide

C(x)S1,...,Sd
= ⊕i1∈S1,...,id∈Sd

xi1,...,id
. (3)

Indeed, the Hadamard code is the special case in which d = 1. To recover
the value of xi1,...,id

, at any desired (i1, ..., id) ∈ [h]d, the decoder uniformly

39 Indeed, the value fe(x1, ..., xk) is the evaluation at e of the polynomial p(ζ) =∑k
i=1 xiζ

i−1 represented by the coefficients (x1, ..., xk).

98 O. Goldreich

selects (R1, ..., Rd) ∈ 2[h] × · · · × 2[h], and recovers the (possibly corrupted)
values C(x)S1,...,Sd

, where each Sj either equals Rj or equals Rj�{ij}, where
R�{i} = R \ {i} if i ∈ R and R�{i} = R ∪ {i} otherwise. The key observa-
tion is that each of the decoder’s queries is uniformly distributed. Thus, with
probability at least 3/4, XORing the 2d answers, yields the desired result (be-
cause ⊕S1∈{R1,R1�{i1}},...,Sd∈{Rd,Rd�{id}}C(x)S1,...,Sd

equals C(x){i1},...,{id} =
xi1,...,id

).
We comment that a related code (of length n = 2dd·k1/d

) allows for recov-
ery based on d + 1 (rather 2d) queries. The original presentation, due to [2]
(building on [25]), is in terms of PIR schemes (with s = (d + 1)/2 servers
and overall communication dd · k1/d = exp(Õ(s)) · k1/(2s−1)). In particular, in
the case that d = 2, we use two servers, sending (R1, R2, R3) to one server
and (R1�{i1}, R2�{i2}, R3�{i3}) to the other server. Upon receiving
(S1, S2, S3), each server replies with the bit C(x)S1,S2,S3 as well as the three k1/3-
bit long sequences (C(x)S1�{i},S2,S3)i∈[k1/3], (C(x)S1,S2�{i},S3)i∈[k1/3],
and (C(x)S1,S2,S3�{i})i∈[k1/3], which contain the bits C(x)S1�{i1},S2,S3 ,
C(x)S1,S2�{i2},S3 , and C(x)S1,S2,S3�{i3}. Thus, the user obtains the bits
C(x)R1,R2,R3 , C(x)R1�{i1},R2,R3 , C(x)R1,R2�{i2},R3 , and C(x)R1,R2,R3�{i3} from
the first server, and the bits CR1�{i1},R2�{i2},R3�{i3}, CR1,R2�{i2},R3�{i3},
CR1�{i1},R2,R3�{i3}, CR1�{i1},R2�{i2},R3} from the second server.

The corresponding locally decodable code is obtained by a generic transfor-
mation that applies to any PIR scheme with s servers, in which the user makes
uniformly distributed queries of length qst(k), gets answers of length ans(k),
and recovers the desired value by XORing some predetermined bits contained
in the answers. In this case, the resulting code will contain the Hadamard en-
coding of each of the possible answers provided by each of the servers; that
is, if the j-th server answers according to Aj(x, q) ∈ {0, 1}ans(k), where x ∈
{0, 1}k and q ∈ {0, 1}qst(k), then C(x)j,q,� = CHad(Aj(x, q))�, for every � ∈
{0, 1}ans(k). Thus, the length of the code is s · 2qst(k) · 2ans(k). Now, on in-
put i ∈ [k], the decoder emulates the PIR user, obtaining the query sequence
(q1, ..., qs) and the desired linear combinations (�1,, �s). It uniformly selects
r1, ..., rs ∈ {0, 1}ans(k), queries the (possibly corrupted) codeword at locations
(1, q1, r1), (1, q1, r1 ⊕ �1), ..., (s, qs, rs), (s, qs, rs ⊕ �s), and XORs the correspond-
ing 2s answers. Note that each of these queries is uniformly distributed in {j}×
{0, 1}qst(k) ×{0, 1}ans(k), for some j ∈ [s], and that C(x)j,qj ,rj ⊕C(x)j,qj ,rj⊕�j =
CHad(Aj(x, qj))�j .

4.2.2 Polylog-local Decoding for Codes of Nearly Linear Length
We will consider a code C : Σk → Σn of linear distance, while identifying Σ with
a finite field (denoted F). For parameters h and m = logh k, consider a finite
field F of size O(m · h), and a subset H ⊂ F of size h. Viewing the information
as a function f : Hm → F , we encode it by providing the values of its low-degree
extension f̂ : Fm → F on all points in F , where f̂ is an m-variant polynomial
of degree |H | − 1 in each variable. Thus, the code maps k = hm long sequences
over F (which may be viewed as hm log |F | bits of information) to sequences

Short Locally Testable Codes and Proofs 99

of length n
def= |F |m = O(mh)m = O(m)m · k over F . This code has relative

distance mh/|F |. Note that the smaller m, the better the rate (i.e., relation of
n to k) is, but this comes at the expense of using a larger alphabet F (as well
as larger query complexity of the decoder presented below).

The decoder works by applying the self-correction paradigm. Given a point
x ∈ Hm and access to an oracle w : Fm → F that is 1/2-close to f̂ , the value of
f(x) is recovered by uniformly selecting a line through x, querying for the |F |
values of w along the line, finding the degree mh univariate polynomial with the
greatest agreement with these values, and evaluating it at the appropriate point.
Thus, we obtain an |F |-local decoder.

Using a constant m, we obtain an O(k1/m)-locally decodable code of constant
rate (i.e., n = O(k)), over an alphabet of size O(k1/m). On the other hand,
using m = ε log k/ log log k (for any constant ε > 0), we obtain a poly(log k)-
locally decodable code of length n = k1+ε, over an alphabet of size poly(log k).
Concatenation with any reasonable40 binary code (coupled with a trivial decoder
that reads the entire codeword), yields a binary poly(log k)-locally decodable
code of length n = k1+ε.

4.2.3 Lower Bounds
It is known that locally decodable codes cannot be T2-nearly linear:41 Specifi-
cally, any q-locally decodable code C : Σk → Σn must satisfy n = Ω(k1+ 1

q−1)
(cf. [45]). For q = 2 and Σ = {0, 1}, an exponential lower bound is known
(cf. [47], following [40]).

We mention that our past conjectures regarding lower bounds for locally de-
codable (binary) codes were disproved twice. Our conjectured lower bound of
n > exp(kΩ(1/q)) for q-locally decodable codes was disproved by [9], and our
conjectured lower bound of n > exp(kΩ(1)) for any locally decodable code was
disproved by [29] (after being vastly shaken by [61]). Given this history, we dare
not make any further conjectures, but instead pose the following open problem.

Open Problem 4.4 Determine whether there exist locally decodable codes of
polynomial length.

Recall that we know, for a fact, that T2-nearly linear length is impossible, and
it is very tempting to conjecture that T1-nearly linear length is impossible too
(i.e., any locally decodable code C : Σk → Σn requires n > k1+Ω(1)). Still, let
us pose this too as an open problem.

4.3 Relaxations

In light of the fact that locally decodable codes cannot be T2-nearly linear, it is
natural to seek relaxations to the notion of locally decodable codes. One natural
40 Indeed, we may use any good code (i.e., linear length and linear distance), as such

can be easily constructed for block length O(log log k). But we can even use the

Hadamard code, because the length overhead caused by it in this setting is negligible.
41 See terminology in §3.3.1.

100 O. Goldreich

relaxation requires local recovery of most individual information-bits, allowing
for recovery-failure (but not error) on the rest [15]: That is, it is requires that,
whenever few location are corrupted, the decoder should be able to recover
most of the individual information-bits, based on a constant number of queries,
and for the rest of the locations the decoder may output a fail symbol (but
not the wrong value). Augmenting these requirements by the requirement that
whenever the codeword is not corrupted – all bits are recovered correctly (with
high probability), yields the following definition.

Definition 4.5 (locally decodable codes, relaxed): For functions n, σ : N → N,
let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K . For q ∈ N and δ, ρ ∈ (0, 1), a q-local
relaxed (δ, ρ)-decoder for C is a probabilistic (non-adaptive) oracle machine M

that makes at most q queries and satisfies the following conditions:

Local recovery from uncorrupted codewords: For every i∈ [k] and x=(x1, ..., xk)
∈ Σk, it holds that Pr[MC(x)(1k, i)=xi] > 2/3,

Relaxed local recovery from somewhat corrupted codewords: For every x =
(x1, ..., xk) ∈ Σk, and any w ∈ Σn that is δ-close to C(x), the following
two conditions hold:
1. For every i ∈ [k], it holds that Pr[MC(x)(1k, i)∈{xi,⊥}] > 2/3, where

⊥ is a special (“failure”) symbol.
2. There exists a set Iw ⊆ [k] of size at least ρk such that, for every i ∈ Iw,

it holds that Pr[MC(x)(1k, i)=xi] > 2/3.42

In such a case, C is said to be locally relaxed-decodable.

It turns out (cf. [15]) that Condition 2, in the relaxed recovery requirement, es-
sentially follows from the other requirements. That is, codes satisfying the other
requirements can be transformed into locally relaxed-decodable codes, while es-
sentially preserving their rate (and distance). Furthermore, the resulting codes
satisfy the following stronger form of Condition 2: There exists a set Iw ⊆ [k]
of density at least 1 − O(Δ(w, C(x))/n) such that for every i ∈ Iw it holds that
Pr[MC(x)(1k, i)=xi] > 2/3.

Theorem 4.6 [15]: There exist locally relaxed-decodable codes of T1-nearly lin-
ear length. Specifically, for every ε > 0, there exists codes of length n = k1+ε

that have a O(1/ε2)-local relaxed (Ω(ε), 1 − O(ε))-decoder.

An obvious open problem is to separate locally decodable codes from relaxed
ones. This may follow by either improving the aforementioned lower bound on
the length of locally decodable codes or by providing relaxed locally decodable
codes of T2-nearly linear length.

42 We stress that it is not required that Pr[MC(x)(1k, i) =⊥] > 2/3 for i ∈ [k] \ Iw.

Adding this requirement collapses the notion of relaxed-decodability to ordinary

decodability (cf. [23]).

Short Locally Testable Codes and Proofs 101

Acknowledgments

We are grateful to Madhu Sudan, Luca Trevisan and Salil Vadhan for related
discussions. We are also grateful to Omer Tamuz for useful comments and sug-
gestions regarding this article.

References

1. Alon, N., Krivelevich, M., Kaufman, T., Litsyn, S., Ron, D.: Testing low-degree

polynomials over GF(2). In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)

RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 188–199. Springer,

Heidelberg (2003)

2. Ambainis, A.: An upper bound on the communication complexity of private in-

formation retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)

ICALP 1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997)

3. Arora, S.: Probabilistic checking of proofs and the hardness of approximation prob-

lems. PhD thesis, UC Berkeley (1994)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification

and the hardness of approximation problems. Journal of the ACM 45(3), 501–555

(1998); Preliminary Version in 33rd FOCS (1992)

5. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM 45(1), 70–122 (1998); Preliminary Version in 33rd FOCS

(1992)

6. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-

prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: Proc. 23rd ACM Symposium on the Theory of Computing,

pp. 21–31 (May 1991)

8. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd IEEE

Symposium on Foundations of Computer Science, pp. 106–115 (October 2001)

9. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n1/(2k−1))

barrier for information-theoretic private information retrieval. In: Proc. 43rd IEEE

Symposium on Foundations of Computer Science, pp. 261–270 (November 2002)

10. Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity testing in

characteristic two. In: Proceedings of the 36th IEEE Symposium on Foundations

of Computer Science, pp. 432–441 (1995)

11. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability—

towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998); Prelim-

inary Version in 36th FOCS (1995)

12. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically check-

able proofs and applications to approximation. In: Proc. 25th ACM Symposium

on the Theory of Computing, pp. 294–304 (May 1993)

13. Bellare, M., Sudan, M.: Improved non-approximability results. In: Proceedings of

the 26th Annual ACM Symposium on the Theory of Computing, pp. 184–193

(1994)

14. Ben-Sasson, E., Goldreich, O., Sudan, M.: Bounds on 2-query codeword testing.

In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and

APPROX 2003. LNCS, vol. 2764, pp. 216–227. Springer, Heidelberg (2003)

102 O. Goldreich

15. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs

of proximity, shorter PCPs and applications to coding. In: Proc. 36th ACM Sym-

posium on the Theory of Computing, pp. 1–10 (June 2004); See ECCC Technical

Report TR04-021 (March 2004)

16. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs

verifiable in polylogarithmic time. In: 20th IEEE Conference on Computational

Complexity, pp. 120–134 (2005)

17. Ben-Sasson, E., Guruswami, V., Kaufman, T., Sudan, M., Viderman, M.: Locally

testable codes require redundant testers. In: 24th IEEE Conference on Computa-

tional Complexity, pp. 52–61 (2009)

18. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to

test. In: Proc. 35th ACM Symposium on the Theory of Computing, pp. 345–354

(June 2003)

19. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.

In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and

APPROX 2004. LNCS, vol. 3122, pp. 286–297. Springer, Heidelberg (2004); See

ECCC TR04-046 (2004)

20. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM

Journal on Computing 38(2), 551–607 (2008); Preliminary Version in 37th STOC

(2005)

21. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low

degree tests and short PCPs via epsilon-biased sets. In: Proc. 35th ACM Sympo-

sium on the Theory of Computing, pp. 612–621 (June 2003)

22. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to nu-

merical problems. Journal of Computer and System Science 47(3), 549–595 (1993);

Preliminary Version in 22nd STOC (1990)

23. Buhrman, H., de Wolf, R.: On relaxed locally decodable codes (July 2004) (unpub-

lished manuscript)

24. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.

In: Proc. 30th ACM Symposium on the Theory of Computing, pp. 209–218 (May

1998)

25. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.

Journal of the ACM 45(6), 965–982 (1998)

26. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3), Art.

12 (2007); Extended abstract in 38th STOC (2006)

27. Dinur, I., Harsha, P.: Composition of low-error 2-query PCPs using decodable

PCPs. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 280–288.

Springer, Heidelberg (2010)

28. Dinur, I., Reingold, O.: Assignment-testers: Towards a combinatorial proof of the

PCP-Theorem. SIAM Journal on Computing 36(4), 975–1024 (2006); Extended

abstract in 45th FOCS (2004)

29. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st

ACM Symposium on the Theory of Computing, pp. 39–44 (2009)

30. Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate PCPs. In: Proc. 31st ACM

Symposium on the Theory of Computing, pp. 41–50 (May 1999)

31. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and

the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996);

Preliminary version in 32nd FOCS (1991)

32. Forney, G.D.: Concatenated Codes. MIT Press, Cambridge (1966)

33. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive

protocols. Theoretical Computer Science 134(2), 545–557 (1994)

Short Locally Testable Codes and Proofs 103

34. Friedl, K., Sudan, M.: Some improvements to total degree tests. In: Proc. 3rd Israel

Symposium on Theoretical and Computing Systems, Tel Aviv, Israel, January 4-6,

pp. 190–198 (1995)

35. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-

testing/correcting for polynomials and for approximate functions. In: Proc. 23rd

ACM Symposium on the Theory of Computing, pp. 32–42 (1991)

36. Goldreich, O.: Short locally testable codes and proofs (survey). ECCC Technical

Report TR05-014 (January 2005)

37. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge

University Press, Cambridge (2008)

38. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM 45(4), 653–750 (1998); Prelimi-

nary Version in 37th FOCS (1996)

39. Goldreich, O., Ron, D.: On proximity oblivious testing. ECCC, TR08-041 (2008);

Also in the proceedings of the 41st STOC (2009)

40. Goldreich, O., Karloff, H., Schulman, L., Trevisan, L.: Lower bounds for linear

locally decodable codes and private information retrieval. In: Proc. 17th Conference

on Computational Complexity, Montréal, Québec, Canada, May 21-24, pp. 175–183

(2002)

41. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost linear length.

In: Proc. 43rd IEEE Symposium on Foundations of Computer Science, pp. 13–22

(November 2002); See ECCC Report TR02-050 (2002)

42. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Computational

Complexity 9(3-4), 157–201 (2000); Preliminary Version in 18th STACS (2001)

43. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,

105–142 (1999); Preliminary Versions in 28th STOC (1996), and 37th FOCS (1997)

44. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),

798–859 (2001); Preliminary Version in 29th STOC (1997)

45. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-

correcting codes. In: Proc. 32nd ACM Symposium on the Theory of Computing,

pp. 80–86 (2000)

46. Kaufman, T., Litsyn, S., Xie, N.: Breaking the ε-soundness bound of the linearity

test over GF(2). SIAM Journal on Computing 39(5), 1988–2003 (2009/2010)

47. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable

codes via a quantum argument. In: Proc. 35th ACM Symposium on the Theory of

Computing, pp. 106–115 (June 2003)

48. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended

abstract). In: Proc. 24th ACM Symposium on the Theory of Computing, pp. 723–

732 (May 1992)

49. Lapidot, D., Shamir, A.: Fully parallelized multi prover protocols for NEXP-time.

In: Proc. 32nd IEEE Symposium on Foundations of Computer Science, pp. 13–18

(October 1991) (extended abstract)

50. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive

proof systems. Journal of the ACM 39(4), 859–868 (1992)

51. Meir, O.: Combinatorial construction of locally testable codes. SIAM Journal on

Computing 39(2), 491–544 (2009); Extended abstrat in 40th STOC (2008)

52. Meir, O.: Combinatorial PCPs with efficient verifiers. In: 50th IEEE Symposium

on Foundations of Computer Science, pp. 463–471 (2009)

53. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),

1253–1298 (2000); Preliminary Version in 35th FOCS (1994)

104 O. Goldreich

54. Moshkovitz, D., Raz, R.: Two query PCP with sub-constant error. In: 49th IEEE

Symposium on Foundations of Computer Science, pp. 314–323 (2008)

55. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proc.

26th ACM Symposium on the Theory of Computing, pp. 194–203 (May 1994)

56. Raz, R.: A parallel repetition theorem. SIAM Journal of Computing 27(3), 763–803

(1998); Preliminary Version in 27th STOC (1995)

57. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-

tions to program testing. SIAM Journal on Computing 25(2), 252–271 (1996);

Preliminary Version in 3rd SODA (1992)

58. Spielman, D.: Computationally efficient error-correcting codes and holographic

proofs. PhD thesis, Massachusetts Institute of Technology (June 1995)

59. Sudan, M.: Efficient checking of polynomials and proofs and the hardness of ap-

proximation problems. Ph.D. Thesis, Computer Science Division, University of

California at Berkeley (1992); Also appears as Lecture Notes in Computer Science,

Vol. 1001, Springer (1996)

60. Szegedy, M.: Many-valued logics and holographic proofs. In: Wiedermann, J., Van

Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 676–686.

Springer, Heidelberg (1999)

61. Yekhanin, S.: Towards 3-Query locally decodable codes of subexponential length.

In: 39th ACM Symposium on the Theory of Computing, pp. 266–274 (2007)

Introduction to Testing Graph Properties

Oded Goldreich

Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot, Israel

oded@wisdom.weizmann.ac.il

Abstract. The aim of this article is to introduce the reader to the study

of testing graph properties, while focusing on the main models and issues

involved. No attempt is made to provide a comprehensive survey of this

study, and specific results are often mentioned merely as illustrations of

general themes.

Keywords: Graph Properties, randomized algorithms, approximation

problems.

1 The General Context

In general, property testing is concerned with super-fast (probabilistic) algo-
rithms for deciding whether a given object has a predetermined property or is
far from any object having this property. Such algorithms, called testers, obtain
local views of the object by making adequate queries; that is, the object is seen
as a function and the tester gets oracle access to this function, and thus may be
expected to work in time that is sub-linear in the size of the object.

Looking at the foregoing formulation, we first note that property testing is
concerned with promise problems (cf. [26,30]), rather than with standard deci-
sion problems. Specifically, objects that neither have the property nor are far
from having the property are discarded. The exact formulation of these promise
problems refers to a distance measure defined on the set of all relevant objects
(i.e., this distance measure coupled with a distance parameter determine the set
of objects that are far from the property). Thus, the choice of natural distance
measures is crucial to the study of property testing. Secondly, we note that the
requirement that the algorithms operate in sub-linear time (i.e., without read-
ing their entire input) calls for a specification of the type of queries that these
algorithms can make to their input. Thus, the choice of natural query types is
also crucial to the study of property testing. These two general considerations
will become concrete once we delve into the actual subject matter (i.e., testing
graph properties).

1.1 Why Graphs?

Let us start with an empirical observation, taken from Shimon Even’s book
Graph Algorithms [25] (published in 1979):

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 105–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 O. Goldreich

Graph theory has long become recognized as one of the more useful
mathematical subjects for the computer science student to master. The
approach which is natural in computer science is the algorithmic one; our
interest is not so much in existence proofs or enumeration techniques,
as it is in finding efficient algorithms for solving relevant problems, or
alternatively showing evidence that no such algorithms exist. Although
algorithmic graph theory was started by Euler, if not earlier, its devel-
opment in the last ten years has been dramatic and revolutionary.

Meditating on these facts, one may ask what is the source of this ubiquitous
use of graphs in computer science. The most common answer is that graphs
arise naturally as a model (or an abstraction) of numerous natural and artificial
objects. Another answer is that graphs help visualize binary relations over finite
sets. These two different answers correspond to two types of models of testing
graph properties that will be discussed below.

1.2 Why Testing?

Suppose we are given a huge graph representing some binary relation over a huge
data-set (see below), and we need to determine whether the graph (equivalently,
the relation) has some predetermined property. Since the graph is huge, we
cannot or do not want to even scan all of it (let alone process all of it). The
question is whether it is possible to make meaningful statements about the entire
graph based only on a “small portion” of it. Of course, such statements will at
best be approximations. But in many settings approximations are good enough.

As a motivation, let us consider a well-known example in which fast approxi-
mations are possible and useful. Suppose that some cost function is defined over
a huge set, and that one wants to obtain the average cost of an element in the set.
To be more specific, let μ : S → [0, 1] be a cost function, and suppose we want
to estimate μ

def= 1
|S|

∑
x∈S μ(x). Then, uniformly (and independently) selecting

m
def= O(ε−2 log(1/δ)) sample points, x1, ..., xm, in S we obtain with probability

at least 1 − δ an estimate of μ within ±ε. That is,

Prx1,...,xm∈S

[∣∣∣∣∣ 1
m

m∑
i=1

μ(xi) − μ

∣∣∣∣∣ > ε

]
< δ . (1)

Turning back to graphs, we note that they capture more complex features of
data sets; that is, graphs capture relations among pairs of elements (rather then
functions of single elements). Specifically, a symmetric binary relation R ⊆ S×S

is represented by a graph G = (S, R), where the elements of S are viewed as
vertices and the elements in R are viewed as edges.

The study of testing graph properties reveals that sampling a huge data set
may be useful not only towards approximating various statistics regarding a
function defined over the set, but also towards approximating various properties
regarding a binary relation defined on this set. As we shall see, in many cases, the
sampling method used (or at least its analysis) is significantly more sophisticated

Introduction to Testing Graph Properties 107

than the one employed in gathering statistics of the former type. But before doing
so, we wish to further discuss the potential benefit in the notion of approximation
underlining the definition of property testing.

Firstly, being close to a graph that has the property is a notion of approxima-
tion that, in certain applications, may be of direct value. Furthermore, in some
cases, being close to a graph having the property translates to a standard notion
of approximation (see Section 2.2). In other cases, it translates to a notion of
“dual approximation” (see, again, Section 2.2).

Secondly, in some cases, we may be forced to take action without having the
time to run a decision procedure, while given the option of modifying the graph in
the future, at a cost proportional to the number of added/omitted edges. For ex-
ample, suppose we are given a graph that represents some suggested design, where
bipartite graphs correspond to good designs and changes in the design correspond
to edge additions/omissions. Using a Bipartiteness tester, we may (with high
probability) accept any good design, while rejecting designs that will cost a lot to
modify. That is, we may still accept designs that are not good, but only such that
are close to being good and thus will not cost too much to modify later.

Thirdly, we may use the property tester as a preliminary stage before running
a slower exact decision procedure. In case the graph is far from having the
property, with high probability, we obtain an indication towards this fact, and
save the time we might have used running the decision procedure. Furthermore, if
the tester has one-sided error (i.e., it always accepts a graph having the property)
and the tester has rejected, then we have obtained an absolutely correct answer
without running the slower decision procedure at all. The saving provided by
using a property tester as a preliminary stage may be very substantial in many
natural settings where typical graphs either have the property or are very far
from having the property. Furthermore, if it is guaranteed that graphs either
have the property or are very far from having it then we may not even need to
run the (exact) decision procedure at all.

1.3 Three Models of Testing Graph Properties

A graph property is a set of graphs closed under graph isomorphism (renaming
of vertices).1 Let Π be such a property. A Π-tester is a randomized algorithm
that is given oracle access to a graph, G = (V, E), and has to determine whether
the graph is in Π or is far from being in Π . The type of oracle (equiv., the type
of queries allowed) and distance-measure depend on the model, and we focus on
three such models:

1. The adjacency predicate model [32]: Here the Π-tester is given oracle access
to a symmetric function g : V × V → {0, 1} that represents the adjacency
predicate of the graph G; that is g(u, v) = 1 if and only if (u, v) ∈ E. In

1 That is, Π is a graph property if, for every graph G = (V, E) and every per-

mutation π over V , it holds that G ∈ Π if and only if π(G) ∈ Π , where

π(G)
def
= (V, {{π(u), π(v)} : {u, v}∈E}).

108 O. Goldreich

this model distances between graphs are measured according to their repre-
sentation; that is, if the graphs G and G′ are represented by the functions
g and g′, then their relative distance is the fraction of pairs (u, v) such that
g(u, v) �= g′(u, v).

Note that saying that G = ([N], E) is ε-far from the graph property
Π means that for every G′ ∈ Π it holds that G is ε-far from G′. Since
Π is closed under graph isomorphism, this means that G is ε-far from any
isomorphic copy of G′ = ([N], E′); that is, for every permutation π over [N],
it holds that |{(u, v) : g(u, v) �= g′(π(u), π(v))}| > εN2, where g and g′ are
as above.

Finally, note that this notion of distance between graphs is most mean-
ingful in the case that the graph is dense (since in this case fractions of the
number of possible vertex pairs are closely related to fractions of the actual
number of edges). Thus, this model is often called the dense graph model.

2. The incidence function model [34]: Here, for some fixed upper bound d (on the
degrees of vertices in G), the Π-tester is given oracle access to a function
g : V × [d] → V ∪ {⊥} that represents the graph G = (V, E) such that
g(u, i) = v if v is the ith vertex incident at u and g(u, i) = ⊥ if u has
less than i neighbors. That is, E = {(u, v) : ∃i f(u, i) = v}, where we
always assume that g(u, i) = v if and only if there exists a j ∈ [d] such that
g(v, j) = u.

Indeed, only graphs of degree at most d can be represented in this model,
which is called the bounded-degree graph model.

In this model too, distances between graphs are measured according
to their representation, but here the representation is different and so the
distances are different. Specifically, if the graphs G and G′ are represented
by the functions g and g′, then their relative distance is the fraction of pairs
(u, i) such that g(u, i) �= g′(u, i). Again, saying that G = ([N], E) is ε-far
from the graph property Π means that for every G′ ∈ Π it holds that G is
ε-far from G′. Since Π is closed under graph isomorphism (and the ordering
of the vertices incident at each vertex is arbitrary), this means that for every
permutation π over [N], it holds that∑

u∈V

|{v : ∃i g(u, i) = v}�{v : ∃i g′(π(u), i) = π(v)}| > εdN ,

where g and g′ are as above, and � denotes the symmetric difference (i.e.,
A�B = (A ∪ B) \ (A ∩ B)).

3. The general graph model [52,46]: In contrast to the foregoing two models in
which the oracle queries and the distances between graphs are linked to the
representation of graphs as functions, in the following model the representa-
tion is blurred and the query types and distance measure are decoupled.

The relative distance between the graphs G = ([N], E) and G′ = ([N], E)
is usually defined as |E�E′|

max(|E|,|E′|) ; that is, the absolute distance is normalized
by the actual number of edges rather than by an absolute upper bound (on
the number of edges) such as N2/2 or dN/2.

Introduction to Testing Graph Properties 109

The types of queries typically considered are the two types of queries consid-
ered in the previous two models. That is, the algorithm may ask whether two
vertices are adjacent in the graph and may also ask for a specific neighbor
of a specific vertex.

Needless to say, the general graph model is the most general one, and it is indeed
closest to actual algorithmic applications.2 The fact that this model has so far
received relatively little attention merely reflects the fact that its study is overly
complex. Given that current studies of the other models still face formidable
difficulties (and that these models offer a host of interesting open problems), it
is natural that researchers shy away from yet another level of complication.

The current focus on query complexity. Although property testing is motivated
by referring to super-fast algorithms, research in the area tends to focus on the
query complexity of testing various properties. This focus should be viewed as
providing an initial estimate to the actual complexity of the testing problems
involved; certainly, query complexity lower bounds imply corresponding bounds
on the time complexity, whereas the latter is typically at most exponential in the
query complexity. Furthermore, in many cases, the time complexity is polynomial
in the query complexity and this fact is typically stated. Thus, we will follow the
practice of focusing on the query complexity of testing, but also mention time
complexity upper bounds whenever they are of interest.

1.4 Organization

The following three sections are devoted to the three models discussed above: We
start with the dense graph model (Section 2), then move to the bounded-degree
model (Section 3), and finally get to the general graph model (Section 4). In
each model we review the definition of testing (when specialized to that model),
provide a taste of the known results, and demonstrate some of the ideas involved
(by focusing on testing Bipartiteness, which seems a good benchmark).

We conclude this article with a discussion of a few issues that are relevant
to all models; these include the treatment of directed graphs (Section 5.1), the
related notions of tolerant testing and distance approximation (Section 5.2), and
the notion of proximity oblivious testing (Section 5.3).

The appendix presents three observations that occurred to us in the process
of writing this article. These refer to testing (degree) regularity in the dense
graph model (Appendix A.1), non-adaptive testers in the bounded-degree graph
model (Appendix A.2), and testing strong connectivity of directed graphs by
only using forward queries (Appendix A.3).

2 In other words, this model is relevant for most applications, since these seem to

refer to general graphs (which model various natural and artificial objects). In con-

trast, the dense graph model is relevant to applications that refer to (dense) binary

relations over finite graphs.

110 O. Goldreich

2 The Dense Graph Model

In the adjacency matrix model (a.k.a the dense graph model), an N -vertex graph
G = ([N], E) is represented by the Boolean function g : [N]× [N] → {0, 1} such
that g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).
Distance between graphs is measured in terms of their aforementioned repre-
sentation (i.e., as the fraction of (the number of) different matrix entries (over
N2)), but occasionally one uses the more intuitive notion of the fraction of
(the number of) unordered vertex pairs over

(
N
2

)
.3 Recall that we are inter-

ested in graph properties, which are sets of graphs that are closed under iso-
morphism; that is, Π is a graph property if for every graph G = ([N], E) and
every permutation π of [N] it holds that G ∈ Π if and only if π(G) ∈ Π , where
π(G) def= ([N], {{π(u), π(v)} : {u, v} ∈ E}). We now spell out the meaning of
property testing in this model.

Definition 2.1 (testing graph properties in the adjacency matrix model): A
tester for a graph property Π is a probabilistic oracle machine that, on input
parameters N and ε and access to (the adjacency predicate of) an N -vertex
graph G = ([N], E), outputs a binary verdict that satisfies the following two
conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than ε · (N

2

)
.

If the tester accepts every graph in Π with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and ε); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph, as a function of the parameters N and ε. We say that a tester is
efficient if it runs in time that is polynomial in its query complexity, where basic
operations on elements of [N] (and in particular, uniformly selecting an element
in [N]) are counted at unit cost.

We stress that testers are defined as (uniform)4 algorithms that are given the
size parameter N and the distance (or proximity) parameter ε as explicit inputs.
This uniformity (over the values of the distance parameter) makes the positive

3 Indeed, there is a tiny discrepancy between these two measures, but it is immaterial

in all discussions.
4 That is, we refer to the standard (uniform) model of computation (cf., e.g., [31,

Sec. 1.2.3]), which does not allow for hard-wiring some parameters (e.g., input length)

into the computing device (as done in the case of non-uniform circuit families).

Introduction to Testing Graph Properties 111

results stronger and more appealing (especially in light of a separation result
shown in [10]). In contrast, negative results typically refer to a fixed value of the
distance parameter.

The study of property testing in the dense graph model was initiated by
Goldreich, Goldwasser, and Ron [32], as a concrete and yet general framework
for the study of property testing at large. From that perspective, it was most
natural to represent graphs as Boolean functions, and the adjacency matrix
representation was the obvious choice. This dictated the choice of the type of
queries as well as the distance measure. In retrospect, the dense graph model
seems most natural when graphs are viewed as representing generic (symmetric)
binary relations (cf. the second motivation to the study of graphs mentioned in
Section 1.1 as well as the discussion of sampling in Section 1.2).

2.1 A Taste of the Known Results

We first mention that graph properties of arbitrary query complexity are known:
Specifically, in this model, graph properties (even those in P) may have query
complexity ranging from O(1/ε) to Ω(N2), and the same holds also for monotone
graph properties in NP (cf. [33]).5 In this overview, we focus on properties
that can be tested within query complexity that only depends on the proximity
parameter (i.e., ε); that is, the query complexity does not depend on the size of
the graph being tested. Interestingly, there is much to say about this class of
properties. Let us start with a brief summary, and provide more details later.

1. A celebrated result of Alon, Fischer, Newman, and Shapira [3] provides a
combinatorial characterization of the class of properties that can be tested
within query complexity that only depends on the proximity parameter. This
class contains natural properties that are not testable in query complexity
poly(1/ε); see [1].

2. The prior work of Goldreich, Goldwasser, and Ron [32] provides a natural
class of properties that can be tested within query complexity poly(1/ε).
This class consists of so-called “partition problems” and includes sets such
as k-colorability, for any fixed k ≥ 2, and graphs containing a clique for
density ρ, for any fixed ρ > 0.

3. A relatively recent work of Goldreich and Ron [38] initiates a study of the
class of properties that can be tested within query complexity Õ(1/ε).

Before providing more details on the foregoing results, we mention that, when
disregarding a possible quadratic blow-up in the query complexity, we may as-
sume that the tester in canonical in the following sense.

5 We mention that a full query complexity hierarchy is established in [33] by using

unnatural graph properties, starting from the Ω(N2) lower bound of [32], which also

uses an unnatural graph property. In contrast, the Ω(N) lower bound established

in [27] (following [2]) refers to the natural property of testing whether an N-vertex

graph consists of two isomorphic copies of some N/2-vertex graph.

112 O. Goldreich

Theorem 2.2 (canonical testers [40, Thm 2]):6 Let Π be any graph property.
If there exists a tester with query complexity q(N, ε) for Π, then there exists a
tester for Π that uniformly selects a set of O(q(N, ε)) vertices and accepts iff the
induced subgraph has property Π ′, where Π ′ is a graph property that may depend
on N as well as on Π. Furthermore, if the original tester has one-sided error,
then so does the new tester, and a sample of 2q(N, ε) vertices suffices.

Indeed, the resulting tester is called canonical. We warn that Π ′ need not equal
Π (let alone that Π ′ may depend on N), and that the time complexity of the
canonical tester may be significantly larger than the time complexity of the
original tester. Still, in many natural cases (e.g., k-colorability), Π ′ = Π .

2.1.1 Testability in q(ε) Queries, for Any Function q
As stated above, a celebrated result of Alon et al. [3] provides a combinato-
rial characterization of the class of properties that can be tested within query
complexity that only depends on the proximity parameter. This characterization
refers to the notion of a regularity instance, where regularity is in the sense of
Szemeŕedi’s Regularity Lemma [57]. The result essentially asserts that a graph
property can be tested in query complexity that only depends on ε if and only
if it can be characterized in terms of a constant number of regularity instances.
The lesson from this characterization is that, when ignoring the specific depen-
dency on ε, testing graph properties in query complexity that only depends on ε

reduces to graph regularity. This lesson makes more concrete the feeling already
raised by Theorem 2.2 that testing in this model reduces to combinatorics.

The downside of the algorithms that emerge from this characterization is that
their query complexity is related to the proximity parameter via a function that
grows tremendously fast. Specifically, in the general case, the query complexity
is only upper bounded by a tower of a tower of exponents (in a monotonically
growing function of 1/ε, which in turn depends on the property at hand).

Interestingly, it is known that a super-polynomial dependence on the proxim-
ity parameter is inherent to the foregoing result. Actually, as shown by Alon [1],
such a dependence is essential even for testing triangle freeness. Indeed, this fact
provides a nice demonstration of the non-triviality of testing graph properties.
One might have guessed that O(1/ε) or O(1/ε3) queries would have sufficed to
detect a triangle in any graph that is ε-far from being triangle free, but Alon’s
result asserts that this guess is wrong and that poly(1/ε) queries do not suffice.
We mention that the best upper bound known for the query complexity of test-
ing triangle freeness is tf(poly(1/ε)), where tf is the tower function defined
inductively by tf(n) = exp(tf(n − 1)) with tf(1) = 2 (cf. [1]).

6 As pointed out in [10], the statement of [40, Thm 2] should be corrected such that the

auxiliary property Π ′ may depend on N and not only on Π . Thus, on input N and

ε (and oracle access to an N-vertex graph G), the canonical tester checks whether

a random induced subgraph of size s = O(q(N, ε)) has the property Π ′, where Π ′

itself (or rather its intersection with the set of s-vertex graphs) may depend on N .

In other words, the tester’s decision depends only on the induced subgraph that it

sees and on the size parameter N .

Introduction to Testing Graph Properties 113

Perspective. It is indeed an amazing fact that many properties can be tested
within (query) complexity that only depends on the proximity parameter (rather
than also on the size of the object being tested). This amazing statement seems
to shadow the question of the form of the aforementioned dependence, and blurs
the difference between a reasonable dependence (e.g., a polynomial relation) and
a prohibiting one (e.g., a tower-function relation). We beg to disagree with this
sentiment and claim that, as in the context of standard approximation problems
(cf. [44]), the dependence of the complexity on the approximation (or proximity)
parameter is a key issue.

We wish to stress that we do value the impressive results of [2,7,8,29] (let
alone [3]), which refer to graph property testers having query complexity that
is independent of the graph size but depends prohibitively on the proximity pa-
rameter. We view such results as an impressive first step, which called for further
investigation directed at determining the actual dependency of the complexity
on the proximity parameter.

While it is conceivable that there exist (natural) graph properties that can be
tested in exp(1/ε) queries but not in poly(1/ε) queries, we are not aware of such
a property.7 We thus move directly from complexities of the form tf(1/ε) (and
larger) to complexities of the form poly(1/ε).

2.1.2 Testability in poly(1/ε) Queries
Testers of query complexity poly(1/ε) are known for several natural graph prop-
erties [32].

– k-Colorability, for any fixed k ≥ 2. The query-complexity is poly(k/ε).
For k = 2 the running-time is Õ(1/ε3), whereas for k > 2 the running-
time is exp(poly(1/ε)) (and running-time polynomial in 1/ε is unlikely, since
k-Colorability is NP-complete, for k ≥ 3).

The k-Colorability tester has one-sided error; that is, in case the
graph is k-colorable, the tester always accepts. Furthermore, when rejecting
a graph, this tester always supplies a small counterexample (i.e., a poly(1/ε)-
size subgraph that is not k-colorable).

The 2-Colorability (equivalently, Bipartiteness) Tester is presented
in §2.3. An improved analysis has been obtained by Alon and Krivelevich [4].

– ρ-Clique, for any fixed ρ > 0, where ρ-Clique is the set of graphs that have
a clique of density ρ (i.e., N -vertex graphs having a clique of size ρN).

– ρ-CUT, for any fixed ρ > 0, where ρ-CUT is the set of graphs that have a cut
of density at least ρ (compared to N2).

A generalization to k-way cuts has query-complexity poly((log k)/ε).
– ρ-Bisection, for any fixed ρ > 0, where ρ-Bisection is the set of graphs

that have a bisection of density at most ρ (i.e., an N -vertex graph is in ρ-
Bisection if its vertex set can be partitioned into two equal parts with at
most ρN2 edges going between them).

7 Needless to say, demonstrating the existence of such (natural) properties is an inter-

esting open problem.

114 O. Goldreich

Except for k-Colorability, all the other testers have two-sided error, and this is
unavoidable for any tester of o(N) query complexity for any of these properties.

All the above property testing problems are special cases of the General Graph
Partition Testing Problem, which is parameterized by a set of lower and upper
bounds. In this problem one needs to determine whether there exists a k-partition
of the vertices so that the number of vertices in each part as well as the number
of edges between each pair of parts falls between the corresponding lower and
upper bounds (in the set of parameters). For example, ρ-clique is expressible as
a 2-partition in which one part has ρN vertices, and the number of edges in this
part is

(
ρN
2

)
. A tester for the general problem also appears in [32]: The tester uses

Õ(k2/ε)2k+O(1) queries, and runs in time exponential in its query-complexity.

From testing to searching. Interestingly, the testers for (all cases of) the General
Graph Partition Problem can be modified into algorithms that find an (implicit
representation of an) approximately adequate partition whenever it exists. That
is, if the graph has the desired (partitioning) property, then the testing algo-
rithm may actually output auxiliary information that allows to reconstruct, in
poly(1/ε) · N -time, a partition that approximately obeys the property. For ex-
ample, for ρ-CUT, we can construct a partition with at least (ρ− ε) ·N2 crossing
edges. We comment that this notion of an implicit representation of an adequate
structure may be relevant for other sets in NP , where this structure corresponds
to an NP-witness. (Indeed, an interesting algorithmic application was presented
in [28], where an implicit partition of an imaginary hypergraph is used in order
to efficiently construct a regular partition (with almost optimal parameters) of
a given graph.)

Back to testing graph properties. Although many natural graph properties can
be formulated as partition problems, many other properties that can be tested
with poly(1/ε) queries cannot be formulated as such problems. The list include
the set of regular graphs, connected graphs, planar graphs, and more. We identify
three classes of such natural properties:

1. Properties that only depends on the vertex degree distribution (e.g., degree
regularity and average degree). For example, for any fixed ρ > 0, the set of N -
vertex graphs having ρN2 edges can be tested using O(1/ε2) queries, which
is the best result possible.8 The same holds with respect to testing degree
regularity, where the Ω(1/ε2) queries lower bound follows by reduction to
estimating the average value of Boolean functions and a corresponding upper
bound can be obtained by building on the Õ(1/ε3)-query algorithm presented
in the proof of [32, Prop. 10.2.1.3].9

2. Properties that are satisfied only by sparse graphs (i.e., N -vertex graphs
having O(N) edges)10 such as Cycle-freeness and Planarity. These

8 Both upper and lower bounds can be proved by reduction to the problem of esti-

mating the average value of Boolean functions (cf. [22]).
9 For the lower bound, consider the problem of distinguishing between a random N-

vertex graph in which each vertex has degree either (0.5 + ε)N or (0.5 − ε)N and a

random (N/2)-regular N-vertex graph. For the upper bound, see Appendix A.1.

Introduction to Testing Graph Properties 115

properties can be tested by rejecting any graph that is not sufficiently sparse
(see [32, Prop. 10.2.1.2]).

3. Properties that are almost trivial in the sense that, for some constant c > 0
and every ε > N−c, all N -vertex graphs are ε-close to the property. For
example, every N -vertex graph is N−1-close to being connected (or being
Hamiltonian or Eulerian). These properties can be tested by accepting any
N -vertex graph if ε > N−c (without making any query), and inspecting
the entire graph otherwise (where, in this case

(
N
2

)
= poly(1/ε)). (See [32,

Prop. 10.2.1.1].)

In view of all of the foregoing, we believe that characterizing the class of graph
properties that can be tested in poly(1/ε) queries may be very challenging. We
mention that the special case of induced subgraph freeness properties was re-
solved in [9].

2.1.3 Testability in Õ(1/ε) Queries
While Theorem 2.2 may be interpreted as suggesting that testing in the dense
graph model leaves no room for algorithmic design, this conclusion is valid only
if one ignores a possible quadratic blow-up in the query complexity (and also
disregards the time complexity). As advocated by Goldreich and Ron [38], a finer
examination of the model, which takes into account the exact query complexity
(i.e., cares about a quadratic blow-up), reveals the role of algorithmic design.
In particular, the results in [38] distinguish adaptive testers from non-adaptive
ones, and distinguish the latter from canonical testers. These results refer to
testability in Õ(1/ε) queries. In particular, it is shown that:

– Testing every “non-trivial for testing” graph property requires Ω(1/ε) queries,
even when adaptive testers are allowed. Furthermore, any canonical tester for
such a property requires Ω(1/ε2) queries.

– There exists a natural graph property that can be tested by Õ(1/ε) adaptive
queries, requires Ω(ε−4/3) non-adaptive queries, and is actually testable by
O(ε−4/3) non-adaptive queries.

– There exists a natural graph property that can be tested by Õ(1/ε) adaptive
queries but requires Ω(ε−3/2) non-adaptive queries.

– There exist an infinite class of natural graph properties that can be tested
by Õ(1/ε) non-adaptive queries.

All the above testers have one-sided error probability and are efficient, whereas
the lower bounds hold also for two-sided error testers (regardless of efficiency).

The foregoing results seem to indicate that even at this low complexity level
(i.e., testing in Õ(1/ε) adaptive queries) there is a lot of structure and much to
be understood. In particular, it is conjectured in [38] that, for every t ≥ 4, there
exists graph properties that can be tested by Õ(1/ε) adaptive queries and have
non-adaptive query complexity Θ(ε−2+ 2

t).
10 Actually, this class can be extended by considering a more relaxed notion of sparse-

ness that includes N-vertex graphs having O(N2−Ω(1)) edges.

116 O. Goldreich

2.1.4 Reflections
Let us reflect about some issues that arise from the foregoing exposition.

Adaptive testers versus non-adaptive ones. Recall that Theorem 2.2 asserts that
canonical testers (which are in particular non-adaptive) have query complexity
that is at most quadratic in the query complexity of general (possibly adaptive)
testers. Still the results surveyed in §2.1.3 indicate that such a gap may exist.
An interesting question, raised by Michael Krivelevich, is whether such a gap
exists also for properties having query complexity that is significantly larger than
Õ(1/ε). In particular, we mention that testing Bipartiteness, which has non-
adaptive query complexity Θ̃(ε−2) (cf. [4,21])11 and requires Ω(ε−3/2) adaptive
queries [21], may be testable in o(ε−2) adaptive queries (cf. [41]).

One-sided versus two-sided error probability. As noted above, for many natural
properties there is a significant gap between the complexity of one-sided and
two-sided error testers. For example, ρ-CUT has a two-sided error tester of query
complexity poly(1/ε), but no one-sided error tester of query complexity o(N2).
In general, the interested reader may contrast the characterization of two-sided
error testers in [3] with the results in [8].

A contrast to recognizing graph properties. The notion of testing a graph property
Π is a relaxation of the classical notion of recognizing the graph property Π , which
has received much attention since the early 1970’s (cf. [47]). In the classical
(recognition) problem there are no margins of error; that is, one is required to
accept all graphs having property Π and reject all graphs that lack property
Π . In 1975, Rivest and Vuillemin resolved the Aanderaa–Rosenberg Conjecture,
showing that any deterministic procedure for deciding any non-trivial monotone
N -vertex graph property must examine Ω(N2) entries in the adjacency matrix
representing the graph. The query complexity of randomized decision procedures
was conjectured by Yao to be Ω(N2), and the currently best lower bound is
Ω(N4/3). This stands in striking contrast to the aforementioned results regarding
testing graph properties that establish that many natural (non-trivial) monotone
graph properties can be tested by examining a constant number of locations in
the matrix (where this constant depends on the constant value of the proximity
parameter).

Graph properties are poor codes. We note that with the exception of two prop-
erties, which each contains a single N -vertex graph, the adjacency matrix rep-
resentation of any property ΠN of N -vertex graphs yields a code over {0, 1}(N

2)

with relative distance at most O(1/N). Specifically, if ΠN neither consists of
the N -vertex clique nor of the N -vertex independent set, then ΠN contains a
graph G = ([N], E) that contains two vertices u, v ∈ [N] that have different
neighborhoods in G. Consider a permutation π that transposes u and v, while
leaving the rest of [N] intact, and let G′ = ([N], {π(a), π(b) : (a, b)∈E}). Then
G′ ∈ ΠN , but G′ is 2N

(N
2)

-close to G.

11 The Õ(ε−2) upper bound is due to [4], improving over [32], whereas the Ω(ε−2) lower

bound is due to [21].

Introduction to Testing Graph Properties 117

2.2 Testing versus Other Forms of Approximation

We shortly discuss the relation of the notion of approximation underlying the
definition of testing graph properties (in the dense graph model)12 to more tradi-
tional notions of approximation. Throughout this section, we refer to randomized
algorithms that have a small error probability, which we ignore for simplicity.

Application to the standard notion of approximation: The relation of testing
graph properties to standard notions of approximation is best illustrated in the
case of Max-CUT. Any tester for the set ρ-CUT, working in time T (ε, N), yields an
algorithm for approximating the size of the maximum cut in an N -vertex graph,
up to additive error εN2, in time 1

ε ·T (ε, N). Thus, for any constant ε > 0, using
the above tester of [32], we can approximate the size of the max-cut to within εN2

in constant time. This yields a constant time approximation scheme (i.e., to within
any constant relative error) for dense graphs, which improves over previous work
of Arora et al. [12] and de la Vega [24] who solved this problem in polynomial-
time (i.e., in O(N1/ε2)–time and exp(Õ(1/ε2)) · N2–time, respectively). In the
latter works the problem is solved by actually finding approximate max-cuts.
Finding an approximate max-cut does not seem to follow from the mere existence
of a tester for ρ-cut; yet, as mentioned above, the tester in [32] can be used to
find such a cut in time linear in N .

Relation to “dual approximation” (cf. [44, Chap. 3]): To illustrate this relation,
we consider the aforementioned ρ-Clique Tester. The traditional notion of ap-
proximating Max-Clique corresponds to distinguishing the case in which the max-
clique has size at least ρN from, say, the case in which the max-clique has size at
most ρN/2. On the other hand, when we talk of testing ρ-Clique, the task is to
distinguish the case in which an N -vertex graph has a clique of size ρN from the
case in which it is ε-far from the class of N -vertex graphs having a clique of size
ρN . This is equivalent to the “dual approximation” task of distinguishing the case
in which an N -vertex graph has a clique of size ρN from the case in which any ρN

subset of the vertices misses at least εN2 edges. To demonstrate that these two
tasks are vastly different we mention that whereas the former task is NP-Hard,
for ρ < 1/4 (see [15,42]), the latter task can be solved in exp(O(1/ε2))-time, for
any ρ, ε > 0. We believe that there is no absolute sense in which one of these ap-
proximation tasks is more important than the other: Each of these tasks may be
relevant in some applications and irrelevant in others.

2.3 A Benchmark: Testing Bipartiteness

The Bipartite tester is extremely simple: It selects a tiny, random set of vertices
and checks whether the induced subgraph is bipartite.

Algorithm 2.3 (Bipartite Tester in the Dense Graph Model [32]): On input N ,
ε and oracle access to an adjacency predicate of an N -vertex graph, G = (V, E):

12 Analogous relations hold also in the other models of testing graph properties.

118 O. Goldreich

1. Uniformly select a subset of Õ(1/ε2) vertices of V.
2. Accept if and only if the subgraph induced by this subset is bipartite.

Step (2) amounts to querying the predicate on all pairs of vertices in the subset
selected at Step (1), and testing whether the induced graph is bipartite (e.g., by
running BFS). As will become clear from the analysis, it actually suffice to query
only Õ(1/ε3) of these pairs. We comment that a more complex analysis due to
Alon and Krivelevich [4] implies that the Algorithm 2.3 is a Bipartite Tester
even if one selects only Õ(1/ε) vertices (rather than Õ(1/ε2)) in Step (1)).

Theorem 2.4 [32]: Algorithm 2.3 is a Bipartite Tester (in the dense graph
model). Furthermore, the algorithm always accepts a bipartite graph, and in case
of rejection it provides a witness of length poly(1/ε) (that the graph is not bi-
partite).

Proof: Let R be the subset selected in Step (1), and GR the subgraph of G
induced by R. Clearly, if G is bipartite then so is GR, for any R. The point is to
prove that if G is ε-far from bipartite then the probability that GR is bipartite
is at most 1/3. Thus, from this point on we assume that at least εN2 edges have
to be omitted from G to make it bipartite.

We view R as a union of two disjoint sets U and S, where t
def= |U| = O(ε−1 ·

log(1/ε)) and m
def= |S| = O(t/ε). We will consider all possible partitions of U,

and associate a partial partition of V with each such partition of U. The idea is
that in order to be consistent with a given partition, (U1, U2), of U, all neighbors
of U1 (respectively, U2) must be placed opposite to U1 (respectively, U2). We
will show that, with high probability, most high-degree vertices in V do neighbor
U and so are forced by its partition. Since there are relatively few edges incident
to vertices that do not neighbor U, it follows that, with very high probability,
each such partition of U is detected as illegal by GR. Details follow, but before
we proceed let us stress the key observation: It suffices to rule out relatively few
(partial) partitions of V (i.e., these induced by partitions of U), rather than all
possible partitions of V.

We use the notations Γ (v) def= {u : (u, v)∈E} and Γ (X) def= ∪v∈XΓ (v). Given
a partition (U1, U2) of U, we define a (possibly partial) partition, (V1, V2), of V
so that V1

def= Γ (U2) and V2
def= Γ (U1) (assume, for simplicity that V1 ∩ V2 is

indeed empty). As suggested above, if one claims that G can be “bi-partitioned”
with U1 and U2 on different sides, then V1 = Γ (U2) must be on the opposite
side to U2 (and Γ (U1) opposite to U1). Note that the partition of U places no
restriction on vertices that have no neighbor in U. Thus, we first ensure that
almost all “influential” (i.e., “high-degree”) vertices in V have a neighbor in U.

Technical Definition 2.4.1 (high-degree vertices and good sets): We say that
a vertex v ∈ V is of high-degree if it has degree at least ε

3N . We call U good if
all but at most ε

3N of the high-degree vertices in V have a neighbor in U.

We comment that not insisting that a good set U neighbors all high-degree ver-
tices allows us to show that, with high probability, a random U of size unrelated to

Introduction to Testing Graph Properties 119

the size of the graph is good. (In contrast, if we were to insist that a good U neigh-
bors all high-degree vertices, then we would have had to use |U| = Ω(log N).)

Claim 2.4.2. With probability at least 5/6, a uniformly chosen set U of size t

is good.

Proof: For any high-degree vertex v, the probability that v does not have
any neighbor in a uniformly chosen U is at most (1 − ε/3)t < ε

18 (since t =
Ω(ε−1 log(1/ε))). Hence, the expected number of high-degree vertices that do
not have a neighbor in a random set U is less than ε

18 ·N , and the claim follows
by Markov’s Inequality. ��

Technical Definition 2.4.3 (disturbing a partition of U): We say that an edge
disturbs a partition (U1, U2) of U if both its end-points are in the same Γ (Ui),
for some i ∈ {1, 2}.

Claim 2.4.4. For any good set U and any partition of U, at least ε
3N2 edges

disturb the partition.

Proof: Each partition of V has at least εN2 violating edges (i.e., edges with both
end-points on the same side). We upper bound the number of these edges that
are not disturbing. Actually, we upper bound the number of edges that have an
end-point not in Γ (U).

– The number of edges incident to high-degree vertices that do not neighbor
U is bounded by ε

3N · N (since there are at most ε
3N such vertices).

– The number of edges incident to vertices that are not of high-degree is
bounded by N · ε

3N (since each such vertex has at most ε
3N incident edges).

This leaves us with at least ε
3N2 violating edges connecting vertices in Γ (U)

(i.e., edges disturbing the partition of U). ��
The theorem follows by observing that GR is bipartite only if either (1) the set
U is not good; or (2) the set U is good and there exists a partition of U so that
none of the disturbing edges occurs in GR. Using Claim 2.4.2 the probability of
event (1) is bounded by 1/6, whereas by Claim 2.4.4 the probability of event (2)
is bounded by the probability that there exists a partition of U so that none of
the corresponding ≥ ε

3N2 disturbing edges has both end-points in the second
sample S. Actually, we pair the m vertices of S, and consider the probability that
none of these pairs is a disturbing edge for a partition of U. Thus the probability
of event (2) is bounded by

2|U| ·
(
1 − ε

3

)m/2

<
1
6

where the inequality holds since m = Ω(t/ε). The theorem follows.

120 O. Goldreich

Comment: The procedure employed in the proof yields a randomized poly(1/ε) ·
N -time algorithm for 2-partitioning a bipartite graph such that (with high prob-
ability) at most εN2 edges lie within the same side. This is done by running the
tester, determining a partition of U (defined as in the proof) that is consistent
with the bipartite partition of R, and partitioning V as done in the proof (with
vertices that do not neighbor U, or neighbor both U1, U2, placed arbitrarily).
Thus, the placement of each vertex is determined by inspecting at most Õ(1/ε)
entries of the adjacency matrix. Furthermore, the aforementioned partition of U
constitutes a succinct representation of the 2-partition of the entire graph. All
this is a typical consequence of the fact that the analysis of the tester follows
the “enforce-and-test” paradigm (see [55, Sec. 4]).

3 The Bounded-Degree Graph Model

The bounded-degree model refers to a fixed degree bound, denoted d ≥ 2. An N -
vertex graph G = ([N], E) (of maximum degree d) is represented in this model
by a function g : [N]×[d] → {0, 1, ..., N} such that g(v, i) = u ∈ [N] if u is the ith

neighbor of v and g(v, i) = 0 if v has less than i neighbors.13 Distance between
graphs is measured in terms of their aforementioned representation (i.e., as the
fraction of (the number of) different array entries (over dN)), but occasionally
we shall use the more intuitive notion of the fraction of (the number of) edges
over dN/2. We now spell out the meaning of property testing in this model.

Definition 3.1 (testing graph properties in the bounded-degree model): For a
fixed d, a tester for a graph property Π is a probabilistic oracle machine that, on
input parameters N and ε and access to (the incidence function of) an N -vertex
graph G = ([N], E) of maximum degree d, outputs a binary verdict that satisfies
the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π of
maximum degree d it holds that the symmetric difference between E and E′

has cardinality that is greater than ε · dN/2.

One-sided testers and non-adaptive testers are defined as in Definition 2.1.

The query complexity of a tester is defined as in Section 2; ditto for its efficiency.
The study of property testing in the bounded-degree graph model was ini-

tiated by Goldreich and Ron [34], with the aim of allowing the consideration
of sparse graphs, which appear in numerous applications (cf. the first motiva-
tion to the study of graphs mentioned in Section 1.1). The point was that the
13 For simplicity, we assume here that the neighbors of v appear in an arbitrary order

in the sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) �= 0}|. Also, we

shall always assume that if g(v, i) = u ∈ [N] then there exists j ∈ [d] such that

g(u, j) = v.

Introduction to Testing Graph Properties 121

dense graph model seems irrelevant to sparse graphs, both because the distance
measure that underlies it deems all sparse graphs as close to one another, and
because adjacency queries seems unsuitable for sparse graphs. Sticking to the
paradigm of representing graphs as functions, where both the distance measure
and the type of queries are determined by the representation, the aforementioned
representation seemed the most natural choice. Indeed, a conscious decision was
(and is) made not to capture, at this point (and in this model), sparse graphs
that do not have constant (or low) maximum degree.

3.1 A Taste of the Known Results

We first mention that, also in this model, graph properties of arbitrary query
complexity are known: Specifically, in this model, graph properties (in NP)
may have query complexity ranging from O(1/ε) to Ω(N), and furthermore
such properties are monotone and natural (cf. [33], which builds over [20]).
In particular, testing 3-Colorability requires Ω(N) queries, whereas testing 2-
Colorability (i.e., Bipartiteness) requires Ω(

√
N) queries [34] and can be done

using Õ(
√

N) · poly(1/ε) queries [35]. We also mention that many natural prop-
erties are testable in query complexity that only depends on the proximity pa-
rameter (i.e., ε). A partial list includes k-edge connectivity, for every fixed k,
and Planarity (cf. [34] and [18], respectively). Details follow.

3.1.1 Testability in q(ε) Queries, for Any Function q
We first mention, that with the exception of properties that only depend on the
degree distribution, adaptive testers are essential for obtaining query complexity
that only depends on ε (cf. [54]).14 Still, as observed in [39], at the cost of an
exponentially blow-up in the query complexity, we may assume that the tester’s
adaptivity is confined to performing (full, BFS-like) searches of a predetermined
depth from several randomly selected vertices. However, the best testing results
are typically obtained by testers that either perform more adaptive searchers or
perform DFS-like rather than BFS-like searchers. A few examples follow, where
all testers are efficient (i.e., their running time is polynomial in their query
complexity).

Testing connectivity. Graph connectivity can be tested in Õ(1/ε) queries [34].
Essentially, the tester starts a search (e.g., a BFS) from a few randomly selected
vertices, but each such search is terminated after a predetermined number of
vertices is encountered (rather than after visiting all vertices that are at a pre-
determined distance from the start vertex). This tester rejects if and only if
it detects a small connected component, and thus it has one-sided error. The
result essentially extends to k-edge connectivity, for any k ≥ 2, but the query
complexity is Õ(k3/εc), where c = min(k − 1, 3) (cf. [34]).

14 Actually, the result extends to query complexity of the form o(
√

N · q(ε)), for any

function q. In contrast, note that triangle-freeness can be tested by O(
√

N/ε) non-

adaptive queries; see Appendix A.2.

122 O. Goldreich

Testing cycle-freeness. Cycle-freeness can be tested in Õ(ε−3) queries, by a tester
having two-sided error [34]. Essentially, the tester compares the number of edges
to the number of connected components, while fully exploring any small con-
nected components that it happens to visit. The two-sided error is unavoidable
by any tester that has query complexity o(

√
N) (cf. [34, Prop. 4.3]). Viewing

cycle-free graphs as graphs that have no K3-minor, leads us to the following
general result of Benjamini, Schramm, and Shapira [18], which refers to graph
minors (to be briefly recalled next).

The graph H is a minor of the graph G, if H can be obtained from G by a
sequence of edge removal, vertex removal, and edge contraction operations. We
say that G is H-minor free if H is not a minor of G. Thus, a graph is cycle-free
if and only if it is K3-minor free, where Kk denotes the k-vertex clique. (The
notion of minor freeness extends to sets of graphs; that is, for a set of graphs
H, the graph G is H-minor free if no element of H is a minor of G.) Lastly, a
graph property is minor-closed if it is closed under removal of edges, removal of
vertices, and edge contraction. Note that, for every finite sets of graphs H, the
property of being H-minor free (e.g., Planarity) is minor-closed.

Theorem 3.2 ([43], improving over [18]):15 Any minor-closed property can be
tested in query complexity exp(poly(1/ε)).

We mention that this tester has two-sided error, which is unavoidable for any
tester of query complexity o(

√
N), except for the case that the forbidden minors

are all cycle-free.

3.1.2 Testability in Õ(N1/2) · poly(1/ε) Queries
The query complexity of testing two natural properties is Θ̃(N1/2) · poly(1/ε),
and in both cases the time complexity has the same form. The properties are
Bipartiteness and Expansion. In both cases, the algorithm is based on taking
many (i.e., Õ(N1/2) · poly(1/ε)) random walks from a few randomly selected
vertices, where each walk has length poly(ε−1 log N).

The foregoing algorithmic approach originates in [35], where it was applied
to testing Bipartiteness; for further details see §3.2.2. This approach was also
suggested for testing Expansion [36], but the analysis was successfully completed
only in [45,50]. We mention that the Bipartite tester has one-sided error, and
whenever it rejects it may also output a short proof that the graph is not bipartite
(i.e., an odd cycle of length poly(ε−1 log N)).

The Ω(N1/2) lower bound on the query complexity of testing each of the
aforementioned properties was proved in [34]; for details see §3.2.1. We note that
the lower bound for testing Bipartiteness stands in sharp contrast to the situation
in the dense graph model, where Bipartite testing is possible in poly(1/ε)-time.
This discrepancy is due to the difference between the notions of relative distance
employed in the two models.

An application to the study of the dense graph model. We mention that the
Bipartiteness tester of the bounded-degree model was used in order to derive
15 The query complexity obtained in [18] is triple-exponential in 1/ε.

Introduction to Testing Graph Properties 123

an alternative Bipartite tester for the dense graph model [41]. In the case that
almost all vertices in the N -vertex graph have degree O(ε0.99N), this tester
improves over the ones presented in [32,4]. Essentially, this dense-graph model
tester invokes the bounded-degree model tester on the subgraph induced by a
sample S of Õ(1/ε) random vertices (and emulates neighbor queries regarding a
vertex v ∈ S by making adjacency queries of the form (v, w) for every w ∈ S).

3.1.3 Reflections
The fact that the bounded-degree model is closer (than the dense graph model)
to standard algorithmic research offers greater interaction at the technical level.
Indeed, techniques such as local search and random walks are quite basic in both
domains, and the relationship becomes even tighter when we shall move to the
general graph model (in Section 4). At the current point, we mention that the
idea underlying the cycle-freeness tester (outlined in §3.1.1) was employed to the
design of an algorithm for approximating the minimum spanning tree weight in
sub-linear time [23].

We also mention that the idea underlying the expansion tester has become
quite pivotal in the contents of testing distributions, which emerged with [13].

3.2 A Benchmark: Testing Bipartiteness

Both the following lower and upper bounds reflect the fact that being far from
Bipartiteness does not require having constant size cycles of odd length. We
comment that a simplified version of the upper bound implies that odd cycles
of logarithmic length must exist (cf. [35, Prop. 1]).

3.2.1 A Lower Bound
In contrast to Theorem 2.4, under the incidence function representation, there
exists no Bipartite tester of complexity that is independent of the graph size.

Theorem 3.3 [34]: Testing Bipartiteness (with constant ε and d) requires
Ω(

√
N) queries (in the incidence function model).

Proof Idea: For any (even) N , we consider the following two families of graphs:

1. The first family, denoted GN
1 , consists of all degree-3 graphs that are com-

posed of the union of a Hamiltonian cycle and a perfect matching. That is,
there are N edges connecting the vertices in a cycle, and the other N/2 edges
are a perfect matching.

2. The second family, denoted GN
2 , is the same as the first except that the

perfect matchings allowed are restricted as follows: the distance on the cycle
between every two vertices that are connected by a perfect matching edge
must be odd.

Clearly, all graphs in GN
2 are bipartite. It can be shown that almost all graphs

in GN
1 are far from being bipartite. On the other hand, one can prove that a

testing algorithm that performs o(
√

N) queries cannot distinguish between a
graph chosen randomly from GN

2 (which is always bipartite) and a graph chosen

124 O. Goldreich

randomly from GN
1 (which with high probability is far from bipartite). Loosely

speaking, this is the case since in both cases the algorithm is unlikely to encounter
a cycle (among the vertices that it has inspected).

3.2.2 An Algorithm
The lower bound of Theorem 3.3 is essentially tight. Furthermore, the following
natural algorithm constitutes a Bipartite tester of running time poly((log N)/ε)·√

N .

Algorithm 3.4 (Bipartite Tester in the Bounded-Degree Model [35]): On input
N , d, ε and oracle access to an incidence function for an N -vertex graph, G =
(V, E), of degree bound d, repeat T

def= Θ(1
ε) times:

1. Uniformly select s in V.
2. (Try to find an odd cycle through vertex s):

(a) Perform K
def= poly((log N)/ε) ·√N random walks starting from s, each

of length L
def= poly((log N)/ε).

(b) Let R0 (respectively, R1) denote the vertices set reached from s in an
even (respectively, odd) number of steps in any of these walks.

(c) If R0 ∩ R1 is not empty then reject.

If the algorithm did not reject in any of the foregoing T iterations, then it accepts.

Theorem 3.5 [35]: Algorithm 3.4 is a Bipartite Tester (in the incidence func-
tion model). Furthermore, the algorithm always accepts a bipartite graph, and in
case of rejection it provides a witness of length poly((log N)/ε) (that the graph
is not bipartite).

Motivation – the special case of rapid mixing graphs. The proof of Theorem 3.5
is quite involved. As a motivation, we consider the special case where the graph
has a “rapid mixing” feature. It is convenient to modify the random walks so that
at each step each neighbor is selected with probability 1/2d, and otherwise (with
probability at least 1/2) the walk remains in the present vertex. Furthermore, we
will consider a single execution of Step (2) starting from an arbitrary vertex, s,
which is fixed in the rest of the discussion. The rapid mixing feature we assume
is that, for every vertex v, a (modified) random walk of length L starting at s

reaches v with probability approximately 1/N (say, up-to a factor of 2). Note that
if the graph is an expander then this is certainly the case (since L = ω(log N)).

The key quantities in the analysis are the following probabilities, referring
to the parity of the length of a path obtained from the random walk by omitting
the self-loops (transitions that remain at current vertex). Let p0(v) (respectively,
p1(v)) denote the probability that a (modified) random walk of length L, starting
at s, reaches v while making an even (respectively, odd) number of real (i.e., non-
self-loop) steps. By the rapid mixing assumption (for every v ∈ V), it holds that

1
2N

< p0(v) + p1(v) <
2
N

. (2)

Introduction to Testing Graph Properties 125

We consider two cases regarding the sum
∑

v∈V p0(v)p1(v): If the sum is (rela-
tively) “small”, we show that V can be 2-partitioned so that there are relatively
few edges between vertices that are placed in the same side, which implies that
G is close to being bipartite. Otherwise (i.e., when the sum is not “small”), we
show that with significant probability, when Step (2) is started at vertex s it
is completed by rejecting G. These two cases are analyzed in the following two
(corresponding) claims.

Claim 3.5.1. Suppose
∑

v∈V p0(v)p1(v) ≤ ε/50N . Let V1
def= {v ∈ V : p0(v) <

p1(v)} and V2 = V \ V1. Then, the number of edges with both end-points in the
same Vσ is bounded above by εdN .

Proof Sketch: Consider an edge (u, v) where, without loss of generality, both u

and v are in V1. Then, both p1(v) and p1(u) are greater than 1
2 · 1

2N . However,
one can show that p0(v) > 1

3d · p1(u): Observe that an (L − 1)-step walk of
path-parity 1 ending at u is almost as likely as an L-step walk of path-parity
1 ending at u, and that once an (L − 1)-step walk reaches u, with probability
exactly 1/2d, it continues to v in the next step. Thus, the edge (u, v) contributes
at least (1/4N)2

3d to the sum
∑

w∈V p0(w)p1(w). It follows that we can have at
most (ε/50N)/(1/48dN2) such edges, and the claim follows. ��

Claim 3.5.2. Suppose
∑

v∈V p0(v)p1(v) ≥ ε/50N , and that Step (2) is started
with vertex s. Then, with probability at least 2/3, the set R0 ∩ R1 is not empty
(and rejection follows).

Proof Sketch: Consider the probability space defined by an execution of Step (2)
with start vertex s. For every i �= j such that i, j ∈ [K], we define an indicator
random variable ζi,j representing the event that the vertex encountered in the Lth

step of the ith walk equals the vertex encountered in the Lth step of the jth walk,
and that the ith walk corresponds to an even-path whereas the jth to an odd-path.
(That is, ζi,j = 1 if the foregoing event holds, and ζi,j = 0 otherwise.) Then

E[|R0 ∩ R1|] >
∑
i�=j

E[ζi,j]

= K(K − 1) ·
∑
v∈V

p0(v)p1(v)

>
500N

ε
·
∑
v∈V

p0(v)p1(v)

≥ 10

where the second inequality is due to the setting of K, and the third to the claim’s
hypothesis. Intuitively, with high probability, it should hold that |R0 ∩R1| > 0.
This is indeed the case, but proving it is less straightforward than it seems; the
problem being that the ζi,j ’s are not pairwise independent. Yet, since the sum
of the covariances of the dependent ζi,j ’s is quite small, Chebyshev’s Inequality

126 O. Goldreich

is still very useful (cf. [11, Sec. 4.3]). Specifically, letting μ
def=

∑
v∈V p0(v)p1(v)

(= E[ζi,j]), and ζi,j
def= ζi,j − μ, we get:

Pr

⎡⎣∑
i�=j

ζi,j = 0

⎤⎦ <
Var

[∑
i�=j ζi,j

]
(K2μ)2

=
1

K4μ2
·
⎛⎝∑

i,j

E
[
ζ
2

i,j

]
+ 2

∑
i,j,k

E
[
ζi,jζi,k

]⎞⎠
<

1
K2μ

+
2

Kμ2
· E[ζ1,2ζ1,3]

For the second term, we observe that Pr[ζ1,2 = ζ1,3 = 1] is upper bounded by
Pr[ζ1,2 = 1] = μ times the probability that the Lth vertex of the first walk
appears as the Lth vertex of the third path. Using the rapid mixing hypothesis,
we upper bound the latter probability by 2/N , and obtain

Pr[|R0 ∩ R1| = 0] <
1

K2μ
+

2
Kμ2

· μ · 2
N

<
1
3

where the last inequality uses μ ≥ ε/50N and K2 ≥ 6 · 50N/ε (along with
ε > 5000/N). The claim follows. ��

Beyond rapid mixing graphs. The proof in [35] refers to a more general sum of
products; that is,

∑
u∈U podd(u)peven(u), where U ⊆ V is an appropriate set of

vertices, and podd(v) (respectively, peven(v)) is essentially the probability that
an L-step random walk (starting at s) passes through v after more than L/2
steps and the corresponding path to v has odd (respectively, even) parity. Much
of the analysis in [35] goes into selecting the appropriate U (and an appropriate
starting vertex s), and pasting together many such U’s to cover all of V. Loosely
speaking, U and s are selected so that there are few edges from U and the
rest of the graph, and podd(u) + peven(u) ≈ 1/

√|V| · |U|, for every u ∈ U. The
selection is based on the “combinatorial treatment of expansion” of Mihail [49].
Specifically, we use the contrapositive of the standard analysis, which asserts that
rapid mixing occurs when all cuts are relatively large, to assert the existence of
small cuts which partition the graph so that vertices reached with relatively high
probability (in a short random walk) are on one side and the rest of the graph
on the other. The first set corresponds to the aforementioned U and the cut is
relatively small with respect to U. A start vertex s for which the corresponding
sum is big is shown to cause Step (2) to reject (when started with this s), whereas
a small corresponding sum enables to 2-partition U while having few violating
edges among the vertices in each part of U.

The actual argument of [35] proceeds in iterations. In each iteration a vertex s

for which Step (2) accepts with high probability is fixed, and an appropriate set of

Introduction to Testing Graph Properties 127

remaining vertices, U, is found. The set U is then 2-partitioned so that there are
few violating edges inside U. Since we want to paste all these partitions together,
U may not contain vertices treated in previous iterations. This complicates the
analysis, since it must refer to the part of G, denoted H, not treated in previous
iterations. We consider walks over an (imaginary) Markov Chain representing
the H-part of the walks performed by the algorithm on G. Statements about
rapid mixing are made with respect to the Markov Chain, and linked to what
happens in random walks performed on G. In particular, a subset U of H is
determined so that the vertices in U are reached with probability ≈ 1/

√|V| · |U|
(in the chain) and the cut between U and the rest of H is small. Linking the
sum of products defined for the chain with the actual walks performed by the
algorithm, we infer that U may be partitioned with few violating edges inside
it. Edges to previously treated parts of the graphs are charged to these parts,
and edges to the rest of H \ U are accounted for by using the fact that this cut
is small (relative to the size of U).

4 The General Graph Model

In contrast to the foregoing two models in which the oracle queries and the
distances between graphs are linked to the representation of graphs as functions,
in the following model the representation is blurred and the query types and
distance measure are decoupled. This decoupling makes the current model closer
in spirit to standard studies in graph algorithms.

Giving up on the representation as a yardstick for the relative distance be-
tween graphs, leaves us with no absolute point of reference. Instead, we just
define the relative distance between graphs in relation to the actual number
of edges in these graphs; specifically, the relative distance between the graphs
G = ([N], E) and G′ = ([N], E) may be defined as |E�E′|

max(|E|,|E′|) (or, alternatively,

as |E�E′|
(|E|+|E′|)/2).16

Turning to the question of query types, we again need to make a choice,
which is now free from representation considerations. The most natural choice
is to allow both adjacency queries and incidence queries (i.e., the two types of
queries that were each allowed in one of the previous queries).17 However, other
choices has been considered too (cf. [17]). We note that, typically, adjacency
queries become more useful as the graph becomes more dense, whereas incidence
queries (a.k.a neighbor queries) become more useful as the graph becomes more
sparse (cf. [17]).

Definition 4.1 (testing graph properties in the general model): A tester for
a graph property Π is a probabilistic oracle machine that, on input parameters

16 Needless to say, these two definitions may not yield the same result, but they are

related by a factor of at most 2.
17 Recall that the incidence query (u, i) is answered with 0 if u has less than i neighbors.

Thus, the incidence queries allow to emulate degree queries at logarithmic cost.

128 O. Goldreich

N and ε and access to a function answering adjacency queries and incidence
queries regarding an N -vertex graph G = ([N], E), outputs a binary verdict that
satisfies the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than ε · max(|E|, |E′|).

One-sided testers and non-adaptive testers are defined as in Definition 2.1.

The query complexity of a tester is defined as in Section 2; ditto for its efficiency.
The study of property testing in the general graph model was initiated by

Parnas and Ron [52], who only considered incidence queries, and extended by
Kaufman, Krivelevich, and Ron [46], who considered both types of queries. Need-
less to say, the aim of these works was to allow the consideration of arbitrary
graphs and so strengthen the relation between property testing and standard
algorithmic studies. However, forsaking the paradigm of representing graphs as
functions means that the connection to the rest of property testing is a bit weak-
ened (or at least becomes more cumbersome). Still, we believe that the trade-off
is worthwhile.

4.1 A Taste of the Known Results

It is natural to attempt to extend testers designed for the bounded-degree model
to the general graph model. Such extensions face two potential difficulties, which
refer to two ways in which the general graph model extends the bounded-degree
model:

1. Firstly, the maximum degree of vertices in the graph may no longer be
constant, and the question is how does the performance of the tester depends
on the degree bound, d. Formally, one should think of the degree bound d

as a variable, and analyze the tester accordingly.
Note that when d increases, relative distances decrease and so testing

may become easier. On the other hand, we can no longer scan all neighbors
of a given vertex at constant cost.

2. Treating the maximum degree as a variable, raises the question of what hap-
pens when there is a significant discrepancy among the degrees of the various
vertices. Such a situation can break the balance between the aforementioned
positive and negative effects of increasing the maximum degree. Specifically,
the algorithmic operations may becomes more costly when the maximum
degree increases, but when using the distance measure of Definition 4.1 the
distances no longer vary with the maximum degree (i.e., d) but rather vary
with the average degree. Thus, we may be in trouble if the maximum degree
is significantly larger than the average degree.

Introduction to Testing Graph Properties 129

The effect of the foregoing issues is tester-dependent. For example, the operation
of the Connectivity tester (outlined in §3.1.1) is not affected by the possible
discrepancies in the vertex degrees, and so this tester (as is) applies also to the
general graph model (cf. [52]). In contrast, the Bipartiteness tester presented
in Algorithm 3.4 should be modified to the current setting. Details follow.

4.2 A Benchmark: Testing Bipartiteness

Firstly, it was shown in [46] that the algorithm’s performance does not dete-
riorate when d increases. Next, an algorithm for the general graph model was
obtained by emulating Algorithm 3.4 on an imaginary graph that is obtained
by replacing vertices of high degree by adequate gadgets. Specifically, a ver-
tex having degree that is t times larger than the average degree is replaced by
a t-by-t bipartite expander graph, while connecting the original neighbors to
vertices on one of the sides of the expander (such that no vertex has degree
greater than twice the average degree). This replacement preserves the distance
to Bipartiteness (up to a constant factor). We warn that implementing the
emulation (of Algorithm 3.4 on this imaginary graph) is not straightforward. In
particular, it seems to require a procedure for sampling edges in the actual graph
such that almost all edges are sampled with probability that is approximately
(up to a constant factor) the uniform one.18 For details, see [46].

As evident from the above description, the extension of a tester from the
bounded-degree model to the general graph model may require ideas that are
specific to the property at hand. For example, the gadgets used above should
preserve Bipartiteness (as well as distance to Bipartiteness).

Another issue that arises is that one may hope to perform better when the
degree bound d (whether maximum or average) is large. Indeed, we know that
in case of Bipartiteness, dense graphs can be tested with much fewer queries
than sparse graphs (recall Algorithm 2.3). Thus, an optimal tester for the gen-
eral graph model should be able to match the result of the dense graph model
whenever the actual graph happens to be dense. Such a result is indeed provided
by [46], who show a Bipartiteness tester (for the general graph model) that is
optimal for all possible edge densities.

Theorem 4.2 (Testing Bipartiteness in the General Graph Model [46]): Ignor-
ing factors that are polynomial in ε−1 log N , the query (and time) complexity
of testing Bipartiteness is min(

√
N, N2/M), where M denotes the number of

edges in the input graph.

Note that dealing with M � N3/2 requires some deviation from the aforemen-
tioned emulation (of Algorithm 3.4). Indeed, in such a case the tester of [46] be-
haves quite differently. Specifically, it takes K =

√
N2/M random walks (rather

than N2/M random walks), from each random start vertex, and checks for col-
lisions among the endpoints these K walks by using

(
K
2

)
adjacency queries. We

mention that the use of adjacency queries is necessary for an o(
√

N) query tester
of Bipartiteness.
18 A more accurate sampling procedure is implicit in the subsequent work of [37].

130 O. Goldreich

An opposite behavior. In contrast to the case of testing Bipartiteness, where
the complexity improves with the edge density, in the case of testing triangle-
freeness we see the opposite behavior [5].19 Furthermore, in contrast to test-
ing Bipartiteness, there is a gap between the complexity of testing triangle-
freeness in the bounded-degree model and the corresponding complexity in the
general graph model even when the graph is sparse (i.e., M = O(N)). For
example, in the general graph model, the complexity is Ω(N1/3) as long as
M = N2−o(1) [5].

4.3 Reflections

The bulk of algorithmic research regarding graphs refers to general graphs. Of
special interest are graphs that are neither very dense nor have a bounded degree.
In contrast, research in testing properties of graphs started (in [32]) with the
study of dense graphs, proceeded to the study of bounded-degree graphs (in [34]),
and reached general graphs only in [52,46]. This evolution has historical reasons
to be reviewed first.

Testing graph properties was initially conceived (in [32]) as a special case
of the framework of testing properties of functions. Thus, graphs had to be
represented by functions, and two standard representations of graphs (indeed,
the two reviewed in Sections 2 and 3) seemed most fitting in this context. We
stress that both models were formulated in a way that identifies the graphs with
a specific functional representation, which in turn defines the type of queries
allowed to the tester as well as the notion of fractional distance (which underlies
the performance guarantee).

The identification of graphs with any specific functional representation was
abandoned by Parnas and Ron [52] who developed a more general model by
decoupling the type of queries allowed to the tester from the distance mea-
sure: Whatever is the mechanism of accessing the graph, the distance between
graphs is defined as the number of edges in their symmetric difference (rather
than the number of different entries with respect to some specific functional rep-
resentation). Furthermore, the relative distance may be defined as the size of
the symmetric difference divided by the actual (total) number of edges in both
graphs (rather than divided by some (possibly non-tight) upper-bound on the
latter quantity). Also, as advocated by Kaufman et al. [46], it is reasonable to
allow the tester to perform both adjacency and neighbor queries (and indeed
each type of query may be useful in a different range of edge densities). Needless
to say, this model seems adequate for the study of testing properties of arbitrary
graphs, and it strictly generalizes the positive aspects of the two prior models
(i.e., the models based on the adjacency matrix and bounded-degree incidence
list representations).

19 This is to be expected in light of the fact that testing triangle-freeness has complexity

O(d/ε) in the bounded-degree model [34], whereas in the dense graph model testing

triangle-freeness requires more than poly(1/ε) queries [1].

Introduction to Testing Graph Properties 131

We wish to advocate further study of the latter model. We believe that this
model, which allows for a meaningful treatment of property testing of general
graphs, is the one that is most relevant to computer science applications. Fur-
thermore, it seems that designing testers in this model requires the development
of algorithmic techniques that may be applicable also in other areas of algorith-
mic research. As an example, we mention that techniques in [46] underly the
average degree approximation of [37]. (Likewise techniques of [34] underly the
minimum spanning tree weight approximation of [23]; indeed, as noted next, the
bounded-degree incidence list model is also more algorithmic oriented than the
adjacency matrix model.)

Let us focus on the algorithmic contents of property testing of graphs. Recall
that, when ignoring a quadratic blow-up in the query complexity, property test-
ing in the adjacency matrix representation reduces to sheer combinatorics (as
reflected in the notion of canonical testers, see Theorem 2.2). Indeed, as shown
in [38], a finer look (which does not allow for ignoring quadratic blow-ups in
complexity) reveals the role of algorithmic design also in this model. But still
property testing in the incidence list representation seems to require more so-
phisticated algorithms. Testers in the general graph models seem to require even
more algorithmic ideas (cf. [46]).

To summarize, we advocate further study of the model of [52,46] for two rea-
sons. The first reason is that we believe in the greater relevance of this model
to computer science applications. The second reason is that we believe in the
greater potential of this model to have cross fertilization with other branches
of algorithmic research. Nevertheless, this advocation is not meant to under-
mine the study of the dense graph and bounded-degree models. The latter have
their own merits and also offer a host of interesting open problems, which are
potentially relevant to computer science at large.

5 Additional Issues

In this section we discuss three issues that are relevant to each of the three
models discussed in the prior corresponding three sections.

5.1 Directed Graphs

So far our discussion was confined to undirected graphs. Nevertheless, the three
models extend naturally to the case of directed graphs. Actually, when consid-
ering incidence queries, two different sub-models emerge (cf. [16]): In the first
model the tester may only query for edges in the forward direction (resp., back-
ward direction), whereas in the second model both forward and backward direc-
tions are allowed. That is, in the second model, the directed graph G = ([N], E)
is represented by two functions, gout and gin, such that gout(u, i) = v (resp.,
gin(u, i) = v) if the ith out-going edge of u leads to v (resp., the ith in-coming
edge of u arrives from v).

132 O. Goldreich

The gap between these two query models was demonstrated by Bender and
Ron, who initiated the study of testing properties of directed graphs [16]. In par-
ticular, they showed that while strong connectivity in bounded-degree directed
graphs can be tested by Õ(1/ε) forward and backward queries [16, Sec. 5.1],
when only forward (resp., backward) queries are allowed no tester can work
with o(

√
N) queries (even when allowing two-sided error [16, Sec. 5.2]).20

Another task studied in [16] is testing whether a given directed graph is acyclic
(i.e., has no directed cycles). They presented an Acyclicity tester of poly(1/ε)
complexity in the adjacency predicate model, and showed that in the incidence
list model no Acyclicity tester can work with o(N1/3) queries (even when both
forward and backward queries are allowed). The question of whether Acyclicity
can be tested with o(N) queries (in the bounded-degree digraph model) remains
open. In general, it seems that the study of this model deserves more attention
than it has received so far. (We mention that testing directed graphs in the dense
digraph model was further studied in [6,51].)

5.2 Tolerant Testing and Distance Approximation

Recall that property testing calls for distinguishing objects having a predeter-
mined property from object that are far from any objects that has this property
(i.e., are far from the property). A more “tolerant” notion requires distinguish-
ing objects that are close to having the property from objects that are far from
this property. Such a distinguisher is called a tolerant tester, and is a special
case of a distance approximator that given any object is required to approximate
its distance to the property. The study of these related notions was initiated by
Parnas, Ron, and Rubinfeld [53].

Definition 5.1 (sketch for the generic case): Let Π be a set of functions over
a finite set Ω. A distance approximator for Π is a probabilistic oracle machine T

that on input an approximation parameter ε and access to any function f outputs
with probability at least 2/3 a value that approximates the relative distance of f

to Π up to an additive term of ε; that is, Pr[|T f − δΠ(f)| ≤ ε] ≥ 2/3, where
δΠ(f) def= ming∈Π{δ(f, g)} and δ(f, g) def= Prx∈Ω[f(x) �= g(x)].

A simple observation is that any tester that makes uniformly distributed queries
offers some level of tolerance. Specifically, if a tester makes q(ε) queries and each
query is uniformly distributed, then this tester distinguishes between objects
that are ε-far from the property and objects that are (ε/10q(ε))-close to the
property. Needless to say, the challenge is to provide stronger relations between
property testing and distance approximators. Such a result was provided by
Fischer and Newman [29]: They showed that, in the dense graph model, testability
in a number of queries that only depends on ε implies distance approximator in a
number of queries that only depends on ε. In the the bounded-degree model, many
of the known testers were extended to yield distance approximators (cf. [48]).
20 The lower bound can be strengthened to Ω(N) when considering only one-sided

error testers. In the case of two-sided error, some improvements are possible; see

Appendix A.3.

Introduction to Testing Graph Properties 133

5.3 Proximity Oblivious Testing

Note that in order to satisfy the property testing requirement, any tester (of
a reasonable property) must obtain the proximity parameter as auxiliary input
and determine its actions accordingly. The question, addressed here, is what does
the tester do with this parameter (or how does the parameter affect the actions
of the tester). A very minimal effect is exhibited by testers that, based on the
value of the proximity parameter, determine the number of times that a basic
test is invoked, where the basic test is oblivious of the proximity parameter. For
example, the celebrated linearity tester of [19] repeats a basic test that consists
of selecting two random points, x and y, and probing the value of the function
at the points x, y, and x + y. This basic test is repeated for a number of times
that is inversely proportional to the proximity parameter.

Our focus here is on such basic tests (i.e., basic tests that are oblivious of
the proximity parameter), called proximity oblivious testers. Although proximity
oblivious testers were implicit in prior works (see, e.g., [19,2,3]), their general
study was initiated by Goldreich and Ron [39].

Definition 5.2 (sketch for the generic case): Let Π be a set of functions over a
finite set Ω. A proximity-oblivious tester for Π is a probabilistic oracle machine
T that, when given oracle access to any function f over Ω, satisfies the following
two conditions:

1. The machine T accepts each function in Π with probability 1.
2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f �∈ Π

is rejected by T with probability at least ρ(δΠ(f)), where δΠ(f) is as in
Definition 5.1.

The function ρ is called the detection probability of the tester T .

Indeed, we require that ρ(ε) > 0 for every ε > 0, whereas extending Item 2 to
f ∈ Π (while avoiding contradiction with Item 1) mandates extending ρ so that
ρ(0) = 0. The requirement that ρ is monotone (i.e., monotonically increasing)
does not rule out cases where the tight lower-bound is non-monotone (e.g., [14]),
because ρ is not required to be tight.

Indeed, using a proximity-oblivious tester T , we can obtain a standard (one-
sided error) tester (of error probability at most 1/3). Specifically, given the prox-
imity parameter ε, the standard tester invokes T for Θ(1/ρ(ε)) times, and accepts
if and only if all these invocations accept. Two natural questions regarding prox-
imity oblivious testers are:

1. Which properties have proximity oblivious tests (of small query complexity)?
2. How does the detection probability of such tests grow as a function of the

distance of the object from the property, and how does this relate to the query
complexity of the best (standard) tester for the corresponding property.

Goldreich and Ron [39] provide a mix of positive and negative results regard-
ing the foregoing questions. In particular, they provide a characterizations of

134 O. Goldreich

the graph properties that have constant-query proximity-oblivious testers in the
two main models discussed in this article (i.e., the dense graphs model and the
bounded-degree graph model). It follows that constant-query proximity-oblivious
testers do not exist for many easily testable properties (e.g., Bipartiteness in
the dense graph model). Also, even when proximity-oblivious testers exist, re-
peating them does not necessarily yield the best standard testers for the corre-
sponding property (e.g., Clique Collection in the dense graph model).

Acknowledgments

We are grateful to Tali Kaufman, Michael Krivelevich, Dana Ron, Asaf Shapira,
and Omer Tamuz for useful comments and suggestions regarding this article.

References

1. Alon, N.: Testing subgraphs of large graphs. Random Structures and Algo-

rithms 21, 359–370 (2002)

2. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large

Graphs. Combinatorica 20, 451–476 (2000)

3. Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization

of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC, pp.

251–260 (2006)

4. Alon, N., Krivelevich, M.: Testing k-Colorability. SIAM Journal on Disc. Math.

15(2), 211–227 (2002)

5. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle freeness in gen-

eral graphs. In: 17th SODA, pp. 279–288 (2006)

6. Alon, N., Shapira, A.: Testing subgraphs in directed graphs. JCSS 69, 354–482

(2004)

7. Alon, N., Shapira, A.: Every Monotone Graph Property is Testable. In: 37th STOC,

pp. 128–137 (2005)

8. Alon, N., Shapira, A.: A Characterization of the (natural) Graph Properties

Testable with One-Sided. In: 46th FOCS, pp. 429–438 (2005)

9. Alon, N., Shapira, A.: A Characterization of Easily Testable Induced Subgraphs.

Combinatorics Probability and Computing 15, 791–805 (2006)

10. Alon, N., Shapira, A.: A Separation Theorem in Property Testing. Combinator-

ica 28(3), 261–281 (2008)

11. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, Inc., Chich-

ester (1992)

12. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for

dense instances of NP-hard problems. JCSS 58(1), 193–210 (1999)

13. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that Distri-

butions are Close. In: 41st FOCS, pp. 259–269 (2000)

14. Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity testing

in characteristic two. In: The 36th FOCS, pp. 432–441 (1995)

15. Bellare, M., Goldreich, O., Sudan, M.: Free Bits, PCPs and Non-approximability

– Towards Tight Results. SIAM Journal on Computing 27(3), 804–915 (1998)

16. Bender, M., Ron, D.: Testing acyclicity of directed graphs in sublinear time. Ran-

dom Structures and Algorithms, 184–205 (2002)

Introduction to Testing Graph Properties 135

17. Ben-Eliezer, I., Kaufman, T., Krivelevich, M., Ron, D.: Comparing the strength of

query types in property testing: the case of testing k-colorability. In: 19th SODA

(2008)

18. Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of Sparse

Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)

19. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to

Numerical Problems. JCSS 47(3), 549–595 (1993)

20. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in

bounded-degree graphs. In: 43rd FOCS, pp. 93–102 (2002)

21. Bogdanov, A., Trevisan, L.: Lower Bounds for Testing Bipartiteness in Dense

Graphs. In: IEEE Conference on Computational Complexity, pp. 75–81 (2004)

22. Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms for

Estimating the Average. In: IPL, vol. 53, pp. 17–25 (1995)

23. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning

tree weight in sublinear time. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)

ICALP 2001. LNCS, vol. 2076, pp. 190–200. Springer, Heidelberg (2001)

24. de la Vega, W.F.: MAX-CUT has a randomized approximation scheme in dense

graphs. Random Structures and Algorithms 8(3), 187–198 (1996)

25. Even, S.: Graph Algorithms. Computer Science Press, Rockville (1979)

26. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with

Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)

27. Fischer, E., Matsliah, A.: Testing graph isomorphism. In: 17th SODA, pp. 299–308

(2006)

28. Fischer, E., Matsliah, A., Shapira, A.: Approximate hypergraph partitioning and

applications. In: Proceedings of 48th FOCS, pp. 579–589 (2007)

29. Fischer, E., Newman, I.: Testing versus estimation of graph properties. In: 37th

STOC, pp. 138–146 (2005)

30. Goldreich, O.: On Promise Problems. In: memory of Shimon Even (1935–2004).

ECCC, TR05-018 (January 2005); See also in Theoretical Computer Science: Es-

says in Memory of Shimon Even, Springer, LNCS Festschrift, Vol. 3895 (March

2006)

31. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge

University Press, Cambridge (2008)

32. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM, 653–750 (July 1998); Extended

abstract in 37th FOCS (1996)

33. Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy Theorems

for Property Testing. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390,

pp. 295–300. Springer, Heidelberg (2010)

34. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica,

302–343 (2002)

35. Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree graphs.

Combinatorica 19(3), 335–373 (1999)

36. Goldreich, O., Ron, D.: On Testing Expansion in Bounded-Degree Graphs. ECCC,

TR00-020 (March 2000)

37. Goldreich, O., Ron, D.: Approximating Average Parameters of Graphs. Random

Structures and Algorithms 32(3), 473–493 (2008)

38. Goldreich, O., Ron, D.: Algorithmic Aspects of Property Testing in the Dense

Graphs Model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp.

301–311. Springer, Heidelberg (2010)

136 O. Goldreich

39. Goldreich, O., Ron, D.: On Proximity Oblivious Testing. ECCC, TR08-041 (2008);

Also in the proceedings of the 41st STOC (2009)

40. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.

Random Structures and Algorithms 23(1), 23–57 (2003)

41. Gonen, M., Ron, D.: On the Benefit of Adaptivity in Property Testing of Dense

Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM

2007 and APPROX 2007. LNCS, vol. 4627, pp. 525–539. Springer, Heidelberg

(2007); To appear in Algorithmica (special issue of RANDOM and APPROX 2007)

42. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,

105–142 (1999) (Preliminary Version in 28th STOC, 1996 and 37th FOCS, 1996)

43. Hassidim, A., Kelner, J., Nguyen, H., Onak, K.: Local Graph Partitions for Ap-

proximation and Testing. In: 50th FOCS, pp. 22–31 (2009)

44. Hochbaum, D. (ed.): Approximation Algorithms for NP-Hard Problems. PWS

(1996)

45. Kale, S., Seshadhri, C.: Testing expansion in bounded degree graphs. In: Aceto, L.,

Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,

I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 527–538. Springer, Heidelberg

(2008); Preliminary version appeared as TR07-076, ECCC (2007)

46. Kaufman, T., Krivelevich, M., Ron, D.: Tight Bounds for Testing Bipartiteness in

General Graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)

47. Lovász, L., Young, N.: Lecture notes on evasiveness of graph properties. Technical

Report TR–317–91, Princeton University, Computer Science Department (1991)

48. Marko, S., Ron, D.: Distance approximation in bounded-degree and general sparse

graphs. Transactions on Algorithms 5(2), Article no. 22 (2009)

49. Mihail, M.: Conductance and convergence of Markov chains– A combinatorial treat-

ment of expanders. In: 30th FOCS, pp. 526–531 (1989)

50. Nachmias, A., Shapira, A.: Testing the expansion of a graph. TR07-118, ECCC

(2007)

51. Orenstein, Y.: Testing properties of directed graphs. Master’s thesis, School of

Electrical Engineering (2010)

52. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Structures and

Algorithms 20(2), 165–183 (2002)

53. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant Property Testing and Distance Ap-

proximation. Journal of Computer and System Sciences 72(6), 1012–1042 (2006)

54. Raskhodnikova, S., Smith, A.: A note on adaptivity in testing properties of

bounded-degree graphs. ECCC, TR06-089 (2006)

55. Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Foundations

and Trends in TCS 5(2), 73–205 (2010)

56. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications

to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

57. E. Szemeŕedi. Regular partitions of graphs. In: Proceedings, Collogue Inter. CNRS,

pp. 399–401 (1978)

Introduction to Testing Graph Properties 137

Appendix: In Passing – Three Unrelated Observations

The following three observations occurred to us in the process of writing this
article.

A.1 Testing Degree Regularity in the Dense Graph Model

We improve the Õ(ε−3) query upper bound of [32, Prop. 10.2.1.3] to an optimal
quadratic bound.

Proposition A.1. In the dense graph model, degree regularity can be tested in
O(ε−2) non-adaptive queries.

Proof: We start by reviewing the Õ(ε−3)-query tester presented in the proof
of [32, Prop. 10.2.1.3]. This tester selects O(1/ε) random vertices, and estimates
the degree of each of them up to ±εN/100 using a sample of s = Õ(1/ε2)
random vertices (and making the corresponding s queries). This tester accepts if
and only if all these estimates are at most εN/20 apart. The analysis is based on
the observation that if the tester accepts with high probability, then all but ε′N
vertices have degree that is within ±ε′N units of some value, where ε′ = ε/13.
By omitting and adding at most ε′N2 vertices (i.e., from/to the exceptional
vertices), we reach a situation in which all vertices have degrees that at most
D

def= 4ε′N units apart. At this point, we are done by applying a theorem of Noga
Alon (cf. [32, Apdx. D]) that asserts that such a graph is ((3D/N) + o(1))-close
to being regular.

We improve the foregoing upper bound as follows. For a sufficiently large
constant c, let �

def= log2(c/ε), and consider an algorithm that, for every i ∈ [�],
proceeds as follows:

1. The algorithm selects uniformly c · 2i vertices, and estimates the degree
of each of these vertices up to ±24i/5ε · N/c units by using a sample of
si

def= c3 · 2−3i/2ε−2 random vertices.
Note that with probability at least

1 − c · 2i · exp(−2si · (24i/5ε/c)2) = 1 − c · 2i · exp(−2c · 2i/10)
> 1 − 2−i−c

all these estimates are as desired.
2. If two of these estimates are more than 21+(4i/5)ε · N units apart, then the

algorithm rejects.

(The algorithm accepts if and only if it does not reject in any of these � it-
erations.) The query complexity of this algorithm is

∑
i∈[�] c2

i · c32−3i/2ε−2 =
O(ε−2), and it accepts each regular graph with high probability (i.e., whenever
all the foregoing degree estimates are adequate).

On the other hand, if a graph is accepted with high probability, then, for
every i ∈ [�], it holds that all but at most a 2−i fraction of the vertices have

138 O. Goldreich

degree that is within 21+4i/5ε · N/c of the average degree, denoted ρ. For each
value of i ∈ [�], let us denote the set of deviating vertices by Bi; that is, each
vertex in [N] \Bi has degree (ρ± 21+4i/5ε/c) ·N . Thus (dealing separately with
each Bi \ Bi+1 as well as with B� and [N] \ B1), we may omit at most 40εN2/c

edges from the graph, and obtain a graph in which every vertex has degree at
most (ρ + 2ε/c)N . Next, by adding at most 42εN2/c edges to the graph, we
can obtain a graph in which every vertex has degree at least (ρ − 2ε/c)N , and
if we add these edges uniformly (among the vertices) then each vertex in the
resulting graph has degree (ρ ± 44ε/c)N . At this point we can apply the result
of aforementioned result of Noga Alon, and be done.

A.2 Non-Adaptive Testers in the Bounded-Degree Graph Model

Recall that, for any function q, if a property can be tested in o(
√

N · q(ε)) non-
adaptive queries in the bounded-degree graph model, then it depends only on
the vertex degree distribution [54]. In contrast, we show that triangle-freeness
can be tested by O(

√
N/ε) non-adaptive queries (in the same model).

The tester selects at random O(
√

N/ε) vertices, queries for the neighbors
of each of them, and accepts if and only if the subgraph discovered contains
no triangles. Note that if the input graph is ε-far from triangle-freeness, then
it contains Ω(εN) triangles, whereas a random sample of O(

√
N/ε) vertices is

likely to hit two vertices of such a triangle.
The argument can be extended to testing H-freeness,21 for any fixed H , with

O((N/ε)1−
1

β(H)) non-adaptive queries, where β(H) denotes the minimum vertex
cover of H . In this case, if the input graph is ε-far from being H-free, then
a sample of O((N/ε)1−

1
β(H)) random vertices is likely to hit all vertices in a

vertex cover of one of the copies of H . A more general statement, with weaker
quantitative bounds, follows.

Proposition A.2. Let Π be a graph property having a q-query proximity-oblivious
tester of detection probability ρ, in the bounded-degree model. Then, in this model,
Π can be tested by O(N

q−1
q /ρ(ε)) non-adaptive queries.

Actually, Proposition A.2 holds also when q is an upper bound on the number
of different vertices that appear in the queries of the proximity-oblivious tester.

Proof: The main observation is that a sample of O(N1−(1/q)) vertices (along
with the neighbor queries that correspond to each vertex) is likely to allow for
the emulation of a random execution of the proximity-oblivious tester (POT).
Specifically, given a q-query POT, we consider the following non-adaptive POT:

1. Select a random sample of O(N1−(1/q)) vertices, denoted S, and query the
neighborhood of each vertex in S. For every (v, i) ∈ S× [d], denote the oracle
answer by Γi(v).

These are all the queries made by the new POT, and the following steps
only involve computations (and no actual queries).

21 Here, we refer to subgraph freeness.

Introduction to Testing Graph Properties 139

2. Select and fix random coins for T , deriving a residual deterministic oracle
machine T ′.

3. Let S = {s1, ..., s|S|}, and S
def= {(s(i−1)q+1, ..., siq) : i ∈ [|S|/2q]}; that is, S

consists of q-sequences of elements in S such that no element appears twice.
For every (v1, ..., vq) ∈ S, try to emulate an execution of T using the infor-
mation obtained in Step 1. For j = 1, ..., q, proceed as follows, where initially
the permutation π : [N] → [N] is totally undetermined.
(a) Obtain the jth query of T ′, denoted (uj , ij).

If π is undetermined on uj , then determine π(uj) = vj .
If π is determined on uj and π(uj) �∈ S, then this emulation is

terminated.
Thus, the algorithm proceeds to Step 3b only if π(uj) ∈ S, whereas in
this case the value of Γij (π(uj)) is known.

(b) Let aj = Γij (π(uj)), and suppose that aj ∈ [N] (as otherwise we provide
aj as the oracle answer to T ′, and proceed to the next iteration).22 If
π−1 is undetermined on aj , then select at random a vertex u such that π

is undetermined on u, and determine π(u) = aj . Provide u as the oracle
answer to T ′, and proceed to the next iteration.

Note that it is quite likely that aj �∈ S, and in this case if T ′ sub-
sequently issues a query of the form (u, ·) then the emulation will be
terminated (in the corresponding execution of Step 3a).

If the current emulation is successfully completed, then halt and output the
corresponding verdict of T ′. Otherwise, proceed to the next (v1, ..., vq) ∈ S,
while resetting π to be totally undetermined.

4. If no emulation is successfully completed, then halt and output the verdict 1
(i.e., accept).

Each execution of Step 3b may yield a value aj �∈ S, with probability at least 1−
(|S|/N). However, with probability at least |S|/2N , it holds that aj ∈ S. Thus, for
each (v1, ..., vq) ∈ S, we complete an emulation of T ′ (in Step 3) with probability
at least (|S|/2N)q−1 � 1/|S|. Furthermore, such an emulation correspond to the
execution of T ′ on a random isomorphic copy of the input graph.

To see that, with high probability, at least one of the |S| emulations is com-
pleted, we consider all |S| emulations simultaneously. Let u

(i)
1 , ..., u

(i)
q denote the

sequence of vertices that occur in the ith emulation, and let π(i) denote the
corresponding permutation. We partition the |S|/2 samples that do not appear
in S into q equal sets, denoted S1, ..., Sq, and terminate the ith emulation in
iteration j < q if a

(i)
j �∈ Sj . (Indeed, this only makes early termination more

likely; cf. Step 3b.) Still, on can show by induction on j, that with high proba-
bility the number of emulations that are not terminated by iteration j exceeds
|S|·(|S|/4qN)j . Furthermore, the queries issued in the j+1st iteration are mostly
different, because they are determined based on different sequences in S. Using
|S| · (|S|/4qN)q−1 > 1, we conclude that, with high probability, there exists an
emulation that does not terminate before the last iteration.
22 Recall that in this case aj is a fixed indication that the relevant vertex has less than

ij neighbors.

140 O. Goldreich

It follows that the foregoing non-adaptive POT has detection probability at
least ρ/2. Applying this POT for O(1/ρ(ε)) times, we obtain a non-adaptive
tester of query complexity O(N1−(1/q)/ρ(ε)).

Conclusion. Recall that all subgraph-freeness properties do have a proximity-
oblivious testers of constant-query complexity in the bounded-degree graphmodel.
Our conclusion is that non-adaptive testers are not totally useless in that model.

A.3 Testing Strong Connectivity with Forward Queries Only

We show that, for any constant ε > 0, strong connectivity in bounded-degree
digraphs can be tested by using N1−Ω(1) forward queries (and no backward
queries). Needless to say, the same holds for using only backward queries, and
in both cases the tester has two-sided error (which is unavoidable).23

Proposition A.3. In the directed bounded-degree model where only forward
queries are allowed, strong connectivity can be tested in query complexity exp(1/ε)·
N1− 1

t , where t = �4/εd·d < d+(1/ε) and d is the in-degree and out-degree bound.

Proof Sketch: Our starting point is the observation that if a graph is ε-far from
being strongly connected, then it contains at least εdN/4 source and sink compo-
nents each containing at most �4/εd vertices (cf. [16, Cor. 9]).24 The easy case
is when the graph contains at least εdN/8 small sink component, since these
are easy to detect by forward queries. The problematic case is the one in which
the graph contains εdN/8 source components, and we start by considering the
simple case in which each of these source components consists of a single vertex.

In the latter case we can estimate the number of vertices having in-degree
zero, by estimating the number of vertices having in-degree d, d− 1, all through
1. To estimate the number of vertices having in-degree i > 1, we estimate the
number of i-way collisions at the head of randomly selected25 directed edges,
and use the information we already gathered regarding in-degree j for every
j > i. The number of vertices having in-degree 1 is estimated by estimating the
collisions between a uniformly selected vertex and the vertex at the head of a
uniformly selected random edge. Note that, for every i ≥ 2, the number of i-way
collisions can be estimated by a sample of size O(N1− 1

i).
In the foregoing, we have relied on the fact that a vertex has zero in-degree

if and only if it is a source vertex, and on the hypothesis that many source
vertices exist. But, in general, we only know that there are many small source
components. So the intuitive idea is to “contract” all small components, and
23 The distributions used in [16, Sec. 5.2] can be used to prove an Ω(N) query bound

for one-sided error. The point is that we can find no direct evidence to the fact that

a vertex has in-degree zero.
24 Throughout this proof, the word component means a strongly connected component,

and source (resp., sink) components are components that have no in-coming (resp.,

out-going) edges.
25 We may select a random directed edge by selecting a vertex uniformly, and selecting

each of its out-going edges with probability 1/d.

Introduction to Testing Graph Properties 141

consider in-coming edges at the component level. One small difficulty is that
we cannot determine the components of the input graph, and so the following
modification is used.

For every vertex v, we let Cv denote the set of vertices u such that v and u

reside on a directed cycle of size at most s
def= �4/εd. We say that v is good if

for every u ∈ Cv it holds that Cu = Cv. Note that, given a vertex v, we can
determine Cv as well as whether v is good by using ds queries. Also note that
every vertex that resides in a small source component is good. We now emulate
the foregoing procedure on the directed graph in which for every good v the set
Cv is contracted to a new vertex, and note that a vertex has in-degree zero in
the resulting graph if and only if it represents a small source of G. Noting that
the maximum degree in this graph is s · s, the claim follows.

Conclusion. Our lesson is that some non-trivial testing can be carried out also
in the model that allows forward queries only.

Property Testing of Massively Parametrized

Problems – A Survey

Ilan Newman

Department of Computer Science, University of Haifa, Haifa, Israel

ilan@cs.haifa.ac.il

Abstract. We survey property testing results for the so called ’mas-

sively parametrized’ model (or problems). The massively-parametrized

framework studies problems such as: Given a graph G = (V, E), consider

the property BI(G) containing all subgraphs of G that are bipartite.

Massively parametrized Properties, such as BI(G), are defined by two

ingredients: a ’general’ property of inputs (e.g, ’being bipartite’ for the

example above), and an underlying given structure (the graph G for

the property BI(G)). Then the property is the restriction of the general

property to inputs that are associated with the given structure.

In such situation, keeping the general property fixed and varying the

underlying structure, the property and the corresponding tests might

vary significantly in their structure. The focus of the study in this frame-

work is how, for a fixed general property, the testing problem changes

while changing the underlying structure.

1 Introduction

A Massively Parametrized property is a restriction of a ’general’ property to
a subset of inputs, associated with a given structure. E.g., consider the general
graph property of being bipartite. A structure in this case is a graph G = (V, E).
Then the corresponding property BI(G) is a property of all subgraphs of G that
are bipartite.

Property Testing of massively parametrized problems falls formally into the
combinatorial property testing definitions of [15]. The focus of the study in this
framework is how, for a fixed general property, the testing problem changes while
changing the underlying structure.

To better understand the different focus between this ’model’ and the standard
property testing model, let us outline the main relevant features of a problem
in the standard model1: To this end, each such testing ’problem’ contains three
main elements:

– A fixed structure: For each problem size n there is a fixed structure that
determines all inputs.

1 We use the standard definitions of property testing as in [15], and assume basic

knowledge of it. For details see [15,8,21].

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 142–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Property Testing of Massively Parametrized Problems 143

– Inputs: A set of vectors associated with the structure, e.g, coloring of its
points, (or sometimes viewed as a function from the points of the structure
to a certain range).

– The Property: A subset of all possible input vectors.

As an example consider the ’dense graph’ model and the graph property of being
bipartite. Given the problem size m = n2, the fixed structure is Kn, the complete
graph on n vertices. (alternatively, the fixed structure can be viewed also as an
n×n array). The collection of inputs is the set of all subgraphs of Kn which are
just all possible graphs on n vertices. Alternatively, the inputs are all 0/1 coloring
of the n× n array, viewed as the adjacency matrix of graphs on n vertices. The
property is the set of all bipartite graphs on n vertices, or all labelings of the
corresponding array.

Any other graph property induces a similar example. Thus all graph properties
of graphs on n vertices share the same fixed structure (that is Kn) and the same
set of inputs.

For digraph properties, the fixed structure is again an array as above, and
the set of inputs contains all the Boolean labelings of it, with the corresponding
interpretation of an input as a digraph. When properties of Boolean functions are
being considered, the fixed structure is the Boolean cube (of a given dimension).
The set of inputs are all 0/1 coloring of vertices of the cube, where each coloring
is viewed as a Boolean function. A property is then, any subset of functions, e.g.,
the linear functions, small-degree polynomials, monotone functions etc.

Lets us now examine a typical situation in the ’massively-parametrized’ model.
For a general property, e.g, the graph property of ’being bipartite’, and a given
input length m, the structure is not fixed in advance. It could be any graph
G = (V, E) with m edges. The inputs would be all 0/1 coloring of the edges of G,
each viewed as defining a subgraph of G. The property is then all those subgraphs
G′ ⊆ G that are bipartite. Likewise, any graph property can be considered, e.g.,
Eulerianity, being connected, being H-free for some fixed graph H etc.

Properties of digraphs can be considered in a similar way. The structure is
any given digraph, the inputs: all subgraphs defined by 0/1 coloring of its edges,
and the property - any collection of subgraphs. One can also consider proper-
ties of induced subgraphs, rather than just subgraphs. Namely, taking the same
structure (either for the undirected or directed case), with the set of inputs being
the set of all Boolean coloring of the vertices, each viewed as an encoding of an
induced (di)subgraph.

Examples of a different flavor are these that are associated with the general
property of satisfiability. Let the structure be a given Boolean circuit, formula,
or any other computational mechanism. The set of inputs will be the set of all
assignments to the Boolean variables (or appropriate input words to the com-
putation - e.g., words over some alphabet for, say, a given grammar/ automata,
etc.). The property that is considered in this setting is the set of all inputs ac-
cepted by the computation. We call this property the satisfiability (or sometimes
’membership) property of the corresponding structure.

144 I. Newman

There are several points to be emphasized.

1. The distance - In all the examples above, the set of inputs can be viewed
as all possible Boolean vectors of a certain dimension that is defined by the
structure. (E.g., the set of Boolean coloring of the edges for the example
of subgraph properties, or the set of Boolean assignments to the variables
for a given Boolean formula). Thus, the distance between inputs is just the
hamming distance, the same as it is in the standard model of property-testing
(as per the definitions of [15]). In this respect, all the examples considered
above, as well as these that are discussed in what follows, fall directly into
the standard framework of property-testing.

2. By fixing the property and varying the structure, the testability (or non-
testability) of it becomes a property of the structure. In particular, for com-
putational mechanisms as described above, the satisfiability property is the
unique and fixed general property, while the structure varies significantly
(both in terms of different types, e.g., circuits vs. formulae etc. and in terms
of different instances within a type, e.g., the specific given 3CNF formula).

3. Note that a test may be viewed as being composed of two parts: a prepro-
cessing part which depends on the structure, and the ’standard testing’ part
(usually some sampling of the input). As the structure varies, one would ex-
pect that there is much to be changed in the test, which, in turn, shifts some-
what the focus towards the input-independent algorithmic preprocessing of
the structure. Indeed in all positive examples, the tests exhibit significantly
complicated and interesting preprocessing.

In the rest of this survey we outline some of the results that may be viewed
as falling into the framework of massively parametrized property testing. We
start (Section 3) with some results that in retrospect fall into the framework
of massively-parametrized problems although they were not presented as such.
Following, in Section 4, are the results that were done in full awareness of this
framework. This includes results on testing orientations properties in Section
4.1, and a ’general’ lower bound in Section 4.2. Then in Section 4.3 we survey
some results on the satisfiability property for several representations of Boolean
formulae. Finally, in Section 5 we list some of the open problems in this area.

2 General Notations

In what follows we adopt the definitions of [15] with regards to property testing.
A property, as discussed above, will always be formally represented by a set P =
∪n≥1Pn of 0/1 vectors where Pn ⊆ {0, 1}n is a subset of vectors of length n. An
ε-test will be described for a given input length n, that is for Pn. Our focus is on
the asymptotic complexity with respect to n (and the distance parameter ε).

In what follows a graph G = (V, E) is always undirected, unless explicitly
said otherwise. Directed graphs will be denoted similarly but, we will explicitly
say that G = (V, E) is digraph (directed graph) when applies. For a graph
G = (V, E), we will usually denote n = |V |, and the complexity will be in terms

Property Testing of Massively Parametrized Problems 145

of n although the input length will be different (e.g., n2 for the dense-graph
model).

A property P will be said to be testable if there is an ε-test for P making
q = q(ε) queries, for every ε. Namely, its query complexity depends only on ε

but not on the input length n.
For two vectors u, v ∈ {0, 1}n, their hamming distance is defined as dist(u, v) =

|{i| ui �= vi}|. For 0 < ε < 1, and u, v ∈ {0, 1}n, we say that u is ε-far from v if
dist(u, v) ≥ ε · n, and ε-close otherwise. For Pn ⊆ {0, 1}n we say that u is ε-far
from Pn if u is ε-far from every v ∈ Pn. Otherwise, we say that u is ε-close to Pn.

3 Results That Are in Retrospect Massively-Parametrized
Testing

As made clear above, massively-parametrized testing falls strictly into the area
of combinatorial property testing as defined formally in [15]. In particular, some
older results may be viewed in retrospect as results on massively-parametrized
problems, although they have not been considered or stated as such at the time.
We review some of these results.

3.1 Testing Membership in Read-Once Branching Programs

In [20] the following problem is considered: Given a read-once deterministic
oblivious branching program P on n Boolean variables2, the set of inputs is
the set of all Boolean assignments to the variables. It is proved in [20] that the
satisfiability (or membership) problem can be tested (non-adaptively, 1-sided
error test) using O(exp(2w/ε)) queries.

The preprocessing is rather heavy, but can be done in time poly(n).
We note that this result is a generalization of a result of [2] stating that mem-

bership in regular languages is testable. The result of [2] can already be viewed
as fits the massively-parametrized framework. There however, the preprocessing
is ’light’ as the same fixed (hence constant size) automaton serves as the defining
mechanism for every input length word.

3.2 Testing Monotonicity in General Posets

Monotonicity testing in general posets generalizes monotonicity-testing of
Boolean functions. Here a poset P = (V,≤) is the given structure and the set
of inputs is the collection of functions CV where C is typically a total ordered
set (e.g., C = [n] with the natural order, and in particular the Boolean case
n = 2) but could be taken as any poset. The fixed property here is the set of all
functions that are monotone, namely all such f for which f(x) >C f(y) implies
that x >P y.
2 For readers that are not familiar with the concept of branching programs, this con-

cept can be replaced with, say, a depth d = O(1) Boolean formula where each variable

appears only once.

146 I. Newman

The main results in [9] are lower bounds for testing monotonicity for Boolean
labelings of general posets, and in particular, a construction of some posets for
which monotonicity requires relatively large query complexity (previous lower
bounds where only for large range [11]). In addition it is shown in [9] that
monotonicity is testable when the poset is the transitive closure of an orientation
of a tree (or a forest) and C is Boolean. It is also shown that there is a test with
O(log |V |/ε) queries when P is the transitive closure of a directed acyclic graph
(DAG) that as an undirected graph is of bounded tree-width3.

There are some recent interesting generalization of the positive results above,
as well as some improvements (E.g., for posets induced by planar graphs) in [3],
using 2TC-spanners. This is the main topic of another article in this volume and
will not be further described here.

4 Contemporary Results

Here we survey some of the more contemporary results.
As already discussed in the previous sections, one model for graph related

properties is the following. The given but variable underlying structure is an
undirected graph G = (V, E). The set of inputs contains all Boolean assignments
to the edges, namely {0, 1}E. The interpretation of an input α ∈ {0, 1}E is either
the subgraph of G that is defined by (V, E1) where E1 = {e ∈ E| α(e) = 1},
or as an orientation of the edges relative to a fixed orientation. E.g., one can
interpret α as the digraph Gα = (V, Eα) where

Eα = {(i → j)| i < j, α(i, j) = 1} ∪ {(i → j)| i > j, α(i, j) = 0}.

Most work in the model was done with respect to the later interpretation, which
was often referred to as the orientation model.

4.1 Main Results in the Orientation Model

For an undirected graph G = (V, E) and a property P of digraphs, one can
consider the property PG containing these orientations of G that have P . E.g.,
Eulerianity, being strongly connected, not containing a forbidden subgraph H ,
etc. We refer to the set of all orientation of G as the G-orientations, and denote
such an orientation by �G.

Testing H-Freeness. Let H = (VH , EH) be a fixed directed graph. The di-
graph property of H-freeness contains all digraphs that do not have a subgraph
isomorphic to H , and is denoted by FH(G). A sink in a digraph is a vertex v

for which dout(v) = 0, namely, has no outgoing edges. Similarly v is a source if
din(v) = 0. A graph is source-free (analogously sink-free) if it contains no source.

3 The test here has the same complexity even if the range is any total ordered set.

There are other positive results in [9] for special types of posets.

Property Testing of Massively Parametrized Problems 147

The following theorem is proved in [16].

Theorem 4.1. [16] Let H be a fixed digraph that is either source-free or sink-
free. Then, for any O(1)-bounded degree graph G and ε > 0, there is a 1-sided
error ε-test for FH(G) making poly(1/ε) queries.

Proof. (Sketch.) Assume w.l.o.g that H is source-free. To make a G-orientation
�G, H-free, one can pick a vertex v from each copy of H in �G and reorient the
necessary edges so to make v a source. Obviously this should be done sequentially
picking no two adjacent vertices. This implies that if �G is ε-far from being H-free,
every subset C ⊆ V that hits all copies of H in �G must have |C| = Ω(n). Hence,
sampling a random vertex and checking its neighborhood of size |H | to discover
if it belongs to a H-copy (and reject if it does) is a test for H-freeness. ��

Note that the test relies on the fact that G is of bounded degree and that H

is either source free or sink free. One may wonder whether these conditions are
truly necessary. We first address the issue of being either source or sink free.

The simplest interesting digraph H that has both a source and a sink is P2,
the path of length 2 on 3 vertices (every digraph with non-empty edge set is not
P1-free). Testing P2-freeness is easy since a G-orientation is P2-free if and only
if G is bipartite G = (X, Y ; E) and all its edges are oriented, say, from X to Y .
Thus sampling a random edge is a good test. Going however one step further, it
is shown in [16] that testing P3-freeness requires a linear number of queries for
some bounded degree graphs. The reduction is from testing whether a 3-coloring
of a 3-colorable graph is indeed a proper coloring, which is shown to require a
linear number of queries (implicit in [4]).

Regarding the degree restriction, we don’t know if this restriction is absolutely
required, however, [16] observed:

Let C6 be the directed cycle on 6 vertices.

Observation 4.1. [16] There exists an infinite family of graphs, each with O(1)-
average degree, for which every 1-sided error ε-test for the G-orientations prop-
erty of C6-freeness makes (1/ε)Ω(log(1/ε)) queries.

The proof is immediate: testing triangle-freeness in the dense graph model is
reducible to testing C6-freeness in the orientation model where the underlying
graph is a subdivided Kn. The result of [1] completes the proof.

Testing Strong Connectivity. Strong connectivity is a very natural and basic
property of digraphs. We are not aware of any universal result for this property
of G-orientations (namely, testability for every underlying graph). [16] presents
some initial positive results which we describe below.

We start with a few observations. Obviously, one may assume that the un-
derlying graph G = (V, E) is 2 edge-connected as otherwise no orientation is
strongly connected. We can also assume that |E| = O(|V |) as otherwise every
G-orientation is ε-close to be strongly connected (by simply orienting a minimal
2-edge connected subgraph of G to be strongly connected). Thus it is enough to

148 I. Newman

consider 2-edge connected sparse graphs (that is, graphs for which the degree is
O(1) for every vertex).

Let D be a directed graph. We denote by SC(D) the DAG that is defined
on the strongly connected components of D in the standard way. A source com-
ponent of D is a strongly connected component C of D that corresponds to a
source vertex in SC(D) (in other words, every edge between a vertex in C and a
vertex in V (D) \ C is directed away from C). A sink component of D is defined
similarly. The following is an observation (used in the context of testing directed
graphs properties) from [5].

Observation 4.2. [5] Let G = (V, E) be a graph on n vertices, and �G a G-
orientation. If �G has at least Ω(n) sources or sinks components then a source or
sink component of �G can be found in O(1) queries. ��
The only known test for strong connectivity of G-orientations is based on Ob-
servation 4.2. The following property identifies a class of underlying graphs on n

vertices for which any orientation that is far from being strongly connected has
Ω(n) sources or sinks.

Definition 4.1. A family of undirected 2-edge connected graphs {G = (V, E)}
is called efficiently-Steiner-connected if for every δ < 1 and graph G in the
family, for every S ⊆ V such that |S| ≤ δ2|V |, there is a connected subgraph
T = (V ′, E′) with S ⊆ V ′ and |E′| ≤ 10δ|V |.
We note that the constant 10 and the function types of δ in the definition are
somewhat arbitrary.

Theorem 4.2. [16] If G is efficiently-Steiner-connected then the G-orientations
property of being strongly connected is testable by a 1-sided error test.

We note that any ’slightly expanding’ graph is strongly-Steiner-connected, while
for example, the cycle is not. A simple application of Theorem 4.2 is given by
the following theorem.

Theorem 4.3. [16] For any G that is a linear expander graph as well for the√
n × √

n two dimensional grid, the G-orientations property of being strongly
connected is testable by a 1-sided error test.

Testing s − t Connectivity. Let G = (V, E) be an underlying graph, and
s, t ∈ V (G). The G-orientations property of being s − t connected is another
natural property of (labeled) digraphs. It is shown in [6] that this property is
testable for any underlying graph G. The test cannot easily be described. It
is composed of a series of non trivial reduction steps that finally reduces the
problem to that of testing membership in a bounded width branching program.
The preprocessing, however, is in polynomial time. It seems that the dependence
on ε might be unnecessarily high, although we don’t know of a better algorithm
or any non-trivial lower bound.

We state the main theorem of [6]. Let P st
G be the G-orientations property of

being s − t-connected.

Property Testing of Massively Parametrized Problems 149

Theorem 4.4. [6] For any undirected graph G, two vertices s, t ∈ V (G) and
every ε > 0, there is a 1-sided error ε-test for the property P st

G with query com-
plexity q such that,

q = (2/ε)2
O((1/ε)(1/ε))

Testing Eulerianity. A digraph G = (V, E) is Euler if for every v ∈ V ,
dout(v) = din(v). It is shown in [12] that the orientation problem of being Eu-
lerian is not testable in general, even by 2-sided error tests. However, the upper
and lower bounds are still quite far apart. We state some of the results in [12].

Theorem 4.5. [12] There exists an infinite family of graphs for which every
1-sided error test for being Eulerian must make Ω(|E|) queries.

The proof is based on the following observation: every 1-sided error test on
far inputs must discover a witness for non-Eulerianity. Clearly if a digraph is
Eulerian then for every cut C = (S, S̄), the number of edges oriented from S to
S̄ equals the number of edges that are oriented in the opposite direction. Such
a cut will be called a balanced cut. Thus for a cut C, any orientation of at most
half the edges of C does not exclude the possibility that C is balanced. Indeed,
it is shown in [12] that any witness for non-Eulerianity must contain at least half
the edges of some unbalanced cut.

The lower bound follows by constructing an underlying graph and set of ori-
entations that are ε-far from being Eulerian, and such that each unbalanced cut
is of size Ω(|E|).

The lower bound for 2-sided error test is much weaker, however, unlike The-
orem 4.5, it holds for bounded degree graphs as well.

Theorem 4.6. [12] There exists an infinite family of graphs of bounded degree
{Gn}n≥1, such that, for every 0 < ε ≤ 1/64, every non-adaptive (2-sided error)

ε-test for the property of Gn-orientations of being Eulerian, uses Ω

(√
log n

log log n

)
queries. Consequently, every adaptive test requires Ω(log log n) queries.

We note that [12] also shows a stronger lower bound for 1-sided error tests for
bounded degree graphs, which will not be quoted here.

As for positive results, [12] include several (sublinear) upper bounds for testing
Eulerianity. Their complexity depends on the maximum and average degree of
the underlying graph. There is, however, a large gap between the upper bounds
and lower bounds in this case.

4.2 Some Lower Bounds – An On-Going Work

Proving lower bounds for the orientation model has been so far with limited suc-
cess. In what follows we present a fairly general lower bound for 1-sided error non-
adaptive tests. We don’t know the corresponding right bound for adaptive tests.

It will be easier now to switch to the interpretation of an input as a subgraph
of the underlying graph, rather than an orientation of it. Namely, let G = (V, E)

150 I. Newman

be an underlying graph, an input g ∈ {0, 1}E is identified with a subgraph Gg of
G containing the edges that are assigned 1 by g. A property will be interpreted
as a collection of subgraphs of G.

Consider the property of being bipartite. Any 1-sided error test must find
an odd cycle in every far input. However, the graph G could be taken to be
a bounded degree Ramanujan expander, hence, with no short cycles. Thus an
obvious lower bound for a 1-sided error test is the length of the shortest cycle
which would be Ω(log n) in that case. Can one do better?

[13] prove a fairly general lower bound for any graph property in which every
0-witness contains a cycle (e.g., bipartiteness). The lower bound holds only for
non-adaptive tests and gives a result of the type Ω(nα) for some 0 < α < 1.

We present here the results of [13]. For this we need to define the following
distribution, analog to the Erdös-Rényi random graph model G(n, p) for arbitrary
underlying graph rather than for the complete graph.

Definition 4.2. Let 0 < δ < 1 and G = (V, E). We define the distribution
D(δ) on subgraphs of G as follows. We select each edge of E independently, with
probability δ, and set E′ to include all the edges that were selected. G′ = (V, E′)
is the resulting subgraph.

Theorem 4.7. [13] Let G = (V, E) be an underlying fixed graph of girth ≥ g.
Let P a property of subgraphs of G such that every 0-witness for P contains a
cycle. If δ < 1 is such that ProbD(δ)[dist(G′, P) > ε|E|] ≥ 0.8 then every 1-sided
error ε-test for P requires at least Ω(δ−g/3) queries.

We note that the constant 0.8 in the theorem is somewhat arbitrary.

Proof. (Sketch.) Since any witness for ε-far inputs contains a cycle, a 1-sided
error test must find a cycle on any far input. Let D be any distribution on ε-
far inputs, and q > 0. Suppose that for every fixed set of queries Q of size q,
the probability (over D) that Q contains a cycle is bounded by, say 1/3 then,
using Yao’s argument, every non-adaptive algorithm fails to find a cycle with
probability 2/3 on ε-far inputs, implying that any 1-sided error ε-test for P must
make at least q queries.

Now let D = D(δ), with δ such that D(δ) is essentially concentrated on ε-far
inputs, as stated by the assumption of the theorem. For any fixed set Q ⊆ E(G),
Q contains at most 2q end-points. Let v be an end-point of an edge in Q. The
probability that v is in a cycle C ⊆ Q is bounded by 2q2 ·δg, since there are only
2q2 possible end-points for the two disjoint path of length g/2 that start at v

and are part of a cycle of length at least g. Hence, by the union bound (on the 2q

different v’s), we conclude that the probability for finding a witness is bounded by
4q3δg, implying that q = Ω(δ−g/3) to guarantee constant probability of finding a
witness. We note that although D is not strictly concentrated on far inputs but
rather has most of its mass there, the proof does follow e.g, by formally using
D∗ = D|Far where Far is the event that the graph chosen according to D is
indeed ε-far from P . It is standard to show that D well approximates D∗. ��

Property Testing of Massively Parametrized Problems 151

Corollary 4.1. Let G = (V, E) be an underlying fixed graph of girth ≥ g. Let
P be a property of subgraphs of G for which every 0-witness for P contains a
cycle. Assume further that dist(G, P) > (1 − δ)|E| for some fixed 0 < δ < 1/2.
Then every 1-sided error δ-test for P requires at least Ω(δ)−g/3) queries.

Proof. (Sketch.) Let G as above and δ for which the assumption of the corollary
holds. By Chernoff bound D(3δ) will be essentially concentrated on subgraphs
of G that have at least 2δ|E| edges. Hence by the assumption are δ-far from P .
Thus the corollary is implied by Theorem 4.7. ��
Here are some applications of Corollary 4.1.

Let H be a fixed graph. A graph G contains H as a minor if after the deletion
and contraction of some edges in G one arrives at a graph isomorphic to H . The
graph property of not containing specific minors is extensively studied in graph
theory, e.g., extending planarity.

Theorem 4.8. Let H = (VH , EH) be a fixed graph containing a cycle. Then
for some fixed ε, α > 0, there is an infinite sequence of graphs {Gn}, where Gn

is an n vertex graph, such that any non-adaptive 1-sided error ε-test for the
Gn-subgraphs property of not having H as a minor must make Ω(nα) queries.

We sketch the proof for H = Kr the complete graph on r ≥ 3 vertices. The same
proof holds for any such H .

Proof. (Sketch.) In view of Corollary 4.1 it is enough to show a high girth
underlying graph that is sufficiently far from being Kr-free. Lemma 4.1 asserts
this for δ = 1/3.

Lemma 4.1. Let r be fixed, then there is a graph on n vertices G that has girth
Ω(log n), and is (2/3)-far from being Kr minor free.

Proof. Let G be a random graph from the standard Erdös-Rényi model of ran-
dom graphs, G(n, c/n) (namely, each edges is chosen with probability c/n and
independent of any other edge), for c = c(r) to be defined later.

It is standard to show that after deleting o(n) edges such a random graph will
have (with very high probability) girth g = Ω(log n), and at least cn/3 edges (or
average degree at least 2c/3).

A theorem of Kostochka, Thomason [18,22], asserts that every graph of av-
erage degree d contains a K� for � = �(d) = βd√

log d
as a minor, for some fixed

universal constant β. This means that if we fix c = a
β r

√
log r, for large enough

constant a, we are guaranteed that �(2c/9) > r. Hence, not only that G has a
Kr minor but also every subgraph of it containing 1/3 of the edges has such
minor. We conclude that G is 2/3-far from being Kr minor free. ��
As every 0-witness for not being H-free has a cycle, corollary 4.1 ends the proof.

��
For an underlying graph G = (V, E), let Bi(G) be the property of G-subgraphs
containing these subgraphs of G that are bipartite. Another application is for
testing Bi(G).

152 I. Newman

Theorem 4.9. For some fixed ε, α > 0, there is an infinite sequence of graphs
{Gn}, where Gn is an n vertex graph, such that any non-adaptive 1-sided error
ε-test for Bi(Gn) must query Ω(nα) queries.

Proof. (Sketch.) As any witness for non-bipartiteness must contain an odd
cycle, using Corollary 4.1 it is enough to show a high girth underlying graph
that is sufficiently far from being bipartite. To construct such graph, again we
choose one from the random graph model G(n, c/n). It is not hard to see that
for large enough constant c, one can ensure that such a graph is 2/3-far from
being bipartite, simply since each partition will contain many edges with both
endpoints inside the parts. To ensure logarithmic girth, as before, one may delete
o(n) edges to get rid of all small cycles. ��
A similar application with a similar proof is the following: For G = (V, E) and
φ : E → {0, 1}, we now interpret φ as defining an orientation rather then a
subgraph. The property Ac(G) contains all �G-orientations that are acyclic.

Theorem 4.10. For some fixed ε, α > 0, there is an infinite sequence of graphs
{Gn}, where Gn is an n vertex graph, such that any non-adaptive 1-sided error
test for Ac(Gn) must query Ω(nα) queries.

4.3 Testing Membership in Boolean Formulae

Testing membership in Boolean formula is a natural property and is extensively
studied in TCS. We have seen some corresponding testability results for the more
general situation of membership in different models of language representations
in Section 1. Here we concentrate on CNF formulae, and formulae that are the
conjunction of typically many small subformlae.

Constraint Graph Formulae. We start with a model for formulae that is
quite related to the orientation model discussed in Section 4.1, and that was
formulated in [17].

A constraint-graph is a labeled multi-graph (a graph where loops and parallel
edges are allowed), where each edge is labeled by a distinct Boolean variable, and
every vertex is associate with a Boolean function over the variables that label its
adjacent edges4. A Boolean assignment to the variables satisfies the constraint
graph if it satisfies every vertex function5. We associate with a constraint-graph
G the property of all assignments satisfying G, denoted SAT (G).

Thus, e.g., the property of subgraphs (or of G-orientations) of being Eulerian
can be expressed in an obvious way. Similarly, the property of G-orientations of
4 One should not confuse this definition of ’constraint-graphs’ with the definition used

by Dinur in [7]. There, each vertex is associated with a distinct Boolean variable and

the edges are labeled by constraints.
5 Thus formulae are conjunction of the individual vertex formulae. One may similarly

consider other types of top gates to connect the vertex formulae, e.g, threshold gates,

etc.

Property Testing of Massively Parametrized Problems 153

not having a source vertex can be expressed, as well as the related property of
edge bi-coloring so that each vertex sees both colors.

Obviously, formulae represented by constraint graphs are general enough to
represent any Boolean formula (as one can take a two vertex graph, with many
parallel edges between the two vertices, and any complex formula on one of the
vertices). Hence, the interesting case is when further restrictions are put on the
complexity of the vertex formulae.

The main result of [17] is a test for the following class of Boolean formulae.
For a vertex v ∈ V (G) let Ev = {(v, w) ∈ E(G)}, namely all edges adjacent to
v. For an assignment σ ∈ {0, 1}E and F ⊆ E we denote by σ(F) the restriction
of the assignment σ on F .

Definition 4.3. Let LDi be the set of constraint graph formulae obtained from
an underlying graph G such that for every two assignments σ1, σ2 and every
vertex v with degG(v) ≥ 3, if σ1, σ2 do not satisfy fv then either σ1(Ev) = σ2(Ev)
or they differ on at least i variables.

Theorem 4.11. [17] For every constraint-graph G ∈ LD3 there exists a 1-sided
error, non-adaptive ε-test for SAT (G), making 2Õ(1/ε) queries.

The test is too complicated to be described here. We further mention that it is
a generalization of a test for the property of G-orientations of not containing
a source. The preprocessing involved in constructing the test, given G, is in
polynomial time. We also note that this property, as well as the property of edge
bi-coloring in which each vertex sees edges of both colors are in the family LD3

(while the property of being Eulerian is not).
An interesting application of Theorem 4.11 is to better understand the testa-

bility ’boundary’ of the membership problem for restricted CNF formulae. This
is the focus of the next subsection.

Testing Membership in CNF Formulae. General CNF formulae are hard
to test. In [4] the authors show that there exists a family of 3-CNF formulae that
are highly non-testable (every test requires a linear number of queries). Hence
further restriction on the formulae has to be put in order to allow testability.

A Read-k-times formula is a formula in which every variable appears at most k

times. By standard arguments the result of [4] can also be extended to read-three
times formulae (and any constant k ≥ 3 size clauses).

What about 2CNF ? It turns out that this does not yet allow testability either.
A corollary from the lower bound of [9] for testing monotonicity over general posets
is that even monotone 2CNF are hard to test (although the lower bound is far
from being linear). This is so as in [9] a two leveled poset is constructed for which
monotonicity is hard to test. Thus this hard to test property can be expressed as
2CNF. Moreover, by renaming the variables it is, in fact, a monotone 2CNF6.

6 Alternatively, the 2CNF can also be transformed into a read-3-times (but not mono-

tone), hard to test 2CNF, using the standard reduction to bounded number of occur-

rences of a variable.

154 I. Newman

Theorem 4.11 implies that restricting the CNF to be Read-2-times (a.k.a
’read-twice’) already guarantee testability, disregarding the clause size. In view
of the discussion above, this seems best possible in this respect.

Corollary 4.2. Every read-twice CNF formulae is testable by a 1-sided error test.

Proof. A read-twice formula can obviously be represented by a constraint graph.
Further, as per the definition of LD3, clauses of size smaller than 3 pose no
restrictions. Since every clause as only one 0-assignment, every two non identical
0-assignments that falsify a clause of size 3 or more differ on at least 3 variables.
Thus Theorem 4.11 applies, and implies the claim. ��

One may wonder whether LD3 is coincidental, namely are LD2 formulae testable.
Indeed [10] (see more details in [17]) noted that this is not the case: For every
Boolean formula θ there is a formulae φ ∈ LD2 so that for any q, there is
an ε-test for θ-membership with q queries if and only if there is an ε-test for
φ-membership using q queries. To see this let θ be a Boolean formula over a
set variables X = {x1, . . . , xn}. Let G be the constraint-graph on two vertices
{v, t}, that has n + 1 parallel edges between v and t, one that is associated with
the variable y and the rest n edges are labeled each with a distinct variable in
X . Let fv = y ⊕ (

⊕n
i=1 xi) and ft = θ(x1, . . . , xn) ∨ (y =

⊕n
i=1 xi). Obviously

the resulting property is in LD2. Given a test for one of the properties it is
straightforward to build a test for the other property.

Testing General Read-Once Formulae. Here we discuss testing membership
in other restricted formulae that are not the results of [20] or [17].

Read-Once formulae are Boolean formulae with ∧ (AND) and ∨ (OR) gates
in which every variable appears at most once. In addition, in what follows, we
will assume that each variable appear unnegated, thus such formulae represent
monotone Boolean functions.7

Read-Once formulae have been studied extensively in the past, but surpris-
ingly, not with respect to whether their corresponding membership problem is
testable. We note that bounded depth read-once formulae are represented by
constant width branching program, thus their testability follows from [20]. We
present here a result of Fischer, Lachish and Nimbhorkar that is much stronger.

Theorem 4.12. [14] For every read-once formula F, the membership problem
for F is 1-sided error testable.

We present a relatively detailed proof as the idea here is somewhat different
from the standard ideas one meets in property testing. The analysis we bring
here imply an ε-test that has query complexity (1/ε)O(1/ε), and that the test can
be constructed (that is, the preprocessing) in polynomial time. A variation of
this idea and better analysis [14] implies a much better dependence on ε.

7 This is w.l.o.g as the formula is known in advance, and by renaming we arrive to the

desired situation.

Property Testing of Massively Parametrized Problems 155

Proof. (Sketch), Along the sequel we identify the formula F with the Boolean
function that it computes F : {0, 1}n �→ {0, 1}. We say that F is an ∨-formula if
its top gate is ∨, similarly ∧-formulae are defined. A single variable is considered
both a ∨-formula and an ∧-formula.

We first note that the formula F may be assumed to be layered so that the
entries to each ∨-gate are variables or come from ∧-gates, and the entries for
∧-gates are variable or come from ∨-gates.

The test will be recursive w.r.t ε, that is, an ε-test for a ∨-formula will call
a δ-test for a ∧-subformula, with δ significantly larger than ε, while the test for
∧-formula will call a test for ∨-formula with nearly the same ε. For this to end
we first note that for any read-once ∨-formula F on at least two variables, any
assignment is 1/2-close to F−1(1).

Let F = ◦k
i=1Fk where ◦ is either ∨ or ∧. For any assignment x to F , x is

naturally being partitioned to x1, . . . xk, where xi, i = 1, . . . , k is an assignment
to the variables in Fi. We keep this notation and for each assignment x to F ,
x1, . . . , xk refer to the corresponding assignments for F1, . . . , Fk.

We next describe a ∧-test for ∧-formulae and ∨-test for ∨-formula. In the
following n is the number of variables of F .

ε-∧-test: Let F = ∧k
i=1Fk with Fi on si variables. If k = 1 and F1 is a single

variable test deterministically F1 by probing the variable.
Otherwise, independently for 9/ε2 times pick an i ∈ [k] with probability si/n

and δ-∨-test Fi independently twice, with δ = ε(1−ε/3). If for the chosen i, both
tests answer 1, set Ti = 1 and otherwise set Ti = 0. If for any of the chosen i’s
Ti = 0 stop and output 0 (that is reject x as not being in F−1(1)), and otherwise
(if for all i’s Ti = 1) accept x (as being ε-close to F−1(1)).

ε-∨-test: Let F = ∨k
i=1Fk with Fi on si variables.

If k = 1 and F1 is a single variable, deterministically test F1 using one query.
If for some i, si < εn, or if ε ≥ 1/2 stop and accept x (as being ε-close to F−1(1)).

Otherwise, for every i ∈ [k] set αi = ε · n/si and perform � = 1 + log3 k

independent times αi-∧-test for Fi. For such i set Ti = 1 if all the � independent
tests return 1 and 0 otherwise. If any of the Ti, i = 1, . . . , k has returned 1
accept x (as being ε-close to F−1(1)). Otherwise (if for every i, Ti = 0) reject
x as being ε-far from F−1(1).

To assert the correctness of the tests, assume inductively that both tests are
1-sided error and have error probability at most 1/3 on smaller formulae for any
ε (the reader may check this for the base case of one gate formulae). It is easy
to verify that both tests have 1-sided error assuming inductively that they do
on subformulae.

To assess the error probability of the ∧-test, assume that x is ε-far from the
∧-formula F . Then xi is εi-far from being a member of Fi with

∑
εi · si

n = ε.
From this it follows, by simple average-argument, that there are at most 1−ε2/3-
fraction of the variables that may appear in Fi for which xi is (1− ε/3)ε-close to
Fi. Thus an error will occur on x only if all 9/ε2 i’s that are sampled resulted in
Fi for which xi is (1−ε/3)ε-close to Fi, or when an i for which xi is (1−ε/3)ε-far
from Fi is sampled, and the ∨-test for Fi errs twice. The former event happens

156 I. Newman

with probability smaller than e−3 and the later with probability at most 1/9,
resulting a total error bounded by 1/3.

For the ∨-test, note that if x is ε-far from being a member of F , namely one
needs to change at least εn bits of x in order to become in F−1(1), then in each
xi one should change at least εn bits to become a member of F−1

i (1). It follows
that xi is at least αi-far from Fi. Hence, an error on x occurs only if at least one
of the Ti’s is wrong, meaning that all � tests were wrong for Fi. By the union
bound this will happen with probability at most k · 1/(3k) ≤ 1/3.

We end by estimating the query complexity. Let t∨(ε), t∧(ε) denote the corre-
sponding complexity of the ∨ and ∧ tests. Note first that for ε ≥ 1/2 t∨(ε) = 1.
Also, this is the case if F is ∨-formula with k > 1/ε, or si < εn. Thus we get
t∨(ε) ≤ log(1/ε)

ε · t∧(ε/(1− ε)). (Since si ≥ (1− ε)n for all i’s, which implies that
αi ≤ ε

1−ε).
Similarly, ∧-test takes 1-query for k = 1, and for general ε it takes t∧(ε) ≤

6
ε2 · t∨(ε(1 − ε)). Solving the recurrence implies the result. ��

5 Open Problems

There are many open problems that arise in view of the results above. I will
mention here but some.

1. There are nearly no testability results for any interesting subgraph-property
of a given undirected underlying graph. There are no interesting results at
all on the induced analog (namely, where the subgraph is defined by vertex
labeling).

2. Testing monotonicity is not a main theme here. However, testing mono-
tonicity in general posets does fall into this context. In view of the large
gap between the upper and lower bounds in [9], closing this gap remains
an interesting open problem. One should mention that even for the Boolean
cube, the complexity of testing monotonicity of Boolean functions (2-sided
error) is far from being understood.

3. In [20] the dependence in the width is doubly exponential. There is no match-
ing lower bound for this dependence (see also [19] for further related details).
As this result is what partially determines the dependence on ε in the result
for testing s − t-connectivity (Section 4.1), this further motivates resolving
the question of the exact dependence in ε of both testing problems.

4. A general result on testing strong connectivity for G-orientations, or a non-
testability result are still missing. It still might be the case that for every
underlying graph this problem is testable. On the other hand, we don’t have
any non-trivial upper bound even of the form nα for α < 1. Similarly the
variants of s − t strong connectivity and s-connectivity (namely, that s can
reach every other vertex) are open.

Acknowledgments

This work was partially supported by the Israel Science Foundation (grants No.
1011/06).

Property Testing of Massively Parametrized Problems 157

References

1. Alon, N.: Testing subgraphs in large graphs. Random Struct. Algorithms 21(3-4),

359–370 (2002)

2. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable

with a constant number of queries. SIAM Journal on Computing 30, 1842–1862

(2001)

3. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:

Transitive-closure spanners. In: SODA, pp. 932–941 (2009)

4. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to

test. SIAM J. Comput. 35(1), 1–21 (2005)

5. Bender, M.A., Ron, D.: Testing properties of directed graphs: acyclicity and con-

nectivity. Random Struct. Algorithms 20(2), 184–205 (2002)

6. Chakraborty, S., Fischer, E., Lachish, O., Matsliah, A., Newman, I.: Testing s-
t -connectivity. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)

RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 380–394. Springer,

Heidelberg (2007)

7. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

8. Fischer, E.: The art of uninformed decisions: A primer to property testing.

BEATCS: Bulletin of the European Association for Theoretical Computer Sci-

ence 75, 97–126 (2001)

9. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-

nitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of the

34th ACM STOC, pp. 474–483 (2002)

10. Fischer, E.: Personal communication

11. Fischer, E.: On the strength of comparisons in property testing. Inf. Com-

put. 189(1), 107–116 (2004)

12. Fischer, E., Lachish, O., Matsliah, A., Newman, I., Yahalom, O.: On the query com-

plexity of testing orientations for being Eulerian. In: Goel, A., Jansen, K., Rolim,

J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp.

402–415. Springer, Heidelberg (2008) (to appear in Algorithmica)

13. Fischer, E., Lachish, O., Newman, I., Rosenberg, E.: Lower bound technique for

properties of underlying graphs. In Preparations

14. Fischer, E., Lachish, O., Nimbhorkar, P.: In Preparations

15. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653–750 (1998)

16. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing orientation properties. Elec-

tronic Colloquium on Computational Complexity (ECCC) (153) (2005)

17. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing properties of constraint-

graphs. In: IEEE Conference on Computational Complexity, pp. 264–277 (2007)

18. Kostochka, A.: The minimum Hadwiger number for graphs with a given mean

degree of vertices. Metody Diskret. Analiz. 38, 37–58 (1982)

19. Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complexity.

Computational Complexity 17(1), 70–93 (2008)

20. Newman, I.: Testing membership in languages that have small width branching

programs. SIAM J. Comput. 31(5), 1557–1570 (2002)

21. Ron, D.: Property testing (A Tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif,

J.H., Rolin, J.D.P. (eds.) Handbook of Randomized Computing. Kluwer Press,

Dordrecht (2001)

22. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-

bridge Philos. Soc. 95, 261–265 (1984)

Sublinear Graph Approximation Algorithms

Krzysztof Onak�

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. We survey the recent research on algorithms that approxi-

mate the optimal solution size for problems such as vertex cover, max-

imum matching, and dominating set. Techniques developed for these

problems have found applications in property testing in the bounded-

degree graph model.

Keywords: constant-time algorithms, maximum matching, vertex cover,

minor-freeness, hereditary properties.

1 Introduction

Classical optimization problems on graphs include maximum matching, vertex
cover, and dominating set. Solving them—even approximately—requires in most
cases reading an amount of information that is at least linear in the number of
vertices. A natural question that arises in this context is whether this amount
of processing is necessary if one is only interested in the approximate size of the
optimal solution rather than the solution itself.

An early example of an efficient approximation algorithm in this setting is
given by Chazelle, Rubinfeld, and Trevisan [1]. Their algorithm computes a
(1 + ε)-approximation to the minimum spanning tree cost in a connected graph
of maximum degree bounded by d and weights in {1, . . . , w}. The running time
of the algorithm is Õ(dw/ε2), which does not depend on the number of vertices
in the graph.

In this brief survey, we focus on the line of research that was initiated by
Parnas and Ron [2] as a result of observing a connection between sublinear
approximation algorithms and distributed algorithms.

1.1 Preliminaries

The Approximation Notion. We say that an algorithm is an (α, εn)-approximation
algorithm for a problem X if with probability 2/3, it outputs a value A such that
OPT ≤ A ≤ α · OPT + εn, where OPT is the optimal solution size for the input
instance of X , and n is the number of vertices in the graph.

� Supported in part by NSF grants 0514771, 0732334, and 0728645, an Akamai fel-

lowship, and a Symantec fellowship.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 158–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sublinear Graph Approximation Algorithms 159

Constant Time Algorithms. If the running time of an algorithm is a function of
only the average vertex degree, and the approximation parameter ε, then such an
algorithm is traditionally described as a constant-time algorithm, since for graphs
with constant average degree, it runs in time independent of the graph size.

Throughout the survey, we focus on the case when the maximum degree is
bounded by d. In all considered problems, whenever only a bound d̃ on the
average degree is known, one can slightly modify the problem and remove from
the graph all vertices of degree greater than C · d̃/ε, where C is a sufficiently
large constant. The number of such vertices is sufficiently small not to impact
the solution size significantly.

The Model. A sublinear-time algorithm does not have time to go over the entire
input to preprocess it in an suitable way. Therefore, we have to assume something
about how the algorithm accesses the input. Two kinds of queries are allowed:
degree queries and neighbor queries; both answered in constant time. In a degree
query, the algorithm specifies a vertex v and it obtains the degree of v. In a
neighbor query, the algorithm specifies both a vertex v and a positive integer k.
In reply, the algorithm obtains the label of the k-th neighbor of v. We do not
assume anything about the ordering of any vertex’s neighbors.

Furthermore, we assume that the algorithm can select a vertex in the graph
uniformly at random in constant time. Also, we assume that it is possible to
maintain a efficient dictionary with vertices as keys.

2 General Bounded-Degree Graphs

We start by describing constant-time approximation algorithms for general
graphs.

2.1 Vertex Cover

The framework. In this section, we present constant-time (2, εn)-approximation
algorithms for vertex cover. Constant-time approximation algorithms for this
and other problems are often created by constructing an oracle that provides
query access to an approximately optimal solution to the problem. For vertex
cover, an oracle provides query access to a vertex cover S by answering queries
of the form “Is v in S?” The cover S can be a function of the graph and random
bits, but it is important that it not be a function of queries. Given such an oracle,
one can use sampling to approximate the size of S, and indirectly, the optimal
solution size if S is approximately optimal. If the oracle can answer each query
very quickly, reading just a tiny part of the graph, then this approach yields a
sublinear-time approximation algorithm.

A connection to local distributed algorithms. We say that a distributed algorithm
is local if it runs in a number of communication rounds that is independent of the
number of vertices in the graph. Parnas and Ron [2] observe that an oracle as the
above can be constructed from a local distributed algorithm for vertex cover. Let

160 K. Onak

A be a local distributed algorithm that computes a vertex cover of size at most
α times the optimum in at most t communication rounds. To find out whether
A includes a given vertex v, it suffices to simulate A on the neighborhood of v

of radius t + 1. Since the distributed algorithm runs for t rounds, running the
algorithm on the limited neighborhood does not affect A’s decision on whether
v ∈ S.

Then an (α, εn)-approximation to the vertex cover size can be computed by
sampling O(1/ε2) vertices and estimating the fraction of those that the dis-
tributed algorithm includes in the vertex cover. If d is the maximum degree of
the graph, an algorithm only needs to make dO(t)/ε2 queries to the graph.

By applying a local distributed algorithm of Kuhn, Moscibroda, and Watten-
hofer [3], Parnas and Ron obtain a (2, εn)-approximation algorithm for vertex
cover that runs in d

O(log d

ε3) time.
Marko and Ron [4] improve on the above result by using Luby’s distributed

maximal independent set algorithm [5] to locally find a maximal matching (which
is a maximal independent set in the line graph). The set of vertices matched in
any maximal matching is well known to form a vertex cover of size at most twice
the optimum [6]. The running time of the (2, εn)-approximation algorithm of
Marko and Ron is dO(log(d/ε)).

A Local Greedy Approach. In [7], we propose a new method for locally computing
a maximal independent set. Compared to Luby’s algorithm, our method turns
out to be more efficient in terms of the number of queries, while Luby’s algorithm
needs fewer communication rounds. Our starting point is the simplest classical
algorithm for finding a maximal independent set. The algorithm considers ver-
tices one by one in arbitrary order, and greedily adds them to the independent
set being constructed whenever possible. Checking if a vertex v is in the maximal
independent set can be achieved by recursively checking if any of the neighbors
of v considered before v is in the maximal independent set. If none of them are,
v is in the maximal independent set. Otherwise, it is not. Unfortunately, if the
vertices are considered in arbitrary order, this can create a long chain of depen-
dencies, and may require exploring almost the entire graph to answer a single
query. We avoid this by considering vertices in random order. The randomiza-
tion makes the probability of visiting vertices distant from a query point very
small. Instead of explicitly maintaining an ordering of vertices, we independently
assign a uniform random number in [0, 1] (after a proper discretization) to every
vertex. The numbers generate a random ordering of the vertices.

It can be shown that for a fixed query vertex, the above method requires
exploring 2O(d) vertices in expectation, and therefore, the query complexity is
2O(d) in expectation as well. This implies that our algorithm runs in 2O(d)/ε2

time. This is better than the algorithm of Marko and Ron [4] in terms of the
dependence on ε, but worse in terms of the dependence on d.

In [7], we also propose the following simple pruning heuristic. For a given
vertex v, the algorithm recursively considers neighbors of v that were assigned a
number lower than that of v. In the heuristic, the algorithm recursively considers
the neighbors in order of their random numbers, starting from the lowest. Once

Sublinear Graph Approximation Algorithms 161

it finds a neighbor that belongs to the maximal independent set, it terminates
the recursive search, because this already implies that v is not in the maximal
independent set. Yoshida, Yamamoto, and Ito [8] prove that the expected number
of vertices visited for a random query point is O(d). Using this fact, they show
that the algorithm with the pruning heuristic runs in Õ(d4/ε2) expected time,
which gives the first algorithm of running time polynomial in both d and 1/ε.

Lower Bounds. It is also worth noting that the multiplicative constant 2 is the best
possible. Trevisan (the result appeared in [2]) proves that there is no constant-time
(2− δ, εn)-approximation algorithm for this problem for any constant δ > 0. Any
such algorithm has to make at least Ω(

√
n) queries for a sufficiently high constant

d. Furthermore, Parnas and Ron [2] prove that any (O(1), εn)-approximation al-
gorithm must make at least Ω(d) queries to the graph.

2.2 Maximum Matching

Our paper [7] gives the first (1, εn)-approximation algorithm for maximum match-
ing. In the algorithm, we construct a series of oracles that provide query access to
better and better matchings.

Recall than an augmenting path for a given matching M is a path that starts
at an unmatched vertex and alternates between edges not in M and those in M

until it reaches another unmatched node. Such a path can be used to increase
the matching size by 1. A crucial role in our approach is played by a lemma
proved by Hopcroft and Karp [9]. They showed that if M is a matching that has
no augmenting paths of length less than t, and one applies to M a maximal set
of vertex-disjoint augmenting paths of length t, then the resulting matching can
only have augmenting paths of length greater than t.

It is also easy to show that if a matching does not have any augmenting path
of length less than 2k+1, then its size is at least k

k+1 times the optimum. One can
construct a large matching, of size at least the optimum minus εn, by starting
with an empty matching and applying a maximal set of disjoint augmenting
paths of length first 1, then 3, 5, 7, and so on until there is no augmenting path
of length less than 2�1/ε+ 1.

In our constant-time algorithm, we create a separate oracle for each of the
matchings obtained in the above process. The k-th oracle provides query access
to a matching that has no augmenting paths of length less than 2k +1. The oracle
creates the matching locally by querying the previous oracle, and applying a max-
imal vertex-disjoint set of augmenting paths of length 2k − 1. To find such a set
locally, the oracle uses any method for locally finding a maximal independent set.

We show that the algorithm runs in 2dO(1/ε)
time if it uses our local greedy

approach. Yoshida, Yamamoto, and Ito [8] show that the application of the
pruning heuristic improves the algorithm’s running time to dO(1/ε2).

The Property of Having a Perfect Matching. For graphs on an even number
of vertices, a natural property of interest is the property of having a perfect
matching. Note that the distance to this property can be decreased only by

162 K. Onak

adding edges that increase the maximum matching size. If an O(1)-degree graph
is ε-far from having this property (e.g., at least Ω(εn) edges of the graph must
be modified so that it has the property), this means that the matching size is at
most n/2−Ω(εn). If the graph has this property, then the matching size is n/2.
It is clear that a constant-time tester for this property can be obtained by using
any of the matching algorithms to distinguish the above two cases. Moreover,
Yoshida et al. [8] show that testing for this property with one-sided error (e.g.,
never rejecting graphs that have a perfect matching) requires Ω(n) queries.

2.3 Other Problems

The method we use to construct an algorithm for matchings can be used to trans-
form other greedy approximation algorithms into constant-time approximation
algorithms. One example is the greedy O(log n)-approximation algorithm for set
cover [10,11], which can then be used to obtain a (O(log n), εn)-approximation
algorithm for dominating set. See [7] for more details.

Alon [12] shows that there is no constant-time (o(log d), εn)-approximation
algorithm for dominating set. For maximum independent set, he shows that
there is a constant-time (O(d log log d

log d), εn)-approximation algorithm, but there is
no constant-time (o(d

log d), εn)-approximation algorithm.

3 Algorithms for Hyperfinite Graphs

The results of Alon [12] and Trevisan [2] show that there are no constant-time
(1, εn)-approximation algorithms for vertex cover, dominating set, and maximum
matching. We now look at an important class of graphs for which such algorithms
do exist.

3.1 Hyperfinite Graphs

We say that a family of constant-degree graphs is hyperfinite if there is a func-
tion δ : (0, 1) → [1, +∞) such that for every graph in the family and every
ε > 0, one can remove at most εn edges from the graph, and obtain connected
components of size at most δ(ε). Hyperfinite families of graphs include graphs
of subexponential growth1 [13], constant-degree graphs with an excluded minor
(this follows from the separator theorem [14,15]), and the non-expanding graphs
considered by Czumaj, Shapira, and Sohler [16].

3.2 Approximation Algorithms and Partitioning Oracles

In [17], we show that for any ε > 0, and any hyperfinite family of graphs, there
are constant-time (1, εn)-approximation algorithms for vertex cover, dominating

1 For a family of graphs, the growth is a function g(r) equal to the maximum number

of vertices at distance at most r from any vertex in any of the graphs. If g(r) =

o((1 + δ)r) for every δ > 0, then we say that the growth is subexponential.

Sublinear Graph Approximation Algorithms 163

set, and maximum independent set. In particular, for any family of graphs with
an excluded minor, we show algorithms that run in 2poly(1/ε) time. Note that
since these problems are NP-hard even in the planar setting, it is unlikely that
algorithms that run in 2(1/ε)o(1)

time exist, since by setting ε = 1/(100n), they
could be used to solve the problems exactly in subexponential time with constant
probability.

Independently, Czygrinow, Hańćkowiak, and Wawrzyniak show how to con-
struct local distributed (1 + ε)-approximation algorithms for these problems in
planar graphs, which implies constant-time (1, εn)-approximation algorithms for
planar graphs via the connection discovered by Parnas and Ron [2]. Elek [18] shows
constant-time approximation algorithms for graphs with subexponential growth.

The main tool of [17] is partitioning oracles. For every hyperfinite family F
of graphs and every ε > 0, we design a partitioning oracle that provides query
access to a partition of the input graph. It has the following properties:

– The oracle answers queries of the form: “What vertices belong to the com-
ponent in the partition that contains v?”

– The partition has components of constant size, where the bound on the
component size depends on the family of graphs and ε.

– The partition can only be a function of the graph and random bits of the
oracle, but does not depend on the order of queries.

– The oracle works even if the input does not belong to F (this is useful for
the application to minor-freeness testing, which we describe below), but if it
does belong, then with probability 99/100, the number of edges cut in the
partition is εdn.

– To answer every query, the oracle makes only a constant number of queries
to the input graph. The total amount of computation that the oracle uses is
only a function of the number of queries to the oracle.

The simplest construction of a partitioning oracle employs the technique from
our previous paper [7] to simulate a global greedy partitioning method locally.
We also show more efficient oracle constructions for graphs with an excluded
minor, among other families of graphs.

Given a partitioning oracle for a family that the input graph belongs to, an
approximation algorithm is constructed as follows. We know that the oracle is
likely to cut only a small fraction of edges of the input graph. One can show that
this changes the solution size for all considered problems by O(εn). Moreover,
an optimal solution for the entire graph is the union of optimal solutions for all
components in the partition. Therefore, the algorithm samples O(1/ε2) vertices,
computes optimal solutions for the components they belong to, and returns the
fraction of vertices that are included in the solution. This up to an additive O(ε)
is the fraction of vertices in the optimal solution for the input graph.

3.3 Other Applications of Partitioning Oracles

Our partitioning oracles find applications to other problems. Here, we describe
two of them.

164 K. Onak

Testing Minor-Freeness. Recall that a graph H is a minor of a graph G if H

can be obtained from G via a sequence of edge deletions, vertex deletions, and
edge contractions. Moreover, G is H-minor-free if H is not a minor of G.

We now consider the following problem in the bounded-degree model of Gol-
dreich and Ron [19]. For every fixed non-empty graph H , we want to construct
an algorithm that

– accepts with probability at least 2/3 if the input is H-minor-free,
– rejects with probability at least 2/3 if the input graph needs to have at least

εdn edges removed to achieve H-minor-freeness.

Goldreich and Ron [19] show an Õ(1/ε3)-time tester for cycle-freeness, which is
equivalent toK3-minor-freeness.The breakthrough result ofBenjamini, Schramm,

and Shapira [20] shows that H-minor-freeness is testable for any H in 222poly(1/ε)

time. Our techniques give a much simpler proof of this fact, and also give a tester
that runs in 2poly(1/ε) time.

Note that every minor-closed property can be expressed via a finite set S of
forbidden minors due to the celebrated result of Robertson and Seymour [21].
One can show that this implies that each minor-closed property can be tested
by running testers for each of the forbidden minors. Well known minor-closed
properties include planarity, outerplanarity, and constant treewidth.

As an example, we now sketch how the tester for K5-minor-freeness works.
The tester is given a partitioning oracle for the family of K5-minor-free graphs
with an appropriately chosen parameter. First, the tester estimates the fraction
of the edges cut by the partition that is provided by the oracle. If this fraction
is large, the tester rejects. Otherwise, it samples a small number of vertices in
the graph, and checks whether their components in the partition are K5-free. If
all of them are, the tester accepts, and otherwise, it rejects.

Why does this work? If the input is K5-minor-free, then all components in the
partition are K5-minor-free as well, so the tester can only reject if the number
of edges cut by the partition is large, but this is unlikely because the input is
K5-minor-free. On the other hand, if the input must be significantly modified to
obtain K5-minor-freeness, then either the tester rejects it with high probability
because the number of edges cut is large or many components must have K5 as
a minor, and at least one of them can easily be spotted by sampling.

Approximating Distance to Hereditary Properties for Hyperfinite Graphs. We
say that a graph property is hereditary if it is closed under vertex removal.
For example, all minor-closed properties, perfectness, and k-colorability, for any
constant k, are hereditary. All hereditary properties are testable in constant time
in the dense graph model with one-sided error [22]. This turns out not to be the
case in the sparse graph model. Bipartiteness requires Ω(

√
n) queries [19], and

3-colorability requires Ω(n) queries [23]. The paper of Czumaj, Shapira, and
Sohler [16] shows that in hyperfinite families of graphs, hereditary properties
are testable in constant time.

In [17], we show that the result of Czumaj et al. can be extended for hereditary
properties that hold for all empty graphs. Using partitioning oracles, we prove

Sublinear Graph Approximation Algorithms 165

that for each such property, it is possible to approximate—up to an additive
εn—the number of edges that must be modified in the input graph from a given
hyperfinite family of graphs to obtain the property. As a sample application of
our result, we obtain a constant-time (1, εn)-approximation algorithm for the
number of edges that must be removed from a given constant-degree planar
graph to make it 3-colorable.

Independently, Elek [18] proves that it is possible to approximate the distance
to union-closed monotone properties in graphs of subexponential growth. Not all
union-closed monotone properties are hereditary, but almost all natural ones are.
In particular, all union-closed monotone properties that Elek lists in his paper
are hereditary. On the other hand, perfectness is hereditary, but not monotone.

4 Open Problems

The following questions remain open in this line of research:

– What graph problems and to what extent can be approximated in sublinear
time?

– For what other popular classes of graphs can one design approximation al-
gorithms better than those in the general case?

– What is the exact complexity of approximating the minimum vertex cover
size and the maximum matching size?

– Can one design partitioning oracles for minor-free families of graphs with
complexity polynomial in 1/ε?

References

1. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning

tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005)

2. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time

and a connection to distributed algorithms. Theor. Comput. Sci. 381(1-3), 183–196

(2007)

3. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:

SODA, pp. 980–989 (2006)

4. Marko, S., Ron, D.: Approximating the distance to properties in bounded-degree

and general sparse graphs. ACM Transactions on Algorithms 5(2) (2009)

5. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput. 15(4), 1036–1053 (1986)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York (1979)

7. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-

provements. In: FOCS, pp. 327–336 (2008)

8. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation

algorithm for maximum matchings. In: STOC, pp. 225–234 (2009)

9. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2(4), 225–231 (1973)

166 K. Onak

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.

Syst. Sci. 9(3), 256–278 (1974)

11. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math-

ematics 13, 383–390 (1975)

12. Alon, N.: On constant time approximation of parameters of bounded degree graphs

13. Elek, G.: L2-spectral invariants and convergent sequences of finite graphs. Journal

of Functional Analysis 254(10), 2667–2689 (2008)

14. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal

on Applied Mathematics 36, 177–189 (1979)

15. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an

excluded minor and its applications. In: STOC, pp. 293–299 (1990)

16. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding

bounded-degree graphs. SIAM J. Comput. 38(6), 2499–2510 (2009)

17. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for

approximation and testing. In: FOCS (2009)

18. Elek, G.: Parameter testing with bounded degree graphs of subexponential growth.

arXiv:0711.2800v3 (2009)

19. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorith-

mica 32(2), 302–343 (2002)

20. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse

graphs is testable. In: STOC, pp. 393–402 (2008)

21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal

of Combinatorial Theory, Series B 92(2), 325–357 (2004); Special Issue Dedicated

to Professor W.T. Tutte

22. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable

with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)

23. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in

bounded-degree graphs. In: FOCS, pp. 93–102 (2002)

Transitive-Closure Spanners: A Survey�

Sofya Raskhodnikova��

Pennsylvania State University, USA

sofya@cse.psu.edu

Abstract. We survey results on transitive-closure spanners and their

applications. Given a directed graph G = (V, E) and an integer k ≥ 1,

a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph

H = (V, EH) that has (1) the same transitive-closure as G and (2) diam-

eter at most k. These spanners were studied implicitly in different areas

of computer science, and properties of these spanners have been redis-

covered over the span of 20 years. The common task implicitly tackled

in these diverse applications can be abstracted as the problem of con-

structing sparse TC-spanners.

In this article, we survey combinatorial bounds on the size of spars-

est TC-spanners, and algorithms and inapproximability results for the

problem of computing the sparsest TC-spanner of a given directed graph.

We also describe multiple applications of TC-spanners, including prop-

erty testing, property reconstruction, key management in access control

hierarchies and data structures.

1 Introduction

A spanner is a sparse backbone of a graph that approximately preserves dis-
tances between every pair of vertices. More precisely, a subgraph H = (V, EH) is
a k-spanner of G = (V, E) if for every pair of vertices u, v ∈ V , the shortest path
distance dH(u, v) from u to v in H is at most k · dG(u, v). Since they were intro-
duced by Awerbuch [10] and Peleg and Schäffer [43] in the context of distributed
computing, spanners for undirected graphs have found numerous applications,
including efficient routing [22,23,45,46,55], simulating synchronized protocols in
unsynchronized networks [44], parallel and distributed algorithms for approxi-
mating shortest paths [20,21,27], and algorithms for distance oracles [11,56].

In the setting of directed graphs, three notions of spanners have been proposed:
the direct generalization of the above definition [43], roundtrip spanners [23,46] and
transitive-closure spanners [15]. In this survey, we focus on the latter definition.
It captures the notion that a spanner should have a small diameter but preserve

� Parts of this survey are adapted from [15,16,17,14].
�� Supported by National Science Foundation (NSF/CCF award 0729171 and

NSF/CCF CAREER award 0845701).

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 167–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 S. Raskhodnikova

the connectivity of the original graph. By diameter1, we mean the largest distance
between a pair (u, v) of nodes in a directed graph such that v is reachable from u.

Recall that the transitive closure of a graph G = (V, E) is a graph (V, ETC)
where (u, v) ∈ ETC if and only if there is a directed path from u to v in G.

Definition 1.1 (TC-spanner [15]). Given a directed graph G = (V, E) and an
integer k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) is a directed
graph H = (V, EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

The edges from the transitive closure of G that are added to G to obtain a TC-
spanner are called shortcuts, and the parameter k is called the stretch.

Notice that a k-TC-spanner of G is a directed k-spanner of the transitive-closure
of G. Nevertheless, TC-spanners are interesting in their own right due to the
multiple TC-spanner-specific applications.

Before TC-spanners were introduced in [15], they were studied implicitly in
access control, property testing, and data structures, and properties of these
combinatorial objects have been discovered and rediscovered over the span of 20
years. In this work, we survey results on TC-spanners and their applications. We
start by discussing a simple example of a TC-spanner of a directed line, which
has been studied in different areas under different guises.

1.1 A Simple Example: TC-spanners of the Directed Line

Directed acyclic graphs (DAGs) represent the most interesting case in applica-
tions of TC-spanners. There is also a reduction from constructing TC-spanners
of graphs with cycles to constructing TC-spanners of DAGs, with a small loss
in stretch, which we present in Section 3.2. In this section, we illustrate the
definition of TC-spanners by constructing sparse TC-spanners of the simplest
DAG—the directed line. The directed line Ln consists of nodes2 [n] and edges
{(i, i + 1) : 1 ≤ i ≤ n − 1}. As discussed in Section 3.1, TC-spanners of the line
were implicitly studied in different contexts by multiple authors, many of whom
discovered the optimal constructions we describe here.

An additional motivation for considering optimal TC-spanners of the directed
line in a separate section is that it gives one of the simplest settings where inverse
Ackermann’s functions (see Definitions 1.2) arise naturally—simple enough to
explain in an undergraduate algorithms class.

It is easy to see that the transitive closure of Ln has
(
n
2

)
= Θ(n2) edges.

A TC-spanner, even of the smallest possible stretch—stretch 2, can be much
sparser then the transitive closure.
1 The definition of diameter used in this survey and other papers on transitive-closure

spanners is nonstandard. The diameter is usually defined as the largest distance be-

tween a pair of nodes in a graph, and is set to infinity if a graph contains a pair of

nodes with no path from one to the other.
2 We use [n] to denote {1, 2, . . . , n}.

Transitive-Closure Spanners: A Survey 169

Ln TC(Ln) 2-TC-spanner of Ln

Lemma 1.1 (2-TC-spanner of the line). For all n ≥ 3, the directed line Ln

has a 2-TC-spanner with at most n logn edges3.

Proof. Our 2-TC-spanner, H , is a graph with vertex set [n]. We construct the
edge set of H recursively. First, define the middle node vmid = �n

2 . Use this node
as a hub: namely, add edges (v, vmid) for all nodes v < vmid and edges (vmid, v)
for all nodes v > vmid. Then recurse on the two line segments resulting from
removing vmid from the current line. Proceed until each line segment contains
exactly one node.

vmid

H is a 2-TC-spanner of the line Ln, since every pair of nodes u, v ∈ [n] is
connected by a path of length at most 2 via a hub. This happens in the stage
of the recursion during which u and v are separated into different line segments,
or one of these two nodes is removed.

To get the bound on the size of the 2-TC-spanner, observe that there are
�log n� stages of the recursion. In each stage, every non-hub node connects to
the hub in its current line segment, adding a total of at most n edges. Therefore,
the constructed spanner has at most n logn edges. ��
The same idea can be extended to construct a 3-TC-spanner of the line graph:

Lemma 1.2 (3-TC-spanner of the line). The directed line Ln has a 3-TC-
spanner with O(n log log n) edges.

Proof. Again we construct the edge set of our 3-TC-spanner H recursively. For
simplicity, assume that

√
n is an integer. Designate nodes which are the multiples

of
√

n as hubs. Connect each non-hub node to the nearest hub before it and the
nearest hub after it. More precisely, for each non-hub node v, let v� be v rounded
down to the nearest multiple of

√
n and let vr = v� +

√
n. Add edge (v�, v) if

v� ∈ [n] and edge (v, vr) if vr ∈ [n].

vrvl v
3 Logarithms in this article are base 2 unless indicated otherwise.

170 S. Raskhodnikova

Also, add edges between all hubs, orienting them from the smaller to the larger.
Finally, remove the hubs from the current line and recurse on the

√
n resulting

line segments. Proceed until each line segment contains exactly one node.
H is a 3-TC-spanner of the line Ln, since every pair of nodes u, v ∈ [n] is

connected by a path of length at most 3 via a pair of hubs. This happens in the
stage of the recursion where u and v are separated into different line segments,
or one of these two nodes is removed. For example, we add a path (u, ur, v�, v)
if u and v are not hubs.

Denote the number of edges in the spanner by T (n). At the first stage of
recursion, we add

(√
n

2

) ≤ n edges to connect the hubs and at most 2 edges
per non-hub node to connect non-hubs to hubs. Therefore, T (n) satisfies the
following recurrence:

T (n) ≤
{

0 if n ≤ 1;
3n +

√
n · T (

√
n) if n > 1.

The solution to this recurrence is T (n) ≤ 3n log log n. ��
This construction generalizes to TC-spanners of arbitrary constant stretch k,
giving k-TC-spanners of size O(n · λk(n)), where λk(n) are very slowly growing
functions of n, called the kth-row inverse Ackermann functions.

Definition 1.2 (Inverse Ackermann functions4). Let R≥0 be the set of non-
negative real numbers. For every function f : R≥0 → R≥0 satisfying f(n) < n

for all n > 1, define the function f∗(n) : R≥0 → R≥0 as:

f∗(n) = min{k ∈ Z≥0 : f (k)(n) < 2},

where f (k) denotes f composed with itself k times.
Define the kth-row inverse Ackermann function λk(n) as follows:

λ0(n) = n/2, λ1(n) =
√

n, and λk(n) = λ∗
k−2(n) for k ≥ 2.

Intuitively, f∗(n) represents the number of times f can be applied before the
answer drops below 2. If f(n) = n/2 this number is Θ(log n), if f(n) =

√
n

it is Θ(log log n), and if f(n) = log n it is log∗ n. Therefore, λ2(n) = Θ(log n),
λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n). Also note that λk(n) is a non-
decreasing function of n for all k ≥ 0.

Lemma 1.3 (k-TC-spanner of the line). The directed line Ln has a k-TC-
spanner with at most k · n · λk(n) edges.

Proof. Lemmas 1.1 and 1.2 imply Lemma 1.3 for k = 2 and 3. (Recall that in
the proof of Lemma 1.3, we gave an upper bound of 3n loglogn on the size of the
4 We define these functions, following the spirit of the presentation by Seidel [50]. The

prevalent definition (see, e.g., [5]) is complicated and yields asymptotically equivalent

functions.

Transitive-Closure Spanners: A Survey 171

sparsest 3-TC-spanner of the line, even though we chose to hide the constant in
the statement of the lemma.) We prove Lemma 1.3 by induction on k, using the
constructions of 2- and 3-TC-spanners as base cases. Our induction hypothesis
is that one can construct a (k − 2)-TC-spanner of the line Ln with at most
(k−2) ·n ·λk−2(n) edges. To construct a k-TC-spanner for k > 3, we proceed as
for k = 3, but select even more nodes as hubs, connect them using an optimal
(k−2)-TC-spanner, add edges from each node to the nearest hub before and the
nearest hub after it, and recurse. Then each pair of nodes (u, v) will be connected
by a path that jumps from u to the smallest hub greater than u, then follows a
path of length at most k− 2 in the (k− 2)-TC-spanner on the hubs to reach the
largest hub smaller than v, and uses one more edge to jump to v.

It remains to specify the number of hubs, which we will denote by h, and to
analyze the size of the spanner. Let f(n) = λk−2(n). We set h = n

f(n) − 1 and
recurse on the segments of size f(n). By the induction hypothesis, the size of
the optimal (k − 2)-TC-spanner on the hubs is at most

(k−2) ·h ·λk−2(h) ≤ (k−2) · n

f(n)
·f

(
n

f(n)

)
≤ (k−2) · n

f(n)
·f(n) ≤ (k−2)n.

As before, each non-hub connects to at most 2 hubs. Therefore, the number of
edges in constructed spanner, T (n), satisfies the following recursion:

T (n) ≤
{

0 if n ≤ 1;
kn + n

f(n) · T (f(n)) if n > 1.

The solution is T (n) = k · n · f∗(n). This follows from the fact that f∗(f(n)) =
f∗(n) − 1 for n > 1. Thus, T (n) = k · n · λ∗

k−2(n) = k · n · λk(n). ��
As discussed in Section 3.1, the bound in Lemma 1.3 is tight when k is a constant.

1.2 A Brief Overview

TC-spanners were defined by Bhattacharyya et al. [15] as a common abstrac-
tion for several applications. Prior to that, Thorup [52] considered a special
case of TC-spanners of graphs G that have at most twice as many edges as
G, and conjectured that for all directed graphs G on n nodes there are such
k-TC-spanners with k polylogarithmic in n. He proved his conjecture for planar
graphs [53], but later Hesse [37] gave a counterexample to Thorup’s conjecture
for general graphs. TC-spanners were also studied for directed trees: implicitly
in [5,9,19,25,60] and explicitly in [18,54]. The implicit results were interpreted
as TC-spanner constructions in [15].

[15] presented several applications of TC-spanners: testing monotonicity of
functions, key management in an access hierarchy and data structures for com-
puting partial products in a semigroup. They also studied the computational
problem of finding a sparsest k-TC-spanner for a given directed graph. They
presented algorithms and inapproximability results for this problem. Finally,
they gave sparse TC-spanner constructions for new graph families.

172 S. Raskhodnikova

Later, [16,14] studied TC-spanners for the directed hypercube and hypergrid
and presented an application of TC-spanners to property reconstruction. Steiner
TC-spanners (see Definition 3.1) were formally introduced in [17], but studied
before that in the context of access control hierarchies by [7] and [49]. Berman,
Raskhodnikova and Ruan [13] improved algorithms presented in [15]. Finally, Jha
and Raskhodnikova [39] pointed out the application of TC-spanners to testing
if a function is Lipschitz.

1.3 Organization of This Survey

We start by introducing notation and basic graph-theoretic background in Sec-
tion 2. In Section 3, we describe structural results on TC-spanners, that is,
combinatorial bounds on their size. Structural results for specific graph families
are surveyed in Section 3.1, while general structural results, applicable to all
graphs, appear in Section 3.2. In Section 4, we survey results on the computa-
tional problem of finding a sparsest TC-spanner of a given directed graph and the
more general problem of finding directed spanners. We describe approximation
algorithms and hardness results for these problems. Finally, Section 5 presents
multiple applications of TC-spanners, including property testing, property re-
construction, key management in access control hierarchies and data structures
for computing partial product in a semigroup.

2 Preliminaries and Notation

We write u "G v to denote that vertex v is reachable from vertex u in graph G.
When the graph is clear from the context, we omit G. The transitive closure of a
directed graph G = (V, E), denoted TC(G), is the directed graph (V, E′), where
E′ = {(u, v) : u "G v}. Vertices u and v are comparable if either (u, v) ∈ TC(G)
(that is, u is below v or, equivalently, smaller than v) or (v, u) ∈ TC(G) (that
is, u is above v or, equivalently, larger than v). This terminology and notation is
usually used for partially-ordered sets (posets), which are equivalent to directed
acyclic graphs, but can be also applied to general directed graphs.

A digraph G is weakly connected if replacing each directed edge in G with an
undirected edge results in a connected undirected graph. A digraph is strongly
connected if each vertex in the graph is reachable from every other vertex via
a directed path. The graph of strongly connected components of a digraph G

is the digraph obtained by contracting each strongly connected component into
one vertex, while maintaining all the edges between these components.

A transitive reduction of G is a digraph G′ with the fewest edges for which
TC(G′) = TC(G). As shown by Aho et al. [2], a transitive reduction of a given
graph can be computed efficiently via a greedy algorithm. The algorithm contracts
each strongly connected component C to a vertex v(C) to get a supergraph H ,
obtains a supergraph H ′ by greedily removing edges in H that do not change its
transitive closure, and finally uncontracts v(C) to an arbitrary directed cycle on

Transitive-Closure Spanners: A Survey 173

vertices in C, choosing a representative vertex of C to be incident to the edges in-
cident to v(C) in H ′. Directed acyclic graphs have a unique transitive reduction.
We say G is transitively reduced if G is equal to its own transitive reduction.

3 Overview of Structural Results on TC-spanners

For a directed graph G, we denote the number of edges in G by |G| and the
size of the sparsest k-TC-spanner of G by Sk(G). (The size refers to the number
of edges.) To put the following results in proper context, observe that if G has
n vertices, Sk(G) = O(n2). Unlike in the undirected setting, where for every
k ≥ 1, all graphs on n vertices have (2k − 1)-spanners with O(n1+1/k) edges
[6,42,56], sparsest TC-spanners (and hence, sparsest directed spanners) can have
Ω(n2) edges. An example of a graph with a sparsest 2-TC-spanner of size Ω(n2)
is the complete bipartite graph K n

2 , n
2

with n/2 vertices in each part and all
edges directed from the first part to the second. Therefore, most constructions
surveyed below are for TC-spanners of specific graph families. Nevertheless, there
are several general results, described in Section 3.2.

3.1 TC-spanners of Specific Graph Families

TC-spanners of lines and trees. TC-spanners of the directed lines and directed
trees were discovered under many different guises. They were studied implicitly in
[5,9,19,25,60] and explicitly in [18,54]. Alon and Schieber [5] implicitly gave tight
bounds on Sk(Ln). They showed that, for constant k, the size of the sparsest
k-TC-spanner of the directed line is Θ(n · λk(n)), where λk(n) is the kth-row
inverse Ackermann function (see Definition 1.2 and Lemma 1.3). [5] also showed
that the smallest k for which Sk(Ln) = O(n) is O(α(n)), where α(n) is the
inverse Ackermann function. (The inverse Ackermann function is defined by
α(n) = min{k ∈ Z≥0 : λ2k(n) ≤ 3}.) Note that the size of any TC-spanner of
Ln is at least n − 1, since all edges of the form (i, i + 1) must be present in
a TC-spanner to ensure the same connectivity as in Ln. [5,19,54] proved that
sparsest k-TC-spanners of rooted directed trees asymptotically have the same
number of edges as k-TC-spanners of the line.

TC-spanners of planar graphs. Thorup [52] considered a special case of TC-
spanners of graphs G that have at most twice as many edges as G. In [53], he
proved that all directed planar graphs G on n nodes have such TC-spanners with
stretch polylogarithmic in n.

TC-spanners of graphs with small separators (H-minor-free graphs). A graph H

is a minor of G if H is a (not necessarily induced) subgraph of a graph obtained
from G by a sequence of edge contractions. A graph family F is minor-closed
if it contains every minor of every graph in F . For a fixed graph H (e.g., K5),
a minor-closed family F is H-minor-free if H /∈ F . Examples of such families
include planar graphs, bounded treewidth graphs, and bounded genus graphs,
explicitly studied in applications in Section 5. Bhattacharyya et al. [15] gave an

174 S. Raskhodnikova

efficient construction of k-TC-spanners of H-minor-free graphs. For constant k,
the size of the spanners is O(n · log n · λk(n)), where λk(·) is the kth-row inverse
Ackermann function. This result allowed [15] to drastically improve monotonicity
testers of Fischer et al. [33]. The application to monotonicity testing is described
in Section 5.

The construction in [15] uses divide-and-conquer approach. A natural first
attempt would be to use separators of Lipton and Tarjan [41]. Recall that an s-
separator for a graph G on n nodes is a set of s nodes whose removal disconnects
G into connected components of size at most 2n/3. Observe that the proofs of
Lemmas 1.1–1.3 implicitly use this approach for the special case of the line graph.
There, at every stage graph separators play a role of hubs. To come up with
efficient constructions for a wider family of graphs, Bhattacharyya et al. use the
path separators for undirected H-minor free graphs due to Abraham and Gavoille
[1]. An s-path-separator5 for a graph G on n nodes is a set of s paths whose
removal disconnects G into connected components of size at most 2n/3. For some
graph families, path separators can be much smaller than ordinary separators.
For example, planar graphs require ordinary separators of size Θ(

√
n), but are

3-path separable [1]. For a simple case of a 2-dimensional m×m grid, a Lipton-
Tarjan separator has size of Ω(m), but it is enough to remove m nodes on one
path, say, a horizontal line that cuts through the middle, to separate it.

The path separators of Abraham and Gavoile were constructed for undirected
graphs. Bhattacharyya et al. employ this construction on the undirected graph,
resulting from ignoring the directions of the edges of the input directed graph.
The resulting path separator for the original directed graph may be the union of
many directed paths. Here we only explain the construction for the simple case
when a separator for the graph (and a separator for every subgraph obtained
by removing a separator) consists of a small number of directed paths, as is the
case, for instance, for a 2-dimensional grid [m]× [m] where all edges are directed

5 For a graph G to be s-path-separable one needs to be able to disconnect the graph

by removing nodes on at most s paths from any minimum spanning tree of G. To

keep our high-level overview simple, we do not get into details.

Transitive-Closure Spanners: A Survey 175

towards vertices with larger coordinates. More precisely, we focus on the case
when there exists an integer s, such that every graph obtained at any recursion
stage has a separator with at most s directed paths, and moreover, this separator
can be found efficiently. (See [15] for the general treatment.)

Even though we use a 2-dimensional grid as an example in this proof, TC-
spanners of d-dimensional hypergrids are treated separately in the current sec-
tion, after TC-spanners of H-minor-free graphs.

If a separator consists of a constant number of (say, at most s) directed paths,
we can construct a k-TC-spanner of each path P in the separator as in the proof
of Lemma 1.3. We also need to make sure that our TC-spanner contains short
paths between all pairs of nodes that were using P to connect. To accomplish
this, for each node u with a path to some node in a separator path P , let u′ be
the first node in P reachable from u. As we are constructing a k-TC-spanner of
P , at each stage of the recursion, we add an edge from u to a hub h whenever we
add an edge (u′, h). We deal symmetrically with each node v with a path from
some node in P .

u

P

v

h

Now, if there is a path from u to v via some vertex in P , there is a path
of length at most k in the spanner we are constructing. This is because u and
v are connected to the same hubs as u′ and v′ and, as demonstrated in the
proof of Lemma 1.3, u′ and v′ are connected by a path of length at most k via
the hubs. Now, we can safely remove the paths in the separator and recurse on
the resulting components. To distinguish this recursion from the recursion in
the construction of the TC-spanners of the paths, we call it an outer recursion.
Observe that at each stage of outer recursion we are adding no more edges per
node than in the construction for the line— namely, O(λk(n)) edges. This results
in O(n ·λk(n)) edges per stage. Since there are O(log n) stages of outer recursion,
the constructed k-TC-spanner has size O(n · log n · λk(n)).

TC-spanners of hypergrids. The directed hypergrid, denoted Hm,d, has vertex set
[m]d and edge set {(x, y) : ∃i ∈ [d] such that yi − xi = 1 and for j �= i, yj = xj}.
For the special case m = 2, H2,d is called a hypercube and is also denoted by Hd.
2-TC-spanners of hypergrids are especially relevant for applications in property
testing and property reconstruction. TC-spanners of hypergrids of general stretch

176 S. Raskhodnikova

k are used in the application to key management in an access hierarchy. The
following results on TC-spanners of hypergrids are from [16,14].

As a comparison point for bounds below, note that the obvious bounds on
S2(Hd) are the number of edges in the d-dimensional hypercube, 2d−1d, and the
number of edges in the transitive closure of Hd, which is 3d−2d. (An edge in the
transitive closure of Hd has 3 possibilities for each coordinate: both endpoints
are 0, both endpoints are 1, or the first endpoint is 0 and the second is 1.
This includes self-loops, so we subtract the number of vertices in Hd to get the
desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d−2d. Similarly, the straightforward
bounds on the number of edges in a 2-TC-spanner of Hm,d in terms of the number
of edges in the directed grid and in its transitive closure are dmd−1(m − 1) and(

m2+m
2

)d

− md, respectively.
The following theorem gives upper and lower bounds on S2(Hm,d):

Theorem 3.1 (Hypergrid [16,14]). Let S2(Hm,d) denote the number of edges
in the sparsest 2-TC-spanner of Hm,d. Then for m ≥ 3,

S2(Hm,d) = Ω

(
md logd

m

(2d log log m)d−1

)
and ≤ md logd

m.

The upper bound in Theorem 3.1 follows from a general construction of k-TC-
spanners for graph products for arbitrary k ≥ 2. The lower bound is proved by a
reducing the 2-TC-spanner construction for [m]d to that for the [2]× [m]d−1 grid
and then directly analyzing the number of edges required for a 2-TC-spanner
of [2] × [m]d−1. The authors show a tradeoff between the number of edges in
the 2-TC-spanner of the [2] × [m]d−1 grid that stay within the hyperplanes
{1} × [m]d−1 and {2} × [m]d−1 versus the number of edges that cross from one
hyperplane to the other. The proof proceeds in multiple stages. Assuming an
upper bound on the number of edges staying within the hyperplanes, each stage
is shown to separately contribute a substantial number of edges crossing between
the hyperplanes.

Theorem 3.1 is most useful when m is large. When m is small, it is superseded
by another set of bounds on S2(Hm,d), given in [16,14], which are optimal up to
a factor of d2m. These bounds are formulated in terms of a complicated combi-
natorial expression, but value of this expression can be estimated numerically.
Specifically, S2(Hm,d) = 2cmd poly(d), where c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82
and c5 ≈ 3.24, each significantly smaller than the exponents corresponding to
the transitive closure sizes for the different m. More precisely, for the hyper-
cube, S2(Hd) = O(d32c2d) and Ω(2c2d). The upper bound on S2(Hd) is proved
via a randomized construction of a 2-TC-spanner of the directed hypercube.
Curiously, even though the upper and lower bounds above differ by a factor of
O(d3), it is known that the randomized construction yields a 2-TC-spanner of
Hd of size within O(d2) of the optimal.

Steiner TC-spanners of d-dimensional posets. In some applications (in particu-
lar, to access control hierarchies [8,9,49,7]), the shortcuts can use Steiner vertices,

Transitive-Closure Spanners: A Survey 177

that is, vertices not in the original graph G. The resulting spanner is called a
Steiner TC-spanner.

Definition 3.1 (Steiner TC-spanner [17]). Given a directed graph G=(V, E)
and an integer k ≥ 1, a Steiner k-transitive-closure-spanner (Steiner k-
TC-spanner) of G is a directed graph H = (VH , EH) satisfying:

1. V ⊆ VH ;
2. for all vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) =

∞ then dH(u, v) = ∞.

Vertices in VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordinary
TC-spanners. Before, our example of a graph with a 2-TC-spanner of size Ω(n2)
was a complete bipartite graph K n

2 , n
2

with n/2 vertices in each part and all edges
directed from the first part to the second. This graph has a Steiner 2-TC-spanner
of size n: it is enough to add one Steiner vertex v, edges to v from all nodes in
the left part, and edges from v to all nodes in the right part. Thus, for K n

2 , n
2

there is a linear gap between the size of the sparsest Steiner 2-TC-spanner and
the size of an ordinary 2-TC-spanner.

v

However, Bhattacharyya et al. [17] show that for directed hypergrids, Steiner
vertices do not help: sparsest Steiner TC-spanners have the same size as TC-
spanners with no Steiner vertices.

Lemma 3.1 ([17]). If Hm,d has a Steiner k-TC spanner H, it also has a k-TC
spanner of size |H |.
Proof. We show how to replace one Steiner vertex in H with a grid vertex while
keeping the same number of edges in the Steiner k-TC-spanner. This step can
be repeated to remove all Steiner vertices.

Since Hm,d is acyclic, a cycle in H can contain at most one non-Steiner vertex,
and therefore H will still remain a Steiner k-TC-spanner of Hm,d if this cycle is
contracted to one vertex. Thus, we can assume without loss of generality that
H is acyclic.

Let s be a Steiner vertex in H which does not have any other Steiner vertices
below it. Let s′ be the smallest vertex in Hm,d which is above all vertices v in
Hm,d satisfying v " s. (If there are no such v then s′ is the grid vertex with all
coordinates equal to 1.) Observe that s′ always exists and is unique. Moreover,
every vertex in Hm,d that is above all such v is also above s′. By definition, s′

is above all vertices in Hm,d which have a path to s. It is also below all vertices

178 S. Raskhodnikova

in Hm,d which are reachable from s. We replace all edges in H that have s as
an endpoint with the corresponding edges with s′ as an endpoint, and remove s

from H . Every pair of vertices that was connected via a path of length at most
k is still connected via the same path, with s replaced by s′ if necessary. No new
pair (u, v) of vertices in Hm,d got connected via s′ since if u was below s and v

was above s then u " s " v. The number of edges in H has not increased. ��
Atallah et al. [7], De Santis et al. [49] and Bhattacharyya et al. [17] study
Steiner TC-spanners of directed acyclic graphs or, equivalently, partially ordered
sets. Motivated by the application to access control hierarchies (described in
Section 5), they focus on the relationship between the dimension of a poset and
the size of its sparsest Steiner TC-spanner.

Definition 3.2 (Poset dimension). The dimension of a poset G is the small-
est d such that G can be embedded into a d-dimensional hypergrid Hm,d via an
order-preserving embedding. A mapping from a poset G to a poset G′ is called an
order-preserving embedding if it respects the partial order, that is, all x, y ∈ G

are mapped to x′, y′ ∈ G′ such that x "G y iff x′ "G′ y′.

Each poset has a dimension. In particular, each poset with n elements can be
embedded into a hypergrid Hn,d, so that for all i ∈ [d], the ith coordinates of
images of all points are distinct.

Poset dimension is a fundamental and well-studied parameter in poset the-
ory. For instance, Dilworth’s famous chain partitioning theorem was originally
intended as a lemma for proving a theorem about the dimension of distributive
lattices [24]. A survey on poset dimension can be found in Trotter’s monograph
[57]. One important result for the discussion below, proved by Dushnik and Miller
[26], is that that for all m, the hypergrid Hm,d has dimension exactly d. Atal-
lah et al. argue that many access control hierarchies are low-dimensional posets
that come equipped with an embedding demonstrating low dimensionality.

Observe that the only poset of dimension 1 is the directed line. Tight bounds
for the size of (Steiner) TC-spanners of directed lines were discussed in the
beginning of Section 3. Table 1 summaries the best bounds for d ≥ 2. The upper

Table 1. The size of the sparsest Steiner k-TC-spanners of d-dimensional posets on

n vertices for d ≥ 2

Stretch k Upper Bounds on Sk(G) Lower Bounds on Sk(G) Reference

k = 2 O(n logd n)
Ω

(
n
(

log n
log log n

)d
)

[17]

for constant d

constant n logΩ(d) n
[17]

k ≥ 3 for constant d

k = 2t + 1
O(3d−tt · n logd−1 n log log n) [49]

for t ∈ [d]

Transitive-Closure Spanners: A Survey 179

bounds hold for all posets of dimension d. The TC-spanners in the upper bounds
can be constructed efficiently, given an explicit embedding of the poset into a
d-dimensional grid. (Finding such an embedding is NP-hard [59].) Furthermore,
paths of length at most k between all pairs of vertices in the resulting k-TC-
spanners can be found efficiently. This is important for the application to access
control hierarchies.

The lower bounds mean that there exists a poset of dimension d for which
every Steiner k-TC-spanner has the specified number of edges. The lower bound
for Steiner 2-TC-spanners holds for the hypergrid Hm,d and follows from the
lower bound on S2(Hm,d) in Theorem 3.1 and the fact that Steiner vertices do
not help for directed hypergrids (Lemma 3.1). The lower bound on the size of
a Steiner k-TC-spanner for k ≥ 3 holds for a poset obtained by a randomized
construction.

Note that the Steiner vertices used in the constructions for d-dimensional
posets are necessary to obtain sparse TC-spanners. Recall our example of a
bipartite graph K n

2 , n
2

for which every 2-TC-spanners required Ω(n2) edges.
K n

2 , n
2

is a poset of dimension 2, and thus, by the upper bound in [17], has
a Steiner 2-TC spanner of size O(n log2

n). (As we mentioned before, for this
graph there is an even better Steiner 2-TC spanner with O(n) edges.) To see
that K n

2 , n
2

is embeddable into a [n] × [n] grid, map each of the n/2 left ver-
tices of K n

2 , n
2

to a distinct grid vertex in the set of incomparable vertices
{(i, n/2 + 1 − i) : i ∈ [n/2]}, and similarly map each right vertex to a dis-
tinct vertex in the set {(n + 1− i, i + n/2) : i ∈ [n/2]}. It is easy to see that this
is a proper embedding.

3.2 General TC-spanner Constructions

Graphs that require a large number of shortcuts. We have seen in the beginning
of Section 3 that, in general, TC-spanners can be large. However, in the example
of K n

2 , n
2

we looked at, the graph itself was large and, in fact, we did not have to
add any shortcuts to construct a 2-TC-spanner of that graph. Can one always
construct a TC-spanner by adding a small number of edges to the original graph?
Thorup [52] conjectured that all directed graphs G on n nodes have TC-spanners
with stretch polylogarithmic in n and size at most 2|G|. As mentioned before,
he proved his conjecture for planar graphs [53], but later Hesse [37] gave a
counterexample to Thorup’s conjecture for general graphs. He constructed a
family of graphs with n1+ε edges for which all nε-TC-spanners require Ω(n2−ε)
edges, for small ε > 0.

2-TC-spanners from 2k-TC-spanners. Berman, Raskhodnikova and Ruan [13]
show how to (efficiently) obtain a 2-TC-spanner of a graph G with diameter at
most 2k by adding O(n1−1/k · |G|) shortcuts. They prove that this relationship
is nearly tight in the following sense: for every sufficiently small positive ε, there
are graphs with 2k-TC-spanners of size n1+(1−ε)/k and no 2-TC-spanners of size
less than n2−ε. These graphs are obtained by adjusting the parameters in the
construction by Hesse mentioned above.

180 S. Raskhodnikova

Moreover, as shown in [13], their upper bound is completely tight for the trans-
formation from 3-TC-spanners to 2-TC-spanners: the number of added edges is
asymptotically optimal, as evidenced by the 4-layered graph with m2 nodes in
layers 1 and 4 and m nodes in layers 2 and 3, where the edges are directed from
smaller to larger layers and are formed as follows. There is a complete bipartite
graph between layers 2 and 3. Each node in layer 2 is connected to m nodes in
layer 1, and each node in layer 1 has outdegree 1. The edges between layers 3
and 4 are constructed in the same manner. The resulting graph has 3m2 edges
and is a 3-TC-spanner. A 2-TC-spanner of this graph must connect m4 pairs of
vertices in layers 1 and 4 via paths of length at most 2. Each shortcut edge can
be used by at most m such pairs. Therefore, at least m3 shortcuts are required.
Setting n = 2m2 + 2m, we obtain a graph with a 3-TC-spanner of size O(n), for
which every 2-TC-spanner requires Ω(n3/2) edges.

mm

m m m2m2

TC-spanners with large stretch. Improving on the first result in this vein in [15],
Berman, Raskhodnikova and Ruan show that one can obtain a k-TC-spanner of
any graph by adding O(n2/k2) shortcut edges. This construction is efficient.

TC-spanners of Graphs with Cycles. Here we give a reduction from constructing
TC-spanners of general directed graphs to constructing TC-spanners of directed
acyclic graphs (DAGs).

Lemma 3.2. Let G be a directed graph on n vertices, and G′ be the graph of
strongly connected components of G. Then Sk+2(G) ≤ Sk(G′) +2n. Moreover,
given a k-TC-spanner H ′ of G′, one can efficiently construct a (k + 2)-TC-
spanner H of G with at most |H ′| + 2n edges.

Proof. For each strongly connected component C of G, pick an arbitrary vertex
vC and call it a representative of C. To construct a (k + 2)-TC-spanner H of
G from a k-TC-spanner H ′ of G′, first connect representatives of connected
components to mimic the structure of H ′: namely, add an edge (vC1 , vC2) to H

for every edge (C1, C2) in H ′. Second, for every vertex u in the component C,
where u �= vC , add edges (u, vC) and (vC , u) to H .

The resulting H has the same number of edges as H ′ plus at most 2 edges
per vertex, added to connect each vertex to the representative of its strongly
connected component. That is, |H | ≤ |H ′|+ 2n. To see that H is a (k + 2)-TC-
spanner of G, consider vertices u1, u2 in G, where u2 is reachable from u1. Let
v1 and v2 be the representatives of the components of u1 and u2, respectively.

Transitive-Closure Spanners: A Survey 181

Since H ′ is a k-TC-spanner of G′, there is a path of length at most k from the
component of u1 to the component of u2 in H ′. Therefore, H contains a path of
length at most k from v1 to v2. Since H also contains edges (u1, v1) and (v2, u2),
it contains a path of length at most k + 2 from u1 to u2. ��

4 Overview of Computational Results on Directed
Spanners

The computational problem of finding the size of the sparsest k-TC-spanner of a
given graph, called k-TC-Spanner, was first considered in [15]. k-TC-Spanner

is a special case of a well-studied problem, called Directed k-Spanner, of find-
ing the size of the sparsest k-spanner of a given (not necessarily transitively closed)
directed graph [29,28,15,13]. In this section, we survey approximation algorithms
and inapproximability results for these two problems. All known algorithms on
Directed k-Spanner also apply to two other variants, Client/Server Di-

rected k-Spanner and k-Diameter Spanning Subgraph, defined by Elkin
and Peleg [29].

Algorithms for Directed k-Spanner and k-TC-Spanner. All algorithms for
Directed k-Spanner immediately yield algorithms for k-TC-Spanner with
the same approximation ratio because k-TC-Spanner on input graph G is
equivalent to Directed k-Spanner on input TC(G). Table 2 summarizes the
best known approximation algorithms for these problems for different stretch k.
Elkin and Peleg [29] gave an O(log n)-approximation algorithm for Directed

2-Spanner. For k = 3, approximation algorithms were proposed in [28,15,13]
with the best ratio, O(

√
n · log n), due to [13]. In general, for k > 3, [13] prove

an approximation ratio O(kn1−1/�k/2� · log n), improving the first non-trivial
polynomial time algorithm for this problem, given in [15]. For the special case of
k-TC-Spanner, [13] give a slightly better ratio of O(n1−1/�k/2� ·logn). For large
k, the best approximation ratio is O(n/k2), due to [13], again an improvement
over the first non-trivial algorithm for this range of parameters, proposed in [15].

We briefly describe the two TC-spanner-specific approximation algorithms
from [13]. They are based on the structural results mentioned in Section 3.2.
The first algorithm runs the O(log n)-approximation algorithm from [29] for

Table 2. Summary: Algorithmic Results on Directed k-Spanner and k-TC-Spanner

Problem Stretch k Approximability Previous Work

Directed k-Spanner
k = 2 O(log n) [29]

(and k-TC-Spanner)
k = 3 O(

√
n · log n) [13] [28,15]

k ≥ 3 O(kn1−1/�k/2� · log n) [13] [15]

k-TC-Spanner only
k ≥ 3 O(n1−1/�k/2� · log n) [13] [15]

k = Ω
(

log n
log log n

)
O(n/k2) [13] [15]

182 S. Raskhodnikova

Directed 2-Spanner on the transitive closure of the input graph G. The anal-
ysis relies on the construction of 2-TC-spanners from k-TC-spanners, mentioned
in Section 3.2. This construction proves that S2(G) ≤ Sk(G) + O(n1−1/�k/2� ·
TR(G)), where TR(G) denotes the size of a transitive reduction of G. (A tran-
sitive reduction was defined and discussed in Section 2.) Since the algorithm is
guaranteed to output a 2-TC-spanner of size O(log n ·S2(G)) = O(log n ·Sk(G)+
n1−1/�k/2� log n·TR(G)), the result is an O(n1−1/�k/2� log n)-approximation. (Re-
call that TR(G) is a lower bound on the size of a TC-spanner.)

The algorithm for large k is based on an efficient procedure that obtains a
k-TC-spanner by adding O(n2/k2) shortcut edges. It can be run on each weakly
connected component separately. For a weakly connected component with n

nodes, the size of a k-TC-spanner is at least n − 1, so the resulting graph is a
O(n/k2)-approximation.

It is important to note that the algorithm for large k has a better approxi-
mation ratio than the corresponding hardness result for Directed k-Spanner,
demonstrating that k-TC-Spanner is a strictly easier problem for this range of
parameters.

Inapproximability of Directed k-Spanner. For completeness, we state the in-
approximability results for Directed k-Spanner, even though they do not
imply anything for k-TC-Spanner. Kortsarz [40] showed that the O(log n) ap-
proximation ratio for Directed 2-Spanner cannot be improved unless P=NP.
For all δ, ε ∈ (0, 1) and 3 ≤ k ≤ n1−δ, it is impossible to approximate Di-

rected k-Spanner within a factor of 2log1−ε n in polynomial time, assuming
NP �⊆DTIME(npolylog n) [28,30]. (DTIME(f(n)) denotes the class of languages
decidable deterministically in time f(n).) Thus, according to Arora and Lund’s
classification [38] of NP-hard problems, Directed k-Spanner is in class III, for
k ∈ [3, n1−δ]. Moreover, [30] showed that proving that Directed k-Spanner is
in class IV, that is, inapproximable within nδ for some δ ∈ (0, 1), would resolve
a long standing open question in complexity theory: namely, cause classes III
and IV to collapse into a single class.

Inapproximability of k-TC-Spanner. Table 3 summarizes inapproximability re-
sults for k-TC-Spanner for different values of k. For constant k, the hardness re-
sults are the same as for Directed k-Spanner, even though the reductions are
much more technically involved. Observe that a stronger inapproximability result

Table 3. Summary of Hardness Results on k-TC-Spanner; all results are from [15]

Stretch k Inapproximability Assumption Notes

k = 2 Ω(log n) P�= NP Matches the upper bound

constant Ω(2log1−ε n)
NP�⊆DTIME(npolylog n)

Improvement implies

k ≥ 3 ∀ε ∈ (0, 1) breakthrough

k ≤ n1−δ

Ω(1 + δ) P�= NP∀δ ∈ (0, 1)

Transitive-Closure Spanners: A Survey 183

for k > 2 would imply the same inaproximability for Directed-k-Spanner and,
as shown in [30], collapse classes III and IV in Arora and Lund’s classification. For
nonconstant k for which there exists a sufficiently small γ > 0 such that k ≤ n1−γ ,
we know that the problem is NP-hard, but not much beyond that. This contrasts
sharply with the known hardness of Directed k-Spanner, but, as mentioned
previously, k-TC-Spanner is known to be strictly easier for some (but not all) k

in that range.
The 2log1−ε n-inapproximability of k-TC-Spanner for constant k ≥ 3 in [15]

matches the inapproximability of Directed k-Spanner for the same stretch
in [30]. As is the case for Directed k-Spanner, the reduction is from a prob-
lem called MIN-REP, whose inapproximability Directed k-Spanner inher-
its. However, as illustrated in [15], all known hard instances for Directed k-

Spanner cannot imply anything better than Ω(1)-hardness for k-TC-Spanner.
Intuitively, inapproximability of k-TC-Spanner is harder to prove than inap-
proximability of Directed k-Spanner because an instance of k-TC-Spanner

must be transitively-closed, and thus, have more “shortcut” routes between pairs
of vertices. The construction of hard instances of k-TC-Spanner in [15] uses
so-called generalized butterfly and broom graphs. The paths in these graphs are
well-structured, making it possible to analyze many different routes in the tran-
sitive closure of a hard instance.

The reduction from MIN-REP to k-TC-Spanner in [15] is quite involved.
We briefly describe some of the ideas behind the reduction. An instance of MIN-

REP is a bipartite graph G, where each part consists of n nodes partitioned into
r clusters of size n/r. The clusters in the left part are called A1, . . . ,Ar and the
clusters in the right part are B1, . . . ,Br.

A1

A3

B1

B2

B3

A2

supergraph

Define the supergraph to have nodes A1, . . . ,Ar,B1, . . . ,Br, with a superedge
(Ai,Bj) iff there is a node in Ai adjacent to a node in Bj . A rep-cover is a vertex
set S in the graph such that whenever (Ai,Bj) is an edge in the supergraph,
there is an edge between some u, v ∈ S with u ∈ Ai and v ∈ Bj . A solution to
MIN-REP is a smallest rep-cover. Elkin and Peleg [28] showed that MIN-REP

is 2log1−ε n-inapproximable.

184 S. Raskhodnikova

We now describe generalized butterfly and broom graphs used in the reduction.
Generalized butterflies were defined by Woodruff [58]. Each node in a generalized
butterfly has k coordinates: (a1, . . . , ak−1, i), where a1, . . . , ak−1 ∈ [d] and i ∈ [k].
There is an edge from node (a1, . . . , ak−1, i) to node (b1, . . . , bk−1, i + 1) iff for
all j �= i, aj = bj.

Since there are d possibilities for bi, each node has outdegree d. Similarly, each
node has indegree d. It is easy to see that there is a unique shortest path of
length k − 1 from any node in layer 1 to any node in layer k. Moreover, any
shortcut is on at most dk−3 such paths because if it connects layer i to layer
i + � (where � ≥ 2) it fixes all but i − 1 coordinates of the first node and all but
k − (i + �) coordinates of the second. Thus, at least dk+1 shortcuts are needed
to reduce the diameter from k − 1 to k − 2.

A broom is a 3-layer graph, where the two leftmost layers form a bipartite
clique, and the right layer consists of degree-1 nodes, attached to nodes in the
middle layer. Each node in the first and second layer has outdegree d. All edges
are directed from left to right.

d
d d

Generalized butterfly Broom

Given an instance ofMIN-REP, we construct an instance G of k-TC-Spanner

as follows. We attach a disjoint copy of a generalized butterfly of diameter k − 1
to each Ai in the MIN-REP instance graph; that is, we identify the vertices in
Ai with the vertices in layer k of the butterfly. The parameter d is determined
by the size of Ai and k. (We can add isolated vertices to each cluster of the given

Transitive-Closure Spanners: A Survey 185

MIN-REP instance to ensure that |Ai| is a (k − 1)st power.) Next, each Bj is
identified with the leftmost layer of a disjoint broom graph. All edges of G are
directed towards the rightmost nodes of the brooms. The resulting graph has di-
ameter k + 2.

A1

A3

B1

B2

B3

A2

MIN-REP
instance

Brooms
3 layers

Butterflies
k layers

A k-TC-spanner H of G is formed as follows. Let O be a minimum rep-cover of
the underlying MIN-REP instance. For each butterfly, include all shortcuts from
layer k − 2 to comparable vertices in layer k which are also in O. In addition,
include all shortcuts from vertices in layer k + 1 which are also in O to all
comparable nodes in the last layer. Since O is a rep-cover, H is a k-TC-spanner.
The size of H is |G| + d2|O| because for each vertex in O we add shortcuts to
d2 vertices (in layer k − 2 for vertices in the left clusters of MIN-REP, and in
layer k + 3 for vertices in the right clusters).

If H were optimal, then approximating its size would approximate a minimum
rep-cover of the original MIN-REP instance within the same factor. To ensure
that H is optimal, [15] carefully modify the original MIN-REP instance and
only then apply the reduction we described.

5 Applications of TC-spanners

We describe four types of applications that use sparse TC-spanners: property
testing, property reconstruction, key management in an access hierarchy and
data structures for computing partial products in a semigroup. For property
testing, we give two applications: to testing monotonicity of functions and to
testing if a function is Lipschitz. All these applications, with the exception of

186 S. Raskhodnikova

testing Lipschitz functions and property reconstruction, were pointed out and
described in [15]. The application to Lipschitz functions is from [39]. The appli-
cation to property reconstruction is from [14].

5.1 Applications to Property Testing

We start by describing the application to testing monotonicity of functions.
We also point out the limitations of TC-spanner techniques and related open
questions in the area.

Monotonicity testing. Monotonicity of functions [31,35,25,12,32,33,36,4,15,16,51]
is one of the most widely studied properties in property testing [34,47]. Fischer
et al. [33] prove that testing monotonicity is equivalent to several other testing
problems. Let Vn be a poset of n elements and Gn = (Vn, E) be the relation
graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R is called mono-
tone if f(x) ≤ f(y) for all (x, y) ∈ E. We say f is ε-far from monotone if f

has to be changed on ≥ ε fraction of the domain to become monotone, that is,
minmonotone g |{x : f(x) �= g(x)}| ≥ εn. A monotonicity tester on Gn is an algo-
rithm that, given an oracle for a function f : Vn → R, passes if f is monotone
but fails with probability ≥ 2

3 if f is ε-far from monotone. For instance, if Gn

is a directed line Ln, the tester needs to determine whether the input sequence,
specified by f , is sorted or ε-far from sorted. If Gn is a 2-dimensional grid Hm,2,
the goal is to determine whether the input matrix has non-decreasing rows and
columns. The optimal monotonicity tester for the directed line Ln, proposed by
Dodis et al. [25], is based on the sparsest 2-TC-spanner for that graph. Implicit
in the proof of Proposition 9 in [25] is a lemma relating the complexity of a mono-
tonicity tester for Ln to the size of a 2-TC-spanner of Ln. Bhattacharyya et al.
[15] generalized this lemma by observing that a sparse 2-TC-spanner for any
partial order graph Gn implies an efficient monotonicity tester on Gn.

Lemma 5.1 ([15]). If a directed acyclic graph Gn has a 2-TC-spanner with s(n)
edges, then there exists a monotonicity tester on Gn that runs in time O

(
s(n)
εn

)
.

Proof. The tester selects 8s(n)
εn edges of the 2-TC-spanner H uniformly at ran-

dom. It queries function f on the endpoints of all the selected edges and rejects
if some selected edge (x, y) is violated by f , that is, f(x) > f(y).

If the function f is monotone on Gn, the algorithm always accepts. The crux
of the proof is to show that functions that are ε-far from monotone are rejected
with probability at least 2

3 . Let f : Vn → R be a function that is ε-far from
monotone. It is enough to demonstrate that f violates at least εn

4 edges in H .
Then each selected edge is violated with probability εn

4s(n) , and the lemma follows
by elementary probability theory.

Denote the transitive closure of Gn by TC(Gn). We say a vertex x ∈ Vn is
assigned a bad label by f if x has an incident violated edge in TC(Gn); otherwise,
x has a good label. Let V ′ be a set of vertices with good labels. Observe that
f is monotone on the induced subgraph G′ = (V ′, E′) of TC(Gn). This implies

Transitive-Closure Spanners: A Survey 187

([33], Lemma 1) that f can be changed into a monotone function by modifying
it on at most |Vn − V ′| vertices. Since f is ε-far from monotone, it shows that
there are at least εn vertices with bad labels.

Every function that is ε-far from monotone has a matching M of at least εn
2

violated edges in TC(Gn) [25]. We will establish a map from the set of edges
in M to the set of violated edges in H , so that each violated edge in H is the
image of at most 2 edges in M . For each edge (x, y) in the matching, consider
the corresponding path from x to y of length at most 2 in the 2-TC-spanner H .
If the path is of length 1, (x, y) is the violated edge in H corresponding to the
matching edge (x, y). Otherwise, let (x, z, y) be a path of length 2 in H . At least
one of the edges (x, z) and (z, y) is violated, and we map (x, y) to that edge.
Since M is a matching, at most 2 edges in M can be mapped to one violated
edge in H . Thus, the 2-TC-spanner H has ≥ εn

4 violated edges, as required. ��
The fact that H is a 2-TC-spanner is crucial for the proof. If it was a k-TC-
spanner for k > 2, the path of length k from x to y might not have any violated
edges incident to x or y, even if f(x) > f(y). Consider G2n = (V2n, E) where
V2n = {x1, . . . , x2n}, E = {(xi, xn) | i < n}∪(xn, xn+1)∪{(xn+1, xj) | j > n+1}.
G2n is a 3-TC-spanner of itself. Now set f(xi) = 1 for i ≤ n and f(xi) = 0
otherwise. Clearly, this function is 1

2 -far from monotone, but only one edge,
(xn, xn+1) is violated in the 3-TC-spanner.

As demonstrated by Lemma 5.1, all the 2-TC-spanner constructions yield
monotonicity testers for functions defined on the corresponding posets. This
lemma led to significant improvements in monotonicity testers for several graph
families, including planar graphs and, in general, H-minor-free graphs [15]. In-
deed, [15] achieve testers with O(log2

n/ε) queries for H-minor-free graphs using
their construction of sparse 2-TC-spanners for this graph family, whereas the
previous tester, due to Fischer et al. [33], worked only for planar graphs and
required Θ(

√
n/ε) queries.

We briefly discuss the limitations of the TC-spanner method for constructing
monotonicity testers. The lower bounds in [16,14] on the size of the sparsest
2-TC-spanners for the hypercube and the hypergrid (described in Theorem 3.1)
rule out the TC-spanner approach for improving monotonicity testers on the
hypercube and hypergrid. Currently, the running time of the best tester for
monotonicity of functions of the form f : {0, 1}d → R and, more generally,
f : [m]d → R, where R is an arbitrary range, is O

(
d
ε log m · log |R|) [25]. The

best known lower bound (for the hypercube with range R = {0, 1}) is Ω(log log d)
[33]. (There are better bounds for restricted classes of tests in [33] and [51].) Even
though for a fixed d, it is known that the optimal monotonicity tester for the
grid runs in time Θ(log m

ε) [36,32], bridging the gap between the lower and upper
bounds for arbitrary d has remained elusive. Lemma 5.1 showed that if a 2-TC-
spanner of size o(2dd2) for the hypercube or, more generally, a 2-TC-spanner of
size o(mdd2 log2

m) for the hypergrid were found, the monotonicity tester of [25]
would be improved. In the light of the lower bounds for the hypercube and the
hypergrid, a fundamentally new approach is required.

188 S. Raskhodnikova

Testing if a function is Lipschitz. In the important special case when Gn is the
directed line, Lemma 5.1 yields an optimal tester for whether a function of the
form f : [n] → R is monotone or, equivalently, of whether a list of n elements
is sorted, that runs in time O(log n/ε). (There is another optimal tester for this
problem that was discovered first [31].) Jha and Raskhodnikova [39] observe that
the test and analysis in Lemma 5.1 apply to any property of a list of numbers if
(a) it can be expressed in terms of pairs of list elements and (b) it is transitive:
namely, for all x ≺ y ≺ z, whenever (x, y) and (y, z) are not violated, (x, z) is
also not violated. In particular, it applies to testing whether a function of the
form f : [n] → R is Lipschitz. A function f : D → R is called Lipschitz if
distR(f(x), f(y)) ≤ distD(x, y) for all x, y in D, where distR and distD denote
the distance functions on the range and domain of f , respectively. Testing the
Lipschitz property has applications to programs with noisy inputs and to data
privacy.

Note that the Lipschitz property was defined in terms of pairs of domain
elements. Consider a function f : [n] → R, where the domain and range are
equipped with distance functions distD(x, y) = |x − y| and distR(f(x), f(y)) =
|f(y)−f(x)|. We say a pair (x, y) is violated if |f(y)−f(x)| > |y−x|. Then if (x, y)
and (y, z) are not violated, it implies that neither is (x, z). Thus, the requirements
(a) and (b) above hold and, using their observation, Jha and Raskhodnikova get
a O(n/ε) Lipschitz test for functions of the form f : [n] → R via the optimal
2-TC-spanner construction of the line.

5.2 Application to Property Reconstruction

Property-preserving data reconstruction was introduced by Ailon, Chazelle, Co-
mandur and Liu [3]. In this model, a reconstruction algorithm, called a filter,
sits between a client and a dataset. A dataset is viewed as a function f : D → R.
Client accesses the dataset using queries of the form x ∈ D to the filter. The
filter looks up a small number of values in the dataset and outputs g(x), where
g must satisfy some fixed structural property P . Extending this notion, Saks
and Seshadhri [48] defined local reconstruction. A filter is local if it allows for a
local (or distributed) implementation: namely, if the output function g does not
depend on the order of the queries.

Definition 5.1 (Local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R, and to an auxiliary
random string ρ (the “random seed”), and takes as input x ∈ D. For fixed f

and ρ, A runs deterministically on input x to produce an output Af,ρ(x) ∈ R.
As x varies over the domain D, this defines a function g : D → R, where
g(x) = Af,ρ(x). (Note that a local filter has no internal state to store previously
made queries.) The filter must satisfy the following conditions:

– For each f and ρ, the function g output by the filter satisfies P.
– If f satisfies P, then g is identical to f with probability at least 1 − δ, for

some δ ≤ 1/3. The parameter δ is called error probability.

Transitive-Closure Spanners: A Survey 189

In answering query x ∈ D, the filter A may ask for values of f at domain points
of its choice using its oracle access to f . Each such access made to the oracle
is called a lookup to distinguish it from the client query x. A local filter is non-
adaptive if the set of domain points that the filter looks up to answer an input
query x does not depend on answers given by the oracle.

Saks and Seshadhri also required that g must be sufficiently close to f : With
high probability (over the choice of ρ), Dist(g, f) ≤ B(n)·Dist(f,P), where B(n)
is called the error blow-up. (Dist(g, f) is the number of points in the domain on
which f and g differ. Dist(f,P) is ming∈P Dist(g, f).) If a local filter satisfies
this condition along with Definition 5.1, we call it distance-respecting.

Local Monotonicity Reconstructors. The first property considered in the recon-
struction [3] and local reconstruction [48] models was monotonicity of functions.
(See Section 5.1 for a definition.) A (distance-respecting) filter for monotonicity
can be used, for example, when a program will run correctly only if its input
is sorted. Then, instead of accessing the input directly, the program can access
it via a filter, which will ensure that the program always sees a sorted input,
making small corrections when necessary. A local filter can be implemented in
a distributed manner with an additional guarantee that every program run on
the same not-quite-sorted input will see the same corrected version. This can be
done by supplying the same random string to each copy of the filter.

To motivate monotonicity reconstructors for hypergrids, consider the scenario
of rolling admissions: An admissions office assigns d scores to each application,
such as the applicant’s GPA, SAT results, essay quality, etc. Based on these
scores, some complicated (third-party) algorithm outputs the probability that a
given applicant should be accepted. The admissions office wants to make sure
“on the fly” that strictly better applicants are given higher probability, that is,
probabilities are monotone in scores. A hypergrid monotonicity filter may be used
here. And, as before, if the filter is local, it can be implemented in a distributed
manner, guaranteeing the same results for all filters running in parallel.

Saks and Seshadhri [48] give a distance-respecting local monotonicity filter
for the directed hypergrid, Hm,d, that makes (log m)O(d) lookups per query. No
non-trivial monotonicity filter for the hypercube Hd (performing o(2d) lookups
per query) is known. One of the monotonicity filters in [3] is a local filter for the
directed line Hm,1 with O(log m) lookups per query (but a worse error blow up
than in [48]). As observed in [48], this upper bound is tight. Notably, all known
local filters for monotonicity property are non-adaptive. A lower bound of 2αd,
on the number of lookups per query for a distance-respecting local monotonicity
filter on Hd with error blow-up 2βd, where α, β are sufficiently small constants,
appeared in [48].

[14] show how to construct sparse 2-TC-spanners from local monotonicity re-
constructors with low lookup complexity. These constructions, in conjunction
with lower bounds on the size of 2-TC-spanners of the hypergrid and hyper-
cube, described in Section 3.1, imply lower bounds on lookup complexity of
local monotonicity reconstructors with arbitrary blow-up. The transformations

190 S. Raskhodnikova

from non-adaptive and adaptive reconstructors are stated in Theorems 5.1 and
5.2, respectively.

Theorem 5.1 (Transformation from non-adaptive Local Monotonicity
Reconstructors to 2-TC-spanners, [14]). Let Gn = (Vn, E) be a poset on
n nodes. Suppose there is a non-adaptive local monotonicity reconstructor A

for Gn that looks up at most �(n) values to answer any query x ∈ Vn and has
error probability at most δ. Then there is a 2-TC-Spanner of Gn with at most
O(n�(n) · �log n/ log(1/δ)) edges.

Proof. Let A be a local reconstructor given by the statement of the theorem. Let
F be the set of pairs (x, y) with x, y in Vn such that x ≺ y. Then, F is of size at
most

(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set {z ∈ Vn : x " z " y}. Define

function f (x,y)(v) to be 1 on all v $ x and all v $ y, and 0 everywhere else.
Also, define function f (x,y)(v), which is identical to f (x,y)(v) for all v /∈ cube(x, y)
and 0 for v ∈ cube(x, y). Both, f (x,y) and f (x,y), are monotone functions for all
(x, y) ∈ F . Let Aρ be the deterministic algorithm which runs A with the random
seed fixed to ρ. We say a string ρ is good for (x, y) ∈ F if filter Aρ on input f (x,y)

returns g = f (x,y) and on input f (x,y) returns g = f (x,y).
Now we show that there exists a set S of size s ≤ �2 log n/ log(1/2δ), consist-

ing of strings used as random seeds by A, such that for every (x, y) ∈ F some
string ρ ∈ S is good for (x, y). We choose S by picking strings used as random
seeds uniformly and independently at random. Since A has error probability at
most δ, we know that for every monotone f , with probability at least 1−δ (with
respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed
(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤
(2 · δ)s, which, for s = �2 logn/ log(1/2δ), is at most 1/n2 < 1/|F|. By a union
bound over F ,

Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with required properties.
We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described

above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ

on query x. For each string ρ ∈ S and each vertex x ∈ Vn, connect x to all
comparable vertices in Nρ(x) (other than itself) and orient these edges according
to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists
(x, y) ∈ F with no path of length at most 2 in H from x to y. Consider ρ ∈ S

which is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all
v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by definition of
f (x,y). For a v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).

Transitive-Closure Spanners: A Survey 191

All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any points in cube(x, y). Therefore, h is well-defined. Since, ρ

is good for (x, y) and h is identical to f (x,y) for all look ups made on query x,
Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not
monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · � · s ≤ n� · �2 logn/ log(1/2δ). ��

The next theorem applies even to adaptive local monotonicity reconstructors. It
takes into account how many lookups on query x are points incomparable to x.
In particular, if there are no such lookups, then the constructed 2-TC-spanner
is of the same size as in Lemma 5.1.

Theorem 5.2 (Transformation from adaptive Local Monotonicity Re-
constructors to 2-TC-spanners, [14]). Let Gn = (Vn, E) be a poset on
n nodes. Suppose there is a (possibly adaptive) local monotonicity reconstruc-
tor A for Gn that, for any query x ∈ Vn, looks up at most �1(n) vertices
comparable to x and at most �2(n) vertices incomparable to x, and has er-
ror probability at most δ. Then there is a 2-TC-Spanner of Gn with at most
O(n�1(n) · 2�2(n)�log n/ log(1/δ)) edges.

Proof. Define F , f (x,y), f (x,y), Aρ and S as in the proof of Theorem 5.1. As
before, for each x ∈ Vn, we define sets Nρ(x), and construct the 2-TC-Spanner
H by connecting each x to comparable points in N (x) for all ρ ∈ S and orienting
the edges according to Gn. However, now Nρ(x) is a union of several sets N b,w

ρ (x),
indexed by b ∈ {0, 1} and w ∈ {0, 1}�2(n). (In addition, Nρ(x) contains x.) For
each x ∈ Vn, b ∈ {0, 1} and w ∈ {0, 1}�2(n), let N b,w

ρ (x) ⊆ Vn be the set
of lookups performed by Aρ on query x, assuming that the oracle answers all
lookups as follows. When a lookup y is comparable to x, answer 0 if y ≺ x, b

if y = x, 1 if x ≺ y. Otherwise, if y is the i’th lookup made to an incomparable
point for some i ∈ [�2], answer w[i]. Recall that we set Nρ(x) to be the union of
N b,w

ρ for all b ∈ {0, 1} and all w ∈ {0, 1}�2(n). This completes the description of
Nρ(x) and construction of H .

The argument that H is a 2-TC-spanner proceeds similarly to that in the
proof of Theorem 5.1. The caveat is that an adaptive local filter might choose
lookups based on the answers to previous lookups. The constructed function h

sets all points comparable to x to 0 if they are below x and 1 if they are above x.
However, points incomparable to x might be comparable to y and might be set
to 0 or 1, depending on whether they are above or below y. Since we included
sets of points queried under all these possibilities in Nρ(x), we can now conclude
that Aρ(x) = h(x) = 1. The same applies for y. So, Ah,ρ outputs a non-monotone
function, witnessed the pair (x, y). Contradiction.

192 S. Raskhodnikova

We proceed to bound the number of edges EH in H . For each ρ ∈ S, x ∈ Vn,
b ∈ {0, 1}, and w ∈ {0, 1}�2(n), the number of vertices in N

ρ
b,w(x) comparable to

x is at most �1(n). Therefore,

|EH | ≤ �1(n) · 2 · 2�2(n) · |S| ≤ O

(
n · �1(n) · 2�2(n)�log n/ log(1/δ)

)
. ��

In Theorems 5.1 and 5.2 when δ is sufficiently small the bounds on the 2-TC-
Spanner size become O(n�(n)) and O(n�1(n) · 2�2(n)), respectively. As pointed
out earlier, all known monotonicity reconstructors are non-adaptive. It is an
open question whether it is possible to give a transformation from adaptive local
monotonicity reconstructors to 2-TC-spanners without incurring an exponential
dependence on the number of lookups made to points incomparable to the query
point. It is not known if this dependence is an artifact of the proof or an indi-
cation that lookups to incomparable points might be helpful for adaptive local
monotonicity reconstructors.

Theorems 5.1 and Theorem 5.2 imply the following lower bounds on the
lookup complexity of local monotonicity reconstructors. These lower bounds hold
for any error-blow up.

Corollary 5.1 ([14]). Consider a nonadaptive local monotonicity filter with
constant error probability δ. If the filter is for functions f : Hm,d → R, it must

perform Ω

(
logd−1 m

dd(2 log log m)d−1

)
lookups per query. If the filter is for functions f :

Hd → R, it must perform Ω
(
2αd/d

)
lookups per query, where α ≥ 0.1620.

Corollary 5.2 ([14]). Consider an (adaptive) local monotonicity filter with
constant error probability δ, that for every query x ∈ Vn, looks up at most �2

vertices incomparable to x. If the filter is for functions f : Hm,d → R, it must

perform Ω

(
logd−1 m

2�2dd(2 log log m)d−1

)
lookups to vertices comparable to x per query x.

If the filter is for functions f : Hd → R, it must perform Ω
(
2αd−�2/d

)
compa-

rable lookups, where α ≥ 0.1620.

Prior to [14], no lower bounds for monotonicity reconstructors on Hm,d with
dependence on both m and d were known. Unlike the bound in [48], the TC-
spanner-based lower bounds hold for any error blow-up. These bounds are tight
for reconstructors that are either non-adaptive or perform the number of in-
comparable lookups that is polylogarithmic in the number of points in the do-
main. Specifically, for the hypergrid Hm,d of constant dimension d, the number
of lookups is (log m)Θ(d), and for the hypercube Hd, it is 2Θ(d) for any error
blow-up.

5.3 Application to Key Management in Access Control Hierarchies

Atallah et al. [9] used sparse Steiner TC-spanners to construct efficient key man-
agement schemes for access control hierarchies. An access hierarchy is a partially
ordered set G of access classes. Each user is entitled to access a certain class and

Transitive-Closure Spanners: A Survey 193

all classes reachable from the corresponding node in G. One approach for de-
vising a cryptographic protocol that enforces the access hierarchy is to have the
users follow a key management scheme [8,9,49,7,17]. Here, each edge (i, j) has
an associated public key P (i, j), and each node i, an associated secret key ki.
Only users with the secret key for a node have the required permissions for the
associated access class. The public and secret keys are designed so that there
is an efficient algorithm A which takes ki and P (i, j) and generates kj , but for
each (i, j) in G, it is computationally hard to generate kj without knowledge of
ki. Thus, a user can efficiently generate the required keys to access a descendant
class, but not other classes. The number of runs of algorithm A needed to gen-
erate a secret key kv from a secret key ku is equal to the number of edges on
the shortest path from u to v in G. To speed this up, Atallah et al. [7] suggest
adding edges and nodes to G to increase connectivity. To preserve the access
hierarchy represented by G, the new graph H must be a Steiner TC-spanner of
G. The number of edges in H corresponds to the space complexity of the scheme,
while the stretch k of the spanner corresponds to the time complexity.

We note that the time to find the path from u to v is also important in
this application. In the upper bounds from [17] listed in Table 1, this time is
O(d), which for, say, constant d is likely to be much less than 2g(n) or 3g(n),
where g(n) is the time to run algorithm A. This is because algorithm A involves
the evaluation of a cryptographic hash function, which is very expensive: any
hash function secure against poly(n)-time adversaries requires g(n) ≥ polylog n

evaluation time under existing number-theoretic assumptions.

5.4 Application to Computing Partial Products in a Semigroup

Yao [60] and Alon and Schieber [5] study space-efficient data structures for the
following problem: Preprocess elements {s1, . . . , sn} of a semigroup (S, ◦) to be
able to compute partial products si ◦ si+1 ◦ · · · ◦ sj for all i, j ∈ [n] with at
most k queries to a small database of pre-computed partial products. Examples
of a semigroup (S, ◦) include (R, min), the space of real d-dimensional vectors
with operation (x1, . . . , xd) ◦ (y1, . . . , yd) = (min(x1, y1), . . . , min(xd, yd)), and
the space of real d × d matrices equipped with the multiplication operation.

Bhattacharyya et al. [15] point out that the problem of computing partial
products in a semigroup reduces to finding a sparsest k-TC-spanner for a directed
line Ln+1. If the database stores a product su ◦ · · · ◦ sv for each k-TC-spanner
edge (u, v + 1), every product si ◦ · · · ◦ sj can be computed by multiplying the
products corresponding to the edges on a path of length at most k from i to
j + 1 in the k-TC-spanner for Ln+1.

Chazelle [19] and Alon and Schieber [5] also consider a generalization of the
above problem, where the input is an (undirected) tree T with an element si of
a semigroup associated with each vertex i. The goal is to create a space-efficient
data structure that allows us to compute the product of elements associated
with all vertices on the path from i to j, for all vertices i, j in T . As before, only
k queries to the data structure are allowed for each product computation. The
generalized problem reduces to finding a sparsest k-TC-spanner for a directed

194 S. Raskhodnikova

tree T ′ obtained from T by appending a new vertex to each leaf, and then select-
ing an arbitrary root and directing all edges away from it. A k-TC-spanner for
T ′ with s(n) edges yields a preprocessing scheme with space complexity s(n) for
computing products on T with at most 2k queries as follows. The database stores
a product sv1 ◦ · · · ◦ svt for each k-TC-spanner edge (v1, vt+1) if the endpoints
of that edge are connected by the path v1, · · · , vt, vt+1 in T ′. Let LCA(u, v)
denote the lowest common ancestor of u and v in T . To compute the product
corresponding to a path from u to v in T , we consider 2 cases: (1) if u is an
ancestor of v (or vice versa) in T , query the products corresponding to the k-
TC-spanner edges on the shortest path from u to a child of v (from v to a child of
u, respectively); (2) otherwise, make queries corresponding to the k-TC-spanner
edges on the shortest path from LCA(u, v) to a child of u and on the shortest
path from a child of LCA(u, v) nearest to u to a child of u. This gives a total of
at most 2k queries.

Acknowledgment

The author would like to thank Oded Goldreich for persuading her to write this
survey and Adam Smith, Ramesh T.K. and Piotr Berman for useful comments.

References

1. Abraham, I., Gavoille, C.: Object location using path separators. In: PODC, pp.

188–197 (2006)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.

SIAM J. Comput. 1(2), 131–137 (1972)

3. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-

struction. Algorithmica 51(2), 160–182 (2008)

4. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity

testing in higher dimension. Inf. Comput. 204(11), 1704–1717 (2006)

5. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product

queries. Tech. Rep. 71/87, Tel-Aviv University (1987)

6. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of

weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

7. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key

management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 1–43 (2009)

8. Atallah, M.J., Blanton, M., Frikken, K.B.: Key management for non-tree access

hierarchies. In: SACMAT, pp. 11–18 (2006)

9. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management

for access hierarchies. In: ACM Conference on Computer and Communications

Security, pp. 190–202 (2005)

10. Awerbuch, B.: Communication-time trade-offs in network synchronization. In:

PODC, pp. 272–276 (1985)

11. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-

pected Õ(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

12. Batu, T., Rubinfeld, R., White, P.: Fast approximate PCPs for multidimensional

bin-packing problems. Inf. Comput. 196(1), 42–56 (2005)

13. Berman, P., Raskhodnikova, S., Ruan, G.: Finding sparser directed spanners (2010)

(manuscript)

Transitive-Closure Spanners: A Survey 195

14. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S.,

Woodruff, D.: Lower bounds for local monotonicity reconstruction from transitive-

closure spanners. In: RANDOM (2010)
15. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:

Transitive-closure spanners. In: SODA, pp. 932–941 (2009)
16. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:

Transitive-closure spanners of the hypercube and the hypergrid (2009), eCCC Re-

port TR09-046
17. Bhattacharyya, A., Grigorescu, E., Raskhodnikova, S., Woodruff, D.: Steiner

transitive-closure spanners of d-dimensional posets (2010) (manuscript)
18. Bodlaender, H.L., Tel, G., Santoro, N.: Tradeoffs in non-reversing diameter. Nordic

Journal of Computing 1(1), 111–134 (1994)
19. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-

rithmica 2, 337–361 (1987)

20. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.

SIAM J. Comput. 28(1), 210–236 (1998)
21. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected

shortest paths. JACM 47(1), 132–166 (2000)
22. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183

(2001)
23. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J.

Algorithms 50(1), 79–95 (2004)
24. Dilworth, R.P.: A decomposition theorem for partially ordered sets. The Annals of

Mathematics, Second Series 51(1), 161–166 (1950)

25. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,

A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K.,

Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,

vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

26. Dushnik, B., Miller, E.: Concerning similarity transformations of linearly ordered

sets. Bulletin Amer. Math. Soc. 46, 322–326 (1940)
27. Elkin, M.: Computing almost shortest paths. In: PODC, pp. 53–62 (2001)
28. Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In:

Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.

636–647. Springer, Heidelberg (2000)
29. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to

network design. In: SIROCCO, pp. 117–132 (2001)
30. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory

Comput. Syst. 41(4), 691–729 (2007)

31. Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-

checkers. JCSS 60(3), 717–751 (2000)
32. Fischer, E.: On the strength of comparisons in property testing. Inf. Com-

put. 189(1), 107–116 (2004)
33. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-

nitsky, A.: Monotonicity testing over general poset domains. In: STOC, pp. 474–483

(2002)
34. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. JACM 45(4), 653–750 (1998)
35. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing

monotonicity. Combinatorica 20(3), 301–337 (2000)
36. Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. In: Dı́az, J.,

Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.

721–732. Springer, Heidelberg (2004)

196 S. Raskhodnikova

37. Hesse, W.: Directed graphs requiring large numbers of shortcuts. In: SODA, pp.

665–669 (2003)

38. Hochbaum, D. (ed.): Approximation Algorithms for NP-hard Problems. PWS Pub-

lishing Company, Boston (1997)

39. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with

applications to data privacy (2010) (manuscript)

40. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),

432–450 (2001)

41. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal

on Applied Mathematics 36(2), 177–189 (1979), http://www.jstor.org/stable/

2100927

42. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-

trial and Applied Mathematics, Philadelphia (2000)

43. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116

(1989)

44. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Comput. 18(4), 740–747 (1989)

45. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables.

JACM 36(3), 510–530 (1989)

46. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in

directed graphs. In: SODA, pp. 844–851 (2002)

47. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications

to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

48. Saks, M.E., Seshadhri, C.: Parallel monotonicity reconstruction. In: Proceedings of

the 19th Annual Symposium on Discrete Algorithms (SODA), pp. 962–971 (2008)

49. Santis, A.D., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key

assignment schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708,

pp. 371–382. Springer, Heidelberg (2007)

50. Seidel, R.: Understanding the inverse Ackermann function (2006), http://cgi.di.

uoa.gr/~ewcg06/invited/Seidel.pdf

51. Soriano, D.G., Matsliah, A., Chakraborty, S., Briet, J.: Monotonicity testing and

shortest-path routing on the cube (2010), eCCC Report TR10-048

52. Thorup, M.: On shortcutting digraphs. In: Mayr, E.W. (ed.) WG 1992. LNCS,

vol. 657, pp. 205–211. Springer, Heidelberg (1993)

53. Thorup, M.: Shortcutting planar digraphs. Combinatorics, Probability & Comput-

ing 4, 287–315 (1995)

54. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23(1), 139–159

(1997)

55. Thorup, M., Zwick, U.: Compact routing schemes. In: ACM Symposium on Parallel

Algorithms and Architectures, pp. 1–10 (2001), http://citeseer.ist.psu.edu/

thorup01compact.html

56. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)

57. Trotter, W. (ed.): Combinatorics and Partially Ordered Sets: Dimension Theory.

Johns Hopkins University Press, Baltimore (1992)

58. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In:

FOCS, pp. 389–398 (2006)

59. Yannakakis, M.: The complexity of the partial order dimension problem.

JMAA 3(3), 351–358 (1982)

60. Yao, A.C.C.: Space-time tradeoff for answering range queries (extended abstract).

In: STOC, pp. 128–136 (1982)

http://www.jstor.org/stable/2100927
http://www.jstor.org/stable/2100927
http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf
http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf
http://citeseer.ist.psu.edu/thorup01compact.html
http://citeseer.ist.psu.edu/thorup01compact.html

Testing by Implicit Learning: A Brief Survey

Rocco A. Servedio

Department of Computer Science

Columbia University

New York, NY, U.S.A

rocco@cs.columbia.edu

Abstract. We give a high-level survey of the “testing by implicit learn-

ing” paradigm, and explain some of the property testing results for various

Boolean function classes that have been obtained using this approach.

Keywords: Boolean functions, computational learning theory, Occam’s

Razor.

1 Introduction

This brief survey is about an approach by which proper learning algorithms
from computational learning theory can sometimes be leveraged to obtain query-
efficient property testing algorithms. It does not contain full proofs but gives a
high-level overview of the main ideas along with complete statements of the key
results. Readers who are interested in more details are referred to the full proofs
in [DLM+07, DLM+08, GOS+09].

After presenting some relevant background from earlier work in property test-
ing, in Section 2 we first give an explanation of the basic approach, called “testing
by implicit learning,” and describe a general condition under which a class C of
functions can be efficiently tested using the basic approach. (Roughly speaking,
the condition is that functions in the class must have some sort of concise rep-
resentation, and must be well-approximated by juntas in the class.) The results
in Section 2 are from [DLM+07].

We then present two extensions of the basic “testing by implicit learning”
approach. First, in Section 3 we describe how in one particular case (testing
the class of s-sparse polynomials over F2) it is possible to augment the basic
approach to obtain a testing algorithm which is computationally efficient as well
as query-efficient. These results were first presented in [DLM+08]. For the second
extension, we explain (at a high level) how the “testing by implicit learning”
approach can be carried out in the Fourier domain; very roughly speaking, in
this extension the 2n parity functions over x1, . . . , xn play the role that the n

Boolean variables x1, . . . , xn play in the original approach. This extension, and
the testing results obtained using it, were first established in [GOS+09] and are
presented here in Section 4. We close in Section 5 with suggested directions for
future work.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 197–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 R.A. Servedio

Notation and Conventions. In [DLM+07] the basic “testing by implicit learn-
ing” approach is presented in a rather general setting in which the functions being
tested are mappings from Ωn to X , where Ω and X may be arbitrary finite sets.
For simplicity and ease of exposition, in this survey we will only consider testing
Boolean functions which map {0, 1}n→{0, 1}. Thus for us a “property of Boolean
functions” is a class C of Boolean functions over {0, 1}n as described above.

We work in the usual property testing model for Boolean functions. To recap,
we view {0, 1}n as endowed with the uniform distribution. Two functions f1, f2 :
{0, 1}n→{0, 1} are said to be ε-close if Pr[f1(x) �= f2(x)] ≤ ε, and are ε-far
if Pr[f1(x) �= f2(x)] > ε. A testing algorithm for class C is an algorithm A

which takes black-box oracle access to an unknown and arbitrary function f :
{0, 1}n→{0, 1}. If f belongs to C then A must output “yes” with probability at
least 2/3 (over its internal coin tosses), and if f is ε-far from every g ∈ C then
A must output “no” with probability at least 2/3 (thus we consider testers with
two-sided error).

A function f : {0, 1}n → {0, 1} is said to be a J-junta if there exists a set
J ⊆ [n] of size at most J such that f(x) = f(y) for every two assignments
x, y that agree on all the coordinates in J (in other words, f is a J-junta if it
depends on at most J out of the n input variables).

1.1 Some Previous Work on Testing Classes of Boolean Functions

The “testing by implicit learning” approach is useful for classes of Boolean func-
tions that have some sort of “concise representation.” There has been consid-
erable previous research on testing functions for properties corresponding to
different notions of having a concise representation. An important precursor of
the “testing by implicit learning” work is the paper of Parnas et al. [PRS02],
which gave algorithms for testing whether Boolean functions f : {0, 1}n→{0, 1}
have certain very simple representations as Boolean formulae. They gave an
O(1/ε)-query algorithm for testing whether f is a single Boolean literal or a
Boolean conjunction, and an Õ(s2/ε)-query algorithm for testing whether f is an
s-term monotone DNF. Parnas et al. posed as an open question whether a similar
testing result can be obtained for the broader class of general (non-monotone)
s-term DNF formulas; as we will see, the “testing by implicit learning” method
gives an affirmative answer to this question.

Another closely related work is that of Fischer et al. [FKR+04], who gave an
algorithm to test whether a Boolean function f : Ωn → {0, 1} is a J-junta (i.e.
depends only on at most J of its n arguments) with query complexity polynomial
in J and 1/ε. As described below, the “testing by implicit learning” approach
makes crucial use of techniques from [FKR+04], in combination with ideas from
computational learning theory.

1.2 Relevant Earlier Work Relating Property Testing and Learning

The basic idea of using a learning algorithm to do property testing goes back to
Goldreich et al. [GGR98]. They observed that any proper learning algorithm for

Testing by Implicit Learning 199

Table 1. Selected results on testing various classes of Boolean functions over {0, 1}n.

The acronyms DNFs, DTs, BPs stand for Disjunctive Normal Form Boolean formulas,

Decision Trees, and Branching Programs respectively. The “testing by implicit learn-

ing” method is how the upper bounds in lines marked by “[DLM+07]” and “[GOS+09]”

are achieved. The upper bounds for those results are for adaptive algorithms (though

it is shown in [DLM+07] that very similar bounds can be achieved by non-adaptive

algorithms), and the lower bounds are for non-adaptive algorithms unless otherwise

indicated by (adaptive).

Class of functions Number of Queries Reference

Boolean literals (dictators), conjunctions O(1/ε) [PRS02]

s-term monotone DNFs Õ(s2/ε) [PRS02]

J-juntas Õ(J2/ε), Ω(J) (adaptive) [FKR+04], [CG04]

Õ(J/ε) [Bla09]

decision lists Õ(1/ε2) [DLM+07]

size-s DTs, size-s BPs, Õ(s4/ε2),
[DLM+07]

s-term DNFs, size-s Boolean formulas Ω̃(log s) (adaptive)

s-sparse polynomials over F2 Õ(s4/ε2), Ω̃(
√

s) [DLM+07]

size-s Boolean circuits Õ(s6/ε2) [DLM+07]

functions with Fourier degree ≤ d Õ(26d/ε2), Ω̃(
√

d) [DLM+07]

induced subclasses of functions with 2O(k) · poly(1/ε), [GOS+09]

k-dimensional Fourier spectra Ω(2k/2) (adaptive)

a class C can immediately be used as a testing algorithm for C. (Recall that a
proper learning algorithm for C is one which outputs a hypothesis h that itself
belongs to C.) The idea behind this observation is that if the function f being
tested belongs to C then a proper learning algorithm will succeed in constructing
a hypothesis that is close to f , while if f is ε-far from every g ∈ C then any
hypothesis h ∈ C that the learning algorithm outputs must necessarily be far
from f .

This observation shows that any class C can be tested to accuracy ε using
essentially the same number of queries that are required to properly learn the
class to accuracy Θ(ε). However, it is well known that proper learning algorithms
for virtually every interesting class of n-variable Boolean functions (such as all
the classes listed in Table 1, including such simple classes as Boolean literals)
must make at least Ω(log n) queries. In many cases the “testing by implicit
learning” approach can be used to test a class C with fewer queries than are
required for learning – in particular, with query complexity independent of n

(again see Table 1).

2 The Basic “Testing by Implicit Learning” Approach

2.1 Overview of the Approach

An observation which is at the heart of the approach is that many interesting
classes C of functions are “well-approximated” by juntas in the following sense:

200 R.A. Servedio

every function in C is close to some function in CJ , where CJ ⊆ C and every
function in CJ is a J-junta. For example, every s-term DNF over {0, 1}n is τ -
close to an s-term DNF that depends on only s log (s/τ) variables, since each
term with more than log (s/τ) variables can be removed from the DNF at the
cost of at most τ/s error.

Roughly speaking, the “testing by implicit learning” approach to testing
whether f belongs to C works by attempting to learn the “structure” of the
junta in CJ that f is close to without actually identifying the relevant variables on
which the junta depends. If the algorithm finds such a junta function, it accepts,
and if it does not, it rejects. The approach is described as “implicit learning”
(as opposed to the explicit proper learning of Goldreich et al. [GGR98]), since it
learns the structure of the junta to which f is close without explicitly identifying
its relevant variables. Indeed, avoiding identifying the relevant variables is what
makes it possible to have query complexity independent of n.

The basic algorithm finds the structure of the junta f ′ in CJ that f is close to
by using the techniques of [FKR+04]. As in [FKR+04], it begins by randomly par-
titioning the variables of f into subsets and identifying which subsets contain an
influential variable (the random partitioning ensures that with high probability,
each subset contains at most one such variable if f is indeed in C). Next, the algo-
rithm creates a sample of random labeled examples (x1, y1), (x2, y2), ..., (xm, ym),
where each xi is a string of length J (not length n; this is crucial to the query
complexity of the algorithm) whose bits correspond to the influential variables
of f , and where yi corresponds with high probability to the value of junta f ′ on
xi. We note that the number m of examples created is the number of examples
required to learn the class CJ of J-variable functions using “Occam’s Razor”
[BEHW87]; it is independent of n. Finally, the algorithm exhaustively checks
whether any function in CJ – over J input variables – is consistent with this
labeled sample. This step takes at least |CJ | time steps, which is exponential in s

for the classes in Table 1; but since |CJ | is independent of n the overall approach
has query complexity that is independent of n. (The overall time complexity is
linear as a function of n; note that such a runtime dependence on n is inevitable
since it takes n time steps simply to prepare a length-n query string to the
black-box function.)

In the rest of this section we give some more details on the algorithm and its
performance.

2.2 Subclass Approximators

Let C denote a class of functions from {0, 1}n to {0, 1}. We will be interested in
classes of functions that can be closely approximated by juntas in the class. We
have the following:

Definition 1. For τ > 0, we say that a subclass C(τ) ⊆ C is a (τ, J(τ))-
approximator for C if

– C(τ) is closed under permutation of variables, i.e. if f(x1, . . . , xn) ∈ C(τ)
then f(xσ1 , . . . , xσn) is also in C(τ) for every permutation σ of [n]; and

Testing by Implicit Learning 201

– for every function f ∈ C, there is a function f ′ ∈ C(τ) such that f ′ is τ-close
to f and f ′ is a J(τ)-junta.

Typically for us C will be a class of functions with size bound s in some particular
representation, and J(τ) will depend on s and τ. (A good running example to
keep in mind is that C is the class of all functions that have s-term DNF represen-
tations. In this case we may take C(τ) to be the class of all s-term log(s/τ)-DNFs,
and we have J(τ) = s log(s/τ).) The approach succeeds on function classes C for
which J(τ) is a slowly growing function of 1/τ such as log(1/τ).

We write C(τ)k to denote the subclass of C(τ) consisting of those functions
that depend only on variables in {x1, . . . , xk}. We may (and will) view functions
in C(τ)k as taking k arguments rather than n.

2.3 More Detailed Explanation of the Basic Algorithm

Given ε > 0 and black-box access to f , the algorithm performs three main steps:

1. Identify critical subsets. In Step 1, the algorithm first randomly partitions
the variables x1, . . . , xn into r disjoint subsets I1, . . . , Ir. It then attempts to
identify a set of j ≤ J(τ�) of these r subsets, which we refer to as critical
subsets because they each contain a “highly relevant” variable. (For now the
value τ� should be thought of as a small quantity; we discuss how this value
is selected below.) This step is essentially the same as the 2-sided test for
J-juntas from Section 4.2 of Fischer et al. [FKR+04]. The analysis shows
that if f is close to a J(τ�)-junta then this step will succeed w.h.p., and if f

is far from every J(τ�)-junta then this step will fail w.h.p.
2. Construct a sample. Let Ii1 , . . . , Iij be the critical subsets identified in

the previous step. In Step 2 the algorithm constructs a set S of m labeled ex-
amples {(x1, y1), . . . , (xm, ym)}, where each xi is independent and uniformly
distributed over {0, 1}J(τ�). The analysis shows that if f belongs to C, then
with high probability there is a fixed f ′′ ∈ C(τ�)J(τ�) such that each yi is
equal to f ′′(xi). On the other hand, if f is far from C, then the analysis
shows that w.h.p. no such f ′′ ∈ C(τ�)J(τ�) exists.

Each labeled example is constructed by again borrowing a technique
outlined in [FKR+04]. The algorithm starts with a uniformly random z ∈
{0, 1}n. It then attempts to determine how the j highly relevant coordinates
of z are set. Although the algorithm does not know which of the coordinates
of z are highly relevant, it does know that, assuming the previous step was
successful, there should be one highly relevant coordinate in each of the
critical subsets. It uses the independence test of [FKR+04] repeatedly to
determine the setting of the highly relevant coordinate in each critical subset.
For example, suppose that I1 is a critical subset. To determine the setting
of the highly relevant coordinate of z in critical subset I1, the algorithm
subdivides I1 into two sets: the subset Ω0 ⊆ I1 of indices where z is set to
0, and the subset Ω1 = I1\Ω0 of indices where z is set to 1. It then uses
the independence test separately on both Ω0 and Ω1 to find out which one

202 R.A. Servedio

contains the highly relevant variable. This reveals whether the highly relevant
coordinate of z in subset I1 is set to 0 or 1. The algorithm repeats this process
for each critical subset in order to find the settings of the j highly relevant
coordinates of z; these form the string x. (The other J(τ�)−j coordinates of
x are set to random values; intuitively, this is okay since they are essentially
irrelevant.) The algorithm ultimately uses (x, f(z)) as the labeled example.

3. Check consistency. Finally, in Step 3 the algorithm searches through
C(τ�)J(τ�) looking for a function f ′′ over {0, 1}J(τ�) that is consistent with
all m examples in S. (Note that this step takes Ω(|C(τ�)J(τ�)|) time but uses
no queries.) If it finds such a function it accepts f , otherwise it rejects.

2.4 Sketch of the Analysis

We now give an intuitive explanation of the analysis of the test.

Completeness. Suppose f is in C. Then there is some f ′ ∈ C(τ�) that is τ�-close
to f . Intuitively, τ�-close is so close that for the entire execution of the testing
algorithm, the black-box function f might as well actually be f ′ (the algorithm
only performs � 1/τ� many queries in total, each on a uniform random string,
so w.h.p. the view of the algorithm will be the same whether the target is f or
f ′). Thus, for the rest of this intuitive explanation of completeness, we pretend
that the black-box function is f ′.

Recall that the function f ′ is a J(τ�)-junta. Since f ′ is a junta, in Step 1 the
test will be able to identify a collection of j ≤ J(τ�) “critical subsets” with high
probability. Intuitively, these subsets have the property that:

– each “highly relevant” variable occurs in one of the critical subsets, and each
critical subset contains at most one highly relevant variable (in fact at most
one relevant variable for f ′);

– the variables outside the critical subsets are so “irrelevant” that w.h.p. in
all the queries the algorithm makes, it doesn’t matter how those variables
are set (randomly flipping the values of these variables would not change the
value of f ′ w.h.p.).

Given critical subsets from Step 1 that satisfy the above properties, in Step 2 the
test constructs a sample of labeled examples S = {(x1, y1), . . . , (xm, ym)} where
each xi is independent and uniform over {0, 1}J(τ�). In [DLM+07] it is shown
that w.h.p. there is a J(τ�)-junta f ′′ ∈ C(τ�)J(τ�) with the following properties:

– there is a permutation σ : [n] → [n] for which f ′′(xσ(1), . . . , xσ(J(τ))) is close
to f ′(x1, . . . , xn);

– the sample S is labeled according to f ′′.

Finally, in Step 3 the test does a brute-force search over all of C(τ�)J(τ�) to
see if there is a function consistent with S. Since f ′′ is such a function, the search
will succeed and the test outputs “yes” with high probability overall.

Soundness. Suppose now that f is ε-far from C.

One possibility is that f is ε-far from every J(τ�)-junta; if this is the case
then w.h.p. the test will output “no” in Step 1.

Testing by Implicit Learning 203

The other possibility is that f is ε-close to a J(τ�)-junta f ′ (or is itself such
a junta). Suppose that this is the case and that the testing algorithm reaches
Step 2. In Step 2, the algorithm tries to construct a set of labeled examples that
is consistent with f ′. The algorithm may fail to construct a sample at all; if
this happens then it outputs “no.” If the algorithm succeeds in constructing a
sample S, then w.h.p. this sample is indeed consistent with f ′; but in this case,
w.h.p. in Step 3 the algorithm will not find any function g ∈ C(τ�)J(τ�) that is
consistent with all the examples. (If there were such a function g, then standard
arguments in learning theory show that w.h.p. any such function g ∈ C(τ�)J(τ�)

that is consistent with S is in fact close to f ′. Since f ′ is in turn close to f , this
would mean that g is close to f . But g belongs to C(τ�)J(τ�) and hence to C, so
this violates the assumption that f is ε-far from C.)

2.5 The Main Theorem and Its Consequences

The main theorem about the “testing by implicit learning” algorithm sketched
above is stated below. A full proof can be found in [DLM+07].

Theorem 1. There is an algorithm A with the following properties:
Let C be a class of functions from {0, 1}n to {0, 1}. Suppose that for every

τ > 0, C(τ) ⊆ C is a (τ, J(τ))-approximator for C. Suppose moreover that for
every ε > 0, there is a τ satisfying

τ ≤ κ · ε2

J(τ)2 · ln2(J(τ)) · ln ln(J(τ)) · ln2(|C(τ)J(τ)|) · ln(1
ε ln |C(τ)J(τ)|)

, (1)

where κ > 0 is a fixed absolute constant. Let τ� be the largest value τ satisfying
(1) above. Then algorithm A makes:

Õ

(
1
ε2

J(τ�)2 ln2(|C(τ�)J(τ�)|)
)

many black-box queries to f , and satisfies the following:

– If f ∈ C then A outputs “yes” with probability at least 2/3;
– If f is ε-far from C then A outputs “no” with probability at least 2/3.

Here are some observations to help interpret the bound (1). Note that if J(τ)
grows too rapidly as a function of 1/τ , e.g. J(τ) = Ω(1/

√
τ), then there will be

no τ > 0 satisfying inequality (1). On the other hand, if J(τ) grows slowly as a
function of 1/τ , e.g. log(1/τ), then it is may be possible to satisfy (1).

In many cases, including all of the applications stated below, J(τ) will grow as
O(log(1/τ)), and ln |C(τ)J(τ)| will always be at most poly(J(τ)), so (1) will al-
ways be satisfiable. The most typical case is that J(τ) ≤ poly(s) log(1/τ) (where
s is a size parameter for the class of functions in question) and ln |C(τ)J(τ)| ≤
poly(s) · poly log(1/τ), which yields τ� = Õ(ε2)/poly(s) and an overall query
bound of poly(s)/Õ(ε2).

204 R.A. Servedio

Theorem 1 can be used to establish that many well-studied classes of Boolean
functions have query-efficient testing algorithms. The following results, which
are proved in [DLM+07], are also summarized in Table 1.

Theorem 2. For any s and any ε > 0, Algorithm A yields a testing algorithm for

(i) decision lists using Õ(1/ε2) queries;
(ii) size-s decision trees using Õ(s4/ε2) queries;
(iii) size-s branching programs using Õ(s4/ε2) queries;
(iv) s-term DNF using Õ(s4/ε2) queries;
(v) size-s Boolean formulas (with unbounded-fanin AND, OR and NOT gates)

using Õ(s4/ε2) queries;
(vi) size-s Boolean circuits (with unbounded-fanin AND, OR and NOT gates)

using Õ(s6/ε2) queries;
(vii) functions with Fourier degree at most d using Õ(26d/ε2) queries;
(viii) s-sparse F2 polynomials using Õ(s4/ε2) queries.

3 Efficiently Testing Sparse F2 Polynomials

The main drawback of the basic “testing by implicit learning” approach de-
scribed in Section 2 is its time complexity. The original [DLM+07] algorithm
has running time 2ω(s) as a function of s and ω(poly(1/ε)) as a function of ε for
each of the “size-s” function classes (ii) through (viii) in Theorem 2.1

[DLM+07] asked whether any of these classes can be tested with both time
complexity and query complexity poly(s, 1/ε). This question was answered in
[DLM+08], where it was shown that the class of s-sparse F2 polynomials can
be so tested. Recall that a F2 polynomial p : {0, 1}n→{0, 1} is a multilinear
polynomial with coefficients from F2, i.e. all nonzero coefficients are 1. Such a
polynomial may be viewed as a parity of monotone conjunctions (monomials). It
is s-sparse if it contains at most s monomials (including the constant-1 monomial
if it is present). The main result of [DLM+08] is a time-efficient and query-
efficient tester for F2 polynomials:

Theorem 3. There is a poly(s, 1/ε)-query algorithm which has the following
performance guarantee: given parameters s, ε and black-box access to any f :
{0, 1}n→{−1, 1}, it runs in time poly(s, 1/ε) and tests whether f is an s-sparse
F2 polynomial versus ε-far from every s-sparse polynomial.

At a high level, the algorithm of [DLM+08] augments the basic “testing by im-
plicit learning” approach by using a sophisticated proper learning algorithm due
to Schapire and Sellie [SS96] in place of the naive brute-force search which is

1 As discussed in the previous section, an Ω(n) running time is necessary since the

testing algorithm must prepare n-bit strings for the black-box oracle for f . The

algorithms of this section and the next one both have running times that are linear

in n for this reason; henceforth we discuss the running times of our testers only as

a function of the other parameters.

Testing by Implicit Learning 205

used as the learning step in the basic approach. However, significant complica-
tions arise in the attempt to “implicitly” run the [SS96] algorithm that do not
arise with the brute-force search of [DLM+07]. In the rest of this subsection we
briefly describe those complications and how they are addressed in [DLM+08].

We first note that if f is an s-sparse F2 polynomial, an easy argument shows
that there is a function f ′ - obtained by discarding from f all monomials of degree
more than log(s/τ) - that is τ -close to f and depends on at most r = s log(s/τ)
variables. As described in the previous section, the basic “testing by implicit
learning” approach uses ideas of [FKR+04] for testing juntas to construct a
sample of uniform random examples over {0, 1}r which with high probability
are all labeled according to f ′. At this point, the [DLM+07] algorithm uses a
naive brute-force search to check all s-sparse F2 polynomials over r (as opposed
to n) variables, to see if any one of them is consistent with the labeled sample.
This leads to a running time of roughly 2ω(s) · (1/ε)log log(1/ε).

The proper learning algorithm of Schapire and Sellie [SS96] runs in time poly-
nomial in r and s to exactly learn any unknown s-sparse F2 polynomial over r

variables; thus a natural idea is to use it instead of the computationally inef-
ficient brute-force search of [DLM+07]. However, the [SS96] learning algorithm
requires access to a membership query oracle, i.e. a black-box oracle for the func-
tion being learned. Thus, in order to run the Schapire/Sellie algorithm in the
“testing by implicit learning” framework, it is necessary to simulate member-
ship queries to an approximating function f ′ which is close to f but depends on
only r variables. This is significantly more challenging than generating uniform
random examples labeled according to f ′, which is all that is required in the
original [DLM+07] approach.

To see why membership queries to f ′ are more difficult to simulate than uni-
form random examples, recall that f and the f ′ described above (obtained from
f by discarding high-degree monomials) are τ -close. Intuitively this is extremely
close, disagreeing only on a 1/m fraction of inputs for an m that is much larger
than the number of random examples required for learning f ′ via brute-force
search (this number is “small” – independent of n – because f ′ depends on only
r variables). Thus in the [DLM+07] approach it suffices to use f , the function
to which we actually have black-box access, rather than f ′ to label the random
examples used for learning f ′; since f and f ′ are so close, and the examples
are uniformly random, with high probability all the labels will also be correct
for f ′. However, in the membership query scenario of [DLM+08], things are no
longer that simple. For any given f ′ which is close to f, one can no longer as-
sume that the learning algorithm’s queries to f ′ are uniformly distributed and
hence unlikely to hit the error region – indeed, it is possible that the learning
algorithm’s membership queries to f ′ are clustered on the few inputs where f

and f ′ disagree.
Thus, in order to successfully simulate membership queries, the algorithm must

consistently answer queries according to a particular approximatorf ′, even though
it only has oracle access to f . This must be done implicitly in a query-efficient way,
since explicitly identifying even a single variable relevant to f ′ requires at least

206 R.A. Servedio

Ω(log n) queries. [DLM+08] does this by showing that for any s-sparse polynomial
f , an approximating f ′ can be obtained as a restriction of f by setting certain
carefully chosen subsets of variables to zero. Roughly speaking, this restriction is
obtained by randomly partitioning all of the input variables into r subsets and
zeroing out all subsets whose variables have small “collective influence.”

3.1 The [DLM+08] Algorithm and Its Analysis

In the rest of this section we give a high-level description of the actual [DLM+08]
testing algorithm, called Test-Sparse-Poly, and its analysis.

Test-Sparse-Poly is based on the idea that if f is a sparse polynomial then
it only has a small number of “high-influence” variables, and it is close to an-
other sparse polynomial f ′ (obtained from f by fixing some input variables to
zero) that depends only on those high-influence variables. Roughly speaking,
the algorithm works by first isolating the high-influence variables into distinct
subsets, and then attempting to implicitly learn f ′ using the [SS96] algorithm.

We now describe the testing algorithm in tandem with a sketch of why the test
is complete, i.e. why it accepts s-sparse polynomials (later we will give a sketch
of the soundness argument). The first thing Test-Sparse-Poly does (Step 1)
is to randomly partition the variables into r = poly(s/τ) subsets. If f is an s-
sparse polynomial, then it indeed has few high-influence variables, so with high
probability at most one such variable will be present in each subset.

Next (Step 2) the algorithm attempts to distinguish subsets that contain
a high-influence variable from subsets that do not; this is done by using the
independence test of [FKR+04] as described in Section 2.

Once the subsets that contain high-influence variables have been identified,
next (Step 3) the algorithm defines a function f ′ which “zeroes out” all of the
variables in all low-influence subsets. Note that if the original function f is an
s-sparse polynomial, then f ′ will be one too. Step 4 of Test-Sparse-Poly checks
that f is close to f ′; it is shown in [DLM+08] that this is indeed the case with
high probability if f is an s-sparse polynomial.

The final step (Step 5) of Test-Sparse-Poly is to implicitly run the [SS96]
algorithm to learn a sparse polynomial, which we call f ′′, which is isomorphic
to f ′ but is defined only over the high-influence variables of f (recall that there
is at most one from each high-variation subset). The overall Test-Sparse-Poly
algorithm accepts f if and only if the learning algorithm successfully returns a
final hypothesis (i.e. does not halt and output “fail”). It is shown in [DLM+08]
that for f an s-sparse polynomial, with high probability the subsets that are not
restricted in Step 3 have a certain “nice structure:” essentially, they each have one
variable with very high influence and all other variables with very low influence.
[DLM+08] show that this makes it possible to simulate the membership queries
that the [SS96] algorithm requires, so it is possible to implicitly run the [SS96]
learning algorithm. Thus, for f an s-sparse polynomial the [SS96] algorithm can
run successfully, and the test will accept.

Testing by Implicit Learning 207

Sketch of soundness. We close this section with a brief sketch of the soundness
argument, that if Test-Sparse-Poly accepts f with high probability then f

must be close to some s-sparse polynomial.
If f passes Step 2 with high probability, then [DLM+08] shows that Test-

Sparse-Poly must have obtained a partition of variables into subsets that con-
tain a high-influence variable, and subsets that have low “collective influence.” If
f passes Step 4, then it must moreover be the case that f is close to the function
f ′ obtained by zeroing out the low-influence subsets.

In the last step, Test-Sparse-Poly attempts to run the [SS96] algorithm to
learn f ′′ using the high-influence subsets; in the course of doing this, it attempts
to simulate membership queries to f ′′. Since f could be an arbitrary function, we
do not know whether each high-influence subset has at most one variable relevant
to f ′. However, [DLM+08] show that, if the routine to simulate membership
queries with high probability never returns “fail,” then f ′ must be close to a
junta g whose relevant variables are the individual “highest-influence” variables
in each of the high-influence subsets. Now, given that the [SS96] algorithm halts
successfully, it must be the case that it constructs a final hypothesis h that
is itself an s-sparse polynomial and that agrees with a large sample of many
random examples. From this it is possible to argue that h must be close to g

(using standard arguments from learning theory), hence close to f ′, and hence
close to f . So indeed if Test-Sparse-Poly accepts f with high probability then
f must be close to some s-sparse polynomial.

4 Testing Induced Subclasses of Functions with
k-Dimensional Fourier Spectra

In [DLM+07] and [DLM+08] the learning is “implicit” in the sense that a learn-
ing algorithm is executed to learn some function depending on r of the n input
variables, without the identity of those r variables ever being explicitly deter-
mined by the algorithm. [GOS+09] extended this methodology to learn some
function depending on k of the 2n parity functions {χα} over input variables
without ever explicitly identifying those parity functions, and obtained testing
results using this extended notion of “implicit learning.”

We establish some terminology and recall some background in order to state
the results of [GOS+09]. We view the domain {0, 1}n as Fn

2 , so a real-valued
function over the Boolean cube is a mapping Fn

2→R. Every such function f has
a unique representation as

f(x) =
∑

α∈Fn
2

f̂(α)χα(x) where χα(x) def= (−1)〈α,x〉 = (−1)
∑n

i=1 αixi .

The coefficients f̂(α) are the Fourier coefficients of f , and the functions χα(·)
are sometimes referred to as linear functions or characters ; they are simply
parity functions over all possible subsets of the n input variables. In addition to
treating input strings x as lying in Fn

2 , we also index the characters by vectors

208 R.A. Servedio

α ∈ Fn
2 ; this is to emphasize the fact that we are concerned with the linear-

algebraic structure. We write Spec(f) for the Fourier spectrum of f , i.e. the set
{α ∈ Fn

2 : f̂(α) �= 0}.
A Boolean function f : Fn

2→{0, 1} is said to be k-dimensional if Spec(f)
lies in a k-dimensional subspace of Fn

2 . An equivalent definition is that f is k-
dimensional if it is a function of k characters χα1 , . . . , χαk

, i.e. f is a junta over
k parity functions (this is easily seen by picking {αi} to be a basis for Spec(f)).
Thus the class of all k-dimensional Boolean functions consists of all Boolean
functions of the form g(χα1 , . . . , χαk

) where g is any k-junta and χα1 , . . . , χαk

are any parity functions from Fn
2 to F2.

Let C be a class of n-variable Boolean functions. We say that C is an induced
subclass of k-dimensional functions if there is some collection C′ of k-variable
Boolean functions such that C is the class of all functions f = g(χα1 , . . . , χαk

)
where g is any function in C′ and χα1 , . . . , χαk

are any parity functions from
Fn

2 to F2 as before. For example, let C be the class of all k-sparse polynomial
threshold functions over {−1, 1}n; i.e., each function in C is the sign of a real
polynomial with at most k nonzero terms. This is an induced subclass of k-
dimensional functions, corresponding to the collection C′ = {all linear threshold
functions over k Boolean variables}.

[GOS+09] shows that any induced subclass of k-dimensional functions has a
query-efficient testing algorithm:

Theorem 4. Let C be any induced subclass of k-dimensional functions. There
is a nonadaptive poly(2k, 1/ε)-query algorithm for ε-testing C.

The algorithm combines the “testing by implicit learning” approach with a tech-
nique from [GOS+09] (building on [FGKP06]) of pairwise independently hashing
the Fourier coefficients of f . Very roughly speaking, this pairwise independent
hashing is used to “isolate” each nonzero Fourier coefficient of a low-dimensional
function f , similar to how a random partition of the variables of a junta into
disjoint subsets is used in [FKR+04, DLM+07] to “isolate” each of the relevant
variables of a junta. With the Fourier coefficients isolated in this way, given an
n-bit example (z, f(z)) it is possible to determine the value χα(z) that each
character function corresponding to a nonzero Fourier coefficient f̂(α) takes on
z, without explicitly identifying the string α. This makes it possible to build a
“data set” for implicitly learning the function f = g(χα1 , . . . , χαk

); each example
in the data set consists of a vector of values for all of the parity functions corre-
sponding to nonzero Fourier coefficients, and the corresponding label is the value
f = g(χα1 , . . . , χαk

). This is actually done in an “exhaustive” way, using 2Θ(k)

examples, so the “data set” really is more akin to a truth table – it contains
an entry for each of the 2k possible vectors of values that (χα1 , . . . , χαk

) can
take. (It is shown in [GOS+09] that if f is far from any k-dimensional function,
then with high probability the construction of the “data set” will reveal this.)
Thus one obtains a complete truth table for the k-variable function g, and from
this it is trivial (without making any additional queries) to determine whether
g belongs to C′.

Testing by Implicit Learning 209

5 Open Problems and Directions for Future Work

There are natural goals for future work related to each of the three main results
described above.

As described in Section 2, the basic “testing by implicit learning” approach
gives poly(s/ε)-query upper bounds for testing many natural classes such as size-
s decision trees, s-term DNF, size-s Boolean formulas, and more. What can be
said about lower bounds for these classes? By adapting arguments of Chockler
and Gutfreund [CG04], Diakonikolas et al. [DLM+07] establish Ω̃(log s) lower
bounds (for adaptive algorithms), but it is quite possible that a poly(s) lower
bound in fact holds. (We note that [DLM+07] does establish a Ω̃(

√
s) lower

bound for nonadaptive algorithms that test the class of s-sparse F2 polynomials.)
An obvious goal related to [DLM+08] is to obtain poly(s, 1/ε)-time testing

algorithms for other classes beyond just s-sparse F2 polynomials. Polynomial-
time proper learning algorithms are not known for classes such as s-term DNF or
size-s decision trees (even if membership queries are allowed), and thus it seems
that new ideas may be needed for these classes. A (potentially more modest)
goal is to extend the [DLM+08] results to testing s-sparse polynomials over
other finite fields; see the conclusion of [DLM+08] for more discussion of this.

Finally, an interesting direction related to the use of “testing by implicit learn-
ing” over the Fourier domain, as in [GOS+09], is whether sharper query complex-
ity bounds can be obtained for specific classes of interest. [GOS+09] give a 2Ω(k)

lower bound for testing the entire class of all k-dimensional functions, and thus
the 2O(k) · poly(1/ε)-query upper bound for induced subclasses of k-dimensional
functions cannot be improved much in the worst case. But what about specific
classes of k-dimensional functions, such as the class of all k-sparse polynomial
threshold functions over {−1, 1}n? It would be interesting to determine whether
this class can be tested using only poly(k, 1/ε) queries.

References

[BEHW87] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Occam’s razor.

Information Processing Letters 24, 377–380 (1987)

[Bla09] Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Annual ACM

Symposium on Theory of Computing (STOC), pp. 151–158 (2009)

[CG04] Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information

Processing Letters 90(6), 301–305 (2004)

[DLM+07] Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio,

R., Wan, A.: Testing for concise representations. In: Proc. 48th Ann. Sym-

posium on Computer Science (FOCS), pp. 549–558 (2007)

[DLM+08] Diakonikolas, I., Lee, H., Matulef, K., Servedio, R., Wan, A.: Efficiently

testing sparse GF(2) polynomials. In: Aceto, L., Damg̊ard, I., Goldberg,

L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP

2008, Part I. LNCS, vol. 5125, pp. 502–514. Springer, Heidelberg (2008)

[FGKP06] Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.: New results for learn-

ing noisy parities and halfspaces. In: Proc. 47th IEEE Symposium on Foun-

dations of Computer Science (FOCS), pp. 563–576 (2006)

210 R.A. Servedio

[FKR+04] Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing

juntas. Journal of Computer & System Sciences 68, 753–787 (2004)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. Journal of the ACM 45, 653–750 (1998)

[GOS+09] Gopalan, P., O’Donnell, R., Servedio, R., Shpilka, A., Wimmer, K.: Testing

Fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela,

A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS,

vol. 5555, pp. 500–512. Springer, Heidelberg (2009)

[PRS02] Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae.

SIAM J. Disc. Math. 16, 20–46 (2002)

[SS96] Schapire, R., Sellie, L.: Learning sparse multivariate polynomials over a

field with queries and counterexamples. J. Comput. & Syst. Sci. 52(2),

201–213 (1996)

Invariance in Property Testing

Madhu Sudan

Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142, USA

madhu@mit.edu

Abstract. Property testing considers the task of testing rapidly (in par-

ticular, with very few samples into the data), if some massive data sat-

isfies some given property, or is far from satisfying the property. For

“global properties”, i.e., properties that really depend somewhat on ev-

ery piece of the data, one could ask how it can be tested by so few

samples? We suggest that for “natural” properties, this should happen

because the property is invariant under “nice” set of “relabellings” of

the data. We refer to this set of relabellings as the “invariance class” of

the property and advocate explicit identification of the invariance class

of locally testable properties. Our hope is the explicit knowledge of the

invariance class may lead to more general, broader, results.

After pointing out the invariance classes associated with some the ba-

sic classes of testable properties, we focus on “algebraic properties” which

seem to be characterized by the fact that the properties are themselves

vector spaces, while their domains are also vector spaces and the proper-

ties are invariant under affine transformations of the domain. We survey

recent results (obtained with Tali Kaufman, Elena Grigorescu and Eli

Ben-Sasson) that give broad conditions that are sufficient for local testa-

bility among this class of properties, and some structural theorems that

attempt to describe which properties exhibit the sufficient conditions.

1 Introduction: Property Testing and Invariance

We assume the reader of this article has some passing familiarity with some of
the basic motivations and nature of questions in Property Testing, and jump
directly to establishing our notations.

In this article, we will consider testing properties of functions mapping some
finite domain D to a finite range R. We let {D → R} denote the set of all such
functions. A property will be specified by the set of functions P ⊆ {D → R}.
(More generally, we may consider a parameterized family of domains Dn one for
each positive integer n, and the property will be given by P = {Pn}n, where
Pn ⊆ {Dn → R}.)

We will measure distance between functions via the normalized Hamming
distance (as is standard in Property Testing). Specifically, for f, g : D → R, the
distance between f and g, denoted δ(f, g), is given by δ(f, g) = Prx←UD[f(x) �=
g(x)], where the notation x ←U D denotes a random variable x drawn uniformly
from the domain D. The distance from f to a family F ⊆ {D → R}, denoted
δ(f,F), is the quantity ming∈F{δ(f, g)}. We say f is δ-close to F if δ(f,F) ≤ δ

and δ-far otherwise.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 211–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 M. Sudan

Definition 1.1. A (k, ε1, ε2, δ) tester for a property P is a probabilistic algo-
rithm T with oracle access to a function f : D → R that makes at most k

queries to the oracle for f , and accepts f ∈ P with probability at least 1 − ε2,
while rejecting f that is δ-far from P with probability at least ε1.

A principal focus in property testing is on properties that are defined for infinitely
many n where the tests are parameterized by δ. and for every δ > 0, k = O(1)
while ε1 − ε2 = Ω(1) > 0. (In particular, k and ε1 − ε2 do not depend on n.) We
will also focus mostly on one-sided error tests, i.e., tests where ε2 = 0. In such a
case, we simply refer to the tester as a (k, ε, δ)-tester.

1.1 Invariances

We now move to the definition of central interest to this article, namely the
invariances of a property.

We say that P is invariant under a function π : D → D if for every f ∈ P it is
the case that the function f ◦π, defined as f ◦π(x) = f(π(x)), is also in P . We say
that P is invariant under a set G ⊆ {D → D} if for every π ∈ G, P is invaraint
under π. The set of all functions π under which P is invariant is termed the
invariance class of P . (The invariance class is a semi-group under composition.)
The set of all permutations (bijections) π under which P is invariant is the
automorphism group of P .

The notion of examining testability of properties with explicit attention on
their invariance is a slowly emerging theme. An early result of Babai, Shpilka
and Stefankovic [7] gave lower bounds on rates of locally testable codes for
cyclic codes is perhaps the first to explicitly relate testability to invariances,
albeit to give negative results. The work by Goldreich and Sheffet [33] also
uses symmetries to give lower bounds on query complexity. Alon et al. [3] were
possibly the first to suggest this might lead to positive results. The work by
Kaufman and Sudan [40] seems to be the first to to explicitly focus on invariances
to derive positive results.

The goal of this article is two-fold: The first is a collection of observations
pointing out that several earlier results in property testing describe natural prop-
erties that have nice invariance classes (and in some cases, the invariance classes
characterize the properties completely). The second, more technical aspect, is
to describe the invariances of algebraic properties. In this part we survey sev-
eral recent works [40,36,37,15], joint with Ben-Sasson, Grigorescu, and Kaufman,
that study the relationship between testability and the invariance classes of the
property.

2 Invariances of Some Well-Studied Properties

2.1 Statistical Properties

One of the oldest examples of a “property test” may be “polling”, which tests for
“approximate majority”. This test can be formalized by considering functions

Invariance in Property Testing 213

mapping some finite universe D to the range R = {0, 1} and the property P
includes all functions f that take the value 1 on at least |D|/2 inputs. (Thus
the set D may be thought of as the names of a set of people, f denotes their
preference among the two choices in the set R. P then consists of all possible
preference functions in which the majority prefers the choice 1 ∈ R.) The stan-
dard test (sample f on k random inputs and accept if the majority is 1) and
analysis shows that if k = Ω(1/δ2), then we can get ε1 − ε2 = Ω(1).

The invariance class of this property equals its automorphism group and is
the full group of permutations from D → D. We now assert that this group of
permutations is what leads to the testability of this property.

Indeed any property P of functions mapping D to R that is invariant under
the full group of permutations from D → D depends on only |R| frequency
counts {ηy}y∈R where ηy = Prx∈UD[f(x) = y]. To separate f ∈ P from f

that is δ-far from P it suffices to get an approximation {νy}y∈R to the vector
{ηy}y∈R of �1 error at most 2δ (i.e.,

∑
y∈R |ηy − νy| ≤ 2δ). It is straightforward

to get such an approximation with O(|R| log |R|) queries into f (by getting a
pointwise approximation of O(δ/|R|). A better approximation in time O(|R|) is
also not too hard (see [48]). We note that the recent results in testing properties
of distributions [30,10,8,9,11,1,52,50,55] have revealed many properties that can
be tested in o(|R|) samples, and in several cases given nearly-tight bounds (to
within |R|o(1) factors) on the query complexity of such tests.

2.2 Graph Property Testing

One of the most actively investigated themes in property testing is the testing
of “graph properties”, initiated in [28], with recent progress [2,20] characterizing
the properties of “dense graphs” that can be tested with constant queries.

The basic model (the “dense graph” model) considers functions from D =
(
V
2

)
to the range R = {0, 1} (where V is some finite set and

(
V
2

)
denotes the collection

of all subsets of size of V).
We note that a property P is considered a graph property if and only if

it is invariant under permutations on
(
V
2

)
“induced” by permutations of V .

Specifically, say that a permutation π :
(
V
2

) → (
V
2

)
is a graph-permutation if

there exists a permutation σ : V → V such that for all u, v ∈ V , π(u, v) =
(σ(u), σ(v)). A property P is a graph property if and only if its automorphism
group contains all graph-permutations. It follows (trivially) that the success of
graph-property testing (i.e., the understanding of testability to the extent of
getting a necessary and sufficient condition for testing with O(1) queries) is
attributable to the underlying automorphism group.

We note that the above explanation of graph-properties in terms of symmetries
seems to apply only to the “dense-graph” model, but not the “bounded-degree”
graph model [31], where it is natural to think of the inputs as functions from
V × [d] → V . To include graph properties on such representations of graphs, one
could expand the notion of symmetries to consider permutations from D×R to
D × R, but we won’t attempt to do so here.

214 M. Sudan

We note that an upcoming work of Goldreich and Kaufman [29] investigates
various aspects of property testing and in particular graph-property testing, even
in the bounded-degree case, in terms of invariances.

2.3 Properties of Boolean Functions

Another broad class of properties that have been explored recently are properties
of “Boolean functions”. Sample properties here include monotonicity testing,
dictator-testing, junta-testing, testing if a function is given by a real half-space,
testing various forms of concise representations etc. [24,27,23,12,49,25,18,46,21].
Boolean properties have nice symmetries too.

Here the domain is the set D = {0, 1}n and the invariant group includes all
permutations π that are induced by permutations on the coordinates, i.e., permu-
tations π : {0, 1}n → {0, 1}n for which there exists a corresponding permutation
σ : [n] → [n] such that π(〈b1, . . . , bn〉) = 〈bσ(1), . . . , bσ(n)〉.

Unlike in the previous settings, where the invariant group leads to a complete
characterization of testable properties, such a characterization is notably missing
in this setting.

3 Algebraic Properties

We now move to the topic of focus of this article, namely a large class of “alge-
braic properties”. This class of property tests indeed form the origins of property
testing with the seminal work of Blum, Luby and Rubinfeld [19] proposing the
now famous “linearity-test” (a test for homomorphisms between groups). Some-
what independently, and with significantly different motivation, Babai, Fortnow,
and Lund [6] proposed and analyzed a test to check if a multivariate function
over a finite subset of the integers was a multilinear function (linear in each
variable). This result was one of the key technical ingredients behind the re-
markable result “MIP=NEXP” which formed the predecessor for the modern
PCP theory and its connection to inapproximability. Subsequently, Babai, Fort-
now, Levin and Szegedy [5] analyzed a property test for when a multivariate
function over a vector space over a finite field was a polynomial of a specified
(low) degree in each variable. While both of these tests were quite efficient they
could work with “constant” queries only when both the degree and the number
of variables were constant. Partly to remedy this, Rubinfeld and Sudan [53],
proposed and analyzed a low-degree test generalizing the test of [19]. This test
would test if a multivariate function over a finite field was a polynomial of low
“total” degree (with degree being somewhat smaller than field size). If the de-
gree bound specified was a constant, then the query complexity of this test was
a constant independent of the number of variables. Both the linearity test and
the low-degree test played a crucial role in the work of Arora et al. [4] leading
to the PCP theorem. Indeed a significant component of PCP theory focusses on
new/improved analyses of various linearity/low-degree tests.

The ability to test algebraic functions in constant time for constant degree,
is not restricted only to the case where the degree is smaller than the field size.

Invariance in Property Testing 215

This was first shown by Alon et al. [3] for the case of multivariate functions over
the binary field, and then independently by Kaufman and Ron [39] and Jutla et
al. [38] for functions over arbitrary fields as well. The work reported below is an
attempt to unify the properties, tests and analyses reported in the many works
above, in particular those of [19,53,3,39,38].

3.1 A Generalization of Algebraic Properties

From this point onwards, throughout this section we will be consider functions
from an n-dimensional vector space over a field K of size Q to a subfield F of
size q and characteristic p.1 Let q = ps and Q = qt. Throughout we will think
of q as a constant. The two extreme cases of interest to us will be (1) Q is also
a constant and n → ∞; and (2) n = 1 and Q (or t) is the parameter going to
infinity.

We will consider properties P of functions mapping Kn → F that are “linear”
and “affine-invariant”, where we define the terms below.

Linear Properties. A property P ⊆ {Kn → F} is said to be (F-)linear if for
every f, g ∈ P and α, β ∈ F the function α · f + β · g is also in P , where
α · f + β · g is the function given by (α · f + β · g)(x) = αf(x) + βg(x)

Affine-invariant Properties. A function A : Kn → Kn is said to be affine if
there exists a matrix M ∈ Kn×n and a vector b ∈ Kn such that A(x) =
Mx + b for x ∈ Kn. A property P ⊆ {Kn → F} is said to be affine-invariant
(over Kn) if for every f ∈ P and affine function A : Kn → Kn it is the case
that f ◦ A ∈ P , where f ◦ A(x) = f(A(x)).

Since both linearity and affine-invariance seem to impose some sort of “vector-
space” restrictions, we stress the different role of the two restrictions. Note that
while linearity depends on the range of the functions, the invariance only depends
on the domain of the function. And while the latter property (invariance) is more
close to the focus of this article, the former assumption (linearity) will be crucial
to the rest of this section. Indeed it is possible to consider properties that are
linear without focussing on invariances (as was done by Ben-Sasson et al. [14]),
or on properties that are affine-invariant, while not being linear (as done in
Bhattacharyya et al. [16] and Shapira [54]). We will discuss the latter setting in
a later section, and use some of the results in the former setting in this section
to motivate our analysis.

In the future, we refer to the set of affine transformations from Kn → Kn as
the affine semi-group. (They form a semi-group under multiplication.)

3.2 Constraints and Characterizations

One of the basic and very useful observations from the work of Ben-Sasson
et al. [14] for linear properties is that tests for such properties might as well
1 We note that it is possible to consider a broader class of properties allowing F to

be an arbitrary field, and not just a subfield of K. However we are not aware of any

results that work in this more general setting.

216 M. Sudan

be non-adaptive, and make one-sided error. In other words, a k-query tester
would pick (based on its internal randomness) some k points α1, . . . , αk ∈
Kn, and a predicate P : Fk → {0, 1} and accept a function f if and only if
P (f(α1), . . . , f(αk)) = 1. Non-adaptivity refers to the fact that α1, . . . , αk are
chosen without knowledge of f on any of the other points. One-sided error im-
plies that if P (f(α1), . . . , f(αk)) = 0 then f �∈ P . Finally [14] also show that
the acceptance predicate can also be chosen to be a linear system, i.e., the set
V = P−1(1) is a vector subspace of Fk. This motivates our notion of a (k-local)
constraint.

Definition 3.1. A k-local constraint C is given by C = (〈α1, . . . , αk〉; V) where
αi ∈ Kn and V � Fk is a vector subspace of Fk. A function f is said to satisfy
the constraint C if 〈f(α1), . . . , f(αk)〉 ∈ V . A property P satisfies a constraint
C if every function f ∈ P satisfies C.

In the language of constraints, the above-mentioned result of [14] could be inter-
preted as asserting that a k-query tester for a property P is simply a distribution
on k-local constraints. Given oracle access to a function f , the tester simply picks
a k-local constraint (according to the distribution) and accepts if f satisfies the
chosen constraint. Thus in order for a test to exist, a property P must satisfy
many k-local constraints; and while it is not (a prioiri) necessary that the con-
straints completely determine the property P , for many properties considered
above, local constraints do seem to determine the property. The notion of a
characterization below formalizes this concept.

Definition 3.2. A collection of k-local constraints C1, . . . , Cm form a k-local
characterization of a a property P if f ∈ P if and only if f satisfies Cj for every
j ∈ [m].

In general, the fact that a property satisfies even one local constraint may seem
to be a rare event. To find a whole collection of local constraints satisfied by
a property, to the extent that they even characterize it, may seem even more
so. But for properties that exhibit some (invariances), this is not as suprising
(and indeed this is what motivates some of the study of invariances of properties
in the context of local testing). If a property P , invariant under a function π

satisfies the constraint C = (〈α1, . . . , αk〉; V) then it also satisfies the constraint
C ◦ π = (〈π(α1), . . . , π(αk)〉; V). This motivates our definition below of the orbit
of a constraint C under a set of invariances G.

Definition 3.3. Given a property P invariant under a set G that satisfies a
constraint C, we say that the orbit of C under G is the set of constraints {C ◦
π|π ∈ G}.
Of course the definition above makes sense even when no “property” is men-
tioned, but the definition makes the most sense when applied to some property
P satisfying C and invariant under G. If we are (seemingly incredibly) lucky,
then the orbit of a constraint may provide enough constraints to actually chara-
terize a property P . This concept, while seemingly too restrictive turns out to
be central to our analysis of property testing.

Invariance in Property Testing 217

Definition 3.4 (Single-orbit characterization). A property P ⊆ {D → R}
is said to have a k-single orbit characterization under a set G of invariances if
there exists a k-ary constraint C such that f ∈ P if and only if f satisfies C ◦ π

for every π ∈ G.

For this section, properties of interest will be those with a k-single orbit charac-
terization over the affine semi-group. As we explain below a k-single-orbit char-
acterization over the affine semi-group immediately leads to local testability;
and this explains the results of [53,3,39,38]. We then describe structural results
about affine-invariant properties and give examples of new properties that end
up being testable as a consequence.

3.3 Testability of Linear Affine-Invariant Properties

In joint work with Tali Kaufman [40] we show that a property that has a k-
single orbit characterization under the affine semi-group has a k-query tester.
The following theorem gives the precise soundness condition of the test.

Theorem 3.1 ([40, Theorem 2.9]). Let P ⊆ {Kn → F} have a k-single orbit
characterization under the affine semi-group. Then there exists a k-query test T

that accepts f ∈ P with probability one, while rejecting f that is δ-far from P
with probability min

{
δ/2, 1

(2k+1)(k−1)

}
.

The test T above is the “natural” one. Recall that the k-single orbit char-
acterization implies that there exists a constraint C = (〈α1, . . . , αk〉; V) such
that for every g ∈ P and every affine map A : Kn → Kn it is the case that
〈g(A(α1)), . . . , g(A(αk))〉 ∈ V . Given oracle access to a function f : Kn → F,
the test T simply picks a random affine map A : Kn → Kn and accepts if and
only if 〈f(A(α1)), . . . , f(A(αk))〉 ∈ V . The completeness analysis follows from
the definition, while the soundness analysis (though not so small that we can
summarize it here) essentially abstracts the common elements of the proofs of
[19,53,3,39,38] while unifying the seemingly different parts by using the concept
of “tensor products of linear spaces”.2

To apply the theorem above to recover the results of [19,53,3,39,38] one needs
appropriate single orbit characterizations for the appropriate families. Below we
list some of the known ones.

Example 3.1 (Affine functions from Kn → K, for n ≥ 2). Let P ⊆ {Kn → K} be
the set of affine functions, i.e., P = {f(x)|∃a1, . . . , an, b ∈ K s.t. f(x1, . . . , xn) =∑n

i=1 aixi + b}.
2 Given two vector spaces U ⊆ Kn and V ⊆ Km, their tensor product U ⊗V ⊆ Kn×m

can be thought of as the collection of n × m matrices each of whose rows is an

element of V and columns is an element of U . The “key” (though simple) fact about

this tensor product space is that its dimension is the product of dimensions of U
and V . This fact turns out be the heart of the ”creative steps” in the analyses of of

[19,53,3,39,38].

218 M. Sudan

For n ≥ 2, let α, β,∈ Kn be (any) two linearly independent vectors in Kn.
Let V ⊆ K4 be the set {〈a, b, c, a + b + c〉|a, b, c ∈ K}. Let C be the constraint
(〈0, α, β, α + β〉; V).

Then P has a 4-single orbit characterization under the affine semi-group, given
by the constraint C.

The characterization above, combined with Theorem 3.1 above, effectively cap-
tures the essential elements of the linearity test of [19], though in fact it is only
a variation (affineness, instead of linearity) of a special case (linearity of maps
over finite fields, as opposed to homomorphisms between abelian groups) of their
main result.

Example 3.2 (Degree d polynomials from Kn → K, for |K| = pr ≥ d+1+pr−1.).
Let P ⊆ {Kn → K} be the set of n-variate polynomials of degree at most d.

Let α ∈ Kn be any non-zero vector, and let ω ∈ K be a primitive element
(i.e., ωi �= 1 for i < |K| − 1).

Let V = {〈p(1), p(ω), p(ω2), . . . , p(ωd+1)〉|p : K → K is a univariate polyno-
mial of degree at most d}. Then the constraint C = (〈α, ω · α, ω2 · α, . . . , ωd+1 ·
α〉, V) is a d + 2-single orbit characterization of P .

The above characterization follows essentially from [53,26] and implies that the
property of being a degree d polynomial is testable with O(d) queries over any
large enough field (of size greater than d). What about the case when the field
size Q < d? In such a case also one can get a single orbit characterization, where
the locality of the queries is however exponential in d.

Example 3.3 (Degree d polynomials from Kn → K [39]). Let P ⊆ {Kn → K}
be the set of n-variate polynomials of degree at most d. Let � = (d + 1 +
Q/p)/(Q−1) (recall Q = |K| and p is its characteristic). Let U be an arbitrary �

dimensional subspace of Kn, and let α ∈ (Kn)Q�

be an (arbitrary) enumeration
of the points of U . Let V ⊆ KQ�

be the set of all evaluations of degree d, n-variate
polynomials on the sequence α. Then the constraint C = (α, V) is a Q�-single
orbit characterization of P .

Applying Theorem 3.1 to the characterization above one can get the main result
of [39] (which in turn subsumes the results of [3] and [38]).

3.4 Structure of Linear Affine-Invariant Properties

While the examples of the previous section describe how many previously known
results can be unified under the perspective of invariance, to get new families that
can be testable, one needs to understand more about affine-invariant properties.
Here we describe some of the basic results that characterize affine invariant
properties in terms of the supporting monomials.

Recall first that every function from Kn → K, and hence every function from
Kn → F, is a polynomial in n-variables of degree at most Q− 1 in each variable.
Thus the “monomials”, i.e., functions of the form m(x1, . . . , xn) =

∏n
i=1 x

di

i

Invariance in Property Testing 219

for some d1, . . . , dn ∈ {0, . . . , Q − 1} form a linear basis of all functions from
{Kn → F}. We let M denote the set of all monomials. Recalling that every
function f : Kn → K can be written uniquely as f(x) =

∑
m∈M cmm(x). We

say that the support of f is the set of all monomials m whose coefficient cm is
non-zero.

Most polynomials would not map the the domain Kn to elements of F (and
would often take on values from K−F). To get a basis for functions from Kn → F,
one needs to look at “traces” of monomials. The Trace function mapping K → F
is defined as Tr(x) = x + xq + xq2

+ · · · + xqt−1
. (Recall that F = Fq and

K = FQ = Fqt .) The reader may verify that the Trace function indeed maps all
K to F (by verifying that Tr(x)q = Tr(x) for every x ∈ K), and that it is linear,
i.e., Tr(x + y) = Tr(x) + Tr(y) and Tr(αx) = αTr(x) for every x, y ∈ K and
α ∈ F. It follows that Tr(g(x)) is a function mapping Kn to F for every n-variate
polynomial g. The following proposition establishes the converse.

Proposition 3.1. Every function f from Kn → F is the trace of some poly-
nomial g from Kn → K. Furthermore, there always exists such a polynomial g

whose support is contained in the support of f .

Of course, given that the number of polynomials from Kn → K is much more than
the number of functions from Kn → F, it must be the case that different poly-
nomials have the same trace. Some explicit examples include Tr(x) = Tr(xq),
and Tr((α + αq).x1+q+q2+···+qt−1

) = Tr(0). (This is why the proposition only
claims that some polynomial g has its support contained in the support of f .)
Nevertheless the traces give a very useful understanding of affine invariant fam-
ilies thanks to the following lemma (essentially from [40]) which shows that the
affine-invariant properties are captured by the monomials in their support.

Lemma 3.1 (Monomial Extraction [40]). For every affine-invariant prop-
erty P ⊆ {Kn → F} there exists a set D ⊆ M such that a function f ∈ P
if and only if there exists a polynomial g : Kn → K supported on D such that
f = Tr(g). Furthermore there is a unique maximal such set D for any affine-
invariant property P.

We refer to the unique maximal set as the degree set of P .
To see some examples, first lets consider the simpler case of K = F. In this

case the Trace function is simply the identity function; and the set D is simply
the union of the support of all functions in P . Thus in this case if the function,
say, 3x5 + 2x2 + 1 is in P , it follows that {1, x2, x5} ⊆ D and thus the functions
x5, x2 and 2x5 + x2 + 4 are also in P .

One of the uses of the lemma above, is that it allows us to focus on the degree
set of an affine invariant property to understand its local-testability (and in
particular in understanding when it may have a single orbit characterization).

But before investigating the locality of tests we first note that not every set D
is a degree set of some affine-invariant property P . While a compact description
of exactly which degree sets are valid sets for affine-invariant properties is not
easy to describe (and depends on n, p, q, Q etc.) this is well-understood. When
n = 1 this is somewhat easier to describe, and we do so next.

220 M. Sudan

Definition 3.5. D ⊆ K[x] is (q, Q)-modular if xd ∈ D ⇒ xq·d(modQ−1) ∈ D.

Definition 3.6. For non-negative integers e and d and prime p, let e0, . . . , ei, . . .,
and d0, . . . , di, . . . denote the p-ary representation of e and d (i.e., e0, . . . , ei, . . . ∈
{0, . . . , p− 1} and e =

∑∞
i=0 eip

i). We say that e is in the p-shadow of d if ei ≤ di

for every i. We say that a set D ⊆ Z≥0 is p-shadow-closed if for every d and e in
the p-shadow of d, we have xd ∈ D ⇒ xe ∈ D.

We are now ready to describe degree sets of univariate affine-invariant properties.

Lemma 3.2. D is the degree set of an affine-invariant property P ⊆ {FQ → Fq}
where Q = qt and q = ps for prime p if and only if D is (q, Q)-modular and D
is p-shadow-closed.

We note in passing that the case n = 1 is really the most general case, since
every affine-invariant property from {Kn → F} can also be viewed as an affine-
invariant property from {L → F} where L is the nth degree extension of K (i.e.
L = FQn).

While the lemmas above describe some basic features of affine-invariant prop-
erties, they don’t explain when they may be locally testable. In particular when
can they have local constraints, local characterizations, and even single-orbit
characterizations? These questions are more novel, and less well-understood.

If one considers the case where Q, q are just constants, and only n is going to
infinity, then, as shown in [40], the degree of the highest degree monomial in D
roughly determines the best possible locality of the constraints and single orbit
characterizations. Specifically they show:

Lemma 3.3. Let P ⊆ {Kn → F} be an affine-invariant property with degree
set D and let d be the largest degree of a monomial in D. Then every constraint
on P has locality at least Q(d/Q2−1). Conversely it has a Q2(d+Q)/p-local single
orbit characerization.

To understand the above lemma, note that it implies that if an affine-invariant
propery has a single k-local constraint then it has k′-local characterization, and
in fact, a k′-single orbit characterization, and is hence k′-locally testable for
k′ ≈ Q2 · k2Q2

. This appears to be far from tight and indeed the analysis in
[40] is quite sloppy allowing for tighter characterizations. Indeed, we believe it
should be possible to get a k′-local characterization for k′ = poly(Q, k).

A somewhat more optimistic conjecture might be that one can get k′ =
poly(k) (or some other function of k which is independent of Q). Indeed such a
relationship was effectively conjectured by [3] (for a broader class of properties
than affine-invariant ones). However this turned out be false as shown by [36].

Theorem 3.2. There exists an affine invariant family mapping {F2t → F2}
with an 8-local constraint, but no (t/2 − 2)-local characterization.

The family given by [36] is easy to describe in the language developed so far:
Their family P has, as its degree set, the set D = {x2i+2i+j |i ∈ {0, . . . , t−1}, j ∈

Invariance in Property Testing 221

{0, . . . , t/2 − 2}} ∪ {x2i |i ∈ {0, . . . , t − 1} ∪ {x0}. It is easy to check that D
is 2-shadow closed, and (2, 2t)-modular, and so P is indeed an affine invariant
family. It is also easy to show that every function f ∈ P satisfies the constraint
f(x+y +z) = f(x+y)+f(x+z)+f(y +z)+f(x)+f(y)+f(z)+f(0) and thus
P has an 8-local constraint. The main contribution of [36] is to show that P has
no t/2− 2 local constraints that are not constraints also on the larger family P ′

given by its degree set D′ = D∪{x2i+2i+(t/2−1) |i}. Since P ′ is strictly larger than
P it follows that P can not have a t/2 − 2-local characterization. Furthermore,
since P ′ contains functions that are quite far from functions in P , it follows that
P also does not have any tests of locality t/2 − 2.

We remark that most examples of single orbit characterizations have been
natural ones; i.e., the properties have a natural characterization that happens to
be a single orbit one. Indeed all the examples given above (affine functions, low-
degree polynomials etc.) had this property. One significant class of exceptions
is given in [37] who show that every “sparse” affine invariant property from
P ⊆ {F2t → F2}, with |P| ≤ 2t�, has a k = k(�)-single orbit characterization, if t

is prime. (Here “sparse” refers to the fact that the size of P is a polynomial in the
domain size. Note that the locality of the characterization is independent of the
domain size and depends only on the exponent relating the size of P with the size
of the domain.) The result of [37] is also obtained by analyzing the degree sets
of sparse affine-invariant properties and noticing that functions satisfying such
properties can be expressed as traces of sparse polynomials, and then combining
recent results from additive number theory with classical results from coding
theory to conclude that these properties have a local single orbit characterization.
These results are interesting in that they yield single orbit characterizations
for a very rich class of properties - so rich that it would take Ω(log t) bits to
describe a typical such property and so a “totally uniform” characterization
(with O(1)-bits) would be out of question. Natural “local” characterizations of
such properties involve describing roughly 2t constraints each requiring O(t) bits
to specify. The single-orbit characterization, in contrast, only requires O(t) bits
to describe giving a somewhat more uniform, and yet local, description of the
property and the tester for the property.

Moving on, affine-invariant properties offer a clean generalization of “low-
degree” polynomials, while being significantly richer, rich enough to counter some
natural conjectures about reasons for local testability in codes/algebraic prop-
erties. Furthermore, the class still offers the possibility of some locally testable
codes of constant distance that may outperform Reed-Muller codes (codes de-
rived from low-degree polynomials) in terms of their rate. To investigate this
possibility one needs a significantly better understanding of the relationship be-
tween the locality of characterizations and the degree sets of affine-invariant
properties. In the case of univariate functions, no non-trivial upper bounds are
known for general degree sets (the trivial one being the size of the degree set),
and till recently no general lower bounds were known either. A recent result with
Ben-Sasson gives the first general lower bound on the locality of constraints for

222 M. Sudan

a general degree set, in terms of the notion of the p-weight of elements in the
degree set. We define this notion next, and give their main theorem afterwards.

Definition 3.7. For integer d and prime p, the p-weight of d, denoted wtp(d),
is defined to be the sum of the non-zero elements in the p-ary expansion of d,
i.e., wtp(d) =

∑
i di where d0, . . . , di, . . . ,∈ {0, . . . , p − 1} s.t. d =

∑
i dip

i.

Theorem 3.3 ([15]). Let P ⊆ {Fpt → Fp} be an affine-invariant property with
degree set D. Let k be the maximum p-weight of elements of D. Then every
constraint on P has locality at least k + 1. Conversely, P does have a constraint
of locality pk+1.

When the range p is a constant, the above theorem thus pins down a neces-
sary and sufficient condition for an affine-invariant family to have a O(1)-local
constraint. Of course, it does not say anything about characterizations and this
remains an open question. Indeed the following question remains open.

Question 3.1. Let P ⊆ {K → F} be an affine-invariant property with a k-local
characterization. Let k′ be the smallest integer such that P has a k′-single orbit
characterization. Give the best possible upper bound on k′ as a function of k, q

and Q. Can we get a bound independent of Q? Can it be independent of q?

To understand such questions a significantly better understanding of the rela-
tionship between local characterizations and degree sets is needed. The following
question is an example of some very basic questions about this relationship which
is still not understood.

Question 3.2. Let P ⊆ {F2t → F2} be an affine-invariant property with de-
gree set D � {x2i+2j |i, j ∈ {0, . . . , t − 1}} ∪ {1, x, x2, . . . , x2t−1}. Further, sup-
pose t is prime. Then does the locality of the characterization of P grow with
|D|? (I.e., is the following statement true? For every k, there exists a prime t

and a (2, 2t)-modular, 2-shadow closed set D � {x2i+2j |i, j ∈ {0, . . . , t − 1}} ∪
{1, x, x2, . . . , x2t−1} such that the affine invariant property P with degree set D
has no k-local characterization.)

We remark that if t is not a prime, then the question above does have nega-
tive answers; and understanding the exact reson for such negative answers also
appears important to understanding affine-invariant properties.

4 Non-linear Affine-Invariant Properties

Finally, we remark briefly on the setting where the properties of interest are
invariant under affine/linear transformations, but are not necessarily linear. Ex-
amples of such testable non-linear properties that are affine-invariant can be
generated easily by taking the union of two (or more) affine-invariant (linear)
properties. (Thanks to Noga Alon for this class of examples). More interesting
cases, motivated by learning theory and additive number theory, have also been
explored in the literature and we mention these results briefly below.

Invariance in Property Testing 223

Locally characterized properties: A broad class of affine-invariant properties that
seem potentially testable can be obtained by generalizing the notion of con-
straints and characterizations to the non-linear setting as follows: Let K be a
finite field and Σ be an arbitrary finite set. A k-local constraint C is given by
C = (α1, . . . , αk; S) where α1, . . . , αk ∈ Kn and S � Σk. We say a function
f : Kn → Σ satisfies the constraint C if 〈f(α1), . . . , f(αk)〉 ∈ S. A collection
of constraints C1, . . . , Cm characterizes a property P ⊆ {Kn → Σ} if f ∈ P if
and only if f satisfies Cj for every j ∈ [m]. Of course, our interest here is in
affine-invariant property that are k-locally characterized.

A very simple example of an affine invariant property considered in Green [35]
(we note that this is merely an example of property considered there, not the
broadest class considered there) is the following: Let K = F2 and Σ = {0, 1}.
Let C = {α, β, α + β; {0, 1}3 − {111}), where α, β ∈ Kn are an arbitrary pair
of linearly independent elements. Now consider the property P characterized
by {C ◦ π|π : Kn → Kn is an affine map}. This is a 3-locally characterized
affine-invariant property from Kn → Σ consisting of all functions f that are
“triangle-free”, i.e., f−1(1) does not contain a triple of the form x, y, x + y.
Green showed that the natural test (pick a random affine map π : Kn → Kn and
verify that f satisfies C ◦ π) does reject functions that are ε-far with positive
probability. Somewhat intriguingly the analysis of this test, is quite different
from the analyses in the linear cases and more reminiscent of the analyses in
graph property testing.

This result was then generalized in various works [16,44,43,54]) with perhaps
the strongest result being due to [43,54] who considers any constant number
of “freeness” constraints C1, . . . , C�, and their affine shifts and shows that any
such property is locally testable. (A constraint C = (α1, . . . , αk; S) is said to
be a freeness constraint if Σ = {0, 1} and S = Σk − {1k}.) In the process,
these works also tighten the connection to graph property testing, by deriving
their main results as a corollary of a new hypergraph removal lemma (a typical
ingredient in hypergraph property testing).

Of course, despite all this progress, this area abounds with questions with
some basic ones being: Which subclass of locally characterizaed affine-invariant
properties are locally testable? When can the rejection probability of the test be
lower bounded by a polynomial in the distance to the property? Some progress
in this direction is reported in Bhattacharyya and Xing [17].

Sparse linear functions: As part of their investigations of properties of Boolean
functions Gopalan et al. [34] investigate functions that are represented as sparse
functions (e.g., k-juntas) of linear functions of their input. (Formally, their prop-
erties are given by some collection of functions G ⊆ {F�

2 → F2} and the property
of functions P ⊆ {Fn

2 → F2} is given by P = {g ◦ L|g ∈ G and L : Fn
2 → F�

2

is linear }. For a broad collection of “sparse” functions (i.e., classes of sets G),
they show that the associated property P is testable. Since these classes of func-
tions are naturally closed under linear transforms, it follows that this is yet
another broad class of properties that is linear-invariant. Typically, these prop-
erties (e.g., being representable as a k-junta, or as a k-sparse polynomial) are not

224 M. Sudan

closed under addition, and so these properties are non-linear. Also interestingly,
these properties are testable, at least to within current knowledge, only with
two-sided error.

5 Conclusions

We summarize with the main message: Testing of natural properties is often
intimately related to the invariances shown by the property. When the class of
invariances is the full symmetric group of permutations, testing ends up rep-
resenting the classical problems of statistics (though even here some improve-
ments are feasible). But modern property testing highlights the ability to do
much better when the underlying class of invariances is no the full set, and often
exponentially smaller than the full set. Among the rich variety of such symme-
tries that can be explored, we emphasize the role of the affine-invariance (or
linear-invariance) as a natural way to unify many known results. Understanding
affine-invariance further might be one way of making progress on the design of
locally testable codes.

We stress that we don’t believe that invariance is necessary for local testa-
bility, hence the appeal to the weakening clause of “natural properties”. We are
aware of a wide class of properties that are known to be testable, where we
are not aware of a nice invariance class. For example, a typical PCP verifier
tends to accept encodings of any satisfying assignment of a SAT formula (this is
actually a requirement for PCPP verifier [13] or assignment testers [22]) with
local tests. Depending on the SAT formula being checked for satisfiability, the
property ”tested” by such a verifier is unlikely to have rich invariances. Even
in the algebraic setting, we have the example of functional equations that are
known to be testable [51], but where the invariance class is not known or has not
been determined explicitly. In contrast to the above, we highlight the work of
Goldreich and Kaufman [29] who give examples of properties that are testable,
but provably have no non-trivial invariances, and also exhibit testable properties
which do not have a “local single-orbit characterization”.

Our point is not that such exceptions may not exist, but rather that when in-
variances exist clean rules may be found explaining when a property is testable.
For graph properties properties the characterization of testability in terms of reg-
ularity instances [2] gives such a rule. For affine-invariant linear properties, the
existence of local characterizations may be necessary as well as sufficient (both di-
rections being open). The results in [40] show this to be the case, when the field size
in the domain is of constant size. More importantly, the invariance class cleanly
separates the many different contexts in which property testing results have been
found; and gives a general approach to extracting general techniques.

We hope that in future work, the invariance classes may help further the
understanding of property testing, while also help in the design of novel classes of
testable codes. (A promising result here is that of Kaufman and Wigderson [41]
that have given some novel codes that exhibit symmetries.) At the moment,
we lack a broad understanding of group theoretic properties that help analyze

Invariance in Property Testing 225

testability of properties; and indeed the collection of groups for which we are able
to derive testing results still remains quite limited. We hope this is remedied in
future work.

Acknowledgments

Thanks to Tali Kaufman, Elena Grigorescu, and Ben-Sasson for their collabo-
ration and comments. Thanks to Oded Goldreich and Dana Ron for advice and
discussions, and to Arnab Bhattacharyya for valuable suggestions.

References

1. Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.: Testing

k-wise and almost k-wise independence. In: Johnson, D.S., Feige, U. (eds.) STOC,

pp. 496–505. ACM, New York (2007)

2. N. Alon, E. Fischer, I. Newman, A. Shapira. A combinatorial characterization of

the testable graph properties: it’s all about regularity. In: Kleinberg [42], pp. 251–

260

3. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing reed-muller

codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: Proceedings of the 23rd ACM Symposium on the Theory of

Computing, pp. 21–32. ACM Press, New York (1991)

6. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-

prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

7. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Trans-

actions on Information Theory 51(8), 2849–2858 (2005)

8. Batu, T., Dasgupta, S., Kumar, R., Rubinfeld, R.: The complexity of approximat-

ing the entropy. SIAM J. Comput. 35(1), 132–150 (2005)

9. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing

random variables for independence and identity. In: FOCS, pp. 442–451 (2001)

10. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distri-

butions are close. In: FOCS, pp. 259–269 (2000)

11. Batu, T., Kumar, R., Rubinfeld, R.: Sublinear algorithms for testing monotone

and unimodal distributions. In: Babai, L. (ed.) STOC, pp. 381–390. ACM, New

York (2004)

12. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCP’s and non-approximability

— towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

13. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust pcps

of proximity, shorter pcps, and applications to coding. SIAM Journal on Comput-

ing 36(4), 889–974 (2006)

14. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to

test. SIAM Journal on Computing 35, 1–21 (2005); Preliminary version in Proc.

STOC 2003 (2003)

15. Ben-Sasson, E., Sudan, M.: Limits on the rate of locally testable affine-invariant

codes (November 2009) (manuscript)

226 M. Sudan

16. Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant non-

linear properties. In: Albers, S., Marion, J.-Y. (eds.) STACS. LIPIcs, vol. 3, pp.

135–146. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

17. Bhattacharyya, A., Xie, N.: Lower bounds for testing triangle-freeness in boolean

functions. In: SODA 2010: Proceedings of the twenty-first Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 87–98. Society for Industrial and Applied

Mathematics, Philadelphia (2010)

18. Blais, E.: Testing juntas nearly optimally. In: Mitzenmacher [47], pp. 151–158

19. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to

numerical problems. Journal of Computer and System Sciences 47(3), 549–595

(1993)

20. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Szegedy, B., Vesztergombi, K.:

Graph limits and parameter testing. In: Kleinberg [42], pp. 261–270

21. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A.,

Wan, A.: Testing for concise representations. In: FOCS, pp. 549–558. IEEE Com-

puter Society, Los Alamitos (2007)

22. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the

PCP-theorem. In: Proceedings of the 45th Annual IEEE Symposium on Founda-

tions of Computer Science, pp. 155–164. IEEE Press, Los Alamitos (2004)

23. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,

A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K.,

Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,

vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

24. Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers.

J. Comput. Syst. Sci. 60(3), 717–751 (2000)

25. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J.

Comput. Syst. Sci. 68(4), 753–787 (2004)

26. Friedl, K., Sudan, M.: Some improvements to total degree tests. In: Proceedings of

the 3rd Annual Israel Symposium on Theory of Computing and Systems, Washing-

ton, DC, USA, January 4-6, pp. 190–198. IEEE Computer Society, Los Alamitos

(1995), http://people.csail.mit.edu/madhu/papers/friedl.ps

27. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing

monotonicity. Combinatorica 20(3), 301–337 (2000)

28. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. JACM 45(4), 653–750 (1998)

29. Goldreich, O., Kaufman, T.: Proximity oblivious testing and the role of invariances

(March 2010) (manuscript)

30. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic

Colloquium on Computational Complexity (ECCC) 7(20) (2000)

31. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorith-

mica 32(2), 302–343 (2002)

32. Goldreich, O., Ron, D.: On proximity oblivious testing. In: Mitzenmacher [47], pp.

141–150

33. Goldreich, O., Sheffet, O.: On the randomness complexity of property testing. In:

Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and

APPROX 2007. LNCS, vol. 4627, pp. 509–524. Springer, Heidelberg (2007)

34. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing

fourier dimensionality and sparsity. In: Albers, S.E., Marchetti-Spaccamela, A.,

Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS,

vol. 5555, pp. 500–512. Springer, Heidelberg (2009)

http://people.csail.mit.edu/madhu/papers/friedl.ps

Invariance in Property Testing 227

35. Green, B.: A Szemerédi-type regularity lemma in abelian groups, with applications.

Geometric and Functional Analysis 15(2), 340–376 (2005)
36. Grigorescu, E., Kaufman, T., Sudan, M.: 2-transitivity is insufficient for local testa-

bility. In: CCC 2008: Proceedings of the 23rd IEEE Conference on Computational

Complexity, June 23-26. IEEE Computer Society, Los Alamitos (2008) (to appear)

37. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with

applications to testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.D.P. (eds.)

APPROX-RANDOM 2009. LNCS, vol. 5687, pp. 534–547. Springer, Heidelberg

(2009)
38. Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree poly-

nomials over prime fields. In: FOCS 2004: Proceedings of the Forty-Fifth Annual

IEEE Symposium on Foundations of Computer Science, pp. 423–432. IEEE Com-

puter Society, Los Alamitos (2004)

39. Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J. Com-

put. 36(3), 779–802 (2006)

40. Kaufman, T., Sudan, M.: Algebraic property testing: The role of invariance. Tech-

nical Report TR07-111, Electronic Colloquium on Computational Complexity,

November 2 (2007); Extended abstract in Proc. 40th STOC (2008)
41. Kaufman, T., Wigderson, A.: Symmetric LDPC codes and local testing. In: Pro-

ceedings of ICS 2010 (January 2010)
42. Kleinberg, J.M. (ed.): Proceedings of the 38th Annual ACM Symposium on Theory

of Computing, Seattle, WA, USA, May 21-23. ACM, New York (2006)
43. Král’, D., Serra, O., Vena, L.: A removal lemma for systems of linear equations

over finite fields. arxiv.org:0809.1846v1 [math.CO]
44. Král’, D., Serra, O., Vena, L.: A combinatorial proof of the removal lemma for

groups. Journal of Combinatorial Theory, Series A 116(4), 971–978 (2009)
45. Ladner, R.E., Dwork, C. (eds.): Proceedings of the 40th Annual ACM Symposium

on Theory of Computing, Victoria, British Columbia, Canada, May 17-20. ACM,

New York (2008)
46. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.A.: Testing halfspaces. In:

Mathieu, C. (ed.) SODA, pp. 256–264. SIAM, Philadelphia (2009)
47. Mitzenmacher, M. (ed.): Proceedings of the 41st Annual ACM Symposium on

Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2. ACM,

New York (2009)

48. Onak, K., Sudan, M.: Learnability of general discrete distributions (March 2010)

(manuscript)

49. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J.

Discrete Math. 16(1), 20–46 (2002)

50. Raskhodnikova, S., Ron, D., Shpilka, A., Smith, A.: Strong lower bounds for ap-

proximating distribution support size and the distinct elements problem. SIAM J.

Comput. 39(3), 813–842 (2009)

51. Rubinfeld, R.: Robust functional equations and their applications to program test-

ing. SIAM Journal on Computing 28(6), 1972–1997 (1999)

52. Rubinfeld, R., Servedio, R.A.: Testing monotone high-dimensional distributions.

Random Struct. Algorithms 34(1), 24–44 (2009)

53. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-

tions to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

54. Shapira, A.: Green’s conjecture and testing linear-invariant properties. In: Mitzen-

macher [47], pp. 159–166

55. Valiant, P.: Testing symmetric properties of distributions. In: Ladner and Dwork

[45], pp. 383–392

Testing Monotone Continuous Distributions on

High-Dimensional Real Cubes�

Micha�l Adamaszek1, Artur Czumaj2, and Christian Sohler3

1 Centre for Discrete Mathematics and its Applications (DIMAP) and

Warwick Mathematics Institute, University of Warwick

M.J.Adamaszek@warwick.ac.uk
2 Department of Computer Science and Centre for Discrete Mathematics and

its Applications (DIMAP), University of Warwick

A.Czumaj@warwick.ac.uk
3 Department of Computer Science, Technische Universität Dortmund

sohler@informatik.uni-bonn.de

Abstract. We study the task of testing properties of probability distri-

butions and our focus is on understanding the role of continuous distri-

butions in this setting. We consider a scenario in which we have access

to independent samples of an unknown distribution D with infinite (per-

haps even uncountable) support. Our goal is to test whether D has a

given property or it is ε-far from it (in the statistical distance, with the

L1-distance measure).

It is not difficult to see that for many natural distributions on infinite

or uncountable domains, no algorithm can exist and the central objec-

tive of our study is to understand if there are any nontrivial distributions

that can be efficiently tested. For example, it is easy to see that there

is no algorithm that tests if a given probability distribution on [0, 1] is

uniform. We show however, that if some additional information about

the input distribution is known, testing uniform distribution is possible.

We extend the recent result about testing uniformity for monotone dis-

tributions on Boolean n-dimensional cubes by Rubinfeld and Servedio

(STOC’2005) to the case of continuous [0, 1]n cubes. We show that if a

distribution D on [0, 1]n is monotone, then one can test if D is uniform

with the sample complexity O(n/ε2). This result is optimal up to a poly-

logarithmic factor. We also extend the result of Rubinfeld and Servedio

(STOC’2005) to test if a distribution D on {0, 1, . . . , k}n is monotone

with the sample complexity O(n/ε2).

Keywords: testing distributions.

1 Introduction

We study the task of testing properties of probability distributions. We con-
sider a scenario in which we have access to independent samples of an unknown
� A preliminary, conference version of this work appeared in [1]. Research supported by

EPSRC award EP/G064679/1, DFG grant So 514/3-1, and by the Centre for Discrete

Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 228–233, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Monotonicity on High-Dimensional Real Cubes 229

distribution D with infinite (perhaps even uncountable) support. Our goal is
to test whether D has a given property or it is ε-far from it (in the statistical
distance, with the L1-distance measure).

The topic of testing basic properties of the underlying probability distributions
has been extensively studied for many decades. While the standard approach in
statistics (and also more modern approaches, e.g., in data mining) have led to the
development of many high quality techniques and algorithms, until very recently
little attention has been paid to the computational complexity of testing in the sit-
uations when the underlying distributions are over very large domains. Motivated
by these considerations, a number of new studies have emerged that aim at devel-
oping efficient testers for various properties of distributions with the focus on the
small number of samples used for testing. In particular, it has been shown that
for a number of fundamental properties, such as independence, entropy estima-
tion, and the closeness between distributions, it is possible to test the underlying
distribution with the number of samples sublinear in the domain size.

While these studies lead to very efficient testers for various properties for
distributions on finite support, they seem to be useless when the underlying
distribution is on a continuous, or infinite, or even uncountable domain. In this
paper, our goal is to study the phenomenon of testability of continuous distri-
butions. We assume that there is an underlying probability distribution D from
which we can draw independent identically distributed samples (see, e.g., [5]).
We assume that each sample is of infinite precision and we will not consider the
issue of representation of the real numbers. The complexity of the tester is mea-
sured in terms of the number of samples required in order to obtain a desired
information about the distribution. We study probability distributions over a
domain Ω which will be either finite or infinite; our main focus is on the domain
Ω = [0, 1]n, n ∈ N, that is, (continuous) n-dimensional unit cube.

We study the similarity and dissimilarity between various distributions. Fol-
lowing the mainstream research of testing properties of distributions in theoreti-
cal computer science, we use the total variation distance to measure the similarity
between distributions (L1-distance). For any two discrete distributions X and Y
over Ω, defined by the probability functions PrX and PrY , respectively, we say
Y is ε-far from X if 1

2 ·∑ω∈Ω |PrX [ω]−PrY [ω]| ≥ ε. For general distributions,
the definition is analogous: for any two distributions X and Y over Ω, with
density functions fX and fY , respectively, we say Y is ε-far from X if

1
2
·
∫
x∈Ω

|fX (x) − fY(x)| dx ≥ ε . (1)

Note that inequality (1) is equivalent to
∫
x∈Ω:fX (x)≥fY(x)

(fX (x)− fY(x)) dx ≥ ε.
We say Y is ε-close to X if Y is not ε-far from X .
Let us remind that a distribution D over [0, 1]n with density function f is

uniform if f is identically 1. Therefore, for the uniform distribution, (1) can be
rephrased as follows: A distribution D over [0, 1]n with density function f is ε-far
from uniform if

230 M. Adamaszek, A. Czumaj, and C. Sohler

1
2
·
∫
x∈[0,1]n

|f(x) − 1| dx ≥ ε .

Our goal is to design an algorithm that for a given ε and a given underlying
distribution Q and a distribution D available through random sampling, is able
to distinguish between the case when Q = D and when D is ε-far from it Q. The
algorithm is allowed to be randomized and can err with probability at most 1

4 .

2 Continuous Distributions Are Typically Not Testable

In general, when using the total variation distance to measure the similarity
between distributions, it is infeasible to investigate interesting properties of dis-
tributions on infinite domains without any assumptions on the density function.
For example, one can show that for every integer t there is no tester A that
distinguishes with at most t samples between uniform distribution DU on [0, 1]
and any distribution that is ε-far from uniform (for example, take a uniform dis-
tribution on t3 randomly chosen points from the interval [0, 1]; such distribution
is discrete and hence it is 1

2 -far from uniform). This observation can be easily
generalized to testing a number of natural properties for distributions on infinite
domains.

One can also derive similar impossibility results from the existing lower bounds
for testing properties of discrete distributions. For example, Batu et al. [5] (see
also [7]) show that testing if a given distribution on the support of size n is
uniform requires Ω(

√
n/ε2) samples. With that, by taking n → ∞, the lower

bound in [5] immediately implies that no algorithm can test if a given distribution
on [0, 1] is uniform. This approach implies also similar impossibility results for
testing if a given distribution is monotone, unimodal, or if two distributions are
identical, are independent, and so on (see [2,3,4,5,6,8,9,10] for more examples).

Once we see these negative result, the natural question is: what properties of
distributions on infinite domains can be tested?

3 Testing If a Distribution Is Discrete on N Points

In order to understand the problem of testing distributions on infinite domains,
the very first question should be to test if a given distribution has infinite sup-
port. We first briefly consider a dual question: to verify if a given distribution
has support of up to a given size.

Recall that by the Radon-Nikodym theorem, every distribution on Ω has a
Lebesgue decomposition into a sum of two parts:

• continuous (with respect to the standard Lebesgue measure), that is, given
by a measurable density function f, and

• singular (concentrated on a set of Lebesgue measure 0).

Testing Monotonicity on High-Dimensional Real Cubes 231

A point x is called an atom of D if PrD[x] > 0. Detection of a single atom is not
possible, since its probability may be arbitrarily small, beyond the resolution
of any given algorithm. Instead we may try to determine whether a large part
of the probability mass is concentrated on the atoms: for a given parameter
N , distinguish between distributions that have the entire support on at most N

points (discrete on N points) and those that are ε-far from discrete on N points.
A related question has been studied recently by Raskhodnikova et al. [8], who

were interested in estimating the size of the support of a given distribution under
the assumption that every element in the support is an atom (distribution is sin-
gular) with the probability at least 1

M . For such problem, Raskhodnikova et al. [8]
(see also [11]) show that one needs at least Ω(M1−o(1)) samples to estimate the
size of the support. On the other hand, it is easy to compute (exactly) the size
of the support with O(M log M) samples (e.g., by using the approach from the
coupon collector problem). Our goal is different than that in [8], because on one
hand, we do not have any lower bound on the probability of the points in the sup-
port (which makes the task of even estimating the size of the support impossible),
and on the other hand, we want to test if a given distribution has at most N points
in the support (rather than estimate the size of the support). Still, one can rather
easily prove that the lower bound result from Raskhodnikova et al. [8] carries over
for our problem and gives a lower bound for the sample size of Ω(N1−o(1)). One
can also show that the following algorithm sampling O(N/ε) elements is a testing
algorithm that distinguishes between a discrete distribution on N points and any
distribution that is ε-far from discrete on N points with O(N/ε) samples.

Testing discreteness (N):

– Draw a sample (according to the distribution D) S = 〈s1, . . . , s�〉
from Ω with � = �2N/ε�

– If S has more than N distinct elements then Reject
– else Accept

Observe that this result immediately implies that we can estimate the smallest
number N of points in the domain of D such that D has N points that have the
total probability at least 1 − ε using O(N/ε) samples.

An interesting open question is whether the upper bound is tight, that is, if
every algorithm testing if a distribution is discrete on N points requires Ω(N/ε)
samples.

4 Testing If a Monotone High-Dimensional Distribution
on a Real Hypercube Is Uniform

The main goal of this work is to investigate if there are any interesting dis-
tributions on infinite domains that are testable. One of a very few properties
of discrete distributions considered in the Computer Science literature that has
only a light dependency on the size of the support (the condition that by our

232 M. Adamaszek, A. Czumaj, and C. Sohler

discussion above seems to be necessary to hope for a fast tester) is that of test-
ing if a monotone distribution1 on the Boolean cube is uniform. Rubinfeld and
Servedio [10] consider the following problem: given a monotone distribution D
on a Boolean n-dimensional cube {0, 1}n, test if D is uniform.

Rubinfeld and Servedio [10] show that without any assumption about the
monotonicity of D, every testing algorithm requires 2Ω(n) samples (because
the domain’s size is 2n), however, if D is monotone, then one distinguishes
between the case when D is uniform and when D is ε-far from uniform us-
ing O(n log(1/ε)/ε2) samples. Furthermore, this result is almost optimal in the
sense that Ω(n/ log2

n) samples are necessary [10].
Our main contribution is the analysis of this problem in the setting when D is

a monotone distribution on an n-dimensional (real) cube [0, 1]n. A distribution
D on [0, 1]n with density function f is monotone if for any x = (x1, . . . , xn),
y = (y1, . . . , yn), if xi ≤ yi for every i then f(x) ≤ f(y). On high-level our
approach is similar to that used by Rubinfeld and Servedio [10] in the case of
Boolean n-cubes. However, the fact that we have to deal with continuous domain
makes our proof of the main result, Lemma 1, more complicated.

We characterize monotone distributions that are ε-far from uniform:

Lemma 1. Let D be a monotone distribution on [0, 1]n with density function f.
If D is ε-far from uniform then

Ef[‖x‖1] =
∫
x

‖x‖1 · f(x) dx ≥ n

2
+

ε

2
.

The proof of this lemma can be deduced from the following result (which is the
main technical contribution of the paper; for a proof, see [1]) by substituting
g(x) = f(x) − 1.

Lemma 2. Let g : [0, 1]n→R be a monotone function with
∫
x g(x) dx = 0. Then∫

x

‖x‖1 · g(x) dx ≥ 1
4

∫
x

|g(x)| dx .

By combining Lemma 1 with the fact that for uniform distribution Q on [0, 1]n

we have EQ[‖x‖1] = n
2 , we can show that the following simple algorithm tests if

a distribution is uniform or it is ε-far from uniform:

Testing uniformity:

– Repeat r = 20 times:

Draw a sample (according to the distribution D) S = 〈x1, . . . , xs〉 from [0, 1]n

with s = � 40n
ε2 �

If
Ps

i=1 ‖xi‖1 ≥ s(n
2

+ ε
4
) then Reject and exit

– Accept

1 Distribution D is monotone if for any x = (x1, . . . , xn), y = (y1, . . . , yn), if xi ≤ yi

for every i then PrD [x] ≤ PrD [y].

Testing Monotonicity on High-Dimensional Real Cubes 233

Theorem 1. Testing uniformity distinguishes between uniform distribution on
[0, 1]n and any monotone distribution over [0, 1]n that is ε-far from uniform. Its
sample complexity is O(n/ε2) and it errs with probability at most 1

4 .

Our analysis does not only extend the result from [10] to real cubes, but also leads
to an algorithm slightly faster than that from [10] (we shave off an O(log(n/ε))
factor) for both the Boolean and real hypercube. We observe that since the lower
bound from [10] can be directly carried over to the case of real [0, 1]n cubes, our
upper bound is almost optimal.

Let us also notice that using a very similar analysis, our tester will work with
the same complexity if the input is a monotone distribution on a discrete cube
{0, 1, . . . , k}n. The obtained sample size is independent of k:

Theorem 2. Let k be any positive integer and consider any n-dimensional fi-
nite grid {0, 1, 2, . . . , k}n. One can test if a given monotone distribution D over
{0, 1, 2, . . . , k}n is uniform with O(n/ε2) samples.

References

1. Adamaszek, M., Czumaj, A., Sohler, C.: Testing monotone continuous distributions

on high-dimensional real cubes. In: Proc. 21st Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 56–65 (2010)

2. Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.: Testing

k-wise and almost k-wise Independence. In: Proc. 39th Annual ACM Symposium

on Theory of Computing, pp. 496–505 (2007)

3. Batu, T., Dasgupta, S., Kumar, R., Rubinfeld, R.: The complexity of approximat-

ing the entropy. In: Proc. 34th Annual ACM Symposium on Theory of Computing,

pp. 678–687 (2002)

4. Batu, T., Fischer, E., Fortnow, L., Kumar, R., Rubinfeld, R., White, P.: Testing

random variables for independence and identity. In: Proc. 42nd IEEE Symposium

on Foundations of Computer Science, pp. 442–415 (2001)

5. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distri-

butions are close. In: Proc. 41st IEEE Symposium on Foundations of Computer

Science, pp. 259–269 (2000)

6. Batu, T., Kumar, R., Rubinfeld, R.: Sublinear algorithms for testing monotone

and unimodal distributions. In: Proc. 36th Annual ACM Symposium on Theory of

Computing, pp. 381–390 (2004)

7. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic

Colloquium on Computational Complexity, Report No. 7 (2000)

8. Raskhodnikova, S., Ron, D., Shpilka, A., Smith, A.: Strong lower bounds for ap-

proximating distribution support size and the distinct elements problem. SIAM

Journal on Computing 39(3), 813–842 (2009)

9. Rubinfeld, R.: Sublinear time algorithms. In: Proc. International Congress of Math-

ematicians, Madrid, Spain, August 22-30 (2006)

10. Rubinfeld, R., Servedio, R.A.: Testing monotone high-dimensional distributions.

In: Proc. 37th Annual ACM Symposium on Theory of Computing, pp. 147–156

(2005)

11. Valiant, P.: Testing symmetric properties of distributions. In: Proc. 40th Annual

ACM Symposium on Theory of Computing, pp. 383–392 (2008)

On Constant Time Approximation of

Parameters of Bounded Degree Graphs

Noga Alon

Schools of Mathematics and Computer Science, Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

nogaa@tau.ac.il

Abstract. How well can the maximum size of an independent set, or

the minimum size of a dominating set of a graph in which all degrees are

at most d be approximated by a randomized constant time algorithm ?

Motivated by results and questions of Nguyen and Onak, and of Par-

nas, Ron and Trevisan, we show that the best approximation ratio that

can be achieved for the first question (independence number) is between

Ω(d/ log d) and O(d log log d/ log d), whereas the answer to the second

(domination number) is (1 + o(1)) ln d.

Keywords: independence number of a graph, dominating set in a graph,

constant time approximation.

1 Introduction

The question of identifying the properties of bounded degree graphs in the model
of [7] that can be tested efficiently, is that of recognizing the properties that are
local in nature. These are properties for which the local structure of the graph
supplies meaningful information about the global property. A related problem
deals with efficient approximation algorithms for graph parameters, like the in-
dependence number, or the domination number of a given bounded degree graph.
The question here is to decide how well we can approximate these quantities by
observing the local structure of the graph. In this short paper we discuss several
problems of this type, continuing the work in several earlier papers including
[13] and [12] on related questions.

1.1 Notation and Definitions

Following [13] and [12] we call a real number y an (α, β)-approximation for a num-
ber y if y ≤ y ≤ αy + β. A randomized algorithm A is an (α, β)-approximation
algorithm for a graph parameter P (G) if given an input graph G the algorithm
computes a value y which is an (α, β)-approximation for P (G) with probability
at least 2/3 for any proper input graph G. Let G(n, d) denote the family of all
graphs on n vertices with maximum degree at most d, represented by their ad-
jacency lists. In this note we are interested in randomized (α, εn)-approximation
algorithms for some graph parameters, that work on input graphs G ∈ G(n, d) in

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 234–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Fast Approximation of Graph Parameters 235

constant expected time, that is, in time bounded by a function f = f(d, ε) of d and
ε only, which is independent of n. In order to make the discussion cleaner, we will
not be interested in the precise function f as long as it is independent of n. Our
objective is to try to determine or estimate, for a given graph parameter P , the
best possible α so that for any positive ε > 0 there is a constant time, randomized
(α, εn)-approximation algorithm for P (G) for inputs G ∈ G(n, d). In some cases
the same α actually works for ε = 0 as well.

We note that it is possible to replace the success probability 2/3 by any
larger number smaller than 1 (by running the algorithm several times, taking
the median of all values computed) and it is also possible to replace the expected
running time by worst case running time by stopping the algorithm if its running
time exceeds its expectation by a large constant factor.

1.2 Examples

– Simple sampling of vertices, checking their degrees, shows that for every
ε > 0 there is a constant time randomized (1, εn) approximation algorithm
for estimating the sum of degrees of a graph G ∈ G(n, d). The analysis
is essentially trivial, and the example is listed here mainly to practice the
definitions. A similar approach provides a constant time randomized (1, εn)
approximation algorithm for the number of triangles (or copies of any fixed
connected graph) in a given G ∈ G(n, d).

– As shown in [13] and [11] for every ε > 0 there is a constant time randomized
(2, εn) approximation algorithm for the vertex cover of a graph G ∈ G(n, d).
Trevisan (c.f. [13]) observed that there is no such (2 − δ, εn)-approximation
algorithm, for any fixed ε < δ.

– In [12] it is proved that for every ε > 0 there is a constant time randomized
(H(d + 1), εn) approximation algorithm for the domination number of a
graph G ∈ G(n, d), where H(d + 1) = 1 + 1

2 + . . . + 1
d+1 = ln d + Θ(1) and

the domination number of G = (V, E) is the minimum cardinality of a set of
vertices U ⊂ V so that each vertex v ∈ V − U has a neighbor in U .

– Another result proved in [12] is that for every ε > 0 there is a constant
time randomized (1, εn) approximation algorithm for the maximum size of
a matching in a graph G ∈ G(n, d).

1.3 A Useful Tool

The basic tool applied in the algorithms of [13] and [12] is the result that for
every ε > 0 there is a constant time randomized algorithm that computes, for
a given G ∈ G(n, d), a (1, εn)-approximation of the size of some maximal (with
respect to containment) independent set in G. The same proof provides such
an approximation even in the weighted case, which we’ll need here, where the
weight of each vertex is, say, an integer between 1 and d.

1.4 The New Results

Our first result deals with approximation of domination numbers, showing that
the (H(d + 1), εn) approximation proved in [12] is essentially tight.

236 N. Alon

Theorem 1.1. The smallest α so that for every ε > 0 there is a constant time
randomized (α, εn) approximation algorithm for the domination number of a
graph G ∈ G(n, d) is (1+ o(1)) ln d, where the o(1)-term tends to zero as d tends
to infinity.

The second result is about approximation of independence numbers.

Theorem 1.2. There are two positive constants c1, c2 so that the following holds.
The smallest α so that for every ε > 0 there is a constant time randomized (α, εn)
approximation algorithm for the independence number of a graph G ∈ G(n, d) is
at least c1

d
log d , and at most c2

d log log d
log d .

2 Proofs

In this section we present the proofs of the two theorems stated above. Recall
that the girth of a graph G is the length of a shortest cycle in it. We start with
the proof of Theorem 1.1.

2.1 Dominating Set

Lemma 2.1. For every fixed d and large n divisible by 2d + 2, there are two
d-regular graphs G = (V, E) and G′ = (V ′, E′) in G(n, d) so that the following
holds.
(i) The girth of G is at least, say, 0.5 logn/ log d and its domination number is
precisely n

d+1 .

(ii) The girth of G′ is at least 0.5 logn/ log d and its domination number is
(1 + o(1))n ln d

d .

Proof: (i) Start with an arbitrary set of n/(d + 1) pairwise vertex disjoint stars,
each containing d edges. Let U denote the set of centers of these stars, and let
W denote the set of all their end vertices. Note that |W | = nd

d+1 is even, and thus
there is a d− 1-regular graph H on the set W . Let G be the d-regular graph on
the n vertices U ∪W consisting of all edges of the initial stars as well as all edges
of H . The domination number of G is clearly n/(d + 1), as U is a dominating
set in it. The girth, however, can be small, and our objective is to show that it
can be increased without changing the domination number. This will be done
by modifying the graph G, without touching the edges of the stars.

The method is similar to that of Erdös and Sachs in [6]. Call a cycle short
if its length is at most 0.5 logn/ log d. As long as there is a short cycle, take
arbitrarily a shortest cycle C, and an arbitrary non-star edge in it uv. Since the
graph is d-regular, there is another non-star edge xy in it whose distance from
uv is at least log n/ log d. Omit the two edges uv and xy from G and replace
them by the two new edges xu and yv. It is easy to check that this replacement
does not create any new cycles of length at most that of C, and destroys the
cycle C itself. Continuing in this manner until there are no short cycles left we
obtain the desired graph G.

On Fast Approximation of Graph Parameters 237

(ii) Let G′ be a random d-regular graph on n vertices. It is known that with
high probability the domination number of G′ is (1 + o(1))n ln d

d (see, e.g., [4]).
It is also not difficult to check that the expected number of cycles of length at
most 0.5 logn/ log d in G′ is at most

√
n, and hence, by Markov’s Inequality,

with probability at least 0.5 there are at most 2
√

n such cycles. Fix a graph with
domination number (1+ o(1))n ln d

d and at most 2
√

n short cycles, and modify it
according to the process described in the proof of part (i), destroying all short
cycles. Since each modification step touches at most 2 edges, and cannot create
too many short cycles, the domination number changes during this process by
at most o(n), providing the desired result. ��
Proof of Theorem 1.1: The existence of the required approximation algorithm
is proved in [12], as described in Section 1. It remains to show that no better
approximation is possible.

Let G and G′ be as in Lemma 2.1 and consider two distributions on graphs
in G(n, d): the first is a permuted copy of G, and the second is a permuted
copy of G′. By the girth and regularity conditions the statistics of subgraphs
of less than 0.5 logn/ log d vertices and edges in both distributions is identical.
Hence no constant time algorithm can distinguish between them. This completes
the proof. Note that the two distributions here are not only computationally
indistinguishable for randomized constant time algorithms, but are completely
identical. It is possible to use computational indistinguishability here and show
that in fact in order to obtain an (α, εn)-approximation for the domination of
G ∈ G(n, d), where α < (1 − δ) ln d and ε < ε(δ), one needs to inspect at least
Ω(

√
n) vertices and edges, but as we care here only about algorithms whose

running time is independent of n, we do not include the detailed analysis of this
stronger claim. ��

2.2 Independence Number

Proof of Theorem 1.2: The proof of the lower bound is simple: there is a
d-regular bipartite graph G on n vertices with girth Ω(log n) (and independence
number n/2), and it is well known that a random d-regular graph on n vertices
has, with high probability, independence number at most O(n log d

d) and only
a small number of cycles of length shorter than 0.5 logn/ log d. We can thus
modify the graph as in the previous subsection and get a d-regular graph G′ on
n vertices with girth at least Ω(log n/ log d) and independence number at most
O(n log d

d). As in the previous proof, no constant time algorithm will be able to
distinguish between a permuted copy of G and a permuted copy of G′, providing
the lower bound.

The proof of the upper bound requires a bit more work. It is, in fact, non trivial
to get any constant time (α, εn)- approximation algorithm to the independence
number, with α = o(d). We first describe a sequential deterministic algorithm
and then observe that it can be converted into a randomized, constant time
procedure.

238 N. Alon

Let G ∈ G(n, d) be a given input graph. As long as there is a nonempty set X

of vertices of G with a common neighbor in the graph, satisfying |X | ≤ log3
d,

so that the induced subgraph on X contains no independent set of size at least
|X |/ log d, omit it. (When there are many choices for such a set X , pick one
arbitrarily). Suppose that when there is no such set X left, there are t vertices
in the remaining graph. By the result in [2] (see the remark following the proof of
Theorem 1.1 in [2]), the induced graph left on the t remaining vertices contains
an independent set of size at least Ω(t log d

d log log d). It is also obvious that G has an
independent set of size at least n

d+1 . Thus, the independence number of G is at
least the average between these two, that is, at least Ω(n

d+1 + t log d
d log log d). On the

other hand we know that there is no independent set of size bigger than n−t
log d + t,

providing the required approximation if the value of t is known with sufficient
accuracy.

It thus remains to show how to approximate t in randomized constant time.
Define an auxiliary weighted graph F whose set of vertices is the set of all
nonempty subsets X of at most log3

d vertices of G with a common neighbor,
so that the induced subgraph of G on X contains no independent set of size at
least |X |/ log d. Two such vertices X and X ′ of F are adjacent iff the two sets
X and X ′ have a nonempty intersection. The weight of each vertex X is the
cardinality |X | of the subset corresponding to it. Note that one can easily check
the adjacency relations in the graph F by observing the original graph G locally.
We can therefore find, in randomized constant time, a good approximation to the
weight of a maximal (with respect to containment) independent set of vertices
of F , which will enable us to approximate the value of t defined in the sequential
procedure described above. This completes the proof. ��

3 Concluding Remarks and Open Problems

We have investigated the best possible approximation ratios that can be obtained
for two graph parameters by randomized, constant time algorithms on bounded
degree graphs represented by their adjacency lists. The problem for domination
number is quite well understood, whereas in the case of independence number
there is still a Θ(log log d) gap between the upper and lower bounds. It will be
interesting to close this gap. We suspect that the log log d term can be omitted,
but this will require an additional argument. It is worth noting that the best
known polynomial time algorithm for approximating the independence number
of graphs G ∈ G(n, d) provides an approximation ratio of Θ(d log log d/ log d),
matching the approximation ratio obtained here. This has been found by Vish-
wanathan (first recorded in [8], see also [9]), and by Halperin [10], and is based on
the method of [3] that applies semidefinite programming. It seems unlikely that
these algorithms can be converted into constant time randomized ones. Austrin,
Khot and Safra [5] have recently proved a hardness result of Ω(d/ log2

d) for the
problem, under the unique games conjecture.

A purely combinatorial problem, that seems related to the question above
(although we do not know any direct relation) is the conjecture raised in [1] that

On Fast Approximation of Graph Parameters 239

for any fixed graph H , any graph G ∈ G(n, d) that contains no copy of H has
an independent set of size at least cH

n log d
d . Here, too, the best known result,

due to Shearer [14], is off by a factor of log log d, and it is only known that the
independence number of any such graph is at least cH

n log d
d log log d .

Acknowledgments. I would like to thank Krzysztof Onak for helpful discus-
sions, comments and suggestions, and Per Austrin for pointing out several rele-
vant references. Research supported in part by an ERC Advanced grant and by
a USA-Israeli BSF grant.

References

1. Ajtai, M., Erdös, P., Komlós, J., Szemerédi, E.: On Turan’s theorem for sparse

graphs. Combinatorica 1, 313–317 (1981)

2. Alon, N.: Independence numbers of locally sparse graphs and a Ramsey type prob-

lem. Random Structures and Algorithms 9, 271–278 (1996)

3. Alon, N., Kahale, N.: Approximating the independence number via the θ-function.

Math. Programming 80, 253–264 (1998)

4. Alon, N., Wormald, N.: High degree graphs contain large-star factors. In: Katona,

G., Schrijver, A., Szönyi, T. (eds.) Fete of Combinatorics, Bolyai Soc. Math. Studies

20, pp. 9–21. Springer, Heidelberg (2010)

5. Austrin, P., Khot, S., Safra, M.: Inapproximability of Vertex Cover and Indepen-

dent Set in Bounded Degree Graphs. In: IEEE Conference on Computational Com-

plexity 2009, pp. 74–80 (2009)

6. Erdös, P., Sachs, H.: Reguläre Graphen gegebener Taillenweite mit minimaler

Knotenzahl (German). Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-

Natur. Reihe 12, 251–257 (1963)

7. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: Proc. 29th

STOC, pp. 406–415 (1997)

8. Halldórsson, M.M.: Approximations of Independent Sets in Graphs. In: Jansen,

K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 1–13. Springer,

Heidelberg (1998)

9. Halldórsson, M.M.: Approximations of Weighted Independent Set and Hereditary

Subset Problems. Journal of Graphs Algorithms and Applications 4, 1–16 (2000)

10. Halperin, E.: Improved approximation algorithms for the vertex cover problem

in graphs and hypergraphs. In: Proc. Eleventh ACM-SIAM Symp. on Discrete

Algorithms, pp. 329–337 (2000)

11. Marko, S., Ron, D.: Distance approximation in bounded-degree and general sparse

graphs. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006

and RANDOM 2006. LNCS, vol. 4110, pp. 475–486. Springer, Heidelberg (2006)

12. Nguyen, H.N., Onak, K.: Constant-Time Approximation Algorithms via Local Im-

provements. In: Proc. 49th Annual Symposium on Foundations of Computer Sci-

ence (FOCS 2008), pp. 327–336 (2008)

13. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time

and a connection to distributed algorithms. Theoret. Comput. Sci. 381(1-3), 183–

196 (2007)

14. Shearer, J.B.: On the independence number of sparse graphs. Random Structures

and Algorithms 7, 269–271 (1995)

Sublinear Algorithms in the External Memory

Model�

Alexandr Andoni1, Piotr Indyk2, Krzysztof Onak2, and Ronitt Rubinfeld2,3

1 Princeton University and Center for Computational Intractability,

Princeton, NJ, USA
2 Massachusetts Institute of Technology, Cambridge, MA, USA

3 Tel-Aviv University, Tel Aviv, Israel

Abstract. We initiate the study of sublinear-time algorithms in the

external memory model. In this model, the data is stored in blocks of a

certain size B, and the algorithm is charged a unit cost for each block

access. This model is well-studied, since it reflects the computational

issues occurring when the (massive) input is stored on a disk. Since each

block access operates on B data elements in parallel, many problems have

external memory algorithms whose number of block accesses is only a

small fraction (e.g. 1/B) of their main memory complexity.

However, to the best of our knowledge, no such reduction in complex-

ity is known for any sublinear-time algorithm. One plausible explanation

is that the vast majority of sublinear-time algorithms use random sam-

pling and thus exhibit no locality of reference. This state of affairs is

quite unfortunate, since both sublinear-time algorithms and the external

memory model are important approaches to dealing with massive data

sets, and ideally they should be combined to achieve best performance.

We show that such combination is indeed possible. In particular, we

consider three well-studied problems: testing of distinctness, uniformity
and identity of an empirical distribution induced by data. For these prob-

lems we show random-sampling-based algorithms whose number of block

accesses is up to a factor of 1/
√

B smaller than the main memory com-

plexity of those problems. We also show that this improvement is optimal

for those problems.

Since these problems are natural primitives for a number of sampling-

based algorithms for other problems, our tools improve the external mem-

ory complexity of other problems as well.

Keywords: external memory, sampling, distribution testing.

1 Introduction

Random sampling is one of the most fundamental methods for reducing task
complexity. For a wide variety of problems, it is possible to infer an approximate
� The research was supported in part by David and Lucille Packard Fellowship, by

MADALGO (Center for Massive Data Algorithmics, funded by the Danish National

Research Association), by Marie Curie IRG Grant 231077, by NSF grants 0514771,

0728645, and 0732334, and by a Symantec Research Fellowship.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 240–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sublinear Algorithms in the External Memory Model 241

solution from a random sample containing only a small fraction of the data,
yielding algorithms with sublinear running times. As a result, sampling is often
the method of choice for processing massive data sets. Inferring properties of
data from random sample has been a major subject of study in several areas,
including statistics, databases [1,2], theoretical computer science [3,4,5,6], . . .

However, using random sampling for massive data sets encounters the fol-
lowing problem: typically, massive data sets are not stored in main memory,
where each element can be accessed at a unit cost. Instead, the data is stored
on external storage devices, such as a hard disk. There, the data is stored in
blocks of certain size (say, B), and each disk access returns a block of data, as
opposed to an individual element. In such models [7], it is often possible to solve
problems using roughly T/B disk accesses, where T is the time needed to solve
the problem in main memory. The 1/B factor is often crucial to the efficiency of
the algorithms, given that (a) the block size B tends to be large, on the order
of thousands and (b) each block access is many orders of magnitude slower than
a main memory lookup. Unfortunately, implementations of sampling algorithms
typically need to perform1 one block access per each sampled element [1]. Effec-
tively, this means that out of B data elements retrieved by each block access,
B− 1 elements are discarded by the algorithm. This makes sampling algorithms
a much less attractive option for processing massive data sets.

Is it possible to improve the sampling algorithms by utilizing the entire infor-
mation stored in each accessed block? At the first sight, it might not seem so.
For example, consider the following basic sampling problem: the input data is a
binary sequence such that the fraction of ones is either at most f or at least 2f ,
and the goal is to detect which of these two cases occurs. A simple argument
shows that any sampling algorithm for this problem requires Ω(1/f) samples to
succeed with constant probability, since it may take that many trials to even
retrieve one 1. It is also easy to observe that the same lower bound holds even if
all elements within each block are equal (as long as the total number of blocks
is Ω(1/f)), in which case sampling blocks is equivalent to sampling elements.
Thus, even for this simple problem, sampling blocks does not yield any reduction
in the number of accesses.

2 Our Results

Contrary to the above impression, we show that there are natural problems for
which it is possible to reduce the number of sampled blocks. Specifically, we
consider the problem of testing properties of empirical distributions induced by
the data sets. Consider a data set of size m with support size (i.e., the number of
distinct elements) equal to n. Let pi be the fraction of times an element i occurs
in the data set. The vector p then defines a probability distribution over a set
of distinct elements in the data set. We address the following three well-studied
problems:
1 It is possible to retrieve more samples per block if the data happens to be stored in

a random order. Unfortunately, this is typically not guaranteed.

242 A. Andoni et al.

– Distinctness: are all data elements distinct (i.e., n = m), or are there at least
εm duplicates?

– Uniformity: is p uniform over its support, or is it ε-far2 from the uniform
distribution?

– Identity: is p identical to an explicitly given distribution q, or is it ε-far
from q?

Note that testing identity generalizes the first two problems. However, the algo-
rithms for distinctness and uniformity are simpler and easier to describe.

It is known [8,9,10] that, if the elements are stored in main memory, then
Θ̃(

√
n) memory accesses are sufficient and necessary to solve both uniformity

and identity testing. We give an external memory algorithm which uses only
Õ(

√
m/B) block accesses. Thus, for m comparable to n, the number of accesses

is reduced by a factor of
√

B. It also can be seen that this bound cannot be
improved in general: if B = m/n, then each block could consist of equal elements,
and thus the Θ̃(

√
n) = Θ̃(

√
m/B) main memory lower bound would apply.

From the technical perspective, our algorithms mimic the sampling algorithms
of [10,11,9]. The key technical contribution is a careful analysis of those algo-
rithms. In particular, we show that the additional information obtained from
sampling blocks of data (as opposed to the individual elements) yields a sub-
stantial reduction of the variance of the estimators used by those algorithms.

3 Applications to Other Problems

The three problems from above are natural primitives for a number of other
sampling-based problems. Thus, our algorithms improve the external memory
complexity of other problems as well. Below we describe two examples of prob-
lems where our algorithms and techniques apply immediately to give improved
guarantees in the external memory model.

The first such problem is testing graph isomorphism. In this problem, the
tester is to decide, given two graphs G and H on n vertices, whether G are H

are isomorphic or at least εn2 edges of the graphs must be modified to achieve
a pair of isomorphic graphs. Suppose one graph, G, is known to the tester (for
instance, it is a fixed graph with an easily computable adjacency relation), and
the other graph, H , is described by the adjacency matrix written in the row-
major order on the disk. Then, our algorithm for identity testing improves the
sample complexity of the Fischer and Matsliah algorithm [12] by essentially a
factor of

√
B. Formally, in the main memory, the Fischer and Matsliah algorithm

uses O(
√

n · poly(log n, 1/ε)) queries to H . Combined with our external memory
identity tester, algorithm will use only O((

√
n/B +1) ·poly(log n, 1/ε)) samples.

2 We measure the distance between distribution using the standard variational dis-

tance, which is the maximum probability with which a statistical test can distin-

guish the two distributions. Formally, a distribution p is ε-far from a distribution q,
if ‖p − q‖1 ≥ ε, where p and q are interpreted as vectors.

Sublinear Algorithms in the External Memory Model 243

The second application is a set of questions on testing various properties
of metric spaces, such as testing whether a metric is a tree-metric or ultra-
metric. In [13], Onak considers several such properties, for which he gives al-
gorithms whose sampling complexity in main memory is of the form O(α/ε +
n(β−1)/β/ε1/β), where α ≥ 1 and β ≥ 2 are constant integers. The additive term
n(β−1)/β/ε1/β corresponds to sampling for a specific β-tuple. Using our tech-
niques for distinctness testing, it can easily be shown that whenever an algo-
rithm from [13] requires O(α/ε+n(β−1)/β/ε1/β) samples, the sample complexity
in external memory can be improved to O(α/ε + (n/B)(β−1)/β/ε1/β), provided
a single disk block contains B points.

References

1. Olken, F., Rotem, D.: Simple random sampling from relational databases. In:

VLDB, pp. 160–169 (1986)

2. Olken, F.: Random Sampling from Databases. PhD thesis, U.C. Berkeley (1993)

3. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin

of the European Association for Theoretical Computer Science 75, 97–126 (2001)

4. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif,

J.H., Rolim, J.D.P. (eds.) Handbook on Randomization, vol. II, pp. 597–649.

Kluwer Academic Press, Dordrecht (2001)

5. Goldreich, O.: Combinatorial property testing—a survey. In: Randomization Meth-

ods in Algorithm Design, pp. 45–60 (1998)

6. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower bounds and

applications. In: STOC, pp. 266–275 (2001)

7. Vitter, J.S.: External memory algorithms and data structures. ACM Comput.

Surv. 33(2), 209–271 (2001)

8. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic

Colloqium on Computational Complexity 7(20) (2000)

9. Batu, T.: Testing Properties of Distributions. PhD thesis, Cornell University (Au-

gust 2001)

10. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distri-

butions are close. In: FOCS, pp. 259–269 (2000)

11. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing

random variables for independence and identity. In: FOCS, pp. 442–451 (2001)

12. Fischer, E., Matsliah, A.: Testing graph isomorphism. SIAM J. Comput. 38(1),

207–225 (2008)

13. Onak, K.: Testing properties of sets of points in metric spaces. In: Aceto, L.,

Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,

I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 515–526. Springer, Heidelberg

(2008)

Polylogarithmic Approximation for Edit

Distance and the Asymmetric Query
Complexity�

Alexandr Andoni1, Robert Krauthgamer2, and Krzysztof Onak3

1 Princeton University and Center for Computational Intractability,

Princeton, NJ, USA
2 The Weizmann Institute of Science, Rehovot, Israel

3 Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. We present a near-linear time algorithm that approximates

the edit distance between two strings within a polylogarithmic factor.

More precisely, for strings of length n and every fixed ε > 0, it can

compute a (log n)O(1/ε)-approximation in n1+ε time.

This result arises naturally in the study of a new asymmetric query
model. In this model, the input consists of two strings x and y, and an

algorithm can access y in an unrestricted manner, while being charged for

querying every symbol of x. Our query lower bound for this model pro-

vides the first rigorous separation between edit distance and Ulam dis-

tance, which is edit distance on non-repetitive strings, i.e., permutations.

Keywords: edit distance, sampling, query complexity.

1 Introduction

Manipulation of strings has long been central to computer science, arising from
the high demand to process texts and other sequences efficiently. For example,
for the simple task of comparing two strings (sequences), one of the first methods
emerged to be the edit distance (aka the Levenshtein distance) [1], defined as the
minimum number of character insertions, deletions, and substitutions needed to
transform one string into the other. This basic distance measure, together with
its more elaborate versions, is widely used in a variety of areas such as com-
putational biology, speech recognition, and information retrieval. Consequently,
improvements in edit distance algorithms have the potential of major impact.
As a result, computational problems involving edit distance have been studied
extensively (see [2,3] and references therein).

The most basic problem is that of computing the edit distance between two
strings of length n over some alphabet. It can be solved in O(n2) time by a classi-
cal algorithm [4]; in fact this is a prototypical dynamic programming algorithm,
� Alexandr Andoni was supported in part by NSF CCF 0832797. Robert Krauthgamer

was supported in part by the Israel Science Foundation (grant #452/08), and by a

Minerva grant. Krzysztof Onak was supported in part by NSF grants 0732334 and

0728645.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 244–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Polylogarithmic Approximation for Edit Distance 245

see, e.g., the textbook [5] and references therein. Despite significant research
over more than three decades, this running time has so far been improved only
slightly to O(n2/ log2

n) [6], which remains the fastest algorithm known to date.1

Still, a near-quadratic runtime is often unacceptable in modern applications
that must deal with massive datasets, such as the genomic data. Hence practi-
tioners tend to rely on faster heuristics [3,2]. This has motivated the quest for
faster algorithms at the expense of approximation, see, e.g., [8, Section 6] and [9,
Section 8.3.2]. Indeed, the past decade has seen a serious effort in this direction.2

One general approach is to design linear time algorithms that approximate the
edit distance. A linear-time

√
n-approximation algorithm immediately follows

from the exact algorithm of [11], which runs in time O(n+d2), where d is the edit
distance between the input strings. Subsequent research improved the approxi-
mation factor, first to n3/7 [12], then to n1/3+o(1) [13], and finally to 2Õ(

√
log n)

[14] (building on [15]). Predating some of this work was the sublinear-time algo-
rithm of [16] achieving nε approximation, but only when the edit distance d is
rather large.

Better progress has been obtained on variants of edit distance, where one
either restricts the input strings, or allows additional edit operations. An exam-
ple from the first category is the edit distance on non-repetitive strings (e.g.,
permutations of [n]), termed the Ulam distance in the literature. The classi-
cal Patience Sorting algorithm computes the exact Ulam distance between two
strings in O(n log n) time. An example in the second category is the case of two
variants of the edit distance where certain block operations are allowed. Both of
these variants admit an Õ(log n) approximation in near-linear time [17,18,19,20].

Despite the efforts, achieving a polylogarithmic approximation factor for the
classical edit distance has eluded researchers for a long time. In fact, this is has
been the case not only in the context of linear-time algorithms, but also in the
related tasks, such as nearest neighbor search, �1-embedding, or sketching. From
a lower bounds perspective, only a sublogarithmic approximation has been ruled
out for the latter two tasks [21,22,23], thus giving evidence that a sublogarith-
mic approximation for the distance computation might be much harder or even
impossible to attain.

2 Results

Our first and main result is an algorithm that runs in near-linear time and
approximates edit distance within a polylogarithmic factor. Note that this is
exponentially better than the previously known factor 2Õ(

√
log n) (in comparable

running time), due to [15,14].
1 The result of [6] applies to constant-size alphabets. It was recently extended to

arbitrarily large alphabets, albeit with an O(log log n)2 factor loss in runtime [7].
2 We shall not attempt to present a complete list of results for restricted settings (e.g.,

average-case/smoothed analysis, weakly-repetitive strings, and bounded distance-

regime), for variants of the distance function (e.g., allowing more edit operations),

or for related computational problems (such as pattern matching, nearest neighbor

search, and sketching). See also the surveys of [2] and [10].

246 A. Andoni, R. Krauthgamer, and K. Onak

Theorem 1 (Main). For every fixed ε > 0, there is an algorithm that approx-
imates the edit distance between two input strings x, y ∈ Σn within a factor of
(log n)O(1/ε), and runs in n1+ε time.

This development stems from a principled study of edit distance in a computa-
tional model that we call the asymmetric query model, and which we shall define
shortly. Specifically, we design a query-efficient procedure in the said model, and
then show how this procedure yields a near-linear time algorithm. We also pro-
vide a query complexity lower bound for this model, which matches or nearly-
matches the performance of our procedure.

A conceptual contribution of our query complexity lower bound is that it is the
first one to expose hardness stemming from “repetitive substrings”, which means
that many small substrings of a string may be approximately equal. Empirically,
it is well-recognized that such repetitiveness is a major obstacle for designing
efficient algorithms. All previous lower bounds (in any computational model)
failed to exploit it, while in our proof the strings’ repetitive structure is readily
apparent. More formally, our lower bound provides the first rigorous separation of
edit distance from Ulam distance (edit distance on non-repetitive strings). Such
a separation was not previously known in any studied model of computation,
and in fact all the lower bounds known for the edit distance hold to (almost)
the same degree for the Ulam distance. These models include: non-embeddability
into normed spaces [21,22,23], lower bounds on sketching complexity [23,24], and
(symmetric) query complexity [16,25].

Asymmetric Query Complexity. Before stating the results formally, we define
the problem and the model precisely. Consider two strings x, y ∈ Σn for some
alphabet Σ, and let ed(x, y) denote the edit distance between these two strings.
The computational problem is the promise problem known as the Distance
Threshold Estimation Problem (DTEP) [26]: distinguish whether ed(x, y) > R

or ed(x, y) ≤ R/α, where R > 0 is a parameter (known to the algorithm) and
α ≥ 1 is the approximation factor. We use DTEPβ to denote the case of R = n/β,
where β ≥ 1 may be a function of n.

In the asymmetric query model, the algorithm knows in advance (has unre-
stricted access to) one of the strings, say y, and has only query access to the
other string, x. The asymmetric query complexity of an algorithm is the number
of coordinates in x that the algorithm has to probe in order to solve DTEP with
success probability at least 2/3.

We now give complete statements of our upper and lower bound results. Both
exhibit a smooth tradeoff between approximation factor and query complexity.
For simplicity, we state the bounds in two extreme regimes of approximation (α =
polylog(n) and α = poly(n)). Full statements are available in the full paper.

Theorem 2 (Query complexity upper bound). For every β = β(n) ≥ 2
and fixed 0 < ε < 1 there is an algorithm that solves DTEPβ with approximation
α = (log n)O(1/ε), and makes βnε asymmetric queries. This algorithm runs in
time O(n1+ε).

Polylogarithmic Approximation for Edit Distance 247

For every β = O(1) and fixed integer t ≥ 2 there is an algorithm for DTEPβ

achieving approximation α = O(n1/t), with O(logt−1
n) queries into x.

It is an easy observation that our general edit distance algorithm in Theorem 1
follows immediately from the above query complexity upper bound theorem, by
running the latter for all β that are a power of 2.

Theorem 3 (Query complexity lower bound). For a sufficiently large con-
stant β > 1, every algorithm that solves DTEPβ with approximation α = α(n) >

2 has asymmetric query complexity 2Ω(log n
log α+log log n). Moreover, for every fixed

non-integer t > 1, every algorithm that solves DTEPβ with approximation α =
n1/t has asymmetric query complexity Ω(log�t� n).

We summarize in Table 1 our results and previous bounds for DTEPβ under
edit distance and Ulam distance. For completeness, we also present known re-
sults for a common query model where the algorithm has query access to both
strings (henceforth referred to as the symmetric query model). We point out two
implications of our bounds on the asymmetric query complexity:

– There is a strong separation between edit distance and Ulam distances. In the
Ulam metric, a constant approximation is achievable with only O(log n) asym-
metric queries (see [27], which builds on [28]). In contrast, for edit distance,
we show an exponentially higher complexity lower bound, of 2Ω(log n

log log n), even
for a larger (polylogarithmic) approximation.

– Our query complexity upper and lower bounds are nearly-matching, at least
for a range of parameters. At one extreme, approximation O(n1/2) can be
achieved with O(log n) queries, whereas approximation n1/2−ε already re-
quires Ω(log2

n) queries. At the other extreme, approximation α = (log n)1/ε

can be achieved using nO(ε) queries, and requires nΩ(ε/ log log n) queries.

Table 1. Known results for DTEPβ and arbitrary 0 < ε < 1

Model Metric Approx. Complexity Remarks

Near-linear

time

Edit (log n)O(1/ε) n1+ε Theorem 1

Edit 2Õ(
√

log n) n1+o(1) [14]

Symmetric

query

complexity

Edit nε Õ(nmax{1−2ε,(1−ε)/2}) [16] (fixed β > 1)

Ulam O(1) Õ(β +
√

n) [25]

Ulam+edit O(1) Ω̃(β +
√

n) [25]

Asymmetric

query

complexity

Edit n1/t O(logt−1 n) Theorem 2 (fixed t ∈ N, β > 1)

Edit n1/t Ω(log�t	 n) Theorem 3 (fixed t /∈ N, β > 1)

Edit (log n)1/ε βnO(ε) Theorem 2

Edit (log n)1/ε nΩ(ε/ log log n) Theorem 3 (fixed β > 1)

Ulam 2 + ε Oε(β log log β · log n) [27]

248 A. Andoni, R. Krauthgamer, and K. Onak

3 Connections of Asymmetric Query Model to Other
Models

The asymmetric query model is connected and has implications for two pre-
viously studied models, namely the communication complexity model and the
symmetric query model (where the algorithm has query access to both strings).
Specifically, the former is less restrictive than our model (i.e., easier for algo-
rithms) while the latter is more restrictive (i.e., harder for algorithms). Our
upper bound gives an O(βnε) one-way communication complexity protocol for
DTEPβ for polylogarithmic approximation.

Communication Complexity. In this setting, Alice and Bob each have a string,
and they need to solve the DTEPβ problem by way of exchanging messages. The
measure of complexity is the number of bits exchanged in order to solve DTEPβ

with probability at least 2/3.
The best non-trivial upper bound known is 2Õ(

√
log n) approximation with

constant communication via [15,29]. The only known lower bound says that
approximation α requires Ω(log n / log log n

α) communication [23,24].
The asymmetric model is “harder”, in the sense that the query complexity

is at least the communication complexity, up to a factor of log |Σ| in the com-
plexity, since Alice and Bob can simulate the asymmetric query algorithm. In
fact, our upper bound implies a communication protocol for the same DTEPβ

problem with the same complexity, and it is a one-way communication protocol.
Specifically, Alice can just send the O(βnε) characters queried by the query algo-
rithm in the asymmetric query model. This is the first communication protocol
achieving polylogarithmic approximation for DTEPβ under edit distance with
o(n) communication.

Symmetric Query Complexity. In another related model, the measure of com-
plexity is the number of characters the algorithm has to query in both strings
(rather than only in one of the strings). Naturally, the query complexity in this
model is at least as high as the query complexity in the asymmetric model. This
model has been introduced (for the edit distance) in [16], and its main advantage
is that it leads to sublinear-time algorithms for DTEPβ . The algorithm of [16]
makes Õ(n1−2ε +n(1−ε)/2) queries (and runs in the same time), and achieves nε

approximation. However, it only works for β = O(1).
In the symmetric query model, the best query lower bound is of Ω(

√
n/α)

for any approximation factor α > 1 for both edit and Ulam distance [16,25].
The lower bound essentially arises from the birthday paradox. Hence, in terms
of separating edit distance from the Ulam metric, this symmetric model can
give at most a quadratic separation in the query complexity (since there exists a
trivial algorithm with 2n queries). In contrast, in our asymmetric model, there
is no lower bound based on the birthday paradox, and, in fact, the Ulam metric
admits a constant approximation with O(log n) queries [28,27]. Our lower bound
for edit distance is exponentially bigger.

Polylogarithmic Approximation for Edit Distance 249

4 Techniques

This section briefly highlights the main techniques and tools used in the course
of proving our results.

Algorithm and Query Complexity Upper Bound. A high-level intuition for the
near-linear time algorithm is as follows. The classical dynamic programming for
edit distance runs in time that is the product of the lengths of the two strings. It
seems plausible that, if we manage to “compress” one string to size nε, we may
be able to compute the edit distance in time only nε · n. Indeed, this is exactly
what we accomplish. Specifically, our “compression” is achieved via a sampling
procedure, which subsamples ≈ nε positions of x, and then computes ed(x, y) in
time n1+ε. Of course, the main challenge is, by far, subsampling x so that the
above is possible.

Our asymmetric query upper bound has two major components. The first com-
ponent is a characterization of the edit distance by a different “distance”, denoted
E , which approximates ed(x, y) well. The characterization is parametrized by an
integer parameter b ≥ 2 governing the following tradeoff: a small b leads to a better
approximation, whereas a large b leads to a faster algorithm. The second compo-
nent is a sampling algorithm that approximates E for some settings of the param-
eter b, up to a constant factor, by querying a small number of positions in x.

Our characterization is based on a hierarchical decomposition of the edit dis-
tance computation, which is obtained by recursively partitioning the string x,
each time into b blocks. We shall view this decomposition as a b-ary tree. Then,
intuitively, the E-distance at a node is the sum, over all b children, of the min-
ima of the E-distances at these children over a certain range of displacements
(possible “shifts” with respect to the other strings). At the leaves (correspond-
ing to single characters of x), the E-distance is simply the Hamming distance to
corresponding positions in y.

We show that our characterization is an O(b
log b log n) approximation to

ed(x, y). Intuitively, the characterization manages to break-up the edit distance
computation into independent distance computations on smaller substrings. The
independence is crucial here as it removes the need to find a global alignment be-
tween the two strings, which is one of the main reasons why computing edit dis-
tance is hard. We note that while the high-level approach of recursively partition-
ing the strings is somewhat similar to the previous approaches from [16,15,14],
the technical development here is quite different. The previous hierarchical ap-
proaches all relied on the following recurrence relation for the approximation
factor α:

α(n) = c · α(n/b) + O(b),

for some c ≥ 2. It is easy to see that one obtains α(n) ≥ 2Ω(
√

log n) for any
choice of b ≥ 2. In contrast, our characterization is much more refined and has
no multiplicative factor loss, i.e., c = 1 and hence α(n) = O(b logb n). We note
that our characterization achieves a logarithmic approximation for b = O(1)
(although, we do not know efficient algorithms for this setting of b).

250 A. Andoni, R. Krauthgamer, and K. Onak

The second component of our query algorithm is a careful sampling proce-
dure that approximates E-distance up to a constant factor. The basic idea is
to prune the above tree by subsampling at each node a subset of its children.
In particular, for a tree with arity b = (log n)1/ε, the hope is to subsample
(log n)O(1) children and use Chernoff-type bounds to argue that the subsample
approximates well the E-distance at that node. We note that Ω(log n) samples of
children seem necessary due to the minimum operation taken at each node. The
estimate at each node has to hold with high probability so that we can apply
the union bound. After such a pruning of the tree, we would be left with only
(log n)O(logb n) = nO(ε) leaves, i.e., nO(ε) positions of x to query.

However, this natural approach of subsampling (log n)O(1) children at each
node does not work when β � 1. Instead, we develop a non-uniform subsampling
technique: for different nodes we subsample children at different, carefully-chosen
rates. From a high-level, our deployed technique is somewhat reminiscent of the
hierarchical decomposition and subsampling technique introduced by Indyk and
Woodruff [30] in the context of sketching and streaming algorithms.

Query Complexity Lower Bound. The gist of our lower bound is designing two
“hard distributions” D0 and D1, on strings in Σn, for which it is hard to distin-
guish with only a few queries to x whether x ∈ D0 or x ∈ D1. At the same time,
every two strings x, y in the support of the same Di are at a small edit distance:
ed(x, y) ≤ n/(αβ); but for a mixed pair x ∈ D0 and y ∈ D1, the distance is
large: ed(x, y) > n/β.

We start by making the following core observation. Take two random strings
z0, z1 ∈ {0, 1}n. Each Di, i ∈ {0, 1}, is generated by applying a cyclic shift by
a random displacement r ∈ [1, n/100] to the corresponding zi. We show that in
order to discover, for an input string, from which Di it came from, one has to
make at least Ω(log n) queries. Intuitively, this follows from the fact that if the
number q of queries is small (q = o(log n)) then the algorithm’s view is close
to the uniform distribution on {0, 1}q, no matter which positions are queried.
Nevertheless, the edit distance between the two random strings is likely to be
large, and a small shift will not change this significantly.

We then amplify the above query lower bound by applying the same idea
recursively. In a string generated according to Di’s, we replace every symbol
a ∈ {0, 1} by a random string selected independently from Da. This way we
obtain two distributions on strings of length n′ = n2, that require Ω(log2

n) =
Ω(log2

n′) queries to be told apart. We call the above operation of replacing
symbols by strings that come from other distributions a substitution product.
Strings created this way consist of n blocks of length n each. Intuitively, to
distinguish from which of the new distributions an input string comes from, one
has to discover for at least Ω(log n) blocks which distribution Da the respective
block comes from. By applying the recursive step multiple times, we obtain a
2Ω(log n

log log n) lower bound for a polylogarithmic approximation factor.
To formally prove our result, we develop several tools. First, we need tools

for analyzing the behavior of edit distance under the product substitution. It
turns out that to control edit distance under the substitution product, we need

Polylogarithmic Approximation for Edit Distance 251

to work with a large alphabet Σ. In the final step of the construction, we map
the large alphabet to sufficiently long random binary strings, thereby extending
the lower bound to the binary alphabet as well.

Second, we need tools for analyzing indistinguishability of our distributions
under a small number of queries. For this, we introduce a notion of similarity
of distributions. This notion smoothly composes with the substitution product
operation, which amplifies the similarity. We also show that random acyclic shifts
of random strings are likely to produce strings with high similarity. Finally,
we show that if an algorithm is able to distinguish distributions meeting our
similarity notion, then it must make many queries. We believe that these tools
and ideas behind them may find applications in showing query lower bounds for
other problems.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and re-

versals (in russian). Doklady Akademii Nauk SSSR 4(163), 845–848 (1965); Leven-

shtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady 10(8), 707–710 (1966) (Appeared in English)

2. Navarro, G.: A guided tour to approximate string matching. ACM Comput.

Surv. 33(1), 31–88 (2001)

3. Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University

Press, Cambridge (1997)

4. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of

the ACM 21(1), 168–173 (1974)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. MIT Press, Cambridge (2001)

6. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.

Comput. Syst. Sci. 20(1), 18–31 (1980)

7. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. The-

oretical Computer Science 409(28), 486–496 (2008)

8. Indyk, P.: Algorithmic aspects of geometric embeddings (tutorial). In: Proceedings

of the Symposium on Foundations of Computer Science (FOCS), pp. 10–33 (2001)

9. Indyk, P., Matoušek, J.: Low distortion embeddings of finite metric spaces. In:

CRC Handbook of Discrete and Computational Geometry (2003)

10. Sahinalp, S.C.: Edit distance under block operations. In: Kao, M.Y. (ed.) Encyclo-

pedia of Algorithms. Springer, Heidelberg (2008)

11. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM

J. Comput. 27(2), 557–582 (1998)

12. Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit

distance efficiently. In: Proceedings of the Symposium on Foundations of Computer

Science (FOCS), pp. 550–559 (2004)

13. Batu, T., Ergün, F., Sahinalp, C.: Oblivious string embeddings and edit distance

approximations. In: Proceedings of the ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pp. 792–801 (2006)

14. Andoni, A., Onak, K.: Approximating edit distance in near-linear time. In: Pro-

ceedings of the Symposium on Theory of Computing (STOC), pp. 199–204 (2009)

15. Ostrovsky, R., Rabani, Y.: Low distortion embedding for edit distance. J.

ACM 54(5) (2007); Preliminary version appeared in STOC 2005

252 A. Andoni, R. Krauthgamer, and K. Onak

16. Batu, T., Ergün, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubinfeld, R., Sami,

R.: A sublinear algorithm for weakly approximating edit distance. In: Proceedings

of the Symposium on Theory of Computing (STOC), pp. 316–324 (2003)

17. Cormode, G., Paterson, M., Sahinalp, S.C., Vishkin, U.: Communication com-

plexity of document exchange. In: Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms (SODA), pp. 197–206 (2000)

18. Muthukrishnan, S., Sahinalp, C.: Approximate nearest neighbors and sequence

comparison with block operations. In: Proceedings of the Symposium on Theory

of Computing (STOC), pp. 416–424 (2000)

19. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with

moves. ACM Trans. Algorithms 3(1) (2007); Special issue on SODA 2002

20. Cormode, G.: Sequence Distance Embeddings. Ph.D. Thesis, University of Warwick

(2003)

21. Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. Math.

Ann. 334(4), 821–852 (2006); Preliminary version appeared in FOCS 2005

22. Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into L1. In:

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.

1010–1017 (2006)

23. Andoni, A., Krauthgamer, R.: The computational hardness of estimating edit dis-

tance. SIAM Journal on Computing 39(6), 2398–2429 (2010); Previously appeared

in FOCS 2007

24. Andoni, A., Jayram, T., Pǎtraşcu, M.: Lower bounds for edit distance and product

metrics via Poincaré-type inequalities. Accepted to ACM-SIAM Symposium on

Discrete Algorithms (SODA 2010) (2010)

25. Andoni, A., Nguyen, H.L.: Near-tight bounds for testing Ulam distance. Accepted

to ACM-SIAM Symposium on Discrete Algorithms (SODA 2010) (2010)

26. Saks, M., Sun, X.: Space lower bounds for distance approximation in the data

stream model. In: Proceedings of the Symposium on Theory of Computing (STOC),

pp. 360–369 (2002)

27. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Estimating the distance to a mono-

tone function. Random Structures and Algorithms 31, 371–383 (2007); Previously

appeared in RANDOM 2004

28. Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers.

J. Comput. Syst. Sci. 60(3), 717–751 (2000)

29. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest

neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474 (2000);

Preliminary version appeared in STOC 1998

30. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments of

data streams. In: Proceedings of the Symposium on Theory of Computing (STOC)

(2005)

Comparing the Strength of Query Types in

Property Testing:
The Case of Testing k-Colorability

Ido Ben-Eliezer1, Tali Kaufman2, Michael Krivelevich3, and Dana Ron4

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

idobene@post.tau.ac.il
2 Institute for Advanced Study, Princeton, New Jersey, USA

kaufmant@ias.edu
3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

krivelev@post.tau.ac.il
4 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

danar@eng.tau.ac.il

Abstract. We study the power of four query models in the context of

property testing in general graphs (i.e., with arbitrary edge densities),

where our main case study is the problem of testing k-colorability. Two

query types, which have been studied extensively in the past, are pair
queries and neighbor queries. The former corresponds to asking whether

there is an edge between any particular pair of vertices, and the latter to

asking for the i’th neighbor of a particular vertex. We show that while

for pair queries, testing k-colorability requires a number of queries that

is a monotone decreasing function in the average degree d, the query

complexity in the case of neighbor queries remains roughly the same for

every density and for large values of k. We also consider a combined

model that allows both types of queries, and we propose a new, stronger,

query model, related to the field of Group Testing. We give one-sided

error upper and lower bounds for all the models, where the bounds are

nearly tight for three of the models. In some of the cases our lower bounds

extend to two-sided error algorithms.

The problem of testing k-colorability was previously studied in the

contexts of dense and sparse graphs, and in our proofs we unify ap-

proaches from those cases, and also provide some new tools and tech-

niques that may be of independent interest.

Keywords: pair queries, neighbor queries, group queries, k-colorability.

This is an abridged version of [4] in the Proceedings of the 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA’2008). The reader is advised to con-
sult [4] for technical details missing in this contribution.

1 Introduction

Property testing [7,13] deals with the problem of deciding whether a certain
object has a prespecified property P or it is far (i.e., differs significantly) from

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 253–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 I. Ben-Eliezer et al.

any object that has P . Namely, the algorithm should accept objects that have
the property, and should reject objects that are far from having the property
with respect to some predetermined distance measure, where the algorithm is
allowed a small probability of failure. The algorithm is given query access to the
object, and it should make the decision after observing only a small part of the
object. Thus, the main complexity measure studied in the context of property
testing is the query complexity of the algorithm, which is normally expected to
be sublinear in the size of the object, and the question is what exact form does
this complexity take.

In this work we compare the power of different query types in the context of
testing graph properties of general graphs (i.e., with arbitrary edge densities).
To this end we focus on the problem of testing k-colorability for k ≥ 3, and study
the query complexity of this problem for different query types as a function of
the number of vertices and the average degree of the graph.

2 The Distance Measure and Query Types Studied in
This Work

When defining models for property testing of graphs there are two issues to
consider: the distance measure between graphs (which determines what graphs
should be rejected by the testing algorithm) and the types of queries that the
algorithm is allowed to make. Since we study graphs of varying edge densities and
vertex degrees, we follow [11,10] and define our distance measure with respect
to the total number of edges in the graph. Namely, if n denotes the number of
graph vertices and d denotes the average degree, then we say that a graph is
ε-far from being k-colorable for a given 0 ≤ ε ≤ 1, if it is necessary to remove
more than εdn edges so as to obtain a k-colorable graph.1

We consider the following types of queries where the first two have been
considered in the past and the third is a new query type we introduce.

– Pair queries. These are queries of the form “Is there an edge between the pair
of vertices u and v?”.

– Neighbor queries. These are queries of the form: “Who is the i’th neighbor of
vertex v?”. If v has less than i neighbors then a special symbol is returned,
and no assumption is made about the order of the neighbors of a vertex.

– Group queries. We propose a new query type that extends pair queries. These
queries are of the form “Is there at least one edge between a vertex u and a
set of vertices S?”.

The study of group queries is partially motivated by the field of Group Testing
(see, e.g., [6]), where similar queries are allowed. Problems of group testing can
1 Another well studied distance measure is the fraction of edge modification as a

function of n2. This measure is appropriate for dense graphs (i.e., that satisfy d =

Θ(n)). In what can be viewed as the other extreme, where all vertices have bounded

degree dmax (in particular, dmax = O(1)), distance is measured with respect to

dmaxn).

Comparing the Strength of Query Types in Property Testing 255

be found in various fields such as Statistics and Biology. Another motivation for
studying group-queries is that lower bounds on the query complexity of algo-
rithms that use group queries also apply (up to poly-logarithmic factors in n)
to algorithms that use pair queries and/or neighbor queries, and hence they can
be viewed as a tool for obtaining query complexity lower bounds. This follows
from the (easily proven) fact that pair queries are a special case of group queries
and neighbor queries can be emulated using group queries. To be precise, the
emulation is for random neighbor queries (that is, the query is of the form: “Give
me a uniformly selected neighbor of vertex v”).

For the sake of simplicity of the presentation, we allow algorithms that perform
neighbor queries and algorithms that perform group queries to perform degree
queries as well. That is, they may ask for the degree of any vertex of their choice.
Clearly, a degree query can be emulated by O(log n) neighbor queries (using a
simple binary search). The degree of any vertex can be approximated with high
probability within a constant factor using a number of group queries that is
poly-logarithmic in n (and such an approximation is sufficient for our purposes).

In what follows, when we refer to the pair query model (respectively, neighbor
query model and group query model), we mean that only pair queries (respec-
tively, neighbor queries and group queries) are allowed. When both pair queries
and neighbor queries (as well as degree queries) are allowed, then we refer to the
resulting model as the combined model .

3 Related Work on Testing k-Colorability

Testing k-colorability has previously been studied in the pair query model for
the case that the graph is dense, that is, d = Θ(n). For this case k-colorability
is testable using a number of queries that is independent of the graph size (and
polynomial in k and 1/ε [7,3]).2

Testing k-colorability has previously been studied in the neighbor query model
for the case that k = 3 and the graph has constant maximum degree. (that is,
d = O(1), and furthermore, the maximum degree dmax is O(1) as well). In this
case Bogdanov et. al. [5] proved that is necessary to perform Ω(n) queries (that
is, there is no algorithm with sublinear query complexity).

Testing k-colorability for k = 2 (i.e., testing bipartitness) has previously been
studied for general graphs in the combined model [10] where it was shown that
Θ̃(min{√n, n/d}) (pair and neighbor) queries are both sufficient and necessary.
The proof of the lower bound in [10] implies that if only neighbor queries are
allowed then Ω(

√
n) queries are necessary for every value of d, and if only pair

queries are allowed then Ω(n/d) queries are necessary.3

2 Interestingly, the earlier work of Rödl and Duke [12] implicitly implies that k-

colorability is testable using a number of queries that is independent of the graph

size, but is a tower function of 1/ε.
3 In earlier work [9,8] it was shown that if only neighbor queries are allowed and the

distance measure is with respect to dmaxn rather than dn, then Θ̃(
√

n) are both

necessary and sufficient.

256 I. Ben-Eliezer et al.

4 Our Results

In this work we study the power of the different types of queries when testing
k-colorability of general graphs for a fixed k ≥ 3. In previous work on testing
properties of graphs, the pair query model was studied in the case of dense
graphs, the neighbor query model was studied in the case of bounded-degree
graphs, and for general graphs, the combined model was considered. Here we are
interested in understanding how the query complexity of the problem behaves as
a function of the edge density (and the number of vertices) when the algorithm
is allowed to perform only one type of query, and whether there is a gain when
allowing to combine query types. One motivation for this investigation is that
the type of queries allowed depends on the way the graph is represented. Thus,
allowing both pair queries and neighbor queries (as in the combined model) as-
sumes that the algorithm has access both to an adjacency matrix representation
(that supports pair queries) and to an incidence lists representation (that sup-
ports neighbor queries), which is not necessarily the case. Our second motivation
is simply complexity theoretic: understanding the strength of each query type
separately (and possibly combined) for varying edge densities.

In what follows we say that an algorithm has one-sided error if it always ac-
cepts graphs that are k-colorable, otherwise it has two-sided error . Our results
are stated in terms of the dependence on n and d. With a slight abuse of nota-
tion, we write f = Õ(g) (and similarly, f = Ω̃(g)) if f(x) = O(g(x)) · polylog(n)
for every x, where n is the number of vertices. In all our upper bounds the depen-
dence on both k and 1/ε is polynomial. The bounds are for the query complexity
in the different models. We note that the running time of our algorithms may
be exponential in the number of queries, but the focus of this work is only on
the query complexity.

Theorem 1. The following holds for testing k-colorability in the pair query model:

1. There exists a one-sided error tester that performs Õ((n
d)2) queries.

2. Every one-sided error tester must perform Ω((n
d)2) queries.

Theorem 2. The following holds for testing k-colorability in the neighbor query
model:

1. There exists a one-sided error tester that performs O(n) queries.
2. Every tester must perform Ω

(
max{n

d ,
√

n}) queries.
3. Every one-sided error tester must perform Ω(n1− 1

�(k+1)/2�) queries.
4. Every one-sided error tester for k ≥ 6 must perform Ω(n ·d− 1

�k/2�−1) queries.

Observe that for one-sided error testers in the neighbor query model, as k in-
creases, our lower bound approaches our upper bound.

Theorem 3. The following holds for testing k-colorability in the group query
model:

1. There exists a one-sided error tester that performs Õ(n
d) queries.

2. Every tester must perform Ω̃(n
d) queries.

Comparing the Strength of Query Types in Property Testing 257

By combining Theorems 1, 2, 3 and the fact that neighbor queries can be emu-
lated using a logarithmic number of group queries, we get the next corollary.

Corollary 4. The following holds for testing k-colorability in the combined query
model:

1. There exists a one-sided error tester that performs min((Õ(n
d)2), O(n)) queries.

2. Every tester must perform Ω̃(n
d) queries.

The results are summarized in Table 1 and are illustrated in Figure 1.

Table 1. Results for one-sided error testing of k-colorability

Pair Queries Neighbor Queries Pair&Neighbor Queries Group Queries

Upper Bound Õ((n
d
)2) O(n) min{Õ((n

d
)2), O(n)} Õ(n

d
)

Lower Bound Ω((n
d
)2) Ω(n

1− 1
�(k+1)/2�) Ω(n

d
) Ω(n

d
)

Ω(n · d− 1
�k/2�−1) if k ≥ 6 also for 2-sided error also for 2-sided error

Neighbor query

Pair queryGroup query

O(1) n

n2

n

Θ(n/d)

Θ(n)

Θ((n/d)2)

n1/2
O(1)

Fig. 1. A schematic illustration of the query complexity for the different query types

(and one-sided error). For the sake of simplicity we ignore logarithmic factors in the

bounds and furthermore, for the neighbor query model we think of k being large. For

the combined model we have that the lower bound on the query complexity coincides

with the group query model, and the upper bound coincides with the neighbor query

model until d = n1/2 and from that point on it coincides with the pair query model.

258 I. Ben-Eliezer et al.

Discussion of our results and conclusions. We next discuss the main phenomena
we observe in our study of testing k-colorablity in the different query models.

– While the query complexity in the pair query model and the query complex-
ity in the group query model are monotone decreasing functions of d, the
query complexity in the neighbor query model remains roughly the same for
every value of d (and large values of k).

– When comparing the pair query model to the neighbor query model in more
detail we see that the query complexity in the pair query model is higher
than in the neighbor query model for d <

√
n, while once d passes

√
n it

becomes lower (and continues decreasing). The extreme case is d = Θ(n),
where in the pair query model the query complexity does not depend on n.4

This coincides with the intution that neighbor queries are useful for sparse
graphs and pairs queries are useful for dense graphs.

– When comparing the group query model to the other models we observe
that the query complexity in the former model is never higher (upto poly-
logarithmic factors) than in the latter models. As noted previously, this
holds for other graph properties provided that it is sufficient to use random
neighor queries in the neighbor query model (since these can be emulated by
group queries). When non-random neighbor queries are required in order to
perform degree queries, then one should verify whether approximate degree
queries are sufficient (since these can be emulated using group queries).

Moreover, we note that a rather straightforward modification of the ar-
guments of [10] shows that using group queries one can give strictly better
bounds for testing bipartiteness than in the combined model. Therefore,
there exist properties for which the group query model is stronger than the
combined model. We also show that for the case of testing k-colorability and
a certain distribution over graphs, the combined model is strictly stronger
than the optimum of the pair query and the neighbor query models.

References

1. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.

Combinatorica 20, 451–476 (2000)

2. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of

the testable graph properties: it’s all about regularity. In: Proceedings of the 38th

ACM STOC, pp. 251–260 (2007)

3. Alon, N., Krivelevich, M.: Testing k-colorability. SIAM Journal on Discrete

Math 15(2), 211–227 (2002)

4. Ben-Eliezer, I., Kaufman, T., Krivelevich, M., Ron, D.: Comparing the strength of

query types in property testing: the case of k-colorability. In: Proceedings of the

19th SODA, pp. 1213–1222 (2008)

5. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability

in bounded degree graphs. In: Proceedings of the 43th IEEE FOCS, pp. 93–102

(2002)

4 In fact, when d = Θ(n) then many natural properties are testable in the pair query

model using a constant number of queries (see e.g. [7,1,2]).

Comparing the Strength of Query Types in Property Testing 259

6. Du, D., Hwang, F.: Combinatorial group testing and its applications. World Sci-

entific, Singapore (1993)

7. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. JACM 45(4), 653–750 (1998)

8. Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree graphs.

Combinatorica 19(3), 335–373 (1999)

9. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorith-

mica 32(2), 302–343 (2002)

10. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in

general graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)

11. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Structures and

Algorithms 20(2), 165–183 (2002)

12. Rödl, V., Duke, R.: On graphs with small subgraphs of large chromatic number.

Graphs Combin. 1, 91–96 (1985)

13. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications

to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

Testing Linear-Invariant Non-linear Properties:

A Short Report

Arnab Bhattacharyya1, Victor Chen2, Madhu Sudan3, and Ning Xie4

1 MIT CSAIL, Cambridge, MA

abhatt@mit.edu
2 Institute of Theoretical Computer Science, Tsinghua University, Beijing, China

victor.vc@gmail.com
3 Microsoft Research New England, Cambridge, MA

madhu@microsoft.com
4 MIT CSAIL, Cambridge, MA

ningxie@csail.mit.edu

Abstract. The rich collection of successes in property testing raises a

natural question: Why are so many different properties turning out to

be locally testable? Are there some broad “features” of properties that

make them testable? Kaufman and Sudan (STOC 2008) proposed the

study of the relationship between the invariances satisfied by a prop-

erty and its testability. Particularly, they studied properties that were

invariant under linear transformations of the domain and gave a charac-

terization of testability in certain settings. However, the properties that

they examined were also linear. This led us to investigate linear-invariant

properties that are not necessarily linear. Here we describe some of the

resulting works which consider natural linear-invariant properties, specif-

ically properties that are described by forbidden patterns of values that

a function can take, and show testability under various settings.

Keywords: property testing, regularity lemma, linear invariance.

1 Introduction

The field of property testing, initiated by the works in [BLR93, BFL91] and
defined formally in [RS96, GGR98], has seen an enormous and diverse collection
of successes lately. The rich collection of properties that turn out to be testable
extremely locally (with say, constant number of queries) relative to the size of
the object being tested, leads to a natural question: Why are so many properties
locally testable? Are there some broad unifying themes in the properties being
tested, and the testers being used? In an attempt to explain this richness and
diversity, Kaufman and Sudan [KS08] suggested that the “invariances” shown
by a property may play a central role in their testability. A property of func-
tions mapping a domain D to a range R is said to be invariant under a map
π : D → D, if whenever a function f satisfies the property, so does the function
f ◦ π. In particular, if π is a permutation, then this says that the property is

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 260–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Linear-Invariant Non-linear Properties 261

invariant if the domain is relabelled according to π. Kaufman and Sudan suggest
that many properties that are known to be testable have a rich collection of in-
variances and often testability is implied by such invariances. They then focus on
algebraic properties in particular and notice that the properties in consideration
are defined over domains that are vector spaces over some field, and the prop-
erties are invariant under linear, and sometimes affine, transformations of the
domain. They also show that using very few additional features of the property,
one can deduce testability, thus unifying many previous results (including those
in [BLR93, RS96, AKK+05, KR06, JPRZ04]).

One of the more restrictive “additional features” of the properties studied by
[KS08] is that the property itself is “linear”, the range of the functions being
considered is a field and the property forms a vector space over this field. While
this feature is definitely exhibited by all algebraic properties, it is a very dif-
ferent requirement to the requirement of linear-invariance; and motivated our
work [BCSX09] where we attempt to extend the study of “testing based on
invariance” beyond this restriction. The principal results of our work is an infi-
nite class of “natural non-linear, linear-invariant properties” which we show to
be testable. In the process we describe an even richer class of linear-invariant
properties whose testability remains open, which if shown to be locally testable
would unify the results of this work, with those studied in the algebraic setting
(including those of [KS08]). We describe our problems and results in greater
detail below.

2 Definitions: Constraints, Characterizations, Invariance
and Orbits

We consider properties of functions mapping some domain D to some range R.
We let {D → R} denote the set of all such functions and describe a property by
the set of functions F ⊆ {D → R} that satisfy the property. Throughout this
article, we will consider functions mapping the domain D = {0, 1}n to the range
{0, 1}, where the domain is viewed as the n-dimensional vector space over the
binary1 field F2. By an abuse of notation, F will actually refer to an ensemble
of properties, one for each value of n ∈ Z+.

We measure the distance between functions in the (by now) standard way: the
distance between f and g, denoted δ(f, g), is the quantity δ(f, g) = Prx∈D[f(x) �=
g(x)]. The distance of f to a property F is the quantity δ(f,F)=ming∈F{δ(f, g)}.
We say f is δ-close to F if δ(f,F) ≤ δ and δ-far otherwise. A (k(δ), τ(δ))-local
(one-sided) tester for F is a probabilistic oracle algorithm T that takes as input
a parameter δ and queries an oracle for f k(δ) times and accepts functions in F
with probability one, while rejecting functions that are δ-far with probability at
least τ(δ). If such a tester exists, F is said to be locally testable. Note that we
are interested only in testers where τ(δ) > 0 for every δ > 0. Also, neither k(·)
1 Most notions also extend to the case where the domain is a vector space over an

arbitrary finite field, and the range is an arbitrary finite set.

262 A. Bhattacharyya et al.

nor τ(·) is a function of n. If k is furthermore independent of δ, we say that the
tester is proximity-oblivious, following Goldreich and Ron [GR09].

Next, we turn to the notion of invariance. For a function π : D → D, we say
that a property F is invariant under π if the function f ∈ F implies f ◦ π ∈ F .
A property F ⊆ {{0, 1}n → {0, 1}} is linear-invariant if for every linear function
L : {0, 1}n → {0, 1}n, F is invariant under L. Our hope is to describe a large
collection of natural linear-invariant properties that are locally testable.

A very broad collection of natural testable properties are what may be de-
scribed as “locally characterized properties” – we describe these next. A k-local
constraint C = (a1, . . . , ak; S) is given by a k-tuple a1, . . . , ak ∈ D and non-
empty set S ⊆ Rk. We say that a function f : D → R satisfies the constraint C

if (f(a1), . . . , f(ak)) �∈ S. We say that a property F satisfies the constraint C if
every function f ∈ F satisfies C. A collection of constraints C1, . . . , Cm k-locally
characterizes a property F if each constraint is k-local and f ∈ F if and only if
f satisfies Cj for every j ∈ {1, . . . , m}. If k does not depend on n, we say the
property is locally characterized.

It is natural to analyze the testability of locally characterized properties, and
indeed the early work of Rubinfeld and Sudan [RS96] does suggest analyzing the
“robustness” of characterizations to design and analyze local tests for properties.
(Roughly, a characterization is robust if the only functions that satisfy most
constraints in the characterization are those that are close to the property.)
Characterizations are effectively also a necessary condition for the existence of
non-adaptive proximity-oblivious tests [GR09], which are the prevalent ones in
the algebraic setting. Finally, for linear-invariant properties, characterizations
take on an especially nice form, as we describe next.

Given a k-local constraint C = (a1, . . . , ak; S) on functions mapping D to R

and a map π : D → D, let the π-rotation of C, denoted π ◦ C, be the k-local
constraint π ◦C = (π(a1), . . . , π(ak); S). Note that if F is invariant under π and
F satisfies C, then it also satisfies π◦C. For linear-invariant properties, it follows
that the existence of a single constraint C implies an abundance of constraints
L◦π, one for each linear function L mapping the domain to itself. We refer to the
set of constraints {L ◦C|L is linear } as the orbit of the constraint C. Given this
abundance of local constraints satisfied by a property F , one could even hope
that the family is characterized by the orbit of a single constraint. To this end
we say that F has a k-local single orbit characterization if there exists a k-local
constraint C such that its orbit characterizes F . At first glance, the existence of
a single orbit characterization may seem like a very strong requirement, but not
at second glance! In particular the following proposition is easy to show:

Proposition 1. If F ⊆ {{0, 1}n → {0, 1}} is k-locally characterized and linear-
invariant, then it has a K-local single orbit characterization, for some K ≤ 2k.

(When the domain is a vector space over a field of cardinality q, the bound weakens
to K ≤ qk.) The existence of such a nice and very “uniform” characterization of F
suggests a very natural test for the propery F locally characterized by the orbit of
a single constraint C: Pick a random linear map L and verify that f satisfies L◦C.

Testing Linear-Invariant Non-linear Properties 263

If this test can be shown to be sound, then it would imply that every locally char-
acterized linear-invariant property is locally testable. This question remains open
(see more in Section 4.1), and our work [BCSX09] takes some first steps towards
understanding the testability of this class of properties (and shows testability of
a proper, but infinite, subclass). We describe our specific results next.

3 Our Results in [BCSX09]

To understand the class of properties that are linear-invariant and not linear, it
is useful to start with a simple example (that is not already covered by the results
of [KS08]). Our work starts with the “triangle-freeness” property introduced by
Green [Gre05] and extends it. A function f : {0, 1}n → {0, 1} is said to be
triangle-free if the set f−1(1) does not contain a triple of the form x, y, x+ y. In
our language, the property of being triangle-free could be describe by the family
F characterized by the orbit of the constraint C = (a, b, a+b; S = {111}) where a

and b are two (arbitrary) linearly independent vectors over the domain {0, 1}n.
Green [Gre05] shows that the property of being triangle-free is indeed locally
testable, though the analysis is quite different from the analyses in algebraic
settings. In our work, we extend this test to a broader collection of constraints.

To describe this extension, we need to introduce a few more pieces of nota-
tion. We say that a property F characterized by the orbit of a constraint C =
(a1, . . . , ak; S) is monotone if S is an upward closed set, i.e., for x, y ∈ {0, 1}k, if
x ∈ S and xi ≤ yi for all i ∈ [k], then y ∈ S. (In other words, removing elements
from the support of a function satisfying a monotone property keeps the function
in the property.) We call the constraint C = (a1, . . . , ak; S) a pattern if the set S

has only one element. Note that if C is a pattern, it is monotone exactly when
S = {1k}. We refer to the property described by the orbit of a single monotone
pattern C as being C-free.

Notice that the family described by a constraint C = (a1, . . . , ak; S) is essen-
tially a function of the underlying “matroid”. The matroid perspective simply
views a1, . . . , ak as an abstract set of k elements and tells us which subsets of
these elements are independent and which ones are not. (The exact definition
is not important to us, since we retain the linear-algebraic descriptions in our
definition below; but the notions is from matroid theory.) We say a1, . . . , ak form
a graphic matroid if there exists an undirected graph G = (V, E) with k edges
E = {e1, . . . , ek} such that for every subset S ⊆ {1, . . . , k} the set {ai|i ∈ S} is
linearly independent if and only if the graph GS = (V, {ei|i ∈ S}) has no cycles.
We say that a constraint C is based on a graphic matroid if the constraint points
a1, . . . , ak form a graphic matroid.

Our main theorem in [BCSX09] can now be stated.

Theorem 1 ([BCSX09]). For a k-local monotone pattern C based on a graphic
matroid, the property of being C-free is locally testable. Specifically, there exists
a function τ = τk :)+ →)+ and a k-query test T that accepts C-free functions
with probability one, while rejecting functions that are δ-from being C-free with
probability at least τ(ε).

264 A. Bhattacharyya et al.

As a consequence, any monotone linear-invariant property locally character-
ized by the orbit of a constraint C based on a graphic matroid is locally testable
with a proximity-oblivious tester.

The bound on τ is quite weak. Let W (t) denote a tower of twos with height �t.
Our proof only guarantees that τ(ε) ≥ W (poly(1/ε))−1, a rather fast vanishing
function. In fact, all known proofs, even for the property of being triangle-free,
have this tower-behavior inherently because they rely on some form of a “regu-
larity lemma”, which we now describe.

To analyze the triangle-freeness property, Green developed a regularity lemma
for groups, which is analogous to Szemerédi’s regularity lemma for graphs. In
the boolean case, Green’s regularity lemma shows how, given any function f :
{0, 1}n → {0, 1}, one can find a subgroup H of {0, 1}n such that the restriction
of f to almost all cosets of H is “regular”, where “regularity” is defined based
on the “Fourier coefficients” of f .

This lemma continues to play a central role in [BCSX09] as well. To extract a
large feasible class of matroids, we also use a notion from a work of Green and
Tao [GT06] of the complexity of a linear system (or matroids). The “least com-
plex” matroids have complexity 1, and it was shown that the regularity lemma
can be applied to all matroids of complexity 1 to show that they are testable.

The presence of the many restrictions on the nature of the constraint C leads
to a natural question: Are there many (or any) new properties that can be tested
based on Theorem 1? Of course, there are infinitely many different constraints
C, but the property of being C-free need not be different for different C’s.
For example, one can permute the points a1, . . . , ak and the coordinates of S to
obtain essentially the same constraint. Alternately, one can replace the constraint
C by the constraint L◦C for an invertible linear map L and get the same family.
But equivalence goes beyond such syntactic concerns. For example, suppose C

is a constraint based on a graphic matroid, where the underlying graph is one
whose biconnected components are triangles. Then being C-free is essentially
the same as being triangle-free, in that every triangle-free function is also C-
free, while every C-free function is O(2−n)-close to being triangle free. Thus
one needs to prove explicitly that the class of properties being tested include
(infinitely many) new ones. (We also advocate that this concern ought to be
addressed explicitly in any work in property testing that aims to work for a
broad class of properties.)

In [BCSX09], we consider the following two infinite classes of (monotone)
patterns based on graphic matroids. For � = 3, 4, . . . , let O� be the constraint
O� = (a1, . . . , a�; {1�}) where a1, . . . , a�−1 ∈ {0, 1}n are linearly independent
and a� =

∑
i<� ai. O� is thus based on the graphic matroid corresponding to the

cycle of length �. Similarly for � = 2, 3, . . . , let K� be the constraint on k =
(

�
2

)
points based on the graphic matroid of the complete graph on � vertices. Note
that O�-freeness and K�-freeness are testable for every �, by Theorem 1. The
following theorem shows that these (infinite class of properties) are all pairwise
distinct (i.e., for every pair, at least one property contains elements which are
Ω(1)-far from the other).

Testing Linear-Invariant Non-linear Properties 265

Theorem 2 ([BCSX09]). The class of C-free properties for C being a mono-
tone pattern based on graphic matroids include infinitely many distinct ones. In
particular:

1. For every odd � ≥ 3, if f is O�+2-free, then it is also O�-free. However, there
exist functions g that are O�-free but far from being O�+2-free.

2. For every � ≥ 2, if f is K�-free, then it is also K�+1-free. However, for � ≥ 3
there exists a function g that is K�-free but far from being K(�

2)+2-free.

Theorems 1 and 2 combine to give some room for optimism that one may get an
exact understanding of the class of linear-invariant properties that have O(1)-
query proximity oblivious tests.

Our results show that, at least under severe restrictions, the natural test for
such a property does work, and that, despite the restrictions, this does lead to
an infinite class of new properties. Fortunately, subsequent work revealed that
several of the limitations in Theorem 1 above turned out to be limitations of the
proof technique alone, and stronger techniques can be brought to bear on this
class of problems. We discuss some of the subsequent work next.

4 Subsequent Work and Open Problems

4.1 Boolean Functions over Fn
2

Our work can be viewed as a step towards the proof of the following conjecture.

Conjecture 1. Suppose F is a linear-invariant property of functions mapping
{0, 1}n to {0, 1}. Then, F is locally testable with a proximity-oblivious tester if
and only if F is locally characterized.

It’s not hard to show one direction, namely that any linear-invariant property
that has a proximity-oblivious local tester is locally characterized. The proof
of this is analogous to the proof of the corresponding statement for graphs in
Theorem 4.7 of [GR09]. Our work in [BCSX09] makes some progress in the
opposite direction but is restricted due to two obstacles. The first restriction is
that we have to assume that the characterization of the property corresponds
to a graphic matroid, and secondly, we have to assume that the property is
monotone.

The restriction that the underlying matroid be graphic was tackled indepen-
dently by Král et al. [KSV08] and Shapira [Sha09]. (It turns out that such a
step also relates closely to a conjecture of Green [Gre05] about solutions to lin-
ear systems over the integers.) They showed2 the following in our terminology.

Theorem 3 ([KSV08, Sha09]). If a linear-invariant property is locally charac-
terized and monotone, then it is locally testable with a proximity-oblivious tester.

2 More precisely, Theorem 3 follows from the main result of [KSV08] and [Sha09], along

with a twist to handle non-uniformity of the property with respect to n, similar to

what is done in the proof of Theorem 4.7 in [GR09].

266 A. Bhattacharyya et al.

The techniques used to prove this theorem were somewhat different from those
in [BCSX09]. Both [KSV08] and [Sha09] gave ingenious reductions to testing
whether a hypergraph is free from a fixed collection of sub-hypergraphs. Pow-
erful tools for tackling the latter problem were already known [FR02, RS04,
NRS06, Gow07, AT08], which could then be applied. Unfortunately, it is not
at all clear how to reduce to a sub-hypergraph-freeness property if the linear-
invariant property is not monotone.

More recently, Bhattacharyya et al. [BGS10] could remove the monotonicity
condition but now again had to insist that the underlying matroid be graphic.
The restriction to graphic matroids is essentially because of the same reason as
in our paper [BCSX09].

Theorem 4 ([BGS10]3). If a linear-invariant property is locally characterized
by the orbit of a constraint based on a graphic matroid, then it is locally testable
with a proximity-oblivious tester.

It remains open how to combine Theorems 3 and 4. In fact, even the special case
when the property is characterized by the orbit of a single non-monotone pattern
remains unresolved. We note that a positive resolution to questions such as the
above would lead to a single unifying result capturing the theorems of Alon et
al. [AKK+05] as well as Green [Gre05] – a unification that we don’t have yet.

4.2 Finite-Valued Functions over Fn
q

A general open direction is to extend the results of the previous section to
arbitrary finite-valued functions over arbitrary, but constant sized, fields. There
has been some partial progress for boolean-valued functions over field Fn

q for fixed
prime power q. Theorem 3 is known to hold in this setting. (In fact, [KSV09]
even shows testability for certain monotone properties of boolean functions over
nonabelian groups!) The authors of [BGS10] conjecture that their techniques can
be extended to prove the analog of Theorem 4 for boolean-valued functions over
Fn

q . We are not aware of any nontrivial progress for the analogous questions for
non-boolean-valued functions.

More generally one could also consider functions over Fn
q where the field size is

not a constant. We note that in such a case, single orbit characterizations do not
necessarily capture all locally characterized properties, but understanding the
testability of single-orbit characterized properties would remain a challenging
first step.

4.3 Improving the Soundness Analysis

One of the intriguing aspects of testing non-linear linear-invariant properties
is that the proof techniques employed thus far have been very different from
the techniques used in the linear cases. One implication of the difference in
3 We note that the main result of [BGS10] is actually stronger, since it also shows

testability for certain properties which are not locally characterized, and so, do not

have proximity-oblivious testers.

Testing Linear-Invariant Non-linear Properties 267

techniques is that the “soundness” analysis is much weaker. In particular this
leads to τ(ε) being much smaller than any polynomial in ε in Theorem 1 (as
well as in the stronger forms). In contrast, in the case of linear, linear-invariant
properties, the growth of τ(ε) is linear in ε (Theorem 5.20 of [KS08]). This leads
to the question: Is such subpolynomial growth inherent? A positive answer to this
question would be insightful in that it would explain (somewhat) the need for
new proof techniques in the case of testing non-linear, linear-invariant properties.
Partial progress in this direction is reported in the work of Bhattacharyya and
Xie [BX10]. They show that distinguishing triangle-free functions from those
ε-far from triangle-free with constant probability requires (1/ε)1+α queries for
some positive constant α, thus separating non-linear linear-invariant properties
from linear linear-invariant ones.

In the other direction, Fox has recently shown [Fox10] that the use of the
Szemerédi regularity lemma can be avoided for the analysis of testing subgraph-
freeness, and the soundness analysis can be (very) mildly improved. This trans-
lates to a corresponding improvement for the properties considered in [BCSX09]
also. Perhaps it is possible to strengthen such an approach to get much better
bounds than we currently have.

References

[AKK+05] Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-

Muller codes. IEEE Transactions on Information Theory 51(11), 4032–

4039 (2005)

[AT08] Austin, T., Tao, T.: On the testability and repair of hereditary hyper-

graph properties. Random Structures and Algorithms (2008) (to appear),

http://arxiv.org/abs/0801.2179

[BCSX09] Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant

non-linear properties. In: Symposium on Theoretical Aspects of Computer

Science, pp. 135–146 (2009)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has

two-prover interactive protocols. Computational Complexity 1(1), 3–40

(1991)

[BGS10] Bhattacharyya, A., Grigorescu, E., Shapira, A.: A unified framework for

testing linear-invariant properties. To appear in FOCS (2010)

[BLR93] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applica-

tions to numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993); Earlier

version in STOC 1990

[BX10] Bhattacharyya, A., Xie, N.: Lower bounds for testing triangle-freeness

in boolean functions. In: Proc. 21st ACM-SIAM Symposium on Discrete

Algorithms, pp. 87–98 (2010)

[Fox10] Fox, J.: A new proof of the graph removal lemma. Technical report (June

2010), http://arxiv.org/abs/1006.1300

[FR02] Frankl, P., Rödl, V.: Extremal problems on set systems. Random Struc-

tures and Algorithms 20(2), 131–164 (2002)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. Journal of the ACM 45, 653–750 (1998)

http://arxiv.org/abs/0801.2179
http://arxiv.org/abs/1006.1300

268 A. Bhattacharyya et al.

[Gow07] Gowers, W.T.: Hypergraph regularity and the multidimensional Szemerédi

theorem. Annals of Mathematics 166(3), 897–946 (2007)

[GR09] Goldreich, O., Ron, D.: On proximity oblivious testing. In: Proc. 41st An-

nual ACM Symposium on the Theory of Computing, pp. 141–150 (2009)

[Gre05] Green, B.: A Szemerédi-type regularity lemma in abelian groups, with

applications. Geom. Funct. Anal. 15(2), 340–376 (2005)

[GT06] Green, B., Tao, T.: Linear equations in primes. Annals of Mathematics

(2006) (to appear)

[JPRZ04] Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree

polynomials over prime fields. In: Proc. 45th Annual IEEE Symposium on

Foundations of Computer Science, pp. 423–432 (2004)

[KR06] Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J.

on Comput. 36(3), 779–802 (2006)

[KS08] Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance.

In: Proc. 40th Annual ACM Symposium on the Theory of Computing, pp.

403–412. ACM, New York (2008)

[KSV08] Král’, D., Serra, O., Vena, L.: A removal lemma for systems of linear

equations over finite fields (2008)

[KSV09] Král, D., Serra, O., Vena, L.: A combinatorial proof of the removal lemma

for groups. Journal of Combinatorial Theory 116(4), 971–978 (2009)

[NRS06] Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular k-

uniform hypergraphs. Random Structures and Algorithms 28(2), 113–179

(2006)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with

applications to program testing. SIAM J. on Comput. 25, 252–271 (1996)

[RS04] Rödl, V., Skokan, J.: Regularity lemma for k-uniform hypergraphs. Ran-

dom Structures and Algorithms 25(1), 1–42 (2004)

[Sha09] Shapira, A.: Green’s conjecture and testing linear-invariant properties. In:

Proc. 41st Annual ACM Symposium on the Theory of Computing, pp.

159–166 (2009)

Optimal Testing of Reed-Muller Codes

Arnab Bhattacharyya1, Swastik Kopparty1, Grant Schoenebeck2,
Madhu Sudan3, and David Zuckerman4

1 MIT
2 UC Berkeley

3 Microsoft Research
4 UT Austin

Abstract. We consider the problem of testing if a given function f :

Fn
2 → F2 is close to any degree d polynomial in n variables, also known

as the problem of testing Reed-Muller codes. We are interested in deter-

mining the query-complexity of distinguishing with constant probablity

between the case where f is a degree d polynomial and the case where

f is Ω(1)-far from all degree d polynomials. Alon et al. [AKK+05] pro-

posed and analyzed a natural 2d+1-query test T0, and showed that it

accepts every degree d polynomial with probability 1, while rejecting

functions that are Ω(1)-far with probability Ω(1/(d2d)). This leads to a

O(d4d)-query test for degree d Reed-Muller codes.

We give an asymptotically optimal analysis of T0, showing that it

rejects functions that are Ω(1)-far with Ω(1)-probability (so the rejection

probability is a universal constant independent of d and n). In particular,

this implies that the query complexity of testing degree d Reed-Muller

codes is O(2d).

Our proof works by induction on n, and yields a new analysis of

even the classical Blum-Luby-Rubinfeld [BLR93] linearity test, for the

setting of functions mapping Fn
2 to F2. Our results also imply a “query

hierarchy” result for property testing of affine-invariant properties: For

every function q(n), it gives an affine-invariant property that is testable

with O(q(n))-queries, but not with o(q(n))-queries, complementing an

analogous result of [GKNR08] for graph properties.

This is a brief overview of the results in the paper [BKS+09].

Keywords: low-degreepolynomials,Gowersnorm,affine-invariant codes.

1 Introduction

We consider the task of testing if a Boolean function f on n bits, given by an
oracle, is close to a degree d multivariate polynomial (over F2, the field of two
elements). This specific problem, also known as the testing problem for the Reed-
Muller code, was considered previously by Alon, Kaufman, Krivelevich, Litsyn,
and Ron [AKK+05] who proposed and analyzed a natural 2d+1-query test for
this task. In this work we give an improved, asymptotically optimal, analysis
of their test. Below we describe the problem, its context, our results and some
implications.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 269–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

270 A. Bhattacharyya et. al.

2 Reed-Muller Codes and Testing

The Reed-Muller codes are parameterized by two parameters: n the number of
variables and d the degree parameter. The Reed-Muller codes consist of all func-
tions from Fn

2 → F2 that are evaluations of polynomials of degree at most d. We
use RM(d, n) to denote this class, i.e., RM(d, n) = {f : Fn

2 → F2| deg(f) ≤ d}.
The proximity of functions is measured by the (fractional Hamming) distance.

Specifically, for functions f, g : Fn
2 → F2, we let the distance between them, de-

noted by δ(f, g), be the quantity Prx←UFn
2
[f(x) �= g(x)]. For a family of functions

F ⊆ {g : Fn
2 → F2} let δ(f,F) = min{δ(f, g)|g ∈ F}. We say f is δ-close to F if

δ(f,F) ≤ δ and δ-far otherwise.
Let δd(f) = δ(f, RM(d, n)) denote the distance of f to the class of degree d

polynomials. The goal of Reed-Muller testing is to “test”, with “few queries” of
f , whether f ∈ RM(d, n) or if f is far from RM(d, n). Specifically, for a function
q : Z+×Z+×(0, 1] → Z+, a q-query tester for the class RM(d, n) is a randomized
oracle algorithm T that, given oracle access to some function f : Fn

2 → F2 and
a proximity parameter δ ∈ (0, 1], queries at most q = q(d, n, δ) values of f and
accepts f ∈ RM(d, n) with probability 1, while if δ(f, RM(d, n)) ≥ δ it rejects
with probability at least, say, 1/2. The function q is the query complexity of
the test and the main goal here is to make q as small as possible, as a function
possibly of d, n and δ. We denote the test T run using oracle access to the
function f by T f

This task was already considered by Alon et al. [AKK+05] who gave a tester
with query complexity O(d

δ · 4d). This tester repeated a simple O(2d)-query
test, that we denote T∗, several times. Given oracle access to f , T∗ selects a
(d + 1)-dimensional affine subspace A, and accepts if f restricted to A is a
degree d polynomial. This requires 2d+1 queries of f (since that is the number of
points contained in A). [AKK+05] show that if δ(f) ≥ δ then T∗ rejects f with
probability Ω(δ/(d · 2d)). Their final tester then simply repeated T∗ O(d

δ · 2d)
times and accepted if all invocations of T∗ accepted. The important feature of
this result is that the number of queries is independent of n, the dimension of the
ambient space. Alon et al. also show that any tester for RM(d, n) must make at
least Ω(2d +1/δ) queries. Thus their result was tight to within almost quadratic
factors, but left a gap open. We close this gap in this work.

3 Main Result

Our main result is an improved analysis of the basic 2d+1-query test T∗. We
show that if δd(f) ≥ 0.1, in fact even if it’s at least 0.1 · 2−d, then in fact this
basic test rejects with probability lower bounded by some absolute constant. We
now give a formal statement of our main theorem.

Theorem 1. There exists a constant ε1 > 0 such that for all d, n, and for all
functions f : Fn

2 → F2, we have

Pr[T f
∗ rejects] ≥ min{2d · δd(f), ε1}.

Optimal Testing of Reed-Muller Codes 271

Therefore, to reject functions δ-far from RM(d, n) with constant probability, one
can repeat the test T∗ at most O(1/ min{2dδd(f), ε1}) = O(1+ 1

2dδ
) times, making

the total query complexity O(2d +1/δ). This query complexity is asymptotically
tight in view of the earlier mentioned lower bound in [AKK+05].

Our error-analysis is also asymptotically tight. Note that our theorem effec-
tively states that functions that are accepted by T∗ with constant probability
(close to 1) are (very highly) correlated with degree d polynomials. To get a
qualitative improvement one could hope that every function that is accepted
by T∗ with probability strictly greater than half is somewhat correlated with a
degree d polynomial. Such stronger statements however are effectively ruled out
by the counterexamples to the “inverse conjecture for the Gowers norm” given
by [LMS08, GT07]. Since the analysis given in these works does not match our
parameters asymptotically, we show how an early analysis due to the authors
of [LMS08] can be used to show the asymptotic tightness of the parameters of
Theorem 1.

Our main theorem (Theorem 1) is obtained by a novel proof that gives a
(yet another!) new analysis even of the classical linearity test of Blum, Luby,
Rubinfeld [BLR93]. Below we explain some of the context of our work and some
implications.

4 Query Hierarchy for Affine-Invariant Properties

Our result falls naturally in the general framework of property testing
[BLR93, RS96, GGR98]. Goldreich et al. [GKNR08] asked an interesting question
in this broad framework: Given an ensemble of properties F = {FN}N where FN

is a property of functions on domains of size N , which functions correspond to
the query complexity of some property? That is, for a given complexity function
q(N), is there a corresponding property F such that Θ(q(N))-queries are nec-
essary and sufficient for testing membership in FN? This question is interesting
even when we restrict the class of properties being considered.

For completely general properties this question is easy to solve. For graph
properties [GKNR08] et al. show that for every efficiently computable function
q(N) = O(N) there is a graph property for which Θ(q(N)) queries are neces-
sary and sufficient (on graphs on Ω(

√
N) vertices). Thus this gives a “hierarchy

theorem” for query complexity.
Our main theorem settles the analogous question in the setting of “affine-

invariant” properties. Given a field F, a property F ⊆ {Fn → F} is said to be
affine-invariant if for every f ∈ F and affine map A : Fn → Fn, the composition
of f with A, i.e, the function f ◦ A(x) = f(A(x)), is also in F . Affine-invariant
properties seem to be the algebraic analog of graph-theoretic properties and
generalize most natural algebraic properties (see Kaufman and Sudan [KS08]).

Since the Reed-Muller codes form an affine-invariant family, and since we
have a tight analysis for their query complexity, we can get the affine-invariant
version of the result of [GKNR08]. Specifically, given any (reasonable) query
complexity function q(N) consider N that is a power of two and consider the

272 A. Bhattacharyya et. al.

class of functions on n = log2 N variables of degree at most d = �log2 q(N).
We have that membership in this family requires Ω(2d) = Ω(q(N))-queries, and
on the other hand O(2d) = O(q(N))-queries also suffice, giving an ensemble of
properties PN (one for every N = 2n) that is testable with Θ(q(N))-queries.

Theorem 2. For every q : N → N that is at most linear, there is an affine-
invariant property that is testable with O(q(n)) queries (with one-sided error)
but is not testable in o(q(n)) queries (even with two-sided error). Namely, this
property is membership in RM(�log2 q(n), n).

5 Gowers Norm

A quantity closely related to the rejection probability for T∗ also arises in some
of the recent results in additive number theory, under the label of the Gowers
norm, introduced by Gowers [Gow98, Gow01].

To define this norm, we first consider a related test T
f
0 (k) which, given pa-

rameter k and oracle access to a function f , picks x0, a1, . . . , ak ∈ Fn
2 uni-

formly and independently and accepts if f restricted to the affine subspace
x0 + span(a1, . . . , ak) is a degree k − 1 polynomial. Note that since we don’t re-
quire a1, . . . , ak to be linearly independent, T0 sometimes (though rarely) picks
a subspace of dimension k − 1 or less. When k = d + 1, if we condition on the
event that a1, . . . , ak are linearly independent, T0(d + 1) behaves exactly as T∗.
On the other hand when a1, . . . , ak do have a linear dependency, T0(k) accepts
with probability one. It turns out that when n ≥ d + 1, the probability that
a1, . . . , ad+1 are linearly independent is lower bounded by a constant, and so
the rejection probability of T0(d + 1) is lower bounded by a constant multiple of
the rejection probability of T∗ (for every function f). The test T0 has a direct
relationship with the Gowers norm.

In our notation, the Gowers norm can be defined as follows. For a function
f : Fn

2 → F2, the kth-Gowers norm of f , denoted ‖f‖Uk , is given by the expression

‖f‖Uk
def=(Pr[T f

0 (k) accepts] − Pr[T f
0 (k) rejects])

1
2k .

Gowers [Gow01] (see also [GT05]) showed that the “correlation” of f to the
closest degree d polynomial, i.e., the quantity 1 − 2δd(f), is at most ‖f‖Ud+1.
The well-known Inverse Conjecture for the Gowers Norm states that some sort
of converse holds: if ‖f‖Ud+1 = Ω(1), then the correlation of f to some degree d

polynomial is Ω(1), or equivalently δd(f) = 1/2−Ω(1). (That is, if the acceptance
probability of T0 is slightly larger than 1/2, then f is at distance slightly smaller
than 1/2 from some degree d polynomial.) Lovett et al. [LMS08] and Green and
Tao [GT07] disproved this conjecture, showing that the symmetric polynomial
S4 has ‖S4‖U4 = Ω(1) but the correlation of S4 to any degree 3 polynomial is
exponentially small. This still leaves open the question of establishing tighter
relationships between the Gowers norm ‖f‖Ud+1 and the maximal correlation of
f to some degree d polynomial. The best analysis known seems to be in the work

Optimal Testing of Reed-Muller Codes 273

of [AKK+05] whose result can be interpreted as showing that there exists ε > 0
such that if ‖f‖Ud+1 ≥ 1 − ε/4d, then δd(f) = O(4d(1 − ‖f‖Ud+1)).

Our results show that when the Gowers norm is close to 1, there is actually
a tight relationship between the Gowers norm and distance to degree d. More
precisely, there exists ε > 0 such that if ‖f‖Ud+1 ≥ 1 − ε/2d, then δd(f) =
Θ(1 − ‖f‖Ud+1).

6 XOR Lemma for Low-Degree Polynomials

One application of the Gowers norm and the Alon et al. analysis to complexity
theory is an elegant “hardness amplification” result for low-degree polynomials,
due to Viola and Wigderson [VW07]. Let f : Fn

2 → F2 be such that δd(f) is
noticeably large, say ≥ 0.1. Viola and Wigderson showed how to use this f to
construct a g : Fm

2 → F2 such that δd(g) is significantly larger, around 1
2−2−Ω(m).

In their construction, g = f⊕t, the t-wise XOR of f , where f⊕t : (Fn
2)t → F2 is

given by:

f⊕t(x1, . . . , xt) =
t∑

i=1

f(xi).

In particular, they showed that if δd(f) ≥ 0.1, then δd(f⊕t) ≥ 1/2 − 2−Ω(t/4d).
Their proof proceeded by studying the rejection probabilities of T∗ on the func-
tions f and f⊕t. The analysis of the rejection probability of T∗ given by [AKK+05]
was a central ingredient in their proof. By using our improved analysis of the rejec-
tion probability of T∗ from Theorem 1 instead, we get the following improvement.

Theorem 3. Let ε1 be as in Theorem 1. Let f : Fn
2 → F2. Then

δd(f⊕t) ≥ 1 − (1 − 2 min{ε1/4, 2d−2 · δd(f)})t/2d

2
.

In particular, if δd(f) ≥ 0.1, then δd(f⊕t) ≥ 1/2 − 2−Ω(t/2d).

7 Technique

The heart of our proof of the main theorem (Theorem 1) is an inductive argument
on n, the dimension of the ambient space. While proofs that use induction on n

have been used before in the literature on low-degree testing (see, for instance,
[BFL91, BFLS91, FGL+96]), they tend to have a performance guarantee that
degrades significantly with n. Indeed no inductive proof was known even for the
case of testing linearity of functions from Fn

2 → F2 that showed that functions at
Ω(1) distance from linear functions are rejected with Ω(1) probability. (We note
that the original analysis of [BLR93] as well as the later analysis of [BCH+96]
do give such bounds - but they do not use induction on n.) In the process of
giving a tight analysis of the [AKK+05] test for Reed-Muller codes, we thus end

274 A. Bhattacharyya et. al.

up giving a new (even if weaker) analysis of the linearity test over Fn
2 . Below we

give the main idea behind our proof.
Consider a function f that is δ-far from every degree d polynomial. For a “hy-

perplane”, i.e., an (n− 1)-dimensional affine subspace A of Fn
2 , let f |A denote the

restriction of f to A. We first note that the test can be interpreted as first pick-
ing a random hyperplane A in Fn

2 and then picking a random (d + 1)-dimensional
affine subspace A′ within A and testing if f |A′ is a degree d polynomial. Now, if on
every hyperplane A, f |A is still δ-far from degree d polynomials then we would be
done by the inductive hypothesis. In fact our hypothesis gets weaker as n → ∞, so
that we can even afford a few hyperplanes where f |A is not δ-far. The crux of our
analysis is when f |A is close to some degree d polynomial PA for several (but just
O(2d)) hyperplanes. In this case we manage to “sew” the different polynomials
PA (each defined on some (n − 1)-dimensional subspace within Fn

2) into a degree
d polynomial P that agrees with all the PA’s. We then show that this polynomial
is close to f , completing our argument.

To stress the novelty of our proof, note that this is not a “self-correction”
argument as in [AKK+05], where one defines a natural function that is close
to P , and then works hard to prove it is a polynomial of appropriate degree.
In contrast, our function is a polynomial by construction and the harder part
(if any) is to show that the polynomial is close to f . Moreover, unlike other
inductive proofs, our main gain is in the fact that the new polynomial P has
degree no greater than that of the polynomials given by the induction.

The proofs of the theorems mentioned above may be found in our paper
[BKS+09].

References

[AB01] Alon, N., Beigel, R.: Lower bounds for approximations by low degree poly-

nomials over Zm. In: IEEE Conference on Computational Complexity, pp.

184–187 (2001)

[AKK+05] Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-

Muller codes. IEEE Transactions on Information Theory 51(11), 4032–

4039 (2005)

[BCH+96] Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity

testing over characteristic two. IEEE Transactions on Information The-

ory 42(6), 1781–1795 (1996)

[BCJ+06] Brown, M.V., Calkin, N.J., James, K., King, A.J., Lockard, S., Rhoades,

R.C.: Trivial Selmer groups and even partitions of a graph. INTEGERS 6

(December 2006)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has

two-prover interactive protocols. Computational Complexity 1(1), 3–40

(1991)

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations

in polylogarithmic time. In: Proceedings of the 23rd ACM Symposium on

the Theory of Computing, pp. 21–32. ACM Press, New York (1991)

[BKS+09] Bhattacharyya, A., Kopparty, S., Schoenebeck, G., Sudan, M., Zuckerman,

D.: Optimal testing of Reed-Muller codes. ECCC Technical Report, TR09-

086 (October 2009)

Optimal Testing of Reed-Muller Codes 275

[BLR93] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applica-

tions to numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993); Earlier

version in STOC 1990 (1990)

[BM88] Brent, R.P., McKay, B.D.: On determinants of random symmetric matrices

over Zm. ARS Combinatoria 26A, 57–64 (1988)

[FGL+96] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interac-

tive proofs and the hardness of approximating cliques. Journal of the

ACM 43(2), 268–292 (1996)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. Journal of the ACM 45, 653–750 (1998)

[GKNR08] Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy the-

orems for property testing. Electronic Colloquium on Computational Com-

plexity (ECCC) 15(097) (2008)

[Gow98] Gowers, W.T.: A new proof of Szeméredi’s theorem for arithmetic progres-

sions of length four. Geometric Functional Analysis 8(3), 529–551 (1998)

[Gow01] Gowers, W.T.: A new proof of Szeméredi’s theorem. Geometric Functional

Analysis 11(3), 465–588 (2001)

[GT05] Green, B., Tao, T.: An inverse theorem for the Gowers U3 norm.

arXiv.org:math/0503014 (2005)

[GT07] Green, B., Tao, T.: The distribution of polynomials over finite fields, i

with applications to the Gowers norms. Technical report (November 2007),

http://arxiv.org/abs/0711.3191v1

[KS08] Kaufman, T., Sudan, M.: Algebraic property testing: the role of invari-

ance. In: STOC 2008: Proceedings of the 40th annual ACM symposium

on Theory of computing, pp. 403–412. ACM, New York (2008)

[LMS08] Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the

Gowers norm is false. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 547–

556. ACM, New York (2008)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with

applications to program testing. SIAM J. on Comput. 25, 252–271 (1996)

[VW07] Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for

GF(2) polynomials and multiparty protocols. In: Twenty-Second Annual

IEEE Conference on Computational Complexity, CCC 2007, pp. 141–154

(June 2007)

http://arxiv.org/abs/0711.3191v1

Query-Efficient Dictatorship Testing with

Perfect Completeness

Victor Chen

Institute of Theoretical Computer Science, Tsinghua University, Beijing,

People’s Republic of China

victor.vc@gmail.com

Abstract. The problem of dictatorship testing is often used a starting

in constructing a PCP system. Samorodnitsky and Trevisan in STOC

2006 designed a dictatorship test that makes q queries and has soundness

approximately O(q·2−q). However, their test has imperfect completeness.

We describe some of the progress made in designing dictatorship tests

with perfect completeness.

Keywords: PCPs, dictatorship test.

Linearity and dictatorship testing have been studied in the past decade both for
their combinatorial interest and connection to complexity theory. These tests
distinguish functions which are linear/dictator from those which are far from
being a linear/dictator function. The tests do so by making queries to a function
at certain points and receiving the function’s values at these points. The param-
eters of interest are the number of queries a test makes and the completeness
and soundness of a test.

In this note, we consider boolean functions of the form f : {0, 1}n → {−1, 1}.
We say a function f is linear if f = (−1)

∑
i∈S xi for some subset S ⊆ [n]. A dic-

tator function is simply a linear function where |S| = 1, i.e., f(x) = (−1)xi for
some i. A dictator function is often called a long code, and it is first used in [3] for
the constructions of probabilistic checkable proofs (PCPs), see e.g., [2,1]. Since
then, it has become standard to design a PCP system as the composition of
two verifiers, an outer verifier and an inner verifier. In such case, a PCP system
expects the proof to be written in such a way so that the outer verifier, typically
based on the verifier obtained from Raz’s Parallel Repetition Theorem [18], se-
lects some tables of the proof according to some distribution and then passes
the control to the inner verifier. The inner verifier, with oracle access to these
tables, makes queries into these tables and ensures that the tables are the encod-
ing of some error-correcting codes and satisfy some joint constraint. The long
code encoding is usually employed in these proof constructions, and the inner
verifier simply tests whether a collection of tables (functions) are long codes
satisfying some constraints. Following this paradigm, constructing a PCP with
certain parameters reduces to the problem of designing a long code test with
similar parameters.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 276–279, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Query-Efficient Dictatorship Testing with Perfect Completeness 277

One question of interest is the tradeoff between the soundness and query
complexity of a tester. If a tester queries the functions at every single value,
then trivially the verifier can determine all the functions. One would like to con-
struct a dictatorship test that has the lowest possible soundness while making
as few queries as possible. One way to measure this tradeoff between the sound-
ness s and the number of queries q is amortized query complexity, defined as

q
log s−1. This investigation, initiated in [25], has since spurred a long sequence of
works [22,20,11,6]. All the testers from these works run many iterations of a sin-
gle dictatorship test by reusing queries from previous iterations. The techniques
used are Fourier analytic, and the best amortized query complexity from this
sequence of works has the form 1 + O

(
1√
q

)
.

The next breakthrough occurs when Samorodnitsky [19] introduces the no-
tion of a relaxed linearity test along with new ideas from additive combinatorics.
In property testing, the goal is to distinguish objects that are very structured
from those that are pseudorandom. In the case of linearity/dictatorship test-
ing, the structured objects are the linear/dictator functions, and functions that
are far from being linear/dictator are interpreted as pseudorandom. The recent
paradigm in additive combinatorics is to find the right framework of structure
and pseudorandomness and analyze combinatorial objects by dividing them into
structured and pseudorandom components, see e.g. [24] for a survey. One suc-
cess is the notion of Gowers norm [7], which has been fruitful in attacking many
problems in additive combinatorics and computer science. In [19], the notion
of pseudorandomness for linearity testing is relaxed; instead of designating the
functions that are far from being linear as pseudorandom, the functions having
small low degree Gowers norm are considered to be pseudorandom. By doing
so, an optimal tradeoff between soundness and query complexity is obtained for
the problem of relaxed linearity testing. (Here the tradeoff is stronger than the
tradeoff for the traditional problem of linearity testing.)

In a similar fashion, in the PCP literature since [9], the pseudorandom ob-
jects in dictatorship tests are not functions that are far from being a dictator.
The pseudorandom functions are typically defined to be either functions that
are far from all “juntas” or functions whose “low-degree influences” are o(1).
Both considerations of a dictatorship test are sufficient to compose the test in a
PCP construction. In [21], building on the analysis of the relaxed linearity test
in [19], Samorodnitsky and Trevisan construct a dictatorship test (taking the
view that functions with arbitrary small “low-degree influences are pseudoran-
dom) with amortized query complexity 1 + O

(
log q

q

)
. Furthermore, the test is

used as the inner verifier in a conditional PCP construction (based on unique
games [12]) with the same parameters. However, their dictatorship test suffers
from an inherent loss of perfect completeness. Ideally one would like testers with
one-sided errors. One, for aesthetic reasons, testers should always accept valid
inputs. Two, for some hardness of approximation applications, in particular col-
oring problems (see e.g. [10] or [5]), it is important to construct PCP systems
with one-sided errors.

278 V. Chen

In [4], the following theorem is proved:

Theorem 1. For every q ≥ 3, there exists an (adaptive) dictatorship test that
makes q queries, has completeness 1, and soundness O(q3)

2q ; in particular it has

amortized query complexity 1 + O

(
log q

q

)
.

The tester is a variant of the one given in [21] and is adaptive in the sense that it
makes its queries in two stages. It first makes roughly log q nonadaptive queries
into the function. Based on the values of these queries, the tester then selects
the rest of the query points nonadaptively. The analysis is based on techniques
developed in [11,21,10,8].

Recently, Tamaki and Yoshida in their ECCC preprint [23] designed a com-
pletely new dicatorship test. Their test, in contrast to the one in [4], is non-
adaptive and has slightly better soundness. Formally, they proved the following:

Theorem 2. For every q ≥ 3, there exists a non-adaptive dictatorship test that
makes q queries, has completeness 1, and soundness O(q · 2−q).

Unfortunately, it is not clear how to extend the tests in [4,23] to a PCP con-
struction. One possibility might lie in the works of O’Donnell and Wu [15,16],
where they first constructed an optimal three bit dictatorship test with perfect
completeness and and extended their technique to construct a conditional PCP
system. Similar to the 3-bit test [15], it may be possible to extend the query-
efficient dictator tests [4,23] to PCPs using Khot’s d-to-1 outer verifier [12]. In
particular, we leave the following conjecture as a challenging open problem:

Conjecture 1. For infinitely many q, there exists a PCP system that makes q

queries, has completeness 1, and soundness poly(q) · 2−q.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

J. ACM 45(1), 70–122 (1998)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–

towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

4. Chen, V.: A hypergraph dictatorship test with perfect completeness. In: Dinur, I.,

Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM 2009. LNCS, vol. 5687,

pp. 448–461. Springer, Heidelberg (2009)

5. Dinur, I., Mossel, E., Regev, O.: Conditional Hardness for Approximate Coloring.

SIAM Journal on Computing 39(3), 843–873 (2009)

6. Engebretsen, L., Holmerin, J.: More Efficient Queries in PCPs for NP and Improved

Approximation Hardness of Maximum CSP. In: Diekert, V., Durand, B. (eds.)

STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)

7. Gowers, W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3),

465–588 (2001)

Query-Efficient Dictatorship Testing with Perfect Completeness 279

8. Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of

NP with 3 query PCPs. In: FOCS, pp. 8–17 (1998)

9. H̊astad, J.: Some optimal inapproximability results. J. of ACM 48(4), 798–859

(2001)

10. H̊astad, J., Khot, S.: Query Efficient PCPs with Perfect Completeness. Theory of

Computing 1(7), 119–148 (2005)

11. H̊astad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP.

Random Struct. Algorithms 22(2), 139–160 (2003)

12. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775

(2002)

13. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal Inapproximability Re-

sults for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Comput-

ing 37(1), 319–357 (2007)

14. Khot, S., Saket, R.: A 3-Query Non-Adaptive PCP with Perfect Completeness. In:

CCC, pp. 159–169 (2006)

15. O’Donnell, R., Wu, Y.: 3-bit dictator testing: 1 vs. 5/8. In: SODA, pp. 365–373

(2009)

16. O’Donnell, R., Wu, Y.: Conditional Hardness for Satisfiable-3CSPs. In: STOC, pp.

493–502 (2009)

17. Parnas, M., Ron, D., Samorodnitsky, A.: Testing Basic Boolean Formulae. SIAM

Journal on Discrete Mathematics 16(1), 20–46 (2002)

18. Raz, R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27(3), 763–

803 (1998)

19. Samorodnitsky, A.: Low-degree tests at large distances. In: STOC, pp. 506–515

(2007)

20. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-

tized query complexity. In: STOC, pp. 191–199 (2000)

21. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and

PCPs. SIAM Journal on Computing 39(1), 323–360 (2009)

22. Sudan, M., Trevisan, L.: Probabilistically checkable proofs with low amortized

query complexity. In: FOCS, pp. 18–27 (1998)

23. Tamaki, S., Yoshida, Y.: A query efficient non-adaptive long code test with perfect

completeness. ECCC, TR09-074 (2009)

24. Tao, T.: Structure and randomness in combinatorics. In: FOCS, pp. 3–15 (2007)

25. Trevisan, L.: Recycling queries in PCPs and in linearity tests (extended abstract).

In: STOC, pp. 299–398 (1998)

Composition of Low-Error 2-Query PCPs Using

Decodable PCPs�

Irit Dinur1 and Prahladh Harsha2

1 Weizmann Institute of Science, Israel

irit.dinur@weizmann.ac.il
2 Tata Institute of Fundamental Research, India

prahladh@tifr.res.in

Abstract. The main result of this paper is a generic composition the-

orem for low error two-query probabilistically checkable proofs (PCPs).

Prior to this work, composition of PCPs was well-understood only in the

constant error regime. Existing composition methods in the low error

regime were non-modular (i.e., very much tailored to the specific PCPs

that were being composed), resulting in complicated constructions of

PCPs. Furthermore, until recently, composition in the low error regime

suffered from incurring an extra ‘consistency’ query, resulting in PCPs

that are not ‘two-query’ and hence, much less useful for hardness-of-

approximation reductions.

In a recent breakthrough, Moshkovitz and Raz [In Proc. 49th IEEE
Symp. on Foundations of Comp. Science (FOCS), 2008] constructed al-

most linear-sized low-error 2-query PCPs for every language in NP. In-

deed, the main technical component of their construction is a novel com-

position of certain specific PCPs. We give a modular and simpler proof

of their result by repeatedly applying the new composition theorem to

known PCP components.

To facilitate the new modular composition, we introduce a new variant

of PCP, which we call a decodable PCP (dPCP). A dPCP is an encoding
of an NP witness that is both locally checkable and locally decodable.

The dPCP verifier in addition to verifying the validity of the given proof

like a standard PCP verifier, also locally decodes the original NP witness.

Our composition is generic in the sense that it works regardless of the

way the component PCPs are constructed.

Keywords: PCP, composition, locally decodable, low soundness error.

1 Probabilistically Checkable Proofs – Introduction

Probabilistically checkable proofs (PCPs) provide a proof format that enables
verification with only a constant number of queries into the proof. This is for-
mally captured by the (by now standard) notion of a probabilistic verifier.
� A full version of this paper appears in the Electronic Colloquium on Computational

Complexity [DH09]. The current extended abstract is a modification of the intro-

duction of the full version for the purposes of the ICS mini-workshop on propert

testing.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 280–288, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2-Query Low-Error PCP Composition 281

Definition 1 (PCP Verifier). A PCP verifier V for a language L is a poly-
nomial time probabilistic algorithm that behaves as follows: On input x, and
oracle access to (proof) string π (over an alphabet Σ), the verifier reads the in-
put x, tosses some random coins r, and based on x and r computes a window
I = (i1, . . . , iq) of indices to read from π, and a predicate f : Σq → {0, 1}. The
verifier then accepts iff f(πI) = 1.

– The verifier is complete if for every x ∈ L there is a proof π accepted with
probability 1. I.e., ∃π, PrI,f [f(πI) = 1] = 1.

– The verifier is sound with soundness error δ < 1 if for any x �∈ L, every
proof π is accepted with probability at most δ. I.e., ∀π, PrI,f [f(πI) = 1] ≤ δ.

The celebrated PCP Theorem [AS98, ALM+98] states that every language in
NP has a verifier that is complete and sound with a constant δ < 1 soundness
error while using only a logarithmic number of random coins, and reading only
q = O(1) proof bits. Naturally, (and motivated by the fruitful connection to
inapproximability due to [FGL+96]), much attention has been given to obtaining
PCPs with “good” parameters, such as q = 2, smallest possible soundness error
δ, and smallest possible alphabet size |Σ|. These are the parameters of focus in
this paper.

How does one construct PCPs with such remarkable proof checking proper-
ties? In general, it is easier to construct such PCPs if we relax the alphabet
size |Σ| to be large (typically super-constant, but sub-exponential). This issue is
similar to a well-known issue that arises in coding theory; wherein it is relatively
easy to construct codes with good error-correcting properties over a large, super
constant sized, alphabet (e.g., Reed-Solomon codes). Codes over a constant-sized
alphabet (e.g., GF(2)) are then obtained from these codes by (repeatedly) apply-
ing the “code-concatenation” technique of Forney [For66]. The equivalent notion
in the context of PCP constructions is the paradigm of “proof composition”, in-
troduced by Arora and Safra [AS98]. Informally speaking, proof composition is
a recursive procedure applied to PCP constructions to reduce the alphabet size.
Proof composition is applied (possibly several times over) to PCPs over the large
alphabet to obtain PCPs over a small (even binary) alphabet.

Proof composition is an essential ingredient of all known constructions of
PCPs. Composition of PCPs with high soundness error (greater than 1/2) is by
now well understood using the notion of PCPs of proximity [BGH+06] (called
assignment testers in [DR06]). These allow for modular composition, in the
high soundness error regime which in turn led to alternate proofs of the PCP
Theorem and constructions of shorter PCPs [BGH+06, Din08, BS08]. However,
these composition theorems are inapplicable when constructing PCPs with low-
soundness error (arbitrarily small soundness error or even any constant less than
1/2). (See survey on constructing low error PCPs by Dinur [Din08] for a detailed
explanation of this limitation).

Our first contribution is a definition of an object which we call a decodable
PCP, which allows for clean and modular composition in the low error regime.

282 I. Dinur and P. Harsha

2 Decodable PCPs (dPCPs)

Consider a probabilistically checkable proof for the language CircuitSat (the
language of all satisfiable circuits). The natural NP proof for CircuitSat is sim-
ply a satisfying assignment. An intuitive way to construct a PCP for CircuitSat

is to encode the assignment in a way that enables probabilistic checking. This
intuition guides all known constructions, although it is not stipulated in the
definition.

In this work, we make the intuitive notion of proof encoding explicit by in-
troducing the notion of a decodable PCP (dPCP). A dPCP for CircuitSat

is an encoding of the satisfying assignment that can be both verified and de-
coded locally in a probabilistic manner. In this setting, the verifier is supposed
to both verify that the dPCP is encoding a satisfying assignment, as well as to
decode a symbol in that assignment. More precisely, we define a PCP decoder
for CircuitSat to be (along the lines of Definition 1) a probabilistic algorithm
that is given an input circuit C, oracle access to a dPCP π, and, in addition,
an index i. Based on C, i and the randomness r it computes a window I and a
function f (rather than a predicate). This function is supposed to evaluate to
the i-th symbol of a satisfying assignment for C; or to reject.

– The PCP decoder is complete if for every y such that C(y) = 1 there is a
dPCP π such that Pri,I,f [f(πI) = yi] = 1.

– The PCP decoder has soundness error δ and list size l if for any (purported)
dPCP π there is a list of ≤ l valid proofs such that the probability (over the
index i and (I, f)) that f(πI) is inconsistent with the list but not reject is
at most δ.

The list of valid proofs can be viewed as a “list decoding” of the dPCP π. Since
we are interested in the low soundness error regime, list-decoding is unavoidable.
Of course, we can define dPCPs for any NP language and not just CircuitSat,
but we focus on CircuitSat since it suffices for the purpose of composition.

The notion of dPCPs allows for modular composition in the case of low
soundness error (described next) in analogy to the way PCPPs and assign-
ment testers [BGH+06, DR06] allow for modular composition in the case of
high soundness error. Moreover, using dPCPs we show a two query composition
that yields a completely modular proof of the recent result of Moshkovitz and
Raz [MR08b].

Finally, we note that decodable PCPs are not hard to come by. Decodable
PCPs or variants of them are implicit in many PCP constructions [AS03, RS97,
DFK+99, BGH+06, DR06, MR07, MR08b] and existing PCP constructions can
often be adapted to yield decodable PCPs.

3 Composition with dPCPs

There is a natural and modular way to compose a PCP verifierV with a PCP de-
coder D. The composed PCP verifier V ′ begins by simulating V on a probabilisti-
cally checkable proof Π . It determines a set of queries into Π (a local window I),

2-Query Low-Error PCP Composition 283

and a local predicate f . Instead of directly querying Π and testing if f(ΠI) = 1,
V ′ relies on the inner PCP decoder D to perform this action. For this task, the
inner PCP decoder D is supplied with a dedicated proof that is supposedly an en-
coding of the relevant local view ΠI . The main issue is consistency: the composed
verifier V ′ must ensure that the dedicated proofs supposedly encoding the vari-
ous local views are consistent with the same Π (i.e. they should be encodings of
local views coming from a single valid PCP for V). This is achieved easily with
PCP decoders: the composed verifier V ′ asks D to decode a random value from
the encoded local view, and compares it to the appropriate symbol in Π .

The above description of composition already appears1 to lead to a modular
presentation of the composition performed in earlier low-error PCP construc-
tions [AS03, RS97, DFK+99, MR07]. But at the same time, like these composi-
tions, it incurs an additional query per composition, namely the “consistency”
query to the outer PCP Π . (The queries made by V ′ are the queries of D plus
the one additional consistency query to Π).

Nevertheless, inspired by [MR08b] and equipped with a better understanding
of composition in the low soundness error case, we are, now, in a position to
remove this extra consistency query.

4 Composition with Only Two Queries

Our main contribution is a composition theorem that does not incur an extra
query. The extra query above comes from the need to check that all the inner PCP
decoders decode to the same symbol. This check was performed by comparing the
decoded symbol to the symbol in the outer PCP Π . Instead, we verify consistency
by invoking all the inner PCP decoders that involve this symbol in parallel, and
then checking that they all decode to the same symbol. This avoids the necessity
to query the outer PCP Π for this symbol and saves us the extra query.

We describe our new composed verifier V ′ more formally below. As before,
let V be a PCP verifier, and D a PCP decoder.

1. The composed PCP verifier simulates V on a hypothetical PCP Π ; it chooses
a random index i in Π , and then determines all the possible random strings
R1, . . . , RD that cause V to query this index.

2. For each random string Rj (j = 1 . . .D), V ′ needs to check that the corre-
sponding local view of Π would have lead V to accept. This is done by run-
ning D, for each j = 1 . . .D, on a dedicated proof π(Rj) that is supposedly
the encoding of the j-th local view (i.e., the one generated by V on random
string Rj) into Π . Furthermore, V ′ expects D to decode the symbol Πi.

3. Finally V ′ accepts if and only if all the D parallel runs of D accept and
output the same symbol.

Observe that the composed verifier V ′ does not access the PCP for V (i.e., Π) at
all, rather only the dedicated proofs for the inner PCP decoders. The outer PCP
Π is only “mentally” present in order to compute R1, . . . , RD. A few important
points are in order.
1 We have not verified the details.

284 I. Dinur and P. Harsha

– Two Queries and Robust Soundness. As described, V ′ makes many
queries rather than just two. This is fixed by the following easy transforma-
tion: the first query will supposedly be answered by the complete local view
V ′ expects to read, and the second query will consist of one random symbol
in the local view of V ′. The soundness error of the resulting two-query PCP
is equal to the robust soundness error of V ′: an upper bound on the average
agreement between a local view read by V ′ and an accepting local view.

Thus, drawing on the above correspondence, the fact that V ′ has low robust
soundness error implies the required two-query composition. Of course, the
composition could have been described entirely in the 2-query PCP language.

– Size of alphabet or window size. The purpose of composition is to reduce
the alphabet size, or, in the language of robust PCPs, to reduce the window
size, that is, the number of queries made by V ′. Recall that V ′ runs D in
parallel on all D local views corresponding to R1, . . . , RD. Thus, the window
size equals the query complexity of D multiplied by the number D of local
views (which we refer to as the proof degree of V). Hence composition is
meaningful only if the proof degree is small to begin with (otherwise, the
local window of V ′ is not smaller than that of V and we haven’t gained
anything from composition). In general PCPs, the proof degree is very high.
In fact, this has been one of the obstacles to achieving this result prior to
[MR08b]. However, a key observation of [MR08b] is that it is easy to reduce
the proof degree using standard tools from derandomization (i.e., expander
replacement).

Viewed alternatively, one can handle V of arbitrarily high proof degree by
making the following change to V ′. Instead of running D to verify the local
tests corresponding to all of R1, . . . , RD, V ′ can pseudo-randomly sample a
small number of these and run D only on the selected ones.

The fact that the query complexity is at least D is an inherent bottle-
neck in our composition method. Combined with the bound of D ≥ 1/δ,
this poses a limitation of this technique towards achieving exponential de-
pendence of the error probability on alphabet size, a point discussed later in
this introduction.

The new composition is generic in the sense that it works regardless of how the
original components V and D are constructed.

5 Background and Motivation

Let us step back to give some motivation for obtaining PCPs with small sound-
ness error and two queries (for a more comprehensive treatment, see [MR08b]).
Two is the absolute minimal number of queries possible for a non-trivial PCP.
Thus, it is interesting to find what are the strongest 2-query PCPs that still
capture NP. However, the main motivation for two query PCPs is for proving
hardness of approximation results.

2-Query Low-Error PCP Composition 285

Two query PCPs with soundness error δ are (more or less) equivalent to
Label-Coverδ, which is a promise problem defined as follows2: The input is
a bipartite graph and an alphabet Σ, and for each edge e there is a function
fe : Σ → Σ, which we think of as a constraint on the labels of the vertices.
The constraint is satisfied by values a and b iff fe(a) = b. The problem is to
distinguish between two cases: (1) there exists a labeling of the vertices satisfying
all constraints, or (2) every labeling satisfies at most δ fraction of the constraints.

Label-Coverδ is probably the most popular starting point for hardness of
approximation reductions. In particular, even though there are 3-query PCPs
with much smaller soundness error, they currently have far fewer applications
to inapproximability.

The fact that Label-Coverα is NP-hard for some constant α < 1 (and con-
stant alphabet size) is nothing but a reformulation of the PCP Theorem [AS98,
ALM+98]. Strong inapproximability results, however, require3 NP-hardness of
Label-Coverδ for arbitrarily small, sometimes even sub-constant soundness er-
ror δ. There are two known routes to obtaining hardness results forLabel-Coverδ

with small soundness error δ. The first, is via an application of the parallel repe-
tition theorem of Raz [Raz98] to the Label-Coverα instance produced by the
PCP Theorem. However, this application of the repetition theorem blows up the
size of the problem instance from n to nO(log(1/δ)) and thus remains polynomial
only for constant, though arbitrarily small, δ. One might try to get a polynomial
sized construction by carefully choosing a subset of the entire parallel repetition
construction. This is known as the problem of “derandomizing the parallel rep-
etition theorem”. Feige and Kilian [FK95] showed that such derandomization is
impossible under certain (rather general) conditions. Nevertheless, in a recent pa-
per, Impagliazzo et. al. [IKW09] obtained a related derandomization. While their
derandomization result applies only to direct products and not to the construc-
tion of PCPs, this direction seems promising. Another potential direction is to
use the gap-amplification technique of Dinur [Din07], however as shown by Bog-
danov [Bog05] gap-amplification fails below a soundness error of 1/2.

The second route to sub-constant δ goes through the classical (algebraic) con-
struction of PCPs. Indeed, hardness for label cover with sub-constant error can
be obtained from the low soundness error PCPs of [RS97, AS03, MR08a], more
or less by omitting the composition steps, and carefully combining queries. The
following “manifold vs. point” PCP construction has been folklore since [RS97,
AS03], and formally described in [MR08b].

Theorem 1 (Manifold vs. Point PCP). There exists a constant c > 1 such
that the following holds: For every 1

n ≤ δ ≤ 1
(log n)c , there exists an alphabet Σ

of size at most exp(poly(1/δ)) such that Label-Coverδ over Σ is NP-hard.

2 We focus on the important special case of projection constraints.
3 In some cases the hardness gap is inversely proportional to δ, and in others, it is the sum

of two terms: a problem-dependent term (e.g. 7/8 in H̊astad’s hardness result [H̊as01]

for 3-SAT), and a “low order” term that is polynomial in δ.

286 I. Dinur and P. Harsha

The above result is unsatisfactory as the size of the alphabet |Σ| is super-
polynomial. Combined with the fact that hardness-of-approximation reductions
are usually exponential in |Σ| (and always at least polynomial in |Σ|) the super
polynomial size of Σ renders the above theorem useless. The situation can be
redeemed if the theorem could be extended to the entire range of smaller |Σ|
(with a corresponding increase in δ).

A natural way to perform this extension would be to apply the composition
paradigm to the PCPs constructed in Theorem 1 and reduce the alphabet size.
Indeed, this is how one constructs PCPs with sub-constant error and a constant
number of queries for the entire range of Ω(1) ≤ |Σ| ≤ exp((log n)1−ε) [RS97,
AS03, DFK+99]. However, the composition a la [RS97, AS03, DFK+99] incurs
at least one additional query, which means that the final PCP is no longer “two-
query”, so it does not lead to a hardness result for label cover. Alternatively, the
composition technique of [BGH+06, DR06] using PCPs of proximity or assign-
ment testers is inapplicable in this context as it fails to work for soundness error
less than 1/2. Thus, all earlier composition techniques are either inapplicable
in the low error regime or if applicable, incur an extra query and thus, are no
longer in the framework of the Label-Cover problem.

6 The Two-Query PCP of Moshkovitz and Raz [MR08b]

In a recent breakthrough, [MR08b] show that the above theorem can in fact, be
extended to the entire range of δ and |Σ| (and maintaining |Σ| ≈ exp(poly(1/δ))).
This is done by composing certain specific 2-query PCPs with low soundness error
without incurring an additional query per composition.

Theorem 2 ([MR08b]). For every δ ∈ (1/polylogn, 1), there exists an al-
phabet Σ of size at most exp(poly(1/δ)) such that Label-Coverδ over Σ is
NP-hard (in fact, even under nearly length preserving reductions).

The main technical component of their construction is a novel composition of
certain specific PCPs. However, the construction is so organically tied to the
specific algebraic components that are being composed, as to make it extremely
difficult to differentiate between the details of the PCP, and what it is that makes
the composition go through.

We give a modular and simpler proof of this theorem using our composition
theorem. Our proof relies on a PCP system based on the manifold vs. point
construction (as in Theorem 1). The parameters we need are rather weak: it is
enough that on input size n the PCP decoder / verifier makes nα queries and
has soundness error δ = 1/nβ, for small constants α, β. After one composition
step the number of queries goes (roughly) from nα to nα2

, and so on. After each
composition step we add a combinatorial step, consisting of degree and alphabet
reduction, that prepares the verifier for the next round of composition. After
i rounds the number of queries is about nαi

, and the soundness error is about
δ = 1/nO(αi). Choosing 1 ≤ i ≤ log log n appropriately gives us the result.

2-Query Low-Error PCP Composition 287

The modular composition theorem allows us to easily keep track of a super-
constant number of steps, thus avoiding the need for another tailor-made
Hadamard-based PCP which was required in the proof of [MR08b]. (The later
approach could also be implemented in our setting).

Randomness and the length of the PCP: The above discussion completely ig-
nores the randomness complexity of the underlying PCPs. However, it is easy to
verify that the composition described above is, in fact, randomness efficient; this
is because the same inner randomness can be used for all the D parallel runs of
the inner PCP decoder. Thus, if we start from a version of the Theorem 1 (the
manifold vs. point PCP) based on an almost linear-size low-degree test (c.f.,
[MR08a]), we obtain a nearly length preserving version of Theorem 2 (i.e., a
reduction taking instances of size n to instances of size almost linear in n). Fur-
thermore, the fact that we account for the input index i separately from the inner
randomness r of the PCP decoder leads to an even more randomness-efficient
composition, however, we do not exploit this fact in the proof of Theorem 2.

Polynomial dependence of soundness error on alphabet size: Theorem 2 suffers
from the following bottleneck: the error probability δ is inverse logarithmic (and
not inverse-polynomial) with respect to the size of the alphabet Σ. This lim-
itation is inherent in our composition method as discussed above. Thus, the
“sliding-scale conjecture” of Bellare et al. [BGLR93] that for every |Σ| ∈ (1, n),
Label-Coverδ over Σ is NP-hard for δ = poly(1/|Σ|) remains open.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifi-

cation and the hardness of approximation problems. J. ACM 45(3), 501–

555 (1998); Preliminary Version in 33rd FOCS (1992), eccc: TR98-008,

doi:10.1145/278298.278306

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characteri-

zation of NP. J. ACM 45(1), 70–122 (1998); Preliminary Version in 33rd

FOCS (1992), doi:10.1145/273865.273901

[AS03] Arora, S., Sudan, M.: Improved low-degree testing and its applications.

Combinatorica 23(3), 365–426 (2003); Preliminary Version in 29th STOC

(1997), eccc: TR97-003, doi:10.1007/s00493-003-0025-0

[BGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust

PCPs of proximity, shorter PCPs and applications to coding. SIAM J.

Computing 36(4), 889–974 (2006); Preliminary Version in 36th STOC

(2004), eccc: TR04-021, doi:10.1137/S0097539705446810

[BGLR93] Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilisti-

cally checkable proofs and applications to approximation. In: Proc. 25th

ACM Symp. on Theory of Computing (STOC), pp. 294–304. ACM, New

York (1993), doi:10.1145/167088.167174

[Bog05] Bogdanov, A.: Gap amplification fails below 1/2 (2005) (Comment on

”Dinur, The PCP theorem by gap amplification), eccc:TR05-046

[BS08] Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity.

SIAM J. Computing 38(2), 551–607 (2008); Preliminary Version in 37th

STOC (2005), eccc:TR04-060, doi:10.1137/050646445

288 I. Dinur and P. Harsha

[DFK+99] Dinur, I., Fischer, E., Kindler, G., Raz, R., Safra, S.: PCP characteri-

zations of NP: Towards a polynomially-small error-probability. In: Proc.

31st ACM Symp. on Theory of Computing (STOC), pp. 29–40. ACM,

New York (1999), eccc:TR98-066, doi:10.1145/301250.301265

[DH09] Dinur, I., Harsha, P.: Composition of low-error 2-query PCPs using decod-

able PCPs. Technical Report TR09-042, Electronic Colloquium on Com-

putational Complexity (2009), eccc:TR09-042

[Din07] Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12

(2007); Preliminary Version in 38th STOC (2006), eccc: TR05-046,

doi:10.1145/1236457.1236459

[Din08] Dinur, I.: PCPs with small soundness error. SIGACT News 39(3), 41–57

(2008), doi:10.1145/1412700.1412713

[DR06] Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof

of the PCP Theorem. SIAM J. Computing 36, 975–1024 (2006); Prelimi-

nary Version in 45th FOCS (2004), doi:10.1137/S0097539705446962

[FGL+96] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: In-

teractive proofs and the hardness of approximating cliques. J.

ACM 43(2), 268–292 (1996); Preliminary version in 32nd FOCS (1991),

doi:10.1145/226643.226652

[FK95] Feige, U., Kilian, J.: Impossibility results for recycling random bits in two-

prover proof systems. In: Proc. 27th ACM Symp. on Theory of Computing

(STOC), pp. 457–468. ACM, New York (1995), doi:10.1145/225058.225183

[For66] David Forney, G.: Concatenated Codes. MIT Press, Cambridge (1966)

[H̊as01] H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4),

798–859 (2001); Preliminary Version in 29th STOC (1997),

doi:10.1145/502090.502098

[IKW09] Impagliazzo, R., Kabanets, V., Wigderson, A.: Direct product testing:

Improved and derandomized. In: Proc. 41st ACM Symp. on Theory of

Computing (STOC), pp. 131–140. ACM, New York (2009), eccc:TR09-

090, doi:10.1145/1536414.1536435

[MR07] Moshkovitz, D., Raz, R.: Sub-constant error probabilistically checkable

proof of almost linear size (2007), eccc:TR07-026

[MR08a] Moshkovitz, D., Raz, R.: Sub-constant error low degree test of almost-

linear size. SIAM J. Computing 38(1), 140–180 (2008); Preliminary Ver-

sion in 38th STOC (2006), eccc:TR05-086, doi:10.1137/060656838

[MR08b] Moshkovitz, D., Raz, R.: Two query PCP with sub-constant er-

ror. In: Proc. 49th IEEE Symp. on Foundations of Comp. Science

(FOCS), pp. 314–323. IEEE, Los Alamitos (2008), eccc:TR08-071,

doi:10.1109/FOCS.2008.60

[Raz98] Raz, R.: A parallel repetition theorem. SIAM J. Computing 27(3),

763–803 (1998); Preliminary Version in 27th STOC (1995),

doi:10.1137/S0097539795280895

[RS97] Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a

sub-constant error-probability PCP characterization of NP. In: Proc. 29th

ACM Symp. on Theory of Computing (STOC), pp. 475–484. ACM, New

York (1997), doi:10.1145/258533.258641

Hierarchy Theorems for Property Testing�

Oded Goldreich1, Michael Krivelevich2, Ilan Newman3, and Eyal Rozenberg4

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il
2 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

krivelev@post.tau.ac.il
3 Department of Computer Science, Haifa University, Haifa, Israel

ilan@cs.haifa.ac.il
4 Department of Computer Science, Technion, Haifa, Israel

eyalroz@technion.ac.il

Abstract. Referring to the query complexity of property testing, we

prove the existence of a rich hierarchy of corresponding complexity classes.

That is, for any relevant function q, we prove the existence of properties

that have testing complexity Θ(q). Such results are proven in three stan-

dard domains often considered in property testing: generic functions, ad-

jacency predicates describing (dense) graphs, and incidence functions de-

scribing bounded-degree graphs. While in two cases the proofs are quite

straightforward, the techniques employed in the case of the dense graph

model seem significantly more involved. Specifically, problems that arise

and are treated in the latter case include (1) the preservation of distances

between graphs under a blow-up operation, and (2) the construction of

monotone graph properties that have local structure.

Keywords: GraphProperties,MonotoneGraphProperties,GraphBlow-

up, One-Sided versus Two-Sided Error, Adaptivity versus Non-adaptivity.

1 Background

In the last decade, the area of property testing has attracted much attention
(see, e.g., a couple of recent surveys [R1, R2]). Loosely speaking, property testing
typically refers to sub-linear time probabilistic algorithms for deciding whether
a given object has a predetermined property or is far from any object having
this property. Such algorithms, called testers, obtain local views of the object by
making adequate queries; that is, the object is seen as a function and the testers
get oracle access to this function (and thus may be expected to work in time
that is sub-linear in the length of the object).

Following most work in the area, we focus on the query complexity of property
testing, measured as a function of the size of the object as well as the desired
proximity (parameter). Interestingly, many natural properties can be tested in

� A preliminary version has appeared as TR08-097 of ECCC, and an extended abstract

has appeared in the proceedings of RANDOM’09.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 289–294, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 O. Goldreich et al.

complexity that only depends on the proximity parameter; examples include lin-
earity testing [BLR], and testing various graph properties in two natural models
(e.g., [GGR, AFNS] and [GR1, BSS], respectively). On the other hand, proper-
ties for which testing requires essentially maximal query complexity were proved
to exist too; see [GGR] for artificial examples in two models and [BHR, BOT]
for natural examples in other models. In between these two extremes, there
exist natural properties for which the query complexity of testing is logarith-
mic (e.g., monotonicity [EKK+, GGL+]), a square root (e.g., bipartiteness in
the bounded-degree model [GR1, GR2]), and possibly other constant powers
(see [FM, PRR]).

2 Our Main Results

One natural question that arises is whether there exist properties of arbitrary
query complexity. We answer this question affirmatively, proving the existence of
a rich hierarchy of query complexity classes. Such hierarchy theorems are easiest
to state and prove in the generic case: Loosely speaking, for every sub-linear
function q, there exists a property of functions over [n] that is testable using
q(n) queries but is not testable using o(q(n)) queries.

Similar hierarchy theorems are proved also for two standard models of testing
graph properties: the adjacency representation model (of [GGR]) and the inci-
dence representation model (of [GR1]). For the incidence representation model
(a.k.a the bounded-degree graph model), we show that, for every sub-linear func-
tion q, there exists a property of bounded-degree N -vertex graphs that is testable
using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one
such property corresponds to the set of N -vertex graphs that are 3-colorable and
consist of connected components of size at most q(N).

The bulk of this paper is devoted to hierarchy theorems for the adjacency
representation model (a.k.a the dense graph model), where the complexity is
stated as a function of the number of vertices (rather than as a function of the
number of all vertex pairs, which is the representation size). Our main results
for the adjacency matrix model are:

1. For every sub-quadratic function q, there exists a graph property Π that
is testable in q queries, but is not testable in o(q) queries. Furthermore,
for “nice” functions q, it is the case that Π is in P and the tester can be
implemented in poly(q)-time.

2. For every sub-quadratic function q, there exists a monotone graph property
Π that is testable in O(q) queries, but is not testable in o(q) queries.

Additional results regarding the adjacency representation model are outlined in
Section 4.

Conventions. For sake of simplicity, we state all results while referring to query
complexity as a function of a size parameter that is polynomially related to the
object’s size (i.e., in the case of generic Boolean functions the size parameter is

Hierarchy Theorems for Property Testing 291

the size of the function’s domain, but in the case of graphs the size parameter is
the number of vertices). In other words, we consider a fixed (constant) value of
the proximity parameter, denoted ε. In such cases, we sometimes use the term ε-
testing, which refers to testing when the proximity parameter is fixed to ε.
All our lower bounds hold for any sufficiently small value of the proximity pa-
rameter, whereas the upper bounds hide a (polynomial) dependence on (the re-
ciprocal of) this parameter. In general, bounds that have no dependence on the
proximity parameter refer to some (sufficiently small but) fixed value of this
parameter.

A remotely related prior work. In contrast to the foregoing conventions, we men-
tion here a result that refers to graph properties that are testable in (query) com-
plexity that only depends on the proximity parameter. This result, due to [AS],
establishes a (very sparse) hierarchy of such properties. Specifically, [AS, Thm. 4]
asserts that for every function q there exists a function Q and a graph property
that is ε-testable in Q(ε) queries but is not ε-testable in q(ε) queries. (We note that
while Q depends only on q, the dependence proved in [AS, Thm. 4] is quite weak
(i.e., Q is lower bounded by a non-constant number of compositions of q), and thus
the hierarchy obtained by setting qi = Qi−1 for i = 1, 2, ... is very sparse.)

3 Our Techniques

The proofs of the hierarchy theorems for the generic case and for the incidence
representation graph model, are quite straightforward. In contrast, the treatment
of the dense graph model is significantly more involved. We discuss the source
of trouble next.

Given that properties of maximal query complexity are known in each of the
testing models that we consider, a natural idea towards proving hierarchy theo-
rems is to construct properties that correspond to repetitions of the original prop-
erties; that is, each object in the new property consists of an adequate number of
objects, each belonging to the original property. Straightforward implementations
of this idea work in the generic case and in the incidence representation graph
model, but not in the dense graph model. The point is that a naive repetition of
a graph, in this model, necessarily creates a graph that is not dense.

Nevertheless, the graph blow-up operation does seem to be the adequate con-
struction that we seek. Loosely speaking, the graph blow-up operation replaces
each vertex by an independent set (of a predetermined size), and replaces edges
by corresponding complete bipartite graphs. One source of trouble is that the
blow-up operation does not necessarily preserve distances; indeed the relative
distance between the blow-up of G1 and G2 is at most the relative distance be-
tween the original graphs, but the naive assumption that it may not be smaller
is false. We overcome this difficulty by showing that for certain graphs, which we
call dispersed, the blow-up does preserve the original distances (up to a constant
factor).1 Thus, we first reduce the testing of the original property to testing a
1 Our result was superseded by Oleg Pikhurko, who showed that for any two graphs,

the distance is actually preserved up to a constant factor [P, Sec. 4].)

292 O. Goldreich et al.

corresponding property that refers to dispersed graphs. (An n-vertex graph is
called dispersed if the neighbor sets of any two vertices differ on at least Ω(n)
elements.)

Using dispersed graphs also allows us to overcome another technical difficulty,
which relates to the complexity of our tester. In particular, the use of dispersed
graphs allows us to recover the canonical labeling of an unlabeled graph, which is
helpful whenever a graph property (viewed as a set of labeled graphs) is obtained
by a closure under isomorphism of some set of labeled graphs (cf. [GGR]).

When trying to obtain a result for monotone graph properties, we encounter
another technical difficulty. The difficulty is that standard constructions of mono-
tone graph properties (cf. [GT]) tend to lack any local structure, since the prop-
erty should be preserved under arbitrary edge additions. We demonstrate that
the latter conclusion is a bit hasty, by showing that a local structure can be es-
sentially maintained as long as the edge density does not exceed some threshold,
whereas we can include in the property all graphs that have edge density that
exceeds this threshold.

A third type of difficulty arises when we try to obtain one-sided error testers
(see Section 4). Towards this end, we use a different type of graph blow-up, which
we call generalized blow-up. While under the aforementioned (balanced) blow-up
operation each vertex is replaced by an independent set of the same size, in a
generalized blow-up these independent sets may have different sizes.

4 Additional Results

The bulk of our work provides hierarchy theorems for graph properties in the
adjacency matrix model. In particular, we have already mentioned the basic
hierarchy theorem regarding this model and our related theorem for monotone
graph properties. (These theorems are incomparable, see discussion below.)

We also address a refined issue that has been ignored above. Specifically,
we note that all our lower bounds refer to two-sided error testers, whereas the
upper bounds in the generic case and in the bounded-degree graph model are
demonstrated using one-sided error testers (which only make these separations
stronger). In contrast, the aforementioned upper bounds for the adjacency matrix
model use two-sided error testers. Seeking a hierarchy of one-sided error testing
also in this model, we modify the basic construction in order to obtain one-
sided error testers (while the lower bounds still hold for two-sided error testers).
However, the latter theorem loses some features of the former theorems; see
discussion below.

We mention that our results for graph properties in the adjacency matrix
model use the existence of graph properties that are in P and have maximal
query complexity. We prove the existence of such graph properties, by building
on a prior construction of [GGR], which only asserted such properties in NP .

Discussion: Three incomparable results regarding graph properties in the adja-
cency matrix model. As mentioned above, we proved three hierarchy theorems
for testing graph properties in the adjacency matrix model.

Hierarchy Theorems for Property Testing 293

1. The basic theorem is established by non-monotone properties (in P), while
the tester demonstrating the upper bound is relatively efficient in the sense
that its running time is polynomial in its query complexity. Both the lower
and upper bounds refer to two-sided testers.

2. The second theorem refers to monotone properties (in NP). Again, both the
lower and upper bounds refer to two-sided testers.

3. The third theorem refers to properties in P , but the tester demonstrating
the upper bound is not relatively efficient (i.e., its decision predicate is in
NP). However, in this case the tester has one-sided error (whereas the lower
bound holds also for two-sided testers).

Obtaining a single theorem that combines all good features is left as an open
problem.

Acknowledgments

We are grateful to Ronitt Rubinfeld for asking about the existence of hierarchy
theorems for the adjacency matrix model. Ronitt raised this question during a dis-
cussion that took place at the Dagstuhl 2008 workshop on sub-linear algorithms.
We are also grateful to Arie Matsliah, Dana Ron, and Yoav Tzur for helpful dis-
cussions. In particular, we thank Arie Matsliah for providing us with a proof that
the blow-up operation does not preserve distances in a perfect manner.

O.G. was partially supported by the Israel Science Foundation (grant No.
1041/08). M.K. was partially supported by a USA-Israel BSF Grant, by a grant
from the Israel Science Foundation, and by Pazy Memorial Award. I.N. was
partially supported by an Israel Science Foundation (grant number 1011/06).

References

[ABI] Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for

the Maximal Independent Set Problem. J. of Algorithms 7, 567–583 (1986)

[AFKS] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large

Graphs. Combinatorica 20, 451–476 (2000)

[AFNS] Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Character-

ization of the Testable Graph Properties: It’s All About Regularity. In: 38th

STOC, pp. 251–260 (2006)

[AGHP] Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of al-

most k-wise independent random variables. Journal of Random structures

and Algorithms 3(3), 289–304 (1992)

[AS] Alon, N., Shapira, A.: Every Monotone Graph Property is Testable. SIAM

Journal on Computing 38, 505–522 (2008)

[BSS] Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of

Sparse Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)

[BLR] Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applica-

tions to Numerical Problems. JCSS 47(3), 549–595 (1993)

[BHR] Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF Properties Are Hard

to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

294 O. Goldreich et al.

[BOT] Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-

colorability in bounded-degree graphs. In: 43rd FOCS, pp. 93–102 (2002)

[EKK+] Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-

checkers. JCSS 60(3), 717–751 (2000)

[FM] Fischer, E., Matsliah, A.: Testing Graph Isomorphism. In: 17th SODA, pp.

299–308 (2006)

[GGL+] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Test-

ing Monotonicity. Combinatorica 20(3), 301–337 (2000)

[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. Journal of the ACM, 653–750 (July 1998)

[GR1] Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algo-

rithmica 32(2), 302–343 (2002)

[GR2] Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree

Graphs. Combinatorica 19(3), 335–373 (1999)

[GT] Goldreich, O., Trevisan, L.: Three theorems regarding testing graph proper-

ties. Random Structures and Algorithms 23(1), 23–57 (2003)

[LNS] Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complex-

ity. Computational Complexity 17, 70–93 (2008)

[NN] Naor, J., Naor, M.: Small-bias Probability Spaces: Efficient Constructions

and Applications. SIAM J. on Computing 22, 838–856 (1993)

[PRR] Parnas, M., Ron, D., Rubinfeld, R.: Testing Membership in Parenthesis

Laguages. Random Structures and Algorithms 22(1), 98–138 (2003)

[P] Pikhurko, O.: An Analytic Approach to Stability (2009) (manuscript),

http://arxiv.org/abs/0812.0214

[R1] Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and

Trends in Machine Learning 1(3), 307–402 (2008)

[R2] Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS 5(2), 73–205 (2010)

[RS] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-

plications to program testing. SIAM Journal on Computing 25(2), 252–271

(1996)

[S] Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors.

In: Current Trends in Theoretical Computer Science: The Challenge of the

New Century. Algorithms and Complexity, vol. 1, World Scientific, Singapore

(2004); Preliminary version in Bulletin of the EATCS 77, 67–95 (2002)

http://arxiv.org/abs/0812.0214

Algorithmic Aspects of Property Testing

in the Dense Graphs Model

Oded Goldreich1 and Dana Ron2

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il
2 Department of Electrical Engineering-Systems, Tel-Aviv University, Tel-Aviv, Israel

danar@eng.tau.ac.il

Abstract. In this paper we consider two basic questions regarding the

query complexity of testing graph properties in the adjacency matrix

model. The first question refers to the relation between adaptive and

non-adaptive testers, whereas the second question refers to testability

within complexity that is inversely proportional to the proximity param-

eter, denoted ε. The study of these questions reveals the importance of

algorithmic design in this model. The highlights of our study are:

– A gap between the complexity of adaptive and non-adaptive testers.

Specifically, there exists a natural graph property that can be tested

using Õ(ε−1) adaptive queries, but cannot be tested using o(ε−3/2)

non-adaptive queries.

– In contrast, there exist natural graph properties that can be tested

using Õ(ε−1) non-adaptive queries, whereas Ω(ε−1) queries are re-

quired even in the adaptive case.

We mention that the properties used in the foregoing conflicting results

have a similar flavor, although they are of course different.

Keywords: Adaptivity vs. Non-adaptivity, Graph Properties.

This article is an extended abstract of our technical report [GR08]. While the
main text assume familiarity with the basic model, all relevant definitions appear
in Section A.1.

1 Introduction

In the last couple of decades, the area of property testing has attracted much at-
tention (see, e.g., a couple of recent surveys [R1, R2]). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain bits of the object
by performing queries, which means that the object is seen as a function and
the testers get oracle access to this function. Thus, a tester may be expected to
work in time that is sub-linear in the length of the description of this object.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 295–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

296 O. Goldreich and D. Ron

Much of the aforementioned work (see, e.g., [GGR, AFKS, AFNS]) was de-
voted to the study of testing graph properties in the adjacency matrix model,
which is also the setting of the current work. In this model, introduced in [GGR],
graphs are viewed as symmetric Boolean functions over a domain consisting of
all possible vertex-pairs. Namely, an N -vertex graph G = ([N], E) is repre-
sented by the function g : [N] × [N] → {0, 1} such that {u, v} ∈ E if and
only if g(u, v) = 1. Consequently, an N -vertex graph represented by the func-
tion g : [N] × [N] → {0, 1} is said to be ε-far from some predetermined graph
property if more than ε · N2 entries of g must be modified in order to yield a
representation of a graph that has this property. We refer to ε as the proximity
parameter, and the complexity of testing is stated in terms of ε and the number,
N , of vertices in the graph.

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/ε), and [AFNS], which characterizes the
class of properties that are testable within query complexity that depends only
on the proximity parameter (where this dependence may be an arbitrary func-
tion of ε). However, a common phenomenon in all the aforementioned works
is that they utilize quite naive algorithms and their focus is on the analysis of
these algorithms, which is often quite sophisticated. This phenomenon is no co-
incidence: As shown in [AFKS, GT], when ignoring a quadratic blow-up in the
query complexity, property testing in this model reduces to sheer combinatorics.
Specifically, without loss of generality, the tester may just inspect a random
induced subgraph (of adequate size) of the input graph.

In this paper we demonstrate that a more refined study of property testing in
this model reveals the importance of algorithmic design also in this model. This
is demonstrated both by studying the advantage of adaptive testers over non-
adaptive ones as well as by studying the class of properties that can be tested
within complexity that is inversely proportional to the proximity parameter.

2 Two Related Studies

We start by reviewing the two related studies conducted in the current work.

2.1 Adaptivity vs. Non-adaptivity

A tester is called non-adaptive if it determines all its queries independently of
the answers obtained for previous queries, and otherwise it is called adaptive.
Indeed, by [AFKS, GT], the benefit of adaptivity (or, equivalently, the cost of
non-adaptivity) is polynomially bounded: Specifically, any (possibly adaptive)
tester, for any graph property, of query complexity q(N, ε) can be transformed
into a non-adaptive tester of query complexity O(q(N, ε)2). But is this quadratic
gap an artifact of the known proofs (of [AFKS, GT]) or does it reflect something
inherent?

A recent work by [GR07] suggests that the latter case may hold: For every
ε > 0, they showed that the set of N -vertex bipartite graphs of maximum degree

Algorithmic Aspects of Property Testing in the Dense Graphs Model 297

O(εN) is ε-testable (i.e., testable with respect to proximity parameter ε) by
Õ(ε−3/2) queries, while by [BT] a non-adaptive tester for this set must use Ω(ε−2)
queries. Thus, there exists a case where non-adaptivity has the cost of increasing
the query complexity; specifically, for any c < 4/3, the query complexity of the
non-adaptive tester is greater than a c-power of the query complexity of the
adaptive tester (i.e., Õ(ε−3/2)c = o(ε−2)). We stress that the result of [GR07]
does not refer to property testing in the “proper” sense; that is, the complexity
is not analyzed with respect to a varying value of the proximity parameter for
a fixed property. It is rather the case that, for every value of the proximity
parameter, a different property, which depends on this parameter, is considered.
The upper bounds and lower bounds refer to this combination of a property
tailored for a fixed value of the proximity parameter. Thus, the work of [GR07]
leaves open the question of whether there exists a single graph property such
that adaptivity is beneficial for any value of the proximity parameter (as long as
ε > N−Ω(1)). That is, the question is whether adaptivity is beneficial for the
standard asymptotic-complexity formulation of property testing.

2.2 Complexity Linearly Related to the Proximity Parameter

As shown in [GGR], many natural graph properties can be tested within query
complexity that is polynomial in the reciprocal of the proximity parameter and
independent of the size of the graph. We ask whether a linear complexity is
possible at all, and if so which properties can be tested with query complexity
that is linear (or almost linear) in the reciprocal of the proximity parameter,
that is, with query complexity Õ(1/ε).1

The first question is easy to answer even when avoiding trivial properties. We
say that a graph property Π is trivial for testing if for every ε > 0 there exists
N0 > 0 such that for every N ≥ N0 either all N -vertex graphs belong to Π or
all of them are ε-far from Π . Note that the property of being a clique (equiv.,
an independent set) can be tested by O(1/ε) queries, even when these queries
are non-adaptive (e.g., make O(1/ε) random queries and accept if and only if all
return 1). Still, we ask whether “more interesting” graph theoretical properties
can also be tested within similar complexity, either only adaptively or also non-
adaptively. In particular, the property of being a clique (or an independent set)
is viewed as “non-interesting” since it contains a single N -vertex graph (per each
N) and is represented by a monochromatic function.

3 Our Results

We address the foregoing questions by studying a sequence of natural graph prop-
erties, which are defined formally in Section A.2. The first property in the se-
quence, called clique collection and denoted CC, is the set of graphs such that each
graph consists of a collection of isolated cliques. Testing this property corresponds
1 Note that Ω(1/ε) queries are required for testing any of the graph properties con-

sidered in the current work.

298 O. Goldreich and D. Ron

to the following natural clustering problem: can a set of possibly related elements
be partitioned into “perfect clusters” (i.e., two elements are in the same cluster if
and only if they are related)? For this property, CC, we prove a gap between adap-
tive and non-adaptive query complexity, where the adaptive query complexity is
almost linear in the reciprocal of the proximity parameter. That is:

Theorem 3.1. (the query complexity of clique collection):

1. There exists an adaptive tester of query complexity Õ(ε−1) for CC. Further-
more, this tester has one-sided error and runs in time Õ(ε−1).2

2. Any non-adaptive tester for CC must have query complexity Ω(ε−4/3).
3. There exists a non-adaptive tester of query complexity O(ε−4/3) for CC. Fur-

thermore, this tester has one-sided error and runs in time O(ε−4/3).

Note that the complexity gap between Parts 1 and 2 of Theorem 3.1 matches
the gap established by [GR07] for “non-proper” testing. A larger gap is estab-
lished for a property of graphs, called bi-clique collection and denoted BCC, where
a graph is in BCC if it consists of a collection of isolated bi-cliques (i.e., com-
plete bipartite graphs). We note that bi-cliques may be viewed as the bipartite
analogues of cliques (w.r.t. general graphs), and indeed they arise naturally in
clustering applications that are modeled by bipartite graphs over two types of
elements.

Theorem 3.2. (the query complexity of bi-clique collection):

1. There exists an adaptive tester of query complexity Õ(ε−1) for BCC. Fur-
thermore, this tester has one-sided error and runs in time Õ(ε−1).

2. Any non-adaptive tester for BCC must have query complexity Ω(ε−3/2). Fur-
thermore, this holds even if the input graph is promised to be bipartite.

The furthermore clause in Part 2 of Theorem 3.2 holds also for the model studied
in [AFN], where the bi-partition of the graph is given.

Theorem 3.2 asserts that the gap between the query complexity of adaptive
and non-adaptive testers may be a power of 1.5 − o(1). Recall that the results
of [AFKS, GT] assert that the gap may not be larger than quadratic. We con-
jecture that this upper bound can be matched.

Conjecture 3.3 (an almost-quadratic complexity gap): For every positive in-
teger t ≥ 5, there exists a graph property Π for which the following holds:

1. There exists an adaptive tester of query complexity Õ(ε−1) for Π.
2. Any non-adaptive tester for Π must have query complexity Ω(ε−2+(2/t)).
3. There exists an efficient non-adaptive tester of query complexity Õ(ε−2+2t−1

)
for Π.

2 We refer to a model in which elementary operations regarding pairs of vertices are

charged at unit cost.

Algorithmic Aspects of Property Testing in the Dense Graphs Model 299

Furthermore, Π consists of graphs that are each a collection of “super-cycles”
of length t, where a super-cycle is a set of t independent sets arranged on a
cycle such that each pair of adjacent independent sets is connected by a complete
bipartite graph.

We were able to prove Part 2 of Conjecture 3.3, but failed to provide a full
analysis of an algorithm that we designed for Part 1. However, we were able
to prove a promise problem version of Conjecture 3.3; specifically, this promise
problem (stated in Theorem A.4) refers to inputs promised to reside in a set
Π ′ ⊃ Π and the tester is required to distinguish graphs in Π from graphs that
are ε-far from Π .

In contrast to the foregoing results that aim at identifying properties with a
substantial gap between the query complexity of adaptive versus non-adaptive
testing, we also study cases in which no such gap exists. Since query complexity
that is linear in the reciprocal of the proximity parameter is minimal for many
natural properties, and, in fact, for any property that is “non-trivial for testing”
(as defined at the end of Section 2), we focus on non-adaptive testers that ap-
proximately meet this bound. Among the results obtained in this direction, we
highlight the following one.

Theorem 3.4. (the query complexity of collections of O(1) cliques): For every
positive integer c, there exists a non-adaptive tester of query complexity Õ(ε−1)
for the set of graphs such that each graph consists of a collection of up to c

cliques. Furthermore, this tester has one-sided error and runs in time Õ(ε−1).

Theorem 3.4 should be viewed as a first step in the study of graph properties
that are the simplest to test; that is, the class of graph properties that have a
non-adaptive of query complexity Õ(ε−1). We mention that a second step, which
significantly generlaizes Theorem 3.4, has been subsequently taken in [A09, AG].

Discussion. The foregoing results demonstrate that a finer look at property test-
ing of graphs in the adjacency matrix model reveals the role of algorithm design
in this model. In particular, in some cases (see, e.g., Theorems 3.1 and 3.2),
carefully designed adaptive algorithms outperform any non-adaptive algorithm.
Indeed, this conclusion stands in contrast to [GT, Thm. 2], which suggests that a
less fine view, which ignores polynomial blow-ups,3 deems algorithm design irrel-
evant to this model. We also note that, in some cases (see, e.g., Theorem 3.4 and
Part 3 of Theorem 3.1), carefully designed non-adaptive algorithms outperform
canonical ones.

As discussed previously, one of the goals of this work was to study the relation
between adaptive and non-adaptive testers in the adjacency matrix model. Our
results demonstrate that, in this model, the relation between the adaptive and

3 Recall that [GT, Thm. 2] asserts that canonical testers, which merely select a ran-

dom subset of vertices and rule according to the induced subgraph, have query-

complexity that is at most quadratic in the query-complexity of the best tester. We

note that [GT, Thm. 2] also ignores the time-complexity of the testers.

300 O. Goldreich and D. Ron

non-adaptive query-complexities is not fixed, but rather varies with the compu-
tational problem at hand. In some cases (e.g., Theorem 3.4) the complexities
are essentially equal, indeed, as in the case of sampling [CEG]. In other cases
(e.g., Theorem 3.1), these complexities are related by a fixed power (e.g., 4/3)
that is strictly between 1 and 2. And, yet, in other cases (e.g., Theorem A.4) the
non-adaptive complexity is quadratic in the adaptive complexity, which is the
maximum gap possible (by [AFKS, GT]). Furthermore, by Theorem A.4, for any
t ≥ 4, there exists a promise problem for which the aforementioned complexities
are related by a power of 2 − (2/t).

Needless to say, the fundamental relation between adaptive and non-adaptive
algorithms was studied in a variety of models, and the current work studies it in
a specific natural model (i.e., of property testing in the adjacency matrix repre-
sentation). In particular, this relation has been studied in the context of property
testing in other domains. Specifically, in the setting of testing the satisfiability of
linear constraints, it was shown that adaptivity offers absolutely no gain [BHR]. A
similar result holds for testing monotonicity of sequences of positive integers [F04].
In contrast, an exponential gap between the adaptive and non-adaptive complex-
ities may exist in the context of testing other properties of functions [F04]. Lastly,
we mention that an even more dramatic gap exists in the setting of testing graph
properties in the bounded-degree model (of [GR02]); see [RS06].

4 A Complexity Theoretic Perspective

Let us start by rephrasing Conjecture 3.3, while recalling that it refers to proper-
ties for which testing requires (adaptive) query complexity that is at least linear
in the reciprocal of the proximity parameter (see Proposition A.2).

Conjecture 3.3 (rephrased). For every integer t ≥ 2, there exists a (natu-
ral) graph property Πt such that non-adaptively testing Πt has query complexity
Θ̃(q2−(2/t)), where q = q(N, ε) denotes the the query complexity of (adaptively)
testing Πt.

Recall that it is known that the non-adaptive query complexity of testing any
graph property is at most quadratic in the adaptive query complexity. We stress
that Conjecture 3.3 not only asserts that this upper bound is essentially tight,
but rather asserts an infinite hierarchy of possible functional relations between
the non-adaptive and adaptive query complexity.

The results in this work refer to “two and a half” elements in the conjec-
tured hierarchy as well as to a corresponding hierarchy of promise problems.
Specifically, denoting the (adaptive) query complexity by q = q(N, ε), we have:

– Theorem 3.4 establishes the conjecture for t = 2. Specifically, Theorem 3.4
presents natural graph properties that have non-adaptive query complexity
Θ̃(q).

– Theorem 3.1 establishes the conjecture for t = 3. Specifically, Theorem 3.1
presents a natural graph property that has non-adaptive query complexity
Θ̃(q4/3).

Algorithmic Aspects of Property Testing in the Dense Graphs Model 301

– Theorem 3.2 establishes half of the conjecture for t = 4. Specifically, The-
orem 3.2 presents a natural graph property that has non-adaptive query
complexity Ω̃(q3/2).

– Theorem A.4 fully establishes the conjecture in the setting of promise prob-
lems. We stress that these promise problems are fixed (independently of the
proximity parameter).

Indeed, in all our results q = q(N, e) = Ω̃(1/ε). We also mention that in all our
results the upper bounds are established by one-sided error testers, whereas the
lower bounds hold also for general (i.e., two-sided error) testers.

Open problems. In addition to the resolution of Conjecture 3.3, our study raises
many other open problems; the most evident ones are listed next.

1. What is the non-adaptive query complexity of BCC? Note that Theorem 3.2
only establishes a lower bound of Ω(ε−3/2). We conjecture that an efficient
non-adaptive algorithm of query complexity Õ(ε−3/2) can be devised.

2. For which constants c ∈ [1, 2] does there exist a property that has adaptive
query complexity of q(ε) and non-adaptive query complexity of Θ̃(q(ε)c)?
Note that Theorem 3.1 shows that 4/3 is such a constant, and the same holds
for the constant 1 (see, e.g., Theorem 3.4). We conjecture (see Conjecture 3.3)
that, for any t ≥ 2, it holds that the constant 2 − (2/t) also satisfies the
foregoing requirement. It may be the case that these constants are the only
ones that satisfy this requirement.

3. Characterize the class of graph properties for which the query complexity
of non-adaptive testers is almost linear in the query complexity of adaptive
testers.

4. Characterize the class of graph properties for which the query complexity of
non-adaptive testers is almost quadratic in the query complexity of adaptive
testers.

5. Characterize the class of graph properties for which the query complexity
of adaptive (resp., non-adaptive) testers is almost linear in the reciprocal of
the proximity parameter.

The last characterization project may be the most feasible among the three
foregoing characterization projects. We mention that this is partially addressed
in [A09, AG], which significatly extends and build upon Theorem 3.4. Finally,
we recall the well-known open problem, partially addressed in [AS], of providing
a characterization of the class of graph properties that are testable within query
complexity that is polynomial in the reciprocal of the proximity parameter.

Acknowledgments

O.G. was partially supported by the Israel Science Foundation (grants No. 460/05
and 1041/08). D.R. was partially supported by the Israel Science Foundation
(grants No. 89/05 and 246/08).

302 O. Goldreich and D. Ron

References

[A81] Alon, N.: On the number of subgraphs of prescribed type of graphs with a

given number of edges. Israel J. Math. 38, 116–130 (1981)

[AFKS] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large

Graphs. Combinatorica 20, 451–476 (2000)

[AFN] Alon, N., Fischer, E., Newman, I.: Testing of bipartite graph properties. SIAM

Journal on Computing 37, 959–976 (2007)

[AFNS] Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Character-

ization of the Testable Graph Properties: It’s All About Regularity. In: 38th

STOC, pp. 251–260 (2006)

[AS] Alon, N., Shapira, A.: A Characterization of Easily Testable Induced Sub-

graphs. Combinatorics Probability and Computing 15, 791–805 (2006)

[A09] Avigad, L.: On the Lowest Level of Query Complexity in Testing Graph Prop-

erties. Master Thesis, Weizmann Institute of Scienc (December 2009)

[AG] Avigad, L., Goldreich, O.: Testing Graph Blow-Up,

http://www.wisdom.weizmann.ac.il/~oded/p_lidor.html

[BHR] Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF properties are hard to

test. SIAM Journal on Computing 35(1), 1–21 (2005)

[BT] Bogdanov, A., Trevisan, L.: Lower Bounds for Testing Bipartiteness in Dense

Graphs. In: IEEE Conference on Computational Complexity, pp. 75–81 (2004)

[CEG] Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms

for Estimating the Average. IPL 53, 17–25 (1995)

[F04] Fischer, E.: On the strength of comparisons in property testing. Inform. and

Comput. 189(1), 107–116 (2004)

[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM, 653–750 (July 1998)

[GR02] Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algo-

rithmica 32(2), 302–343 (2002)

[GR08] Goldreich, O., Ron, D.: Algorithmic Aspects of Property Testing in the Dense

Graphs Model. ECCC, TR08-039 (2008)

[GR09] Goldreich, O., Ron, D.: On Proximity Oblivious Testing. In: Extended Abstract

in the Proceedings of the 41st STOC (2009)

[GT] Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.

Random Structures and Algorithms 23(1), 23–57 (2003)

[GR07] Gonen, M., Ron, D.: On the Benefit of Adaptivity in Property Testing of

Dense Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)

RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 525–539. Springer,

Heidelberg (2007)

[R1] Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and

Trends in Machine Learning 1(3), 307–402 (2008)

[R2] Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS 5(2), 73–205 (2010)

[RS06] Raskhodnikova, S., Smith, A.: A note on adaptivity in testing properties of

bounded-degree graphs. ECCC,TR06-089 (2006)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-

plications to program testing. SIAM Journal on Computing 25(2), 252–271

(1996)

http://www.wisdom.weizmann.ac.il/~oded/p_lidor.html

Algorithmic Aspects of Property Testing in the Dense Graphs Model 303

A Appendix

In this section we review the definition of property testing, when specialized to
graph properties in the adjacency matrix model. We also define several natural
graph properties, which serve as the pivot of our study, and state some additional
results.

A.1 Basic Notions

For an integer n, we let [n] = {1, . . . , n}. A generic N -vertex graph is denoted
by G = ([N], E), where E ⊆ {{u, v} : u, v ∈ [N]} is a set of unordered pairs of
vertices. Any set of such graphs that is closed under isomorphism is called a graph
property. By oracle access to such a graph G = ([N], E) we mean oracle access to
the Boolean function that answers the query {u, v} (or rather (u, v) ∈ [N]× [N])
with the bit 1 if and only if {u, v} ∈ E.

Definition A.1 (property testing for graphs in the adjacency matrix model):
A tester for a graph property Π is a probabilistic oracle machine that, on input
parameters N and ε and access to an N -vertex graph G = ([N], E), outputs a
binary verdict that satisfies the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than εN2.4

If the tester accepts every graph in Π with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and ε); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph oracle, as a function of the parameters N and ε. We say that a
tester is efficient if it runs in time that is polynomial in its query complexity,
where basic operations on elements of [N] (and in particular, uniformly selecting
an element in [N]) are counted at unit cost. We note that all testers presented
in this paper are efficient, whereas the lower bounds hold also for non-efficient
testers.

We shall focus on properties that can be tested with query complexity that
only depends on the proximity parameter, ε. Thus, the query complexity upper
bounds that we state hold for any values of ε and N , but will be meaningful
only for ε > 1/N2 or so. In contrast, the lower bounds (e.g., of Ω(1/ε)) cannot
possibly hold for ε < 1/N2, but they will indeed hold for any ε > N−Ω(1).
Alternatively, one may consider the query-complexity as a function of ε, where
for each fixed value of ε > 0 the value of N tends to infinity.
4 Indeed, it is more natural to require that this symmetric difference should have

cardinality that is greater than ε · (N
2

)
. The current convention is adopted for the

sake of convenience.

304 O. Goldreich and D. Ron

Notation and a convention. For a fixed graph G = ([N], E), we denote by
Γ (v) = {u : {u, v} ∈ E} the set of neighbors of vertex v. At times, we look
at E as a subset of V × V ; that is, we often identify E with {(u, v) :{u, v}∈E}.
If a graph G = ([N], E) is not ε-far from a property Π then we say that G is ε-
close to Π ; this means that at most εN2 edges should be added and/or removed
from G such to yield a graph in Π .

A.2 The Graph Properties to Be Studied

The set of graphs that consists of a collection of isolated cliques is called clique
collection and is denoted CC; that is, a graph G = ([N], E) is in CC if and only if
the vertex set [N] can be partitioned into (C1, . . . , Ct) such that the subgraph
induced by each Ci is a clique and there are no edges with endpoints in different
Ci’s (i.e., for every u < v ∈ [N] it holds that {u, v} ∈ E if and only if there
exists an i such that u, v ∈ Ci). If t ≤ c then we say that G is in CC≤c; that is,
CC≤c is the subset of CC that contains graphs that are each a collection of up-to
c isolated cliques.

A bi-clique is a complete bipartite graph (i.e., a graph G = (V, E) such that
V is partitioned into (S, V \ S) such that {u, v} ∈ E if and only if u ∈ S and
v ∈ V \ S). Note that a graph is a bi-clique if and only if its complement is
in CC≤2. The set of graphs that consists of a collection of isolated bi-cliques is
called bi-clique collection and denoted BCC; that is, a graph G = ([N], E) is in
BCC if and only if the vertex set [N] can be partitioned into (V1, . . . , Vt) such
that the subgraph induced by each Vi is a bi-clique and there are no edges with
endpoints in different Vi’s (i.e., each Vi is partitioned into (Si, Vi \ Si) such that
for every u < v ∈ [N] it holds that {u, v} ∈ E if and only if there exists an i

such that (u, v) ∈ Si × (Vi \ Si)).
Generalizations of BCC are obtained by considering collections of “super-

paths” and “super-cycles” respectively. A super-path (of length t) is a sequence
of disjoint sets of vertices, S1, . . . , St, such that vertices u, v ∈ ⋃

i∈[t] Si are con-
nected by an edge if and only if for some i ∈ [t − 1] it holds that u ∈ Si and
v ∈ Si+1. Note that a bi-clique can be viewed as a super-path of length two. We
denote the set of graphs that consists of a collection of isolated super-paths of
length t by SPtC (e.g., SP2C = BCC). Similarly, a super-cycle (of length t) is a
sequence of disjoint sets of vertices, S1, . . . , St, such that vertices u, v ∈ ⋃

i∈[t] Si

are connected by an edge if and only if for some i ∈ [t] it holds that u ∈ Si

and v ∈ S(i mod t)+1. Note that a bi-clique that has at least two vertices on each
side can be viewed as a super-cycle of length four (by partitioning each of its
sides into two parts). We denote the set of graphs that consists of a collection
of isolated super-cycles of length t by SCtC (e.g., SC4C ⊂ BCC, where the strict
containment is due to the pathological case of bi-cliques having at most one node
on one side).

A.3 Additional Results

In this section we state two simple lower bounds as well as the promise problem
version of Conjecture 3.3.

Algorithmic Aspects of Property Testing in the Dense Graphs Model 305

Lower bounds. We first note that Ω(1/ε) (adaptive) queries are required for
testing any graph property that is non-trivial for testing, where a graph property
Π is non-trivial for testing if there exists ε0 > 0 such that for infinitely many
N ∈ N there exist N -vertex graphs G1 and G2 such that G1 ∈ Π and G2 is ε0-
far from Π . We note that all properties considered in this work are non-trivial
for testing. On the other hand, the negation of this (non-triviality) condition
means that for every ε > 0 and all sufficiently large N ∈ N either Π contains
no N -vertex graph or all N -vertex graphs are ε-close to Π . In such a case (for
every such ε and N), the tester may decide without even looking at the graph.5

Turning back to properties that are non-trivial for testing, we prove that any
tester for such a property must have query complexity Ω(1/ε).

Proposition A.2. Let Π be a property that is non-trivial for testing. Then, any
tester for Π has query complexity Ω(1/ε).

Note that the claim holds also for general properties (i.e., arbitrary sets of func-
tions). To justify the fact that all our testers are inherently non-canonical, we
show that (for any property that is non-trivial for testing) canonical testers must
use Ω(ε−2) queries.

Proposition A.3. Let Π be a property that is non-trivial for testing. Then, any
canonical tester for Π has query complexity Ω(1/ε2).

The promise problem version of Conjecture 3.3. For every positive integer t ≥ 4,
we consider a promise problem, denoted Πt, having inputs that are either in SCtC
or in some specific subset, denoted SC2tC′, of SC2tC. On proximity parameter ε,
a tester of Πt is required to accept inputs in SCtC and reject inputs in SC2tC′

that are ε-far from SCtC.

Theorem A.4. (an almost-quadratic complexity gap for promise problems):
For every positive integer t ≥ 4, the promise problem Πt satisfies the following:

1. There exists an adaptive tester of query complexity Õ(ε−1) for Πt. Further-
more, this tester runs in time Õ(ε−1).

2. Any non-adaptive tester for Πt must have query complexity Ω(ε−2+(2/t)).
3. There exists a non-adaptive tester of query complexity O(ε−2+(2/t)) for Πt.

Furthermore, this tester runs in time O(ε−2+(2/t)).

5 Indeed, there exists natural graph properties that are trivial for testing (e.g., con-

nectivity, non-planarity, having no vertex of odd degree); see [GGR, Sec. 10.2.1].

Testing Euclidean Spanners�

Frank Hellweg, Melanie Schmidt, and Christian Sohler

Department of Computer Science

Technical University of Dortmund

44227 Dortmund, Germany

{frank.hellweg,melanie.schmidt,christian.sohler}@tu-dortmund.de

Abstract. In this paper we develop a property testing algorithm for

the problem of testing whether a directed geometric graph is a (1 + δ)-
spanner.

Keywords: Geometric properties, sparse graphs.

1 Introduction

Property testing is the computational task of deciding whether a given object
(for example, a graph, a function, or a point set) has a predetermined property Π

(for example bipartiteness, linearity, or convex position) or is far away from every
object with property Π . Thus, property testing can be viewed as a relaxation of
the standard decision problem ”Does input graph G have property Π or not?”.
Since in property testing one only needs to solve a relaxed decision problem, this
can often be done much faster than solving the exact problem. Therefore, given
access to the input object the goal of property testing is to develop very fast
randomized algorithms that perform the relaxed decision task by only looking
at a small part of the input object. Typically, the running time of a property
testing algorithm is sublinear and sometimes even independent of the object’s
description size.

Property testing has been introduced by Rubinfeld and Sudan [35] and the
study of combinatorial properties has been initiated by Goldreich, Goldwasser,
and Ron [27]. Since then, property testing algorithms have been developed for
properties of functions [26,25,11], properties of distributions [9,8], algebraic prop-
erties [12,35,30], graph and hypergraph properties [27,3,4,18,10,17,7,28], and ge-
ometric properties [20,22]. In this paper we continue the study of property testing
algorithms for geometric properties.

The first property testing algorithms for geometric properties were developed
independently in [20] and [22]. In [20] the authors studied properties of geometric
objects like point sets and geometric graphs. Among other things, the authors
proved that it can be tested in O(d+1

√
nd/ε) queries whether a point set in Rd

� An extended version of this abstract will appear in the proceedings of the 18th

European Symposium on Algorithms (ESA), 2010. This work was supported by

DFG project SO 514/3-1.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 306–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Euclidean Spanners 307

is in convex position and with Õ(
√

n/ε) time whether a given geometric graph
whose vertices lie in the R2 is a Euclidean minimum spanning tree (see also [21]).
In [22] the authors showed that one can test in O(log n) time (for constant ε)
whether a list of points is a list of vertices of a convex polygon. The property
of convexity of subsets of the Rd can be tested with exponential (in d) query
complexity [34]. The property how well-clustered a point set is has also been
studied [1]. The authors showed that certain properties corresponding to radius
and diameter k-clustering are testable in time independent of the input size.

Most previous testers allow only very simple access to the input data, for
example, if the input object is a point set, then only access to random points of
the set is given. In [19] the authors introduce different models that allow more
complex queries to input point sets, for example, queries for random points
inside a specified query range R. Such queries are supported efficiently by basic
geometric data structures. Using such queries, they obtain new property testing
algorithms, for example, an improved tester for convex position.

Closely related to property testing is the area of sublinear time algorithms.
In this field geometric properties have also been studied. It has been shown that
it can be tested in O(

√
n) expected time whether two 3D polyhedra intersect

and that one can perform a point location in planar convex subdivisions with
bounded face size in O(

√
n) time [14]. In both cases, the algorithm is given access

to a standard representation of the object, for example, to doubly connected edge
lists, and no preprocessing of the data is allowed. It has also been shown that
the cost of the Euclidean minimum spanning tree of a point set in Rd can be
approximated within a factor of (1 + ε) in sublinear time, if one allows access to
the point set via certain range queries [16].

1.1 Euclidean Spanners

A weighted directed geometric graph (P, E) is a directed graph whose vertex set
is a set of points P = {p1, . . . , pn} in the Euclidean space Rd and whose edge
weights (lengths) are given by the Euclidean distance of the vertices, i.e. edge
[p, q〉 has length ‖p − q‖2. A graph is called (1 + δ)-spanner, if for every pair of
vertices p, q the shortest path distance dG(p, q) in G is at most (1+ δ) · ‖p− q‖2,
i.e. the shortest path distance in G is a good approximation of the true distance
of the points p and q.

Definition 1. Let δ > 0 be a parameter. A geometric graph G is called a (1+δ)-
spanner, if dG(p, q) ≤ (1 + δ)‖q − p‖2 for all pairs of vertices (p, q) ∈ P 2, p �= q.

Euclidean spanners are a fundamental geometric graph structure as they can be
used to approximately solve many geometric proximity problems, and they find
applications, for example, in the area of mobile ad-hoc networks. Many differ-
ent constructions of Euclidean spanners are known. Euclidian (1 + δ)-spanners
with a linear number of edges can, for example, be constructed for every con-
stant δ > 0 by using so-called Θ-graphs [15,29] or structures based on the well-
separated pair decomposition [13,32]. Also techniques to construct spanners with
bounded-degree are known [6]. For more details we refer to the book [32]. We

308 F. Hellweg, M. Schmidt, and C. Sohler

will investigate the question whether a given graph is a Euclidean spanner. The
related question of computing the stretch factor (1 + δ) of a given graph has
recently been studied in [5,23,31]. Additionally, Ahn et al. [2] discuss the prob-
lem to find an edge whose removal leads to the smallest possible increase in the
stretch factor, and Farshi et al. [24] consider the question which edge should be
added to receive the best decrease in the stretch factor (both articles consider
very special cases only).

1.2 Our Contribution

In this work, we develop property testing algorithms for Euclidean spanners for
0 < δ < 1. We are given access to a geometric graph G = (P, E), whose vertex set
P = {p1, . . . , pn} is a point set in a constant dimensional space Rd, i.e. pi ∈ Rd

for all 1 ≤ i ≤ n. The algorithm is given n, the number of vertices of G, but not
the vertex positions. It can query in O(1) time the coordinates of a point pi for
every index i, 1 ≤ i ≤ n. The graph structure of G is given in the non-functional
adjacency list model [33], i.e., we assume that for every vertex pi we can query
in O(1)

– the degree deg(pi) of a vertex pi for every index i, 1 ≤ i ≤ n, and
– the index of the j-th neighbor of pi for indices i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤

deg(pi).

We next define the notion of ε-far.

Definition 2. Let G be a directed geometric graph and let 0 < ε < 1. G is ε-far
from being a (1+δ)-spanner, if one has to modify (insert, delete or replace) more
than εn edges to make G a (1+δ)-spanner. G is ε-close to being a (1+δ)-spanner,
if it is not ε-far from it.

An algorithm A is called a property tester with one-sided error for the property
of being a (1 + δ)-spanner, if for any directed geometric graph G it outputs

– true with a probability of 1, if G is a (1 + δ)-spanner
– false with probability at least 2/3, if G is ε-far from being a (1 + δ)-spanner

when it is given n, δ and ε as input and access to the geometric graph G =
(P, E) as described above. The query complexity of A is the worst-case number
of queries performed by the algorithm (counting queries for vertex positions,
degrees and neighbors).

In this paper, we show that the property of being a (1 + δ)-spanner can be
tested with Õ(D

√
n·log6 Δ

ε4) queries for constant d and δ under the assumption
that the points come from {1, . . . , Δ}d and that D is the maximum degree of
the input graph. We also provide a lower bound of Ω(n1/3) for property testing
algorithms with 1-sided error.

Testing Euclidean Spanners 309

2 The Testing Algorithm

Our testing algorithm works as follows. Ignoring the dependence on ε, δ and Δ,
the algorithm samples s = Θ̃(

√
n) vertices r1, . . . , rs uniformly at random and

performs a Dijkstra’s algorithm from each of these vertices with respect to the
Euclidean lengths of the edges until Θ(log n) vertices have been visited. Now let
Wi denotes the distance of the furthest vertex visited from starting vertex ri.
The algorithm checks for every sample vertex rj with ‖ri − rj‖2 < Wi/(1 + δ),
whether there is a spanner path from ri to rj . If such a path does not exist,
our algorithm rejects. Note that, if G is a (1 + δ)-spanner then such a path
must exist, because any vertex not seen by the Dijkstra traversal has a graph
distance of at least Wi. In order to prove that any input graph that is ε-far from
a (1 + δ)-spanner is rejected with high (constant) probability, we show that any
graph that does not have too many missing edges between closeby vertices can
be turned into a spanner by adding these missing edges plus relatively few long
edges. This implies that any such graph cannot be ε-far from a Euclidean spanner
and so any graph that is ε-far from a Euclidean spanner has many missing local
edges. By combining this observation with a typical birthday paradox argument
for the end points of the missing edges we obtain our main result.

Theorem 1. Let G = (P, E) be a geometric graph with P ⊆ {1, . . . , Δ}d and
maximum degree D. There is a property testing algorithm with query complexity
and running time Õ(δ−5dε−5D log6

Δ
√

n) that accepts G, if G is a (1+δ)-spanner
and rejects G with probability at least 2/3, if G is ε-far from a (1 + δ)-spanner.

References

1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of Clustering. SIAM Journal on

Discrete Mathematics 16(3), 393–417 (2003)

2. Ahn, H.-K., Farshi, M., Knauer, C., Smid, M., Wang, Y.: Dilation-Optimal

Edge Deletion in Polygonal Cycles. In: Algorithms and Computation, pp. 88–99.

Springer, Heidelberg (2007)

3. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large

Graphs. Combinatorica 20(4), 451–476 (2000)

4. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization

of the testable graph properties: it’s all about regularity. SIAM Journal on Com-

puting 39(1), 143–167 (2009)

5. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,

M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D

and 3D. Discrete and Computational Geometry 39(1-3), 17–37 (2007)

6. Arya, S., Das, G., Mount, M., Salowe, J.S., Smid, M.: Euclidean spanners: short,

thin, and lanky. In: Proceedings of the 27th Annual ACM Symposium on Theory

of Computing (STOC), pp. 489–498 (1995)

7. Avart, C., Rödl, V., Schacht, M.: Every Monotone 3-Graph Property is Testable.

SIAM Journal on Discrete Mathematics 21(1), 73–92 (2007)

8. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing

Random Variables for Independence and Identity. In: Proceedings of the 42nd IEEE

Symposium on Foundations of Computer Science (FOCS), pp. 442–451 (2001)

310 F. Hellweg, M. Schmidt, and C. Sohler

9. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W., White, P.: Testing that distribu-

tions are close. In: Proceedings of the 41st IEEE Symposium on Foundations of

Computer Science (FOCS), pp. 259–269 (2000)

10. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse

graphs is testable. In: Proceedings of the 40th Annual ACM Symposium on Theory

of Computing (STOC), pp. 393–402 (2008)

11. Blais, E.: Testing juntas nearly optimally. In: Proceedings of the 41st Annual ACM

Symposium on Theory of Computing (STOC), pp. 151–158 (2009)

12. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to

Numerical Problems. In: Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing (STOC), pp. 73–83 (1990)

13. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-

lems in higher dimensions. In: Proceedings of the 4th ACM-SIAM Symposium on

Discrete Algorithms, pp. 291–300 (1993)

14. Chazelle, B., Liu, D., Magen, A.: Sublinear Geometric Algorithms. SIAM Journal

on Computing 35(3), 627–646 (2006)

15. Clarkson, K.L.: Approximating algorithms for shortest path motion planning. In:

Proceedings of the 19th ACM Symposium on the Theory of Computation, pp.

56–65 (1987)

16. Czumaj, A., Ergun, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,

C.: Approximating the Weight of the Euclidean Minimum Spanning Tree in Sub-

linear Time. SIAM Journal on Computing 35(1), 91–109 (2005)

17. Czumaj, A., Sohler, C.: Testing hypergraph colorability. Theoretical Computer

Science 331(1), 37–52 (2005)

18. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of non-expanding

bounded-degree graphs. SIAM Journal on Computing 38(6), 2499–2510 (2009)

19. Czumaj, A., Sohler, C.: Property Testing with Geometric Queries. In: Meyer auf

der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg

(2001)

20. Czumaj, A., Sohler, C., Ziegler, M.: Property Testing in Computational Geom-

etry. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer,

Heidelberg (2000)

21. Czumaj, A., Sohler, C.: Testing Euclidean minimum spanning trees in the plane.

ACM Transactions on Algorithms 4(3) (2008)

22. Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-Checkers.

Journal of Computer and System Sciences 60(3), 717–751 (2000)

23. Eppstein, D., Wortman, K.A.: Minimum dilation stars. Computational Geometry:

Theory and Applications 37(1), 27–37 (2007)

24. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Finding the best shortcut in a geo-

metric network. In: Proceedings of the 21th Annual Symposium on Computational

Geometry, pp. 327–335 (2005)

25. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-

nitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of

the 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 474–483

(2002)

26. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing

Monotonicity. Combinatorica 20(3), 301–337 (2000)

27. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to

Learning and Approximation. Journal of the ACM 45(4), 653–750 (1998)

28. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-

mica 32(2), 302–343 (2002)

Testing Euclidean Spanners 311

29. Keil, M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,

A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

30. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC),

pp. 403–412 (2008)

31. Narasimhan, G., Smid, M.: Approximating the Stretch Factor of Euclidean Graphs.

SIAM Journal on Computing, 978–989 (2000)

32. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University

Press, Cambridge (2007)

33. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Structures & Algo-

rithms 20(2), 165–183 (2002)

34. Rademacher, L., Vempala, S.: Testing Geometric Convexity. In: Lodaya, K., Maha-

jan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 469–480. Springer, Heidelberg

(2004)

35. Rubinfeld, R., Sudan, M.: Robust Characterizations of Polynomials with Applica-

tions to Program Testing. SIAM Journal on Computing 25(2), 252–271 (1996)

Symmetric LDPC Codes and Local Testing

Tali Kaufman1 and Avi Wigderson2

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

kaufmant@mit.edu
2 Institute for Advanced Study, Princeton, USA

avi@ias.edu

Abstract. Coding theoretic and complexity theoretic considerations

naturally lead to the question of generating symmetric, sparse, redun-

dant linear systems. This paper provides new way of constructions with

better parameters and new lower bounds.

Low Density Parity Check (LDPC) codes are linear codes defined by

short constraints (a property essential for local testing of a code). Some of

the best (theoretically and practically) used codes are LDPC. Symmetric
codes are those in which all coordinates “look the same”, namely there

is some transitive group acting on the coordinates which preserves the

code. Some of the most commonly used locally testable codes (especially

in PCPs and other proof systems), including all “low-degree” codes, are

symmetric. Requiring that a symmetric binary code of length n has large

(linear or near-linear) distance seems to suggest a “conflict” between

1/rate and density (constraint length). In known constructions, if one is

constant then the other is almost worst possible - n/poly(log n).

Our main positive result simultaneously achieves symmetric low den-

sity, constant rate codes generated by a single constraint. We present

an explicit construction of a symmetric and transitive binary code of

length n, near-linear distance n/(log log n)2, of constant rate and with

constraints of length (log n)4. The construction is in the spirit of Tan-

ner codes, namely the codewords are indexed by the edges of a sparse

regular expander graph. The main novelty is in our construction of a

transitive (non Abelian!) group acting on these edges which preserves

the code. Our construction is one instantiation of a framework we call

Cayley Codes developed here, that may be viewed as extending zig-zag

product to symmetric codes.

Our main negative result is that the parameters obtained above cannot

be significantly improved, as long as the acting group is solvable (like the

one we use). More specifically, we show that in constant rate and linear

distance codes (aka ”good” codes) invariant under solvable groups, the

density (length of generating constraints) cannot go down to a constant,

and is bounded below by log(Ω(�)) n if the group has a derived series of

length 	. This negative result precludes natural local tests with constantly

many queries for such solvable ”good” codes.

1 Introduction

The work in this paper is partially motivated from several (related) research
directions. Following is a very high level description of these.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 312–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symmetric LDPC Codes and Local Testing 313

Locally testable codes. Codes in which the proximity to a codeword can
be determined by a few coordinate queries have proven a central ingredient
in some major results in complexity theory. They appear as low-degree tests
in the IP = PSPACE, MIP = NEXP and PCP = NP theorems, and
indeed the work of [16] (which was later partly derandomized by [8]) elucidates
their role as the “combinatorial heart” of PCPs. The quest to simultaneously
optimize their coding theoretic parameters and the number of queries used has
recently culminated in the combination of [7] and [13] (see also [26]) in a length
n binary linear code of linear distance and rate 1/(logn)O(1), testable with a
constant number of queries (which are testing linear constraints of constant
length). Further improving the rate to a constant is a major open problem.
Essential to locally testable codes is having short constraints.

LDPC codes. Low Density Parity Check codes are precisely linear codes with
short constraints. Density is the constraints length. These codes were defined
in the seminal work of Gallager [14] in the 60’s. Only in the 90’s, due to works
of [22],[30],[32] and others did LDPC codes start to compete with the algebraic
constructions in the coding-theory scene. Today these provide some of the best
practical and theoretical codes for many noise models, and are extremely efficient
to encode and decode. In particular, they can achieve linear distance, constant
rate and constant constraint size simultaneously. But their natural potential for
local testing was (possibly) devastated by such results as [6], who showed that
a general class of LDPC codes, based on expanders, requires a linear number of
queries to test, despite having constant-size constraints. We note that possessing
short defining constraints is not always an obvious property of a code – e.g. it
was only recently discovered in [19] that the sparse dual-BCH codes have such
constraints (but unfortunately this code has a very bad rate).

Symmetric codes. Many of the classical codes, e.g. Hamming, Reed-Solomon,
Hadamard, Reed-Muller, BCH, and some Goppa codes are symmetric, namely
there is a transitive group acting on the coordinates which leaves the code invari-
ant. Symmetry is not only elegant mathematically - it often also implies concise
representation of the code as well as tools to analyze its quality parameters, like
rate and distance. Huge literature is devoted to such codes within coding theory,
but even for cyclic codes (those invariant under cyclic shifts) it is still a major
open problem if they can have simultaneously constant rate and linear distance.
The conjecture is that this is impossible. A major result of Berman from the
seventies [9] shows that there are no good cyclic codes of length n where all
the prime divisors of n are bounded. Interesting progress on this conjecture was
made by Babai Shpilka and Stefankovic [5] that extend Berman’s result and relax
the conditions on the sizes of the prime divisors of the code length. Moreover [5]
show that the conjecture is true if one requires the cyclic code to be defined by
constraints of constant length (i.e to be LDPC). McElice [25] proved (non con-
structively) that there are asymptotically good non-linear codes invariant under
the action of very large groups, however these codes are clearly not LDPC.

314 T. Kaufman and A. Wigderson

Symmetric low-density and locally testable codes. Starting with linearity
testing of [10] and the first low-degree tests of [4,28], nearly all locally testable
codes appearing in proof systems are symmetric. A theory studying the extent to
which symmetry can help (or handicap) local testing was initiated by Kaufman
and Sudan [18]. They generalized known examples showing that when the acting
group is the affine group (and the coordinates are naturally identified with the
elements of the vectors space acted upon), then having short constraints that
define the code is not only necessary, but also sufficient for local testability.
Moreover, in these cases the orbit (under the group action) of a single con-
straint suffices to define the code, and a canonical local test is picking a random
constraint from that orbit1. Again, the rate of all these codes is poor, and [18]
challenge reconciling the apparent conflict between rate and density, possibly for
other groups.

Expanding Cayley graphs. Gallager’s construction [14] of LDPC codes was
based on sparse random graphs, and Tanner’s construction [35] was based on
high girth graphs. Sipser and Spielman [32] identified expansion as the crucial
parameter of graphs which yield codes with good parameters. This was followed
up in almost all subsequent works, using expanders to construct codes. This work
motivated further explicit constructions of good expanders. As example, we note
that the [32] “belief propagation” decoding algorithm for LDPC was simplest
if the underlying graph is a lossless expander, and subsequently [11] were able
to explicitly construct such expanders. Unfortunately, all codes constructed this
way seem far from symmetric. But expander graphs can certainly be symmetric!
Indeed, almost all constructions of expander graphs are Cayley graphs, namely
the vertices correspond to the elements of a finite group, and edges are pre-
scribed by a fixed generating set of the group. It is evident that such graphs are
symmetric, namely the group itself acts transitively on the vertices and preserves
the edges. We note importantly that even the zig-zag product construction of
expanders [31], which started as a combinatorial alternative to algebraic con-
structions, was extended to allow iterative probabilistic constructions of Cayley
graphs [2,27] via the semi-direct product of groups. Our codes are partially mo-
tivated by making explicit the probabilistic construction of [2,27] Attempts to
construct codes iteratively exist, with the best example being Meir’s, partially
explicit construction [26]. However, again, this code is far from symmetric.

Several natural research directions point to the following question: To what
extent can symmetric LDPC codes attain (or even come close to)
the coding theory gold standard of linear distance and constant rate?
To fix ideas, let us consider symmetric codes with linear (or even near-linear)
distance, and examine the trade-off between density and 1/rate. In all known

1 We note that the existence of a single constraint that generates a code gives rise to

a canonical algorithm for local testing the code. An algorithm that picks a random

constraint from the orbit. For codes invariant under the affine group, Kaufman and

Sudan have shown that such a canonical algorithm is indeed a valid local tester

for the code. This motivates the search for other symmetric codes generated by the

orbit(s) of one (or few) generators, with the hope that local testing would be implied.

Symmetric LDPC Codes and Local Testing 315

codes if 1/rate or density is constant then the other is worst possible, about
n/poly(logn), the code length! Best density/rate trade-offs for known binary
high distance symmetric codes are the following. Reed-Muller codes over binary
field (say degree-d polynomials), which are invariant under the affine group, have
short constraints (2d-long) but pathetic rate (log n)d/n. BCH codes, invariant
under the cyclic group, have constant rate, but constraints of (worst possible)
length Ω(n). Reed-Muller codes over large fields concatenated with Hadamard
achieve density (logn)1/ε with (1/rate) being 2(log n)ε

[3,34].2

Indeed, some believed that the conflict between density and rate in symmetric
codes cannot be reconciled. On the other hand, no result precludes the ratio of
density/rate from being best possible, namely a constant! Our paper addresses
both upper and lower bounds on this trade-off.

2 Our Results

Our main positive result allows simultaneous constant rate and polylogarithmic
density, and in particular reduces the upper bound on the ratio density/rate
to poly log n! More precisely, we provide an explicit construction of length-n
symmetric codes of constant rate and distance n/(log log n)2 which is defined
by constraints of a length poly(log n). Moreover, these constraints constitute the
orbit of a single constraint, under the transitive action of a (non Abelian) group.

Our main negative result shows that there is no good code invariant under a
solvable group with few low-weight generators. In fact we rule out the possibility
of such codes even if the support of their generators is o(logΩ(�)

n) if the group
has a derived series of length � and n is the code length. This result exclude the
possibility of good solvable locally testable codes with few low weight generators.

3 Our Techniques

In order to prove our upper bound, we develop a framework of “Cayley Codes”,
which we describe next. They extend Tanner codes in that the coordinates of the
code are identified with the edges of a regular expander graph, and constraints
are imposed on neighborhoods (namely edges incident on each single vertex)
according to a fixed “inner code” B. In Cayley codes we naturally insist that
the underlying graph is a Cayley graph, namely the vertices are the elements of
a group G, and a set of generators S of the group determine edges in a natural
way. While this a graph is symmetric (G acts transitively on its vertices), there
is no such guarantee in general for the code. The problem is to find a group that
acts on the edges of the graph, and preserves all copies of the internal code. We
show that if some group H simultaneously acts transitively on the code B and

2 Note that when this code is mostly used to get constant query complexity, it is

modified to make coordinates correspond not to the value of the encoded polynomial

on a point, but rather its value on an entire line or larger subspace. This has lousy

rate, and when derandomized to improve the rate, transitivity of the action is lost.

316 T. Kaufman and A. Wigderson

acts on the group G, then the semi-direct product group G�H acts transitively
on the edges. We note that this action is not standard.

We then turn to find an appropriate instantiation of this idea with good
parameters. This paragraph is a bit technical and may be skipped at first reading.
The group G is chosen to be the hypercube Ft

2, and S a very specific ε-biased
set in G (so as to make the associated Cayley graph expanding), which can be
identified with the elements of a cyclic group H isomorphic to the multiplicative
group of of F ∗

t4 . The inner code B is chosen to be a BCH code on S on which the
group H acts transitively. The inferior distance and density of the code B are
mitigated since its length is only polylogarithmic in the length of the whole code.
Now the action of H on G (whose nature we describe in the technical section)
allows the construction of the semi-direct product G � H . We now define the
action of this group on directed edges of the graph, and prove that all parts fit:
this group acts transitively on the Tanner code of the Cayley graph on G; S.

Our lower bound methods extend work of Lubotzky and Weiss [23], who
showed a similar lower bound on the number of generators Cayley graphs on
these groups to be expanders. The extension is in two directions - we show the
same for Schreier graphs, and then extend their argument from finding standard
separators to finding ε-partitions of the graph to many parts - from which we
can deduce information on the distance and rate of the associated Tanner codes.

The proof showing that there are no good solvable codes with few low weight
generators has two main parts. First, for a parameter ε (later taken to be o(1)) we
define a new notion that we call an ε-partition of a graph, which extends the notion
of a small separator, in that we demand that the separating set splits the graph
into many pieces. More precisely, a graph has an ε-partition if one can remove ε

fraction of its vertices to make all connected components of relative size at most
ε. We show that a Schreier graph of a solvable group with d = o(logΩ(�)

n) gen-
erators has an ε-partition where ε is sub-constant. In the second part of the proof
we associate codes invariant under groups with Schreier graphs over these groups,
and show that if the associated Schreier graph has an ε-partition then either the
rate or the relative distance of the code is bounded by ε.

4 Related Work

Alon, Lubotzky and Wigderson [2] provided a randomized construction of high
rate high distance codes generated by two orbits. They asked about explicit con-
structions of high rate, high distance codes generated by few orbits (for the group
they studied). Our code construction provides such explicit codes generated by
one orbit!.

A work by Babai,Shpilka and Stefankovic [5] showed that there are no good
cyclic codes with low weight constraints (with no restriction on the number of
generating constraints). Since low weight constraints are a necessary (but not
sufficient) condition for testability, they showed that there are no good cyclic lo-
cally testable codes. Our work here shows that there are no good solvable locally
testable codes with few low weight generating constraints. i.e. we exclude good

Symmetric LDPC Codes and Local Testing 317

locally testable codes over larger groups of symmetry but under the assumption
of few low weight generating constraints. As far as we know, it could well be the
case that a cyclic code whose dual has a low weight basis must have a basis that
is generated by a constant many low-weight constraints.

5 Conclusions and Open Questions

This paper was motivated from by the construction of locally-testable codes of
good coding-theoretic parameters. As is well known, Goldreich and Sudan [16]
showed how to obtain such codes can be constructed from PCPs with related
parameters, and good parameters are achieved by combining the PCPs of Dinur
[13] with Ben-Sasson and Sudan [7]. Specifically, they achieve linear binary codes
of length n with linear distance, rate 1/(logn)c and constant-size queries. These
codes are completely explicit.

Removing the PCP machinery and obtaining such codes (and even better
ones) directly is a basic question, motivated at length in the paper of Meir [26].
He succeeds only partially, in that his construction that is partly probabilistic.
Moreover, the construction cleverly retains “proofs of membership” in the code,
as part of the code, which make it resemble Dinur’s PCP construction.

We take a completely different approach. As all locally-testable codes must
be LDPC codes (since low query complexity means low density in the parity
check matrix), and moreover many locally-testable codes are symmetric (have
a transitive group acting on them), we ask first if the above coding theoretic
parameters can be attained by codes that are simultaneously symmetric and
low-density. We give the first such construction. Our codes are linear binary
codes of length n with near linear distance n/(log log n)2, constant rate and both
density bounded by 1/(logn)4. The group acting transitively is non-Abelian. All
previously known symmetric codes with such (or even weaker) distance had
either density or (1/rate) close to n, and groups in all cases are Abelian.

There are several open questions that arise from this work.

– Cayley codes and local testing. Are the Cayley codes we construct actually
locally testable? We tend to think that they are not, in which case would be
the first example of a symmetric LDPC code which is not locally testable.
As we offer a general framework of Cayley codes, possibly other choices of
components in this framework can lead to to locally-testable codes.

– Improving the parameters. Can one get the ultimate – symmetric, constant
density good codes (namely with linear distance and constant rate)? Our
lower bounds imply that for such a result the acting group must be “more
noncommutative” than the one we use, namely it cannot be solvable with a
constant-length derived series.

– Key to our lower bound is our that Cayley codes of such groups have ε-
partition, a property which implies in particular that such codes must have
two disjoint codewords. Interestingly, the question of proving the latter prop-
erty for similar codes comes up naturally in the work of Lackenby [20,21] on

318 T. Kaufman and A. Wigderson

3-dimensional manifolds. Specifically, he asks if linear codes symmetric un-
der the action of p-groups (which are solvable, but can have constant degree
Cayley graphs), which have constant rate, density and normalized distance,
must have two codewords with disjoint support. Our lower-bound techniques
fails for such groups.

References

1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Low Degree

Polynomials Over GF(2). In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)

RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 188–199. Springer,

Heidelberg (2003); Also IEEE Transactions on Information Theory 51(11), 4032–

4039 (2005)

2. Alon, N., Lubotzky, A., Wigderson, A.: Semi Direct product in groups and zig-zag

product in graphs: connections and applictions. In: Proceedings of the 42nd Annual

Symposium on the Foundations of Computer Science (FOCS), pp. 630–637 (2001)

3. Arora, S., Sudan, M.: Improved low degree testing and its applications. Combina-

torica 23(3), 365–426 (2003)

4. Babai, L., Fortnow, L., Lund, C.: Non-Deterministic Exponential Time has Two-

Prover Interactive Protocols. Computational Complexity 1(1), 3–40 (1991)

5. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Trans-

actions on Information Theory 51(8), 2849–2858 (2005)

6. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF Properties are Hard

to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

7. Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query complexity.

In: STOC 2005, 266–275 (2005)

8. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient Low

Degree Tests and Short PCPs via Epsilon-Biased Sets. In: 35th Annual ACM Sym-

posium, STOC 2003, pp. 612–621 (2003)

9. Berman, S.D.: Semisimple Cyclic and Abelian Codes. Cybernetics 3, 21–30 (1967)

10. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to

Numerical Problems. J. Comp. Sys. Sci. 47(3) (December 1993)

11. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness Conductors

and Constant-Degree Expansion Beyond the Degree/2 Barrier. In: Proceedings of

the 34th STOC, pp. 659–668 (2002)

12. Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke Math. J. 24, 37–41

(1957)

13. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

14. Gallager, R.G.: Low density parity check codes. MIT Press, Cambridge (1963)

15. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct Representation of Codes with

Applications to Testing (manuscript)

16. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length.

J. ACM 53(4), 558–655 (2006)

17. Holton, D.A., Sheehan, J.: The Petersen Graph. Cambridge University Press, Cam-

bridge (1993)

18. Kaufman, T., Sudan, M.: Algebraic Property Testing: The Role of Invariance. In:

Proceedings of the 40th ACM Symposium on Theory of Computing, STOC (2008)

19. Kaufman, T., Litsyn, S.: Almost Orthogonal Linear Codes are Locally Testable.

In: FOCS 2005, pp. 317–326 (2005)

Symmetric LDPC Codes and Local Testing 319

20. Lackenby, M.: Large groups, property (τ) and the homology growth of subgroups.

Math. Proc. Cambridge Philos. Soc. 146(3), 625–648 (2009)

21. Lackenby, M.: Covering spaces of 3-orbifolds. Duke Math. J. 136(1), 181–203 (2007)

22. Luby, M.G., Mitzenmacher, M., Amin Shokrollahi, M., Spielman, D.A.: Improved

Low-Density Parity-Check Codes Using Irregular Graphs. IEEE Transactions on

Information Theory 47(2), 585–598 (2001)

23. Lubotzky, A., Weiss, B.: Groups and expanders. In: Friedman, e.J. (ed.) Expanding

Graphs. DIMACS Ser. Discrete Math. Theoret. Compt. Sci., vol. 10, pp. 95–109.

Amer. Math. Soc., Providence (1993)

24. MacWilliams, F.J., Sloan, N.J.A.: The Theory of Error Correcting Codes. North

Holland, Amsterdam (1977)

25. McElice, R.J.: On the Symmetry of Good Nonlinear Codes. IEEE Trans. Inform.

Theory IT-16, 609–611 (1970)

26. Meir, O.: Combinatorial Construction of Locally Testable Codes. In: Proceedings

of STOC 2008, pp. 285–294 (2008)

27. Meshulam, R., Wigderson, A.: Expanders in Group Algebras. Combinatorica 24(4),

659–680 (2004)

28. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-

tions to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

29. Rozenman, E., Shalev, A., Wigderson, A.: A new family of Cayley expanders (?)

In: 36th Annual ACM Symposium, STOC 2004, pp. 445–454 (2004)

30. Richardson, T., Urbanke, R.: The Capacity of Low-Density Parity Check Codes

under Message-Passing Decoding. IEEE Transactions on Information Theory 47(2),

599–618 (2001)

31. Reingold, O., Vadhan, S., Wigderson, A.: Entropy Waves, the Zig-Zag Graph Prod-

uct, and New Constant-Degree Expanders. Annals of Mathematics 155(1), 157–187

(2002)

32. Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions on Information

Theory 42(6), 1710–1722 (1996)

33. Sudan, M.: Lecture notes,

http://people.csail.mit.edu/madhu/FT01/scribe/bch.ps

34. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR

Lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

35. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Transactions

on Information Theory 27(5), 533–547 (1981)

36. Weil, A.: Sur les courbes algebriques et les varietes qui s’en deduisent. Actualities

Sci. et Ind. no. 1041. Hermann, Paris (1948)

http://people.csail.mit.edu/madhu/FT01/scribe/bch.ps

Some Recent Results on Local Testing of Sparse

Linear Codes�

Swastik Kopparty and Shubhangi Saraf

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, USA

swastik@mit.edu, shibs@mit.edu

Abstract. We study the local testability of linear codes. Our approach

is based on a reformulation of this question in the language of tolerant

linearity testing under a non-uniform distribution. We then study the

question of linearity testing under non-uniform distributions directly,

and give a sufficient criterion for linearity to be tolerantly testable under

a given distribution. We show that several natural classes of distributions

satisfy this criterion (such as product distributions and low Fourier-bias

distributions), thus showing that linearity is tolerantly testable under

these distributions. This in turn implies that the corresponding codes

are locally testable.

For the case of random sparse linear codes, we show the testability

and decodability of such codes in the presence of very high noise rates.

More precisely, we show that any linear code in Fn
2 which is:

– sparse (i.e., has only poly(n) codewords)

– unbiased (i.e., each nonzero codeword has Hamming weight in (1/2−
n−γ , 1/2 + n−γ) for some constant γ > 0)

can be locally tested and locally list decoded from (1/2−ε)-fraction errors

using only poly(1
ε
) queries to the received word. This simultaneously

simplifies and strengthens a result of Kaufman and Sudan, who gave a

local tester and local (unique) decoder for such codes from some constant

fraction of errors. For the case of Dual BCH codes, our algorithms can

also be made to run in sublinear time.

Building on the methods used for the local algorithms, we also give

sub-exponential time algorithms for list-decoding arbitrary unbiased (but

not necessarily sparse) linear codes in the high-error regime.

Keywords: error correcting codes, list-decoding, random codes.

1 Introduction

We begin by setting up some notation. A linear code C in FN
2 is simply a linear

subspace of FN
2 . The elements of C are often referred to as “codewords”. We say

� The current extended abstract is a summary of some of the results that appeared in

“Tolerant linearity testing and locally testable codes” that appeared in RANDOM

2009 and “Local list-decoding and testing of random linear codes from high-error”

that will appear in STOC 2010.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 320–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Some Recent Results on Local Testing of Sparse Linear Codes 321

that C is sparse if |C| ≤ N c for some constant c. For a string x ∈ FN
2 , we define

its (normalized Hamming) weight wt(x) to equal 1
n× (the number of nonzero

coordinates of x). We define the bias of the code C as maxy∈C\{0}
∣∣∣ 1−wt(y)

2

∣∣∣. Thus
each nonzero codeword y of a code of bias β has wt(y) ∈ [(1−β)/2, (1+β)/2]. For
two strings x, y ∈ FN

2 , we define the (normalized Hamming) distance between x

and y, Δ(x, y), to be 1
n× (the number of coordinates i ∈ [N] where xi and yi

differ). We then define the distance of a string x from the code C, Δ(x, C) to be
the minimum distance of x to some codeword of C:

Δ(x, C) = min
y∈C

Δ(x, y).

The basic algorithmic tasks associated with codes are error-detection and error-
correction. Here we are given an arbitrary received word w ∈ FN

2 , and we want
to (1) determine if Δ(w, C) > δ, and (2) find all codewords y ∈ C such that
Δ(w, C) ≤ δ. In recent years, there has been much interest in developing sublinear
time algorithms (and in particular, highly query-efficient algorithms) for these
tasks. In what follows, we will describe our results on various aspects of these
questions.

2 Locally Testable Codes and Tolerant Linearity Testing

Informally, a local tester for C is a randomized algorithm A, which when given
oracle access to a received word w ∈ FN

2 , makes very few queries to the received
word w, and distinguishes between the case where w ∈ C and the case where w

is “far” (in Hamming distance) from all codewords of C. A code C is said to be
locally testable if there exists a constant query local tester for C.

The first local tester (for any code) came from the seminal work of Blum,
Luby and Rubinfeld [BLR93], which gave an efficient, 3-query local tester for
the Hadamard code.

In order to study local testability for linear codes, we first reformulate the
question in the language of testing under distributions. Let C ⊆ FN

2 be a linear
code of dimension n, and let G be an n × N generator matrix for C. Let S =
{v1, v2, . . . , vN} ⊂ Fn

2 denote the set of columns of G. We associate to C the
distribution μ over Fn

2 which is uniform over S. Every word w in FN
2 can be

viewed as a function fw : S → F2, where fw(vi) = wi. Under this mapping,
every codeword of C gets associated with a linear function.

Note that via this translation, the problem of testing if w is close to some code-
word exactly translates into the problem of testing if fw is close to some linear
function under the distribution μ (where the distance of two functions g, h under
μ is measured by the probability that g and h differ on a random sample from μ).

In this language, the BLR local tester for the Hadamard code is precisely the
problem of testing linearity under μ, where now μ is the uniform distribution
over Fn

2 .

322 S. Kopparty and S. Saraf

For a general linear code C, the related distribution μ is uniform over a subset
S of Fn

2 . For the relationship between testability of the code C and the testability
of linearity under μ to be tight, we must essentially force the tester for linearity
under μ to make queries only from the set S. A notion of testing that naturally
enforces this requirement is that of tolerant linearity testing. We now formally
describe this notion and give the connection to locally testable codes.

Let C be a class of functions from a finite set D to a finite set R. In the task
of tolerant testing for C, we are given oracle access to a function f : D → R, and
we wish to determine using few queries to f , whether f is well approximable by
functions in C; equivalently, to distinguish between the case when f is close to
some element of C, and the case when f is far from all elements of C. Tolerant
property testing was introduced by Parnas, Ron and Rubinfeld in [PRR06] as
a refinement of the problem of property testing [RS96], [GGR98] (where one
wants to distinguish the case of f in C from the case when f is far from C), and
is now widely studied. The usual notion of closeness considered in the literature
is via the distance measure Δ(f, g) = Prx∈D[f(x) �= g(x)], where x ∈ D is picked
according to the uniform distribution over D.

We propose to study tolerant property testing under general distributions.
Given a probability measure μ on D, the μ-distance of f from g, where f, g :
D → R, is defined by

Δμ(f, g) = Pr
x∈μ

[f(x) �= g(x)].

Then the measure of how well f can be approximated by elements of C is via
the μ-distance

Δμ(f, C) = min
g∈C

Δμ(f, g).

The new goal in this context then becomes to approximate Δμ(f, C) using only
a few oracle calls to f . In our context, we study a concrete instance of the above
framework. We consider the original problem considered in the area of property
testing, namely the classical problem of linearity testing.

The problem of linearity testing was introduced by Blum, Luby and Rubinfeld
in [BLR93]. In this problem, we are given oracle access to a function f : Fn

2 → F2,
and want to distinguish between the case that f is a linear function and the case
that f is far from the class L of all linear functions from Fn

2 to F2. [BLR93]
gave a simple 3-query test T that achieves this. In fact, this test also achieves
the task of tolerant linearity testing; i.e., for any function f : Fn

2 → F2, letting
δ = Pr[T f rejects], we have

C1 · δ ≤ ΔUn(f,L) ≤ C2 · δ,

where C1 and C2 are absolute constants, and Un is the uniform distribution on
Fn

2 . Hence the test of [BLR93], in addition to testing linearity, actually estimates
how well f can be approximated by functions in L.

Some Recent Results on Local Testing of Sparse Linear Codes 323

Here we study tolerant linearity testing over general probability distributions.
Let μ be a probability distribution over Fn

2 . In the problem of tolerant linearity
testing under μ, we wish to estimate the how well f may be approximated under
μ by linear functions from L. For a given family (Fn

2 , μn)n, we say linearity is
tolerantly testable under μ = μn with q queries, if there exists a q-query tester Tn

and constants C1, C2 such that for any f : Fn
2 → F2, letting δ = Pr[T f

n rejects],
we have

1. Perfect completeness: δ = 0 if and only if Δμ(f,L) = 0.
2. Distance approximation: δ approximates Δμ(f,L):

C1 · δ ≤ Δμ(f,L) ≤ C2 · δ. (1)

The main question is to determine for which μ is linearity tolerantly testable
under μ. This seems to be a basic question worthy of further study. Furthermore,
the notion of linearity being tolerantly testable under general distributions is
intimately connected with the concept of locally testable linear codes, and we
now elaborate on this connection.

Now let C be any linear code, and let s1, . . . , sN ∈ Zn
2 be the columns of

a generator matrix for C. Let μ be the uniform distribution over {s1, . . . , sN}.
Then, if linearity is tolerantly testable under μ, then C is locally testable. Indeed,
given any r : [N] → Z2, we may define the function f : Zn

2 → Z2 by f(x) = r(j)
if x = sj , and f(x) = 0 otherwise. By the tolerant testability of linearity under
μ, any useful query made by a tolerant linearity tester for μ must be to one of
the sj . The distance of f from linear under μ then translates directly into the
Hamming distance of r from C, and the very same tester that tolerantly tests
linearity under μ shows that C is locally testable.

2.1 Main Notions and Results

Our main contribution is to highlight a simple criterion, which we call uniform-
correlatability, that lets us design and analyze tolerant linearity tests under a
given distribution. Roughly speaking, a distribution μ over Fn

2 is uniformly-
correlatable if one can “design” a distribution of few correlated random variables,
with each variable distributed according to μ, while all the sum of the variables
if nearly uniformly distributed. In this case, we show that linearity is tolerantly
testable under μ with few queries (see Theorem A). We complement this by
demonstrating that many natural distributions satisfy this criterion.

Although we state all our results for functions from Fn
2 to F2, most results

carry over to all pairs of abelian groups G, H .

Definition 1 (Uniformly-correlatable distribution). Let μ be a probability
distribution on Fn

2 . We say that μ is (ε, k)-uniformly-correlatable if there is a
random variable X = (Xi)i∈[k] taking values in (Fn

2)k such that:

1. For each i ∈ [k], Xi is distributed according to μ.
2. The distribution of the random variable

∑
i∈[k] Xi is ε-close to the uniform

distribution over Fn
2 .

324 S. Kopparty and S. Saraf

Our main result in this setting is that uniformly correlatable distributions are
tolerantly testable.

Informal Theorem A. Let μ be a distribution over Fn
2 that is (ε, k)-uniformly-

correlatable. Then there is a 4k query tester T that tolerantly tests linearity
over μ.

We supplement the above theorem by showing that several natural classes of
distributions are all (ε, k)-uniformly-correlatable for suitable ε, k, such as product
distributions, symmetric distributions and low Fourier-bias distributions, thus
showing that linearity is tolerantly testable under these distributions. This in
turn implies that the corresponding codes are locally testable. In particular this
gives a new and simple proof of a result of Kaufman and Sudan [KS07] showing
that sparse unbiased linear codes are locally testable.

3 Overview of Proof for Uniform-Correlatability ⇒
Testability

We first give some intuition for the uniform correlatability criterion. For T to be
a tester for linearity under μ, it needs to satisfy the following minimum require-
ments: (1) each query made by the tester needs to be distributed essentially
according to μ (so that the probability of rejection is upper bounded by the
distance), and (2) the queries need to satisfy some linear relations (so that the
tester has something to test). This already indicates that a tester will need to
“design” a query distribution very carefully, so that both the above requirements
are satisfied. This is where the uniformly-correlatable criterion comes in: given
the uniformly-correlated distribution, it allows us to design other correlations
quite flexibly, and in particular to produce queries distributed according to μ

that satisfy linear relations.
The proof of Theorem A at a very high level follows by using the uniform

correlatability criterion to reduce linearity testing over μ to linearity testing
under the uniform distribution1 for which we already know the BLR linearity
test. We design two tests, Test 1 and Test 2, and define a “self-corrected” version
h of the function f being tested. We show that Test 1 is essentially the BLR test
(over the uniform distribution) applied to the function h. Hence if Test 1 passes
with high probability, then the BLR analysis implies that h is close to a linear
function g under the uniform distribution. Test 2 is designed such that if that
also passes with high probability, then it implies that f is actually close to that
linear function g under μ.

In designing these two tests, we ensure that each query to f made by the tester
is distributed essentially according to μ. Hence it follows that the probability of
rejection of the tests is at most fixed multiple (depending on the number of
queries made by the tester) of the distance of f from linear, and hence the tester
is tolerant.
1 Note that the uniform distribution is (0, 1)-uniformly-correlatable, and for this case,

the test given by Theorem A essentially reduces to the BLR linearity test.

Some Recent Results on Local Testing of Sparse Linear Codes 325

4 High Error

Our main result in the high-error regime is that random sparse linear codes are
locally testable and locally list-decodable in the high-error regime with only a
constant number of queries. More precisely, we show that for all constants c > 0
and γ > 0, and for every linear code C ⊆ {0, 1}N which is:

– sparse: |C| ≤ N c, and
– unbiased: each nonzero codeword in C has weight ∈ (1

2 − N−γ , 1
2 + N−γ),

C is locally testable and locally list-decodable from (1
2 − ε)-fraction worst-case

errors using only poly(1
ε) queries to a received word. We also give sub-exponential

time algorithms for list-decoding arbitrary unbiased (but not necessarily sparse)
linear codes in the high-error regime. In particular, this yields the first sub-
exponential time algorithm even for the problem of (unique) decoding random
linear codes of inverse-polynomial rate from a fixed positive fraction of errors.

Earlier, Kaufman and Sudan had shown that sparse, unbiased codes can be
locally (unique) decoded and locally tested from a constant-fraction of errors,
where this constant-fraction tends to 0 as the number of codewords grows. Our
results significantly strengthen their results, while also having significantly sim-
pler proofs.

At the heart of our algorithms is a natural “self-correcting” operation defined
on codes and received words. This self-correcting operation transforms a code C
with a received word w into a simpler code C′ and a related received word w′, such
that w is close to C if and only if w′ is close to C′. Starting with a sparse, unbiased
code C and an arbitrary received word w, a constant number of applications of the
self-correcting operation reduces us to the case of local list-decoding and testing
for the Hadamard code, for which the well known algorithms of Goldreich-Levin
and Blum-Luby-Rubinfeld are available. This yields the constant-query local
algorithms for the original code C.

The above mentioned “self correcting” operation was motivated (and is also
analysed) using the same shift of viewpoint from testing and decoding of linear
codes to testing and decoding with respect to distributions as mentioned in
Section 2.

Our algorithm for decoding unbiased linear codes in sub-exponential time
proceeds similarly. Applying the self-correcting operation to an unbiased code C
and an arbitrary received word a super-constant number of times, we get reduced
to the problem of learning noisy parities, for which non-trivial sub-exponential
time algorithms were recently given by Blum-Kalai-Wasserman and Feldman-
Gopalan-Khot-Ponnuswami. Our result generalizes a result of Lyubashevsky,
which gave sub-exponential time algorithms for decoding random linear codes
of inverse-polynomial rate, from random errors.

4.1 Local Testing

A particular variant of local testability which is of significant interest is local test-
ing in the “high-error” regime. Here, for every constant ε > 0, one wants to query-
efficiently distinguish between the cases Δ(w, C) < 1/2− ε, i.e., w is “close” to C,

326 S. Kopparty and S. Saraf

and Δ(w, C) ≈ 1/2, i.e., w is as far from C as a random point is (for codes over large
alphabets, 1/2 gets replaced by 1). For the Hadamard code, the existence of such
testers follows from the Fourier-analytic proof of the BLR linearity test [BCH+96].
For the code of degree 2 multivariate polynomials over F2, local testers in the
high-error regime were given by Samorodnitsky [Sam07]. For the code of multivari-
ate polynomials over large fields, local-testers in the high-error regime were given
by Raz-Safra [RS97], Arora-Sudan [AS03] and Moshkovitz-Raz [MR06]. More re-
cently, Dinur-Goldenberg [DG08] and Impagliazzo-Kabanets-Wigderson [IKW09]
gave query-efficient local testing algorithms in the high-error regime for the com-
binatorial families: the direct-product and XOR codes. These algebraic and com-
binatorial high-error local-testers led to some remarkable constructions of PCPs
with high soundness.

All known locally-testable codes in the high-error regime are for highly struc-
tured algebraic or combinatorial codes. Kaufman and Sudan [KS07] showed that
a random sparse linear code is locally testable in the low-error regime by studying
its weight distribution and the weight distribution of its dual, and in particular
their proof was based on the MacWilliams identities and non-trivial information
about the roots of Krawtchouk polynomials. In the paper [KS09] (essentially
using Theorem A), we gave an alternate (and arguably simpler) proof of this
result, as part of a more general attempt to characterize sparse codes that are
locally decodable and testable in the low-error regime. Popular belief [Sud09]
suggested that local-testability in the high-error regime could not be found in
random linear codes.

We show that that random codes can have query-efficient local testers in the
high-error regime. Specifically, sparse and unbiased codes admit high-error local
testers with constant query complexity.

Informal Theorem B. For every constant c, γ > 0, every linear code C ⊆ FN
2

with N c codewords and bias N−γ can be locally tested from (1/2 − ε)-fraction
errors using only poly(1

ε) queries to a received word.

We in fact can show something stronger (called distance estimation in the high-
error regime): for such codes, using constantly many queries, one can distinguish
between Δ(w, C) > 1/2− ε1 and Δ(w, C) < 1/2− ε2 for every constants 0 < ε1 <

ε2 < 1/2.

4.2 Local List-Decoding

Informally, a local list-decoder for C from δ-fraction errors is a randomized algo-
rithm A that, when given oracle access to a received word w ∈ FN

2 , recovers the
list of all codewords c such that Δ(c, w) < δ, while querying w in very few coordi-
nates. The codewords thus recovered are “implicitly represented” by randomized
algorithms A1, . . . , Al with oracle access to w. Given a coordinate j ∈ [N], Ai

makes very few queries to w and is supposed to output the jth coordinate of the
codeword that it implicitly represents.

A particular case of local list-decoding which is of significant interest is local
list-decoding in the “high-error” regime. Specifically, for every constant ε > 0,

Some Recent Results on Local Testing of Sparse Linear Codes 327

one wants to query-efficiently locally list-decode a code from (1
2 − ε)-fraction

errors (the significance of 1
2 − ε is that it is just barely enough to to distinguish

the received word from a random string in FN
2 ; for codes over large alphabets,

one considers the problem of decoding from (1 − ε)-fraction errors). Local list-
decoding in the high-error regime plays a particularly important role in the
complexity-theoretic applications of coding theory (see [STV99], for example).

The first known local list-decoder (for any code) came from the seminal
work of Goldreich and Levin [GL89], which gave time-efficient, low-query, lo-
cal list-decoders for the Hadamard code in the high-error regime. In the follow-
ing years, many highly non-trivial local list-decoders were developed for various
codes, including multivariate polynomial based codes (in the works of Goldreich-
Rubinfeld-Sudan [GRS00], Arora-Sudan [AS03], Sudan-Trevisan-Vadhan
[STV99], and Gopalan-Klivans-Zuckerman [GKZ08]) and combinatorial codes
such as direct-product codes and XOR codes (in the works of Impagliazzo-
Wigderson and Impagliazzo-Jaiswal-Kabanets-Wigderson [IW97, IJKW08]).
Many of these local list-decoders, especially the ones in the high-error regime,
play a prominent role in celebrated results in complexity theory on hardness
amplification and pseudorandomness [IW97, STV99, IJKW08].

To summarize, all known local list-decoding algorithms were for highly struc-
tured algebraic or combinatorial codes. Kaufman and Sudan [KS07] showed that
random sparse linear codes can be locally (unique-)decoded from a small con-
stant fraction of errors. This was the first result to show that query-efficient
decoding algorithms could also be associated with random, unstructured codes.
This result was proved by studying the weight distribution of these codes and
their duals. Popular belief [Sud09] again suggested that these low-error local
decoders for random codes could not be extended to the high-error regime.

Here we show that even random codes can have query-efficient local list-
decoders in the high-error regime. Specifically, we show that linear codes which
are sparse and unbiased (both properties are possessed by sparse random linear
codes with high probability) admit high-error local list-decoders with constant
query complexity.

Informal Theorem C. For every constant c, γ > 0, every linear code C ⊆ FN
2

with N c codewords and bias N−γ can be locally list-decoded from (1/2 − ε)-
fraction errors using only poly(1

ε) queries to a received word.

4.3 Subexponential Time List-Decoding

The techniques we develop to address the previous questions turn out to be use-
ful for making progress on another fundamental algorithmic question in coding
theory: that of time-efficient worst-case decoding of random linear codes. Given a
random linear code C ⊆ FN

2 and an arbitrary received word w ∈ FN
2 , we are inter-

ested in quickly finding all the codewords c ∈ C such that Δ(w, c) < 1
2−ε, for con-

stant ε > 0. We show that this problem can be solved in sub-exponential time, us-
ing just the unbiasedness of C. Our algorithm uses some recent breakthroughs on
the problem of learning noisy-parities due to Blum-Kalai-Wasserman [BKW03]
and Feldman-Gopalan-Khot-Ponnuswami [FGKP06].

328 S. Kopparty and S. Saraf

Informal Theorem D. For all constants α, γ > 0, for every linear code C ⊆ FN
2

with dimension n, where N = n1+α, and bias N−γ , and for every constant ε > 0,
C can be list-decoded from (1

2 − ε)-fraction errors in time 2O(n/ log log n).

In particular, the above theorem implies that if C ⊆ FN
2 is a random linear code

with dimension n = N
1

1+α , then for every constant ε > 0, C can be list-decoded
from (1

2 − ε)-fraction errors in time 2O(n/ log log n).
Earlier, it was not even known how to unique-decode random linear codes from

0.1-fraction worst-case errors in time 2o(n). For decoding random linear codes
of inverse-polynomial rate from random errors, Lyubashevsky [Lyu05] gave a
sub-exponential time algorithm, also based on algorithms for the Noisy Parity
problem. Our result generalizes his in two ways: we decode from worst-case
errors, and we give a natural, explicit criterion (namely low-bias) on the code C
which guarantees the success of the algorithm.

A related result (and one that we use in our proof) is the sub-exponential
time worst-case decoding of random linear codes in FN

2 , of dimension n =
O(log N · log log N), in a weaker model [FGKP06, Theorem 10]. In this model,
the adversary first corrupts the received bit associated to (1/2−ε)-fraction of the
2n possible linear encoding functions, after which the code is randomly chosen.
Our result has a more natural coding theory interpretation: the random code is
chosen first, and then the adversary choses an arbitrary received word at distance
(1/2 − ε) from the code. In the language of learning theory, the [FGKP06] re-
sult concerns learning parities in the presence of agnostic noise, while our result
deals with the model of learning parities in the presence of nasty classification
noise [BEK02].

4.4 Time-Efficient Local Algorithms for Dual-BCH Codes

For the family of dual-BCH codes, perhaps the most important family of sparse,
unbiased codes, we show that the constant-query local list-decoding and local
testing algorithms can be made to run in a time-efficient manner too. The dual-
BCH codes form a natural family of polynomial-based codes generalizing the
Hadamard code. They have a number of extremal properties which give them
an important role in coding theory. For example, the dual-BCH code C ⊆ FN

2

with N t codewords has bias as small as O(t ·N−1/2), which is optimal for codes
with N t codewords!

The key to making our earlier query-efficient local list-decoding and local
testing algorithms run in a time-efficient manner for dual-BCH codes, is a time-
efficient efficient algorithm for a certain sampling problem that arises in the local
list-decoder and tester. This sampling problem turns out to be closely related to
an algorithmic problem that was considered in the context of low-error testing
of dual-BCH codes [KL05], that of sampling constant-weight BCH codewords. A
variant of the sampling algorithm of [KL05] turns out to suffice for our problem
too, and this leads to the following result.

Some Recent Results on Local Testing of Sparse Linear Codes 329

Informal Theorem E. For every constant c, the dual-BCH code C ⊆ FN
2

with N c codewords, can be locally list-decoded and locally tested from (1/2− ε)-
fraction errors in time poly(log N, 1

ε) using only poly(1
ε) queries to a received word.

The original algorithm for sampling constant-weight BCH codewords given in
[KL05], and was based [Lit09] on results on the weight distribution of BCH
codes [KL95]. We give an alternate (and possibly simpler) analysis of this result.

5 Overview of Proofs in the High Error Regime

In this section, we give an overview of the main ideas underlying our algorithms.
Our goal in this section is to stress the simplicity and naturalness of our techniques.

The main component of our algorithms is a certain “self-correcting” operation
which transforms a code C with a received word w into a simpler code C′ and a
related received word w′, such that w is close to C if and only if w′ is close to
C′. Repeated application of this self-correcting operation will allow us to reduce
our list-decoding and testing problems for C to certain kinds of list-decoding and
testing problems for a significantly simpler code C∗ (in our case, C∗ will be the
Hadamard code). Query-efficient/time-efficient algorithms for the simpler code
C∗ then lead to query-efficient/time-efficient algorithms for the original code C.

In order to simplify the description of the self-correcting operation, we first
translate our problems into the language of list-decoding and testing under dis-
tributions just as we did in Section 2. Let C ⊆ FN

2 be a linear code of dimension
n, and let G be an n×N generator matrix for C. Let S = {v1, v2, . . . , vN} ⊂ Fn

2

denote the set of columns of G. We associate to C the distribution μ over Fn
2

which is uniform over S. Note that if the code C has low bias, then the resulting
distribution μ has small Fourier bias. Every word w in FN

2 can be viewed as a
function fw : S → F2, where fw(vi) = wi. Under this mapping, every codeword
of C gets associated with a linear function.

Note that via this translation, the problem of testing if w is close to some
codeword exactly translates into the problem of testing if fw is close to some
linear function under the distribution μ (where the distance of two functions
g, h under μ is measured by the probability that g and h differ on a random
sample from μ). Similarly, the problem of local list-decoding, i.e. the problem of
finding all codewords close to w, translates into the problem of finding all linear
functions that are close to fw under the distribution μ.

We now come to the self-correcting operation on f and μ. The operation has
the property that it maintains the property “f correlates with a linear function
under μ”, and at the same time it results in a distribution that is “simpler” in
a certain precise sense.

Define μ(2) to be the convolution of μ with itself; i.e., it is the distribution
of the sum of two independent samples from μ. We define f (2) : Fn

2 → F2

to be the (probabilistic) function, where for a given x, f (2)(x) is sampled as
follows: first sample y1 and y2 independently and uniformly from μ conditioned
on y1 + y2 = x, and return f(y1) + f(y2) (if there are no such y1, y2, then define
f (2)(x) arbitrarily).

330 S. Kopparty and S. Saraf

The following two simple facts are key to what follows:

– μ(2) is “simpler” than μ: the statistical distance of μ(2) to the uniform dis-
tribution on Fn

2 is significantly smaller than the statistical distance of μ to
the uniform distribution on Fn

2 (this follows from the low Fourier bias of μ,
which in turn came from the unbiasedness of C).

– If f is (1
2 − ε)-close to a linear function g under μ, then f (2) is (1

2 −2ε2)-close
to g under μ(2): this is a formal consequence of our definition of f (2). In
particular, if f is noticeably-close to g under μ, then so is f (2) under μ(2).

This leads to a general approach for list-decoding/testing for linear functions
under μ. First pick k large, and consider the distribution μ(k) and the function
f (k) (defined analogously to μ(2) and f (2)). If k is chosen large enough, then
μ(k) will in fact be 2−10n-close to the uniform distribution in statistical distance.
Furthermore, if k is not too large, then f (k) will be noticeably-close under μ(k)

to the same linear functions that f is close to under μ. Thus, if k is suitable (as
a function of the initial bias/sparsity of the code) f (k) is noticeably-close under
the uniform distribution to the same linear functions that f is close to under
μ. Now all we need to do is run a local list-decoding/testing algorithm on f (k)

under the uniform distribution.
An important issue that was swept under the rug in this discussion, is the

query/time-efficiency of working with f (k) and μ(k). If we ignore running-time,
one can simulate oracle access to f (k) using just a factor k larger number of
queries to f . This leads to our query-efficient (but time-inefficient) algorithms
for sparse, unbiased linear codes in the high-error regime (in this setting k only
needs to be a constant). We stress that our proof of this result is significantly
simpler and stronger than earlier analyses of local algorithms (in the low-error
regime) of sparse, unbiased codes [KL05, KS07].

The bottleneck for implementing these local, query-efficient algorithms in
a time-efficient manner is the following algorithmic “back-sampling” problem:
given a point x ∈ Fn

2 , produce a sample from the distribution of y1, . . . , yk picked
independently from μ conditioned on

∑
yi = x. A time-efficient back-sampling

algorithm would allow us to time-efficiently simulate oracle access to f (k) given
oracle access to f . For random sparse linear codes, solving this problem in time
sublinear in N is impossible; however for specific, interesting sparse unbiased
codes, this remains an important problem to address. For the special case of
dual-BCH codes, perhaps the most important family of sparse, unbiased codes,
we observe that the back-sampling problem can be solved using a small variant
of an algorithm of Kaufman-Litsyn [KL05]. Thus for dual-BCH codes, we get
poly log(N)-time, constant-query local testing and local list-decoding algorithms
in the high-error regime.

For sub-exponential time list-decoding, we follow the same plan. Here too
we will self-correct f to obtain a function f (k), such that every linear function
that correlates with f under the μ distribution, also correlates with f (k) under

Some Recent Results on Local Testing of Sparse Linear Codes 331

the uniform distribution over Fn
2 . However, since we are now paying attention

to running time (and we do not know how to solve the back-sampling problem
for μ efficiently in general), we cannot afford to allow the list-decoder over the
uniform distribution over Fn

2 to query the value of f (k) at any point that it desires
(since this will force us to back-sample in order to compute f (k) at that point).
Instead, we will use some recent remarkable list-decoders ([FGKP06, BKW03]),
developed in the context of learning noisy parities, which can find all linear
functions close (under the uniform distribution) to an arbitrary function h in sub-
exponential time by simply querying the function h at independent uniformly
random points of Fn

2 ! Using the unbiasedness of μ, it turns out to be easy to
evaluate f (k) at independent uniformly random points of Fn

2 . This leads to our
sub-exponential time list-decoding algorithm.

Relationship to the k-wise XOR on codes: Back in the language of codes,
what happened here has a curious interpretation. Given a code C ⊆ FN

2 , the k-
wise XOR of C, C(⊕k), is the code contained in FNk

2 defined as follows: for every
codeword c ∈ C, there is a codeword c(⊕k) ∈ F

[N]k

2 whose value in coordinate
(i1, . . . , ik) equals ci1 ⊕ ci2 ⊕ . . .⊕ cik

. In terms of this operation, our algorithms
simply do the following: given a code C and received word w, consider the code
C(⊕k) with received word w(⊕k). The crucial observation is, that for k chosen
suitably as a function of the bias/sparsity of C, the code C(⊕k) is essentially, up
to repeating each coordinate a roughly-equal number of times, the Hadamard
code! Additionally, w(⊕k) is close to c(⊕k) for a codeword c if and only if w

is close c. Thus decoding/testing w(⊕k) for the Hadamard code now suffices to
complete the algorithm.

The k-wise XOR on codes is an operation that shows up often as a device for
hardness amplification, to convert functions that are hard to compute into func-
tions that are even harder to compute. Our algorithms use the XOR operation
for “good”: here the XOR operation is a vehicle to transfer query-efficient/time-
efficient algorithms for the Hadamard code to query-efficient/time-efficient algo-
rithms for arbitrary unbiased codes.

References

[AS03] Arora, S., Sudan, M.: Improved low degree testing and its applications.

Combinatorica 23(3), 365–426 (2003); Preliminary version in Proceedings

of ACM STOC (1997)

[BCH+96] Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity

testing over characteristic two. IEEE Transactions on Information The-

ory 42(6), 1781–1795 (1996)

[BEK02] Bshouty, N.H., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise.

Theor. Comput. Sci. 288(2), 255–275 (2002)

[BKW03] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity

problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

[BLR93] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with appli-

cations to numerical problems. Journal of Computer and System Sci-

ences 47(3), 549–595 (1993)

332 S. Kopparty and S. Saraf

[DG08] Dinur, I., Goldenberg, E.: Locally testing direct product in the low er-

ror range. In: FOCS, pp. 613–622. IEEE Computer Society, Los Alamitos

(2008)

[FGKP06] Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for

learning noisy parities and halfspaces. In: FOCS, pp. 563–574 (2006)

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. J. ACM 45(4), 653–750 (1998)

[GKZ08] Gopalan, P., Klivans, A.R., Zuckerman, D.: List-decoding reed-muller codes

over small fields. In: Ladner and Dwork [LD08], pp. 265–274

[GL89] Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In:

Proceedings of the 21st Annual ACM Symposium on Theory of Computing,

pp. 25–32 (May 1989)

[GRS00] Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with

queries: The highly noisy case. SIAM Journal on Discrete Mathemat-

ics 13(4), 535–570 (2000)

[IJKW08] Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct

product theorems: simplified, optimized, and derandomized. In: Ladner,

Dwork (eds.) [LD08], pp. 579–588

[IKW09] Impagliazzo, R., Kabanets, V., Wigderson, A.: New direct-product testers

and 2-query pcps. In: STOC, pp. 131–140 (2009)

[IW97] Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:

Derandomizing the XOR Lemma. In: Proceedings of the 29th Annual ACM

Symposium on Theory of Computing, pp. 220–229 (May 1997)

[KL95] Krasikov, I., Litsyn, S.: On spectra of BCH codes. IEEE Transactions on

Information Theory 41(3), 786–788 (1995)

[KL05] Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally

testable. In: Proceedings of the Forty-sixth Annual Symposium on Foun-

dations of Computer Science, pp. 317–326 (2005)

[KS07] Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable

and testable. In: FOCS, pp. 590–600. IEEE Computer Society, Los Alamitos

(2007)

[KS09] Kopparty, S., Saraf, S.: Tolerant linearity testing and locally testable codes.

In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM

2009. LNCS, vol. 5687, pp. 601–614. Springer, Heidelberg (2009)

[LD08] Ladner, R.E., Dwork, C. (eds.): Proceedings of the 40th Annual ACM

Symposium on Theory of Computing, Victoria, British Columbia, Canada,

2008, May 17-20. ACM, New York (2008)

[Lit09] Litsyn, S.: Personal Communication (2009)

[Lyu05] Lyubashevsky, V.: The parity problem in the presence of noise, decoding

random linear codes, and the subset sum problem. In: Chekuri, C., Jansen,

K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005.

LNCS, vol. 3624, pp. 378–389. Springer, Heidelberg (2005)

[MR06] Moshkovitz, D., Raz, R.: Sub-constant error low degree test of almost-linear

size. In: Kleinberg, J.M. (ed.) STOC, pp. 21–30. ACM, New York (2006)

[PRR06] Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance

approximation. J. Comput. Syst. Sci. 72(6), 1012–1042 (2006)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with

applications to program testing. SIAM Journal on Computing 25(2), 252–

271 (1996)

Some Recent Results on Local Testing of Sparse Linear Codes 333

[RS97] Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a

sub-constant error-probability PCP characterization of NP. In: Proceedings

of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,

pp. 475–484. ACM Press, New York (1997)

[Sam07] Samorodnitsky, A.: Low-degree tests at large distances. In: STOC, pp. 506–

515 (2007)

[STV99] Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without

the XOR lemma. In: Proceedings of the 31st Annual ACM Symposium on

Theory of Computing, pp. 537–546 (1999)

[Sud09] Sudan, M.: Personal Communication (2009)

Testing (Subclasses of) Halfspaces

Kevin Matulef1, Ryan O’Donnell2, Ronitt Rubinfeld3, and Rocco Servedio4

1 ITCS, Tsinghua University

matulef@csail.mit.edu
2 Carnegie Mellon University

odonnell@cs.cmu.edu
3 Massachusetts Institute of Technology

ronitt@csail.mit.edu
4 Columbia University

rocco@cs.columbia.edu

Abstract. We address the problem of testing whether a Boolean-valued

function f is a halfspace, i.e. a function of the form f(x) = sgn(w ·x−θ).
We consider halfspaces over the continuous domain Rn (endowed with

the standard multivariate Gaussian distribution) as well as halfspaces

over the Boolean cube {−1, 1}n (endowed with the uniform distribution).

In both cases we give an algorithm that distinguishes halfspaces from

functions that are ε-far from any halfspace using only poly(1
ε
) queries,

independent of the dimension n.

In contrast to the case of general halfspaces, we show that testing

natural subclasses of halfspaces can be markedly harder; for the class

of {−1, 1}-weight halfspaces, we show that a tester must make at least

Ω(log n) queries. We complement this lower bound with an upper bound

showing that O(
√

n) queries suffice.

Keywords: halfspaces, linear thresholds functions.

This article presents a summary of the results found in [13] and [12] regarding
the testability of halfspaces and certain subclasses of halfspaces.

1 Introduction

A halfspace is a function of the form f(x) = sgn(w1x1 + · · · + wnxn − θ) where
w1, ..., wn, θ ∈ R. The wi’s are called “weights,” and θ is called the “threshold.”
The sgn function is 1 on arguments ≥ 0, and −1 otherwise. The inputs to f can
be either Boolean or real. Here we will mainly be concerned with functions over
the Boolean cube, i.e. functions of the form f : {−1, 1}n → {−1, 1}. Halfspaces
are also known as threshold functions or linear threshold functions; for brevity
we shall refer to them here as LTFs.

LTFs are a simple yet powerful class of functions, which for decades have
played an important role complexity theory, optimization, and perhaps especially
machine learning (see e.g. [9,18,2,15,14,17]). A lot of attention has been paid to

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 334–340, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing (Subclasses of) Halfspaces 335

the problem of learning LTFs- that is, given examples labeled according to an
unknown LTF (either random examples or queries to the function), find an
LTF that it is ε-close to. However, the question we want to address is that
of testing LTFs. That is, given query access to a function, we would like to
distinguish whether it is an LTF or whether it is ε-far from any LTF. Any proper
learning algorithm can be used as a testing algorithm (see, e.g., the observations
of [8]), but testing potentially requires fewer queries. Indeed, in situations where
query access is available, a query-efficient testing algorithm can be used to check
whether a function is close to an an LTF, before bothering to run a more intensive
algorithm to learn which LTF it is close to.

2 LTFs Are Testable with poly(1/ε) Queries

The main result in [13] is to show that halfspaces can be tested with a number
of queries that is independent of n. In fact the dependence is only polynomial
in 1/ε. We note that any learning algorithm — even one with black-box query
access to f — must make at least Ω(n

ε) queries to learn an unknown LTF to
accuracy ε under the uniform distribution on {−1, 1}n (this follows easily from,
e.g., the results of [11]). So at least in terms of relationship to n, our testing
algorithm is a significant improvement over using a learning algorithm. More
formally, our main result is the following:

Theorem 1 ([13]). Let f be a Boolean function f : {−1, 1}n → {−1, 1}, and
(as is standard in property testing) we measure the distance between functions
with respect to the uniform distribution over {−1, 1}n. Then there is an algorithm
with 2-sided error making poly(1

ε) queries that accepts f with high probability if
it is an LTF, and rejects with high probability if it ε-far from all LTFs.

We remark that the class of halfspaces is qualitatively much different than the
other classes of Boolean functions that we know how to test. Some previous
works have used the method of “implicit learning” to test classes such as s-
term DNF formulas and size-s decision trees [4]. However the implicit learning
technique only works for classes of functions whose members are close to juntas.
This is not the case here, since the class of halfspaces contains, for example, the
majority function, which is not at all close to a junta. Other previous works have
shown how to test classes with some algebraic structure, like parity functions and
low-degree polynomials, but these classes also are quite different from halfspaces.

Characterizations and Techniques. To prove our results, we establish new
structural results about LTFs which essentially characterize them in terms of their
degree-0 and degree-1 Fourier coefficients. For functions mapping {−1, 1}n to
{−1, 1} it has long been known [3] that any linear threshold function f is com-
pletely specified by the n + 1 parameters consisting of its degree-0 and degree-1
Fourier coefficients (also referred to as its Chow parameters). While this specifica-
tion has been used to learn LTFs in various contexts [1,7,16], it is not clear how it
can be used to construct efficient testers (for one thing this specification involves
n + 1 parameters, and we want a query complexity independent of n). Intuitively,

336 K. Matulef et al.

we get around this difficulty by giving new characterizations of LTFs as those func-
tions that satisfy a particular relationship between just two parameters, namely
the degree-0 Fourier coefficient and the sum of the squared degree-1 Fourier coef-
ficients. Moreover, our characterizations are robust in that if a function approx-
imately satisfies the relationship, then it must be close to an LTF. This is what
makes the characterizations useful for testing.

We first consider functions mapping Rn to {−1, 1} where we view Rn as
endowed with the standard n-dimensional Gaussian distribution. Our character-
ization is particularly clean in this setting and illustrates the essential approach
that also underlies the much more involved Boolean case. On one hand, it is
not hard to show that for every LTF f , the sum of the squares of the degree-1
Hermite coefficients1 of f is equal to a particular function of E[f] — regardless
of which LTF f is (we call this function W ; it is essentially the square of the
“Gaussian isoperimetric” function).

Conversely, we show that if f : Rn → {−1, 1} is any function for which the
sum of the squares of the degree-1 Hermite coefficients is within ±ε3 of W (E[f]),
then f must be O(ε)-close to an LTF — in fact to an LTF whose n weights are
the n degree-1 Hermite coefficients of f. The value E[f] can clearly be estimated
by sampling, and moreover it can be shown that a simple approach of sampling
f on pairs of correlated inputs can be used to obtain an accurate estimate of the
sum of the squares of the degree-1 Hermite coefficients. We thus obtain a simple
and efficient test for LTFs under the Gaussian distribution.

To handle general LTFs over {−1, 1}n, we first develop an analogous char-
acterization and testing algorithm for the class of balanced regular LTFs over
{−1, 1}n; these are LTFs with E[f] = 0 for which all degree-1 Fourier coef-
ficients are small. The heart of this characterization is a pair of results which
give Boolean-cube analogues of our characterization of Gaussian LTFs. We show
that the sum of the squares of the degree-1 Fourier coefficients of any balanced
regular LTF is approximately W (0) = 2

π . Conversely, we show that any function
f whose degree-1 Fourier coefficients are all small and whose squares sum to
roughly 2

π is in fact close to an LTF — in fact, to one whose weights are the
degree-1 Fourier coefficients of f. Similar to the Gaussian setting, we can esti-
mate E[f] by uniform sampling and can estimate the sum of squares of degree-1
Fourier coefficients by sampling f on pairs of correlated inputs. (An additional
algorithmic step is also required here, namely checking that all the degree-1
Fourier coefficients of f are indeed small; it turns out that this can be done by
estimating the sum of fourth powers of the degree-1 Fourier coefficients, which
can again be obtained by sampling f on (4-tuples of) correlated inputs.)

The general case of testing arbitrary LTFs over {−1, 1}n is substantially more
complex. Very roughly speaking, the algorithm has three main conceptual steps:

– First the algorithm implicitly identifies a set of O(1) many variables that
have “large” degree-1 Fourier coefficients. Even a single such variable can-
not be explicitly identified using o(log n) queries; we perform the implicit

1 These are analogues of the Fourier coefficients for L2 functions over Rn with respect

to the Gaussian measure.

Testing (Subclasses of) Halfspaces 337

identification using O(1) queries by adapting an algorithmic technique from
[6]. This is similar to the ”implicit learning” approach in [4].

– Second, the algorithm analyzes the regular subfunctions that are obtained
by restricting these implicitly identified variables; in particular, it checks
that there is a single set of weights for the unrestricted variables such that
the different restrictions can all be expressed as LTFs with these weights
(but different thresholds) over the unrestricted variables. Roughly speaking,
this is done using a generalized version of the regular LTF test that tests
whether a pair of functions are close to LTFs over the same linear form but
with different thresholds.

– Finally, the algorithm checks that there exists a single set of weights for the
restricted variables that is compatible with the different biases of the different
restricted functions. If this is the case then the overall function is close to the
LTF obtained by combining these two sets of weights for the unrestricted and
restricted variables. (Intuitively, since there are only O(1) restricted variables
there are only O(1) possible sets of weights to check here.)

3 Testing a Natural Subclass of Halfspaces Requires
More Queries

Complementing the work in [13], in [12] we consider the problem of testing
whether a function f belongs to a natural subclass of halfspaces, the class of
±1-weight halfspaces. These are functions of the form f(x) = sgn(w1x1 +w2x2 +
· · ·+wnxn) where the weights wi all take values in {−1, 1}. Included in this class
is the majority function on n variables, and all 2n “reorientations” of majority,
where some variables xi are replaced by −xi. Alternatively, this can be viewed as
the subclass of halfspaces where all variables have the same amount of influence
on the outcome of the function, but some variables get a “positive” vote while
others get a “negative” vote.

For the problem of testing ±1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which
distinguishes ±1-weight halfspaces from functions that are ε-far from ±1-
weight halfspaces must make at least Ω(log n) many queries. By a standard
transformation (see e.g. [5]), this also implies an Ω(log log n) lower bound
for adaptive algorithms. Taken together with [13], this shows that testing
this natural subclass of halfspaces is more query-intensive then testing the
general class of all halfspaces.

2. Upper Bound. We give a nonadaptive algorithm making O(
√

n ·poly(1/ε))
many queries to f , which outputs YES with probability at least 2/3 if f is a
±1-weight halfspace, and NO with probability at least 2/3 if f is ε-far from
any ±1-weight halfspace.

We note that it follows from [11] that learning the class of ±1-weight
halfspaces requires Ω(n/ε) queries. Thus, while some dependence on n is
necessary for testing, our upper bound shows testing ±1-weight halfspaces
can still be done more efficiently than learning.

338 K. Matulef et al.

Although we prove our results specifically for the case of halfspaces with all
weights ±1, our methods can be used to obtain similar results for other subclasses
of halfspaces such as {−1, 0, 1}-weight halfspaces (±1-weight halfspaces where
some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using
Yao’s method. We define two distributions DY ES and DNO over functions, where a
draw from DY ES is a randomly chosen±1-weight halfspace and a draw from DNO

is a halfspace whose coefficients are drawn uniformly from {+1,−1, +
√

3,−√
3}.

We show that a random draw from DNO is with high probability Ω(1)-far from
every ±1-weight halfspace, but that any set of o(log n) query strings cannot dis-
tinguish between a draw from DY ES and a draw from DNO.

Our upper bound is achieved by an algorithm which uniformly selects a small
set of variables and checks, for each selected variable xi, that the magnitude
of the corresponding singleton Fourier coefficient |f̂(i)| is close to to the right
value. We show that any function that passes this test with high probabil-
ity must have its degree-1 Fourier coefficients very similar to those of some
±1-weight halfspace, and that any function whose degree-1 Fourier coefficients
have this property must be close to a ±1-weight halfspace. At a high level this
approach is similar to some of what is done in [13], but here we are estimating∑

i |f̂(i)| rather than
∑

i f̂(i)2. In both instances we are checking that the con-
tribution of the degree-1 Fourier coefficients is “large,” but in the second case
we are estimating the coefficients more accurately in order to insure to insure
that we only pass functions close to ±1-weight halfspaces.

4 Open Questions

Several questions related to testing halfspaces are still open. Here we point out
a just a few:

– First is the question of whether there is a simpler algorithm for testing the
general class of halfspaces over the Boolean cube. Although our algorithm
makes “only” poly(1/ε) queries, the exponent of the polynomial is something
like 4000. Our algorithm is quite complicated, and hardly seems optimal.
Obviously a more efficient algorithm utilizing new ideas would be preferred.

– Our current approach to testing halfspaces makes two-sided error. It is un-
clear whether this is necessary. In order to get a better handle on testing
halfspaces, we might restrict ourselves to the question of one-sided testing.
Can we devise a one-sided tester, or show that there is none? We conjecture
(albeit without much confidence) that one-sided testing requires a query
complexity dependent on n. We make this conjecture based on the fact that
for any constant k, there exist boolean functions which are not halfspaces,
yet are consistent with a halfspace on any set of less than k examples [10].

– Perhaps the most obvious lingering question is whether we can extend our
algorithm for LTFs to test degree-d polynomial threshold functions, or PTFs.
This seems to require a significant amount of extra machinery, for example

Testing (Subclasses of) Halfspaces 339

in relating the size of the degree-d Fourier coefficients to the weights of the
corresponding terms inside a PTF, and to the bias of the PTF. Although
there are some highly technical obstacles, given all of the recent structural
results on PTFs, there is some hope that a testing algorithm can be achieved.

Acknowledgments

K.M. was supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901.

References

1. Birkendorf, A., Dichterman, E., Jackson, J., Klasner, N., Simon, H.U.: On

restricted-focus-of-attention learnability of Boolean functions. Machine Learn-

ing 30, 89–123 (1998)

2. Block, H.: The Perceptron: a model for brain functioning. Reviews of Modern

Physics 34, 123–135 (1962)

3. Chow, C.K.: On the characterization of threshold functions. In: Proceedings of the

Symposium on Switching Circuit Theory and Logical Design (FOCS), pp. 34–38

(1961)

4. Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan,

A.: Testing for concise representations. In: Proc. 48th Ann. Symposium on Com-

puter Science (FOCS), pp. 549–558 (2007)

5. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin

of the European Association for Theoretical Computer Science 75, 97–126 (2001)

6. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. In:

Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science,

pp. 103–112 (2002)

7. Goldberg, P.: A Bound on the Precision Required to Estimate a Boolean Percep-

tron from its Average Satisfying Assignment. SIAM Journal on Discrete Mathe-

matics 20, 328–343 (2006)

8. Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learn-

ing and approximation. Journal of the ACM 45, 653–750 (1998)

9. Hajnal, A., Maass, W., Pudlak, P., Szegedy, M., Turan, G.: Threshold circuits of

bounded depth. Journal of Computer and System Sciences 46, 129–154 (1993)

10. Hellerstein, L.: On generalized constraints and certificates. Discrete Mathemat-

ics 226(211-232) (2001)

11. Kulkarni, S., Mitter, S., Tsitsiklis, J.: Active learning using arbitrary binary valued

queries. Machine Learning 11, 23–35 (1993)

12. Matulef, K., Rubinfeld, R., Servedio, R.A., O’Donnell, R.: Testing {-1,1} - Weight

Halfspaces. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM

2009. LNCS, vol. 5687, pp. 646–657. Springer, Heidelberg (2009)

13. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.A.: Testing halfspaces. In:

20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 256–

264 (2009)

14. Minsky, M., Papert, S.: Perceptrons: an introduction to computational geometry.

MIT Press, Cambridge (1968)

340 K. Matulef et al.

15. Novikoff, A.: On convergence proofs on perceptrons. In: Proceedings of the Sym-

posium on Mathematical Theory of Automata, vol. XII, pp. 615–622 (1962)

16. Servedio, R.: Every linear threshold function has a low-weight approximator. Com-

putational Complexity 16(2), 180–209 (2007)

17. Shawe-Taylor, J., Cristianini, N.: An introduction to support vector machines.

Cambridge University Press, Cambridge (2000)

18. Yao, A.: On ACC and threshold circuits. In: Proceedings of the Thirty-First Annual

Symposium on Foundations of Computer Science, pp. 619–627 (1990)

Dynamic Approximate Vertex Cover

and Maximum Matching�

Krzysztof Onak1 and Ronitt Rubinfeld1,2

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 Tel-Aviv University, Tel Aviv, Israel

Abstract. We consider the problem of maintaining a large matching or

a small vertex cover in a dynamically changing graph. Each update to

the graph is either an edge deletion or an edge insertion. We give the first

randomized data structure that simultaneously achieves a constant ap-

proximation factor and handles a sequence of k updates in k ·polylog(n)

time. Previous data structures require a polynomial amount of compu-

tation per update.

The starting point of our construction is a distributed algorithm of

Parnas and Ron (Theor. Comput. Sci. 2007), which they designed for

their sublinear-time approximation algorithm for the vertex cover size.

This leads us to wonder whether there are other connections between

sublinear algorithms and dynamic data structures.

Keywords: dynamic algorithms, maximum matching, vertex cover.

1 Introduction

Suppose one is given the task of solving a combinatorial problem, such as maxi-
mum matching or minimum vertex cover, for a very large and constantly chang-
ing graph. In this setting, it is natural to ask, does one need to recompute the
solution from scratch after every update?

Such questions have been asked before for various combinatorial problems—
examples include minimum spanning tree, shortest path length, min-cut, and
many others (some examples include [1,2,3,4,5,6,7]). Classic works for these
problems have shown update times that are sublinear in the input size. For the
problem of maximum matching, Sankowski [8] shows that it can be maintained
with O(n1.495) computation per update, which for dense graphs is sublinear in
the number of edges.

For very large graphs, it may be crucial to maintain the maximum matching
with much faster, even polylogarithmic, update time. Note that this might be
hard for maximum matching, since obtaining o(

√
n) update time, even in the case

� Krzysztof Onak was supported in part by NSF grants 0732334 and 0728645. Ronitt

Rubinfeld was supported in part by NSF grants 0732334 and 0728645, Marie Curie

Reintegration grant PIRG03-GA-2008-231077, and the Israel Science Foundation

grant nos. 1147/09 and 1675/09.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 341–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

342 K. Onak and R. Rubinfeld

when only insertions are allowed, would improve on the 30-year-old algorithm of
running time O(m

√
n) due to Micali and Vazirani [9], where m is the number of

edges in the graph. Therefore, some kind of approximation may be unavoidable.
Following similar considerations, Ivković and Lloyd [10] give a factor-2 approxi-
mation to both vertex cover and maximum matching, by maintaining a maximal
matching (which is well known to give the desired approximation for maximum
matching and also minimum vertex cover). Their update time is nevertheless
still polynomial in n.

In this paper, we concentrate on the setting in which slightly weaker, but
still O(1), approximation factors are acceptable, but in which it is crucial that
update times be extremely fast, in particular, polylogarithmic in the number of
vertices.

Interestingly, our data structure uses a technique that Parnas and Ron [11]
designed for their sublinear-time algorithm as a starting point. We think that it
is an interesting direction to explore possible connections between sublinear-time
algorithms and dynamic data structures.

2 Problem Statement and Our Results

Recall that in the maximum matching problem, one wants to find the largest
subset of vertex disjoint edges. In the vertex cover problem, one wants to find
the smallest set of vertices such that each edge of the graph is incident to at
least one vertex in the set.

Our goal here is to design a data structure that handles edge removals and edge
insertions. The data structure provides access to a list of edges that constitute
a large matching and a list of vertices that constitute a small vertex cover. We
assume that we start with an empty graph, and n is known in advance.

The main result of the paper is the following:

There is a randomized data structure for maximum matching and vertex
cover that
(a) achieves a constant approximation factor,
(b) runs in O(k · log2

n + min{k, n2} · log n · log(1/δ)) time for any fixed
sequence of k updates with probability 1 − δ.

Note that for any sequence of k updates, the expected running time of the data
structure is O(k · log2

n).
Furthermore, the first step in our presentation is a deterministic data structure

for vertex cover. The data structure keeps a vertex cover that gives O(log n)
approximation to the minimum vertex cover. The amortized update time of
the data structure is O(log2

n). Though the approximation factor achieved by
this algorithm is relatively weak, the algorithm may be of independent interest
because of its relative simplicity and efficient update time.

Dynamic Approximate Vertex Cover and Maximum Matching 343

3 Overview of Our Techniques

We construct our data structure in two stages. We first show a deterministic
O(log n)-approximation data structure for vertex cover. Then we modify it, in-
troducing randomization, to achieve a constant approximation factor for both
vertex cover and maximum matching.

A Deterministic O(log n)-Approximation Data Structure. We construct a data
structure that makes use of a carefully designed partition of vertices into a log-
arithmic number of subsets. The partition is inspired by a simple distributed
algorithm of Parnas and Ron [11]. In [11], the first subset in the partition corre-
sponds to removing vertices of degree approximately greater than n. The second
subset corresponds to removing vertices of degree approximately greater than
n/4 from the modified graph. In general, the i-th subset is a set of vertices that
are approximately greater than n/4i−1 in the graph with all previous subsets
of vertices removed. Finally, after a logarithmic number of steps, the remaining
graph has no edges. This implies that the union of all subsets removed so far con-
stitutes a vertex cover. For each of the removed subsets, it is easy to show that
the subset size is bounded by O(VC(G)), where VC(G) is the size of the mini-
mum vertex cover. Hence the total vertex cover is bounded by O(VC(G) · log n).

The main idea behind our data structure is to modify the partition of Parnas
and Ron in order to allow efficient maintenance of this partition. While this is
not possible in the partition of Parnas and Ron, it is possible in our relaxed
version of it. As edges are inserted and removed, we want to move vertices
between subsets. In order to determine whether to move a vertex, we associate
a potential function with every vertex, and we allow a vertex to jump from one
set to another only if it has collected enough potential. To do this, we set two
thresholds τ1 < τ2 for each subset. A vertex can move into the subset from a
subset corresponding to a lower degree if its number of neighbors in a specific
graph is at least τ2. Then the vertex can move back to a subset corresponding
to a lower degree only if its number of edges decreases to τ1 in the same graph.
A slight technical difficulty is presented by the fact that moving vertices may
increase the potential of other vertices. We overcome this obstacle by carefully
selecting constants in the potential function so that the potential of the vertex
that moves is spent on increasing the potential of its neighbors whenever needed.

A Randomized O(1)-Approximation Data Structure. In this case, we redesign the
partition, building upon the previous one. In the process of defining the partition,
whenever we remove a large subset W of vertices of degree approximately greater
than n/4i, we also show the existence of a matching M which is smaller than
W by at most a constant factor. To build the next set of the partition, we not
only remove W but also all vertices matched in M . In this way we achieve a
matching and a vertex cover of sizes that are within a constant factor of each
other. Therefore, both give a constant factor approximation to their respective
optimal solutions.

344 K. Onak and R. Rubinfeld

Efficient maintenance of the new partition is more involved, as we are some-
times forced to recompute a new matching. This can happen, for instance, when
many edges in the old matchings are deleted from the graph. Unfortunately,
the creation of the new matching is expensive, since we have modify the set of
the vertices matched in M that are deleted together with W . If the edges in the
matching are deleted too quickly, we would have to create a new matching often,
in which case we do not know how to maintain small update time. Fortunately,
by picking a random matching, we can ensure that it is unlikely that many edges
from the matching get deleted in a short span of time. Thus, by the time the
matching gets deleted, we are likely to have collected enough potential to pay
for the creation of a new matching.

4 Other Related Work

A sequence of papers [12,13,14] considers computing a large matching or a large
weight matching (in the weighted case) in the semi-streaming model. The stream
is a sequence of edges, and the goal of an algorithm is to compute a large match-
ing in a small number of passes over the stream, using Õ(n) space, and preferably
at most polylog(n) update time. Results in this model correspond to results for
dynamically changing graphs in which only edge insertions occur, except that
the matching is only output once at the end of the processing. To the best of our
knowledge, it is not known how to achieve a better approximation factor than 2
in one pass in Õ(n) space for the maximum matching problem.

Lotker, Patt-Shamir, and Rosén [15] show how to maintain a large matching
in a distributed network.

5 Open Problems

The two main questions left open by our paper are:

– Our approximation factors are large constants. How small can they be made
with polylogarithmic update time? Can they be made 2? For maximum
matching, can the approximation constant be made smaller than 2 for max-
imum matching?

– Is there a deterministic data structure that achieves a constant approxima-
tion factor with polylogarithmic update time?

References

1. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification—a technique

for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

2. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. CRC Press, Boca

Raton (1997)

3. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-

logarithmic time per operation. J. ACM 46(4), 502–516 (1999)

Dynamic Approximate Vertex Cover and Maximum Matching 345

4. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-

nectivity. J. ACM 48(4), 723–760 (2001)

5. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.

In: STOC, pp. 112–119 (2005)

6. Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for shortest

paths in planar graphs. Algorithmica 22(3), 235–249 (1998)

7. Thorup, M.: Fully-dynamic min-cut. In: STOC, pp. 224–230 (2001)

8. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: SODA, pp.

118–126 (2007)

9. Micali, S., Vazirani, V.V.: An O(
√|V | ·|E|) algorithm for finding maximum match-

ing in general graphs. In: FOCS, pp. 17–27 (1980)

10. Ivković, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: van

Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 99–111. Springer, Heidelberg

(1994)

11. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time

and a connection to distributed algorithms. Theor. Comput. Sci. 381(1-3), 183–196

(2007)

12. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems

in a semi-streaming model. Theor. Comput. Sci. 348(2-3), 207–216 (2005)

13. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,

K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,

vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

14. Zelke, M.: Weighted matching in the semi-streaming model. In: STACS, pp. 669–

680 (2008)

15. Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed approximate matching. In:

PODC, pp. 167–174 (2007)

Local Property Reconstruction and

Monotonicity�

Michael Saks1 and C. Seshadhri2

1 Department of Mathematics, Rutgers University

saks@math.rutgers.edu
2 IBM Almaden Research Center

csesha@us.ibm.com

Abstract. We propose a general model of local property reconstruction.

Suppose we have a function f on domain Γ , which is supposed to have

a particular property P , but may not have the property. We would like

a procedure that produces a function g that has property P and is close

to f (according to some suitable metric). The reconstruction procedure,

called a filter, has the following form. The procedure takes as input an

element x of Γ and outputs g(x). The procedure has oracle access to

the function f and uses a single short random string ρ, but is otherwise

deterministic.

This model was inspired by a related model of online property re-

construction that was introduced by by Ailon, Chazelle, Comandur and

Liu (2004). It is related to the property testing model, and extends the

framework that is used in the model of locally decodable codes. A sim-

ilar model, in the context of hypergraph properties, was independently

proposed and studied by Austin and Tao (2008).

We specifically consider the property of monotonicity and develop an

efficient local filter for this property. The input f is a real valued function

defined over the domain {1, . . . , n}d (where n is viewed as large and d
as a constant). The function is monotone if the following property holds:

for two domain elements x and y, if x ≤ y (in the product order) then

f(x) ≤ f(y). Given x, our filter outputs the value g(x) in (log n)O(1) time

and uses a random seed ρ of the same size. With high probability, the

ratio of the Hamming distance between g and f to the minimum possible

Hamming distance between a monotone function and f is bounded above

by a function of d (independent of n).

1 Online Property Reconstruction

The process of assembling large data sets is prone to varied sources of corruption,
such as measurement error, replication error, and communication noise. Error
� This is an extended abstract of work that will appear as “Local Monotonicity Recon-

struction” in SIAM Journal on Computing [30]. A preliminary version of this work

appeared as “Parallel Monotonicity Reconstruction” [29]. The work was supported

in part by NSF under grants CCF-0515201 and CCF-0832787. It is partly based on

material that appeared in the second author’s Ph.D. dissertation for the Department

of Computer Science, Princeton University.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 346–354, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Local Property Reconstruction and Monotonicity 347

correction techniques (i.e. coding) can be used to reduce or eliminate the effects
of some sources of error, but often some residual errors may be unavoidable.
Despite the presence of such inherent error, the data set may still be very useful.

One problem in using such a data set is that even small amounts of error
can significantly change the behavior of algorithms that act on the data. For
example, if we do a binary search on an array that is supposed to be sorted, a
few erroneous entries may lead to behavior that deviates significantly from the
“correct” behavior.

This is an example of a more general situation. We have a data set that
ideally should have some specified structural property, i.e., a list of numbers
that should be sorted, a set of points that should be in convex position, or a
graph that should be a tree. Algorithms that run on the data set may rely on
this property. A small amount of error may destroy the property, and result in
the algorithm producing wildly unexpected results, or even crashing. In these
situations, a small amount of error may be tolerable but only if the structural
property is maintained.

These considerations motivated the formulation of the online property recon-
struction model, which was introduced in [3]. We are given a data set, which we
think of as a function f defined on some domain Γ . Ideally, f should have a spec-
ified structural property P , but this property may not hold due to unavoidable
errors. We wish to construct online a new data set g such that:

(1) g has property P and (2) d(g, f) is small, where d(g, f) is the fraction of
values x ∈ Γ for which g(x) �= f(x).

How small should d(g, f) be in Condition (2)? Define εf = εf(P) to be the
minimum of d(h, f) over all h that satisfy P . Of course, εf is a lower bound on
the deviation of g from f . The error blow-up of g is the ratio d(g, f)/εf . This
error blow-up can be viewed as the price that is paid in order to restore the
property P online, and we want this to be a not too large constant.

An offline reconstruction algorithm explicitly outputs such a g on input f . In
the context of large data sets, the explicit construction of g from f requires a
considerable amount of computational overhead (at least linear in the size of the
data set). For this reason, [3] considered online reconstruction algorithms. Such
an algorithm, called a filter, gets as input a sequence x1, x2, . . . of elements of Γ

presented one at a time and must output the sequence of values g(x1), g(x2), . . .
where g(xi) is produced in response to xi, before knowing xi+1. The filter can
access the function f via an oracle which, given y ∈ Γ , answers f(y). The aim is
to design a filter that, for any online input sequence of elements in Γ , outputs a
function g satisfying (1) and (2) above and furthermore produces each successive
g(xi) quickly, i.e., in time much smaller than O(|Γ |).

In [3], a filter for the monotonicity property was given. In this setting, the
domain Γ is the set [n]d = {(j1, . . . , jd) : ji ∈ [n]}, where [n] denotes the
set {1, 2, . . . , n}. The set [n]d is considered to be partially ordered under the
component-wise (product) order: (i1, . . . , id) ≤ (j1, . . . , jd) iff ∀r, ir ≤ jr. A
function f defined on Γ is monotone if x ≤ y implies f(x) ≤ f(y). The filter they

348 M. Saks and C. Seshadhri

constructed satisfies Condition (1), has error blow-up that is bounded above by
2O(d) (independent of n), and answers each successive query in time (log n)O(d).

2 Local Property Reconstruction

The filter for monotonicity proposed in [3] has the following general structure. For
each successive query xj , the filter executes a randomized algorithm to compute
g(xj). This algorithm accesses f , and also needs to access the answers g(xi) for
i < j to the queries asked previously. In particular, the function g produced may
depend on both the order of the queries and the random bits used by the algorithm.

This general structure for filters has two potential drawbacks: (1) It requires
the storage of all previous queries and answers, thus incurring possibly significant
space overhead for the algorithm, (2) It does not support a local implementation
in which multiple copies of the filter, having read-only access to f , are able to
handle queries independently while maintaining mutual consistency.

In this paper, we propose the following strengthened requirements for a filter.
A local filter1 for reconstructing property P is an algorithm A that has oracle
access to a function f on domain Γ (the “data set”) and to an auxiliary random
string ρ (the “random seed”), and takes as input x ∈ Γ . For fixed f and ρ, A

runs deterministically on input x to produce an output Af,ρ(x). Thus, given f

and ρ, Af,ρ specifies a function on domain Γ . We want A to satisfy the following
properties:

1. For each f and ρ, Af,ρ satisfies P . 2

2. For each f , with high probability (with respect to the choice of ρ), the
function Af,ρ should be “suitably close” to f .

3. For each x, Af,ρ on x can be computed very quickly.
4. The size of the random seed ρ should be “much smaller” than |Γ |.
Remark 1: In Condition 2, we say that Af,ρ should be “suitably close” to f .

There are various ways to make this precise. Let εf denote the minimum distance
from f to a function satisfying P and let γf (ρ) denote the distance from f to
Af,ρ. We would like γf (ρ) to be small compared to εf . The error blow-up, which
is the ratio of γf (ρ)/εf , works well for the monotoncity property that we study.
For other properties, it might be more appropriate to use another criterion: for
example, we might consider the difference γf (ρ) − εf . More generally, we could
require simply that γf (ρ) be bounded above by some arbitrary function of εf

(either independent of |Γ | or growing very slowly with |Γ |).
1 This was originally called a parallel filter in the conference version [29]. We made

this terminology change since it is more compatible with the existing concepts of

locally decodable codes.
2 In an earlier version of this paper, this condition was replaced by the weaker condition

that for each f , Af,ρ should satisfy P with high probability. Prompted by a question

raised by a referee we were able to modify our monotonicity filter to satisfy this

stronger property, and so modified the definition accordingly. The weaker condition

may be more appropriate for some other properties.

Local Property Reconstruction and Monotonicity 349

Remark 2: Similarly, for Condition 3, there are various possibilities for in-
terpreting the phrase “very quickly”. In this paper, we obtain running times
that are polynomial in log |Γ |. In Section 3, we will mention some work on other
properties where the running time does not depend on the domain size. On the
other hand, there may be other properties where it is non-trivial and interesting
to obtain running times of the form |Γ |δ.

Remark 3: A local filter can be used, trivially, as an online filter. The space
required by the local filter is bounded by the sum of the length of ρ and the
running time per query. By keeping these both small (e.g., much smaller than
|Γ |) we obtain an online filter using little auxiliary space.

Remark 4: A local filter can be used to enforce consistent behavior among
autonomous processors who each have access to f but do not communicate with
each other. We generate one random seed ρ and give the same random seed to
each of the processors. Since Af,ρ is deterministic, all processors will reconstruct
the same function.

3 Related Work

One case of property reconstruction that has been studied extensively is error cor-
recting codes. Suppose C ⊆ {0, 1}n is such a code in which all members of C are
pairwise at distance at least d. Let P be the property of being a codeword. The er-
ror correction problem for C is to find the closest codeword to a given input string
x. This can be formulated as a reconstruction problem for the property P .

One variant of the error correction is the problem of local decoding. This
problem was explicitly named in [25], but, as noted there, was studied previously
in connection with self-correcting computation (e.g., [12, 20]), probabilistically
checkable proofs (e.g., [8]), average-case reductions (e.g., [9, 31]), and private
information retrieval (e.g., [13]). Here we want a decoding algorithm for a given
code that, given oracle access to the bits of an input string x, and given an
index i ∈ [n], finds the ith bit of the closest codeword to x by querying a small
(possibly randomly selected) number of bits of x. If we view the local decoding
algorithm as a deterministic algorithm that takes input i and a random string r

(used to make the decisions) then we require that for each i, most choices of r

lead to the correct value for the ith bit of the closest codeword.
This is very similar to (though not quite the same as) the local property

reconstruction problem for P ; for local property reconstruction we interchange
the “for all” and “for most” quantifiers and require that for most choices of r,
and for all i ∈ [n], the algorithm correctly produces the ith bit of the codeword.
Also, we pay attention to the length of the random string r, which we want to
be suitably small.

In local list decoding, our aim is to find a short list of codewords that are
all suitably close to the input word. For example, in list decoding of low-degree
polynomials [6, 31], the input is a function and the output is a small list of
low-degree polynomials that are close to the input function.

350 M. Saks and C. Seshadhri

The monotonicity problem considered in this paper is qualitatively quite dif-
ferent from the local decoding examples. In local decoding there is either one
correct output, or (in the case of list-decoding) a sparse list of possible cor-
rect outputs. For monotonicity there may be many (possibly infinitely many)
ways to correct a given function to a nearby function with the desired property.
One might think that having many possible close corrections (rather than one)
makes reconstruction easier but, at least for the monotonicity problem, it does
not. The difficulty arises from the requirement that once the random seed is
fixed, all query answers provided by the filter must be consistent with a single
function having the property.

A related notion of reconstruction was discussed in [23], for generalized par-
tition problems in dense graphs. Given an input dense graph G that satisfies
some partition property (say k-colorability), we wish to efficiently construct a
partition of the vertices that has at most an ε-fraction of violating edges. The
algorithms for this problem provided in [23] behaved like local filters. Specifi-
cally, there was a constant (function of ε) time algorithm that gave the color
class of an input vertex of G, and this could be run independently on all vertices
(after fixing a random seed). This coloring was guaranteed to violate at most an
ε-fraction of the edges in G.

Independently of our work, a model of repair of a property was formulated and
studied in [7]. This is closely related to the reconstruction model considered here.
The results in [7] primarily considered reconstruction of hypergraph properties,
and obtained local filters of a very special form that modify an input hypergraph
to satisfy a given property. This result can be seen as a generalization of the
characterizations of testable properties of dense graphs [4,5]. This does not focus
on the exact form of the error blow-up, and only requires that the distance of
the reconstructed hypergraph be bounded by some arbitrary function of the
minimum distance of the hypergraph to the property.

In general, a local filter for reconstructing a given property can be used to
estimate the distance of an input instance to the property. When we fix a random
seed and run the filter on f , the filter implicitly outputs a function g that has
the desired property and is at distance at most Bεf from f (where εf is distance
of f to P). By choosing a random sample of domain points x and computing
the fraction of points where g(x) �= f(x), we get an estimate of the distance
d(g, f). Since εf ≤ d(g, f) and with high probability, εf ≥ d(g, f)/B, we get a
multiplicative B-approximation to εf in sublinear time.

4 Our Results

In this work, we construct a local filter for monotonicity for functions defined
on [n]d with the following performance:

– The time per query is (log n)O(d).
– The error blow-up is 2O(d2), independent of n.
– The number of random bits needed to initialize the filter is (d log n)O(1).

Local Property Reconstruction and Monotonicity 351

The online filter for monotonicity of [3] has a running time per query of (log n)O(d)

(with a better constant in the exponent) and an error blow-up of 2d. We see that
our filter achieves local behavior while having query time and error blow-up that
are similar to (but not quite as good) as those obtained by [3].

Our filter for monotonicity builds on techniques used for property testing of
monotonicity. There has been a large amount of work done on property testing,
which was defined in [23,28]. Many testers have been given for a wide variety of
combinatorial, algebraic, and geometric problems (see surveys [17,21,27]). The
related notions of tolerant testing and distance approximation were introduced
in [26]. The problem of monotonicity in the context of property testing has been
studied in [1, 10, 11, 14, 15, 18, 19, 22, 24]. Sublinear algorithms for approximating
the distance of a function to monotonicity have been given in [2, 26, 16].

Both the running time and error blow-up of our filter have an exponential
dependence on the dimension d. We also prove that this dependence is unavoid-
able. Specifically we show the following for some constant 0 < α < 1: given a
filter on the boolean hypercube {0, 1}d that answers queries within time 2αd,
there is an input function f such that the filter applied to f has error blow-up
2αd with probability close to 1/2. This shows a complexity gap between testing
and reconstruction for the hypercube, since there are monotonicity testers with
only a polynomial dependence on d [14, 16, 22].

5 Overview of the Local Filter for Monotonicity

We now discuss some of the ideas used in constructing the looal filter for mono-
tonicity. Details of the construction and analysis can be found in the full paper.

The starting point for the construction of our local filter for monotonicity is
the online filter of [3]. We now give the main ideas of their construction, and in-
dicate the difficulties in making their construction local. In the discussion below,
when we say an algorithm is “fast”, we mean that it runs in time polylogarithmic
in |Γ |.

We start with the case d = 1, i.e., the one-dimensional case. The basic idea
(implicitly used) in [3] is to classify the domain points as accepted and rejected
in such a way that the following conditions hold:

(1) There is a fast algorithm for testing whether a given point is accepted or
rejected.
(2) There are not many rejected points3.
(3) The function restricted to the set of accepted points is monotone.

The third property ensures that it is possible (though not necessarily efficiently)
to change the function only on rejected points and make the function monotone.
To do this, define m(x) for x ∈ Γ to be the largest accepted point less than
or equal to x, and define g(x) = f(m(x)). It is easy to see that this yields a
monotone function.

3 The number of rejected points is comparable to the distance of f to monotonicity.

352 M. Saks and C. Seshadhri

In [3], a point x is rejected if (roughly) there is an interval around x that
contains a large fraction of points whose f values are out of order with respect
to f(x). With this accepted/rejected classification there seems to be no fast way
to compute m(x). Instead, given a query point x, the filter in [3] selects a sample
of points less than or equal to x (called the sample of x), chooses m′(x) to be the
largest accepted point in the sample, and defines g(x) = g(m′(x)). The sampling
procedure chooses z < x with probability (roughly) inversely proportional to the
distance of z from x; in particular the sample includes x itself, so if x is accepted
then m′(x) = x.

Defining g in this way creates a problem: g need not be monotone. For exam-
ple, let y be a point and x = m(y) < y be the largest accepted point less than
or equal to y. Suppose that a query is made to y and x is not in the sample of y,
so m′(y) < x. Suppose further that f(m′(y)) < f(x). Suppose that after setting
g(y) to f(m′(y)), a query is made to index x. Since x is an accepted point we
will have m′(x) = x and so g(x) = f(x), but this will violate monotonicity with
the already defined g(y) = f(m′(y)).

In online reconstruction, this is not a significant problem because the algo-
rithm can save the previously answered queries in a sorted list and impose the
condition that future g values be consistent with previously assigned g values.
This is what is done in [3].

Local reconstruction does not have this luxury. What we do is to redefine
m′(x) so as to guarantee that for any y > x, we have m′(y) ≥ m′(x). To do this,
after sampling the points less than x we identify certain points of the sample
which have the potential for creating non-monotonicities and exclude them from
the sample. For example, in the scenario above, the point x needs to be excluded
from its own sample to avoid the potential non-monotonicity with y. Notice that
when we exclude x from its own sample we may introduce a new point where
g(x) �= f(x), so we cannot do this too often.

Thus, the main challenge in designing a local filter is to find an efficient way
to identify the points that need to be excluded from the sample of x to avoid
potential non-monotonicities. We also need to ensure that x is not excluded from
its own sample too often.

The difficulties in designing a local filter are greater for the case of higher-
dimensional domains (d ≥ 2). Suppose we had a definition of accepted and
rejected satisfying the three conditions stated in the one-dimensional case. In
principle, it is still possible to define a monotone g that agrees with f on all
accepted points. But explicitly computing such a g is more complicated. Given
x, let M(x) be the set of points which are maximal in the set of accepted points
less than or equal to x. In the one-dimensional case, M(x) has one element m(x),
but in the multi-dimensional case, where the domain is not totally ordered, this is
not the case. Still, if we define g(x) to be the maximum of f(y) for y ∈ M(x), then
the resulting g is monotone. To implement this, one would have to find all of the
elements of M(x). Even when M(x) has size 1 (as in the one-dimensional case)
this is difficult, but here the difficulty is compounded because M(x) might be as
large as Ω(nd−1), and we need our computation to run in time polylogarithmic

Local Property Reconstruction and Monotonicity 353

in n. In [3], this is handled by finding a polylogarithmic size sample that is a
suitable approximation to M(x), and then defining g(x) to be the maximum of
f(y) for y in the sample.

As with the one-dimensional case, using an approximation to M(x) destroys
the guarantee that g defined in this way is monotone. Hence, one must save the
values of g to all queries, and impose the additional requirement that queries are
mutually consistent. Since a local filter cannot save these values, we again need
to judiciously exclude points from the sample to avoid non-monotonicities.

The definition of the sample, which we denote Rep(x), crucially uses a data
structure of nested boxes (products of intervals). Condition (3) is maintained by a
careful and efficient scheme for passing crucial information about the distribution
of rejected points in a particular box to its sub-boxes.

References

1. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity

testing in higher dimension. Information and Computation 204(11), 1704–1717

(2006)

2. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Estimating the distance to a mono-

tone function. Random Structures and Algorithms 31(3), 371–383 (2007)

3. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-

struction. Algorithmica 51(2), 160–182 (2008)

4. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization

of the testable graph properties: it’s all about regularity. SIAM Journal on Com-

puting 39(1), 143–167 (2009)

5. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable

with one-sided error. SIAM Journal on Computing 37(6), 1703–1727 (2008)

6. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combina-

torica 23(3), 365–426 (2003)

7. Austin, T., Tao, T.: Testability and repair of hereditary hypergraph properties.

Random Structures and Algorithms 56(4), 373–463 (2010)

8. Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in poly-

logarithmic time. In: Proceedings of the 23rd Annual Symposium on Theory of

Computing (STOC), pp. 21–31 (1991)

9. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: PP has subexponential time sim-

ulations unless EXP-TIME has publishable proofs. Computational Complexity 3,

307–318 (1993)

10. Batu, T., Rubinfeld, R., White, P.: Fast approximate PCPs for multidimensional

bin-packing problems. Information and Computation 196(1), 42–56 (2005)

11. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:

Transitive-closure spanners. In: Proceedings of the 18th Annual Symposium on

Discrete Algorithms (SODA), pp. 531–540 (2009)

12. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to

numerical problems. Journal of Computer and System Sciences 47(3), 549–595

(1993)

13. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.

Journal of the ACM 45, 965–981 (1998)

354 M. Saks and C. Seshadhri

14. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,

A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K.,

Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,

vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

15. Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers.

Journal of Computer Systems and Sciences (JCSS) 6(3), 717–751 (2000)

16. Fattal, S., Ron, D.: Approximating the distance to monotonicity in high dimen-

sions. ACN Trans. on Alg. 6(3) (2010)

17. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin

of EATCS 75, 97–126 (2001)

18. Fischer, E.: On the strength of comparisons in property testing. Information and

Computation 189(1), 107–116 (2004)

19. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-

nitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of the

34th Annual Symposium on Theory of Computing (STOC), pp. 474–483 (2002)

20. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-

testing/correcting for polynomials and for approximate functions. In: Proceedings

of the 23rd Annual Symposium on Theory of Computing (STOC), pp. 32–42 (1991)

21. Goldreich, O.: Combinatorial property testing - a survey. In: Randomization Meth-

ods in Algorithm Design, pp. 45–60 (1998)

22. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A.: Testing

monotonicity. Combinatorica 20, 301–337 (2000)

23. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM 45(4), 653–750 (1998)

24. Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. Random

Structures and Algorithms 33(1), 44–67 (2008)

25. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-

correcting codes. In: Proceedings of the 32th Annual Symposium on Theory of

Computing (STOC), pp. 80–86 (2000)

26. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approx-

imation. Journal of Computer and System Sciences 6(72), 1012–1042 (2006)

27. Ron, D.: Property testing. In: Handbook on Randomization, vol. II, pp. 597–649

(2001)

28. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications

to program testing. SIAM Journal of Computing 25, 647–668 (1996)

29. Saks, M., Seshadhri, C.: Parallel monotonicity reconstruction. In: Proceedings of

19th Annual Symposium on Discrete Algorithms (SODA), pp. 962–971 (2006)

30. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM Journal on

Computing 39(7), 2897–2926 (2010)

31. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR

lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

Green’s Conjecture and Testing Linear Invariant

Properties

Asaf Shapira

School of Mathematics and College of Computing,

Georgia Institute of Technology, Atlanta, GA, USA

asafico@math.gatech.edu

Abstract. A system of 	 linear equations in p unknowns Mx = b is said

to have the removal property if every set S ⊆ {1, . . . , n} which contains

o(np−�) solutions of Mx = b can be turned into a set S′ containing no

solution of Mx = b, by the removal of o(n) elements. Green [GAFA 2005]

proved that a single homogenous linear equation always has the removal

property, and conjectured that every set of homogenous linear equations

has the removal property. In this paper we confirm Green’s conjecture by

showing that every set of linear equations (even non-homogenous) has

the removal property. We also discuss some applications of our result in

theoretical computer science, and in particular, use it to resolve a con-

jecture of Bhattacharyya, Chen, Sudan and Xie [4] related to algorithms

for testing properties of boolean functions.

Keywords: Property Testing, Linear-Invariance, Hypergraphs, Removal

Lemma.

This article is an extended abstract of [19].

1 Background on Removal Lemmas

The (triangle) removal lemma of Ruzsa and Szemerédi [18], which is by now
a cornerstone result in combinatorics, states that a graph on n vertices that
contains only o(n3) triangles can be made triangle free by the removal of only
o(n2) edges. Or in other words, if a graph has asymptomatically few triangles
then it is asymptotically close to being triangle free. While the lemma was proved
in [18] for triangles, an analogous result for any fixed graph can be obtained
using the same proof idea. Actually, the main tool for obtaining the removal
lemma is Szemerédi’s regularity lemma for graphs [21], another landmark result
in combinatorics. The removal lemma has many applications in different areas
like extremal graph theory, additive number theory and theoretical computer
science. Perhaps its most well known application appears already in [18] where
it is shown that an ingenious application of it gives a very short and elegant
proof of Roth’s Theorem [16], which states that every S ⊆ [n] = {1, . . . , n} of
positive density contains a 3-term arithmetic progression.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 355–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

356 A. Shapira

Recall that an r-uniform hypergraph H = (V, E) has a set of vertices V

and a set of edges E, where each edge e ∈ E contains r distinct vertices from
V . So a graph is a 2-uniform hypergraph. Szemeredi’s famous theorem [20] ex-
tends Roth’s theorem by showing that every S ⊆ [n] of positive density actually
contains arbitrarily long arithmetic progressions (when n is large enough). Mo-
tivated by the fact that a removal lemma for graphs can be used to prove Roth’s
theorem, Frankl and Rödl [5] showed that a removal lemma for r-uniform hyper-
graphs could be used to prove Szemeredi’s theorem on (r + 1)-term arithmetic
progressions. They further developed a regularity lemma, as well as a corre-
sponding removal lemma, for 3-uniform hypergraphs thus obtaining a new proof
of Szemeredi’s theorem for 4-term arithmetic progressions. In recent years there
have been many exciting results in this area, in particular the results of Gowers
[8] and of Nagle, Rödl Schacht and Skokan [14,15], who independently obtained
regularity lemmas and removal lemmas for r-uniform hypergraph, thus provid-
ing alternative combinatorial proofs of Szemeredi’s Theorem [20] and some of it
generalizations, notably those of Furstenberg and Katznelson [6]. Tao [22] and
Ishigami [11] later obtained another proof of the hypergraph removal lemma and
of its many corollaries mentioned above. For more details see [9].

2 Our Main Result

In this paper we will use the above mentioned hypergraph removal lemma in
order to resolve a conjecture of Green [10] regarding the removal properties of
sets of linear equations. Let Mx = b be a set of linear equations, and let us say
that a set of integers S is (M, b)-free if it contains no solution to Mx = b, that
is, if there is no vector x, whose entries all belong to S, which satisfies Mx = b.
Just like the removal lemma for graphs states that a graph that has few copies of
H should be close to being H-free, a removal lemma for sets of linear equations
Mx = b should say that a subset of the integers [n] that contains few solutions
to Mx = b, should be close to being (M, b)-free. Let us start be defining this
notion precisely.

Definition 2.1 (Removal Property). Let M be an � × p matrix of integers
and let b ∈ N�. The set of linear equations Mx = b has the removal property
if for every δ > 0 there is an ε = ε(δ, M, b) > 0 with the following property: if
S ⊆ [n] is such that there are at most εnp−� vectors x ∈ Sp satisfying Mx = b,
then one can remove from S at most δn elements to obtain an (M, b)-free set.

Green [10] has initiated the study of the removal properties of sets of linear
equations. His main result was the following:

Theorem 2.1 (Green [10]). Any single homogenous linear equation has the
removal property.

The main result of Green actually holds over any abelian group. To prove this
result, Green developed a regularity lemma for abelian groups, which is some-
what analogous to Szemerédi’s regularity lemma for graphs [21]. Although the

Green’s Conjecture and Testing Linear Invariant Properties 357

application of the group regularity lemma for proving Theorem 2.1 was similar
to the derivation of the graph removal lemma from the graph regularity lemma,
the proof of the group regularity lemma was far from trivial. One of the main
conjectures raised in [10] is that a natural generalization of Theorem 2.1 should
also hold (Conjecture 9.4 in [10]).

Conjecture 2.2 (Green [10]). Any system of homogenous linear equations
Mx = 0 has the removal property.

Very recently, Král’, Serra and Vena [12] gave a surprisingly simple proof of
Theorem 2.1, which completely avoided the use of Green’s regularity lemma for
groups. In fact, their proof is an elegant and simple application the removal
lemma for directed graphs [1], which is a simple variant of the graph removal
lemma that we have previously discussed. The proof given in [12] actually extends
Theorem 2.1 to any single non-homogenous linear equation over arbitrary groups.
Král’, Serra and Vena [12] also show that Conjecture 2.2 holds when M is a 0/1
matrix, which satisfies certain conditions. But these conditions are not satisfied
even by all 0/1 matrices.

In this paper we confirm Green’s conjecture for every homogenous set of linear
equations. In fact, we prove the following more general result.

Theorem 2.3 (Main Result). Any set of linear equations Mx = b has the
removal property.

3 Applications to Testing Properties of Boolean
Functions

Besides being a natural problem from the perspective of additive number theory,
it turns out that Theorem 2.3 has some applications in Theoretical Computer
Science, in the area of Property Testing [3,17,7]. Property testers are fast ran-
domized algorithms that can distinguish between objects satisfying a certain
property P and objects that are “far” from satisfying it. In an attempt to prove
a general sufficient condition that would guarantee that certain properties of
boolean functions have efficient testing algorithms, Bhattacharyya, Chen, Su-
dan and Xie [4] conjectured that certain properties of boolean functions (that
are related to the notion of being (M, b)-free) can be efficiently tested. As we
show in this paper, our main result gives a positive answer to their open problem.

After our paper appeared on the Arxiv we learned that independently of our
work, Král’, Serra and Vena managed to improve upon their results in [12,13]
and obtain a proof of Conjecture 2.2.

Acknowledgments

A.S. is partially supported by NSF Grant DMS-0901355.

358 A. Shapira

References

1. Alon, N., Shapira, A.: Testing Subgraphs in Directed Graphs. Journal of Computer

and System Sciences 69, 354–382 (2004)

2. Austin, T., Tao, T.: On the testability and repair of hereditary hypergraph prop-

erties (2008) (manuscript)

3. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to

numerical problems. JCSS 47, 549–595 (1993)

4. Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant non-

linear properties (2008) (manuscript)

5. Frankl, P., Rödl, V.: Extremal problems on set systems. Random Structures and

Algorithms 20, 131–164 (2002)

6. Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for commuting

transformations. J. Analyse Math. 34, 275–291 (1978)

7. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. JACM 45(4), 653–750 (1998)

8. Gowers, T.: Hypergraph regularity and the multidimensional Szemerédi theorem.

Ann. of Math. 166(3), 897–946 (2007)

9. Gowers, T.: Quasirandomness, counting and regularity for 3-uniform hypergraphs.

Combinatorics, Probability and Computing 15, 143–184 (2006)

10. Green, B.: A Szemerédi-type regularity lemma in abelian groups. GAFA 15, 340–

376 (2005)

11. Ishigami, Y.: A simple regularization of hypergraphs,

http://arxiv.org/abs/math/0612838

12. Král’, D., Serra, O., Vena, L.: A combinatorial proof of the removal lemma for

groups, arXiv:0804.4847v1

13. Král’, D., Serra, O., Vena, L.: A removal lemma for linear systems over finite fields.

Jornadas de Matematica Discreta y algortimica (2008)

14. Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular k-uniform hy-

pergraphs. Random Structures and Algorithms 28, 113–179 (2006)

15. Rödl, V., Skokan, J.: Regularity lemma for k-uniform hypergraphs. Random Struc-

tures and Algorithms 25, 1–42 (2004)

16. Roth, K.F.: On certain sets of integers. J. London Math. Soc. 28, 104–109 (1953)

17. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications

to program testing. SIAM J. on Computing 25, 252–271 (1996)

18. Ruzsa, I., Szemerédi, E.: Triple systems with no six points carrying three triangles.

In: Combinatorics, Keszthely, vol. II. Coll. Math. Soc. J. Bolyai 18, pp. 939–945

(1976)

19. Shapira, A.: Green’s conjecture and testing linear invariant properties. In: Proc. of

STOC 2009, pp. 159–166 (2009)

20. Szemerédi, E.: Integer sets containing no k elements in arithmetic progression. Acta

Arith. 27, 299–345 (1975)

21. Szemerédi, E.: Regular partitions of graphs. In: Bermond, J.C., Fournier, J.C., Las

Vergnas, M., Sotteau, D. (eds.) Proc. Colloque Inter. CNRS, pp. 399–401 (1978)

22. Tao, T.: A variant of the hypergraph removal lemma. J. Combin. Theory, Ser.

A 113, 1257–1280 (2006)

http://arxiv.org/abs/math/0612838

Author Index

Adamaszek, Micha�l 228

Alon, Noga 234

Andoni, Alexandr 240, 244

Ben-Eliezer, Ido 253

Ben-Sasson, Eli 13

Bhattacharyya, Arnab 260, 269

Blais, Eric 32

Chen, Victor 260, 276

Czumaj, Artur 41, 228

Dinur, Irit 280

Goldreich, Oded 1, 6, 65, 105, 289, 295

Harsha, Prahladh 280

Hellweg, Frank 306

Indyk, Piotr 240

Kaufman, Tali 253, 312

Kopparty, Swastik 269, 320

Krauthgamer, Robert 244

Krivelevich, Michael 253, 289

Matulef, Kevin 334

Newman, Ilan 142, 289

O’Donnell, Ryan 334

Onak, Krzysztof 158, 240, 244, 341

Raskhodnikova, Sofya 167

Ron, Dana 253, 295

Rozenberg, Eyal 289

Rubinfeld, Ronitt 240, 334, 341

Saks, Michael 346

Saraf, Shubhangi 320

Schmidt, Melanie 306

Schoenebeck, Grant 269

Servedio, Rocco A. 197, 334

Seshadhri, C. 346

Shapira, Asaf 355

Sohler, Christian 41, 228, 306

Sudan, Madhu 211, 260, 269

Wigderson, Avi 312

Xie, Ning 260

Zuckerman, David 269

	Title
	Preface
	Table of Contents
	Editor’s Introduction
	A Brief Introduction to Property Testing
	Introduction
	The Issues
	A Brief Historical Perspective
	References

	The Program of the Mini-Workshop
	References

	Surveys
	Limitation on the Rate of Families of Locally Testable Codes
	Introduction
	Defining Locally Testable Codes
	A Brief Survey of Known LTC Constructions
	Why Study Limitations of LTCs?
	Summary of Results Appearing in the Survey

	Limiting Rate of Linear LTCs via the Structure of the Dual Code
	Linear LTCs Are Testable by Linear Testers
	Random Low Density Parity Check Codes
	LTCs Require Redundant Testers
	Dense LTCs Have Small Rate
	Question: Narrow the Gap between Redundant and Dense LTC Limitations

	Limitations on Group-Invariant Codes
	Affine Invariant LTCs Have Small Rate

	References

	Testing Juntas: A Brief Survey
	Introduction
	Boolean Functions: Preliminaries
	Basic Definitions
	Notable Boolean Functions
	Influence

	Testing1-Juntas
	The Algorithm
	History

	Testingk-Juntas
	The Algorithm
	History

	Testingk-Juntas Nearly Optimally
	The Algorithm

	Open Problems and Future Directions
	Classical vs. Quantum Property Testing
	Adaptive vs. Non-Adaptive Testing
	Improved Testers for Other Properties

	References

	Sublinear-time Algorithms
	Introduction
	Basic Sublinear Algorithms
	Geometry: Intersection of Two Polygons

	Sublinear Time Algorithms for Graphs Problems
	Approximating the Average Degree
	Minimum Spanning Trees
	Constant Time Approximation Algorithms for Maximum Matching
	Other Sublinear-time Results for Graphs

	Sublinear Time Approximation Algorithms for Problems in Metric Spaces
	Minimum Spanning Trees
	Uniform Facility Location
	Clustering via Random Sampling
	Other Results
	Limitations: What Cannot Be Done in Sublinear-Time

	Conclusions
	References

	Short Locally Testable Codes and Proofs: A Survey in Two Parts
	Introduction
	Definitions
	Codeword Testers
	Proof Testers
	Discussion
	A Confused History

	Results and Ideas
	The Mere Existence of Locally Testable Codes and Proofs
	Locally Testable Codes and Proofs of Polynomial Length
	Locally Testable Codes and Proofs of Nearly Linear Length
	Additional Considerations

	Locally Decodable Codes
	Definitions
	Results
	Relaxations

	References

	Introduction to Testing Graph Properties
	The General Context
	Why Graphs?
	Why Testing?
	Three Models of Testing Graph Properties
	Organization

	The Dense Graph Model
	A Taste of the Known Results
	Testing versus Other Forms of Approximation
	A Benchmark: Testing Bipartiteness

	The Bounded-Degree Graph Model
	A Taste of the Known Results
	A Benchmark: Testing Bipartiteness

	The General Graph Model
	A Taste of the Known Results
	A Benchmark: Testing Bipartiteness
	Reflections

	Additional Issues
	Directed Graphs
	Tolerant Testing and Distance Approximation
	Proximity Oblivious Testing

	References

	Property Testing of Massively Parametrized Problems – A Survey
	Introduction
	General Notations
	Results That Are in RetrospectMassively-Parametrized Testing
	Testing Membership in Read-Once Branching Programs
	Testing Monotonicity in General Posets

	Contemporary Results
	Main Results in the Orientation Model
	Some Lower Bounds – An On-Going Work
	Testing Membership in Boolean Formulae

	Open Problems
	References

	Sublinear Graph Approximation Algorithms
	Introduction
	Preliminaries

	General Bounded-Degree Graphs
	Vertex Cover
	Maximum Matching
	Other Problems

	Algorithms for Hyperfinite Graphs
	Hyperfinite Graphs
	Approximation Algorithms and Partitioning Oracles
	Other Applications of Partitioning Oracles

	OpenProblems
	References

	Transitive-Closure Spanners: A Survey
	Introduction
	A Simple Example: TC-spanners of the Directed Line
	A Brief Overview
	Organization of This Survey

	Preliminaries and Notation
	Overview of Structural Results on TC-spanners
	TC-spanners of Specific Graph Families
	General TC-spanner Constructions

	Overview of Computational Results on Directed Spanners
	Applications of TC-spanners
	Applications to Property Testing
	Application to Property Reconstruction
	Application to Key Management in Access Control Hierarchies
	Application to Computing Partial Products in a Semigroup

	References

	Testing by Implicit Learning: A Brief Survey
	Introduction
	Some Previous Work on Testing Classes of Boolean Functions
	Relevant Earlier Work Relating Property Testing and Learning

	The Basic “Testing by Implicit Learning” Approach
	Overview of the Approach
	Subclass Approximators
	More Detailed Explanation of the Basic Algorithm
	Sketch of the Analysis
	The Main Theorem and Its Consequences

	Efficiently Testing Sparse F_2 Polynomials
	The [DLM+08] Algorithm and Its Analysis

	Testing Induced Subclasses of Functions with k-Dimensional Fourier Spectra
	Open Problems and Directions for Future Work
	References

	Invariance in Property Testing
	Introduction: Property Testing and Invariance
	Invariances

	Invariances of Some Well-Studied Properties
	Statistical Properties
	Graph Property Testing
	Properties of Boolean Functions

	Algebraic Properties
	A Generalization of Algebraic Properties
	Constraints and Characterizations
	Testability of Linear Affine-Invariant Properties
	Structure of Linear Affine-Invariant Properties

	Non-linear Affine-Invariant Properties
	Conclusions
	References

	Extended Abstracts
	Testing Monotone Continuous Distributions on High-Dimensional Real Cubes
	Introduction
	Continuous Distributions Are Typically Not Testable
	Testing If a Distribution Is Discrete on N Points
	Testing If a Monotone High-Dimensional Distribution on a Real Hypercube Is Uniform
	References

	On Constant Time Approximation of Parameters of Bounded Degree Graphs
	Introduction
	Notation and Definitions
	Examples
	A Useful Tool
	The New Results

	Proofs
	Dominating Set
	Independence Number

	Concluding Remarks and Open Problems
	References

	Sublinear Algorithms in the External Memory Model
	Introduction
	Our Results
	Applications to Other Problems
	References

	Polylogarithmic Approximation for Edit Distance and the Asymmetric Query Complexity
	Introduction
	Results
	Connections of Asymmetric Query Model to Other Models
	Techniques
	References

	Comparing the Strength of Query Types in Property Testing: The Case of Testing k-Colorability
	Introduction
	The Distance Measure and Query Types Studied in This Work
	Related Work on Testing k-Colorability
	Our Results
	References

	Testing Linear-Invariant Non-linear Properties: A Short Report
	Introduction
	Definitions: Constraints, Characterizations, Invariance and Orbits
	Our Results in [BCSX09]
	Subsequent Work and Open Problems
	Boolean Functions over F^n_2
	Finite-Valued Functions over F^n_q
	Improving the Soundness Analysis

	References

	Optimal Testing of Reed-Muller Codes
	Introduction
	Reed-Muller Codes and Testing
	MainResult
	Query Hierarchy for Affine-Invariant Properties
	GowersNorm
	XOR Lemma for Low-Degree Polynomials
	Technique
	References

	Query-Efficient Dictatorship Testing with Perfect Completeness
	References

	Composition of Low-Error 2-Query PCPs Using Decodable PCPs
	Probabilistically Checkable Proofs – Introduction
	Decodable PCPs (dPCPs)
	Composition with dPCPs
	Composition with Only Two Queries
	Background and Motivation
	The Two-Query PCP of Moshkovitz and Raz [MR08b]
	References

	Hierarchy Theorems for Property Testing
	Background
	Our Main Results
	Our Techniques
	Additional Results
	References

	Algorithmic Aspects of Property Testing in the Dense Graphs Model
	Introduction
	Two Related Studies
	Adaptivity vs. Non-adaptivity
	Complexity Linearly Related to the Proximity Parameter

	OurResults
	A Complexity Theoretic Perspective
	References

	Testing Euclidean Spanners
	Introduction
	Euclidean Spanners
	Our Contribution

	The Testing Algorithm
	References

	Symmetric LDPC Codes and Local Testing
	Introduction
	OurResults
	Our Techniques
	Related Work
	Conclusions and Open Questions
	References

	Some Recent Results on Local Testing of Sparse Linear Codes
	Introduction
	Locally Testable Codes and Tolerant Linearity Testing
	Main Notions and Results

	Overview of Proof for Uniform-Correlatability \Longrightarrow Testability
	High Error
	Local Testing
	Local List-Decoding
	Subexponential Time List-Decoding
	Time-Efficient Local Algorithms for Dual-BCH Codes

	Overview of Proofs in the High Error Regime
	References

	Testing (Subclasses of) Halfspaces
	Introduction
	LTFs Are Testable with poly(1/ϵ) Queries
	Testing a Natural Subclass of Halfspaces Requires More Queries
	Open Questions
	References

	Dynamic Approximate Vertex Cover and Maximum Matching
	Introduction
	Problem Statement and Our Results
	Overview of Our Techniques
	Other Related Work
	OpenProblems
	References

	Local Property Reconstruction and Monotonicity
	Online Property Reconstruction
	Local Property Reconstruction
	Related Work
	OurResults
	Overview of the Local Filter for Monotonicity
	References

	Green’s Conjecture and Testing Linear Invariant Properties
	Background on Removal Lemmas
	Our Main Result
	Applications to Testing Properties of Boolean Functions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

