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Hybrid quantum circuits combining advantages of each individual system have provided a promising platform
for quantum information processing. Here we propose an experimental scheme to directly couple a transmon
qubit to an individual spin in the nitrogen-vacancy (NV) center, with a coupling strength three orders of magnitude
larger than that for a single spin coupled to a coplanar waveguide microwave cavity. This direct coupling between
the transmon and the NV center could be utilized to make a transmon bus, leading to a coherently virtual exchange
among different single spins. Furthermore, we demonstrate that, by coupling a transmon to a low-density NV
ensemble, a SWAP operation between the transmon and NV ensemble is feasible and a quantum nondemolition
measurement on the state of the NV ensemble can be realized on the cavity-transmon-NV-ensemble hybrid
system. Moreover, in this system, a virtual coupling can be achieved between the cavity and NV ensemble, which
is much larger in magnitude than the direct coupling between the cavity and the NV ensemble. The photon state
in the cavity can thus be stored into NV spins more efficiently through this virtual coupling.
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I. INTRODUCTION

Quantum information processing has received tremendous
attention owing to its potential application in quantum com-
putation and networking [1–3]. Among various kinds of
candidates for quantum computing, enormous progress has
been made on atomic systems and superconducting qubit
systems due to their distinct advantages. Atomic systems,
with electron or nuclear spins in the ground-state manifold as
the qubits, usually present an excellent coherence time [4,5]
since they are well protected from environmental disturbance.
This good isolation, however, is inevitably accompanied with
a relatively weak coupling with the outside world [6], which
makes it more difficult for coherent manipulation. In contrast,
the platform provided by superconducting qubit systems
allows for a strong interaction with an external field [7,8],
which enables fast control with good scalability [9–12] but
leads to a relatively short coherence time.

To make full use of distinctive advantages of these two
systems, various studies have been focusing on building a
hybrid system to combine the superiority and overcome the
drawback of the spin and the superconducting qubits [13–
17]. One approach to building a hybrid system is to use
a superconducting cavity as a quantum bus. In this design
both the spin and the superconducting qubits are coupled
to the microwave cavity, and the quantum information can
be transferred between the spin and qubit via the quantum
bus [13]. To solve the problem of weak interaction between
the spin and the microwave cavity, a spin ensemble with N

spins is usually used for an increase of coupling strength
by a factor of

√
N [6,13,18]. Due to the low coupling

strength between a single spin and a cavity, a large number
of spins are required to achieve a strong coupling. However,
the coherence performance would be degraded because of
the spin interaction in high-density ensembles. Besides this
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cavity-mediated coupling, a direct coupling between a flux
qubit and a spin ensemble can be achieved [19,20]. However,
the application of the flux qubit in quantum computing is
limited due to its short coherence time.

The transmon qubit is the most widely used qubit in the
current superconducting quantum computation architecture
due to its relatively long coherence time and low sensitivity
to charge noise compared with flux and charge qubits [21].
Unlike the flux qubit, the transmon can be strongly coupled to
a cavity very easily and detected by a nondestructive dispersive
readout scheme. The nitrogen-vacancy (NV) center has been
used as the quantum memory in the hybrid system owing to the
attractive properties of extremely long coherence time [5,22].
In this paper, we propose an experimentally feasible hybrid
quantum system to directly couple a transmon qubit to spins
in NV centers. By directly coupling these two systems, we
find that the coupling strength between the transmon and an
individual spin is three orders of magnitude larger than that
in the cavity-single-NV-center system, thus greatly reducing
the number of NV centers required to achieve strong coupling.
The large coupling rate between a single spin and a transmon
qubit makes it possible to realize a transmon bus to entangle
two or more distant spins, resulting in the transfer of quantum
information between spins by the long-range virtual exchange.
We also investigate a cavity-transmon-NV-ensemble hybrid
system and show, by coupling a transmon qubit to a low-
density NV ensemble, a SWAP operation between the transmon
and the NV ensemble is feasible and a quantum nondemolition
measurement on the state of NV ensemble can be realized in
this hybrid system.

II. QUANTUM INTERFACE BETWEEN A TRANSMON
AND SPINS OF NV CENTERS

A. Transmon and spins of NV centers

A NV center is an impurity in diamond with the electron
spins in the S = 1 state. There is a zero magnetic field splitting
ω± ≈ 2.88 GHz between the state mS = 0 and mS = ±1. The
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spin in the NV center is not actually a two-level system, but
we can induce a splitting between states mS = ±1 with an
external magnetic field of microtesla level. The transmon qubit
has been historically considered as a special case of Cooper
pair box (CPB) behaving as an anharmonic oscillator [23].
The simplest architecture of a transmon qubit consists of one
Josephson junction (JJ) shunted with a large capacitance. The
Hamiltonian of this type of transmon qubit can be written in
the phase basis with an offset charge ng eliminated by a gauge
transformation:

Htrans = −4EC

∂2

∂ϕ2
− EJ cos ϕ, (1)

where Ec is the charging energy and EJ is the Josephson
energy; ϕ is the phase difference of the wave between the su-
perconductors. This Hamiltonian represents a particle with the
position ϕ moving in a cosine potential field. Due to the large
capacitance of the transmon, it is operated in a regime EJ �
EC , which leads to a very small fluctuation on phase ϕ for the
transmon. Therefore we usually deal with this Hamiltonian
with the perturbation theory. Expanding the cosine potential
in Eq. (1) gives Htrans = −4EC

∂2

∂ϕ2 − EJ (1 − ϕ2

2 + ϕ4

4! + · · ·).
Since in circuit quantum electrodynamics (cQED) the phase
difference ϕ and the number of Cooper pairs n follow a
canonical conjugated commutating relation, we can introduce
annihilation and creation operators b,b† which satisfy the
bosonic commutation relation [b,b†] = 1. Expressing ϕ and
n as a linear combination, ϕ = 1√

2
( 8EC

EJ
)1/4(b + b†), n =

1√
2
( EJ

8EC
)1/4(b − b†), and substituting ϕ and n with b and b†,

one obtains

Htrans ≈ h̄ωp

(
b†b + 1

2

)
− EC

12
(b + b†)4,

where ωp =
√

8EJ EC

h̄
is the plasma frequency. Therefore, the

transmon is like a harmonic oscillator with frequency ωp but
perturbed by a small nonlinear term H ′ = −EC

12 (b + b†)4.
Usually the transmon qubit consists of a superconducting

loop with two Josephson junctions (JJs). The NV center can
thus be placed near the loop. Figure 1 shows a schematic
diagram of a cavity-transmon-spin-ensemble hybrid system
with a transmon covered by a diamond chip which is located in
a superconducting cavity. According to the Josephson relation
I = Ic sin θ , where Ic is the critical current, there will be
a current flowing through the transmon. The current will
generate a magnetic field, which can be utilized to couple
the transmon to spins in diamond. The transmon frequency
can be tuned in resonance with the spin ensemble by an
external magnetic field perpendicular to the loop generated by
a current bias [24]. Considering a double-Josephson junction
(double-JJ) a transmon with a transition frequency of 3.7 GHz
(junction resistance Rn = 15 k� and Ec = 92 MHz), it is
straightforward to tune the transition frequency to 2.88 GHz
to be resonant with the NV spins with a magnetic field of
milligauss scale (of the order of 10 mG for a typical geometry
of double-JJ transmon), which is much lower than the critical
magnetic field for an Al thin film [25].

FIG. 1. A cavity-transmon-spin-ensemble hybrid system. A
transmon is located in the place with a maximum electric field inside
a coplanar waveguide (CPW) superconducting cavity. The transmon
is covered by a diamond chip. The pink part is the substrate and
blue one represents the superconductor film. The purple line is the
electric field in the cavity and the red part in the close-up illustrates
the insulator barrier of a Josephson junction. The diamond chip is
denoted by the brown cuboid and the spins of the NV centers are
indicated by black arrows. The size of the NV center is LN and the
distance between two Josephson junctions in the transmon is L. The
cross section of the transmon junction is h × h.

B. Interaction between a transmon and an individual
spin of NV center

We begin with an analysis of the coupling between an
individual spin and a transmon with a single JJ. A model
of the single-JJ transmon coupling with an individual spin
is shown in the inset of Fig. 2(a). The Pauli operators are
denoted as τ for the transmon and σ for the NV spins. Here
we choose the z axis as the crystalline axis of the NV center
and σx,σy,σz are tied to the x-y-z axis of the NV center,
while τx,τy,τz have no relationship with the x-y-z axis of
the NV center. The spin in the NV center is coupled to the
transmon through a magnetic dipole coupling. The interaction
term between them is Hint = −μ · B = μBge

h̄
S · B, where μB

is the Born magneton, ge is the g factor of the electron, and B
is the magnetic field generated by the transmon.

The dependence of B on the state of the transmon can be
investigated based on the relation ϕ = 1√

2
( 8EC

EJ
)1/4(b + b†). If

the transmon is a perfect harmonic oscillator (i.e., neglecting
the nonlinear term), in the qubit space of the transmon, b,b†

would be equivalent to the Pauli lowering and raising operators
τ−,τ+. However, with the nonlinear term H ′ = −EC

12 (b + b†)4,
this equivalence remains a good approximation. The error
of the substitution b → τ−,b† → τ+ has been estimated by
perturbation theory and shown in detail in Appendix A. We
take this substitution and investigate the coupling under this
approximation. By substituting τ−,τ+ for b,b†, the current on
the transmon is

I = Ic sin ϕ ≈ Icϕ = Ic

1√
2

(
8EC

EJ

)1/4

(τ− + τ+)

= Ic

1√
2

(
8EC

EJ

)1/4

τx.

Here we use the approximation similar to the analysis of
the transmon Hamiltonian that expanding sin ϕ by ignoring
the higher-order terms such as ϕ3

6 as their contribution
is very small. For instance, considering a typical parame-
ter of transmon in the regime EC/EJ ≈ 1/100, one gets
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FIG. 2. Coupling strength gts as a function of the location of a single spin with x = 0 for the case (a) a single-spin coupling to a single-JJ
transmon and (b) a single-spin coupling to a double-JJ transmon. Each inset shows the schematic diagram of the coupling scenario. The
quantization axis of the NV center is assumed to be along the x direction. The critical current of the transmon, Ic = 500 nA, is used for
calculation. The white region in (a) represents a coupling strength larger than 8 kHz. The origin of the coordinate in the inset in (a) is located
at the center of the insulator cuboid, so the top surface of the transmon is at z = h/2 = 0.05 μm. For (b), two junctions are identical and the
distance between two junctions is L = 3 μm. The origin in the inset in (b) is set at the center of the transmon loop and the top surface of the
transmon is also at z = h/2 = 0.05 μm.

ϕ = 0.376τx , while ϕ3

6 is only 0.009τ 3
x , which is much smaller

than the first order. As a result, the magnetic field generated
by the current of the transmon is proportional to τx . For
convenience, we denote the field of the transmon as B = B0τx

and project B,B0 into the x-y-z axis of the NV center so
that Bx,By,Bz and B0x

,B0y
,B0z

are the components along the
x, y, z axis, respectively. The interaction can be written as
Hint = −μ · B = ( σx√

2
Mx + σy√

2
My + σz

2 Mz)τx , where Mi =
μBgeB0i

, (i = x,y,z). By putting the Hamiltonian of the NV
center and the transmon together and using a rotating wave
approximation, the final Hamiltonian becomes

Hts/h̄ = ωt

2
τz + ωs

2
σz + gtsσ+τ− + g∗

tsσ−τ+,

where gts = 1√
2
(Mx − iMy)/h̄ is the coupling strength be-

tween the transmon and the spin, and ωt and ωs are the transi-
tion frequency for the transmon and the spin, respectively. The
physical picture could be understood as follows: The transmon
is a nonlinear oscillator, and the current in the transmon
is like a displacement operator of the oscillator which is
proportional to τx = τ− + τ+ under good approximation.
Therefore the magnetic field generated by the transmon
depends on the displacement of this oscillator. The spin
interacts with the displacement of the transmon through its
generated magnetic field. Alternatively, the coupling can also
be understood as the displacement of the transmon influenced
by the magnetic field generated by the NV spin.

To make the frequency of the transmon adjustable, two
Josephson junctions forming a SQUID loop are usually used in
the transmon design. The inset of Fig. 2(b) shows a schematic
diagram of a single-spin coupling to a double-JJ transmon. This
double JJ is equivalent to one junction with the flux-dependent
Josephson energy [21]:

HJ = −(EJ1 + EJ2)

[
cos

πφ

φ0
cos ϕ + d sin

πφ

φ0
sin ϕ

]
, (2)

where d = (EJ2 − EJ1)/(EJ1 + EJ2), φ is the external flux
of the loop, and ϕ = θ1+θ2

2 is the phase difference operator of
the equivalent one junction. EJ1,θ1,EJ2,θ2 are the Josephson
energy and phase difference for each junction, respectively.
Usually, it is preferred to operate with integer flux quanta in
the loop, leading to sin πφ

φ0
= 0, so the second term in Eq. (2)

can be dropped.
Changing the geometry of the transmon from one JJ to

two JJs would affect the interaction term since there are two
separated currents flowing through each junction. Thus each
current of two junctions should be treated separately. Since
θ1 − θ2 = 2πφ

φ0
, the currents I1,I2 on each junction with ϕ

expanded to the first order are

I1 = Ic1 sin
πφ

φ0
+ ϕIc1 cos

πφ

φ0
,

I2 = −Ic2 sin
πφ

φ0
+ ϕIc2 cos

πφ

φ0
.

The term contributing to the coupling is the second one,
which is proportional to cos πφ

φ0
. Therefore, the coupling would

be maximal at an integer flux, which is consistent with the
demand on suppressing the second term in Eq. (2). Operation
at the integer flux also has the advantage that the coupling
strength would have a minimum fluctuation on this point since
it has a zero derivative on flux φ. In the following we assume
our double-JJ transmon is operated at the integer flux point,
which yields I1 = ±ϕIc1,I2 = ±ϕIc2. Based on these two
currents, the effective magnetic field and coupling strength
gts can be evaluated. The result indicates that the coupling
strength between the transmon and the spin is adjustable by
the magnetic flux. Figures 2(a) and 2(b) show the estimated
coupling strength gts for an individual spin coupling to a
single-JJ transmon and double-JJ transmon, respectively. For
the single NV center located at 0.1 μm above the center of
the single-JJ transmon with a quantization axis along the
transmon orientation [x direction in the inset of Figs. 2(a)
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and 2(b)], the coupling strength is estimated to be 2π × 8 kHz
with a critical current Ic = 500 nA. This coupling strength is
approximately three orders of magnitude larger than that for
a single-spin coupling to a coplanar waveguide microwave
cavity. This large coupling rate is actually due to the large
zero-point current fluctuation Izpf in the transmon rather than
the suppression of mode volume. The mode volume is related
to the geometry dimension. The zero-point current fluctuation
is determined by the inductance of the Josephson junction if

the transmon is considered as a LC oscillator, Izpf = ω′
t

√
h̄

2Zc
,

where ω′
t is the resonance frequency of circuit, Zc is the

characteristic impedance. The transmon is usually operated at
EJ � EC with large shunt capacitance and small inductance
(high critical current Ic). This leads to a small value of
impedance, and thus a large Izpf , resulting in a strong magnetic
coupling to spins. For the case of coupling to a double-JJ
transmon, the maximum coupling can be achieved near each
junction. This result reveals that even the coupling strength
with a single spin can be larger than the decoherence rate of
the spin, which is remarkable and important for application of
this hybrid system.

C. Coupling between a transmon and a spin ensemble
and quantum nondemolition measurement

The coupling strength of the transmon to the NV center
spin ensemble has a

√
N enhancement by using an ensemble

of N spins that are near resonant to the transmon qubit. The
schematic diagram of a transmon coupling to a spin ensemble
is depicted in Fig. 1. The spins in a NV ensemble could
have significant inhomogeneous broadening (about 10 MHz
scale [26]) and the transmon qubit only couples to those spins
that are near resonant with the detuning smaller or comparable
with the transmon-spin coupling rate. The total coupling gt−ens

can be expressed as gt−ens =
√∑

j |gj |2, where the summation

is over all NV center spins that are near resonant to the
transmon qubit. Under a low-excitation approximation, the
spin ensemble can be treated with a collective spin operator
s = 1

gt−ens

∑
j gjσ

j
−, s† = 1

gt−ens

∑
j gjσ

j
+, which satisfies the

bosonic creation-annihilation commutation relation [s,s†] =
1. The interaction Hamiltonian between the spin ensemble
and the transmon qubit becomes

Hint = gt−ens(s
†τ− + sτ+).

The coupling strength gt−ens is estimated by summing over
all of the inhomogeneous coupling strength gts(r). We assume
that the external magnetic field BNV is along the [100] direction
of the diamond sample, in line with the direction of transmon
(x direction in Fig. 1), which has equal components along
the four spin axes of the NV center spins in the diamond.
The collective coupling rate gt−ens is shown in Fig. 3(a) as a
function of the size of the diamond LN with different densities
n of near-resonant NV center spins. Figure 3(b) plots the gt−ens

as a function of density n with different dimensions of diamond
crystal. These two figures indicate that a coupling strength of 1
MHz can be reached with a crystal size about 4 μm with a low
density of NV centers 5 × 1016 cm−3. Considering a typical
coherence time ∼10 − 100 μs for a transmon qubit [14] and

FIG. 3. The coupling strength gt−ens between a double-JJ trans-
mon and NV spin ensemble as a function of diamond crystal size LN

with different densities n in (a) and as a function of density n with
different diamond crystal dimensions LN in (b). The diamond crystal
has a volume of L3

N . The coupling strength is calculated by summing
over all the spins in the diamond cube. The dimension of transmon
L (the distance between two junctions) is 3 μm. The purple dashed
line represents gt−ens = 1 MHz, indicating a strong coupling regime
for the transmon-spin ensemble system.

∼2 ms for NV center spins [27], strong coupling is readily
achievable with a typical crystal size of diamond or NV center
density. Comparing with the case of coupling the NV spin
ensemble to a microwave cavity mode [26,28] much low spin
density is required to reach the strong coupling regime. Note
that the inhomogeneous magnetic field from the transmon
could also cause an inhomogeneous broadening of the NV
spin ensemble, but this broadening is on the order of 10kHz,
which is much smaller than the natural broadening of the NV
spin ensemble.

Due to the long coherence time of the spin ensemble, it is
preferred to use the spin ensemble as a quantum memory to
store the state of the transmon in a hybrid quantum circuit.
In experiment, a low temperature is required to operate the
transmon to maintain its superconductivity and fully polarize
the NV center spins into the ground state [27]. Thanks to the
interaction term gt−ens(s†τ− + sτ+), two states |G〉 = |g〉N and
|B〉 = s†|g〉N can be used to exchange quantum information
with the ground and the excited state of the transmon qubit
at zero detuning �t−ens = 0. A SWAP gate between the NV
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FIG. 4. (a) A dispersive readout procedure for the state of the NV ensemble. The whole measurement process consists of steps for
preparation, excitation, SWAP operation, and pump-probe measurement to determine the state of the spin ensemble (b) An energy-level diagram
of the NV-ensemble-transmon system. The transition frequency of the transmon depends on the state of the NV ensemble due to the dispersive
interaction between the transmon and the NV ensemble. The dashed line represents the energy level of the transmon-NV-ensemble system
without the interaction between them. | ↓〉, | ↑〉 represents the ground and excited states of the transmon and |G〉,s†|G〉,(s†)2|G〉 is the ground
state and excited states of the NV ensemble, respectively.

spin ensemble and the transmon can be realized by taking a
fixed time of interaction t = π/2gt−ens, which enables us to
directly write the quantum state of the transmon qubit into
the bright mode of the NV spin ensemble and then retrieve it
back to the transmon after a controllable storage time. This
coupling between the NV spin ensemble and the transmon
qubit also yields an intriguing dispersive readout strategy for
the bright mode state of the spin ensemble. In the dispersive
regime with gt−ens � �t−ens = ωt − ωs , the Hamiltonian of
the NV-ensemble-transmon system becomes

Ht−ens

h̄
≈ ωss

†s + 1

2
(ωt + 2χs†s + χ )τz, (3)

where χ = g2
t−ens/�t−ens. In this case, the frequency of the

transmon qubit depends on the state of the spin ensemble,
which means that we can read out the state of the NV
spin ensemble by detecting the transmon state based on the
routine dispersive readout via the cavity. Figure 4(a) shows
the measurement strategy and an energy-level diagram of the
NV-ensemble-transmon system is illustrated in Fig. 4(b). The
transition frequency of the transmon depends on the state of
the NV ensemble due to the dispersive interaction between
the transmon and the NV spin ensemble. The frequency shifts
by 2χ when the NV ensemble is excited from the ground
state |G〉 to the excited bright mode state s†|G〉. For the
measurement process, the transmon and the spin ensemble are
initially prepared in a ground state |↑ G〉. Next, the transmon
is excited by a pump pulse at a frequency of ωt + χ . The
transmon frequency is then tuned in resonance with the spin
ensemble with an external flux generated by a current bias,
resulting in a SWAP gate to transfer the quantum state to the spin
ensemble. The transmon frequency is tuned back afterwards
to turn off the exchange coupling between the transmon and
the spin ensemble. The final state of the spin ensemble is
determined by a π pulse or π

2 Ramsey pulse sequence on the
transmon at the frequency of ωt + χ , followed by a readout
pulse on the cavity to probe the state of the transmon. If the
SWAP gate is successfully accomplished, the state of the spin

ensemble will be changed from |G〉 to s†|G〉. This leads to a
frequency shift of 2χ for the transmon, resulting in probing a
ground state of the transmon when the pump pulse is applied
on the transmon at the frequency of ωt + χ . The higher-order
excited states of the bright mode, such as (s†)2|G〉, can be
similarly detected by probing the transmon state with the pump
pulse at a frequency of ωt + 5χ . This measurement needs to be
operated in the dispersive regime to ensure the validity of the
dispersive Hamiltonian, and it is a quantum-nondemolition
measurement since [s†sτz,Ht−ens] = 0 [29]. Note that the
detuning �ts does not break the rotating wave approximation
(RWA). The unique nonlinearity characteristic of the transmon
is crucial to performing this quantum nondemolition (QND)
measurement. This is because the QND measurement is
actually based on the χs†sτz in Eq. (3). If a linear oscillator
(such as a lumped element LC resonator) rather than a
transmon is used, the operator τ+,τ− of the transmon needs to
be replaced by the creation and annihilation operator of LC,
a
†
LC, aLC . The commutation relation is no longer [τ+,τ−] = τz

but instead [aLC,a
†
LC] = 1. This leads to the replacement of

dispersive shift by a term proportional to χs†s, resulting in the
disappearance of the dispersive shift term χs†sτz in Eq. (3).

To show the feasibility of this manipulation and detection
scheme, let us take some typical experimental parameters. The
frequencies of the transmon, the spin ensemble, and the cavity
are taken to be 3.27, 2.88, and 5 GHz, respectively. Assuming
the double-JJ transmon has a typical relaxation time T1 ∼
20 μs with a coupling strength gt−ens = 15 MHz to the spin
ensemble and gt−c = 80 MHz to the cavity, the frequency shift
of the transmon is estimated to be 2χ ≈ 1.15 MHz when the
state of the spin ensemble changes from |G〉 to s†|G〉, which
is large enough to distinguish the state of spin ensemble by
dispersively probing the state of the transmon with a pump
microwave pulse at the frequency of ωt + χ .

The state stored in the bright mode would leak into the
dark mode due to the inhomogeneous broadening of the NV
spin ensemble. To accomplish this QND measurement, the
microwave pulse must be fast enough to finish measurement
before the state leaks into the dark mode, which is feasible

062301-5



YAOWEN HU, YIPU SONG, AND LUMING DUAN PHYSICAL REVIEW A 96, 062301 (2017)

since the leakage into dark modes takes place over a period
of time, on the order of the free induction decay time of a
few microseconds [30–33]. If we are starting a measurement
with the state already stored in the dark mode, refocusing
techniques can be utilized to actively restore the state into the
bright mode. Then QND measurement can be accomplished
as described above. This leakage to dark mode also benefits
the storage of state since the dark states are unaffected by
spontaneous emission caused by the coupling of spins to
the transmon. In using the dark modes, our hybrid circuit is
similar to and compatible with another protocol of writing and
reading states with NV spin ensemble as quantum memory
described in [27,32,34], where the cavity is used as a quantum
bus between the NV ensemble and the transmon. Here, our
protocol accomplishes state exchange between the processor
(transmon) and the memory (NV spin ensemble) through
direct coupling between them with a much larger coupling
rate without using a cavity as the intermedia.

D. Virtual exchange and transmon bus

As discussed before, the coupling strength between a
single-JJ transmon and an individual single spin is about
8 kHz, which is not strong enough to coherently transfer
quantum information between transmon and spin. However,
this coupling can yield a coherent information transfer between
two spins via a virtual exchange with the transmon as an
intermediary bus. Figure 5(a) shows the schematic diagram
of a hybrid system composed of two spins coupling to the

transmon. The Hamiltonian of this system is

Hs−t−s

h̄
= ωt

2
τz + ωs1

2
σz1 + ωs2

2
σz2 + gts1(σ+

1 τ− + σ−
1 τ+)

+ gts2(σ+
2 τ− + σ−

2 τ+). (4)

In the dispersive regime, gts1 � �ts1 = ωt − ωs1, gts2 �
�ts2 = ωt − ωs2, we can apply a unitary transformation
U = exp[− gts1

�ts1
(σ+

1 τ− − σ−
1 τ+) − gts2

�ts2
(σ+

2 τ− − σ−
2 τ+)] to the

Hamiltonian Hs−t−s and obtain a new Hamiltonian:

Hs−t−s/h̄ ≈ 1

2

(
ωt + g2

ts1

�ts1
+ g2

ts2

�ts2

)
τz + 1

2

(
ωs1 − g2

ts1

�ts1

)
σz1

+ 1

2

(
ωs2 − g2

ts2

�ts2

)
σz2 + J (σ+

1 σ−
2 + σ−

1 σ+
2 )τz,

(5)

where J = gts1gts2

2 ( 1
�ts1

+ 1
�ts2

). In the dispersive regime, apart
from the frequency shifts to the transmon and the spins, a new
interaction term J (σ+

1 σ−
2 + σ−

1 σ+
2 )τz emerges, representing

a virtual exchange between the two spins induced by the
coupling to the common transmon bus [see Fig. 5(b)]. When
two spins are tuned into resonance, a SWAP gate between them
can be achieved via this virtual exchange at the interaction time
t = π/2J . Via this virtual exchange, spins are protected from

the transmon-induced loss by a reduction factor of
g2

ts1,2

�2
ts1,2

. The

coupling mediated by the transmon is of significantly longer
range compared with the direct dipole interaction between

FIG. 5. (a) A schematic diagram showing the coupling of two spins to a single-JJ transmon. The blue part represents the superconductor
and red part shows the insulator. Spins are shown as brown spheres with black arrows and purple circles show the magnetic field generated
by the transmon. (b) Energy-level diagram of spin-transmon-spin system. Two energy levels indicated by the arrows interact with each other
via the virtual exchange. Both spins are detuned from the transmon but are in resonance with each other to turn on the virtual exchange. (c)
Energy-level diagram of cavity-transmon-spin ensemble system. The energy levels indicated by the arrows interact with each other to swap an
excitation between them. The cavity and spin ensemble are detuned from the transmon to prohibit the real exchange between them.
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the two spins. This visual coupling can also be used to aid
interaction between many spins near the transmon.

The virtual exchange can also be applied to a cavity-
transmon-spin-ensemble system:

Hc−t−ens/h̄ = ωra
†a + ωt

2
τz + ωss

†s + gtc(a†τ− + aτ+)

+ gt−ens(s
†τ− + sτ+). (6)

In a dispersive regime gtc � �tc = ωt −
ωr, gt−ens � �t−ens = ωt − ωs , the Hamiltonian
can be simplified by a unitary transformation
U = exp[− gtc

�tc
(a†τ− − aτ+) − gt−ens

�t−ens
(s†τ− − sτ+)] to the

form

Hc−t−ens/h̄

= 1

2

(
ωt + 2g2

tc

�tc
a†a + g2

tc

�tc
+ 2g2

t−ens

�t−ens
s†s + g2

t−ens

�t−ens

)
τz

+ωss
†s + ωra

†a + gvirtual(a
†s + as†)τz, (7)

where gvirtual = gtcgt−ens

2 ( 1
�tc

+ 1
�t−ens

). Similar to the case of the
spin-transmon-spin system, the Hamiltonian shows there is a
virtual interaction between the cavity and spin ensemble via
the transmon bus. Figure 5(c) illustrates the energy level of
this cavity-transmon-spin-ensemble hybrid system. The state
exchange is feasible between the energy levels indicated by the
arrows. If the system is prepared in the state |1 ↓ G〉 at t = 0,
when the virtual exchange is turned on, the state of the system
experiences an evolution as |ψ(t)〉 = cos(gvirtualt)|1 ↓ G〉 +
sin(gvirtualt)|0 ↓ B〉, achieving a complete state transfer at t =
π/2gvirtual. This virtual coupling is much larger than the direct
coupling of cavity to spin ensemble under the same number
of effective spins. For instance, considering gtc = gt−ens =
10 MHz and detuning gtc/�tc = gt−ens/�t−ens = 1/10, we
estimate the virtual coupling gvirtual = 1 MHz = 1

10gt−ens,
while, with the same number of spins, the direct coupling
rate gc−ens between the cavity and the spin ensemble is only
gc−ens = 1

1000gt−ens. The reason is that the coupling strength gts

is three orders of magnitude larger than gcs for a single-spin
coupling to a microwave cavity. Thus many fewer spins are
required to achieve the strong coupling regime for coupling
the NV ensemble to the cavity via the transmon instead of
directly coupling the NV ensemble to the cavity.

III. CONCLUSIONS

In summary, we have proposed a hybrid system of directly
coupling a transmon qubit to a NV center or spin ensemble
of NV centers. We estimate the coupling strength between
the transmon qubit to a NV center or NV center spin ensemble
under different coupling configurations. The coupling rate
between the transmon and NV spin is three orders of magnitude
larger than that for a single-spin coupling to a microwave
cavity, which can be used to make a transmon bus, leading to
coherent virtual exchange interaction among different single
spins. We also demonstrate that, by using a low-density NV
spin ensemble, a SWAP operation between the transmon and the
NV spin ensemble is feasible and a quantum nondemolition
measurement on the state of the NV ensemble can be realized
on the transmon-NV-ensemble hybrid system. Finally, we in-

vestigate the cavity-transmon-NV-ensemble system, and show
that coherent information transfer can be achieved between
cavity and NV spin ensemble by virtual exchange mediated
through the transmon, which is much stronger than the direct
coupling between the cavity and the NV spin ensemble. Our
proposal of coupling the transmon qubit to the NV center spin
is feasible with the experimental technology. The parameter
estimation is based on typical experimental values. The
proposed idea here can also be extended to other spin systems,
including, for instance, spins of molecular nanomagnets and
phosphorus atoms in silicon, with the potential advantage of
combining the long coherence time of spin systems with fast
and convenient quantum information processing offered by the
transmon qubits.
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APPENDIX A: ERROR ESTIMATION OF SUBSTITUTION
b → τ−,b† → τ+

To estimate the error of substitution b → τ−,b† → τ+, the
state of transmon is calculated by perturbation theory. As
shown in the main text, the Hamiltonian of the transmon is

Htrans ≈ h̄ωp

(
b†b + 1

2

)
+ H ′

H ′ = −EC

12
(b + b†)4 = −EC

12
[b4 + b†

4 + b2(4ñ − 2)

+ b†
2
(4ñ + 6) + 6ñ2 + 6ñ + 3].

where ñ = b†b. In the following, we denote the eigenstate of
b†b as |n〉 and take the ground and excited state of the transmon
as | ↓〉, | ↑〉. By applying the time-independent perturbation
theory, we obtain

|0〉 + |0〉(1) = |0〉 − EC

12

〈2|b†2
(4ñ + 6)|0〉
2h̄ωp

|2〉

− EC

12

〈4|b†4 |0〉
4h̄ωp

|4〉,

|1〉 + |1〉(1) = |1〉 − EC

12

〈3|b†2
(4ñ + 6)|1〉
2h̄ωp

|3〉

− EC

12

〈5|b†4 |1〉
4h̄ωp

|5〉.

After some simplifications, we have

|0〉 + |0〉(1) = |0〉 − 6
√

2

24

√
EC

8EJ

|2〉 −
√

24

48

√
EC

8EJ

|4〉,

|1〉 + |1〉(1) = |1〉 − 10
√

6

24

√
EC

8EJ

|3〉 −
√

120

48

√
EC

8EJ

|5〉.
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By taking EJ

EC
= 100 and renormalizing the perturbed states,

we get

|↓〉 = |0〉 + |0〉(1)

||0〉 + |0〉(1)| = 0.9999|0〉 − 0.0125|2〉 − 0.0036|4〉,

|↑〉 = |1〉 + |1〉(1)

||1〉 + |1〉(1)| = 0.9993|1〉 − 0.0361|3〉 − 0.0080|5〉.

So the matrix element of b + b† can be calculated on the
perturbed basis | ↓〉, | ↑〉:

b + b† =
(

0 0.983
0.983 0

)
≈

(
0 1
1 0

)
= τ− + τ+.

The matrix element error between (b + b†)ij and
(τ− + τ+)ij is

∣∣∣∣ (b + b†)12 − (τ− + τ+)12

(τ− + τ+)12

∣∣∣∣ = 1.7%,∣∣∣∣ (b + b†)21 − (τ− + τ+)21

(τ− + τ+)21

∣∣∣∣ = 1.7%.

Accordingly, this error is small enough to treat b + b† as
τx approximately and it can be further suppressed with larger
EJ /Ec.

APPENDIX B: DERIVATION OF THE VIRTUAL EXCHANGE

Here we illustrate the detailed derivation of the virtual exchange interaction term in Eqs. (5) and (7) in the main text.
For the case of two spins coupling to a transmon, the original Hamiltonian of the system [Eq. (4)] is

Hs−t−s/h̄ = ωt

2
τz + ωs1

2
σz1 + ωs2

2
σz2 + gts1(σ+

1 τ− + σ−
1 τ+) + gts2(σ+

2 τ− + σ−
2 τ+).

Applying a unitary transformation U = exp[− gts1

�ts1
(σ+

1 τ− − σ−
1 τ+) − gts2

�ts2
(σ+

2 τ− − σ−
2 τ+)] to the Hamiltonian with �ts1 =

ωt − ωs1, �ts2 = ωt − ωs2, we can get a new Hamiltonian UHU †. Using the Hausdorff expansion to the second order with gts1

�ts1
,

gts2

�ts2
as small parameters,

e−CHeC = H + [H,C] + 1
2 [[H,C],C] + · · · ,

and denoting X1 = σ+
1 τ− − σ−

1 τ+ and X2 = σ+
2 τ− − σ−

2 τ+, we get the transformed Hamiltonian:

UHU † = e
−( gts1

�ts1
X1+ gts2

�ts2
X2)

He
( gts1

�ts1
X1+ gts2

�ts2
X2)

≈ H + gts1

�ts1
[H,X1] + gts2

�ts2
[H,X2] + 1

2

gts1

�ts1

[[
H,

gts1

�ts1
X1

]
,X1

]
+ 1

2

gts1

�ts1

[[
H,

gts2

�ts2
X2

]
,X1

]

+ 1

2

gts2

�ts2

[[
H,

gts1

�ts1
X1

]
,X2

]
+ 1

2

gts2

�ts2

[[
H,

gts2

�ts2
X2

]
,X2

]
.

The commutating relation used for this derivation is

[τz,X1] = −2σ+
1 τ− − 2σ−

1 τ+ [τz,X2] = −2σ+
2 τ− − 2σ−

2 τ+, [σz1,X1] = 2σ+
1 τ− + 2σ−

1 τ+ [σz1,X2] = 0,

[σz2,X1] = 0 [σz2,X2] = 2σ+
2 τ− + 2σ−

2 τ+,

[σ+
1 τ− + σ−

1 τ+,X1] = τz − σz1 [σ+
1 τ− + σ−

1 τ+,X2] = (σ+
1 σ−

2 + σ−
1 σ+

2 )τz,

[σ+
2 τ− + σ−

2 τ+,X1] = (σ+
1 σ−

2 + σ−
1 σ+

2 )τz [σ+
2 τ− + σ−

2 τ+,X2] = τz − σz2.

We thus obtain

gts1

�ts1
[Hs−t−s/h̄,X1] + gts2

�ts2
[Hs−t−s/h̄,X2] = −gts1(σ+

1 τ− + σ−
1 τ+) − gts2(σ+

2 τ− + σ−
2 τ+) + g2

ts1

�ts1
(τz − σz1) + g2

ts2

�ts2
(τz − σz2)

+ gts1gts2

(
1

�ts1
+ 1

�ts2

)
(σ+

1 σ−
2 + σ−

1 σ+
2 )τz,

and

1

2

gts1

�ts1

[[
Hs−t−s/h̄,

gts1

�ts1
X1

]
,X1

]
+ 1

2

gts1

�ts1

[[
Hs−t−s/h̄,

gts2

�ts2
X2

]
,X1

]
+ 1

2

gts2

�ts2

[[
Hs−t−s/h̄,

gts1

�ts1
X1

]
,X2

]

+ 1

2

gts2

�ts2

[[
Hs−t−s/h̄,

gts2

�ts2
X2

]
,X2

]

≈ −1

2

g2
ts1

�ts1
(τz − σz1) − gts1gts2

2�ts1
(σ+

1 σ−
2 + σ−

1 σ+
2 )τz − gts1gts2

2�ts2
(σ+

1 σ−
2 + σ−

1 σ+
2 )τz − 1

2

g2
ts2

�ts2
(τz − σz2).

It is noted here that we only keep the term g

�
and ignore the higher-order terms like g2

�2 .
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By combining the above results we can get the transformed Hamiltonian in Eq. (5) in the main text:

Hs−t−s/h̄ ≈ 1

2

(
ωt + g2

ts1

�ts1
+ g2

ts2

�ts2

)
τz + 1

2

(
ωs1 − g2

ts1

�ts1

)
σz1 + 1

2

(
ωs2 − g2

ts2

�ts2

)
σz2

+ J (σ+
1 σ−

2 + σ−
1 σ+

2 )τz,

where J = gts1gts2

2 ( 1
�ts1

+ 1
�ts2

).
We use a similar procedure as shown above to derive the transformed Hamiltonian for the system of cavity-transmon-NV

ensemble. The Hamiltonian of this hybrid system is

Hc−t−ens

h̄
= ωra

†a + ωt

2
τz + ωss

†s + gtc(a†τ− + aτ+) + gt−ens(s
†τ− + sτ+).

We use the transformation U = exp[− gtc

�tc
(a†τ− − aτ+) − gt−ens

�t−ens
(s†τ− − sτ+)], where �tc = ωt − ωr and �t−ens = ωt − ωs .

By denoting Y1 = a†τ− − aτ+ and Y2 = s†τ− − sτ+, we get the transformed Hamiltonian,

UHU † = e
−( gtc

�tc
Y1+ gt−ens

�t−ens
Y2)

He
( gtc

�tc
Y1+ gt−ens

�t−ens
Y2)

≈ H + gtc

�tc
[H,Y1] + gt−ens

�t−ens
[H,Y2] + 1

2

gtc

�tc

[[
H,

gtc

�tc
Y1

]
,Y1

]
+ 1

2

gtc

�tc

[[
H,

gt−ens

�t−ens
Y2

]
,Y1

]

+ 1

2

gt−ens

�t−ens

[[
H,

gtc

�tc
Y1

]
,Y2

]
+ 1

2

gt−ens

�t−ens

[[
H,

gt−ens

�t−ens
Y2

]
,Y2

]
.

Using the following commutating relations:

[τz,Y1] = −2a†τ− − 2aτ+ [τz,Y2] = −2s†τ− − 2sτ+
[a†a,Y1] = a†τ− + aτ+ [a†a,Y2] = 0

[s†s,Y1] = 0 [s†s,Y2] = s†τ− + sτ+
[a†τ− + aτ+,Y1] = 2a†aτz + τz + 1 [a†τ− + aτ+,Y2] = (a†s + as†)τz

[s†τ− + sτ+,Y1] = (a†s + as†)τz[s
†τ− + sτ+,Y2] = 2s†sτz + τz + 1,

we get the following results:

gtc

�tc
[Hc−t−ens/h̄,Y1] + gt−ens

�t−ens
[Hc−t−ens/h̄,Y2] = −gtc(a†τ− + aτ+) − gt−ens(s

†τ− + sτ+) + gtcgt−ens

(
1

�tc
+ 1

�t−ens

)

×(a†s + as†)τz + g2
tc

�tc
(2a†aτz + τz + 1) + g2

t−ens

�t−ens
(2s†sτz + τz + 1),

and

+1

2

gtc

�tc

[[
Hc−t−ens/h̄,

gtc

�tc
Y1

]
,Y1

]
+ 1

2

gtc

�tc

[[
Hc−t−ens/h̄,

gt−ens

�t−ens
Y2

]
,Y1

]
+ 1

2

gt−ens

�t−ens

[[
Hc−t−ens/h̄,

gtc

�tc
Y1

]
,Y2

]

+ 1

2

gt−ens

�t−ens

[[
Hc−t−ens/h̄,

gt−ens

�t−ens
Y2

]
,Y2

]

= − g2
tc

2�tc
(2a†aτz + τz + 1) − gtcgt−ens

2�tc
(a†s + as†)τz − gtcgt−ens

2�t−ens
(a†s + as†)τz − g2

t−ens

2�t−ens
(2s†sτz + τz + 1).

By keeping the term g

�
and ignoring the higher-order terms like g2

�2 , we finally get the transformed Hamiltonian for the
cavity-transmon-NV-ensemble system,

Hc−t−ens/h̄ = 1

2

(
ωt + 2g2

tc

�tc
a†a + g2

tc

�tc
+ 2g2

t−ens

�t−ens
s†s + g2

t−ens

�t−ens

)
τz + ωss

†s + ωra
†a

+ gvirtual(a
†s + as†)τz,

where gvirtual = gtcgt−ens

2 ( 1
�tc

+ 1
�t−ens

).
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