

Lecture Notes in Computer Science 7287
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Manindra Agrawal S. Barry Cooper
Angsheng Li (Eds.)

Theory and Applications
of Models of Computation
9th Annual Conference, TAMC 2012
Beijing, China, May 16-21, 2012
Proceedings

13

Volume Editors

Manindra Agrawal
Indian Institute of Technology Kanpur
Department of Computer Science and Engineering
Resource Planning and Generation
208016 Kanpur, India
E-mail: manindra@iitk.ac.in

S. Barry Cooper
University of Leeds
Department of Pure Mathematics
Leeds LS2 9JT, UK
E-mail: pmt6sbc@amsta.leeds.ac.uk

Angsheng Li
Chinese Academy of Sciences
Institute of Software
P.O. Box 8718
Beijing, 100190, P.R. China
E-mail: angsheng@ios.ac.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29951-3 e-ISBN 978-3-642-29952-0
DOI 10.1007/978-3-642-29952-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012936254

CR Subject Classification (1998): F.2, F.3, F.4, G.2.2, H.1.1, E.1, G.4, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics and the physical sciences.
It is this, together with its predominantly computational and computability the-
oretic focus, which gives the series its special character.

TAMC 2012 was the ninth conference in the series, organized as a Turing
Centenary Meeting. The conference was combined with the Turing Lectures
2012, dedicated to celebrating Alan Turing’s unique impact on mathematics,
computing, computer science, informatics, morphogenesis, philosophy and the
wider scientific world. Eight Turing Lectures were given at TAMC 2012 and the
Turing Year in China.
Turing Lectures 2012:

• S. Barry Cooper (Leeds), From Turing Machine to Morphogenesis – Forming
and Informing Computation

• John Hopcroft (Cornell), On the Impact of Turing Machines
• Richard Karp (Berkeley), Theory of Computation as an Enabling Tool for

the Sciences
• Jon Kleinberg (Cornell), The Convergence of Social and Technological

Networks
• Butler Lampson (Microsoft), What Computers Do: Model, Connect, Engage
• Deyi Li (CAE, China), Interaction and Collective Intelligence on the Internet
• Wei Li (BUAA, Beijing), R-Calculus: A Logical Inference System for Scien-

tific Discovery
• Andrew C. Yao (Tsinghua University, Beijing), Quantum Computing:

A Great Science in the Making.

There were four special sessions at TAMC 2012, each with an Organizing Chair,
and some invited speakers to give talks in corresponding fields. These were:

• Algorithms and Information in Networks. Organized by Zhiyong Liu (ICT,
CAS) with speakers: Antonio Fernandez (Institute IMDEA Networks, Spain),
Albert Frederick Lawrence (University of California San Diego, School of
Medicine), Yicheng Pan (Institute of Software, Chinese Academy of Sci-
ences), and Xiaoming Sun (Institute of Computing Technology, Chinese
Academy of Sciences).

• Complexity and Cryptography. Organized by Xiaotie Deng (HK), with speak-
ers: Xi Chen (Columbia University), Ning Chen (Singapore, NTU), and Yi
Deng (ISCAS).

• Models of Computing and Networking. Organized by Anthony Bonato with
speakers: Anthony Bonato (Ryerson University), Jure Leskovec (Stanford
University), and Pan Peng (ISCAS).

VI Preface

• Programming and Verification. Organized by Wenhui Zhang (ISCAS), with
speakers: Xinyu Feng (University of Science and Technology, China), Deepak
Kapur (University of New Mexico, USA), Ernst-Ruediger Olderog (Univer-
sity of Oldenburg, Germany), and Naijun Zhan (Insitute of Software, Chinese
Academy of Sciences, China).

The TAMC conference series arose naturally in response to important scientific
developments affecting how we compute in the twenty-first century. At the same
time, TAMC is already playing an important regional and international role, and
promises to become a key contributor to the scientific resurgence seen throughout
China and the Asia-Pacific region.

There were 86 quality submissions to TAMC 2012, originating from 27 coun-
tries, from which the Program Committee selected 40 excellent papers for in-
clusion in this LNCS volume. Together with the papers from the invited special
session speakers and from the Turing Lecturers, this makes the current volume
special and valuable.

We are very grateful to the Program Committee, and the many outside ref-
erees they called on, for the hard work and expertise which they brought to the
difficult selection process. We also wish to thank all those authors who submitted
their work for our consideration.

Finally we would like to thank the members of the Editorial Board of Lecture
Notes in Computer Science and the editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.

Both the Turing Lectures 2012 and TAMC 2012 would not have been possible
without the support of our sponsors: State Key Laboratory of Computer Sci-
ence (China), Institute of Software (Chinese Academy of Sciences), and Chinese
Academy of Sciences, and we therefore gratefully acknowledge their help in the
realization of this special Turing Centenary conference.

March 2012 Manindra Agrawal
Barry Cooper
Angsheng Li

Organization

The conference was organized by the State Key Laboratory of Computer Science,
and Institute of Software, Chinese Academy of Sciences.

Program Committee

Manindra Agrawal IIT at Kanpur, India (Co-chair)
Marat Arslanov Kazan University, Russia
Giorgio Ausiello Dresden University, Germany
George Barmpalias Institute of Software, Chinese Academy of

Sciences, China
Anthony Bonato Ryerson University, Canada
Christian Calude University of Auckland, New Zealand
Alessandra Carbone Université Pierre et Marie Curie, France
Jianer Chen Texas A&M, USA
Wei Chen Microsoft Research Asia
Francis Y.L. Chin University of Hong Kong, SAR China
S. Barry Cooper University of Leeds, UK (Co-chair)
Luca Cardelli Cambridge University, UK
Gilles Dowek INRIA, Paris, France
Zhenhua Duan Xidian University, China
Mike Fellows Charles Darwin University, Australia
Kazuo Iwama Kyoto University, Japan
Andrew Lewis University of Leeds, UK
Angsheng Li Institute of Software, Chinese Academy of

Sciences, China (Co-chair)
Weiyi Liu Yunnan University, China
Zhiyong Liu Institute of Computing Technology, Chinese

Academy of Sciences, China
Giuseppe Longo École Normale Supérieure, France
Mitsunori Ogihara University of Miami, USA
Luke Ong University of Oxford, UK
Xiaoming Sun Tsinghua University, China
Yongji Wang Institute of Software, Chinese Academy of

Sciences, China
Osamu Watanabe Tokyo Institute of Technology, Japan
Peng Zhang Shandong University, China
Naijun Zhan Institute of Software, Chinese Academy of

Sciences, China
Ting Zhang Iowa State University, USA

VIII Organization

Steering Committee

Manindra Agrawal IIT at Kanpur, India
Jin-Yi Cai University of Wisconsin-Madison, USA
S. Barry Cooper University of Leeds, UK
John Hopcroft Cornell University, USA
Angsheng Li Institute of Software, Chinese Academy of

Sciences, China (Chair)

Local Organizing Committee

George Barmpalias (ISCAS)
Yunfu Cao (ISCAS)
Haiming Chen (ISCAS)
Zhiming Ding (ISCAS)
Angsheng Li (ISCAS, Co-chair)
Yucheng Li (ISCAS, Co-chair)
Dongdai Lin (ISCAS)
Kelong Liu (ISCAS)
Hongan Wang (ISCAS)
Mingji Xia (ISCAS)
Ye Yang (ISCAS)
Yongji Wang (ISCAS)
Naijun Zhan (ISCAS)

Organizing Committee for the Turing Year in China

George Barmpalias (ISCAS)
S. Barry Cooper (Leeds)
John Hopcroft (Cornell)
Angsheng Li (ISCAS, Co-chair)
Yucheng Li (ISCAS, Co-chair)
Huimin Lin (ISCAS)
Pengzhi Liu (Renmin High School, Co-chair)
Zhiyong Liu (ICT, CAS)
Ruqian Lu (Math Academy, CAS)
Jian Zhang (ISCAS)
Chaochen Zhou (ISCAS)

Organization IX

Local Organizing Committee for the Turing Year in China

George Barmpalias (ISCAS)
Yunfu Cao (ISCAS)
Haiming Chen (ISCAS)
Zhiming Ding (ISCAS)
Angsheng Li (ISCAS, Co-chair)
Yucheng Li (ISCAS, Co-chair)
Dongdai Lin (ISCAS)

Sponsoring Institutions

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
Chinese Academy of Sciences

Table of Contents

Turing Lectures 2012

On the Impact of Turing Machines . 1
John Hopcroft

From Turing Machine to Morphogenesis: Forming and Informing
Computation . 3

S. Barry Cooper

Theory of Computation as an Enabling Tool for the Sciences 11
Richard M. Karp

Interaction and Collective Intelligence on the Internet 12
Deyi Li and Liwei Huang

What Computers Do: Model, Connect, Engage . 23
Butler Lampson

R-Calculus: A Logical Inference System for Scientific Discovery 27
Wei Li

Quantum Computing: A Great Science in the Making 28
Andrew Chi-Chih Yao

The Convergence of Social and Technological Networks 29
Jon Kleinberg

Invited Lectures

Principles of Network Computing . 30
Yicheng Pan

The Small Community Phenomenon in Networks: Models, Algorithms
and Applications . 40

Pan Peng

Vertex-Pursuit in Hierarchical Social Networks . 50
A. Bonato, D. Mitsche, and P. Pra�lat

A Structural Approach to Prophecy Variables . 61
Zipeng Zhang, Xinyu Feng, Ming Fu, Zhong Shao, and Yong Li

An Assume/Guarantee Based Compositional Calculus for Hybrid
CSP . 72

Shuling Wang, Naijun Zhan, and Dimitar Guelev

XII Table of Contents

Automatic Verification of Real-Time Systems with Rich Data:
An Overview . 84

Ernst-Rüdiger Olderog

Program Analysis Using Quantifier-Elimination Heuristics
(Extended Abstract) . 94

Deepak Kapur

Electron Tomography and Multiscale Biology . 109
Albert F. Lawrence, Séastien Phan, and Mark Ellisman

Contributed Papers

Constant-Time Approximation Algorithms for the Knapsack
Problem . 131

Hiro Ito, Susumu Kiyoshima, and Yuichi Yoshida

Lower Bounds of Shortest Vector Lengths in Random NTRU
Lattices . 143

Jingguo Bi and Qi Cheng

Polynomial Time Construction of Ellipsoidal Approximations of
Zonotopes Given by Generator Descriptions . 156

Michal Černý and Miroslav Rada

Hardness and Approximation of the Asynchronous Border Minimization
Problem (Extended Abstract) . 164

Alexandru Popa, Prudence W.H. Wong, and Fencol C.C. Yung

Asymptotic Limits of a New Type of Maximization Recurrence with an
Application to Bioinformatics . 177

Kun-Mao Chao, An-Chiang Chu, Jesper Jansson,
Richard S. Lemence, and Alban Mancheron

Computing Bits of Algebraic Numbers . 189
Samir Datta and Rameshwar Pratap

Approximating MAX SAT by Moderately Exponential and
Parameterized Algorithms . 202

Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire

Computing Error Distance of Reed-Solomon Codes 214
Guizhen Zhu and Daqing Wan

Coordination Mechanisms for Selfish Parallel Jobs Scheduling
(Extended Abstract) . 225

Deshi Ye and Guochuan Zhang

Table of Contents XIII

Computationally-Fair Group and Identity-Based Key-Exchange 237
Andrew C. Yao and Yunlei Zhao

Timed Encryption with Application to Deniable Key Exchange 248
Shaoquan Jiang

Online Makespan Scheduling of Linear Deteriorating Jobs on Parallel
Machines (Extended Abstract) . 260

Sheng Yu, Jude-Thaddeus Ojiaku, Prudence W.H. Wong, and
Yinfeng Xu

A Surprisingly Simple Way of Reversing Trace Distance via
Entanglement . 273

Jun Yan

Constructions for Binary Codes Correcting Asymmetric Errors from
Function Fields . 284

Jun Zhang and Fang-Wei Fu

Stopping Set Distributions of Algebraic Geometry Codes from Elliptic
Curves . 295

Jun Zhang, Fang-Wei Fu, and Daqing Wan

Energy-Efficient Network Routing with Discrete Cost Functions 307
Lin Wang, Antonio Fernández Anta, Fa Zhang, Chenying Hou, and
Zhiyong Liu

An Algorithmic View on Multi-Related-Segments: A Unifying Model
for Approximate Common Interval . 319

Xiao Yang, Florian Sikora, Guillaume Blin, Sylvie Hamel,
Romeo Rizzi, and Srinivas Aluru

The Worst Case Behavior of Randomized Gossip . 330
H. Baumann, P. Fraigniaud, H.A. Harutyunyan, and R. de Verclos

Holographic Algorithms on Domain Size k > 2 . 346
Zhiguo Fu and Jin-Yi Cai

A Refined Exact Algorithm for Edge Dominating Set 360
Mingyu Xiao and Hiroshi Nagamochi

Finite Automata over Structures (Extended Abstract) 373
Aniruddh Gandhi, Bakhadyr Khoussainov, and Jiamou Liu

Deterministic Distributed Data Aggregation under the SINR Model 385
Nathaniel Hobbs, Yuexuan Wang, Qiang-Sheng Hua,
Dongxiao Yu, and Francis C.M. Lau

XIV Table of Contents

Tensor Rank and Strong Quantum Nondeterminism in Multiparty
Communication . 400

Marcos Villagra, Masaki Nakanishi, Shigeru Yamashita, and
Yasuhiko Nakashima

Speed Scaling Problems with Memory/Cache Consideration 412
Weiwei Wu, Minming Li, He Huang, and Enhong Chen

On the Amount of Nonconstructivity in Learning Formal Languages
from Positive Data . 423

Sanjay Jain, Frank Stephan, and Thomas Zeugmann

Computing in the Fractal Cloud: Modular Generic Solvers for SAT and
Q-SAT Variants . 435

Denys Duchier, Jérôme Durand-Lose, and Maxime Senot

Online Optimization of Busy Time on Parallel Machines
(Extended Abstract) . 448

Mordechai Shalom, Ariella Voloshin, Prudence W.H. Wong,
Fencol C.C. Yung, and Shmuel Zaks

Bisection (Band)Width of Product Networks with Application to Data
Centers . 461

Jordi Arjona Aroca and Antonio Fernández Anta

Implicit Computation of Maximum Bipartite Matchings by Sublinear
Functional Operations . 473

Beate Bollig, Marc Gillé, and Tobias Pröger

A Game-Theoretic Approach for Balancing the Tradeoffs between Data
Availability and Query Delay in Multi-hop Cellular Networks 487

Jin Li, Weiyi Liu, and Kun Yue

Proving Liveness Property under Strengthened Compassion
Requirements . 498

Teng Long and Wenhui Zhang

Realizing Monads in Interaction Nets via Generic Typed Rules 509
Eugen Jiresch and Bernhard Gramlich

Towards an Axiomatization of Simple Analog Algorithms 525
Olivier Bournez, Nachum Dershowitz, and Evgenia Falkovich

Multiple Usage of Random Bits in Finite Automata 537
Rūsiņš Freivalds

Minimum Certificate Dispersal with Tree Structures 548
Taisuke Izumi, Tomoko Izumi, Hirotaka Ono, and Koichi Wada

Table of Contents XV

Improved FPT Algorithms for Rectilinear k -Links Spanning Path 560
Jianxin Wang, Jinyi Yao, Qilong Feng, and Jianer Chen

FPT Results for Signed Domination . 572
Ying Zheng, Jianxin Wang, Qilong Feng, and Jianer Chen

Submodular Minimization via Pathwidth . 584
Hiroshi Nagamochi

A Detailed Study of the Dominating Cliques Phase Transition in
Random Graphs . 594

Martin Nehéz, Daniel Olejár, and Michal Demetrian

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 604

Liliana Badillo and Charles M. Harris

Author Index . 621

On the Impact of Turing Machines

John Hopcroft

Cornell University
jeh@cs.cornell.edu

Abstract. Turing contributed a simple model of computation that has
become the definition of computable. A function is considered to be com-
putable if and only if it is computable on Turing’s model of computation.
Since our notion of computable is informal and Turing’s model gives a
precise definition of computable, we cannot prove the two equivalent.
However, for every mathematical definition of computable that has been
proposed, a proof has been developed that any function computable by
the proposed model is also computable by Turing’s model.

Turing’s model is very simple, it consists of an infinite tape made
up of cells, each cell capable of holding one of a finite set of symbols,
along with a control with a finite number of states and a tape head by
which the finite control can scan the tape and read the content of the
cell scanned. A move consists of reading the contents of the scanned cell
and depending on the internal state of the finite state control, writing a
new symbol in the cell, moving the read head one cell right or one cell
left, and changing the internal state of the finite control to a new state.

Although logicians had their own models of computable, Turing’s
model made the notion of computable accessible to a larger community.
The impact of a mathematical model that corresponded to a physical
device and allowed one to picture and more fully understand the notion
of computability accelerated the science of computability in a way which
many do not appreciate and is the function of this talk.

One of the major advances came when Hartmanis and Stearns used
the Turing model to define complexity classes. This then gave a for-
mal definition to the intuitive notion of polynomial time algorithms. It
helped led to asymptotic complexity as a way to compare performance
of algorithms.

Another major advance was that the Turing model lead to the notion
of an instantaneous description of a computation and a valid computa-
tion. An instantaneous description is a string that completely describes a
computation at one instance of time. A valid computation is a sequence
of successive instantaneous description.

Once a valid computation was represented by a string of symbols it
was quickly recognized that a valid computation of a Turing machine
could be expressed as the intersection of two context-free languages and
hence the question whether the intersection was empty was undecidable.
Many other problems arising in computer science were quickly shown to
be undecidable. In the mid sixties the language ALGOL was invented
and was described by a context-free grammar. However, as people soon
noticed that what a program did sometimes depended on the compiler

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J. Hopcroft

used. It was quickly discovered that the context-free grammar describing
ALGOL was ambiguous. When researcher set out to write an algorithm
to determine if a context-free grammar was ambiguous they quickly dis-
covered that this problem was also undecidable.

One of the major discoveries of this century was when Stephan Cook
proved that every problem in polynomial time could be reduced to the
problem of satisfying a formula in conjunctive normal form. This lead
to the notion of NP-complete problems and that many problems such as
integer programming, finding the maximal clique, and many others were
really all equivalent.

Although Turing’s model was very simple it was that simplicity that
lead to major advances in computer science.

From Turing Machine to Morphogenesis:

Forming and Informing Computation

S. Barry Cooper�

School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
pmt6sbc@leeds.ac.uk

http://www.amsta.leeds.ac.uk/~pmt6sbc/

Abstract. Information is complicated. It shares its existence with the
material world around us. Language has enabled us to describe rela-
tionships governing embodied information, without losing the sense of
mystery. Newton replaced the soft descriptive touch with the predictive
precision of mathematical computation. And action at a distance con-
verted the informational complexity of mechanical interaction into the
mathematical tidiness of computational relations over number systems.
The paradigm toughened and it was nearly 400 years later that Alan Tur-
ing stepped into this scientific setting, and gave it a logical form and that
became a catch-all for some, and a reductio ad absurdum for those who
failed to matched it to the wider realities of the natural universe. Alan
Turing subscribed to both views, and his involvement changed the way
we engage with them for ever. This article is an Alan Turing Centenary
tracing of part of the story.

1 From Describing Information, to the Mathematics of
Causality

The 17th century saw a dramatic change in the balance between computational
and descriptive sway in science. Robert Hooke may have toyed with the inverse
square law in physics, but it is Isaac Newton’s mathematics which delivers not
only persuasion but computational and predictive content to the intuitive de-
scriptions. The computational gives surety, gives ease of comparison between
prediction and observation, and comes as a memetic package more easily passed
between researcher and practitioner. Previously mathematics and our everyday
observation of the the more complicated dynamics of the world had occupied
different compartments, a little in the manner of science and the humanities
today: the information they contained leaching between two essentially different
worldly paradigms. The one a world of observation of material information; the
other mathematically capturing something less visible – abstract causal relations
on information which became the centre of attention for the scientist. The world
of observed information was of course governed by unseen laws whose effects

� Preparation of this article supported by E.P.S.R.C. Research Grant No. EP/G000212.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 3–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.amsta.leeds.ac.uk/~pmt6sbc/

4 S.B. Cooper

might be seen, even described informally, but not scientifically. What was de-
scribed scientifically was annoyingly limited, but gave us a more secure grip on
the observed world than we had ever had before.

The Turing machine [12] did for computational mathematics what Newton’s
computational mathematics did for his particle dynamics. The mathematics dis-
embodied the science, switching attention from the informational content to the
processes which structured it. It turned computation into computer science. Gone
was the taxonomy of calculating machines built differently for different computa-
tional tasks. The hardware was viewed as trivial and did not need to be changed.
The basic actions of the machine were as simple as could be. But the ‘machine’
could compute anything a standard calculating machine could – it was Turing
complete. And all the computing power lay in the program, which gave logical
form to the computation.

More generally, it enabled many to frame the familiar expectations of science
encouraged by Newton – the so-called Laplacian model – within a precise math-
ematical model. Of course, the Newtonian model came with a ‘best before’ date,
one clear to the successors of the man who said (Albert Einstein [6, p.54], ‘Out
of My Later Years, 1950):

When we say that we understand a group of natural phenomena, we
mean that we have found a constructive theory which embraces them.

Today, we take forward some of Turing’s own questionings of the comprehen-
siveness of his disembodied computational model.

2 Universality, Turing Completeness and Programs as
Information

Of course, aspects of the 1936 Turing model were anticipated by others, such
as Emil Post (see [9]). The key extra ingredient was universality, based on the
coding of machines as data. This essential feature of today’s computer is often
not understood – though was certainly recognised by John von Neumann, and
implemented in his 1945 EDVAC report, which was so influential in the later
development of the stored program computer. Von Neumann later acknowledged
Turing’s role in his 1948 Hixon Symposium lecture.

Although the practical impact of Turing’s universal machine is difficult to dis-
entangle from the complexities of the early history of the computer, it established
a hugely influential computing paradigm – that of the omnipotent computer. It
encouraged the development of the functionalist perspective on human cognition
and artificial intelligence, as in Hilary Putnam’s Minds and Machines from 1960.
The embodiment of human thinking is relegated to a subservient role, mirroring
that of the Turing’s universal machine. Turing himself is said by Andrew Hodges
to have spoken to Donald Bayley in 1944 of ‘building a brain’.

A more limited expression of the paradigm, in computing, is that of the virtual
machine originally associated with IBM around 1965. The overriding concept

From Turing Machine to Morphogenesis 5

is of varied computational environments being realisable independently of the
particular hardware.

Of course, a huge amount of work and ingenuity went into actually building
universal machines, and Turing was very much part of this.

The early programmable machines were certainly not universal. The ‘program
as data’ handling facility of today’s computers involves hard-won embodied ele-
ments of Turing’s abstraction. The first stored-program computer that worked
was the Manchester ‘Baby’ from 1948. By this criterion, out go pioneering ma-
chines such as that of John Atanasoff (‘the first electronic digital computer’),
Charles Babbage (the Analytical Engine from 1837), Konrad Zuse, or the Turing
Bombe, Colossus and ENIAC – all had their programming very much embod-
ied via external tapes and the like. For instance, Tony Sale describes how the
programming of Colossus was a far cry from the disembodiment of the univer-
sal Turing machine, depending as it did on a combination of tapes, telephone
jack-plugs, cords and switches. Colossus was Turing complete, in that it could
be programmed comprehensively to multi-task.

Turing became increasingly marginalised during these dramatic developments.
A small version of his Automatic Computing Engine described in his 1945 report
for the National Physical Laboratory was eventually built (the Pilot ACE) by
1950, by which time Turing had disappeared to Manchester.

What is striking is that Turing never shared the disdain or superficial reduc-
tionism of many mathematicians. He was fascinated by the actual building of
computing machines, and always willing to engage with the physicality and sheer
messiness of computational processes. And this was to pay dividends in his later
work on mechanical intelligence and morphogenesis. Today, it is a willingness
to engage with nature at the most basic level that informs some very neces-
sary rethinking about computing in the real world, and gives mathematicians an
important multidisciplinary role.

The involvement of mathematicians in the early history of the computer
largely arose from the enlistment of academics into the World War 2 code-
breaking work. However one views mathematics, there is no doubting its impor-
tant role in decoding the world we live in. To Winston Churchill, Alan Turing
and the thousands who gave up years of their lives to secret activity at Bletchley
Park were “the geese that laid the golden eggs but never cackled”. In retrospect,
it is battery hens that come to mind. The careers of many were sidelined – while
it was Turing’s work outside Bletchley Park that he will be most remembered
for. What is interesting about the code-breaker’s perspective is the rebalancing
of the attention given to information and programming in the computational
activity. Bletchley Park was central to Turing’s career, and must have been an
intense and personally formative part of his life, and of many others. Things
would never be the same after. Of course, the code-breakers’ machines and their
lives there made as if they had never happened at the end of the war. It would
be nearly two decades after Turing’s passing before the world started to decode
the achievements of those years.

6 S.B. Cooper

3 Journeys beyond the Computable

If Alan Turing was peculiarly misunderstood as a one of the worlds great scien-
tists, incomputability may be a correspondingly important and misunderstood
part of his scientific legacy. If people know who Turing was, it is for Turing ma-
chines, decoding the Enigma, or computers. Or it could be for his ending, 1950s
‘normality’ fractured by a coming together of events of startling unpredictability.
But few will make the connection with the mathematics of incomputability.

Only six years before Turing’s ‘computable numbers’ paper, David Hilbert had
famously proclaimed in Königsberg, during an opening address to the Society of
German Scientists and Physicians, that:

For the mathematician there is no Ignorabimus, and, in my opinion, not
at all for natural science either. . . . The true reason why [no one] has
succeeded in finding an unsolvable problem is, in my opinion, that there
is no unsolvable problem.
In contrast to the foolish Ignorabimus, our credo avers:
We must know,
We shall know.

Turing’s unsolvable problem was that of deciding whether his universal machine
would successfully compute or not. And the corollary, known for many years
as ‘Church’s Theorem’, was the counter-intuitive fact that there is no computer
program for deciding of a given sentence of first-order logic whether it is logically
valid or not.

These are quite striking and interesting facts, with clever proofs. But there is
no obviously embodied counterpart. And – as the proof-theorists have managed
to show – most of the interesting mathematical problems reside well within this
so-called ‘Turing barrier’. But challenges to computability fascinated Turing,
and the mathematics of incomputability was not to be so easily sidelined.

Of all Turing’s papers, his 1939 one [13] on Systems of logic based on ordinals
is the least understood. There was an underlying idea that we might be able to
explore the incomputable via iterated approximation, maybe even to find a way
to compute beyond the Turing (machine) barrier. What he found was that there
might exist computable routes into the incomputable. But it was the finding
of the routes that defeated the machine. Of course, the mathematician is very
familiar with this phenomenon. There is the well-known story of Poincaré getting
stuck on a problem, leaving off to go on a bus journey, and the solution coming
to him complete and memetic independently of conscious rational thought. How
often do we solve a problem according to some very personal process, only to
convert the solution into something formal and communicable to our peers?
Turing’s mathematics gives us an explanation of why written proofs often do
not tell us how the proof was discovered. The question arose – does the brain
somehow support non-algorithmic thought processes?

Buried away in this long 1939 paper is a single page which had a huge impact
on the mathematics of the incomputable. The world around us is a world of
information, and we cannot be sure all this information originated computably

From Turing Machine to Morphogenesis 7

– for instance, it might have been delivered via a quantum random phenomenon,
which by recent work [2] of Calude and Svozil may well involve incomputabil-
ity. Turing devised a machine to compute using real numbers which were not
necessarily computable, and in so doing provided a model for computation rela-
tive to embodied information. How prescient. Our computers are no longer just
Turing machines. They are part of a hugely complex computational world which
collectively creates and exchanges new information. And our material universe
is inhabited by computable causality within an embodied environment of great
informational complexity, a computational context demanding proper analysis.

Strangely, despite Turing’s later interest in interactive computation, he never
seems to have returned to his oracle Turing machine model. The mathematical
development was left to Emil Post and Stephen Kleene and their successors, and
has since become a rich field of research which promises real-world returns Turing
would find fascinating. The key to these is a reclaiming of the incomputable via
the sort of embodied hierarchical development Turing envisaged back in the late
1930s. Achieved with the benefit of what we know now about global relations
and their links to observed emergence.

4 Modelling the Brain

Some of Turing’s most interesting work – sadly cut off in 1954 – was done in
his last few years. For Turing the human brain had ever been both inspiration
and challenge to his work on computing machines. And he attempted to bring a
characteristically basic approach to both the physical and the mental, those two
irksome companions of the philosopher of mind. Here is Jaegwon Kim (in Phys-
icalism, or Something Near Enough, Princeton, 2005) setting out the problem:

. . . the problem of mental causation is solvable only if mentality is phys-
ically reducible; however, phenomenal consciousness resists physical re-
duction, putting its causal efficacy in peril.

How can mentality have a causal role in a world that is fundamentally physical?
And what about ‘overdetermination’ – the problem of phenomena having both
mental and physical causes? The most that most philosophers of mind can agree
on is a degree of supervenient of mental properties on physical ones.

Turing in 1948 [16] came up with his ‘unorganised machines’ which provided a
neural net model alternative to the better known predecessor of Warren McCul-
loch and Walter Pitts. Christof Teuscher [11] gives an account of the innovative
nature of ‘Turing’s Connectionism’ in his book of that name.

Connectionist models have provided the basis for a large research field, and
exhibited interesting features in keeping with what one might expect from the
human brain. Paul Smolensky, for instance, talks in his 1988 paper [10] On the
proper treatment of connectionism of a possible challenge to “the strong construal
of Church’s Thesis as the claim that the class of well- defined computations is
exhausted by those of Turing machines.”

At the other end of the scale we have Turing’s famous 1950 paper [14] in Mind
astutely narrowing down what one can sensibly say about human intelligence,

8 S.B. Cooper

and discussing in some detail his observer-based test for a thinking machine.
The resulting ‘Turing Test’ still dominates people’s thinking on the issue. The
paper joins the other two most cited papers of Turing. One of these is the
1936 paper of course, which many might expect to be the most frequently cited
of his papers. They would of course be wrong . . .

5 The Return to Embodied Computation

To the surprise of those outside of biology and medicine, the most cited of Tur-
ing’s papers is the final 1952 The Chemical Basis of Morphogenesis [15]. And in
many ways this is one of his most original and maybe visionary foray into the
world of computation. He was not to know that the mathematics of sunflow-
ers and patterns on animal coats would connect up with today’s recognition of
the importance of emergence, and throw light on a whole range of intractable
foundational questions across a wide range of research areas in science and the
humanities. Computationally simple rules, connectivity, emergent forms at the
edge of computability, and definable in terms of the rules, just like Turing’s
patterns. Turing’s coherence of vision, at the end of his short life, giving us mor-
phogenesis – inhabiting the same fractal world as the Mandelbrot set; the same
computational world as the halting problem for the universal Turing machine;
the same large scale structure as found in the observable universe; and perhaps
the key to Kim’s world of supervenience.

And what is significant about this final work, and the 1939 model of interac-
tive computability, is the reassertion of information and embodied computation.
It is the disembodying model of 1936 that has dominated much of our thinking
about computers. As we look at the emergence of form in nature, we are look-
ing at material information connected causally according to Turing’s interactive
model, with higher order form described by differential equations recording a
more general form of computation. Although in Turing’s examples we can extract
a reassuring degree of classically computable content, the natural framework is
one of higher-type computation. Or, looked at from the point of view of the
descriptions obtained, as a form of definability – again, not generally framable
within the 1936 standard model.

There has been quite a lot written in recent years (see for example [1], [3],
[4], [5]) on the increasing, multidisciplinary, attention being given to embodied
computation; to evolutionary and experimental approaches to AI; to the math-
ematical theory of higher order computation since Stephen Kleene’s seminal
papers [7], [8]; and to the general field of what is often called ‘unconventional
computation’. Unconventional computation is often defined as that which de-
livers outcomes beyond those obtainable via a universal Turing machine. As a
criterion, this is hard to apply in practice. And having a definition in terms of
outcome instead of form of computational activity opens out all sorts of pitfalls
for those seeking out models of computation which are truly ‘unconventional’.
An understanding of Turing’s 1939 route to the incomputable, and the essen-
tial escalation of mathematical type involved, gives us a much more practical

From Turing Machine to Morphogenesis 9

test for unconventionality. It by-passes the need to verify computation beyond
the Turing barrier, admitting Turing’s morphogenic analyses, and enabling us
to recognise and classify the undoubted unconventional aspects of a range of
computational models.

So what should be celebrated in 2012? Above all, it should be the continued
influence of the Turing vision on some of the most important research directions
today. Turing had an amazing instinct for recognising big questions about how
the world works. He was like another famous 20th century scientist, Paul Dirac,
in having a very down-to-earth grasp of the what makes the world tick, combined
with a brilliant grasp of abstract structures. Turing’s work on the nature of com-
putation has defined the computer revolution that has changed our world. And
his groundbreaking explorations of processes beyond what a computer can han-
dle look likely to provide key elements of the next trans-computer developments.
We should celebrate how Turing combined the practical and the visionary, the
abstract and the embodied, and gave us both technological breakthroughs and
a continuing sense of the mystery of what lies beyond.

References

1. Brooks, R.: The case for embodied intelligence. In: Cooper, S.B., van Leeuwen, J.
(eds.) Alan Turing - His Work and Impact. Elsevier Science (2012)

2. Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Advanced
Science Letters 1, 165–168 (2008)

3. Cooper, S.: Clockwork or Turing u/universe? - remarks on causal determinism
and computability. In: Logic Colloquium 1997: Models and Computability: Invited
Papers from Logic Colloquium 1997 - European Meeting of the Association for
Symbolic Logic, Leeds (July 1997) (1999)

4. Cooper, S.: Incomputability, emergence and the Turing universe. In: Carsetti, A.
(ed.) Causality, Meaningful Complexity and Embodied Cognition, pp. 135–153.
Springer, Heidelberg (2009)

5. Cooper, S.B.: Definability in the real universe. In: Cooper, S.B., Sorbi, A. (eds.)
Computability in Context: Computation and Logic in the Real World. Imperial
College Press/World Scientific (2011)

6. Einstein, A.: Out of My Later Years, vol. 48. Philosophical Library (1950)
7. Kleene, S.C.: Recursive functionals and quantifiers of finite types i. Trans. of the

Amer. Math. Soc. 91, 1–52 (1959)
8. Kleene, S.C.: Recursive functionals and quantifiers of finite types ii. Trans. of the

Amer. Math. Soc. 108, 106–142 (1963)
9. Post, E.L.: Absolutely unsolvable problems and relatively undecidable propositions:

Account of an anticipation. In: Davis, M. (ed.) The Undecidable. Basic Papers on
Undecidable Propositions, Unsolvable Problems, and Computable Functions, pp.
340–433. Raven Press, New York (1965)

10. Smolensky, P.: On the proper treatment of connectionism. Behavioral and Brain
Sciences 11, 1–74 (1988)

11. Teuscher, C.: Turing’s Connectionism. An Investigation of Neural Network Archi-
tectures. Springer, London (2002)

10 S.B. Cooper

12. Turing, A.M.: On computable numbers with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 42(3), 230–265 (1936); A correction 43,44–
546

13. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. 45(3),
161–228 (1939)

14. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
15. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. of the Royal So-

ciety of London. Series B, Biological Sciences 237(641), 37–72 (1952)
16. Turing, A.M.: Intelligent machinery. In: Ince, D.C. (ed.) Collected Works of A.M.

Turing – Mechanical Intelligence. Elsevier Science Publishers (1992)

Theory of Computation as an Enabling Tool

for the Sciences

Richard M. Karp

University of California at Berkeley
and

International Computer Science Institute
karp@cs.berkeley.edu

Abstract. Researchers in the theory of computation are increasingly
adopting a computational worldview that is radiating out to a wide circle
of scientific and technological fields, recognizing that central phenomena
of these fields are often computational in nature. Over the past decade we
have applied this viewpoint to physics, molecular biology and economics.
Connections are also developing to evolutionary biology, machine learn-
ing, social choice, social network analysis, nanotechnology, cognitive sci-
ence and astronomy. To maximize the effectiveness of this outreach to
the sciences, the theory of computation must join forces with the fields
of massive data analysis and combinatorial optimization.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, p. 11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interaction and Collective Intelligence

on the Internet

Deyi Li1 and Liwei Huang2

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, China

lidy@cae.cn
2 Institute of Command Automation, PLA University of Science and Technology,

Nanjing, 210007, China
huangliwei.1985@gmail.com

Abstract. Network interconnection, information interoperability, and
crowds interaction on the Internet could inspire better computation mod-
els than Turing machine, since that human plays an important factor in
Internet computing, so that the human-machine and machine-machine
interactions have evolved to be the kernel of Internet computing. Internet
has not been simply equivalent to a virtual huge computer, or a set of
computers. On the Internet, human’s behaviors are uncertain, the inter-
actions and influence among people are also uncertain. These uncertain-
ties cannot be described by Turing machine and traditional interaction
machine. As a new computation platform, Internet computing requires
new theories and methods. By combining topology in mathematics with
the field theory in physics, we propose the topological potential approach,
which set up a virtual field by the topological space to reflect individ-
ual activities, local effects and preferential attachments. This approach
can be used to research the emergence of collective intelligence. Here, we
introduce three case studies to illustrate the analysis on the collective
intelligence on the Internet and discuss some potential applications of
the topological potential approach.

Keywords: Turing machine, interaction, topological potential, collec-
tive intelligence.

1 Uncertainty on the Internet

The invention of computers provides a physical body for the implementation of
artificial intelligence (AI) with certainty, while the invention of Internet provides
a general platform for study on uncertain artificial intelligence. Internet is evolv-
ing, without top design, and its historical development is full of uncertainty, such
as its scale and structure. All information processing and human behaviors over
the Internet are full of uncertainty as well.

In 1969, the ARPA net implemented data transmission between computers.
Since 1984, IP protocol has been widely applied as the building blocks for the
Internet, and now everything is over IP, which provides a best-effort service

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 12–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interaction and Collective Intelligence on the Internet 13

based on the way of connectionless communication. The transmission paths of
data packets become uncertain. At the same time, the network scale, topology,
access mode are uncertain. In 1989, the emergence of the World Wide Web made
information publishing and sharing more efficient. The granularity and distribu-
tion of content (e.g., text, picture, audio, music, etc.), and hyperlink structure
of websites are also uncertain. In the 21th century, with the rapid development
of Web service, semantic web, Web 2.0 and cloud computing, the Internet-based
and crowds-involved computing environment has been gradually built. Internet
and World Wide Web have been regarded as an infrastructure for exchanging
and sharing ideas, which makes the perception and cognition of human beings
go beyond the time and space constraints. The uncertainty of human behaviors,
community formation and public opinions on the Internet directly reflects the
uncertainty of human intelligence. The ubiquitous uncertainty on Internet in-
evitably leads to the result that the computing over Internet would be noisy,
redundant, and even mistaken.

In 1998, the paper published on Nature by Watts et al. presented the small
world phenomenon in a large number of real-world networks which is considered
the start point of network science [1]. In 1999, Barabási et al. proposed the no-
tion of scale-free network on Science [2]. Since then, the researches on network
science entered a new era. Internet has become an important object for the re-
search on network science. People started to investigate fundamental principles
in the uncertainty of Internet. If we consider the router as a node and the optical
fiber cables connecting routers as edges, then Internet can be viewed as a com-
plex network at the router level. If we consider autonomous systems as nodes
and the routers between systems as edges, then Internet can be viewed as a com-
plex network at the autonomous-system level. If we consider web pages as nodes
and hyperlinks as edges, then Internet becomes a complex network at the web
page level. Further considering human behaviors on the Internet, such as E-mail,
blog, on-line shopping or instant communication, we can form various complex
networks using different relationships (e.g., following relationships, friend rela-
tionships, comment relationships, supplier-consumer relationships, etc.). A lot of
researches empirically show that the complex networks on the Internet at differ-
ent levels have the small-world phenomenon and scale-free property. Faloutsos et
al. have done some pioneering research on the Internet structure and evolution,
and they discovered the power-law characteristic of Internet topology [3]. Albert
et al. validated the small-world effect of the World Wide Web and Internet [4][5].
Girvan and Newman discovered the community structure on the Internet [6].

Existing researches reveal some basic principles underlying the structure of In-
ternet, while most of them do not consider the uncertainty, in particular induced
by the interactions between users. Several fundamental questions arise: can we
simply consider the Internet as a ”big” Turing Machine? If not, is there a novel
computation model incorporating interactions involving human’s participation
beyond Turing machine?

14 D. Li and L. Huang

2 The Limitations of Turing Model and Interaction
Machine Model beyond Turing Machines

2012 marks the centenary of the birth of Alan Turing. In 1936, Alan Turing
proved that mathematics could not be completely modeled by computers in his
paper [7], and he answered an important question related to logic completeness,
one of the 23 Hilbert problems. Automatic computer theoretical model (Called
as Turing machine later) was proposed in the paper for the first time. Tur-
ing machine transfers the reasoning process into a series of simple mechanical
movements, called computation. The computation has many equivalent descrip-
tions, such as the recursive function, abacus machine, etc. As shown in Fig. 1,
Turing machine is composed of an infinite tape, a state controller, and a read-
write head-plate. The action of a Turing machine can be described as five-tuple
< q, b, a,m, q′ >, where q and q′ are the current and the next state of the con-
troller, b and a are the original and modified symbols on tape, m indicates the
direction of head-plate, right, left or stop. The working process is determined by
the state and the symbols called Turing machine program. In the automatic pro-
cess, there is no need of any human’s participation. Turing proposed the Turing
Thesis: all computable functions can be executed by the Turing machine. From
1960s, computer scientists began to express general computable concepts using
the Turing machine. Von Neumann architecture (shown in Fig. 2) can be viewed
as an implement of the Turing machine. It consists of controller, calculator,
storage, input and output devices. Its basic principles are program-stored and
program-execution sequentially. The controller picks the instruction and data
from storage and executes one by one, and then the program can be done au-
tomatically. Generally speaking, the core of computer is CPU, which consists of
calculator and controller. All of the computation system is hierarchically orga-
nized by micro program, machine language, operation system, assembly language
and senior language etc. Turing machine and the von Neumann architecture are
considered as the basis of modern computer.

Fig. 1. Turing model

Interaction and Collective Intelligence on the Internet 15

Fig. 2. Von Neumann architecture

Artificial Intelligence scientists have developed lots of formalizd reasoning
methods, which solve problems by simulating and learning from human’s actions
when they dealing with the similar problems. In the last 50 years, benefiting
from Turing machines and Von Neumann architecture, AI has made significant
progress. People think that computers realize, extend, and even replace part of
human intelligence.

The study of current life science and cognitive science has shown that hu-
man perception, cognition and intelligence reside in the entire human body, and
they are cross-penetrating, for example, there exists collaborative relationship
between brain and heart in human affective computing. Turing machine can
merely reflects a small part of human intelligence, however when facing most
cognitive problems, there still exist some fundamental challenges. For example,
picture recognition and affective computing may be easy for human beings, but
they are difficult to be expressed by Turing Machines. Some other examples such
as commenting, writing, composing music and chatting, which aggregate human
recognition abilities, are also difficult to be implemented by Turing machines.

In fact, computer scientists might not fully recognize the limitations of Turing
machine. In many cases, Turing machine was regarded as a general model to deal
with all computable problems, which overstates the functionalities of Turing ma-
chine. Here we list three limitations of modern computers. Firstly, the computing
process from an initial state to a final state can be viewed as a mapping between
two sets of certainty, Turing machine cannot describe the uncertain problems.
Secondly, in the Turing machine, the analog value is discretized to digital values,
whereas how to decode from digital value to analog value is not considered in the
Turing machine. Thirdly, there is no a clear formalization method to describe the
process from the input to output. In addition, the interaction between human
and machines is not expressed in the Turing model. Milner in 1975 noticed that
the concurrent process is unable to be expressed by sequential algorithms [8].
Wegner firstly proposed that Turing machine cannot simulate interaction in the
close session of the fifth generation computer project in Japan in 1992. However,
the artificial intelligence researchers attempted to formalize the human intelli-
gence. In both experts system and neural network, researchers tried to put the

16 D. Li and L. Huang

human intelligence into machines through algorithms and codes that could be
executed by machines, so as to solve various problems automatically. In some
sense, artificial intelligence scientists have been constrained by Turing machine.

Interaction is a kind of action that occurs as two or more objects have an effect
upon one another. Being aware that Turing machine cannot express the interac-
tion with external environment, a new computing model - interactive computing
was proposed. Researchers began to extend Turing machine to interaction ma-
chine with input and output actions that supports interaction with the external
environment. The interaction machine introduces the observation equivalence
as a metric for expressiveness ability. According to this metric, interaction ma-
chine are more expressive than Turing machine. Wigner defined the interactive
property and interaction machine [9]. A computing agent has the interaction
property if it has input and output actions that interact with an external en-
vironment not under its control. An interaction machine is an extended Turing
machine with the interaction property. While Turing machine have finite input
tapes, interaction machine have input streams whose elements are supplied by
an external mechanism which is not under its control [9]. Although many evi-
dences showed that the interaction cannot be expressed by the algorithm, but
it is still difficult to prove it theoretically. Wigner and Goldin proposed a series
of interaction models [10], among which the Sequential interaction machine and
the Multi-Stream interaction machine are the two state-of-the-art models. As
shown in Fig. 3, Sequential interaction machine can be denoted by a 3-tuple
< S, I, F >, where S is an enumerable set of states, I is an enumerable set of
inputs,F : S× I− > S×O is a computable function, O is a set of outputs. Then
a computation step is a complete Turing machine computation. The difference
of Sequential interaction machine from Turing machine is that its input of each
step is unpredictable and dynamic, this is because the input of the each step may
depend on the output of previous step and some external events. The output of
every step is determined by the input of the current step. Given this, we can
easily obtain that the output is nondeterministic. The Multi-Stream interaction
machine is a finite machine model that interacts with multiple streams.

Fig. 3. Sequential interaction machine (Input i ∈ I , Output o ∈ O, and mapping m)

Besides the interaction machine, there are other computation models beyond
Turing machines. Though some of these models support the interaction with the
external environment in the calculation process, and have stronger expressive
ability than Turing machine, they still have their own limitations. Firstly, they
only describe a single interactive system, but do not support composite systems

Interaction and Collective Intelligence on the Internet 17

or large-scale complex systems; Secondly, the interactions can only change the
content in their work tape, but cannot change the state set and state transition
relations of the controller, thus their expressive ability may be limited; Last and
also being the most critical problem, they did not study how to interact with
the external environment, and cannot express the interactions involving human’s
participation.

With the rapid development of microelectronics and communication tech-
nologies, high-performance computers, cluster computers, virtual machines and
distributed systems that are under centralized control and have multi-processor
structures, can be still regarded as a Turing model. Internet, Web, Web 2.0 and
cloud computing emphasize to embed computer into network, environment, or
daily used tools, and software as service. In this way, people can pay more atten-
tion to the task itself. Internet has provided a way of network interconnection
and information interoperability. More importantly, it incorporates human fac-
tors into the network. Due to the natural intelligence of human beings, once they
participate in information interoperability on the Internet, the Internet is not
merely used for transferring information. A completely new Internet computing
is formed. Interaction becomes an important component on Internet. On Inter-
net, human’s behaviors are uncertain, the interactions and influence between
people are also uncertain. This uncertainty cannot be described by Turing ma-
chine and traditional interaction machines. Therefore a novel computation model
is needed.

3 Topological Potential

Previously, scientists studied the collective behaviors including Particle Swarm,
Ant colony, bee colony, and they focused on the evolution of organisms, evo-
lutionary computation, even natural computing. But now, with the popularity
of the Internet and the development of network science, people are increasingly
concerned about the individuals on the Internet who have activity, the collective
behaviors relying on their interaction, and the collective intelligence emerging
from their interaction.

Collective intelligence in Internet computing inspires new, more general com-
putation models, the new computation models require new theories and methods.
We have made some attempts, cognitive physics, a bridge between mathematics
and physics is built, by combining topology in mathematics with the field theory
in physics, we propose the topological potential approach, which set up a virtual
field by the topological space to reflect individual activities, local effects and
preferential attachments, and which can be used to research the emergence of
collective intelligence.

From the classic concept of field introduced by British physicist Faraday in
1837, the field as an interpretation of non-contact interaction between parti-
cles in every different granularity, from atom to universe, had attained great
success. Potential field is discussed most among all physical fields in physics. In

18 D. Li and L. Huang

potential field, the potential value of any point in the space is proportional to the
value of the parameter (e.g., particle mass, electric charge etc.) representing field
strength, the potential value decrease with the increase of the distance to the field
source. For long-range field such as gravitational potential field and electrostatic
potential field, the potential value is inversely proportional to distance, there still
exists field force in places far away from the field source. But for short-range field
such as center potential field of the nuclear, the potential value decrease sharply
with the increase of distance, the potential value fell to zero soon.

Inspired by the property of physical fields, we considered network as a physical
system including several nodes and its interaction. For every node, there exists a
field around it. And any nodes in the field would be affected by all other nodes.
According to the understanding of real networks, we deem that the interaction
effect between nodes is local and would rapidly decrease with the increase of
the distance. In this paper we use Gaussian potential function to describe the
interaction effect between nodes. Gaussian potential function which has clear
mathematical properties can describe the potential distribution of short-range
field. This field is called as topology-potential field. All of nodes in a network
affect each other by their potential fields overlapping. The potential field in
networks does not like other classic field owning Euclidean distance, we replace
Euclidean distance by jumps between two nodes.

Given a network G = (V,E), where V is the set of nodes, E is the set of edges.
The potentialϕ(j → i) generated from vj to vi can be defined as:

ϕ(j → i) = mj × e
−
(

dj→i
σ

)2

(1)

Where mi is the mass of node, dj→i is the logical distance between node vj
and vi in network topology, σ is influence factor. In case of j = i, dj→i = 0,
ϕ(i → i) = mi, mi equal to the node’s potential because of its own capacity.

So, the topological potential of a node can be defined as:

ϕ (vi) =

n∑
j=1

ϕ (j → i) =

n∑
j=1

(
mj × e

−
(

dj→i
σ

)2
)

(2)

Influence factor σ is used to control the influence range of a certain node, mi

denotes the node mass of vi(i = 1...n), mi reflects the inherent property of vi. In
real network, the inherent property of node has various physical interpretations,
i.e., user engagement, salary, knowledge background, social background and ac-
tivity capacity of people in real social network, the number of friend and social
influence of people in the online social network et al. This property reflects the
activity of the node.

The topological potential approach has been used widely in lots of researches,
i.e., discovering high interaction capacity nodes in network, discovering net-
work communities, etc. Through defining and calculating the topological po-
tential score of each node, Jun Hu et al. use topological potential to model node

Interaction and Collective Intelligence on the Internet 19

importance with activity and local effect in complex networks [11]. GANWenyan
et al. use topological potential to find the lower potential nodes sets which are
attracted by different higher potential nodes, they realized network communities
discovery. Experiments show that this approach can discover the inherent com-
munities in network effectively without additional algorithm parameters such
as the number of communities, and it shows high algorithm performance [12].
Cognitive physics use physics methods to study the thinking process which is
from quantitative to qualitative and from data to knowledge, and formalized
organization of information used by the thinking [13]. From the view of cogni-
tive physics, topological potential approach builds a virtual field and can reflect
individual activity, local effect and preference attachment, which can be used to
research collective intelligence emergence from interaction.

4 Collective Intelligence on the Internet

Roughly speaking, the Internet environment is comprised of computing, stor-
age, communication, and human beings who interact with Internet. Human’s
activities on the Internet include consuming, commenting, sharing information,
and creating new content as well. Many real-world applications benefit from
the power of collective intelligence. Here we will present three typical cases to
illustrate the collective intelligence on the Internet.

Case 1: Social annotation system, gives an opportunity for interested groups
to participate into the organization of digital resources. The collective intelli-
gence of the public is used to complete the task on identification and classifi-
cation of digital resource. In Del.icio.us1, Flickr2, last.fm3, YouTube4, users are
allowed to annotate and share bookmarks, pictures, music and videos. Social
annotation brings value-added information. Figure 4(a) shows clearly statistical
properties of power-law distribution for tags of different categories in three differ-
ent annotation systems on bookmarks, pictures and music. The top tags, second
sample, and long tail have the same distribution patterns. Figure 4(b) shows a
tag network of a Flickr user. The tag network can be used to build the user’s
personalized information. Users’ preference can be then discovered by clustering
the tag networks of different users. Different clusters reflect different prefer-
ences of users. Figure 4(c) gives the Mean Average Precision (MAP) comparison
results of five tag-base resource retrieval algorithms, i.e., non-personalized, vec-
tor space, hierarchical clustering, k-means and topological potential approach.
The experimental results demonstrated that the algorithms using tag cluster-
ing outperform the method directly using the vector space model. For all the
five algorithms, the personalized method using tag clustering based on topo-
logical potential achieves the best performance. The retrieval and classification
of resources can be improved by augmenting statistical characteristics of social

1 http://www.delicious.com
2 http://www.flickr.com
3 http://www.last.fm
4 http://www.youtube.com

http://www.delicious.com
http://www.flickr.com
http://www.last.fm
http://www.youtube.com

20 D. Li and L. Huang

Fig. 4. Application of collective intelligence in social tagging system: (a)tagstatistical
properties; (b)tag network of a Flickr user; (c)Comparison of personalized IR method

tagging, user’s preferences, and collective intelligence behind the tagging behav-
ior. Compared with the traditional methods based on content understanding of
image or video, our method using topological potential provides a more efficient
solution for information retrieval.

Social annotation reflects the individual’s knowledge, experience, preferences
and habits of thinking at different information granularity, showing the personal-
ized cognitive abilities of the participants. Figure 5 shows a public participation
experiment of image classification5. Figure 5 (a) gives the input photos of people
and pets. People are asked to annotate the category of the photos. Figure 5 (b)
shows one popular classification result. It is intriguing that participants do not
merely classify the photos based on pets and people. Most participants classify
the photos into six categories based on their common sense and observations from
daily life. Such a classification resulted by collective intelligence of participants is
impossible to finish for the Turing machine.

Fig. 5. Collective intelligence picture classification experiment: (a)Provided to partic-
ipants of the picture; (b)The participants agreed classification results

5 http://www.ldy.csai.tsinghua.edu.cn

http://www.ldy.csai.tsinghua.edu.cn

Interaction and Collective Intelligence on the Internet 21

Case 2: Wikipedia6 , creating articles by the public, is another typical applica-
tion of collective intelligence on the Internet. In wiki mode, any user can edit the
entries by his intention. Any user can edit any article freely. The participants
may make mistake, or even maliciously modify the content, but with public
participation, the introduced errors will soon be rectified. The most entries in
wiki have maintained high quality. As shown in Fig. 6, the ”cloud computing”
was first edited in September 4th, 2007. Its definition gradually forms a more
accurate, comprehensive and rich rational explanation from a simple, unilateral
edition. Views count of entries in a single month rises from 21,537 times in Jan-
uary 2008 to 431,131 in January 2012. Figure 6(c) shows the heat map of term
”cloud computing”, which shows the change of the editions. The quality of the
entries has been improved continually and a consensus is gradually reached. Just
like the cognitive processes and concept exploration of human, Wikipedia entries
will gain a more correct definition after repeatedly sharing, interaction and evo-
lution by collective behaviors. This kind of collaborative editing behaviors is the
result of collective intelligence.

Fig. 6. Evolution of item”cloud computing”in Wikipedia: (a)item”cloud computing”
in September 4th, 2007; (b)item”cloud computing” in February 14th, 2012; (c) the heat
map of Term ”cloud computing”

Case 3:Network literature writing is another collective intelligence phenomenon
on the Internet. The open nature of the Internet makes every one engage in the
process of literature writing. People can freely write, criticize, and comment on
any literature work. This actually resulted in a lot of outstanding network litera-
ture work such asThe First Intimate Contact,Chengdu, Tonight, Please forget me,
Today, Go Lala Go and Naked Marriage Age, Love Is Not Blind. These network
literature works show their unique charm and won numerous readers. Through
the bridge of network, the authors and the readers are no longer two separated
groups, Internet provides them with a real-time interactive platform, where the
readers write comments to the literature and interact with its author, and accord-
ingly influence the work. The readers are not just information consumers as before,

6 http://www.wikipedia.org

http://www.wikipedia.org

22 D. Li and L. Huang

instead they are closely involved into the creation process of works. There is little
doubt that a network literature work is the result of the collective intelligence.

Acknowledgments. This work is supported by the Key Program of the
National Natural Science Foundation of China (Grant No. 61035004).

References

1. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-world Networks.
Nature 393(6684), 440–444 (1998)

2. Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks.
Science 286(5439), 509–512 (1999)

3. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the
Internet Topology. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 251–262. ACM
Press, New York (1999)

4. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the World Wide Web. Na-
ture 401(6749), 130–131 (1999)

5. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45, 167–256 (2003)

6. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Net-
works. PNAS 99(12), 7821–7826 (2002)

7. Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungs
problem. Proceedings of the London Mathematical Society 2(42), 230–265 (1937)

8. Milner, R.: Elements of interaction. Communications of the ACM 36(1), 78–89
(1993)

9. Wegner, P.: Towards empirical computer science,
http://www.cs.brown.edu/people/pw

10. Wegner, P., Goldin, D.: Computation beyond Turing Machines. Communications
of the ACM 46(4), 100–102 (2003)

11. Jun, H., Yanni, H., Jie, H.: Topological Potential: Modeling Node Importance with
Activity and Local Effect in Complex Networks. In: 2nd International Conference
on Computer Modeling and Simulation, pp. 411–415. IEEE Press, Sanya (2010)

12. Wenyan, G., Nan, H., Deyi, L., Jianmin, W.: Community Discovery Method in
Networks Based on Topological Potential. Journal of Software 20(8), 2241–2254
(2009) (in Chinese)

13. Deyi, L., Yi, D.: Artificial intelligence with uncertainty. Chapman & Hall/CRC,
London (2007)

http://www.cs.brown.edu/people/pw

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 23–26, 2012.
© Springer-Verlag Berlin Heidelberg 2012

What Computers Do: Model, Connect, Engage

Butler Lampson

Microsoft Research

Abstract. Every 30 years there is a new wave of things that computers
do. Around 1950 they began to model events in the world (simulation), and
around 1980 to connect people (communication). Since 2010 they have begun
to engage with the physical world in a non-trivial way (embodiment—giving
them bodies). Today there are sensor networks like the Inrix traffic information
system, robots like the Roomba vacuum cleaner, and cameras that can pick out
faces and even smiles. But these are just the beginning. In a few years we will
have cars that drive themselves, glasses that overlay the person you are looking
at with their name and contact information, telepresence systems that make
most business travel unnecessary, and other applications as yet unimagined.

Computer systems are built on the physical foundation of hardware (steadily
improving according to Moore’s law) and the intellectual foundations of
algorithms, abstraction and probability. Good systems use a few basic methods:
approximate, incrementally change, and divide and conquer. Latency,
bandwidth, availability and complexity determine performance. In the future
systems will deal with uncertainty much better than today, and many of them
will be safety critical and hence much more dependable.

Extended Abstract

The first uses of computers, around 1950, were to model or simulate other things.
Whether the target is a nuclear weapon or a payroll, the method is the same: build a
computer system that behaves in some important ways like the target, observe the
system, and infer something about the behavior of the target. The key idea is
abstraction: there is an ideal system, often defined by a system of equations, which
behaves like both the target system and the computer model. Modeling has been
enormously successful; today it is used to understand, and often control, galaxies,
proteins, inventories, airplanes in flight and many other systems, both physical and
conceptual, and it has only begun to be exploited.

Models can be very simple or enormously complex, quite sketchy or very detailed,
so they can be adapted to the available hardware capacity even when it is very small.
Using early computers to connect people was either impossible or too expensive,
compared to letters, telephones and meetings. But around 1980 Moore’s law
improvements in digital hardware made it economic to use computers for word
processing, e-mail, mobile phones, the web, search, music, social networks, e-books,
and video. Much of this communication is real time, but even more involves stored
information, often many petabytes of it.

24 B. Lampson

So modeling and connection are old stories—there must be little more to do. Not
so. Both the physical and the conceptual worlds are enormously complex, and there
are great opportunities to model them more accurately: chemical reactions, airplane
wings, disposable diapers, economies, and social networks are still far from being
well understood. Telepresence is still much worse than face-to-face meetings between
people, real time translation of spoken language is primitive, and the machine can
seldom understand what the user doing a search is actually looking for. So there’s still
lots of opportunity for innovations in modeling and connection. This is especially true
in education, where computers could provide teachers with power tools.

Nonetheless, I think that the most exciting applications of computing in the next 30
years will engage with the physical world in a non-trivial way. Put another way,
computers will become embodied. Today this is in its infancy, with surgical robots
and airplanes that are operated remotely by people, autonomous vacuum cleaners,
adaptive cruise control for cars, and cellphone-based sensor networks for traffic data.
In a few years we will have cars that drive themselves, prosthetic eyes and ears, health
sensors in our homes and bodies, and effective automated personal assistants. I have a
very bad memory for people’s names and faces, so my own dream (easier than a car)
is a tiny camera I can clip to my shirt that will whisper in my ear, “That’s John Smith,
you met him in Los Angeles last year.” In addition to saving many lives, these
systems will have vast economic consequences. Autonomous cars alone will make the
existing road system much more productive, as well as freeing drivers to do
something more useful or pleasant, and using less fuel.

What is it that determines when a new application of computing is feasible?
Usually it’s improvements in the underlying hardware, driven by Moore’s law
(2× gain / 18 months). Today’s what-you-see-is-what-you-get word processors were
not possible in the 1960s, because the machines were too slow and expensive. The
first machine that was recognizably a modern PC was the Xerox Alto in 1973, and it
could support a decent word processor or spreadsheet, but it was much too small and
slow to handle photographs or video, or to store music or books. Engagement needs
vision, speech recognition, world modeling, planning, processing of large scale data,
and many other things that are just beginning to become possible at reasonable cost.
It’s not clear how to compare the capacity of a human brain with that of a computer,
but the brain’s 1015 synapses (connections) and cycle time of 5 ms yield 2×1017
synapse events/sec, compared to 1012 bit events/sec for a 2 GHz, 8 core, 64 bit
processor. It will take another 27 years of Moore’s law to make these numbers equal,
but a mouse has only 1012 synapses, so perhaps we’ll have a digital mouse in 12 years
(but it will draw more power than a real mouse).

Hardware is not the whole story, of course. It takes software to make a computer
do anything, and the intellectual foundations of software are algorithms (for making
each machine cycle do more useful work) and abstraction (for mastering complexity).
We measure a computer or communication system externally by its bandwidth (jobs
done per unit time), latency (start to finish time for one job) and availability
(probability that a job gets done on time). Internally we measure the complexity, albeit
much less precisely; it has something to do with how many component parts there are,

 What Computers Do: Model, Connect, Engage 25

how many and how complex are the connections between parts, and how well we can
organize groups of parts into a single part with only a few external connections.

There are many methods for building systems, but most of them fit comfortably
under one of three headings: Approximate, Increment, and Divide and conquer—AID
for short.

• An approximate result is usually a good first step that’s easy to take, and often
suffices. Even more important, there are many systems in which there is no right
answer, or in which timeliness and agility are more important than correctness:
internet packet delivery, search engines, social networks, even retail web sites.
These systems are fundamentally different from the flight control, accounting,
word processing and email systems that are the traditional bread and butter of
computing.

• Incrementally adjusting the state as conditions change, rather than recomputing it
from scratch, is the best way to speed up a system (lacking a better algorithm).
Caches in their many forms, copy on write, load balancing, dynamic scale out,
and just in time compilation are a few examples. In development, it’s best to
incrementally change and test a functioning system. Device drivers, apps,
browser plugins and JavaScript incrementally extend a platform, and plug and
play and hot swapping extend the hardware.

• Divide and conquer is the best single rule: break a big problem down into smaller
pieces. Recursion, path names such as file or DNS names, redo logs for failure
recovery, transactions, striping and partitioning, and replication are examples.
Modern systems are structured hierarchically, and they are built out of big
components such as an operating system, database, a browser or a vision system
such as Kinect.

For engagement, algorithms and abstraction are not enough. Probability is also
essential, since the machine’s model of the physical world is necessarily uncertain.
We are just beginning to learn how to write programs that can handle uncertainty.
They use the techniques of statistics, Bayesian inference and machine learning to
combine models of the connections among random variables, both observable and
hidden, with observed data to learn parameters of the models and then to infer hidden
variables such as the location of vehicles on a road from observations such as the
image data from a camera.

Some applications of engagement are safety critical, such as driving a car or
performing surgery, and these need to be much more dependable than typical
computer systems. There are methods for building dependable systems: writing
careful specifications of their desired behavior, giving more or less formal proofs that
their code actually implements the specs, and using replicated state machines to
ensure that the system will work even when some of its components fail. Today these
methods only work for fairly simple systems. There’s much to be learned about how
to scale them up, and also about how to design systems so that the safety critical part
is small enough to be dependable.

Engagement can be very valuable to users, and when it is they will put up with a
lot of hassle to get the value; consider an artificial eye for a blind person, for example.
But other applications, such as a system that tells you which of your friends are

26 B. Lampson

nearby, are examples of ubiquitous computing that although useful, have only modest
value. These systems have to be very well engineered, so that the hassle of using them
is less than their modest value. Many such systems have failed because they didn’t
meet this requirement.

The computing systems of the next few decades will expand the already successful
application domains that model the world and connect people, and exploit the new
domain that engages computers with the physical world in non-trivial ways. They will
continue to be a rich source of value to their users, who will include almost everyone
in the world, and an exciting source of problems, both intellectual and practical, for
their builders.

R-Calculus: A Logical Inference System

for Scientific Discovery

Wei Li

State Key Laboratory of Software Development Environment
Beihang University

liwei@nlsde.buaa.edu.cn

Abstract. A scientific theory must stand the verification by mans ob-
servation and experiments. It will be refuted by facts whenever its logical
consequence contradicts some facts supported by observations and ex-
periments. Thus, the process of scientific discovery is one of revising the
theory according to the facts. The revision consists of the following steps:

1. discarding the laws of the theory which lead to the contradictions in
such a way that the remaining part will be the maximum subset of
the theory,

2. generating the facts supported by the experiments to create new
laws for a new theory,

3. bringing forth the new scientific theory by merging the new laws
with the remaining part of the old theory.

It is based on the scientists intuition and insight that the laws contra-
dicting the experiments are deleted, while their intuition and insight are
supported by implicit logical reasoning and analysis. Russells work shows
us that for a study concerning logical analysis and reasoning, a formal
inference system of logical connectives and quantifiers can be built up
to do the study. R-calculus is such a formal inference system and it is
capable of deriving and deleting the laws which are in conflict with the
facts. Some examples are demonstrated to show how to use the calculus.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, p. 27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quantum Computing:

A Great Science in the Making

Andrew Chi-Chih Yao

Tsinghua University
andrewcyao@tsinghua.edu.cn

Abstract. In recent years, the scientific world has seen much excitement
over the development of quantum computing, and the ever increasing
possibility of building real quantum computers. What’s the advantage
of quantum computing? What are the secrets in the atoms that could
potentially unleash such enormous power, to be used for computing and
information processing? In this talk, we will take a look at quantum
computing, and make the case that we are witnessing a great science in
the making.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, p. 28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Convergence

of Social and Technological Networks

Jon Kleinberg

Cornell University
kleinber@cs.cornell.edu

Abstract. The growth of social media and on-line social networks has
opened up a set of fascinating new challenges and directions for the field
of computing. Some of the basic issues around these developments are
the design of information systems in the presence of complex social feed-
back effects, and the emergence of a growing research interface between
computing and the social sciences.

In this talk, we will review two key sets of challenges that arise in
designing and analyzing on-line social systems. The first is to understand
how information flows through these systems, and how the behavior of
individuals is affected by the behavior of their neighbors in the network.
The second is to understand the subtle processes by which individuals
on these systems evaluate and form opinions about each other, and the
ways in which these evaluations create incentives that drive behavior.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, p. 29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Principles of Network Computing

Yicheng Pan�

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

yicheng@ios.ac.cn

Abstract. In the new century, the study of networks is being developed rapidly.
Traditional algorithms based on the classical graph theory have not been able to
cope with large scaled networks due to their inefficiency. In this paper, we review
the research on the question why a huge network such as the www-network is
efficiently computable, and investigate the principles of network computing.

Networks cannot be fully and exactly computed due to both their nature and
their scales. The best possibility of network computing could be just locally testable
graph properties, in sparse graph models. We review the progress of the study of
graph property test, in particular, local test of conductance of graphs, which is
closely related to the basic network structural cells – small communities.

In the past decade, an avalanche of research has shown that many real
networks, independent of their age, function, and scope, converge to similar ar-
chitectures, which is probably the most surprising discovery of modern network
theory. In many ways, there is a need to understand the dynamics of the processes
that take place in networks. We propose a new local mechanism by introducing
one more dimension for each node in a network and define a new model of net-
works, the homophily model, from which we are able to prove the homophily
theorem that implies the homophily law of networks. The homophily law ensures
that real world networks satisfies the small community phenomenon, and that
nodes within a small community share some remarkable common features.

1 Introduction

The computation in the last century is to give a precise answer to a problem. For ex-
ample, how to decide whether a given boolean function is satisfiable, how to give an
assignment to a conjunctive normal form to maximize the satisfied clauses, etc. This
research pushes forward algorithm analysis and computational complexity. At the be-
ginning of the new century, as the study of networks (huge graphs) appears, we realized
that polynomial time algorithms which is traditionally considered efficient are no longer
practical in dealing with the massive data of networks. Sometimes, even linear time is
overpaid, which means that reading the whole input is not allowed. This seems an in-
surmountable obstacle in classical computation.

We observe that the formation and evolution of a network comply with some local
regulations. For example, although there are over seven billions of population in the

� The research is partially supported by the Grand Project “Network Algorithms and Digital
Information” of the Institute of software, Chinese Academy of Sciences. It is also partially
supported by NSFC 61161130530.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 30–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Principles of Network Computing 31

world, an individual is just closely related to a small number of them such as relatives
and friends. This is a universal feature for almost all people which implies similar ac-
quaintance community structures in each part of the world. Local regulations provide
an efficient way to analyze networks: localizing and randomizing our manipulations.
This idea originates from the celebrated work of Arora and Safra [4] and Arora et. al.
[3], where it is realized that to verify a witness for an NP problem, instead of reading
through the witness and deciding it in polynomial time, we only need to query randomly
a small number of bits and then make a decision in constant time which succeeds with
high probability. This is the well-known PCP theorem, NP=PCP(O(log n), O(1)) [4,3].
It tells us that at the sacrifice of correctness not too much, the algorithm efficiency could
be improved dramatically. Property test is derived from this idea.

1.1 Graph Property Test

Graph property test is concerned with a sub-linear time randomized algorithm for decid-
ing whether a graph has a given property or far from having it. A graph property,Π say,
is usually defined as a set of graphs. A graph G is said to satisfy property Π if G ∈ Π .
The algorithm, called a tester, is given a query access to a suitable representation of the
graph, and outputs correct answers with probability at least 2

3 .
We have three kinds of graph models used in graph property test. They are different

in the type of queries and distance measurements they use. The first is the dense graph
model introduced in [11]. It is simply the n × n sized adjacency matrix of a graph,
where n is the number of vertices in the graph. For each query, the tester asks whether
there is an edge between nodes u and v in the graph for some u, v. A graph is ε-far from
having a property if at least a total number of 1

2εn
2 edges should be removed or added

such that the graph has this property.
The second model is the bounded-degree model introduced in [13]. In this model,

there is a universal upper bound d on the degree of each vertex and a graph is represented
by its incidence list. For each query, the tester asks which is the i-th (1 ≤ i ≤ d)
neighbor of vertex u. The answer is the index of the neighbor in the graph if it exists
and a symbol “⊥” otherwise. A graph is ε-far from having a property if at least a total
number of 1

2εdn edges should be modified such that the graph has this property while
maintaining the degree bound.

The third model is the general graph model introduced in [28,17]. The query type
of this model is typically the combination of the previous two models. The tester can
query not only whether there is an edge between u and v, but also the i-th neighbor of a
vertex u, where i could be as large as Ω(n). Moreover, for some particular objects, the
testers can query the degree of any vertex [28,17,21]. The distance is measured by the
number of edges, denoted by m. A graph is ε-far from having a property if at least εm
edges should be modified such that the graph has this property.

The parameter ε in each model is usually called the distance parameter. As a huge
sparse graph, a network is usually represented in the latter two models. We mainly
introduce the results in these two models. For the bounded degree model, Goldreich and
Ron [13] presented testers for testing several natural properties as summarized in Table
1. They also established lower bound Ω(

√
n) of query complexity for the Bipartite and

Expander properties, where n is the size of the graph.

32 Y. Pan

Table 1. Query complexity for some graph properties in [13]

Property Query complexity
Connectivity Õ(1/ε)

k-edge-connectivity Õ(k3ε−3+ 2
k)

Eulerian Õ(1/ε)

Cycle-freeness O(ε−3)

For the general graph model, Parnas and Ron gave the first testing algorithm in this
model for the graph diameter 1, and sequentially, the testers for bipartiteness [17] and
triangle-freeness [2] in general graphs were given (see the references for the details in
different cases).

An important object that is closely related to community structures in networks and
widely studied is testing conductance (expansion in bounded degree graphs). Given a
graph G = (V,E) on vertex set V and edge set E, let S ⊆ V be a vertex subset. The
volume of S is defined to be the summation of the degrees of the vertices in S, denoted
by volG(S) =

∑
v∈S deg(v). Given a cut (S, S), where S denotes the complement of S

in V , the conductance of the cut is defined to be condG(S) =
E(S,S)

min{vol(S),vol(S)} , where

E(S, S) is the number of edges crossing the cut. We also write vol(S) and cond(S) for
abbreviation if G is clear from context. The conductance of graph G is the minimum

conductance among all the cuts of G. That is, cond(G) = min
S

E(S,S)

min{vol(S),vol(S)} .

The conductance is often used as a criterion of communities – the basic structural
cells in networks (see next subsection for details). A cut (S, S) which has a small
conductance implies a vertex subset S such that it is (relatively) dense inside S and
(relatively) sparse on its boundary. In the bounded degree graphs, such criterion is al-

ways given by the edge expansion min
S⊆V

E(S,S)

min{|S|,|S|} , which is linearly related to the

conductance.
The problem of testing expansion in bounded degree model was first formulated by

Goldreich and Ron [12] in 2000. They also proposed a tester with analysis depend-
ing on an unproven combinatorial conjecture. In 2007, using combinatorial techniques,
Czumaj and Sohler [8] gave a tester for vertex expansion. They showed that, given pa-
rameters α, ε > 0, the tester accepts all graphs with vertex expansion at least α, and
rejects all graphs that are ε-far from having vertex expansion less than α′ = Θ(α2

d2 log n).
Using algebraic argument based on the idea of Goldreich and Ron in [12], Kale and Se-
shadhri [16] as well as Nachmias and Shapira [27] improvedα′ to Θ(α2) for both vertex
and edge expansions. The constant in Θ depends on the degree bound d and the query
complexity is 1

α2 · Õ(n
1
2+σ · 1

ε) for any small constant σ > 0 2.
Note that these results did not give strict property testers because of the gaps between

the two thresholds α and α′. Because of the Cheeger obstacle, the quadratic gap is hard

1 In fact, some results proved in [13] can be transformed smoothly to the general graph case.
The diameter property tester is the first nontrivial testing algorithm in this model.

2 Õ(n) denotes O(n log n).

Principles of Network Computing 33

to improve. However, the query complexity is almost touching the lower bound Ω(
√
n)

[14] 3.
The problem they discuss for testing expansion is in fact to test conductance. The

main idea is based on random walks by the following intuition. If the graph has a large
conductance, then random walks starting from any vertex mix very fast, and collide
with each other with low probability. Otherwise, once starting from a node in a small
set with small conductance, the random walks cannot go out of it easily, and then the
random walks starting from this node will collide with high probability.

Recently, Li, Pan and Peng [21] gave a tester for testing conductance in the gen-
eral graph model. They showed that, given distance parameter ε and any constant

σ > 0, there exists a tester whose running time is O(
m(1+σ)/2·logn·log 1

ε

ε·Φ2), where n
is the number of vertices and m is the number of edges of the input graph. With proba-
bility at least 2/3, the tester accepts all graphs of conductance at least Φ, and rejects any
graph that is ε-far from any graph of conductance at least α′ for α′ = Ω(Φ2). Techni-
cally, they defined a new graph transformation method called the non-uniform Zig-Zag
product to transform locally any given graph G to a regular G′, while maintaining the
conductance not to change too much. Then the testing algorithm for the bounded degree
model works on the (imaginary) graph G′. This result matches the best known tester for
the bounded degree graph model given by Kale and Seshadhri [16].

Until now, we know that to the algorithmic aspect, graph property test is a reasonable
local approach to problems in networks under the condition that only sub-linear time
algorithms are permitted. Next, to the aspect of network formation, we introduce a local
mechanism that guarantees as many as possible the ubiquitous network characteristics.

1.2 Homophily of Networks

The 1999 Science paper by A. -L. Barabási and R. Albert [6] reported that the phe-
nomenon of scale-freeness, or equivalently, power law degree distribution, which was
observed as early as 1926 in Lotka [25], 1932 in Zipf [31], and explained in 1955 by
Simon [29], is shared by real networks of quite different nature, and that two mecha-
nisms, growth and preferential attachment, are the underlying causes. Moreover, a large
number of research has shown that many real networks, from the cell to the Internet,
independent of their age, function, and scope, converge to similar architectures [5].

In 1967, S. Milgram [26] conducted a series of experiments, showing that the av-
erage number of intermediate steps in a successful acquaintances chain lies between 5
and 6, which is called the “six degrees of separation”. Since then the so called small
world phenomena has been verified in many real networks, in particular, in the World
Wide Web [1]. In 1998, Watts and Strogatz [30] proposed a simple model of networks
by adding random edges to a grid graph or the like, to explain the small world phe-
nomenon of networks. In 2000, Kleinberg [18] introduced the model of adding edges
with endpoints chosen with probability inversely proportional to a power of the dis-
tances in the grid, allowing us to locally find short paths between two vertices.

3 Ω(1
ε
) is also a lower bound, since to query on the corrupted segment of the input with high

probability, Ω(1
ε
) times of query are necessary.

34 Y. Pan

In the past decade, communities or clustering of networks was described as the basic
modularity of networks, and identifying and finding of large communities of networks
have been very successful by various algorithms based on the classic graph partition-
ing [9]. Graph partitioning algorithms have been extensively studied with a number of
applications such as in protein-protein interaction networks [15] and scientific collab-
oration networks [10]. Recently, Li and Peng [22] gave a mathematical definition of
communities, and small community phenomenon: Given a graph G = (V,E), n = |V |
and α, β, γ > 0, we say that a connected set S ⊂ V of size ω(1) being any slowly
growing function of n is an (α, β, γ)-community if |S| = O((lnn)γ) and the conduc-
tance of S, denoted by Φ(S), is at most α

|S|β ; We say that the network G satisfies the
small community phenomenon, if there are constants α, β and γ such that most vertices
of G are contained in some (α, β, γ)-communities, in which case, we call (α, β, γ) the
local dimension of G.

As commented in the 2009 Science paper by A. L. Barabasi [5] that: “The problem
is that there are almost as many dynamical phenomena as there are complex networks.
. . . Is there a chance that, despite their diversity, these dynamical processes share some
common characteristics?” Therefore, for the research in the next step of network theory,
it is a grand challenge for us to develop some uniform approaches to analyzing the
structures and dynamics of networks in general.

Li and Peng [22,23] investigated this problem by proposing a hybrid model and
a self-loop model of networks in which networks satisfy simultaneously the power
law degree distribution, the small world phenomenon, and the small community phe-
nomenon. Both of these two models are geometrical, which intuitively capture the small
community phenomenon in networks that are more closely related to geographical lo-
cations. However, we also need to explain the reason why so many real networks whose
connections depend on logical relations, such as collaboration networks, citation net-
works, slashdot networks, e-mail networks and Wikivote networks etc [19], do satisfy
the small community phenomenon, and what roles the small community phenomenon
plays in the evolution of networks.

Li and Zhang in [24] proposed a homophily phenomenon of graphs: given a graph
G = (V,E), a coloring c of vertices of G, and a constant φ, we say that a vertex v is
satisfied in G, if there are at least φ · dv neighbors of v that share the same color as v,
where dv is the degree of v in G. They also investigated the algorithmic aspects of the
following extension problem of graph coloring: given a graph G, a partial coloring g
of vertices of G, and a constant φ, find the full extension coloring f of g such that the
number of satisfied vertices of G is maximized. In this model, they use color to denote
the property of a vertex, which reflects some behavior in social networks.

By introducing one more dimension, that is the color into the classical preferential
attachment model, A. Li, J. Li, Y. Pan and P. Peng [20] propose a discrete model of net-
works, the homophily model of networks, from which a network, G say, simultaneously
satisfies the following properties:

(1) G satisfies the power law degree distribution,
(2) G has a small diameter,
(3) vertices in a small community of G share something in common, that is, share the

same color in our model,

Principles of Network Computing 35

(4) the induced subgraph of a small community of G satisfies the power law degree
distribution,

(5) small communities of G has some representatives, that is, the seeds in our model,
and

(6) there are 1− o(1) fraction of vertices of G that are included in some small commu-
nities.

This results imply a homophily law of networks: the small community phenomenon of
a network stems from the tendency of individuals to bond with similar others and the
individuals in the same community share some common features. The homophily law
captures our common sense experience as stated by a Chinese saying: “people sharing
the same interests come together, materials are grouped by categories.” A. Li, J, Li, Y.
Pan and P. Peng [20] have shown that this common sense can be proved mathematically,
and more importantly, that this mathematical characterization of the homophily law can
be used to analyze the dynamics and extracting information of networks.

2 Homophily Law – The Source of Small Community Phenomenon

In this section, we give the formal definition of the homophily model and homophily
theorem. We briefly introduce the proof of this theorem and its applications in extracting
information in real networks.

2.1 Homophily Model and Homophily Theorem

Definition 1. (Homophily Model of Networks) Let n be the number of nodes of the
graph we are constructing. Let d ≥ 4 be a positive integer. The graph G is defined by
stages:

1. For notational simplicity, we start at stage 2. At time 2, we are given an initial
graph G2 with two vertices of different colors connected by a single edge. Each of
the two nodes has d− 1 self-loops.

2. For i = 3, 4, . . . , n, at time i, add a new node v such that
(a) Let p be a real number (probably dependent on i) in [0, 1]. With probability p,

v chooses a new color, κ say, that has not been used in Gi−1 yet. In this case,
add d−1 self-loops on v and an edge (u, v), where u is chosen with probability
proportional to the degrees of nodes in Gi−1.
We say that v is the seed of the color κ.

(b) With probability 1 − p, define the color of v to be the one, κ say, which is
uniformly chosen from the existing colors in Gi−1.
Add d edges (uj , v), for all j = 1, 2, . . . , d, where uj’s are chosen with proba-
bility proportional to the degrees of all the nodes that have the same color as v
in Gi−1.

3. For every seed v, we remove all the self-loops on v, and replace it by a random
(d− 1) regular graph.

Denote by G the final graph. We need some notations to help us understand the structure
of G.

36 Y. Pan

Definition 2. Let G be the graph built in Definition 1.

(i) Given a color κ, let Sκ be the set of all nodes in G that share the same color κ.
We say that Sκ is a homochromatic set.
(ii) We say that an edge (u, v) is a local edge of G, if u and v share the same color,

that is, both u and v are in some homochromatic set.
(iii) We say that an edge e = (u, v) is a global edge of G, if u and v have different

colors.

Note that the seed of a homochromatic set is the first node appearing in this set. The
subsequent coming nodes of the same color adhere around it and the homochromatic
set grows. This gives us an intuition of a community and the seed is interpreted as the
representative of the community. The following homophily theorem tells us that with
proper parameters, G satisfies the three fundamental properties: the power low degree
distribution, the small world phenomenon, and the small community phenomenon.

Theorem 1. (Homophily Theorem) Let p = log−c i for some constant c > 4, and G be
the network given in Definition 1. With probability 1 − o(1), the following properties
hold:

(1) For every color κ, the induced subgraph of the homochromatic set Sκ is connected,
and satisfies the power law degree distribution.

(2) G obeys the power law degree distribution.
(3) The average node to node distance is O(log n).
(4) There are 1− o(1) fraction of nodes of G whose homochromatic set is an (α, 0.8/

(c+ 1), c+ 1)-community.

2.2 Proof Sketch of Homophily Theorem

The proof of Homophily theorem is based on the construction of G and probability
bounding techniques. For (1), the connectivity of a homochromatic set Sκ is obvious.
The power law distribution in a homochromatic set stems from the canonical analysis
of degree distribution [7] for the preferential attachment model. For (2), the power law
distribution over G follows from the fact that the union of vertex sets, each of which
obeys the power law degree distribution of identical power, also obeys the power law
degree distribution.

For (3), the small world phenomenon is shown by two steps. Firstly, it can be shown
that with high probability, each homochromatic set has small diameter. Secondly, the
random (d−1) regular graph guarantees that the subgraph induced by seeds has a small
diameter and keeps the degrees. The small world phenomenon follows immediately.

For (4), the small community phenomenon is concluded by showing that the
homochromatic sets whose seeds appear neither too early nor too late are good com-
munities with high probability. Specifically, the following two properties hold with
overwhelming probability: (i) the homochromatic sets whose seeds appears in the time
interval [n

logc+2 n
, (1 − 1

logc−2 n
)n] are (α, 0.8/(c + 1), c + 1)-communities for some

constant α, and (ii) all but o(1) fraction of nodes belong to these homochromatic sets.

Principles of Network Computing 37

2.3 Applications in Information Extraction

In this section, we give an application of the homophily law in information extraction
(corresponding to finding missing colors in the homophily model). In real networks, we
generalize the case of single color (in our model) to that of multi-color. That is, a node
may have a constant number of colors. For instance, a paper in a citation network may
have up to 5 keywords which are interpreted as the colors of the paper, and a protein in a
protein-protein interaction network may have one, or two, or more functions which are
interpreted as the colors of the protein. A node in a social network is a person with a few
roles, such as, a computer scientist may take role as either a professor, or an editor of
some journals, or as a member of family and relatives etc. The homophily law ensures
that nodes in a true community must share something in common. Conversely, we can
also extract these roles from community structures by the homophily law. Next, as an
example, we use this idea to find missing keywords for papers from a citation network.

We study the Arxiv HEP-TH (high energy physics theory). It is a citation network
from the e-print arXiv and covers all the citations within a dataset of 27, 770 papers. If
paper i cites paper j, then the graph contains a directed edge from i to j. Each of the pa-
pers in the network contains a title, an abstract, a publication journal, and a publication
date of the paper. There are 1214 papers whose keywords were listed by their authors.
Our goal is to use this information to predict and confirm keywords for the each of the
remaining papers in the network.

Firstly, we need to find out all the community structures of the citation network.
Second, we suppose that K1,K2, · · · ,Kl are all known keywords among papers in
a community C. We use the known keywords K1,K2, · · · ,Kl to predict and confirm
keywords for papers in C for which no keywords are listed by their authors. We proceed

0 20 40 60 80 100
number of keywords of communities

6000

8000

10000

12000

14000

16000

18000

n
u
m

b
e
r

o
f

p
a
p
e
rs

 w
h
o
s
e
 k

e
y
w

o
rd

s
 a

re
 c

o
n
fi
rm

e
d

Fig. 1. The keywords prediction curve

38 Y. Pan

as follows. Suppose that K1,K2, · · · ,Ki (i ≤ l) are the most popular i keywords
among all the known keywords of C. Given a paper P in C for which no keywords are
listed in the network, for each j ≤ i, if Kj appears in either the title or the abstract of
paper P , then we say that Kj is a predicted and confirmed keyword for P . We do so for
each community.

We use the small community searching algorithm COMMUNITY given by A. Li,
J. Li and P. Peng [19] to find all the (overlapping) communities and get the local di-
mension and fundamental data of the Arxiv HEP-TH network: in the largest connected
component whose size is 2.74 × 104, there are 0.67 fraction of nodes each of which
belongs to some (α, β, γ)-community with α = 0.33, β = 0.04 and γ = 2.91. The av-
erage size of all communities is 225. Then for each community we choose different i’s
as the number of keywords and get the number of papers whose keywords are predicted
and confirmed (as shown in Figure 1). It is shown that, for example, if we choose the
most popular 20 keywords in each community, there are totally about 1.5× 104 papers’
keywords are predicted and confirmed. Even if we just choose the most popular five
keywords, the number is still over ten thousands, which is near ten times of the 1214
papers whose keywords keywords were initially listed by the authors.

3 Conclusions

In this paper, we focus on the local algorithms and mechanisms for network study. We
introduce the graph property testing problem as an efficient way to solve classic prob-
lems in large scaled networks. We also introduce a local mechanism of the homophily
law, a mathematical version of the proverb “birds of a feather flock together”. Based on
this law, we introduce a new method for information extraction, and give an experiment
of retrieving keywords for papers on a citation network. Both of the two aspects support
our belief that networks computing can be achieved locally.

References

1. Albert, R., Jeong, H., BalaBási, A.-L.: Diameter of World-Wide Web. Nature (401), 130
(1999)

2. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle freeness in general graphs.
In: Proc. ACM-SIAM 17th Symposium on Discrete Algorithms, pp. 279–288 (2006)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and Intractabil-
ity of Approximation Problems. Journal of the ACM 45, 501–555 (1998)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. Journal
of the ACM 45(1), 70–122 (1998)

5. BalaBási, A.-L.: Scale-free networks: a decade and beyond. Science 325 (July 24, 2009)
6. BalaBási, A.-L., Albert, R.: Emergence of scaling in random networks. Science (286), 509–

512 (1999)
7. Chung, F., Lu, L.: Complex graphs and networks. American Mathematical Society (2006)
8. Czumaj, A., Sohler, C.: Testing expansion in bounded degree graphs. In: Proc. 48th Annual

Symposium on Foundations of Computer Science, pp. 570–578 (2007)
9. Fortunato, S.: Community detection in graphs. Physics Reports, 486 (2010)

Principles of Network Computing 39

10. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks.
PNAS 99(12), 7821–7826 (2002)

11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. Journal of the ACM, 653–750 (July 1998); Preliminary version in FOCS
1996

12. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic Collo-
quium on Computational Complexity, TR00-020 (2000)

13. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica, 302–343
(2002); Preliminary version in 29th STOC (1997)

14. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–
343 (2002); Conference version in STOC 1997 (1997)

15. Jonsson, P.F., Cavanna, T., Zicha, D., Bates, P.A.: Cluster analysis of networks generated
through homology: automatic identification of important protein communities involved in
cancer metastasis. BMC Bioinformatics 7(2) (2006)

16. Kale, S., Seshadhri, C.: Testing expansion in bounded degree graphs. SIAM Journal on Com-
put. 40(3), 709–720 (2011); Technical Report: ECCC TR07-076 (2007)

17. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general
graphs. SIAM Journal of Computing 33(6), 1441–1483 (2004)

18. Kleinberg, J.: The small world phenomenon: An algorithmic perspective. In: Proc. 32nd
ACM Symp. on Theory of Computing, pp. 163–170 (2000)

19. Li, A., Li, J., Peng, P.: Small community phenomena in social networks: Local dimension (to
appear)

20. Li, A., Li, J., Pan, Y., Peng, P.: Homophily law of networks: Principles, methods and experi-
ments (to appear)

21. Li, A., Pan, Y., Peng, P.: Testing conductance in general graphs. Electronic Colloquium on
Computational Complexity (ECCC) 18, 101 (2011)

22. Li, A., Peng, P.: Community Structures in Classical Network Models. Internet Math. 7(2),
81–106 (2011)

23. Li, A., Peng, P.: The small-community phenomenon in networks. To appear in Mathematical
Structures in Computer Science (2011)

24. Li, A., Zhang, P.: Algorithmic aspects of the homophily phenomenon of networks (to appear)
25. Lotka, A.J.: The frequency distribution of scientific productivity. The Journal of Washington

Academy of the Sciences 16, 317 (1926)
26. Milgram, S.: The small world problem. Psychology Today (2), 60–67 (1967)
27. Nachmias, A., Shapira, A.: Testing the expansion of a graph. Electronic Colloquium on Com-

putational Complexity, TR07-118 (2007)
28. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Structures and Algo-

rithms 20(2), 165–183 (2002)
29. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)
30. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393, 440–

442 (1998)
31. Zipf, G.K.: Selective Studies and the Principle of Relative Frequency in Languages. Harvard

Univ. Press, Cambridge (1932)

The Small Community Phenomenon in

Networks: Models, Algorithms and Applications

Pan Peng�

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

and
School of Information Science and Engineering,

Graduate University of China Academy of Sciences, Beijing, China
pengpan@ios.ac.cn

Abstract. We survey a recent new line of research on the small com-
munity phenomenon in networks, which characterizes the intuition and
observation that in a broad class of networks, a significant fraction of
nodes belong to some small communities. We propose the formal defini-
tion of this phenomenon as well as the definition of communities, based
on which we are able to both study the community structure of network
models, i.e., whether a model exhibits the small community phenomenon
or not, and design new models that embrace this phenomenon in a nat-
ural way while preserving some other typical network properties such
as the small diameter and the power law degree distribution. We also
introduce the corresponding community detection algorithms, which not
only are used to identify true communities and confirm the existence of
the small community phenomenon in real networks but also have found
other applications, e.g., the classification of networks and core extraction
of networks.

1 Introduction

In recent years, the flourish of real network data that span from various do-
mains including the World Wide Web, the power grid, the friendship network
and many others are offering the scientific community new problems and chal-
lenging new methodology [29]. One canonical way to study networks is to first
empirically explore the network data, extract patterns and properties from the
underlying structure, and then design network models that reproduce the ob-
served properties. For example, various networks are observed to share some
common phenomena with the best-known two the scale-free property and the
small-world phenomenon, which are further simulated by simple random graph
models [4,38]. These models not only give us insight how global properties come
from local generative rules but also provide us the testbeds to study other prob-
lems on networks, e.g. the decentralized search [16] and information diffusion [7].

� The author is partially supported by the Grand Project “Network Algorithms and
Digital Information” of the Institute of Software, Chinese Academy of Sciences.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 40–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Small Community Phenomenon in Networks 41

We follow this way to study the community structure in networks. A commu-
nity is a group of nodes that share common properties and/or behave similar with
each other, which is reflected as a subset of nodes with dense intra-connections
and (relatively) sparse inter-connections in the network structure. Communities
can be seen as building blocks of networks and play important roles in the spread
of information, marketing and searching [9]. There has been an extensive study of
the community structure of networks along with plenty of community detection
algorithms in the last decade (see e.g., [35,32,12]). The direct impression of the
communities of networks is that they are overlapping, hierarchical and that the
communities of different scales coexist. In this presentation, we formalize and in-
vestigate a new property of the community structure called the small community
phenomenon, that a significant fraction of nodes belong to some small commu-
nities. This phenomenon is intuitive and has some partial supporting evidence
(see Section 5), however, to our knowledge, it has not been seriously proposed
and studied before.

We first introduce the definitions of communities, the small community phe-
nomenon and the corresponding community identification algorithms in Section 2.
Thenwe show that some classical networkmodels do exhibit this new phenomenon
while some others do not, and we also propose new models that embrace the small
community phenomenon as well as the small diameter and the power law degree
distribution properties in Sections 3 and 4, respectively. Finally, we provide fur-
ther evidence of the existence of the small community phenomenon on a set of
social networks1 and give some other applications in Sections 5 and 6.

2 Basic Definitions and Algorithms

2.1 Definition of Community

How to formally characterize the property that a set is community-like, or equiv-
alently, what is the quantitative definition of a community? Though the intuition
behind the community seems clear and simple, there is not universal agreement
on the formal definition of community (see the surveys [35,32,12]). To give such
a definition, we start with a well known concept called conductance in the litera-
ture of computer science, which captures well the intuition behind a community.

Given an undirected graph G = (V,E) and a vertex subset S ⊆ V , let dv
denote the degree of vertex v, and let the volume vol(S) of a set S be the total
degree of vertices in S, that is, vol(S) =

∑
v∈S dv. Let e(S, S̄) and e(S) denote

the number of edges crossing the boundary of S and the number of edges that lie
entirely in S, respectively. For any set S ⊆ V , its conductance φ(S) is defined as

φ(S) = e(S,S̄)

min{vol(S),vol(V−S)} . Thus, roughly speaking, for a subset S of volume

smaller than vol(V)/2, the smaller its conductance is, the more likely that it is
a community.

1 All the data mentioned in this paper can be found from the websites:
http://snap.standford.edu, or http://www-personal.umich.edu/~mejn/net

data, and we only consider the corresponding undirected graphs.

http://snap.standford.edu
http://www-personal.umich.edu/~mejn/netdata
http://www-personal.umich.edu/~mejn/netdata

42 P. Peng

Several works directly used the conductance (or related) as a measure of how
good a community is [14,2,18,19]. However, we note that the small conductance
of a set S may be caused by the fact S just has a large number of nodes inside,
and thus fails to reflect the trait of being a community (see for the example
in [22]). Here, we introduce a conductance-based definition that characterizes
the community in a more refined way [23].

Definition 1. ([23]) Given a graph G = (V,E) and α, β > 0, a connected set
S is an (α, β)-community if Φ(S) ≤ α

|S|β . Moreover, if |S| = O((lnn)γ), where

n = |V |, then S is called an (α, β, γ)-community.

Note that under the above definition, 1) only the given set S and its boundary
is involved, namely, the definition is local in that it does not require information
on other parts of the network; 2) any set of constant size is a trivial (α, β)-
community for sufficiently small β. In the following, we are mainly interested
in the communities of larger size (i.e., ω(1)), and these communities are called
proper, in which case β ranges from 0 to 2; 3) if the conductance inequality is
changed by Φ(S) ≤ α

(ln |S|)β , then we call the set S a weak (α, β)-community.

2.2 The Small Community Phenomenon

What are the properties of real communities of a given network? Typically, the
communities may overlap or nest in other clusters, which in turn lead to the hi-
erarchical organization of the vertices of the network [8,34,5]. Several papers
have found the skew distribution of community sizes in many different net-
works [33,6,28,31]. Leskovec et al. [18,19] find that in many large scale networks,
the set of greatest community score (i.e., smallest conductance) is of size about
100 and beyond this size, the community score gradually decreases as the size
of the set becomes larger.

We propose a new phenomenon that originates from the daily experience
and observation that almost every one in our society belongs to some small
communities. (In the following, the term with high probability and almost every
will refer to the probability at least 1 − on(1) and at least 1 − on(1) fraction,
respectively, where n denotes the size of the graph.)

Definition 2. ([23]) Given a graph G from some network model, if almost every
vertex v belongs to some proper (α, β, γ)-community, where α, β, γ > 0 are some
universal constants, then G is said to have the small community phenomenon.

On a real network, we will relax the condition of the small community phe-
nomenon, by requiring that a significant fraction, 60% say, of nodes belong to
some small communities, since the true communities may mix very much with
each other so that it is nearly impossible for a structure-based detecting algo-
rithm to extract them. We will corroborate this with a set of social network data
the small community phenomenon in Section 5.

The Small Community Phenomenon in Networks 43

2.3 Community Detection Algorithm

How to extract good communities from a given network? The loss of exact defini-
tion of community leads to the vastness of community identification algorithms.
Concerning on the conductance based clustering, there has been a line of re-
search on local graph partitioning algorithms which may be used as subroutines
for clustering [36,1,3]. These algorithms take a graph G and a vertex v as input,
only explore parts of the input graph G and with constant probability, output a
set of small conductance if v indeed belongs to some sets of small conductance.
Such an algorithm is both fast and practical, and has already been used to find
communities in real networks (e.g., [18,25,37,19,13]). In particular, Leskovec et
al. [18,19] have used the PageRank-based local algorithm to analyze the statis-
tics of the community structures over 100 large real-world networks while they
did not test the algorithm on benchmark graphs, which are supposed to have a
recognized community structure.

We developed a variant of the local graph partitioning algorithm Commu-
nitywhich has different stoping conditions from the previous ones, especially
the one used in [18,19] (see the details of Community in [22]). We further com-
pared the effectiveness of the algorithm (denoted O Alg) used by Leskovec et
al. and Community (denoted N Alg) on extracting the true communities on
several benchmarks. One example on an American college football network is
given in Table 1. In this network there are 12 true communities, e.g., Western
Athletic, which are expected to be detected by the two algorithms. The numer-
ical value (e.g., 0.663325) in the table denotes the maximum cosine similarity
of the true community (e.g., Big Ten) and the communities found by the two
algorithms. The higher similarity is (which is at most 1), the more accurate that
the algorithm identifies the true community, and thus it is easy to see that our
algorithm works much better on detecting true communities.

Table 1. The comparison of Community (N Alg) with a previous one (O Alg)
on an American college football network. The numerical value denotes the maximum
cosine similarity of the corresponding true community and the communities extracted
by the corresponding algorithm.

conference O Alg N Alg conference O Alg N Alg

Western Athletic 0.471405 0.843274 Independents 0.291111 0.23094

Sun Belt 0.370479 0.412393 Conference USA 0.580948 0.948683

Big East 0.478091 1 Mountain West 0.417029 1

Atlantic Coast 0.480384 1 Mid-American 0.72111 1

Big Twelve 0.561951 1 Southeastern 0.707107 1

Big Ten 0.663325 1 Pacific Ten 0.471405 1

3 Results on Classical Network Models

Do the classical network models exhibit the small community phenomenon? Ran-
dom network models such as the Erdös-Rényi model (namely, the G(n, p) model)

44 P. Peng

and the preferential attachment (PA) model are not supposed to have commu-
nities [28], which is also true under our definition of the community.

Let us take PAmodel with parameter d for example. This model is a generative
model, in which we start with a given graph G0. Then for each t ≥ 1, conditioned
on Gt−1, we form Gt by adding a new vertex xt together with d edges between
xt and yi (1 ≤ i ≤ d), each of which is chosen with probability proportional to
the degree of yi in Gt−1. This model has the nice power law degree distribution
property that has been observed in many real networks. Mihail et al. [26] have
proved that the conductance of a graph from PA (the definition there is slightly
different) is larger than some constant, with high probability, which immediately
implies that the graph generated from this model has no proper communities.

Theorem 1. ([26,23]) With high probability, there is no proper (α, β)-community
in Gn for any 0 < β ≤ 2 and d ≥ 2, where Gn is a random graph in the PA
model with parameter d.

There are also a set of models that have clear community structures, e.g.,
the geometric preferential attachment (GPA) model [10,11], the hierarchical
model [8,34] and Kleinberg’s small world (SW) model [16] when proper pa-
rameters are chosen.

Let us take the (1-dimensional) SW model with parameter r for example. In
this model, we start with a given n-vertex cycle, in which a natural lattice dis-
tance can be defined: for any pair of vertices (u, v) , the distance d(u, v) between
them is the minimum path length connecting u, v. Then for any vertex v, we
connects v to a long-contact u, which is chosen randomly with probability pro-
portional to (d(u, v))−r . Kleinberg have proved an interesting threshold result
on the delivery time of a decentralized algorithm and thus given a characteriza-
tion of the conditions under which people can construct short paths when they
only have access to partial (local) information. We show that the community
structure of this model also exhibit an interesting threshold phenomenon.

Theorem 2. ([23]) In the 1-dimensional small world model G, with high
probability,

1. if r < 1, there is no proper community for an arbitrary node;
2. if r = 1, there exists proper weak (α1, β1)-communities of size n

(lnn)c1 for

every node, where β1 < 1, c1 > 0 and there also exists proper weak (α2, 1)-
communities of size c2n for every node, where 0 < c2 ≤ 1

4 ;
3. if r > 1, every node is contained in some proper (α, β, γ)-communities for

some constants α, β, γ.

4 Two New Models

How to model networks that simultaneously have the power law degree distri-
bution, the small diameter as well as the small community phenomenon? This
question is motivated by the fact that there indeed exist real networks that ex-
hibit all the three properties (eg., the network grqc in Figure 1 in Section 5).

The Small Community Phenomenon in Networks 45

Here, we briefly introduce two dynamic models that satisfies these good proper-
ties. More explanations can be found in [24,20].

The first model is a geometric model, which combines the preferential attach-
ment scheme and an underlying structure in a natural way. It is defined on a
unit sphere S and at each time, a new node is generated uniformly from S and it
will connect to some existing nodes within a neighborhood with probability pro-
portional to their degrees. We also require that each new node is born with some
flexible self-loops which may be eliminated in later steps and are used to make
long-distance connections. We note that this model is based on the GPA model
which simulates networks that both have the power law degree distribution and
small edge expansion [10,11]. We have proved that the coexistence of the small
community phenomenon and the power law degree distribution in our geometric
model is subtle in that the possible choices of a parameter lies in a very narrow
region, beyond which one of the two properties are unlikely to appear [24].

Another model is called the homophily model, which combines the preferential
attachment scheme and the homophily law in a natural way [20]. In this model,
each new node v is born with a color that may be chosen uniformly at random
from all the existing colors or totally new, in which case v is called the seed of the
color, with some probability. Then node v will connects to some existing nodes
that share the same color or all the existing nodes depending on v color, and
these neighbors are chosen following the preferential attachment scheme. Long
connections may be made between seeds. We have shown that any set of nodes
that have the same color is a good small community by choosing appropriate
parameters, which indicates that the model naturally characterizes the property
that nodes in a community share something in common (the color) and that
each community has a representative (its seed). Besides, the whole network as
well as the induced subgraphs of small communities is shown to have the power
law degree distribution.

Both of these two models have all the three nice properties mentioned above.

Theorem 3. ([24,20]) Under proper parameters, with high probability, the ran-
dom graphs Gn from geometric model and Hn from homophily model both satisfy
that 1) the power law degree distribution; 2) the average node to node distance
is O(log n); 3) almost every node belongs to some proper (α, β, γ)-communities
for some global constants α, β, γ.

5 Empirical Results

Do the real networks exhibit the small community phenomenon? Many different
clustering techniques have provide evidence that small communities are abun-
dant, which partially support the thesis of this phenomenon ([33,6,28,31,18,19]).
We show that our algorithm Community can be used not only to verify that
several social networks exhibit the small community phenomenon, but also to
give a more elaborate characterization called local dimension of the community
structure of the networks.

46 P. Peng

Roughly speaking, given a network G, we will find a triple (α, β, γ) which
characterizes best the community structure of G and is called the local dimension
of G [23,24,22]. A network with local dimension (α, β, γ) has the property that
the fraction of nodes that belong to some (α, β, γ) is maximized in some way (we
refer to our paper [22] for details). Figures 1 and 2 show the size-fraction curves
of several social networks under their local dimensions. A coordinate (x, y) on the
size-fraction curve means that at least y fraction of nodes belong to a community
of size at most x. Thus, we can see that at least 70% fraction of nodes belong
to some communities of size at most 30 in network grqc, which indicates that
the network has an obvious small community phenomenon; while in the network
wikivote almost no nodes belong to communities of size smaller than 300, which
indicates that the network may not have the phenomenon. There are also some
networks that lie between these two cases, e.g., the network astro.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

community size

fr
a
c
ti

o
n

 o
f

n
o

d
e
s

cond_mat
astro
grqc
hepph
hepth

Fig. 1. The size-fraction curve on four
collaboration networks

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

community size

fr
a
c
ti

o
n
 o

f
n
o
d
e
s

social_wikivote

Fig. 2. The size-fraction curve on a
Wikivote network

6 Applications

What are the applications of the small community phenomenon and the re-
lated clustering algorithm Community? Besides the potential applications men-
tioned in the introduction (and many others in [35,32,12]), we give two more
examples.

6.1 Classification of Networks

Quantitatively classifying networks which may vary very differently in disciplines
and scales will offer us great insights both on the network structures and dynamics.
We are able to classify the networks based on their local dimensions and the per-
centage of nodes belonging to small communities. For example, the network grqc
and wikivote in Figures 1 and 2 could be categorized into two classes: networks
exhibit the small community phenomenon and those do not. A more refined clas-
sification over more social networks is given in [22]. Such a method of course ap-
plies to many other networks. We note that recently Lancichinetti et al. [17] and
Onnela et al. [30] have also constructed taxonomies of networks based on different
clustering algorithms and statistical properties of the resulting communities.

The Small Community Phenomenon in Networks 47

6.2 Core Extraction of Networks

Networks always exhibit the core-periphery structure, in which the core is both
densely connected and central in terms of graph distance and may also have
an embedded core-periphery structure; and so on [18]. The algorithm Com-
munity can be used to extract the core of a network [21]. More precisely, we
start from the original network (graph) G = G0, and recursively perform the
following reductions : for i ≥ 0, run Community to find all the communities of
Gi corresponding to its local dimension (α, β, γ) and if no community is found,
then stop; otherwise, let Gi+1 be the largest connected component of Gi after
deleting all the edges in the communities. The final subgraph Gl is declared to
be the core of G.

To test that Gl indeed acts as the core of the original graph G and even that
Gi+1 acts more importantly than Gi in G, we investigate the power of spreading
influence of each Gi under a simple threshold diffusion model [27,15], in which
we are given a diffusion parameter φ, a size parameter s and a graph G whose
nodes are all initially inactive. We first choose an initial active set S of size s
uniformly at random from the vertices of G and then trigger a diffusion process:
an active node v will remain active forever; and an inactive node v will become
active if and only if at least φdv of its neighbors are active. The process stops
when all nodes are active or the number of active nodes does not increase. We
are interested in the expected number of active nodes at the end of the diffusion.

Fig. 3. The curve of diffusion size vs. initial active set size on a collaboration network
when φ = 0.3

Our experiments on a set of scientific collaboration networks show that for
any i such that 0 ≤ i ≤ l−1, by selecting a random set of size s from Gi+1 as the
initial active set always activates more nodes at the end of the diffusion process
in G than the case by selecting a random set of size s from Gi [21]. In particular,
the nodes of the core Gl, which is usually rather small compared to the graph
G we start with, are much more influential in the diffusion process than average
nodes of G, which indicates that Gl indeed plays a central role and acts as a
core in G at least in the sense of diffusion as above. A more refined illustration

48 P. Peng

is given in Figure 3, in which we can see that if the diffusion parameter φ is
fixed (here, 0.3), the size of the initially active set S selected from Gi required
for the diffusion process to reach the limit number (about 10, 000) decreases as
i increases.

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 475–486. IEEE Computer Society, Washington, DC, USA
(2006)

2. Andersen, R., Lang, K.J.: Communities from seed sets. In: Proceedings of the 15th
International Conference on World Wide Web, WWW 2006, pp. 223–232. ACM,
New York (2006)

3. Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, pp. 235–244. ACM, New York (2009)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

5. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Physical Review E, 1–6 (2004)

7. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic
time. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Comput-
ing, STOC 2011, pp. 21–30 (2011)

8. Ravasz, E., Somera, A.L., D.M.Z.O., Barabási, A.L.: Hierarchical organization of
modularity in metabolic networks. Science 297, 1551 (2002)

9. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (July 2010)

10. Flaxman, A.D., Frieze, A., Vera, J.: A geometric preferential attachment model of
networks. Internet Mathematics 3(2) (2007)

11. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks II. Internet Mathematics 4(1), 87–111 (2007)

12. Fortunato, S.: Community detection in graphs. Physics Reports 486 (2010)
13. Hodgkinson, L., Karp, R.M.: Algorithms to Detect Multiprotein Modularity Con-

served during Evolution. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011.
LNCS, vol. 6674, pp. 111–122. Springer, Heidelberg (2011)

14. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J.
ACM 51(3), 497–515 (2004)

15. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD 2003: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

16. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Pro-
ceedings of the 32nd ACM Symposium on the Theory of Computing (2000)

17. Lancichinetti, A., Kivelä, M., Saramäki, J., Fortunato, S.: Characterizing the com-
munity structure of complex networks. PLoS ONE 5(8), e11976 (2010)

18. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
CoRR abs/0810.1355 (2008)

The Small Community Phenomenon in Networks 49

19. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, pp. 631–640 (2010)

20. Li, A., Li, J., Pan, Y., Peng, P.: Homophily law of networks: Principles, methods
and experiments (2012) (manuscript submitted for publication)

21. Li, A., Li, J., Pan, Y., Peng, P., Zhang, W.: Small core phenomenon of net-
works: Global influence core of the collaboration networks (2012) (unpublished
manuscript)

22. Li, A., Li, J., Peng, P.: Small community phenomenon in social networks: Local
dimension (2012) (unpublished manuscript)

23. Li, A., Peng, P.: Communities structures in classical network models. Internet
Mathematics 7(2), 81–106 (2011)

24. Li, A., Peng, P.: The small-community phenomenon in networks. Mathematical
Structures in Computer Science, Available on CJO doi:10.1017/S0960129511000570

25. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods
for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258
(2009)

26. Mihail, M., Papadimitriou, C., Saberi, A.: On certain connectivity properties of
the internet topology. J. Comput. Syst. Sci. 72(2), 239–251 (2006)

27. Morris, S.: Contagion. The Review of Economic Studies 67(1), 57–78 (2000)
28. Newman, M.E.J.: Detecting community structure in networks. The European Phys-

ical Journal B 38 (2004)
29. Newman, M.E.J., Barabási, A.L., Watts, D.J. (eds.): The Structure and Dynamics

of Networks. Princeton University Press (2006)
30. Onnela, J.P., Fenn, D.J., Reid, S., Porter, M.A., Mucha, P.J., Fricker, M.D., Jones,

N.S.: A Taxonomy of Networks. CoRR abs/1006.5731 (June 2010)
31. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

32. Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Notices of the
American Mathematical Society 56, 1082–1097 (2009)

33. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proceedings of the National Academy of Sci-
ences 101(9), 2658 (2004)

34. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Physical
Review E 67, 026112 (2003)

35. Schaeffer, S.: Graph clustering. Computer Science Review (1), 27–64
36. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 81–90. ACM,
New York (2004)

37. Voevodski, K., Teng, S.H., Xia, Y.: Finding local communities in protein networks.
BMC Bioinformatics 10(1), 297 (2009)

38. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393, 440–442 (1998)

Vertex-Pursuit in Hierarchical Social Networks�

A. Bonato, D. Mitsche, and P. Pra�lat

Department of Mathematics
Ryerson University
Toronto, Canada

{abonato,dmitsche,pralat}@ryerson.ca

Abstract. Hierarchical social networks appear in a variety of contexts,
such as the on-line social network Twitter, the social organization of
companies, and terrorist networks. We examine a dynamic model for the
disruption of information flow in hierarchical social networks by consid-
ering the vertex-pursuit game Seepage played in directed acyclic graphs
(DAGs). In Seepage, agents attempt to block the movement of an in-
truder who moves downward from the source node to a sink. We propose
a generalized stochastic model for DAGs with given expected total de-
gree sequence. Seepage is analyzed rigorously in stochastic DAGs in both
the cases of a regular and power law degree sequence.

1 Introduction

The on-line social network Twitter is a well known example of a complex real-
world network with over 300 million users. The topology of Twitter network
is highly directed, with each user following another (with no requirement of
reciprocity). By focusing on a popular user as a source (such as Lady Gaga or
Justin Bieber, each of whom have over 11 million followers [14]), we may view
the followers of the user as a certain large-scale hierarchical social network. In
such networks, users are organized on ranked levels below the source, with links
(and as such, information) flowing from the source downwards to sinks. We may
view hierarchical social networks as directed acyclic graphs, or DAGs for short.
Hierarchical social networks appear in a wide range of contexts in real-world
networks, ranging from terrorist cells to the social organization in companies;
see, for example [1,8,10,12,13].

In hierarchical social networks, information flows downwards from the source
to sinks. Disrupting the flow of information may correspond to halting the spread
of news or gossip in OSN, or intercepting a message sent in a terrorist network.
How do we disrupt this flow of information while minimizing the resources used?
We consider a simple model in the form of a vertex-pursuit game called Seepage
introduced in [6]. Seepage is motivated by the 1973 eruption of the Eldfell volcano
in Iceland. In order to protect the harbour, the inhabitants poured water on the
lava in order to solidify it and thus, halt its progress. The game has two players,

� The authors gratefully acknowledge support from Mprime, NSERC, and Ryerson.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 50–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Vertex-Pursuit in Hierarchical Social Networks 51

the sludge and a set of greens, a DAG with one source (corresponding to the top
of the volcano) and many sinks (representing the lake). The players take turns,
with the sludge going first by contaminating the top node (source). On sub-
sequent moves the sludge contaminates a non-protected node that is adjacent
(that is, downhill) to a contaminated node. The greens, on their turn, choose
some non-protected, non-contaminated node to protect. Once protected or con-
taminated, a node stays in that state to the end of the game. The sludge wins if
some sink is contaminated; the greens win if they erect a cutset of nodes which
separates the contaminated nodes from the sinks. The name “seepage” is used
because the rate of contamination is slow. The game is related to vertex-pursuit
games such as Cops and Robbers (see [3]), although the greens in our case need
not move to neighbouring nodes. For an example, see the DAG in Figure 1. (We
omit orientations of directed edges in the figure, and assume all edges point from
higher nodes to lower ones.)

s

Fig. 1. A DAG where 2 greens are needed to win. The white nodes are the sinks.

Seepage displays some interesting similarities to an approach used in mathe-
matical counterterrorism, where cut sets in partially ordered sets (which are just
a special kind of DAG) are used to model the disruption of terrorist cells. As
described in Farley [9,8], the maximal elements of the poset are viewed as the
leaders of the terrorist organization, who submit plans down via the edges to the
nodes at the bottom (the foot soldiers or minimal nodes). Only one messenger
needs to receive the message for the plan to be executed. Farley considered find-
ing minimum-order sets of elements in the poset, which when deleted, disconnect
the minimal elements from the maximal one (that is, find a minimum cut). We
were struck by the similarities in the underlying approaches in [6] and [9,8]; for
example, in Seepage the greens are trying to prevent the sludge from moving to
the sinks by blocking nodes. The main difference is that Seepage is “dynamic”
(that is, the greens can move, or choose new sets of nodes each time-step), while
the min-cut-set approach is “static” (that is, find a cutset in one time-step).
Seepage is perhaps a more realistic model of counterterrorism, as the agents

52 A. Bonato, D. Mitsche, and P. Pra�lat

do not necessarily act all at once but over time. However, in both approaches
deterministic graphs are used.

We note that a stochastic model was presented for so-called network inter-
diction in [11], where the task of the interdictor is to find a set of edges in a
weighted network such that the removal of those edges would maximally increase
the cost to an evader of traveling on a path through the network. A stochastic
model for complex DAGs was given in [4]. For more on models of OSNs and
other complex networks, see [2].

Our goal in the present extended abstract is to analyze Seepage and the
green number when played on a random DAG as a model of disrupting a given
hierarchical social network. We focus on mathematical results, and give a precise
formulation of our random DAG model in Section 2. Our model includes as a
parameter the total degree distribution of nodes in the DAG. This has some
similarities to the G(w) model of random graphs with expected degree sequences
(see [5]) or the pairing model (see [16]). We study two cases: regular DAGs
(where we would expect each level of the DAG to have nodes with about the
same out-degree), and power law DAGs (where the degree distribution is heavy
tailed, with many more low degree nodes but a few which have a high degree).
Rigorous results are presented for regular DAGs in Theorem 1, and in power
law DAGs in Theorem 2. Proofs are largely omitted and will appear in the full
version of the paper.

Throughout, G will represent a finite DAG. For background on graph theory,
the reader is directed to [7,15]. Additional background on seepage and other
vertex-pursuit games may be found in [3]. We denote the natural numbers (in-
cluding 0) by N, and the positive integers and real numbers by N+ and R+,
respectively.

2 Definitions

We now give a formal definition of our vertex-pursuit game. Fix v ∈ V (G) a
node of G. We will call v the source. For i ∈ N let

Li = Li(G, v) = {u ∈ V (G) : dist(u, v) = i},

where dist(u, v) is the distance between u and v in G. In particular, L0 = {v}.
For a given j ∈ N+ and c ∈ R+, let G(G, v, j, c) be the game played on graph
G with the source v and the sinks Lj. The game proceeds over a sequence of
discrete time-steps. Exactly

ct =
ct� −
c(t− 1)�

new nodes are protected at time-step t. (In particular, at most ct nodes are
protected by time t.) Note that if c is an integer, then exactly c nodes are
protected at each time-step, so this is a natural generalization of Seepage. To
avoid trivialities, we assume that Lj �= ∅.

The sludge starts the game on the node v1 = v. The second player, the greens,
can protect c1 =
c� nodes of G \ {v}. Once nodes are protected they will stay

Vertex-Pursuit in Hierarchical Social Networks 53

protected to the end of the game. At time t ≥ 2, the sludge makes the first move
by sliding along a directed edge from vt−1 to vt, which is an out-neighbour of
vt−1. After that the greens have a chance to protect another ct nodes. Since the
graph is finite and acyclic, the sludge will be forced to stop moving, and so the
game will eventually terminate. If he reaches any node of Lj, then the sludge
wins; otherwise, the greens win.

If c = Δ(G) (the maximum out-degree of G), then the game G(G, v, j, c)
can be easily won by the greens by protecting of all neighbours of the source.
Therefore, the following graph parameter, the green number, is well defined:

gj(G, v) = inf{c ∈ R+ : G(G, v, j, c) is won by the greens}.

It is clear that for any j ∈ N+ we have gj+1(G, v) ≤ gj(G, v).

2.1 Random DAG Model

There are two parameters of the model: n ∈ N+ and an infinite sequence

w = (w1, w2, . . .)

of non-negative integers. Note that the wi may be functions of n. The first
layer (that is, the source) consists of one node: L0 = {v}. The next layers are
recursively defined. Suppose that all layers up to and including the layer j are
created, and let us label all nodes of those layers. In particular,

Lj = {vdj−1+1, vdj−1+2, . . . , vdj},

where dj =
∑j

i=0 |Li|. We would like the nodes of Lj to have a total degree with
the following distribution (wdj−1+1, wdj−1+2, . . . , wdj). However, it can happen

that some node vi ∈ Lj has an in-degree deg−(vi) already larger than wi, and
so there is no hope for the total degree of wi. If this is not the case, then the
requirement can be easily fulfilled. As a result, the desired degree distribution
will serve as a lower bound for the distribution we obtain during the process.

Let S be a new set of nodes of cardinality n. All directed edges that are
created at this time-step will be from the layer Lj to a random subset of S that
will form a new layer Lj+1. Each node vi ∈ Lj generates max{wi − deg−(vi), 0}
random directed edges from vi to S. Therefore, we generate

ej =
∑

vi∈Lj

max{wi − deg−(vi), 0}

random edges at this time-step. The destination of each edge is chosen uniformly
at random from S. All edges are generated independently, and so we perform ej
independent experiments. The set of nodes of S that were chosen at least once
forms a new layer Lj+1. Note that it can happen that two parallel edges are
created during this process. However, for sparse random graphs we are going to
investigate in this paper, this is rare and excluding them, by slightly modifying
the process, would not affect any of the results.

54 A. Bonato, D. Mitsche, and P. Pra�lat

3 Main Results

In this paper, we focus on two specific sequences: regular and power law. We
will describe them both and state main results in the next two subsections. We
consider asymptotic properties of the model as n → ∞. We say that an event in
a probability space holds asymptotically almost surely (a.a.s.) if its probability
tends to one as n goes to infinity.

3.1 Random Regular DAGs

We consider a constant sequence; that is, for i ∈ N+ we set wi = d, where d ≥ 3
is a constant. In this case, we refer to the stochastic model as random d-regular
DAGs. Since wi = d, observe that |Lj | ≤ d(d− 1)j−1 (deterministically) for any
j, since at most d(d − 1)j−1 random edges are generated when Lj is created.
We will write gj for gj(G, v) since the graph G is understood to be a d-regular
random graph, and L0 = {v} = {v1}.

Theorem 1. Let ω = ω(n) be any function that grows (arbitrarily slowly) as n
tends to infinity. For the random d-regular DAGs, we have the following.

(i) A.a.s. g1 = d.
(ii) If 2 ≤ j = O(1), then a.a.s.

gj = d− 2 +
1

j
.

(iii) If ω ≤ j ≤ logd−1 n− ω log logn, then a.a.s.

gj = d− 2.

(iv) If logd−1 n−ω log logn ≤ j ≤ logd−1 n− 5
2s log2 logn+ logd−1 logn−O(1)

for some s ∈ N+, then a.a.s.

d− 2− 1

s
≤ gj ≤ d− 2.

(v) Let s ∈ N+, s ≥ 4. There exists a constant Cs > 0 such that if j ≥
logd−1 n+ Cs, then a.a.s.

gj ≤ d− 2− 1

s
.

Theorem 1 tells us that the green number is slightly bigger than d − 2 if the
sinks are located near the source, and then it is d − 2 for a large interval of
j. Later, it might decrease slightly since an increasing number of vertices have
already in-degree 2 or more, but only for large j (part (v)) we can prove better
upper bounds than d − 2. One interpretation of this fact is that the resources
needed to disrupt the flow of information is in a typical regular DAG is (almost)
independent of j, and relatively low (as a function of j).

Vertex-Pursuit in Hierarchical Social Networks 55

3.2 Random Power Law DAGs

We have three parameters in this model: β > 2, d > 0, and 0 < α < 1. For a
given set of parameters, let

M = M(n)α, i0 = i0(n)

(
d

M

β − 2

β − 1

)β−1

,

and

c =

(
β − 2

β − 1

)
dn

1
β−1 .

Finally, for i ≥ 1 let

wi = c(i0 + i− 1)−
1

β−1 .

In this case, we refer to the model as random power law DAGs.
We note that the sequence w is decreasing and so the number of coordinates

that are at least k is equal to

n

(
β − 2

β − 1

d

k

)β−1

− i0 = (1 + o(1))n

(
β − 2

β − 1

d

k

)β−1

,

and hence the sequence follows a power-law with exponent β. From the same
observation it follows that the maximum value is

w1 = ci
− 1

β−1

0 = M.

Finally, the average of the first n values is

c

n

i0+n−1∑
i=i0

i−
1

β−1 = (1 + o(1))
c

n

(
β − 1

β − 2

)
n1− 1

β−1 = (1 + o(1))d,

since M = o(n).
Our main result on the green number gj = gj(G, v) in the case of power law

sequences is the following.

Theorem 2. Let

γ = dβ−1

(
β − 2

β − 1

)β−2
⎛⎝(1 + (dβ − 2

β − 1

)1−β
) β−2

β−1

− 1

⎞⎠
if 1

α − β + 3 ∈ N+ \ {1, 2}, and γ = 1 otherwise. Let j1 be the largest integer
satisfying j1 ≤ max{ 1

α − β + 3, 2}. Let j2 = O(log logn) be the largest integer
such that

dβ−1
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log logn)−max{2,(β−1)2}.

56 A. Bonato, D. Mitsche, and P. Pra�lat

Finally, let

ξ =

(
β − 2

β − 1

)
d

((
d(β − 2)

β − 1

)β−1

+ 1

)− 1
β−1

.

Then for 1 ≤ j ≤ j2 − 1 we have that a.a.s.

(1 + o(1))w̄j ≤ gj ≤ (1 + o(1))w̄j−1,

where w̄0 = w̄1 = M , for 2 ≤ j < 1
α − β + 3,

w̄j =

⎧⎪⎪⎨⎪⎪⎩
nα if 2 ≤ j < 1

α − β + 2

ξnα if 2 ≤ j = 1
α − β + 2(

β−2
β−1

)
dn

1−α(j−1)
β−1 if 1

α − β + 2 < j < 1
α − β + 3 and j ≥ 2,

and for j1 ≤ j ≤ j2 − 1,

w̄j =

(
β − 2

β − 1

)(γ

dβ−1
nα(j1−1)−1

)−(β−2
β−1)

j−j1/(β−1)

.

In the power law case, Theorem 2 tells us that the green number is smaller for
large j. This reinforces the view that intercepting a message in a hierarchical
social network following a power law is more difficult close to levels near the
source.

4 Proof of Theorem 1 (v)

Owing to space limitations, we focus on the proof of Theorem 1 (v) only. All
proofs will appear in the full version of this extended abstract.

Before we proceed with the proof we need an observation. It can be shown
(with the proof appearing in the full version) that a.a.s. |Lt| = (1 − o(1))d(d −
1)t−1 for t = logd−1 n − ω (ω = ω(n) is any function tending to infinity with
n, as usual). However, this is not the case when t = logd−1 n + O(1). This, of
course, affects the number of edges from Lt to Lt+1. In fact, the number of edges
between two consecutive layers converges to c0n as shown in the next lemma.

Lemma 1. Let c0 be the constant satisfying

d−1∑
k=1

(d− k)
ck

k!
e−c = c.

For every ε > 0, there exists a constant Cε such that a.a.s. for every logd−1 n+
Cε ≤ t ≤ 2 logd−1 n,

(1− e−c0+ε)n ≤ |Lt| ≤ (1− e−c0−ε)n,

and the number of edges between Lt and Lt+1 is at least (c0 − ε)n and at most
(c0 + ε)n.

Vertex-Pursuit in Hierarchical Social Networks 57

Table 1. Approximate values of c0 and 1− e−c0

d 3 4 5 10 20

c0 0.895 1.62 2.26 4.98 ≈ 10
1− e−c0 0.591 0.802 0.895 0.993 ≈ 1

The value of c0 (and so 1 − e−c0 as well) can be numerically approximated. It
is straightforward to see that c0 tends to d/2 (hence, 1− e−c0 tends to 1) when
d → ∞. Below we present a few approximate values.

Finally, we are ready to prove the last part of Theorem 1.

Proof of Theorem 1(v). We assume that the game is played with parameter
c = d − 2 − 1

s for some s ∈ N+ \ {1, 2, 3}. For every i ∈ N, we have that
csi+1 = d − 3, and ct = d − 2, otherwise. To derive an upper bound of gj that
holds a.a.s., we need to prove that a.a.s. there exists no winning strategy for the
sludge.

We will use a combinatorial game-type argument. The greens will play greedily
(that is, they will always protect nodes adjacent to the sludge). Suppose that the
sludge occupies node v ∈ Lsi+1 for some i ∈ N (at time t = si+2 he moves from
v to some node in Lt) and he has a strategy to win from this node, provided that
no node in the next layers is protected by the greens. We will call such a node
sludge-win. Note that during the time period between si + 2 and s(i + 1), the
greens can protect d − 2 nodes at a time, so they can direct the sludge leaving
him exactly one node to choose from at each time-step. Therefore, if there is a
node of in-degree at least 2 in any of these layers, the greens can force the sludge
to go there and finish the game in the next time-step. This implies that all nodes
within distance s−2 from v (including v itself) must have in-degree 1 and so the
graph is locally a tree. However, at time-step s(i+1)+1, the greens can protect
d− 3 nodes, one less than in earlier steps. If the in-degree of a node reached at
this layer is at least 3, then the greens can protect all out-neighbours and win.
Further, if the in-degree is 2 and there is at least one out-neighbour that is not
sludge-win, the greens can force the sludge to go there and win by definition of
not being sludge-win. Finally, if the in-degree is 1, the sludge will be given 2
nodes to choose from. However, if there are at least two out-neighbours that are
not sludge-win, the greens can “present” them to the sludge and regardless of
the choice made by the sludge, the greens win.

We summarize now the implications of the fact that v ∈ Lsi+1 is sludge-win.
First of all, all nodes within distance s− 2 are of in-degree 1. Nodes at the layer
Ls(i+1) below v have in-degree at most 2. If u ∈ Ls(i+1) has in-degree 2, then all
of the d−2 out-neighbours are sludge-win. If u ∈ Ls(i+1) has in-degree 1, then all
out-neighbours except perhaps one node are sludge-win. Using this observation,
we characterize a necessary condition for a node v ∈ L1 to be sludge-win. For
a given v ∈ L1 that can be reached at time 1, we define a sludge-cut to be the
following cut: examine each node of Lsi, and proceed inductively for i ∈ N+. If
u ∈ Lsi has out-degree d− 1, then we cut away any out-neighbour and all nodes
that are not reachable from v (after the out-neighbour is removed). The node
that is cut away is called an avoided node. After the whole layer Lsi is examined,

58 A. Bonato, D. Mitsche, and P. Pra�lat

we skip s − 1 layers and move to the layer Ls(i+1). We continue until we reach
the sink, the layer Lj = Lsi′ for some i′ (we stop at Lj without cutting any
further). The main observation is that if the sludge can win the game, then the
following claim holds.

Claim. There exists a node v ∈ L1 and a sludge-cut such that the graph left
after cutting is a (d − 1, d − 2)-regular graph, where each node at layer Lsi,
1 ≤ i ≤ i′ − 1 has out-degree d − 2, and all other nodes have out-degree d − 1.

In particular, for any 1 ≤ i ≤ i′ − 1 the graph induced by the set
⋃s(i+1)−1

t=si Lt is
a tree.

It remains to show that a.a.s. the claim does not hold. (Since there are at
most d nodes in L1 it is enough to show that a.a.s. the claim does not hold for a
given node in L1.) Fix v ∈ L1. The number of avoided nodes at layer Lsi+1 is at
most the number of nodes in Lsi (after cutting earlier layers), which is at most

�i = (d− 1)si−1

(
d− 2

d− 1

)i−1

= (d− 1)(s−1)i(d− 2)i−1.

In particular, �, the number of nodes in the sink after cutting, is at most �i′ ≤ n.
It can be shown that a.a.s. � > nα for some α > 0.

Fix nα ≤ � ≤ �i′ ≤ n. We need to show that for this given � the claim does not
hold with probability 1− o(n−1). Since each node in Lsi′ has in-degree at most
2, the number of nodes in Lsi′−1 is at most 2� (as before, after cutting). Since
the graph between layer Ls(i′−1) and Lsi′−1 is a tree, the number of nodes in
Lsi′ is at most 2�/(d−1)s−1, which is an upper bound for the number of avoided
nodes at the next layer Lsi′+1. Applying this observation recursively we obtain
that the total number of avoided nodes up to layer si′ is at most 4(d− 1)−s+1�.
To count the total number of sludge-cuts of a given graph, observe that each
avoided node corresponds to one out of d − 1 choices. Hence, the total number
of sludge-cuts is at most

(d− 1)4(d−1)−s+1
. (1)

We now estimate the probability that the claim holds for a given v ∈ L1 and
a sludge-cut. To obtain an upper bound, we estimate the probability that all
nodes in the layer Lsi′−1 are of in-degree 1. Conditioning on the fact that we
have � nodes in the last layer, we find that the number of nodes in Lsi′−1 is at
least

d−1 . Let i
′ be large enough such that we are guaranteed by Lemma 1 that

the number of edges between the two consecutive layers is at least c0n(1− ε/2).
Hence, the probability that a node in Lsi′−1 has in-degree 1 is at most(

1− 1

n

)c0n(1−ε/2)

= (1 + o(1))e−c0(1−ε/2) ≤ e−c0(1−ε), (2)

where ε > 0 can be arbitrarily small by taking i′ large enough. Let pε be the
probability in (2). We derive that j = si′ ≥ logd−1 n+C′, where C′ = C′(ε, s) > 0
is a large enough constant. Conditioning under v ∈ Lsi′−1 having in-degree 1, it
is harder for v′ ∈ Lsi′−1 to have in-degree 1 than without this condition, as more

Vertex-Pursuit in Hierarchical Social Networks 59

edges remain to be distributed. Thus, the probability that all nodes in Lsi′−1

have the desired in-degree is at most

p
�

d−1
ε = exp

(
−c0(1− ε)

�

d− 1

)
. (3)

Thus, by taking a union bound over all possible sludge-cuts (the upper bound
for the number of them is given by (1)), the probability that the claim holds is
at most (

(d− 1)4(d−1)−s+1
(
e−c0(1−ε)

) 1
d−1

)

which can be made o(n−1) by taking ε small enough, provided that s is large
enough so that

(d− 1)4(d−1)−s+2

e−c0 < 1.

By considering the extreme case for the probability of having in-degree one when
d = 3 we obtain that

e−c0 ≤ e−
0.895

3 d ≤ e−0.29d

for d ≥ 3 (see Table 1). It is straightforward to see that s ≥ 4 will work for any
d ≥ 3, and s ≥ 3 for d ≥ 5. ��

5 Conclusions and Future Work

We introduced a new stochastic model for DAGs, and analyzed the vertex-
pursuit game Seepage in the model. We focused on two cases: random regu-
lar DAGs and random power law DAGs. In the d-regular case, our main result
was Theorem 1, which demonstrated that the green number is close to d − 2
throughout the process. One interpretation of this is that an effective strategy
to disrupt regular DAGs is to do so near the source (as it takes roughly the
same resources for all j). In the random power law DAG case, we give bounds
on the green number in Theorem 2. In the power law case the green number
is smaller for large j. This reinforces the view that intercepting a message in a
hierarchical social network following a power law is more difficult close to levels
near the source. More work remains to be done in the regular case: in particular,
we did not derive tight bounds on the green number for values of j between
logd−1 n−Θ(log logn) and logd−1 n+O(1). In addition, it would be interesting
to analyze Seepage in a model with sequences different from regular and power
law ones.

References

1. Almendral, J.A., López, L., Sanjuán, M.A.F.: Information flow in generalized hi-
erarchical networks. Physica A 324, 424–429 (2003)

2. Bonato, A.: A Course on the Web Graph. Graduate Studies in Mathematics Series.
American Mathematical Society, Providence (2008)

60 A. Bonato, D. Mitsche, and P. Pra�lat

3. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Society, Providence (2011)

4. Chayes, J.T., Bollobás, B., Borgs, C., Riordan, O.: Directed scale-free graphs. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(2003)

5. Chung, F.R.K., Lu, L.: Complex graphs and networks. American Mathematical
Society, Providence (2006)

6. Clarke, N.E., Finbow, S., Fitzpatrick, S.L., Messinger, M.E., Nowakowski, R.J.:
Seepage in directed acyclic graphs. Australasian Journal of Combinatorics 43, 91–
102 (2009)

7. Diestel, R.: Graph theory. Springer, New York (2000)
8. Farley, J.D.: Breaking Al Qaeda cells: a mathematical analysis of counterterrorism

operations (A guide for risk assessment and decision making). Studies in Conflict
& Terrorism 26, 399–411 (2003)

9. Farley, J.D.: Toward a Mathematical Theory of Counterterrorism. The Proteus
Monograph Series. Stanford University (2007)

10. Gupte, M., Muthukrishnan, S., Shankar, P., Iftode, L., Li, J.: Finding hierarchy in
directed online social networks. In: Proceedings of WWW 2011 (2011)

11. Gutfraind, A., Hagberg, A., Pan, F.: Optimal Interdiction of Unreactive Markovian
Evaders. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 102–116. Springer, Heidelberg (2009)

12. Ikeda, K., Richey, S.E.: Japanese network capital: the impact of social networks
on japanese political participation. Political Behavior 27, 239–260 (2005)

13. López, L., Mendes, J.F.F., Sanjuán, M.A.F.: Hierarchical social networks and in-
formation flow. Physica A: Statistical Mechanics and its Applications 316, 695–708
(2002)

14. Twitaholic, http://twitaholic.com/ (accessed January 10, 2012)
15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)
16. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A.

(eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Se-
ries, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)

http://twitaholic.com/

A Structural Approach to Prophecy Variables

Zipeng Zhang1, Xinyu Feng1, Ming Fu1, Zhong Shao2, and Yong Li1

1 University of Science and Technology of China
2 Yale University

Abstract. Verifying the implementation of concurrent objects essen-
tially proves the fine-grained implementation of object methods refines
the corresponding abstract atomic operations. To simplify the specifica-
tions and proofs, we usually need auxiliary history and prophecy vari-
ables to record historical events and to predict future events, respectively.
Although the meaning of history variables is obvious, the semantics of
prophecy variables and the corresponding auxiliary code is tricky and
has never been clearly spelled out operationally.

In this paper, we propose a new language construct, future blocks,
that allows structural use of prophecy variables to refer to events in the
future. The semantics of the construct is simple and easy to understand,
without using any form of oracle or backward reasoning. Our language
also separates auxiliary states from physical program states. With careful
syntactic constraints, it ensures the use of history and prophecy variables
would not affect the behaviors of the original program, which justifies the
verification method based on the use of auxiliary variables.

1 Introduction

One of the major challenges to verify shared-state concurrent programs is the
very fine-grained interleaving between threads. Usually the correctness argument
goes in the following way: thread t knows it could do A because it (or someone
else) has done B before. However, Hoare-style reasoning uses assertions specifying
only the current state, so we cannot refer to the historical events directly in our
assertions. To address this issue, a well-known technique is to introduce history
variables and code that assigns proper values to them when certain events occur.
In our assertions, instead of saying “event B has occurred before”, we only need
to say something like “the variable vB has value 1”. Usually history variables
are write-only, so that their use would not affect the behavior of the original
program.

On the other hand, we may also need to refer to events that may occur in
a future point of the program execution, especially when we verify optimistic
concurrent algorithms. Optimistic algorithms usually access shared states with-
out first acquiring exclusive ownership of them. They will validate the access in
a later time. If the validation validation succeeds, the access finishes the task.
Otherwise the algorithm rolls back and retry the same process. As the dual of
history variables, we may need prophecy variables to predict what would happen
in the future [1].

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 61–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 Z. Zhang et al.

1 push(x){

2 ...

3 < C;

4 absSt:= (x::absSt);

5 >

6 ...

}

1 push(x){

1’ guess b;

2 ...

3 < C;

4 if (succeeds at line 8)

4’ if (b)

5 absSt:= (x::absSt);

6 >

7 ...

8 validation here

8’ assert(b <=> line 8 succeeds);

9 ...

}

(a) the use of abstract state (b) the need of prophecy variables

Fig. 1. The need of prophecy variables for linearizability verification. Note (b) is made
up by the authors to demonstrate the idea only. It does not come from Vafeiadis [9].

Using Prophecy Variables to Verify Linearizability. Vafeiadis [9] proposed to
verify the linearizability of concurrent objects by inserting the corresponding
abstract operations at the program’s linearization point, the point where the
effect of the operation becomes visible to other threads. As shown in Fig. 1(a),
the linearization point of the push method is at line 3, where the command C
finishes the push operation over the concrete data structure. For proof purpose,
we insert line 4, which pushes x onto an abstract stack absSt. Such an abstract
atomic operation can be viewed as a specification of the push method. Here
〈C〉 means C will be executed atomically. By enforcing as program invariant
some consistency relation between the concrete data and the abstract version,
we essentially proved that the concrete code is a refinement of the abstract
operation, therefore the method is linearizable.

However, for some smart and complex algorithms, it is not easy to determine
the linearization point. In Fig. 1(b) (let’s first ignore lines 1’, 4’ and 8’), whether
line 3 is a linearization point or not may depends on whether the validation at
line 8 succeeds or not, therefore whether the abstract operation at line 5 should
be executed is conditional. Vafeiadis [9] used a prophecy variable to refer to the
result of validation at line 8. Line 1’ declares the variable b, and uses an oracle to
initialize it such that the assert command at line 8’ holds. Then we replace line
4 with 4’, which tests the value of b to decide whether line 5 should be executed.

The use of prophecy variables here is very intuitive and natural, but it is
difficult to give operational semantics of the guess command, which needs an
oracle to do the initialization so that the assert command will hold in the
future. There is no formal semantics given by Vafeiadis.

A Structural Approach to Prophecy Variables 63

Other Related Works. Since the idea of prophecy variables was proposed by
Abadi and Lamport [1], it has been used for concurrency verification in var-
ious settings. However, most of the works are for refinement [7, 6] or model
checking [2], and the semantics is given based on execution traces, which is not
suitable for Hoare-style verification. Sezgin et al. [8] introduced tressa assertions
to express properties about the future of an execution. The semantics is modeled
in terms of backward reachability from an end state of the program. The work
is proposed for reduction based proof of atomicity.

Our Work. In this paper we propose a new language construct for structural
use of prophecy variables with clearly defined semantics. With careful syntactic
constraints in the language, we also ensure that adding prophecy (and history)
variables do not affect the behaviors of the original program. This justifies the
soundness of this proof method. Our work makes the following new contributions:

– We introduce a novel language construct future(B) do C′ on C. It means
whether we execute C′ before C or not depends on the value of B at the end
of C. As we will show in Section 2, the operational semantics could be very
simply defined without using an oracle or backward reasoning.

– We give Hoare-style logical rules for the future block, which allows us to apply
the same idea of Vafeiadis to verify linearizability of concurrent objects. We
show how the RDCSS example in [9] can also be verified in our logic.

– Our language separates auxiliary program state from physical program state.
It also uses stratified syntax to distinguish the original program from the
auxiliary code inserted for verification only. Then we formally prove that
adding auxiliary code would not change the behavior of the original program.
This gives a formal justification of the verification method using history and
prophecy variables.

2 The Language

We present the syntax of our language in Fig. 2, which is stratified into several
levels. The first level (E, B and C) is the syntax of the original programs to be
verified. It is a simple WHILE language with parallel composition and memory
operations. The command 〈Ĉ〉 means Ĉ is executed atomically. Here Ĉ is a
sequential subset of C, which does not contain parallel composition. Expressions
E and B are pure in that they do not update variables and do not access memory.

The lifted syntax (Ẽ, B̃ and D) is for writing auxiliary code, which can be
inserted into the original program to get a program K. We use α to represent
auxiliary history variables and prophecy variables in D. The lifted expressions Ẽ
and B̃ could use both program variables (x) and auxiliary ones. It is important
to note that D does not update program variables, not update physical memory
and not contain while loops (so it must terminate).

The statement K is a mix of C and D with two new language constructs.
future B̃ do 〈C; D1 :D2〉 on K̂ would execute either 〈C;D1〉; K̂ or 〈C;D2〉; K̂,

depending on whether B̃ is true or false at the end of K̂. Here K̂ is a special

64 Z. Zhang et al.

(Expr) E ::= x | n | E + E | E − E | . . .

(Bexp) B ::= true | false | E = E | E �= E | ¬B | . . .

(Cmd) C ::= x := E | x := [E] | [E] := E | skip | 〈Ĉ〉 | C; C
| if B then C else C | while B do C | C ‖ C

(Lexpr) Ẽ ::= α | E | Ẽ + Ẽ | Ẽ − Ẽ | . . .

(Lbexp) B̃ ::= B | Ẽ = Ẽ | Ẽ �= Ẽ | ¬B̃ | . . .

(LCmd) D ::= α := Ẽ | α := �Ẽ	 | �Ẽ	 := Ẽ | skip | 〈D〉 | D; D

| if B̃ then D1 else D2

(Stmts) K ::= C | D | K; K | future B̃ do 〈C; D1 :D2〉 on K̂ | 〈K̂〉
| K1 ‖ K2 | if B then K else K | while B do K | assume(B̃)

Fig. 2. Syntax of the language

(Store) s ∈ PVar→ Int (Heap) h ∈ Nat ⇀ Int

(LStore) ls ∈ LVar→ Int (LHeap) lh ∈ Nat ⇀ Int

(State) σ ::= (s, h, ls, lh) (Trans) R,G ∈ P(State× State)

Fig. 3. Program states

K with no parallel composition and future blocks. We also require implicitly
D1 and D2 do not update the auxiliary variables in B̃. The other new construct
assume(B̃) blocks the execution if B̃ is false, and does nothing otherwise. We do
not allow users to write the assume statement directly. As we will show below,
it is a run-time command which is automatically inserted during execution. All
the implicit syntax constraints could be enforced with a simple syntactic sanity
check. Note that the boolean expression in if and while statements at this level
can only use program variables. This is to ensure that the value of auxiliary
variables would not affect the execution of the original program.

We model program states in Fig. 3. A program state σ consists of a physical
store s, a heap h, an auxiliary store ls and an auxiliary heap lh. The store s
(auxiliary store ls) maps program variables (auxiliary variables) to integers. The
heap h (auxiliary heap lh) is a finite partial mapping from natural numbers to
integers. State transitions R and G are binary relations of states.

We show operational semantics to the key language constructs in Fig. 4. The
complete definition is given in the companion technical report [11]. Transitions
between closed program configurations (the pair (K,σ)) are modeled by the bi-
nary relation �. We use �∗ as its reflexive and transitive closure. Transitions

with environment’s interference R are modeled as
R�−→ . Semantics for the fu-

ture block is straightforward. We nondeterministically choose to execute either

A Structural Approach to Prophecy Variables 65

[[E]]s = n

(x := E, (s, h, ls, lh)) � (skip, (s{x � n}, h, ls, lh))

[[Ẽ]](s,ls) = n

(α := Ẽ, (s, h, ls, lh)) � (skip, (s, h, ls{α � n}), lh)

(K̂, σ) �∗ (skip, σ′)

(〈K̂〉, σ) � (skip, σ′)

(K̂, σ) �∗ abort

(〈K̂〉, σ) � abort

σ = (s, h, ls, lh) [[B̃]](s,ls) = true

(assume(B̃), σ) � (skip, σ)

(future B̃ do 〈C; D1 :D2〉 on K̂, σ) � (〈C;D1〉; K̂; assume(B̃), σ)

(future B̃ do 〈C; D1 :D2〉 on K̂, σ) � (〈C;D2〉; K̂;assume(¬B̃), σ)

(K1, σ) � (K′
1, σ

′)

(K1 ‖ K2, σ) � (K′
1 ‖ K2, σ

′)

(K2, σ) � (K′
2, σ

′)

(K1 ‖ K2, σ) � (K1 ‖ K′
2, σ

′)

(Ki, σ) � abort i ∈ {1, 2}
(K1 ‖ K2, σ) � abort (skip ‖ skip, σ) � (skip, σ)

(σ, σ′) ∈ R

(K,σ)
R�−→ (K,σ′)

(K,σ) � (K′, σ′)

(K,σ)
R�−→ (K′, σ′)

(K,σ) � abort

(K,σ)
R�−→ abort

Fig. 4. Selected rules for operational semantics

〈C;D1〉; K̂ or 〈C;D2〉; K̂. For each choice, we append at the end assume(B̃)

and assume(¬B̃) respectively. The semantics for assume is standard.

3 The Program Logic

In this section, we extend the rely-guarantee logic [5] to reason about programs
with future blocks. Then we show that inserting auxiliary codeD into the original
program C would not affect the behavior of C, which justifies the validity of this
verification method.

3.1 Reasoning about Future Blocks

Figure 5 shows the syntax and semantics of selected assertions.We use separation
logic assertions to specify program states, whose semantics is standard. An action
a specifies a state transition, i.e., a binary relation over states. Rely (R) and
Guarantee (G) conditions are both actions.

Due to the limit of space, we only show the inference rules for the future
block and the assume statement and leave other rules in the companion techni-
cal report[11]. The fut rule for future blocks is straightforward, which simply

66 Z. Zhang et al.

(StateAssert) p, q ::= B̃ | emp | E �→ E | p ∗ q | Ẽ � Ẽ | · · ·
(Action) a,R,G ::= p� q | [p] | a ∧ a | a ∨ a | · · ·

(s, h, ls, lh) |= B̃ iff [[B̃]](s,ls) = true

(s, h, ls, lh) |= emp iff h = ∅ and lh = ∅
(s, h, ls, lh) |= E1 �→ E2 iff there exist � such that[[E1]]s = �, [[E2]]s = n,

dom(h) = {�} and h(�) = n

(s, h, ls, lh) |= Ẽ1 � Ẽ2 iff there exist � such that[[Ẽ1]](s,ls) = �, [[Ẽ2]](s,ls) = n,
dom(lh) = {�} and lh(�) = n

(s, h, ls, lh) � (s′, h′, ls′, lh′)
def
=

⎧⎪⎪⎨
⎪⎪⎩

(s, h ∪ h′, ls, lh ∪ lh′)
if s = s′, dom(h) ∩ dom(h′) = ∅,
ls = ls′, dom(lh) ∩ dom(lh′) = ∅

undef otherwise
σ |= p ∗ q iff exist σ1 and σ2, σ1�σ2=σ, σ1 |=p and σ2 |=q

(σ, σ′) |= p� q iff σ |= p and σ′ |= q

(σ, σ′) |= [p] iff σ = σ′ and σ |= p

Fig. 5. Assertions and their semantics

R;G � {p} 〈C;D1〉; K̂;assume(B̃) {q}
R;G � {p} 〈C;D2〉; K̂;assume(¬B̃) {q}

R;G � {p} future B̃ do 〈C; D1 :D2〉 on K̂ {q}
(fut)

p ∧ B̃ ⇒ q sta(q,R)

R;G � {p} assume(B̃) {q}
(asm)

where sta(p, a)
def
= ∀σ, σ′. (σ |= p) ∧ ((σ, σ′) |= a)⇒ σ′ |= p

Fig. 6. Selected inference rules

requires that both execution paths of the statement satisfy the specification. In
the asm rule for the assume statement, we know B̃ holds if the execution falls
through. However, we might need to weaken p∧ B̃ to get a stable post-condition
q. Here stability of an assertion with respect to the rely condition means that
the validity of the assertion would be preserved by state transitions in the rely
condition.

Semantics and Soundness. We give semantics of the judgment R;G � {p} K {q}
below, which ensures the following non-interference property (K,σ,R) =⇒ (G, q).
It says that, with an environment whose state transitions in R, (K,σ) would not
abort, every step of its execution satisfies the guarantee G, and the post-condition
q holds at the termination state if the execution terminates.

A Structural Approach to Prophecy Variables 67

Er(C) = C Er(D) = skip

Er(〈K〉) = 〈Er(K)〉 Er(K1; K2) = Er(K1); Er(K2)

Er(if B then K1 else K2) = if B then Er(K1) else Er(K2)

Er(while B do K) = while B do Er(K)

Er(future B̃ do 〈C; D1 :D2〉 on K̂) = 〈C〉; Er(K̂)

Er(K1 ‖ K2) = Er(K1) ‖ Er(K2)

Fig. 7. Erasure of auxiliary code

Definition 3.1 (Non-interference). (K,σ,R) =⇒0 (G, q) always holds;
(K,σ,R) =⇒n+1 (G, q) holds iff (K,σ) �� abort,and,

1. for all σ′,if (σ, σ′) ∈ R, then for all k ≤ n, (K,σ′,R) =⇒k (G, q);
2. for all σ′, if (K,σ) � (K ′, σ′), then (σ, σ′) ∈ G and

(K ′, σ′,R) =⇒k (G, q) holds for all k ≤ n;
3. if K = skip, then σ |= q, and (K,σ,R) =⇒k (G, q) holds for all k ≤ n.

We say (K,σ,R) =⇒ (G, q) if ∀k. (K,σ,R) =⇒k (G, q)

We define [[a]] as {(σ, σ′) | (σ, σ′) |= a}. Then we can define R;G |= {p} K {q}
as the following, and give the soundness theorem.

Definition 3.2. R;G |= {p} K {q} iff,
for all σ, if σ |= p, then (K,σ, [[R]]) =⇒ ([[G]], q).

Theorem 3.3 (Soundness). If R;G � {P} K {Q},then R;G |= {P} K {Q}.

We also want to point out that it should be easy to develop rules similar to the
fut rule in other program logic [10, 3]. Here we pick rely-guarantee reasoning
mainly for simplicity.

3.2 Auxiliary Code Erasure

Theorem 3.3 just shows the logic ensures the partial correctness of the anno-
tated code K, but what we want ultimately is that the original program C is
well-behaved. We show in this section that this is indeed guaranteed by our
verification method. In Fig. 7 we show the erasing process Er that removes the
auxiliary code in K to get the original program C. It simply removes D in K,
or replace occurrence of D with skip.

The following theorem says for all safe K, it has no less behaviors than the
original program Er(K). Therefore we can verify the annotated program instead
of the original one.

Theorem 3.4. If R;G |= {p} K {q}, C = Er(K) and (s, h, ls, lh) |= p, the
following are true:

68 Z. Zhang et al.

1. for all s′ and h′, if (C, (s, h)) �∗ (skip, (s′, h′)),
then ∃ls′ lh′. (K, (s, h, ls, lh) �∗ (skip, (s′, h′, ls′, lh′)));

2. (C, (s, h)) ��∗ abort.

Here the transition (C, (s, h)) � (C′, (s′, h′)) can be derived easily from the
transition (C, σ) � (C′, σ′), since C does not access logical states. The complete
definition is given in the technical report [11].

We define semantics of auxiliary-state-independent assertions p̃ below.

(s, h, ls, lh) |= p̃ iff there exists ls′ and lh′ such that (s, h, ls′, lh′) |= p holds .

Then the following corollary trivially follows Theorem 3.4. That is, given R;G |=
{p} K {q}, we can get the partial correctness of Er(K) with empty environment.

Corollary 3.5. If R;G |= {p} K {q} and C = Er(K), then R0;G0 |= {p̃} C {q̃}
where R0 = [true] and G0 = true� true.

4 Example

We use an example to show how our logic supports verification with prophecy
variables. More examples can be found in our technical report [11].

4.1 The RDCSS Algorithm

Restricted double-compare single-swap(RDCSS) is defined by Harris[4] in the
implementation of multiple compare-and-swap(MCAS). The code is shown in
Fig. 8. RDCSS takes five arguments a1, a2, o1, o2 and n2, which are stored
in the descriptor d. Here a1 and a2 are memory addresses and o1 and o2 are

class Descriptor {
address t a1, a2;
word t o1, o2, n2;

single word t AbsResult;

single word t r2; }

Complete(Descriptor d) {
local r;

C1: 〈 r:= [d.a1]; 〉
if (r=d.o1)

C2: CAS1(d.a2, d, d.n2);
else

C3: CAS1(d.a2, d, d.o2);
}

RDCSS(Descriptor d) {
local r;
r:=CAS1(d.a2, d.o2, d);
while (IsDesc(r)) {

Complete(r);
r:=CAS1(d.a2, d.o2, d);

}
if (r=d.o2) Complete(d);
return r;

}

Fig. 8. RDCSS implementation

A Structural Approach to Prophecy Variables 69

their expected values. If both addresses contain their expected values, then the
new value n2 is stored a2. The function returns the current value stored at a2.
Addresses are split into two disjoint domains, A and B. a1 and a2 belong to A
and B respectively. A-type addresses could be accessed using standard memory
operations, while B-type can be accessed only through the RDCSS function.

The implementation of RDCSS uses a variant of CAS. As shown below, it
returns the old values stored in the address instead of a boolean.

value t CAS1(value t *addr, value t exp, value t new) {
value t v;
〈 v := [addr]; if (v=exp) [addr]:=new; 〉
return v;

}

RDCSS first attempts to place its descriptor at the memory location a2, which
means to ‘lock’ the location. If it succeeds, then continues to attempt to update
the memory location a2 with the new value. If a thread A reads a2 and finds
it contains a descriptor, it means that there is another thread B trying to up-
date a2 through RDCSS. In this case thread A should call the helper function
Complete(d) to help thread B complete the operation. The function IsDesc tests
whether its parameter points to a descriptor.

4.2 Proofs

Vafeiadis [9] verified the algorithm using auxiliary prophecy variables. The reason
we need prophecy variables is that whether the linearization point is at line
C1 or not (see Fig. 8) depends on the comparison result at lines C2 and C3.
Here we follow the same idea in his proof, except that we rewrite the method
complete(d) using our future block instead of using guess and assert statements.
The instrumented code of the complete(d) function and the proof sketch is shown
in Fig. 9. The proof for the RDCSS function is the same with the one by Vafeiadis,
thus omitted here.

Following Vafeiadis [9], two auxiliary variables are added in the Descriptor
in Fig. 8. AbsResult represents the value of a2 when RDCSS is called, and r2
represents its value when RDCSS returns. Some important assertions taken from
Vafeiadis [9] are shown on top of Fig. 9. Dd(a1, a2, o1, o2, n2, a, r2) describes a
valid descriptor pointed by d. Ud(a1, a2, o1, o2, n2) describes a descriptor whose
AbsResult and r2 are undefined. The abstraction assertion K(x) maps the con-
crete value of x to the abstract value. The overall invariant RDCSS Inv asserts
that all locations in A exist, all locations in B have matching concrete values
and abstract values, and there are some used garbage RDCSS Descriptors.

In Fig. 9, the texts in yellow background are the inserted auxiliary code. We
add the auxiliary variable lda2 to capture the value of d.a2 in the future at lines
C2 and C3. Its value is assigned byD3. The boolean expression B̃ (lda2 = d) tests
whether the comparison at C2 and C3 would succeed. If it holds, we know the line
C1 is the linearization point, and update the abstract results correspondingly in
D1. Here we just want to demonstrate the use of the future block in the proof.
More details can be found in Vafeiadis [9] or our TR [11].

70 Z. Zhang et al.

Dd(a1, a2, o1, o2, n2, a, r2)
def
=

d �→ {.a1 = a1; .o1 = o1; .a2 = a2; .n2 = n2; .AbsResult = a; .r2 = r2}
∧(a1 ∈ A) ∧ (a2 ∈ B) ∧ IsDesc(d)
∧¬IsDesc(o2) ∧ ¬IsDesc(n2)

Ud(a1, a2, o1, o2, n2)
def
= Dd(a1, a2, o1, o2, n2, undef, undef)

K(x)
def
= (x ∈ B) ∧ ∃d, v, w.

⎧⎨
⎩

(Abs[x] �→ v ∗ x �→ v ∧ ¬IsDesc(v))
∨(Abs[x] �→ v ∗ x �→ d ∗ Ud(, x, , v,))
∨(Abs[x] �→ w ∗ x �→ d ∗Dd(, x, v, , v, w))

⎫⎬
⎭

RDCSS Inv
def
= ∃T.�x∈A .x �→ ∗�x∈B.K(x) ∗�d∈T .∃o2, Dd(, , , o2, , o2,)

{RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, ,) ∗ true}
future (B̃)

do
〈
C1: v:=[d.a1];
{ (∃n.RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, ,) ∧ d.a1 �→ n ∧ v = n) ∗ true }

{D1:{
(RDCSS Inv ∧ v �= d.o1 ∧Dd(a1, a2, o1, o2, n2, o2, o2) ∗ true)
∨(RDCSS Inv ∧ v = d.o1 ∧Dd(a1, a2, o1, o2, n2, o2, n2) ∗ true)

}
D2}

〉
on {

if (v = d.o1)

〈 D3;

C2: CAS1(d.a2, d, d.n2); 〉
else
〈 D3;

C3: CAS1(d.a2, d, d.o2); 〉
}⎧⎨
⎩

(lda2 �= d ∧ RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, ,) ∗ true)
∨(lda2 = d ∧ RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, o2, n2) ∗ true)
∨(lda2 = d ∧ RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, o2, o2) ∗ true)

⎫⎬
⎭{

RDCSS Inv ∧Dd(a1, a2, o1, o2, n2, ,) ∗ true
}

where

D1 �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d.AbsResult := d.o2;
if ([d.a1] = d.o1) {

d.r2 := d.n2;
Abs[d.a2] := d.n2;

}
else

d.r2 := Abs[d.a2];

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

D2 � skip

D3 � lda2 := [d.a2]

B̃ � lda2 = d

Fig. 9. Proof outline of Complete(d)

A Structural Approach to Prophecy Variables 71

Acknowledgments. We thank the anonymous reviewers for their comments
and suggestions. Zipeng Zhang, Xinyu Feng, Ming Fu and Yong Li are sup-
ported in part by National Natural Science Foundation of China (Grant No.
61073040, 61003043, 61170018 and 61103023), by Program for New Century Ex-
cellent Talents in Universities (NCET), and by the Fundamental Research Funds
for the Central Universities. Zhong Shao is supported in part by NSF grants CNS
0915888 and CNS 0910670, and DARPA CRASH grant FA8750-10-2-0254.

References

[1] Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82, 253–284 (1991)

[2] Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proc.
38th ACM Symp. on Principles of Prog. Lang. (POPL 2011), pp. 399–410 (2011)

[3] Feng, X.: Local rely-guarantee reasoning. In: Proc. 36th ACM Symp. on Principles
of Prog. Lang. (POPL 2009), pp. 315–327. ACM (2009)

[4] Harris, T., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap oper-
ation. In: 16th International Symposium on Distributed Computing, pp. 265–279
(October 2002)

[5] Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

[6] Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network Invariants in Action. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 101–115. Springer, Heidelberg (2002)

[7] Marcus, M., Pnueli, A.: Using Ghost Variables to Prove Refinement. In: Nivat,
M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 226–240. Springer,
Heidelberg (1996)

[8] Sezgin, A., Tasiran, S., Qadeer, S.: Tressa: Claiming the Future. In: Leavens,
G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp.
25–39. Springer, Heidelberg (2010)

[9] Vafeiadis, V.: Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory (July 2008)

[10] Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–
271. Springer, Heidelberg (2007)

[11] Zhang, Z., Feng, X., Fu, M., Shao, Z., Li, Y.: A structural approach to prophecy
variables. Technical report, University of Science and Technology of China (March
2012), http://kyhcs.ustcsz.edu.cn/projects/concur/struct_prophecy

http://kyhcs.ustcsz.edu.cn/projects/concur/struct_prophecy

An Assume/Guarantee Based Compositional

Calculus for Hybrid CSP

Shuling Wang1, Naijun Zhan1, and Dimitar Guelev2

1 State Key Lab. of Comput. Sci., Institute of Software, Chinese Academy of Sciences
2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Abstract. Hybrid CSP (HCSP) extends CSP to describe interacting
continuous and discrete dynamics. The concurrency with synchronous
communications, timing constructs, interrupts, differential equations, and
so on, make the behavior of HCSP difficult to specify and verify. In this
paper, we propose a Hoare style calculus for reasoning about HCSP. The
calculus includes Duration Calculus formulas to record process execution
history and reason about real-time properties and continuous evolution,
and dedicated predicate symbols to specify communication traces and
readiness of process actions so that the composite constructs of HCSP
can be handled compositionally by using assume/guarantee reasoning.

Keywords: Hybrid Systems, Duration Calculus, Hoare Logic, HCSP,
Compositionality, Assume/Guarantee.

1 Introduction

Hybrid systems exhibit combinations of discrete jumps and continuous evolution.
The applications of hybrid systems are dispersed everywhere in our modern life,
e.g. industry automation and transport infrastructure incorporate many hybrid
systems whose correct functioning is safety-critical. A number of abstract models
and specification languages have been proposed for the specification and verifi-
cation of hybrid systems. The most popular model is hybrid automata [1,10,5],
with real-time temporal logics [10,11] interpreted on their behaviours as a spec-
ification language. However, hybrid automata are analogous to state machines,
with little support for structured description, and for solving this problem, a
number of formalisms have been proposed to facilitate modular descriptions of
complex systems, e.g. Hybrid CSP [4,20].

Hybrid CSP (HCSP) [4,20] is a process algebra which extends CSP by real-
time and continuous constructs, for instance differential equations to model
continuous evolution. Being a process algebra, HCSP has standard means for
constructing complex systems out of simpler ones, which facilitates composi-
tionality. Our experience in formalising the Chinese Train Control System Level
3 (CTCS-3), has confirmed the applicability and scalability of HCSP. In this pa-
per we propose a Hoare style calculus for reasoning about hybrid systems which
are modelled in HCSP. The features of HCSP which are handled by the logic
include communication, timing constructs, interrupts and continuous evolution

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 72–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 73

governed by differential equations. The proposed calculus includes Duration Cal-
culus (DC) [19] formulas to record execution history. A calculus for reasoning
about HCSP with similar features was proposed in a previous work [8]1, but
compositionality, which is the main contribution of this work, was not achieved.

Compositionality in reasoning about properties of HCSP is a challenge be-
cause of continuous evolution and communication dependencies between pro-
cesses, much like in other models of real time concurrency. Our approach to
obtain the compositionality is inspired by the work on CSP without timing
[6,15,17,13]. To facilitate the reasoning about individual parallel components,
we extend state expressions in DC history formulas by introducing predicates
to specify communication readiness. Furthermore, to achieve the compositional
reasoning of a compound construct such as sequential composition and parallel
composition, we adopt assume/guarantee mechanism. Firstly, define the specifi-
cation of each constituent independently, including a precondition, an assump-
tion to specify conditions of the environment in which the constituent is executed,
a postcondition and a guarantee, then the specification of the construct can be
deduced from specifications of its constituents directly, for instances, sequential
composition by chop, and parallel composition by conjunction, etc.

Related work. Hybrid automata [1,5] and the related logics [10,5,11] were already
mentioned in the introduction. Another approach is Differential Dynamic Logic
proposed in [14] for the deductive verification of hybrid programs. However, the
hybrid programs considered there have limited functionality. Communication,
parallelism and interrupts are not handled.

By extending Hoare Logic, a compositional proof system for real-time con-
current systems with asynchronous communications is presented in [7]. However,
it assumes that each communication has a fixed non-zero duration. Instead, we
adopt super-dense computation [10] to assume computer computation consum-
ing zero time compared to continuous evolution, which is a very comfortable
abstract computation model for hybrid systems and has been widely adopted
in the formal design of hybrid systems. Thus, at one time, there may be multi-
ple communications being taken. We find that the compositionality of reasoning
becomes more difficult in the super-dense computation model. For logic composi-
tionality, assume/guarantee reasoning has been studied for communication-based
concurrency in CSP without timing in [12,13,21].

Structure of the paper. We give a brief introduction to HCSP in Section 2,
and then introduce DC formulas and define readiness predicates for HCSP in
Section 3. The assume/guarantee based compositional calculus for HCSP is pre-
sented in Section 4. We draw a conclusion and discuss future work in Section 5.

1 It admits interrupting discrete operations. Therefore its history formulas have to keep
the records of possible changes of any discrete variable. Hence, the Monotonicity Rule
of [8] is not correct for history formulas, and must be weakened to a conservative
one.

74 S. Wang, N. Zhan, and D. Guelev

2 Hybrid CSP

Hybrid CSP [4,20] is a formal language for describing hybrid systems. It is an
extension of CSP by introducing timing constructs, interrupts, and differential
equations for representing continuous evolution. Interactions among processes
are described solely by communications. Process variables are local to their re-
spective sequential components. We write Var and Chan for the sets of the
variables and the channel names occurring in the considered process, respec-
tively. The syntax of a subset of HCSP is given as follows:

P,Q ::= skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P �Q
| �i∈I(ioi → Qi) | P‖Q | P ∗ | 〈F(ṡ, s) = 0&B〉
| 〈F(ṡ, s) = 0&B〉�d Q | 〈F(ṡ, s) = 0&B〉� �i∈I(ioi → Qi)

ioi ::= ch?x | ch!e

Here P,Q, x, s and ch stand for HCSP processes, (vectors of) real variables, and
channel names, respectively. B and e are Boolean and arithmetic expressions
and d is a non-negative real constant. The intended meaning of the individual
constructs is as follows:

– skip terminates immediately having no effect on variables.
– x := e assigns the value of expression e to x and then terminates.
– wait d will keep idle for d time units keeping variables unchanged.
– ch?x receives a value along channel ch and assigns it to x.
– ch!e sends the value of e along channel ch. A communication takes place as

soon as both the sending and the receiving parties are ready, and may cause
one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The alternative B → P behaves as P if B is true, otherwise it terminates
immediately.

– P �Q denotes internal choice. It behaves as either P or Q, and the choice is
made by the process.

– �i∈I(ioi → Qi) denotes communication controlled external choice. I is sup-
posed to be finite. As soon as one of the communications in {ioi}i∈I takes
place, the process continues as the respective guarded Qi.

– P‖Q behaves as if P and Q run independently except that all communica-
tions along the common channels connecting P andQ are to be synchronized.
The processes P and Q in parallel can neither share variables, nor input or
output channels.

– The repetition P ∗ executes P for some finite number of times.
– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement (hereafter shortly

continuous). It forces the vector s of real variables to obey the differential
equations F as long as the boolean expression B, which defines the domain
of s, holds, and terminates when B turns false.

– 〈F(ṡ, s) = 0&B〉�dQ behaves like 〈F(ṡ, s) = 0&B〉, if the continuous termi-
nates before d time units. Otherwise, after d time units of evolution according
to F , it moves on to execute Q.

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 75

– 〈F(ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) behaves like 〈F(ṡ, s) = 0&B〉, except
that the continuous is preempted as soon as one of the communications ioi
is taken place. That is followed by the respective Qi. Notice that, if a non-B
state is reached before a communication from among {ioi}i∈I occurs, then
the process terminates without communicating.

For reasoning about communication behaviour of HCSP, several auxiliary vari-
ables that never occur in any process need to be introduced: The system variable
now records the current time of process execution, and the variable tr records
the timed trace of a process accumulated during its execution. A timed trace (ab-
breviated as trace below) h can be either empty sequence, or 〈ch.e, t〉 denoting
one occurrence of a communication 〈ch, e〉 at time t, or composed from existing
traces by concatenation ·, non-deterministic choice +, and Kleene star ∗. We
use r to denote the corresponding channel sequence of h, and define a function
C(tr) to return the channel sequence of the trace recorded by tr. The formal
definitions are presented as follows.

h ::= ε | 〈ch.e, t〉 | h1 · h2 | h1 + h2 | h∗

r ::= ε | ch | r1 · r2 | r1 + r2 | r∗

There are some properties held for the non-deterministic choice, including the
distributivity of it over concatenation, e.g., (h1 + h2) · h = h1 · h+ h2 · h, and r
as well; and the equivalent conversion from it to disjunction in assertions, e.g.,
tr = h1 + h2 iff tr = h1 ∨ tr = h2.

Formal semantics of HCSP has been considered in different paradigms. For
example, an algebraic semantics was given in [4], while a DC-based denotational
semantics was given in [20]. In the full version of this paper [16], a formal oper-
ational semantics was given in the Plotkin’s style, i.e., each construct of HCSP
is interpreted as a transition relation over configurations composed of a process
and a pair of states (for process and environment respectively), and the seman-
tics is defined by a set of transition rules. For space limitation, we omit this
part here.

3 History Formulas

Duration Calculus (DC) [19] is an interval-based logic for specifying and reason-
ing about real-time systems. We will use DC formulas to describe the execution
history of HCSP processes. However, in order to specify communications, we
need to augment the state expressions of DC to include assertions related to
communication readiness.

The syntax of the subset of DC we need is described in terms of state expres-
sions S, which are assertions about process variables, readiness and termination,
and history formulas HF as follows:

θ ::= c | x | fn(θ1, ..., θn)
S ::= ⊥ | Rm(θ1, ..., θm) | r.ch? | r.ch! | T (P) | ¬S | S ∨ S
HF ::= ⊥ | � rel c | �S�− | �S�0 | HF ∗ | HF�HF | HF ∧HF | HF ∨HF

76 S. Wang, N. Zhan, and D. Guelev

Here θ stands for a term. c denotes a constant, x a process variable, and f is an
n-ary arithmetic function (n as well as the following m are non-negative integers
for representing arities of functions).

In the syntax of state expressions S, ⊥ stands for false (� for true in contrary),
andR is anm-ary truth-valued function on terms. In order to model the readiness
of channel ch for performing communication, we introduce two Boolean variables
r.ch?, r.ch!, with a channel sequence r (as defined in last section) as prefix, to
describe that ch? or ch! becomes ready, and before that, the communication
history along r has occurred. T (P) is a terminal predicate, representing that P
terminates.

In the syntax of history formulas HF , � is a temporal variable standing for
the length of the considered interval. rel is a relation in the set {<,>,=}. In the
following, we always use Rg(�) to denote an interval formula of �, i.e., a history
formula containing � and constants. �S�− means that S holds everywhere in
the considered interval except for its right end point 2, and �S�0 means that
S holds at the time point of the considered point interval. In the rest of the

paper, we define the abbreviation �S� def
= �S�−��S�0, meaning that S holds

everywhere over an interval. HF ∗ denotes iteration of history formulas. See,
e.g., [2,3] on iteration and some other relevant DC operators. In HF1

�HF2,
�

chops an interval into two consecutive sub-intervals, over which HF1 and HF2

hold respectively.
The semantics of terms, state expressions and history formulas are interpreted

over process states. For the full semantics, readers are referred to [16].

Axioms. All the axioms of DC are applied here. Besides, we need to intro-
duce an axiom for readiness, for translating non-deterministic choice of prefixes
equivalently into disjunction of corresponding state expressions,

(r1 + r2).ch? = r1.ch? ∨ r2.ch?

4 Specification and Inference Rules

Unlike assertions defined in our previous work [8], each specification of Hybrid
Hoare Logic (HHL) here consists of five parts, i.e. pre- and post-conditions,
process, assumption and guarantee, with the form

{S; A}P{R; G}

P is an HCSP process to be verified. S and R are pre- and post-conditions which
are assertions about variables at the start and termination of the execution of
P , respectively. A and G are both history formulas. Assumption A specifies the
readiness of communications that the environment offers to P , while guaran-
tee G specifies the execution history of P , when P runs under an environment
satisfyingA.

2 The original DC defines the almost everywhere formula, written by �S�. Here we
use different variants of it.

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 77

Intuitively, a specification {S; A}P{R; G} is valid, iff for any execution of P
starting from a state satisfying S, if it terminates, and the environment under
which P runs satisfies A throughout its execution, then the final state satisfies
R, and G holds throughout the execution of P .

In the following, we will briefly introduce axioms and inference rules of HHL,
detailed explanation can be found at [16]. First we give general rules that are
applicable to all HCSP statements, and then the rules for each HCSP construct.

Consequence Rule. The consequence rule is defined as usual,

{S; A}P{R; G} S′ ⇒ S R ⇒ R′ A′ ⇒ A G ⇒ G′

{S′; A′}P{R′; G′}

Non-readiness Rule. This rule is closely related to the fact that each channel
end is owned solely by one sequential context in HCSP. The communication
actions that are sequential to P but not belonging to P are not ready when P is
executing. For every process P , we assume that the processes that are composed
with P in sequence have channel ends from CS . Let CP be the set of channel
ends of P , and CN be CS \ CP . We then have the following rule describing the
non-readiness of communication actions in CN during the execution of P (the
terminating point exclusive). The hypothesis S ⇒ C(tr) = r indicates that the
processes previous to P have accumulated trace along channel sequence r.

{S; A}P{R; G} S ⇒ C(tr) = r

{S; A}P{R; G ∧ �
∧

a∈CN
(¬r.a)�−}

There are other general rules standard for classical predicate logic, similar to the
ones presented in [14]. We will not list them here.

The rules for skip and assignment are straightforward. Both are internal ac-
tions, having no dependence from the environment, and take no time.

Skip
{S; �} skip {S; � = 0}

Assignment
{S[e/x]; �} x := e {S; � = 0}

Input and Output The input rule is:

S ⇒ C(tr) = r S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ ∀a.R[a/x, tr′/tr]

{S; (Rg(�) ∧ �¬(r.ch!)�−)��r.ch!�0} ch?x {R; Rg(�) ∧ �r.ch?�}

where Rg(�) is an interval formula of l, and t is a fresh logical variable, tr′ =
tr·〈ch.a, now〉. Rg(t) substitutes t for � in interval formula Rg(�), and results in a
first order formula of t. The assumption indicates that the partner side ch! is not
ready until Rg(�) time units, and under this assumption, ch? will keep waiting
for the same duration. As soon as both parties get ready, the communication

78 S. Wang, N. Zhan, and D. Guelev

occurs immediately. The system clock now then goes ahead t with range Rg(t),
which is the waiting time, and a value is transmitted along ch and assigned to
x, and tr is increased by one communication pair 〈ch.a, now〉, as indicated by
the second hypothesis.

The rule for output can be given similarly.

S ⇒ C(tr) = r S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ R[tr′/tr]

{S; (Rg(�) ∧ �¬(r.ch?)�−)��r.ch?�0} ch!e {R; Rg(�) ∧ �r.ch!�}

where tr′ = tr · 〈ch.e, now〉.

Continuous. For reasoning about the continuous, the notion of differential
invariant is necessary, which is quite similar to reasoning about properties of
loops using invariant in the classical Hoare logic. A differential invariant of a
differential equation 〈F(ṡ, s) = 0&B〉 for given initial values of s is a first order
formula of s, which is satisfied by the initial values and kept satisfied during the
continuous evolution following F within the domain defined by B. More details
about differential invariants can be found in [9]. Moreover, as discussed in [8],
the execution time of 〈F(ṡ, s) = 0&B〉, can be counted by introducing a fresh
local clock with initial value 0, that is, the value of t at the terminating point of
〈F(ṡ, s) = 0; ṫ = 1&B〉.

Given a differential invariant Inv and the execution time Rg(t) of 〈F(ṡ, s) =
0&B〉 with initial values satisfying Init, we have the following rule:

S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ R

{Init ∧ S;�} 〈F(ṡ, s) = 0&B〉 {R ∧ close(Inv) ∧ close(¬B);
(l = 0 ∨ �Inv ∧B�−) ∧Rg(�)}

where S,R do not contain s. The notation close(Inv) stands for the closure of
Inv, e.g, s <= 5 is closure of s < 5, to deal with the case when Inv does not
hold at the escaping boundary. close(¬B) similarly. Obviously, both closures
of Inv and ¬B hold when the continuous terminates, as shown in the post-
condition. The continuous evolves for Rg(t) time units and then terminates, and
as a consequence, now is added by t with range Rg(t). l = 0 in the history is
to record the behavior that the initial value of s fails to satisfy B, then the
continuous terminates immediately.

Conditional. The statement B → P behaves like P when B is true, otherwise
terminates immediately.

S ⇒ B {S; A}P{R; G}
{S; A}B → P{R; G} and S ⇒ ¬B

{S; �}B → P{S; � = 0}

Sequential Composition

{S1;A1} P1 {R1;G1} {S2;A2} P2 {R2;G2} R1 ⇒ S2

{S1;A
�
1 �T (P1)�0�A2} P1;P2 {R2;G

�
1 G2}

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 79

For P1;P2, the first component P1 ends in a state satisfying post-condition R1,
from which the second P2 starts to execute. Moreover, under the assumptions
A1 and A2, the executions of P1 and P2 guarantee G1 and G2 respectively. The
assumption and guarantee of overall sequential composition can then be defined
by chopping the ones of its components together. However, the assumption of P1

should not assume anything about the environment of P2, and vice versa. This
is why we add the terminal predicate T (P1) in between A1 and A2, indicating
that the environment of P1 terminates simultaneously as P1. More discussions
on the predicate will be given in the discussion section.

Parallel Composition. In order to define the rule, we need to introduce some
notations first. Given a timed trace h and a channel set C, we denote by h|C the
projection of h onto C, which removes all timed communications not along C
from h. Similarly, we define the projection of a readiness variable r.ch? (resp. r.ch!
) onto C, denoted by r.ch?|C (resp. r.ch!|C) as when ch /∈ C then �, otherwise
r|C .ch? (resp. r|C .ch!), where r|C stands for the resulting channel sequence after
filtering all occurrences of channels not in C from r. Accordingly, we define the
projection of HF onto C, denoted by HF |C by replacing all readiness variables
rv by rv|C . Given two timed traces h1, h2, and a set of channels C, we say that h1

and h2 are compatible w.r.t. C, iff h1|C = h2|C , i.e., they have the same projection
onto C. Given two timed traces h1 and h2 that are compatible w.r.t. C, we define
the alphabetized parallel of h1 and h2 over C, denoted by h1 ‖

C

h2, defined by

structural induction in Fig. 1. In the definition, we use Undef to represent that
the resulting trace is undefined. Obviously, the alphabetized parallel ‖

C

of two

compatible traces w.r.t. C will always be well defined.
Now we define the rule for the case when P1 and P2 terminate simultaneously.

It can be generalised easily for other cases. Let Ci = Chan(Pi) for i = 1, 2, and
C = C1 ∩ C2. The parallel rule is given as follows:

{S1;A1} P1 {R1;G1} {S2;A2} P2 {R2;G2}
G1|C ⇒ A2|C A|C2\C ⇒ A2|C2\C G2|C ⇒ A1|C A|C1\C ⇒ A1|C1\C

{S1 ∧ S2;A} P1‖P2 {comp(R1, R2);G1 ∧G2}

where comp(R1, R2) is defined as follows:

comp(R1, R2)
def
= R1[tr1/tr] ∧R2[tr2/tr] ∧ tr1|C = tr2|C ∧ tr = tr1 ‖

C

tr2

It indicates that, because of synchronous communication, P1 and P2 will produce
compatible traces along the common channel set C; moreover, the final trace tr
is the alphabetized parallel of the traces of P1 and P2 over C. The parallel rule
says that, we need to check the compatibility, i.e., the assumption of each process
in the parallel composition must be fulfilled by its environment, including the
other process in parallel with it and the external environment separately.

External and Internal Choice. The external choice depends on external
environment totally, i.e., whose partner comes earlier, who is chosen to execute.

80 S. Wang, N. Zhan, and D. Guelev

h1 ‖
C

ε
def
=

{
h1 if h1|C = ε
Undef otherwise

〈ch1.a, t1〉 · h′
1 ‖

C

〈ch2.b, t2〉 · h′
2
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ch1.a, t1〉 · (h′
1 ‖

C

h′
2)

otherwise if ch1=ch2 ∈ C, a=b and t1= t2
〈ch1.a, t1〉 · (h′

1 ‖
C

(〈ch2.b, t2〉 · h′
2))

+〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · h′
1) ‖

C

h′
2)

otherwise if ch1, ch2 /∈ C and t1 = t2
〈ch1.a, t1〉 · (h′

1 ‖
C

(〈ch2.b, t2〉 · h′
2))

otherwise if ch1 /∈ C, and t1 ≤ t2
〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · h′

1) ‖
C

h′
2)

otherwise if ch2 /∈ C, and t2 ≤ t1
Undef otherwise

(h′
1 + h′

2) ‖
C

(h′′
1 + h′′

2)
def
= Σi,j=1,2(h

′
i ‖
C

h′′
j)

Fig. 1. Alphabetized parallel of timed traces

We just present the rule for the case ch?x → P � dh!e → Q, which can be easily
generalized to other cases. The first rule describes the case when the partner of
ch? gets ready before the one of dh!, described by A.

S ⇒ C(tr) = r A ⇒ �¬(r.ch! ∧ r.dh?)�−��r.ch! ∧ ¬(r.dh?)�0��
{S; A} ch?x;P {R; G}

{S; A} ch?x → P � dh!e → Q {R; G}

The symmetric case when the partner of dh! gets ready before the one of ch?
can be defined similarly. However, whenever the partners of ch? and dh! get
ready simultaneously, the external choice becomes non-deterministic choice, and
therefore, one of the alternatives is chosen by the process randomly, as defined
by the following rule:

S ⇒ C(tr) = r A ⇒ �¬(r.ch! ∧ r.dh?)�−��r.ch! ∧ r.dh?�0��
{S; A} ch?x;P {R1; G1} {S; A} dh!e;Q {R2; G2}
{S; A} ch?x → P � dh!e → Q {R1 ∨R2; G1 ∨G2}

In contrast to external choice, the internal choice P1 � P2 depends on the pro-
cess totally, and the choice is made randomly by the process itself. To prevent
deadlock, the environment must provide the assumptions required by both al-
ternatives, and the internal choice guarantees the behavior of one of them.

{S; A} Pi {Ri; Gi} for i = 1, 2

{S; A} P1 � P2 {R1 ∨R2; G1 ∨G2}

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 81

Interrupt by Communication. For process 〈F(ṡ, s) = 0&B〉� (ch?x → Q),
the continuous will be executed first, and interrupted once the communication
along ch happens, and Q will be executed afterwards. However, if the commu-
nication does not happen before the domain restriction B becomes false, the
process will not wait for the communication and terminate immediately.

The first rule is defined for the case when the communication occurs before
the continuous terminates, as indicated by Rg′(�) ⇒ Rg(�)��.

S ⇒ C(tr) = r {S ∧ Init;�}〈F(ṡ, s) = 0&B〉{R; G ∧ Rg′(�)}
A⇒ Rg(�)∧ �¬(r.ch!)�−��r.ch!�0�� Rg′(�)⇒ Rg(�)��

G⇒ �Inv�∗ {S ∧ Inv; A} ch?x;Q {R′; G′}
{S ∧ Init; A} 〈F(ṡ, s) = 0&B〉� (ch?x→ Q) {R′; ((Rg(�)∧ �Inv�−)��) ∧G′}

where S does not contain s.
The second rule is defined for the other case when the communication does not

happen before the continuous terminates, as indicated byRg(�) ⇒ Rg′(�)�(� > 0).

S ⇒ C(tr) = r {S ∧ Init; �} 〈F(ṡ, s) = 0&B〉 {R; G ∧Rg′(�)}
A ⇒ Rg(�) ∧ �¬(r.ch!)��� Rg(�) ⇒ Rg′(�)�(� > 0)

{S ∧ Init; A} 〈F(ṡ, s) = 0&B〉� (ch?x → Q) {R; G ∧Rg′(�)}

Repetition. Similar to the classical Hoare logic, we first need to find an in-
variant S′ that holds before and after the execution of the process P . Second,
the assumption and guarantee of P ∗ can be defined as the iteration of the ones
of P . Similar to sequential composition, for each iteration of P , the environ-
ment terminates simultaneously as P does, as guaranteed by �T (P)�0 in the
assumption.

S ⇒ S′ {S′; A}P{S′; G}
{S; (A��T (P)�0)∗} P ∗ {S′; G∗}

We do not define the rules for wait and timeout constructs here, as both of them
are not primitive, and can be defined by the continuous and other constructs.

5 Discussions, Conclusion and Future Work

Total Correctness vs. Partial Correctness

In this paper, we assume that each HCSP process terminates in a finite time,
as we adopt the classical DC to specify assumptions and guarantees, with which
infinite behaviour of a system cannot be specified. So, we just discuss partial
correctness here. In [18], DC is extended with infinite intervals, which can be
used to distinguish termination and non-termination simply.

On the other hand, the predicate T has been introduced for representing the
termination of a process in the calculus. It is used for specifying the synchro-
nization of the termination of a process and the assumed termination of the
process by its environment. We believe the predicate can be used to distinguish
termination and non-termination as well, but this will complicate the inference

82 S. Wang, N. Zhan, and D. Guelev

rules. In addition, the proof system presented here is incomplete as we at least
omit several rules for reasoning about the predicate T . We will leave this issue
as one future work.

Conclusion and Future Work

In this paper, we present a compositional calculus for specifying and verifying
hybrid systems. The language for modelling hybrid systems is a subset of HCSP,
by using which we have modelled the movement scenarios of CTCS-3, thus show
the modelling expressiveness of HCSP. By introducing DC formulas into Hoare
logic to record the execution history of HCSP, the calculus can specify real-
time and continuous properties of hybrid systems. By introducing predicates for
describing communication readiness, based on assume/guarantee reasoning, the
calculus can specify time and communication synchronisation between parallel
processes compositionally. However, the calculus is somewhat complicated, and
we will try to simplify it as another future work.

To establish deadlock freedom of a process, it is necessary to record infor-
mation of readiness of different actions during the execution of the process. The
predicates introduced for specifying readiness of communication actions can pro-
vide a basis. Finally, we will try to apply this calculus to prove some real hybrid
systems, e.g., the movement scenarios of CTCS-3.

Acknowledgment. The authors would like to thank Prof. Chaochen Zhou for
his insightful suggestions and comments on this paper. This work has been partly
supported by NSFC projects 91118007, 60970031 and 61100061.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid Automata: An Al-
gorithmic Approach to the Specification and Verification of Hybrid Systems. In:
Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

2. Guelev, D.P., Dang, V.H.: Prefix and projection onto state in duration calculus. In:
ETAPS Workshop Theory and Practice of Timed Systems (TPTS 2002). ENTCS,
vol. 65(6), pp. 101–119 (2002)

3. Guelev, D.P., Dang, V.H.: On the completeness and decidability of duration cal-
culus with iteration. Theoretical Computer Science 337(1-3), 278–304 (2005)

4. He, J.: From CSP to hybrid systems. In: A Classical Mind, pp. 171–189. Prentice
Hall International (UK) Ltd. (1994)

5. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE
Computer Society (1996)

6. Hoare, C.A.R.: A calculus of total correctness for communicating processes. Science
of Computer Programming 1(1-2), 49–72 (1981)

7. Hooman, J.: Extending Hoare logic to real-time. Formal Aspects of Comput-
ing 6(6A), 801–826 (1994)

8. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A Calculus for
Hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

An Assume/Guarantee Based Compositional Calculus for Hybrid CSP 83

9. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT 2011, pp. 97–106. ACM (2011)

10. Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Grossman, R.L., Ravn, A.P.,
Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35.
Springer, Heidelberg (1993)

11. Manna, Z., Sipma, H.: Deductive Verification of Hybrid Systems Using STeP. In:
Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318.
Springer, Heidelberg (1998)

12. Misra, J., Chandy, M.: Proofs of networks of processes. IEEE Transactions on
Software Engineering (TSE) 7(4), 417–426 (1981)

13. Pandya, P.K., Joseph, M.: P-A logic - a compositional proof system for distributed
programs. Distributed Computing 5, 37–54 (1991)

14. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41(2), 143–189 (2008)

15. Soundararajan, N.: Axiomatic semantics of communicating sequential processes.
ACM Transactions on Programming Languages and Systems 6(4), 647–662 (1984)

16. Wang, S., Zhan, N., Guelev, D.: An assume/guarantee based compositional calculus
for hybrid CSP and its soundness. Technical Report ISCAS-SKLCS-11-24, State
Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences (2011)

17. Zhou, C.: Specifying Communicating Systems with Temporal Logic. In: Banieqbal,
B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 304–323. Springer, Heidelberg (1989)

18. Zhou, C., Dang, V., Li, X.: A Duration Calculus with Infinite Intervals. In: Reichel,
H. (ed.) FCT 1995. LNCS, vol. 965, pp. 16–41. Springer, Heidelberg (1995)

19. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. Series: Monographs in Theoretical Computer Science. An EATCS Series.
Springer (2004)

20. Zhou, C., Wang, J., Ravn, A.P.: A Formal Description of Hybrid Systems. In: Alur,
R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996)

21. Zwiers, J., de Bruin, A., de Roever, W.-P.: A Proof System for Partial Correctness
of Dynamic Networks of Processes (Extended Abstract). In: Clarke, E., Kozen, D.
(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 513–527. Springer, Heidelberg
(1984)

Automatic Verification

of Real-Time Systems with Rich Data:
An Overview�

Ernst-Rüdiger Olderog

Department of Computing Science, University of Oldenburg, Germany
olderog@informatik.uni-oldenburg.de

Abstract. We present an overview of the results of the project “Beyond
Timed Automata” of the Collaborative Research Center AVACS (Auto-
matic Verification and Analysis of Complex Systems) during the period
2008–2011, which advances the automatic verification of high-level spec-
ifications of systems exhibiting the three dimensions of process behavior,
complex infinite data, and continuous real-time—beyond the capabilities
of Timed Automata.

1 Introduction

Computers are needed to control the behavior of complex systems, for instance
in the traffic domain, where assistance systems should guarantee the collision
freedom of traffic agents such as cars, trains, and planes. Such applications are
safety critical, i.e., a malfunction of the computers is costly and dangerous. These
applications necessitate the use of formal models of the overall system and of
formal verification for establishing the relevant safety properties. The models
must be able to represent various aspects of the systems such as state spaces
and their transformation, communication between system components, real-time
constraints, interfaces to a continuously evolving physical environment, and dy-
namically changing system structures. To cope with such models in a manage-
able way, combined specification techniques have been proposed, integrating well
researched specification techniques for individual system aspects. It is a major
research challenge to develop methods for the automatic verification and analysis
of such combined specifications modeling complex real-life systems.

To address this challenge the research center AVACS (Automatic Verifica-
tion and Analysis of Complex Systems) was founded in 2004. In this center,
researchers of the Universities of Oldenburg, Freiburg and Saarbrücken as well
as the Max-Planck-Institute for Informatics in Saarbrücken collaborate. AVACS
brings together experts in semantic modeling and specification with experts in
verification and analysis techniques.

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 84–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verification of Real-Time Systems with Data 85

In the following we give an overview of the results of one of the projects in the
research area R (Real-Time) achieved during Phase 2 of AVACS (2008–2011):
the project R1 “Beyond Timed Automata” that advances the automatic veri-
fication of high-level specifications of systems exhibiting the three dimensions
of process behavior, complex infinite data, and continuous real-time—beyond
the capabilities of Timed Automata. To this end, transformation and decom-
position techniques are combined with enhanced proof procedures resting on
the paradigms of abstraction refinement and local theory extensions. This paper
complements the more technical overview of Phase 1 of R1 presented in [32].

2 Overview of the Project R1

The general set-up of the project is as follows. For the specification of real-time
systems, the language CSP-OZ-DC (or COD for short) integrating aspects of
Communicating Sequential Processes (CSP), Object-Z (OZ), and Duration Cal-
culus (DC) has been developed [23]. We use the automata-theoretic approach for
automatic verification of systems against real-time requirements, whereby both
the system and the requirement are transformed into a semantically equivalent
parallel composition of Phase-Event-Automata (PEA), which allow for complex
data in their phases [21]. PEA are the stepping stone for further transforma-
tions into the input languages of verification engines developed in the project.
These engines are the model checkers ARMC [35] and SLAB [11], and the tool
H-PILoT [25] for dealing with complex data; they implement the paradigms of
abstraction refinement and local theory extensions. The graphical tool Syspect
realizes a tool chain from COD down to these verification engines [15].

The publication [31] reflects the state of automatic verification in R1 at the
start of Phase 2. Then a subclass of DC—involving counterexample formulae and
allowing for Boolean combinations of timed phases—could be used as real-time
conditions inside CSP-OZ-DC (COD) specifications. In particular, the transla-
tion of counterexample formulae into PEA involves a sophisticated power set
construction to cope with the nondeterminism arising from overlapping phases.
PEA are translated further into Transition Constraint Systems (TCS) serving
as input to the model checkers ARMC (Abstraction-Refinement Model Checker)
and SLAB (Slicing-Abstraction Model Checker) that use Craig interpolation and
decision procedures for data in order to refine their abstractions. Some reduc-
tions of the state spaces were achieved by applying a priori slicing techniques to
COD specifications [4,5].

The viability of the whole approach has been demonstrated on the case study
of Emergency Messages between two trains and a radio block center (RBC)
in the context of the European Train Control System (ETCS) at Level 3 [31].
Besides continuous real-time, this case study involved infinite scalar data types
for the position and speed, communications of these data between trains and
the RBC, as well as parameters for the length and target speed of the trains.
We could automatically verify real-time requirements of the system with ARMC
and SLAB. Collision freedom could not be proven push-button, but required a

86 E.-R. Olderog

manual decomposition into real-time requirements that in turn could be verified
automatically [31].

While each of the ETCS real-time requirements depends only on a subset
of all the parallel PEA, the requirement of collision freedom depends on the
full set of parallel PEA. During Phase 1, the parallel product of PEA needed
to be computed before translating the result into TCS because neither ARMC
nor SLAB could process a parallel composition directly. Thus for large real-time
systems, the state space explosion arising from the parallel product of the PEA
limited the applicability of the approach.

In Phase 2, the project R1 advanced automatic verification of real-time sys-
tems with complex data in the following directions.

– Explicit durations. The class of real-time requirements amenable to auto-
matic verification has been extended to formulae with explicit durations.

– Structural optimization. Two approaches to counteract the problem of state
space explosion arising from the calculation of the parallel composition of
PEA have been developed, employing layered composition and verification
architectures.

– Automating verification. Novel concepts supporting the automatic verifica-
tion of systems have been developed, based on subsequence invariants, re-
finement of trace abstraction, and nested interpolants.

– Complex data. The scope of data that can be handled automatically has been
extended considerably by the method of local theory extension.

– Verification tools. The model checker SLAB, pioneered in Phase 1 of R1,
has been extended to exploit structural information. The new tool H-PILoT
supports hierarchical reasoning in chains of local theory extensions. The
graphical tool Syspect builds bridges from COD to these verification tools.

– Case studies. We mastered the state space explosion problem in the case
study involving ETCS Emergency Messages and succeeded in the auto-
matic verification of parametric specifications with complex railway network
topologies.

We now describe these achievements in some more detail.

2.1 Explicit Durations

Explicit durations are a potential source of undecidability in the time dimension
of the system specifications, and correspond to the (un-)decidability frontier be-
tween Timed Automata (TA), for which location reachability is decidable, and
Linear Hybrid Automata (LHA), for which reachability happens to be undecid-
able. This frontier has been populated by variants of Priced Timed Automata
(PTA)—a continuous-time variant of weighted automata—and stopwatch au-
tomata (SWA). Whereas PTA augment TA with continuous observer variables
that may neither be reset nor be queried in guards and invariants, SWA do allow
such resets and queries. As a consequence, some PTA variants admit decidability,
while SWA are as expressive as LHA and thus not decidable.

Verification of Real-Time Systems with Data 87

A generalization of the translation of test formulae into PEA to a translation
of formulae with explicit durations into PEA with integrators (a variant of SWA
with possibly infinite data) was pursued. While doing so, we discovered that
the basic structure of this translation can be isolated even in the setting of dis-
crete time and formal languages, leading to the concepts of availability automata
and corresponding regular availability expressions [22]. Availability automata are
similar to weighted automata. However, the availability counters therein may also
be queried and reset as for SWA. Availability automata provide an alternative
language-theoretic characterization of request-response scenarios formalized by
means of weighted automata in Henzinger’s quantitative languages [7].

PTA, on the other hand, have only observer variables termed as costs in
addition to the clocks of TA, and thus permit the analysis and optimization of
phenomena (such as scheduling) beyond the scope of TA within certain decidable
model classes lying at the frontier between TA and LHA. The PTA variants lying
at this frontier correspond to explicit durations, owing to earlier AVACS work
[16] on a decision procedure (that involves reduction to PTA having multiple
positively valued cost variables) for model-checking TA against DC requirements
having constraints on positive linear combinations of explicit durations with only
upper bound duration constraints.

2.2 Structural Optimization

To avoid state space explosion, we pursued two different approaches. We struc-
turally optimized the system specifications at the design-level, prior to verifica-
tion. To this end, the operator of layered composition was lifted from the setting
of (hierarchical) process graphs in [27] to that of TA extended with data [33].
Layered composition (intermediate between sequential and parallel composition)
allows for the transformation of the system from a parallel representation into an
equivalent layered and finally sequential one, provided certain conditions (con-
cerning the independence of transitions wrt. variables accessed or the precedence
of transitions enforced by timing in guards and actions) hold. The equivalence
between the parallel and sequential representations induces an a priori design-
level partial order reduction of the system’s state space, with the preservation of
stutter-invariant (i.e., next-free) temporal requirements. As an illustrative ap-
plication, we revisited in [33] the UPPAAL case study of a collision avoidance
protocol for an audio/video system by Bang & Olufsen [18]. We could show
in [33] a possible a priori design level reduction by a factor of 300 of the number
of discrete locations in the composite system representing the collision avoidance
protocol of [18].

The concept of verification architectures (VA) was introduced in [12] (and
elaborated in the PhD thesis [13]). VA have as parameters component processes
with data constraints and timing requirements, and offer an abstract behavioral
protocol view on complex real-time systems. In combination with COD, the
component processes of VA formalize parametric version of CSP-OZ-DC and are
represented as unknown processes satisfying certain local real-time requirements.

88 E.-R. Olderog

A VA splits system runs into several phases, formalized as unknown processes
satisfying local real-time assumptions. Once a desired global requirement for a
VA protocol is verified by proof rules of a dedicated dynamic logic, it is also
guaranteed by all instances of that protocol satisfying local real-time assump-
tions. Thus, given a correct VA, we verify global safety requirements of concrete
models by combining local analyses: for a concrete model—usually given as a
complex specification in a combined language like COD—(1) the protocol struc-
ture needs to be an instantiation of that of the VA (entailing a purely syntactic
check), and (2) the validity of local real-time assumptions for the corresponding
components of the concrete specification needs to be model-checked by ARMC
or SLAB. The VA approach thus provides: (1) a formal framework of design
patterns for complex, combined real-time specifications, and (2) a decomposi-
tional approach that reduces global verification to local proof tasks. In contrast
to our behavioral protocol-based VA patterns, previous approaches on formal
design patterns either focus on handling standard design patterns that consider
static analysis of code and structures in object-oriented languages, e.g., [28], or
do not incorporate real-time aspects [37] or infinite data [17]. As a large-scale
application of this VA approach, the Phase 1 case study of ETCS Emergency
Messages has been revisited in [13].

2.3 Automating Verification

K. Dräger and B. Finkbeiner [10] introduced subsequence invariants that char-
acterize the behavior of a concurrent system in terms of the occurrences of syn-
chronization events. Unlike state invariants that refer to the state variables of
the system, subsequence invariants are defined over auxiliary counter variables
that reflect how often the event sequences from a given set have occurred so far.
A subsequence invariant is a linear constraint over the possible counter values
that is preserved when a given process is composed with additional processes.
Subsequence invariants can therefore be computed individually for each process
and then be used to reason about the full system. Subsequence invariants can
be computed efficiently by a fixed point iteration. In his PhD thesis, K. Dräger
extended the results of [10] to include more general synchronization patterns,
and showed how to integrate the fixed point iteration for subsequence invariants
with the SLAB refinement loop, making it possible to check the validity of a
proposed invariant for an infinite-state system.

M. Heizmann, J. Hoenicke and A. Podelski [19] presented refinement of trace
abstractions as a method to extend the scalability of automatic verification.
A known bottleneck of automatic verification based on the classical CEGAR
(counterexample-guided abstraction refinement) approaches is the intensive use
of a theorem prover. This bottleneck was addressed using the following two tech-
niques. First, a precise abstraction is obtained given several coarse abstractions.
The crux of the technique is that only automata theoretic operations are used,
but no theorem proving is needed. Second, a coarse abstraction is obtained given

Verification of Real-Time Systems with Data 89

an infeasibility proof of a spurious counterexample from an interpolating theo-
rem prover. In this construction, a theorem prover is queried only to prove the
inductivity of several selected transitions.

M. Heizmann, J. Hoenicke and A. Podelski [20] introduced a novel technique
for the verification of a sequential system that consists of several procedures.
While constructing an abstraction in a CEGAR based automatic verification,
two contrasting requirements arise. On one hand, the refined abstraction should
be precise; on the other hand, the refined abstraction should be small. Using the
information obtained from interpolants of an unsatisfiability proof for an infeasi-
ble counterexample has shown to be useful tradeoff. In [20], a nested interpolation
scheme was presented, where interpolants are not only tailored to a trace but
also local to a procedure. This interpolation scheme allows one to represent the
whole system by one abstraction, but analyzes the system in a modular way.
Calls of procedures are summarized and reused in the further analysis. Further-
more, the interpolants obtained satisfy an inductiveness property, which allows
one to combine this with the abstraction techniques from [19].

2.4 Complex Data

V. Sofronie-Stokkermans, together with S. Jacobs and C. Ihlemann, identified
a large number of theories—in particular theories of data structures related
to CSP-OZ-DC specifications—for which efficient reasoning procedures exist.
For this, they used and extended their results on local theory extensions [26].
The locality property of a theory extension allows them to replace universally
quantified clauses by a set of ground instances. This makes a reduction to a
satisfiability test in the underlying theory possible.

Decidable fragments of theories of data structures were studied before, e.g.,
a fragment of the theory of arrays [3] and a theory of pointers [30]. Sofronie-
Stokkermans et al. [24] presented and generalized these results in a locality
framework. In [14] and the PhD thesis of C. Ihlemann, a more general fragment
of the theory of pointers was considered, which turned out to be extremely useful
for the verification of systems of trains with a complex track topology.

2.5 Verification Tools

To demonstrate applications of R1 techniques, we developed a tool chain. It
takes a graphical UML model of a real-time system as input, applies property-
preserving translations to COD specifications and via PEA into Transition Con-
straints Systems, following the R1 verification approach. The resulting transition
system is then passed to the verification tools SLAB, H-PILoT, or ARMC.

The SLAB (Slicing Abstraction) model checker [6,11] was completely re-
designed during Phase 2. In order to automatically verify the requirements
of layered networks of PEA, it now incorporates a specialized abstraction re-
finement procedure. In contrast to the approach in Phase 1, where the model
checker accepted a product of system processes, the new version accepts a struc-
tured description of the analyzed system represented in terms of parallel, se-
quential and layer composition. The tool initializes the refinement cycle with an

90 E.-R. Olderog

abstraction that accurately represents the control structure of the system but
over-approximates its behavior with respect to complex data.

During the abstraction refinement cycle, SLAB inspects the current abstrac-
tion to find a counterexample. From the counterexample, the tool constructs a
Craig interpolant, and uses it to split the abstraction locally, thus refuting the
counterexample. In order to reduce the size of intermediate abstractions, SLAB
applies two sets of rules. The first set consists of slicing rules [6] applied locally to
some process in the abstraction, eliminating its inconsistent or irrelevant parts.
The second set consists of parallel reduction rules tracing inconsistencies based
on the synchronization between parallel processes. The two sets of rules mutually
benefit from each other: slicing irrelevant parts in a process reduces its synchro-
nization capabilities, and thus opens the way to apply the parallel reduction
rules; and, vice versa, parallel reductions result in additional slicing steps.

The verification tool H-PILoT (Hierarchical Proving by Instantiation in Local
Theory Extensions) [25] implements the method for hierarchical reasoning in
extensions of logical theories and chains thereof. By this method, the satisfiability
of constraints over specific theory extensions identified to be local are reduced
to the satisfiability of constraints in a base theory for which a dedicated prover
exists. Standard SMT solvers can then be used to check the satisfiability of the
formulae of the base theory. With this approach, the invariant checking problem
for local theory extensions becomes decidable. H-PILoT has been used to verify
requirements of COD specifications with rich data types like arrays or pointer
data structures.

We developed the graphical tool Syspect (System Specification Tool) [15] for
modeling, specifying, and automatically verifying reactive systems with contin-
uous real-time constraints and complex, possibly infinite data. It represents the
R1 tool chain. For modeling these systems, a UML profile comprising component
diagrams, protocol state machines, and class diagrams is used; for specifying the
formal semantics of these models, the combination CSP-OZ-DC is employed; for
verifying requirements of these specifications, translators are provided to the in-
put formats of the model checkers ARMC and SLAB as well as the tool H-PILoT.
By this means, Syspect bridges the gap between informal modeling techniques
from software engineering and formal analysis of real-time systems.

2.6 Case Studies

We first revisited the case study of ETCS Emergency Messages between two
trains considered in Phase 1 of R1. While it is still not possible to verify the
global requirement of collision freedom entirely in a push-button fashion, we are
now able to structure the proof into two formal parts: (1) A verification archi-
tecture with real-time assumptions on the “unknown processes” describes the
abstract protocol of the case study. The global requirement of collision freedom
is verified manually using the proof rules of a dedicated dynamic logic. (2) An
instantiation of that verification architecture yields the full case study. The as-
sumptions made for the “unknown processes” are verified fully automatically
using the model checkers ARMC or SLAB. The verification architecture, the

Verification of Real-Time Systems with Data 91

instantiating model, and the automatic verification of the instantiation are real-
ized with the Syspect tool. We then considered a variant of the ETCS case study
without communication aspects and with a simplified control structure, but a
complex track topology. In this case study, an arbitrary number of trains drive
along a track network, specified by first-order formulae with data in doubly-
linked lists. Invariant requirements like keeping a safe distance could be verified
automatically. For this, the high-level COD specification with these data, mod-
eled with Syspect, was at the semantic level of PEA automatically translated
into the input format of the tool H-PILoT [14].

3 Conclusion

We presented an overview of the achievements of the AVACS project R1 “Beyond
Timed Automata” during the period 2008–2011. While there have been some
works outside of AVACS dealing with real-time systems augmented with data,
these works do not cover the scope of the specification and verification techniques
considered within R1.

– The works in [2,8,29] consider (variants of) timed automata augmented with
(possibly unbounded) data structures (such as a push-down stack). However,
these works deal predominantly with theoretical decidability results and do
not present techniques amenable to automated verification.

– The works [1,9,34,36] present techniques for the automated reasoning of con-
tinuous real-time systems with data. The techniques in [9,1,36] are compo-
sitional and modular, but involve timed automata variants enriched with
finite data. The techniques in [34] deal with complex (and possibly infinite)
data, but involve equational reasoning based on rewriting logics, and are not
compositional, and thus not amenable to modular verification.

– Furthermore, the timing requirements that can be handled in each of the
above works are much more confined than the (explicit) duration require-
ments considered within R1.

In the coming third phase of AVACS, the project R1 will emphasize verification
“beyond yes/no” by considering parametric systems and requirements. We will
also pursue the paradigm “design meets verification” to find design styles and
transformations for real-time systems that optimize their structure to ease their
automatic verification.

Acknowledgements. This paper is a report of the work done in the project
“Beyond Timed Automata” within the Transregional Collaborative Research
Center AVACS during the period 2008–2011. I would like thank the other mem-
bers of the project: I. Brückner, K. Dräger, J. Faber, B. Finkbeiner, M. Fränzle,
M. Heizmann, J. Hoenicke, C. Ihlemann, S. Jacobs, A. Kupriyanov, R. Meyer,
A. Podelski, V. Sofronie-Stokkermans, and M. Swaminathan.

92 E.-R. Olderog

References

1. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical
specifications for timed component connectors. Soft. and Syst. Modeling 6(1), 59–
82 (2007)

2. Bouajjani, A., Echahed, R., Robbana, R.: On the Automatic Verification of Sys-
tems with Continuous Variables and Unbounded Discrete Data Structures. In:
Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999,
pp. 64–85. Springer, Heidelberg (1995)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

4. Brückner, I.: Slicing Concurrent Real-Time System Specifications for Verification.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 54–74. Springer,
Heidelberg (2007)

5. Brückner, I.: Slicing Integrated Formal Specifications for Verification. PhD thesis,
Report Nr. 2/08, University of Oldenburg (March 2008)

6. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fun-
damenta Informaticae 89(4), 369–392 (2008)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), Article 23, 38 (2010)

8. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci. 302(1-3), 93–121 (2003)

9. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Software Eng. 34(6), 844–859 (2008)

10. Dräger, K., Finkbeiner, B.: Subsequence Invariants. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 172–186. Springer, Heidelberg
(2008)

11. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: A Certifying
Model Checker for Infinite-State Concurrent Systems. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)

12. Faber, J.: Verification Architectures: Compositional Reasoning for Real-Time Sys-
tems. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 136–151.
Springer, Heidelberg (2010)

13. Faber, J.: Verification Architecture for Complex Real-Time Systems. PhD thesis,
Report Nr. 03/11, University of Oldenburg (August 2011)

14. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verifica-
tion of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S.
(eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)

15. Faber, J., Linker, S., Olderog, E.-R., Quesel, J.-D.: Syspect - modelling, specifying,
and verifying real-time systems with rich data. International Journal of Software
and Informatics 5(1-2), 117–137 (2011)

16. Fränzle, M., Hansen, M.R.: Deciding an Interval Logic with Accumulated Du-
rations. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
201–215. Springer, Heidelberg (2007)

17. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the composi-
tional verification of real-time UML designs. In: ESEC/FSE-11, pp. 38–47. ACM
(2003)

18. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis
of an audio/video protocol: an industrial case study using UPPAAL. In: IEEE
Real-Time Systems Symposium (RTSS), pp. 1–13. IEEE Computer Society (1997)

Verification of Real-Time Systems with Data 93

19. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of Trace Abstraction. In:
Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidel-
berg (2009)

20. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) Principles of Programming Languages (POPL), pp. 471–
482. Association for Computing Machinery. ACM (2010)

21. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, Report Nr.
9/2006, University of Oldenburg (July 2006)

22. Hoenicke, J., Meyer, R., Olderog, E.-R.: Kleene, Rabin, and Scott Are Available.
In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 462–477.
Springer, Heidelberg (2010)

23. Hoenicke, J., Olderog, E.-R.: CSP-OZ-DC: A combination of specification tech-
niques for processes, data and time. Nordic J. of Comput. 9(4), 301–334 (2002)

24. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On Local Reasoning in Veri-
fication. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

25. Ihlemann, C., Sofronie-Stokkermans, V.: System Description: H-PILoT. In:
Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 131–139. Springer,
Heidelberg (2009)

26. Ihlemann, C., Sofronie-Stokkermans, V.: On Hierarchical Reasoning in Combina-
tions of Theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI),
vol. 6173, pp. 30–45. Springer, Heidelberg (2010)

27. Janssen, W.: Layered Design of Parallel Systems. PhD thesis, Univ. Twente (1994)
28. Knudsen, J., Ravn, A.P., Skou, A.: Design Verification Patterns. In: Jones, C.B.,

Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems.
LNCS, vol. 4700, pp. 399–413. Springer, Heidelberg (2007)

29. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Reachability results for timed au-
tomata with unbounded data structures. Acta Informatica 47, 279–311 (2010)

30. McPeak, S., Necula, G.C.: Data Structure Specifications via Local Equality Ax-
ioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
476–490. Springer, Heidelberg (2005)

31. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: A practical approach. Formal Aspects of Comput. 20(4-5), 481–505 (2008)

32. Olderog, E.-R.: Automatic verification of combined specifications. In: Pu, G., Stolz,
V. (eds.) Proc. of the 1st Internat. Workshop on Harnessing Theories for Tool
Support in Software, Macau. ENTCS, vol. 207, pp. 3–16 (2008)

33. Olderog, E.-R., Swaminathan, M.: Layered Composition for Timed Automata. In:
Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 228–
242. Springer, Heidelberg (2010)

34. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor.
Comput. Sci. 410, 254–280 (2009)

35. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2006)

36. Stöcker, J., Lang, F., Garavel, H.: Parallel Processes with Real-Time and Data:
The ATLANTIF Intermediate Format. In: Leuschel, M., Wehrheim, H. (eds.) IFM
2009. LNCS, vol. 5423, pp. 88–102. Springer, Heidelberg (2009)

37. Taibi, T. (ed.): Design patterns formalization techniques. IGI Publishing (2007)

Program Analysis Using Quantifier-Elimination

Heuristics�

(Extended Abstract)

Deepak Kapur

Dept. of Computer Science,
University of New Mexico, Albuquerque, NM, USA

kapur@cs.unm.edu

1 Introduction

Software is being employed for life-critical, safety-critical, infrastructure-critical
and economically critical applications. Our daily lives rely heavily on proper
functioning of software in gadgets we directly or indirectly use–airplanes, flight
control, high speed trains, cars, cell-phones, medical devices and instruments,
banks, and what not. Malfunctioning of a program can have very severe
consequences–costing lives (e.g. Therac-25 [13], Patriot missile) and money (e.g.
Ariane 5, malfunctioning of economic transactions, problems in stock exchanges)
[14]. Validation and verification of software have become even more and more
important. Given that full verification of software has been found increasingly
difficult to achieve because of lack of rigorous and complete specifications on one
hand as well as difficulty of verification systems/theorem provers to address the
increasing complexity of software despite considerable advances in automated
reasoning techniques, ensuring absence of various types of bugs becomes a criti-
cal first step in ensuring reliability.

Numerous techniques have been investigated for ensuring reliability of soft-
ware. Diverse approaches are being pursued in the formal methods community
using interactive/semi-automatic verification systems, theorem provers, meth-
ods based on the abstract interpretation framework [2], and model checkers
[9]. In this paper, we will provide an overview of our research based on quan-
tifier elimination for automatically generating invariants of specialized shapes
[10,11]. Similar approaches have been recently investigated for many aspects of
program analysis–deriving properties of sequential and distributed programs as
well as hybrid systems [16,6], establishing termination of programs, and program
synthesis [5].

After illustrating the key steps of approach, we will discuss practical heuristics
for quantifier elimination for relational formulas using geometric techniques. The
low complexity of quantifier elimination algorithms is crucial to make the ap-
proach scalable. Particularly, the sparse interaction between variables occurring
in practice and special structure of formulas arising as verification conditions will

� Supported in part by an NSF award CCF-0729097.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 94–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Program Analysis Using Quantifier-Elimination Heuristics 95

allow for localized reasoning. We have been successful in developing efficient poly-
nomial time heuristics for a conjunction of constraints of the form l ≤ ±x±y ≤ h
(also called octagonal constraints [15] or UTVPI constraints [7,18]). More re-
cently, we have been investigating max plus constraints [1], which allow limited
disjunctions of a subset of octagonal constraints. Consequently, these techniques
are more likely to be useful for analysis of large programs.

2 Overview of Quantifier-Elimination Approach

The main idea of this approach is to (i) fix a class of formulas used to express
properties of programs, (ii) formulate them in a parameterized form with the
parameters to be determined, (iii) generate verification conditions between pro-
gram locations using the axiomatic semantics of programs, (iv) use quantifier
elimination methods to eliminate program variables and generate constraints on
parameters, and finally (v) derive strongest possible invariants by solving these
constraints on parameters.

Let us illustrate this approach using a simple example. Consider the following
simple loop for computing the floor of the square root of a positive integer.

Example 1. a := 0, s := 1, t := 1;
while s ≤ N do a := a+1; t := t+2; s := s+ t end while

Hypothesize an invariant of the loop as a polynomial equation in which the
degree of each term is ≤ 2.

I(a, s, t) ⇔ u1 a2+u2 s
2+u3 t

2+u4 as+u5 at+u6 st+u7a+u8s+u9t+u10 = 0,

where u1, . . . , u10 are parameters. Using the backward substitution semantics of
the assignment statement, one of the verification conditions generated using the
above parameterized invariant is:

(I(a, s, t) ∧ (s ≤ N)) =⇒ I(a+ 1, s+ t+ 2, t+ 2).

By simple manipulation, the reader would notice that because the above im-
plication holds for all a, s, t, each of u2, u4, u6 must be 0, implying that the
hypothesized shape of polynomial invariants could have been further restricted
by dropping out terms s2, as, st. In addition, the following relations among other
parameters are generated:

1. u1 = −u5, 2. u7 = −2u3−u5+2u10, 3. u8 = −4u3−u5, 4. u9 = 3u3+u5−u10.

The above set of linear constraints has infinitely many solutions; each of the
solutions generates a loop invariant for the above loop. However, this infinite
solution set can also be finitely described [17]. Each solution can be obtained as
a linear combination of an independent set of 3 solutions obtained by making
exactly one of the independent parameters u3, u5 and u10 to be 1. The following

96 D. Kapur

three invariants are generated, one of which is a linear equality whereas the other
two are nonlinear polynomial equalities:

t = 2a+ 1, s = −a2 + at− a+ t, 4s = t2 − 2a+ 3t.

The conjunction of these nonlinear polynomial equalities can be shown to be
strongest possible loop invariants expressed as polynomial equalities[11]. This
derivation was done without needing any input/output or behavioral specifica-
tion of the program.

Quantifier elimination of the program variables from the above verification
conditions can again be easily done using heuristics by hand. While general
purpose tools for quantifier elimination may work on simple examples such as
this one, they either run out of memory or do not in general produce meaningful
results, especially when there are lots of program variables.1

3 Octagonal Constraints

Inspired by the success of the ASTREE tool for its ability to detect bugs in large
amounts of real code in flight control software and other critical applications [3],
we have been investigating efficient scalable algorithms for performing quantifier-
elimination when program properties are expressed using octagonal constraints.
These constraints take the form: (l ≤ ±x ± y ≤ h) along with lower and/or
upper bounds on individual program variables; it is easy to visualize them as
an octagon in two dimensions. Such constraints are simpler than general linear
constraints but have been found useful in detecting bugs in flight-control soft-
ware, performing array bound checks, and memory leaks [3,15]. Henceforth, by
an atomic formula of the form l ≤ ±x ± y ≤ h, we mean any of the atomic
formulas of the form l ≤ x+ y ≤ h, l ≤ x− y ≤ h, l ≤ x ≤ h, l ≤ y ≤ h.

Octagonal constraints are also interesting to study from a complexity per-
spective and are a good compromise between interval constraints of the form
l ≤ x ≤ u and linear constraints. In the abstract interpretation approach, lin-
ear constraint analysis over the rationals (Q) and reals (IR), while of polynomial
complexity, has been found in practice to be inefficient and slow, especially when
the number of variables grows [15,3], since it must be used repeatedly. One is
also interested in cases when program variables take integer values bound by
computer arithmetic. If program variables are restricted to take integer values
(which is especially the case for expressions serving as array indices and mem-
ory references), then octagonal constraints are the most expressive fragment of
linear (Presburger) arithmetic over the integers with a polynomial time com-
plexity. It is well-known that extending linear constraints to have three variables
even with unit coefficients (i.e., ranging over {−1, 0, 1}) makes their satisfiabil-
ity check over the integers to be NP-complete [7,18]; similarly, restricting linear

1 Often general purpose tools such as REDLOG, QPCAD, generate huge output since
they must consider all possible cases including degenerate cases; the desired result
must be recovered from it.

Program Analysis Using Quantifier-Elimination Heuristics 97

arithmetic constraints to be just over two variables, but allowing non-unit in-
teger coefficients of the variables also leads to the satisfiability check over the
integers being NP-complete. Below, we only consider octagonal constraints.

Consider the following simple program.

Example 2. x := 4; y := 6;
while y + x ≥ 0 do
if y ≥ 6 then x := − x; y := y − 1 else x := x− 1; y := − y;
end while

Hypothesize an invariant at the loop entry of the form:

a ≤ x ≤ b ∧ c ≤ y ≤ d ∧ e ≤ x− y ≤ f ∧ g ≤ x+ y ≤ h, (1)

where a, b, c, d, e, f, g, h are parameters. The verification condition resulting from
the two branches are:

(a ≤ x ≤ b ∧ c ≤ y ≤ d ∧ e ≤ x− y ≤ f ∧ g ≤ x+ y ≤ h) ∧ (y + x ≥ 0)) =⇒

((y ≥ 6 =⇒ (a ≤ −x ≤ b∧c ≤ y−1 ≤ d∧e ≤ −x−y+1 ≤ f ∧g ≤ −x+y−1 ≤ h))∧

(y ≤ 5 =⇒ (a ≤ x− 1 ≤ b ∧ c ≤ −y ≤ d ∧ e ≤ x− 1 + y ≤ f ∧ g ≤ x− 1− y ≤ h)))

We discuss below geometric heuristics for quantifier elimination based on the oc-
tagon corresponding to the hypothesis in the above verification condition gets af-
fected by the assignment statements in each of the branches. The key idea is to
find sufficient conditions on the parameters a, b, c, d for the octagon specified by
the conclusion formula to include the octagon in the hypothesis formula subject
to the loop and branch test conditions. We have developed a case analysis based
on how different kinds of assignments and various tests affect the validity of the
verification condition leading to sufficient conditions on parameters. There is a
table corresponding to each case of assignment statement, and an entry in the ta-
ble corresponding to every atomic formula appearing as a test. Using these tables,
the following constraints on the parameters can be derived:

(e ≤ −10 ∧ f ≥ 1 ∧ g ≤ −11 ∧ h ≥ 10 ∧ a ≤ −6 ∧ b ≥ 4 ∧ c ≤ −5 ∧ d ≥ 6) ∧

(−1 ≤ e+ h ≤ 1 ∧ g + f ≤ −1 ∧ b+ a = 0 ∧−1 ≤ h− f ≤ 1 ∧ d+ c ≥ 0). (2)

Making the lower bound parameters as large as possible, and the upper bound
parameters as small as possible:

e = −10, f = 9, g = −11, h = 10, a = −6, b = 6, c = −5, d = 6.

The corresponding invariant is

−10 ≤ x− y ≤ 9 ∧ −11 ≤ x+ y ≤ 10 ∧ −6 ≤ x ≤ 6 ∧−5 ≤ y ≤ 6.

98 D. Kapur

4 A Geometric Heuristic for Quantifier-Elimination over
Octagonal Constraints

Consider a program using n variables x1, · · ·xn. A parameterized formula of
octagonal constraints expressing a program invariant at a given location is a
conjunction of formulas of the form li,j ≤ ±xi ± xj ≤ ui,j where i �= j along
with lower and upper bounds on each variable, li ≤ xi ≤ ui, lj ≤ xj ≤ uj where
li,j , ui,j, l

′
i,j , u

′
i,j lj , uj are parameters. A verification condition using the above

parameterized formulas then has the form:

∧1≤i	=j≤nocta(xi, xj) ∧C(X) ∧ Ck(X) =⇒ ∧1≤i,j≤nocta(x
′
i, x

′
j), (3)

octa(xi, xj) � l′i,j ≤ xi − xj ≤ u′
i,j ∧ li,j ≤ xi + xj ≤ ui,j ∧ li ≤ xi ≤ ui ∧ lj ≤ xj ≤ uj .

is the formula on a pair of distinct variables with 8 parameters, x′
i and x′

j are the
new values of variables xi and xj after all the assignments along a k−th branch of
a loop, C(X) is a conjunction of all the loop tests on the k-Th. branch, and Ck(X)
is a conjunction of all the branch conditions along the k-th branch; there are no
parameters appearing in C(X), Ck(X), x′

i, x
′
j . The above verification condition

has in general 2n∗ (n−1)+2n= 2n2 parameters, which can be a big number for
a large program with lots of variables The verification condition corresponding
to all the branches of a program is then the conjunction of the verification
conditions along each branch in the loop. In addition, the initial state of a
program, expressed by a precondition, as well as other initializing assignments
to program variables also imposes additional constraints on parameters.

To ensure that the verification condition generated from a program path also
has the same type of atomic formulas, it is assumed that all tests are expressed
using the above discussed atomic formulas,

∃p1, . . . pm, ∀x1, . . . xn(
∧

(3)), (4)

where {p1, . . . , pm} is the set of all parameters appearing in
∧

(3). It is also
possible to include additional constraints on parameters in P such as certain
parameters are nonzero. To allow program variables and expressions ±xi ± xj

to not have any lower bound/upper bound, the domain on which parameters
can take values are extended to include two constants −∞ and +∞ to stand,
respectively, for no lower bound and no upper bound. Arithmetic operations
and tests on the extended domain, which includes both −∞ and +∞, have to
be appropriately extended to account for these values. Unsatisfiable constraint
solving becomes equivalent to some parameters taking −∞ and +∞ as their
values, e.g, u+ 1 = u is satisfiable if u has +∞ or −∞ as its value.

If the above formula (4) is valid, this implies that there is indeed an invariant of
the above form for the loop. By considering the subformula obtained by dropping
the outermost existential quantifiers for the parameters, we can generate an
equivalent quantifier-free formula that is only in terms of the parameters.

Quantifier elimination tools are not likely to succeed, given that the complex-
ity of generic quantifier elimination methods is exponential in the number of

Program Analysis Using Quantifier-Elimination Heuristics 99

variables and alternations of quantifiers (in some cases, it is even worse, being
of doubly exponential complexity). Below we discuss heuristics to cope with the
above quantifier-elimination problem when many parameters are involved.

4.1 Local Reasoning

It is easy to see that the above huge verification condition can be considered
locally by considering a subpart of (3) corresponding to each pair of distinct
variables xi, xj , i �= j. The subformula below corresponds to all the atomic for-
mulas expressed only using xi, xj .

octa(xi, xj) ∧ C(X)[i,j] ∧ Ck(X)[i,j] =⇒ octa(x′
i, x

′
j), (5)

By doing quantifier-elimination of program variables xi, xj on (5), generating
sufficient conditions on the parameters in (5), and then taking a conjunction of
such conditions on parameters for all possible pairs of variables, it is possible
get a sufficient condition on all the parameters appearing in (3). This way, the
analysis is localized to a single pair of variables, instead of having to consider all
the variables together.

It is assumed in the analysis below that all branches indeed participate in de-
termining the program behavior, i.e., there is no dead branch which is never ex-
ecuted for the initial states under consideration. Considering dead branches can
unnecessarily weaken the invariants generated using the quantifier-elimination
approach by imposing unnecessary constraints on parameters.2

Consider a subformula of the above verification condition which relates a pair
of distinct program variables xi, xj , expressed above as (5). To make the discus-
sion less cluttered, we will replace xi by x, xj by y, as well as l′i,j , li,j, u

′
i,j , ui,j ,

li, ui, lj , uj by l1, l2, u1, u2, l3, u3, l4, u4, respectively; α stands for C(X)[i,j] ∧
Ck(X)[i,j]. To ensure that the verification condition has the form captured in
(5) (particularly that the conclusion be octa′(x, y)), there are three different
possibilities of the total effect on assignments for a distinct pair of variables x, y
along a branch. All other cases must be approximated either by one of these
assignments or by a random value.3

Possibility 1. x := x+A and y := y +B;
Possibility 2. x := − x+A and y := − y +B;
Possibility 3. x := − x+A and y := y +B.

Because of space limitations, we discuss below the third possibility which corre-
sponds to the above example in Section 3. The table in Figure 1 corresponds to
this case. Tables 1 and 2 correspond to the other possibilities.

2 This is a weakness of the QE approaches in contrast to other approaches where
dead code gets automatically omitted in the analysis. Incomplete but fast dead code
detectors are however a standard component of the static analysis performed in
state of the art integrated program development environment including ECLIPSE
(JAVA/C++) and Microsoft Visual Studio.

3 In some cases, the cumulative effect of assignments of different forms may lead to one
of the three possibilities above, in which case, they do not have to be approximated.

100 D. Kapur

present absent

x − y ≤ a
a ≤ u1

a ≤ −l2 + Δ2
u1 ≤ −l2 + Δ2

x − y ≥ b
l1 ≤ b

−u2 + Δ2 ≤ b
−u2 + Δ2 ≤ l1

x + y ≤ c
c ≤ u2

c ≤ −l1 + Δ1
u2 ≤ −l1 + Δ1

x + y ≥ d
l2 ≤ d

−u1 + Δ1 ≤ d
−u1 + Δ1 ≤ l2

x ≤ e
e ≤ u3

e ≤ −l3 + A
u3 ≤ −l3 + A

x ≥ f
l3 ≤ f

−u3 + A ≤ f
−u3 + A ≤ l3

y ≤ g
B > 0

u4 ≥ g + B u4 = +∞
y ≥ h
B < 0

l4 ≤ h + B l4 = −∞

Fig. 1. Sign of only x is reversed in assignment: Constraints on Parameters

The parametric verification condition for the third possibility is:

((l1 ≤ x− y ≤ u1 ∧ l2 ≤ x+ y ≤ u2 ∧ l3 ≤ x ≤ u3 ∧ l4 ≤ y ≤ u4) ∧ α) ⇒
(−u1 +Δ1 ≤ x+ y ≤ −l1 +Δ1 ∧−u2 +Δ2 ≤ x− y ≤ −l2 +Δ2

∧ − u3 +A ≤ x ≤ −l3 +A ∧ l4 −B ≤ y ≤ u4 −B),

where Δ1 = A − B,Δ2 = A + B, α is a conjunction of parameter-free atomic
formulas from loop tests and branch conditions.

Our approach for quantifier elimination is also local and geometric; each
atomic formula is handled separately, and for each case, sufficient conditions
on parameters are derived. For the whole parametric verification condition, a
conjunction of these conditions on parameters for each atomic formula is com-
puted. These calculations have to be done once and for all and stored in a table.
As an illustration, consider the case of how lower and upper bounds on x−y are
affected by the test x − y ≤ a for the third possibility. This is depicted in the
Figure 1; the white octagon to the lower right side corresponds to the hypothesis
octagonal constraints, the blue octagon is the result of assignments, with the red
line corresponding to x− y ≤ a.

(l1 ≤ x− y ≤ u1 ∧ x− y ≤ a ∧ restofhypothesis) =⇒

((l2 ≤ −x+A+ y +B ≤ u2) ∧ restofconclusion),

where restofhypothesis (restofconclusion) is the remaining subformula in the
hypothesis (the conclusion, respectively) of the above verification condition that
does not have atomic formulas expressing lower and upper bounds on x − y.
The entry a ≤ u1 ∧ a ≤ (−l2 −Δ2) in the table in Figure 1 is the condition on
u1, l2 for the above portion of the verification condition to be valid. If x− y ≥ b
is also present, then the entry from the table gives constraints on l1, u2 to be
l1 ≤ b ∧ −u2 − Δ2 ≤ b; if x − y ≥ b is absent instead, then the constraint on
l1, u2 is −u2 −Δ2 ≤ l1. There is an entry in the table for every possible atomic
formula depending upon whether it is present or absent in α.

Program Analysis Using Quantifier-Elimination Heuristics 101

For the example in Section 3, the constraint a ≤ 4 ≤ b∧ c ≤ 6 ≤ d∧ e ≤ −2 ≤
f ∧ g ≤ 10 ≤ h is generated from the initial assignments to the variables. Using
the table, constraints on the parameters are obtained for each branch. For the
branch x + y ≥ 0 ∧ y ≥ 6, A = 0, B = −1, Δ1 = 1, Δ2 = −1, we get the entry
from the table to be g ≤ 0 ∧ −f + 1 ≤ 0 and due to the absence of any upper
bound on y + x, we get the entry h ≤ −e + 1. Since there is no condition on
x− y, we get f ≤ −g − 1 and −h− 1 ≤ e; similarly, there is no condition on x,
giving the constraint a+ b = 0. However, due to y ≥ 6 and B < 0, c ≤ 5; there
is no upper bound condition on y; since B is negative, no additional condition
on parameters is imposed.

For the second branch corresponding to the condition y + x ≥ 0 ∧ ¬(y ≥ 6)
(which also imply x ≥ −5 ∧ y − x ≤ 10)4, we similarly get from the table
constraints g ≤ 0 ∧ e + 1 ≤ 0 ∧ h ≤ f + 1 due to y + x ≥ 0, and 5 ≤ d ∧ −d ≤
c∧5 ≤ −c; in addition, we also get a ≤ −6 due to x ≥ −5 and 10 ≤ −e∧−h−1 ≤
−f ∧ 10 ≤ −g − 1 due to y − x ≤ 10. Collecting all the constraints together, we
indeed get the formula (2).

Values of a, b, c, d, e, f, g satisfying the above constraint result in an octagonal
invariant for the loop in the above program, since the verification conditions
generated from its two branches are valid for these values.

Table 1. Signs of x and y do not change

present absent
x− y ≤ a
Δ1 > 0

u1 ≥ a + Δ1 u1 = +∞
x− y ≥ b
Δ1 < 0

l1 ≤ b + Δ1 l1 = −∞
x+ y ≤ c
Δ2 > 0

u2 ≥ c + Δ2 u2 = +∞
x+ y ≥ d
Δ2 < 0

l2 ≤ d+ Δ2 l2 = −∞
x ≤ e
A > 0

u3 ≥ e + A u3 = +∞
x ≥ f
A < 0

l3 ≤ f + A l3 = −∞
y ≤ g
B > 0

u4 ≥ g + B u4 = +∞
y ≥ h
B < 0

l4 ≤ h + B l4 = −∞

Table 2. Signs of x and y are reversed

present absent

x − y ≤ a
a ≤ u1

a ≤ −l1 + Δ1
u1 ≤ −l1 + Δ1

x − y ≥ b
l1 ≤ b

−u1 + Δ1 ≤ b
−u1 + Δ1 ≤ l1

x + y ≤ c
c ≤ u2

c ≤ −l2 + Δ2
u2 ≤ −l2 + Δ2

x + y ≥ d
l2 ≤ d

−u2 + Δ2 ≤ d
−u2 + Δ2 ≤ l2

x ≤ e
e ≤ u3

e ≤ −l3 + A
u3 ≤ −l3 + A

x ≥ f
l3 ≤ f

−u3 + A ≤ f
−u3 + A ≤ l3

y ≤ g
g ≤ u4

g ≤ −l4 + B
u4 ≤ −l4 + B

y ≥ h
l4 ≤ h

−u4 + B ≤ h
−u4 + B ≤ l4

The correctness of the above table entries (i.e., they generate correct param-
eter constraints in the sense that the parametric constraints after quantifier-
elimination imply the table entries) can be easily verified. The reader would
have noticed from the above examples as well as the tables that the constraints
on parameters are also octagonal.

5 Program Analysis Using Octagonal Invariants

Below, we review the method for generating invariants.

4 These new conditions on the variables can be derived by local propagation.

102 D. Kapur

1. For every program path, generate a verification condition from parameterized
octagonal program invariants at every loop entry; for nested loops, perform
the analysis inside out–starting from the innermost loop to outermost loop.

2. If the resulting verification condition cannot be of the form in which all
atomic formulas are octagonal constraints, then approximations must be
made of tests and assignments.

3. For each verification condition, accumulate constraints on the respective pa-
rameters by table look-up from the table corresponding to the cumulative
effect of the assignments along the path. Take a conjunction of all the para-
metric constraints from all the paths.

4. Every parameter value that satisfies the constraints thus generated leads to
an invariant. To accomodate program variables having no lower or upper
bounds, parameters are allowed to have −∞ and +∞ as possible values.

This approach does not involve any direct fixed point computation. The anal-
ysis is done only once for every program branch, in contrast to the abstract
interpretation approach, where the analysis may have to be done multiple times
depending upon the nature of the widening operator used for a particular ab-
stract domain to ensure the termination of the fixed point computation.

5.1 Generating Strongest Octagonal Invariants

As stated above, every possible parameter value satisfying constraints on pa-
rameters generated after elimination of program variables from verification con-
ditions gives rise to a program invariant. With some additional analysis, it is
even possible to generate the strongest octagonal invariant among all these in-
variants, in the sense that every program invariant of this shape is implied by
this invariant. The strongest possible invariant of an octagonal form is then the
one with the largest possible values for parameters serving as the lower bounds
and the smallest possible values serving as the upper bounds.

Instead of considering all the parametric constraints together, they can be de-
composed into disjoint subsets of subformulas such that parameters appearing
in one subformula do not appear in the other subformulas. This can be easily
done using a strongly connected component algorithm. A large formula expressed
using many parameters can thus be expressed as a conjunction of smaller sub-
formulas expressed using disjoint subsets of few parameters such that each sub-
formula can be independently processed. For a parameter that appears only by
itself, the greatest lower bound is the maximum of all its lower bounds; similarly,
the least upper bound is the minimum of all its upper bounds.

For a subformula corresponding to a strongly connected component with many
parameters, the extremal points of the octagonal projected on every plane corre-
sponding to two distinct variables can be computed. This can be done using the
frame representation of these octagonal constraints on parameters, which can
be efficiently computed [4]. From the coordinates of the extremal vertices lower
bounds and least upper bounds for each parameter appearing in the subformula
are obtained. The strongest octagonal invariant is the formula after plugging in

Program Analysis Using Quantifier-Elimination Heuristics 103

the greatest lower bounds and least upper bounds for each parameter (some of
which could be −∞ and +∞, respectively).

The above heuristic for quantifier elimination of parameterized verification
conditions using octagonal domain constraints is of quadratic complexity in the
number of variables, determined by the size of the tables (since a table look-up
of an entry takes constant time) and the complexity of computing a frame repre-
sentation. This algorithm is asymptotically better than the algorithms presented
in Miné’s thesis [15] based on the abstract interpretation approach for two rea-
sons: (i) the algorithms used in [15] are of cubic complexity in the number of
variables, and (ii) numbers of iterations needed to compute the fixed point can
be, in the worst case, proportional to the number of variables, even though often,
the termination takes places in a fixed number of iterations depending upon the
widening operators used.

The proposed approach often gives good results for generating octagonal in-
variants. Loop invariants are either the same or stronger than the ones generated
using the abstract interpretation approach; we have verified this on numerous
examples using the publicly available Interproc static analyzer where Miné’s al-
gorithms are implemented [8]. There are however also cases where the proposed
approach gives weaker invariants. An interesting problem is to identify condi-
tions under which this geometric heuristic gives results at least as good as the
abstract interpretation approach.

Before performing quantifier elimination, it may sometimes be useful to fur-
ther process loop and conditional tests to generate additional implied conditions
on program variables. Such propagation can be localized without increasing the
complexity of the analysis (this was done for the above example), or made global
by using these implied conditions to propagate conditions on other program vari-
ables appearing together with the program variables in the implied conditions.
Derivation of new conditions on program variables can generate useful addi-
tional parametric constraints, since the tables are built by analyzing the effect
of various tests on every possible atomic formula.

6 Towards Disjunctive Invariants: Max Plus Constraints

So far most of the discussion has been on developing methods for generating
conjunctive invariants. In order to have more expressive loop invariants including
disjunctive invariants, we have recently begun investigating the use of formulas
defining max plus polyhedra [1]. Such a formula allows disjunctions of constraints
of the form li ≤ xi ≤ ui, lj ≤ xj ≤ uj and li,j ≤ xi − xj ≤ ui,j ; atomic formulas
of the form a ≤ xi + xj ≤ b are however not allowed. Thus a polyhedron is
constructed using line segments parallel to an axis or at a 45◦ angle.

There are multiple ways to represent a max plus polyhedron. Below, we use
generators (analogous to a frame representation of a convex polyhedron) using
which every element in a max plus polyhedron can be represented as a linear
combination (when appropriately defined using max to stand for standard + and
+ to stand for standard multiplication ∗) of generators. Due to space limitations,

104 D. Kapur

Polyhedron 1:

a1 ≤ a2, b1 ≤ b2
a1 − b1 ≤ a2 − b2

A < 0
B = 0

A = B < 0(
a1

b1

)

(
a2

b2

)

(
a2 − (b2 − b1)

b1

)(
a1 −A

b1

)

(
a2 − (b2 − b1)−A

b1 −A

)

Polyhedron 2:

a1 ≤ a2, b1 ≤ b2
a1 − b1 ≥ a2 − b2

(
a1

b1

)

(
a2

b2

)

Polyhedron 3:

a1 ≤ a2, b1 ≥ b2
a1 − b1 ≤ a2 − b2

(
a1

b1

)

(
a2

b2

)

Fig. 2. Max Plus Polyhedron with two generators

we are unable to provide more details. So the discussion below will be informal
and intuitive.

Consider the following program:

Example 3. x := 0; y := 5;
while x < 10 do
if x < 5 then x := x+ 1 else x := x+ 1; y := y + 1 end if

end while

The strongest loop invariant for the above program is:

(0 ≤ x ≤ 5 ∧ y = 5) ∨ (5 ≤ x ≤ 10 ∧ x = y).

The corresponding polyhedron is the first one in Figure 2, which is clearly not
convex. Hence it cannot be expressed as a conjunction of linear constraints (in-
cluding octagonal constraints). In contrast, using the analysis of the previous
section, the strongest octagonal invariant obtained is (0 ≤ x ≤ 10∧5 ≤ y∧−5 ≤
x− y ∧ 5 ≤ x+ y).

In our approach, such a program property is parametrically formulated in
terms of generators of the above polyhedron, whose coordinates serve as param-
eters (much like lower and upper bound parameters for variables and expressions
±x±y in octagonal constraints). We have been extending the geometric heuristic
discussed for octagonal constraints, to generate a disjunctive loop invariant for
max-plus polyhedra using geometric quantifier elimination.

For simplicity, consider a max plus polyhedron expressed using two generators
(a1, a2), (b1, b2). Without any loss of generality, it can be assumed that a1 ≤ a2.
Let us hypothesize the loop invariant to be such a polyhedron. Depending upon
comparing b1, b2, a1 − b1 ≤ a2 − b2, three polyhedra are possible with shapes as
shown in Figure 2. Table 3 below is given similar to the octagonal constraints for
the assignment statement x := x+A, y := y+B. Then, for each polyhedron,
there is a table with an entry corresponding to each of the atomic formulas
appearing as a branch condition and/or a loop test.

Consider the order in which b1 ≤ b2 and a1 − b1 ≤ a2 − b2 (i.e., the first
polyhedron). To ensure that the initial state is in the max-plus polyhedron,

Program Analysis Using Quantifier-Elimination Heuristics 105

Table 3. The generators of the overlapped maxplus polyhedron in the form of assign-
ments x := x+ A and y := y +B. (Δ1 = a2 − a1, and Δ2 = b2 − b1).

x := x + A, y := y + B
Order 1 Order 2 Order 3

Case conditions Generators Case conditions Generators Case conditions Generators
A > 0, B = 0 A > 0, B = 0

A ≤ Δ1 − Δ2

(a1
b1

)(a2−Δ2−A
b1

)
A ≤ Δ1

(a1
b1

)(a2−A
b1

)
A < 0, B = 0 A < 0, B = 0

|A| ≤ Δ1 − Δ2

(a1−A
b1

)(a2−Δ2
b1

)
B = 0 ∅ |A| ≤ Δ1

(a1−A
b1

)(a2
b1

)
A = 0, B > 0 A = 0, B > 0
B ≤ Δ2 − Δ1

(a1
b1

)(a1
b2−Δ1−B

)
B ≤ −Δ2

(a2
b2

)(a2
b1−B

)
A = 0 ,B < 0 A = 0, B < 0

A = 0 ∅ |B| ≤ Δ2 − Δ1

(a1
b1−B

)(a1
b2−Δ1

)
B ≥ Δ2

(a2
b1

)(a2
b2−B

)
A = B > 0 A = B > 0

A ≤ Δ2

(a2−A
b2−A

)(a2−Δ2
b1

)
A ≤ Δ1

(a2−A
b2−A

)(a1
b2−Δ1

)
A = B < 0 A = B < 0

|A| ≤ Δ2

(a2
b2

)(a2−(Δ2+A)
b1−A

)
|A| ≤ Δ1

(a2
b2

)(a1−A
b2−Δ1−A

)
A = B ∅

0 < A ≤ Δ1 − Δ2 A ≤ Δ1, 0 < A < B

0 < B < A,B ≤ Δ2

(a2−Δ2−(A−B)
b1

)
B ≤ Δ2 − Δ1 + A

(a1
b2−Δ1−(B−A)

)
Δ1 ≥ A, Δ2 ≥ B
A ≥ Δ1 − Δ2

B ≥ A − (Δ1 − Δ2)
(a2−Δ2−(A−B)

b1

)
A > B > 0 ∅ A > 0, B > 0 ∅

0 < A ≤ Δ1

A > 0, B < 0 ∅ A > 0, B < 0 ∅ Δ2 ≤ B < 0
(a2−A

b1

)
A < 0, B < 0 A < 0, B < 0
|A| ≤ Δ1 − Δ2 |A| ≤ Δ1, |A| < |B|
|B| < |A|, |B| < Δ2

(a2−Δ2−B
b1−B

)
|B| ≤ |A|+ Δ2 − Δ1

(a1−A
b2−Δ1−A

)
A < 0, B < 0, |B| ≤ Δ2

|B| > |A| − (Δ1 − Δ2) A < 0, B < 0

Δ1 − Δ2 ≤ |A| ≤ Δ1

(a2−Δ2−B
b1−B

)
|B| > |A| ∅ A < 0, B < 0 ∅

A < 0, B > 0
|A| ≤ Δ1

A < 0, B > 0 ∅ A < 0, B > 0 ∅ B ≤ −Δ2

(a2
b1−B

)

Table 4. The constraints affect the original maxplus polyhedra in order 1

Order 1
Case 1: A > 0, B = 0, A ≤ Δ1 − Δ2 Case 2: A = B < 0, |A| ≤ Δ2

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi − xj ≤ a a2 − b2 − A ≥ a xi ≥ f a2 − Δ2 − A ≤ f
xi ≤ e a2 − Δ2 − A ≥ e xj ≥ h b1 − A ≤ h

Case 3: A < 0, B = 0, |A| ≤ Δ1 − Δ2 Case 4: A = B > 0, A ≤ Δ2

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi ≥ f a1 − A ≤ f xi ≤ e a2 − A ≥ e
xi ≤ e a2 − Δ2 ≥ e xi ≥ f a2 − Δ2 ≤ f
xi ≥ f a1 − A ≤ f xi ≤ e a2 − A ≥ e
xi − xj ≤ a a2 − b2 ≥ a + 1 xj ≥ h b1 ≤ h − 1
xi − xj ≥ b a1 − A − b1 ≤ b xj ≤ g b2 − A ≥ g
xi ≤ e a2 − Δ2 ≥ e xi ≥ f a2 − A ≥ e
xi − xj ≥ b a1 − A − b1 ≤ b xj ≤ g b2 − A ≥ g
xi − xj ≤ a a2 − b2 ≥ a + 1 xj ≥ h b1 ≤ h − 1
xi ≥ f a1 − A ≤ f xi ≤ e a2 − A ≥ e
xj ≤ g b1 ≥ g xi − xj ≥ b a2 − b2 ≤ b
xi − xj ≥ b a1 − A − b1 ≤ b xj ≤ g b2 − A ≥ g
xj ≤ g b1 ≥ g xi − xj ≥ b a2 − b2 ≤ b

b1 = b2 a1 = a2 − Δ2

xi ≥ f a1 − A ≤ f xi ≤ e a2 − A ≥ e
b1 = b2 a1 = a2 − Δ2

xi − xj ≥ b a1 − A − b1 ≤ b xj ≤ g b2 − A ≥ g

106 D. Kapur

Table 5. The constraints affect the original maxplus polyhedra in order 2

Order 2
Case 1: A = 0,B > 0, B ≤ Δ2 − Δ1 Case 2: A = B < 0, |A| ≤ Δ1

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi − xj ≥ b a2 − b2 + B ≤ b − 1 xi ≥ f a1 − A ≤ f
xj ≤ g b2 − Δ1 − B ≥ g xj ≥ h b2 − Δ1 − A ≤ h

Case 3: A = 0,B < 0, |B| ≤ Δ2 − Δ1 Case 4: A = B > 0, A ≤ Δ1

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi − xj ≤ a a1 − b1 + B ≥ a xi ≤ e a2 − A ≥ e
xi − xj ≥ b a2 − b2 + B ≤ b − 1 xi ≥ f a1 ≤ f − 1
xi − xj ≤ a a1 − b1 + B ≥ a xi ≤ e a2 − A ≥ e
xj ≤ g b2 − Δ1 ≥ g xj ≥ h b2 − Δ1 ≤ h
xj ≥ h b1 − B ≤ h xj ≤ g b2 − A ≥ g
xi − xj ≥ b a2 − b2 + B ≤ b − 1 xi ≥ f a1 ≤ f − 1
xj ≥ h b1 − B ≤ h xj ≤ g b2 − A ≥ g
xj ≤ g b2 − Δ1 ≥ g xj ≥ h b2 − Δ1 ≤ h
xi − xj ≤ a a1 − b1 + B ≥ a xi ≤ e a2 − A ≥ e
xi ≤ e a1 ≥ e xi − xj ≤ a a2 − b2 ≥ a
xj ≥ h b1 − B ≤ h xj ≤ g b2 − A ≥ g
xi ≤ e a1 ≥ e xi − xj ≤ a a2 − b2 ≥ a

a2 = a1 b1 = b2 − Δ1

xi − xj ≤ a a1 − b1 + B ≥ a xi ≤ e a2 − A ≥ e
a2 = a1 b1 = b2 − Δ1

xj ≥ h b1 − B ≤ h xj ≤ g b2 − A ≥ g

a1 ≤ 0 ≤ a2, b1 ≤ 5 ≤ b2. Further assume a1 − b1 ≤ −5 ≤ a2 − b2. For the first
branch of the program, B = 0 and 0 < A. Assuming that A ≤ Δ1 − Δ2, from
the entry in Table 3, the generators of the the overlapped max-plus polyhedron
are
(
a1

b1

)
,
(
a2−(b2−b1)−A

b1

)
. The entry for the conjunction of the loop test and the

branch condition (which is x < 5) from Table 4 is a2 −Δ2 − A ≥ 4. Similarly
for the second branch, A = B = 1 and A ≤ b2 − b1 the entry from Table 3 gives
the generators of the overlapped maxplus polyhedron are

(
a2−A
b2−A

)
,
(
a2−Δ2

b1

)
. From

Table 4, the entries corresponding to the loop test and the branch condition
(x ≥ 5∧x ≤ 9) (case 4) are: a2−A ≥ 9 (for x ≤ 9) and a2−Δ2 ≤ 5 (for x ≥ 5).

By putting all the constraints obtained from the two branches and from the
initial conditions, we get: a2 −Δ2 = 5∧Δ2 ≥ 1∧ a2 ≥ 10∧Δ1 −Δ2 ≥ 1∧ a1 ≤
0∧ b1 ≤ 5 ≤ b2∧a1− b1 ≤ −5 ≤ a2− b2. The parameters a1 = 0, a2 = 10, b1 = 5,
and b2 = 10 satisfy these requirements, giving the generators

(
0
5

)
,
(
10
10

)
.

From Table 3, the second polyhedron corresponding to order 2 (in which
a2 − b2 ≤ a1 − b1) is not possible since for the first branch, there is no overlap
between the two maxplus polyhedra. Similarly, the third polyhedron is also not
possible.

The result is thus the first polyhedron with the generators
(
0
5

)
,
(
10
10

)
, which

corresponds to the disjunctive invariant:

(0 ≤ x ≤ 5 ∧ y = 5) ∨ (5 ≤ x ≤ 10 ∧ x = y),

the strongest invariant for the loop in the above program.
We are currently investigating such tables for polyhedra represented using

three and four generators, and analyzing disjunctive invariants which can be
generated using the above discussed techniques.

Program Analysis Using Quantifier-Elimination Heuristics 107

Table 6. The constraints affect the original maxplus polyhedra in order 3

Order 3
Case 1: A > 0,B = 0, A ≤ Δ1 Case 2: A = 0, B > 0, B ≤ Δ2

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi − xj ≤ a a2 − A − b1 ≥ a xi − xj ≥ b a2 − b1 + B ≤ b
xi ≤ e a2 − A ≥ e xj ≤ g b1 − B ≥ g

Case 3: A < 0,B = 0, |A| ≤ Δ1 Case 4: A = 0, B < 0, B ≥ Δ2

Cases of constraints Generated constraints Cases of constraints Generated constraints
xi − xj ≥ b a1 − A − b1 ≤ b xi − xj ≤ a a2 − b2 + B ≥ a
xi − xj ≤ a a2 − b1 ≥ a xi − xj ≥ b a2 − b1 ≤ b
xi − xj ≥ b a1 − A − b1 ≤ b xi − xj ≤ a a2 − b2 + B ≥ a
xi ≤ e a2 ≥ e+ 1 xj ≤ g b1 ≥ g + 1
xi ≥ f a1 − A ≤ f xj ≥ h b2 − B ≤ h
xi − xj ≤ a a2 − b1 ≥ a xi − xj ≥ b a2 − b1 ≤ b
xi ≥ f a1 − A ≤ f xj ≥ h b2 − B ≤ h
xi ≤ e a2 ≥ e+ 1 xj ≤ g b1 ≥ g + 1
xi − xj ≥ b a1 − A − b1 ≤ b xi − xj ≤ a a2 − b2 + B ≥ a
xj ≥ h b1 ≤ h xi ≥ f a2 ≤ f
xi ≥ f a1 − A ≤ f xj ≥ h b2 − B ≤ h
xj ≥ h b1 ≤ h xi ≥ f a2 ≤ f

b2 = b1 a1 = a2

xi − xj ≥ b a1 − A − b1 ≤ b xi − xj ≤ a a2 − b2 + B ≥ a
b2 = b1 a1 = a2

xi ≥ f a1 − A ≤ f xj ≥ h b2 − B ≤ h

7 Concluding Remarks and Future Work

We have presented an efficient geometric heuristic for quantifier-elimination of
octagonal constraints. Program analysis based on this heuristics performs well (in
comparison with Mine’s method using the abstract interpretation framework).
When approximations (of assignment statements and test, for instances) are
made so as to capture certain kinds of properties of a program, then there is no
guarantee that the invariants derived using such approximations are indeed the
strongest (or for that matter, invariant of such a form does not exist, in case
verification conditions are unsatisfiable).

We are investigating how to make the proposed approach applicable to a richer
set of formulas for capturing properties of programs. In particular, we have gotten
encouraging results to generalize the approach to generate disjunctive invariants
using a subset of octagonal constraints as atomic formulas. We have been explor-
ing techniques to combine octagonal constraints and max plus constraints, with
the equality theory of uninterpreted symbols, and extending geometric heuristics
for such combination of theories. This will enable us to automatically derive prop-
erties of programs using arrays and other container data structures based on the
reduction method [12] for generating decision procedures for quantifier-free theo-
ries over such data structures.

Acknowledgments. The work on octagonal constraints was done jointly with
Zhihai Zhang when he visited UNM from Beijing University from October 2009 to
September 2010. Hengjun Zhao from the Institute of Software, Chinese
Academy of Science, helped in figuring out many of the subtle details in the ta-
bles for octagonal constraints, and developing their pictorial representations to
amplify the geometric approach. The ongoing work on the use of max-plus con-
straints for program analysis is jointly with Qu Li and Matthias Forbach of UNM.

108 D. Kapur

References

1. Allamigeon, X.: Static analysis of memory manipulations by abstract interpreta-
tion Algorithmics of tropical polyhedra, and application to abstract interpretation.
PhD thesis, Ecole Polytechnique, Palaiseau, France (November 2009), http://

www.lix.polytechnique.fr/Labo/Xavier.Allamigeon/papers/thesis.pdf

2. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Con-
ference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM
Press, New York (1977)

3. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

4. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-
ables of a Program. In: Conference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Tucson, Arizona,
pp. 84–97. ACM Press, New York (1978)

5. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 62–73. ACM (2011)

6. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI, pp. 281–292 (2008)

7. Jaffar, J., Maher, M., Stuckey, P., Yap, R.: Beyond Finite Domains. In: Borning,
A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg (1994)

8. Jeannet, B., Argoud, M., Lalire, G.: The interproc interprocedural analyzer
9. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys

(CSUR) 41(4), 21 (2009)
10. Kapur, D.: Automatically Generating Loop Invariants using Quantifier Elimina-

tion. Technical report, Department of Computer Science, University of New Mex-
ico, Albuquerque, NM, USA (2003)

11. Kapur, D.: A quantifier-elimination based heuristic for automatically generating in-
ductive assertions for programs. Journal of Systems Science and Complexity 19(3),
307–330 (2006)

12. Kapur, D., Zarba, C.: A Reduction Approach to Decison Procedures. Technical
Report, Department of Computer Science, UNM (December 2006)

13. Leveson, N., Turner, C.: An investigation of the therac-25 accidents. Com-
puter 26(7), 18–41 (1993)

14. Lions, J., Luebeck, L., Fauquembergue, J., Kahn, G., Kubbat, W., Levedag, S.,
Mazzini, L., Merle, D., Halloran, C.O.: Ariane 5, flight 501 failure (1996)

15. Miné, A.: Weakly relational numerical abstract domains. These de doctorat en
informatique, École polytechnique, Palaiseau, France (2004)

16. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear Loop Invariant Generation
using Gröbner Bases. In: Symp. on Principles of Programming Languages (2004)

17. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley (1998)
18. Sheini, H.M., Sakallah, K.A.: A Scalable Method for Solving Satisfiability of Inte-

ger Linear Arithmetic Logic. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS,
vol. 3569, pp. 241–256. Springer, Heidelberg (2005)

http://www.lix.polytechnique.fr/Labo/Xavier.Allamigeon/papers/thesis.pdf
http://www.lix.polytechnique.fr/Labo/Xavier.Allamigeon/papers/thesis.pdf

Electron Tomography and Multiscale Biology

Albert F. Lawrence, Séastien Phan, and Mark Ellisman

National Center for Microscopy and Imaging Research,
University of California, San Diego, California

Abstract. Electron tomography (ET) is an emerging technology for
the three dimensional imaging of cellular ultrastructure. In combination
with other techniques, it can provide three dimensional reconstructions of
protein assemblies, correlate 3D structures with functional investigations
at the light microscope level and provide structural information which
extends the findings of genomics and molecular biology.

Realistic physical details are essential for the task of modeling over
many spatial scales. While the electron microscope resolution can be
as low as a fraction of a nm, a typical 3D reconstruction may just cover
1/1015 of the volume of an optical microscope reconstruction. In order to
bridge the gap between those two approaches, the available spatial range
of an ET reconstruction has been expanded by various techniques. Large
sensor arrays and wide-field camera assemblies have increased the field
dimensions by a factor of ten over the past decade, and new techniques
for serial tomography and montaging make possible the assembly of many
three-dimensional reconstructions.

The number of tomographic volumes necessary to incorporate an av-
erage cell down to the protein assembly level is of the order 104, and
given the imaging and algorithm requirements, the computational prob-
lem lays well in the exascale range. Tomographic reconstruction can be
made parallel to a very high degree, and their associated algorithms
can be mapped to the simplified processors comprising, for example, a
graphics processor unit. Programming this on a GPU board yields a large
speedup, but we expect that many more orders of magnitude improve-
ment in computational capabilities will still be required in the coming
decade. Exascale computing will raise a new set of problems, associated
with component energy requirements (cost per operation and costs of
data transfer) and heat dissipation issues. As energy per operation is
driven down, reliability decreases, which in turn raises difficult problems
in validation of computer models (is the algorithmic approach faithful to
physical reality), and verification of codes (is the computation reliably
correct and replicable). Leaving aside the hardware issues, many of these
problems will require new mathematical and algorithmic approaches, in-
cluding, potentially, a re-evaluation of the Turing model of computation.

1 Electron Tomography

Electron tomograph is a developing technology for three-dimensional (3D) imag-
ing of cellular ultrastructure Frank [2006], Martone et al. [2002]. In combination

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 109–130, 2012.
© Springer-Verlag Berlin Heidelberg 2012

110 A.F. Lawrence, S. Phan, and M. Ellisman

with other techniques, this technology can provide 3D reconstructions of protein
assemblies, correlate structure with functional investigations at the light micro-
scope level, and provide structural information which extends the findings of
genomics and molecular biology. At present, ET is not a unified field of study,
but is comprised of a variety of techniques, roughly associated with the spatial
scales of interest, and the nature of the objects under investigation Frank [2006],
Hawkes [2004]. Researchers commonly use different techniques for elucidating
the structure of small particles and microfilaments (nm scale) as opposed to the
structure of cells and long range structure, such as exhibited by axons and den-
drites in neural tissue (μm scale). On the other hand, detailed investigation of
molecular structure in the context of the larger structure of organelles, cells and
cell assemblies in tissues is crucial to the resolution of many research problems
in biology.

EM images span spatial scales ranging from a fraction of a nm to about 50μm,
and 3D EM reconstructions may cover 1/1015 of the volume of a typical opti-
cal microscope reconstruction. The limit of resolution of light microscopy is on
the order of a 250nm, and even though super-resolution techniques applied in
“pointillist optical tomography” Heintzmann and Ficz [2007] may give much bet-
ter resolution, rare events and contextual information are missed. One example
where reconstruction at multiple spatial scales is particularly important occurs
in the study of the nervous system, where structure and function are correlated
from the molecular level to the whole brain. The electron microscope resolves bi-
ological structure down to the level of protein complexes; however, we must also
resolve proteins and protein complexes from series of images that follow nerve
processes such as axons and dendrites from cell to cell. More examples may be
found in the families of filaments which are associated with structural integrity
and various cell functions in most vertibrate cells. To be more specific, interme-
diate filaments appear to comprise a continuous structure extending through the
cytoplasm and intercellular space from one cell nucleus to another, and offer sites
for various dynamical processes in additon to their role in maintaining structure
Goldman et al. [2008]. These filaments are composed of bundles of alpha-helical
proteins, so the range of spatial scales comprises several orders of magnitude. In
order to develop a 3D atlas corresponding to the 2D images, many tomographic
reconstructions are required. Thus the problem of obtaining tomographic recon-
structions from large-format images is compounded by the problem of stitching
the digital reconstructions together Phan et al. [2012].

Because of advances in instrumentation, sample preparation, and computer
processing, ET provides an essential input to physiological modeling and sim-
ulation at multiple spatial scales. Physiological models are only as good as the
structural models on which they are based. Dynamical models of molecular in-
teractions, ion fluxes, transport and signaling depend upon the geometric details
from the molecular and subcellular level of membranes, microfilament networks,
and various intra- and extra-cellular channels. Realistic physical details are es-
sential for the task of modeling over many spatial scales.

Electron Tomography and Multiscale Biology 111

1.1 Steps in Electron Tomography

The process starts by taking a series of images of the sample at predetermined
orientations for various positions of the sample stage relative to the focal plane
of the microscope. After image acquisition, the reconstruction process of a single
tomogram is divided into three phases Lawrence et al. [2006]. The first phase,
tracking, is the precise location of a set of image features consistent across the
image series. The second step of the reconstruction, alignment, is the develop-
ment of geometric correspondences between the configurations of features in the
image. The alignment process provides a joint model (best orthogonal model)
of both the 3D positions of the features recovered in the tracking process and
projection maps from the 3D sample to the 2D images. The third step of the
process is the construction of a 3D density model of the object itself from the
image data and the projection transforms. This is the tomographic reconstruc-
tion proper, and may be performed via filtered backprojection. Figure 1.1 shows
sections of typical tomograms. As an option, several individual reconstructions
of overlapping regions of the object may be assembled together along regions
of intersection in order to create a larger field of view. All of these processes
can be performed automatically. We have developed a reconstruction package,
Transform Based Tracking, Bundle Adjustment and Reconstruction (TxBR), to
perform these tasks Lawrence et al. [2006].

Fig. 1.1. Left: TxBR reconstruction of a mitochondria from drosophila cell specimen
infected by Flock-House viruses (left, courtesy of Jason Lanman, Purdue). The data
was acquired using a 6-fold tilt series scheme on a 4k×4k CCD camera. The projection
correspondence between the 3D structure and the 2D micrographs is described by a
polynomial map of order 5. Right: TxBR tomogram of a caulobacter crescentus speci-
men reconstruction. Alignment of the tilt series was on the basis of several beads and
two extended contours.

112 A.F. Lawrence, S. Phan, and M. Ellisman

1.2 Problems with Electron Tomography

Electron tomography presents a number of special problems. The imagery is
low contrast and noisy with limited sampling of projection directions; sample
warping and the curvilinearity of electron trajectories make classical techniques
of X-ray tomography problematic. In addition, the volume and scale of the data
make automated preprocessing and image segmentation necessary. The need for
solution of these problems has spurred the introduction of new techniques.

The assumption of travel along straight-line paths is not true in an electron mi-
croscope, as focusing is performed by means of magnetic fields Reimer and Kohl
[2008]. Because electrons travel in curvilinear trajectories under the influence
of the magnetic fields (see figure 1.2), it is generally not possible to align all
regions in large images properly using 2D deformation. We have noticed on one
of our microscope deviations on the order of 50 pixels and more at the periphery
of 8k×8k images taken at high sample tilt angles. This deviation comes from
objects at different distances from the focal plane moving in ways that are not
predictable from models based on straight ray transforms. This problem must
be solved by considering the geometric implications of curvilinear electron tra-
jectories in the formation of an image. Once the alignment and reconstruction
problems are placed in this context, it is easier to include compensations for
other significant geometric distortion phenomena, such as mass loss caused by
the high energy electrons and lens aberrations.

Fig. 1.2. Stage series for a sample containing 20nm size gold beads. Multiple electron
micrographs, acquired on a 4k×4k CCD moving the sample stage vertically by step of
1μm within a range 20μm, have been superposed. Apparent motion of the particles is
related to the helical nature of the electron paths. A similar effect appears by changing
the objective focal plane.

Electron Tomography and Multiscale Biology 113

2 The Mathematics of Electron Tomography

2.1 Classical Beam Model

Because electrons move in curvilinear trajectories in the electron microscope, we
are led to consider the general situation of integrals along curved paths. The
problem is to reconstruct an object with a three dimensional density distribu-
tion from image intensities, where the density is related to a local scattering
cross-section. The image intensity at each point of each image represents the
exponential of a line integral along a specific trajectory through the object .

Transforms by means of line integrals along curvilinear trajectories have been
studied as generalized X-ray transform. The generalized ray transform is defined
for a family of curves in R3, or electron trajectories through the object, (for
example, a family of helices):

Γ = {γx,ω(t)|t0 ≤ t ≤ t1} (2.1)

where x = (x1, x2) denotes a point in the image plane and ω corresponds to a
physical rotation of the object. For a given electron path the image intensity at
rotation ω is given by

I = I0e

−

t1ˆ

t0

u [γx,ω(t)] dt

(2.2)

where I(x) represents the electrons impinging the image plane, and Io repre-
sents the initial beam intensity. In the experimental setting the values for ω
and (x1, x2) are discrete, but in the following we discuss the continuous case for
simplicity.

By taking the log of the image intensity, we obtain the generalized ray trans-
form Sharafutdinof [1999] as follows:

RΓ u(x, ω) ≡ v(x, ω) =

t1ˆ

t0

u [γx,ω(t)] dt (2.3)

where the integral is taken w.r.t. the arc length parameter and u and v are the
object density and image intensity, respectively.

2.2 Integral Geometry and the Generalized Radon Transform

The generalized X-ray transform may be seen as a special case of a family of
transforms arising from double fibrations. In our case we consider two smooth
3-manifolds X and Y and a submanifold Z of X× Y with projections p : Z → X
and q : Z → Y. We require that the sets Z(μ) = q−1(μ) μ ∈ Y and Z(X) =
p−1(X) X ∈ X are algebraic subsets of Z. The manifold Z is termed an in-
cidence manifold, and can be determined locally by a function P (X, μ) = 0.
This construction has been studied in a variety of contexts Ehrenpreis [2003],

114 A.F. Lawrence, S. Phan, and M. Ellisman

Greenleaf and Seeger [2002], Guillemin [1985], Helgason [1999], Palamodov [2004],
Gelfand et al. [2003], Hörmander [1990].

We may also take Y to be a family of submanifolds μ of X with measures
dmμ (in our case trajectories with arc-length measure; reference to a particular
family of trajectories is suppressed). The Radon transform of a function u on X
is defined by

Ru(μ) =
ˆ
X∈μ

u(X)dmμ(X), μ ∈ Y, (2.4)

and the adjoint Radon transform, mapping functions v on Y, is given by

R∗v(X) =
ˆ

μ�X

v(μ)dmX(μ), X ∈ X. (2.5)

Inversion formulas are generally up to an error operator with more regular prop-
erties:

(−Δ)(n−1)/2
R∗Rf = f + Kf. (2.6)

Here K is a classical pseudodifferential operator, and the measure is the stan-
dard measure on the unit sphere Beylkin [1984]. We note that the error term
is smoother than the original function so the reconstruction process generally
preserves singularities, i.e. edge information. This formula holds when the sets
associated with μ are hypersurfaces. For systems of lower-dimensional objects,
we replace the left-hand side by (−Δ)(n−1)/2 R∗TRf, where T is an appropri-
ate mapping. As before, locations of singularities in the original function are
preserved. We should note that the details of this formula vary according to
the assumptions we make on the system of hypersurfaces and measures that
define the transform and its adjoint Quinto [1980, 1981, 2001], so this should
be regarded as describing the theory only in a formal sense. Furthermore, the
magnitude of the error term is also dependent on the specifics of the situation.
For example, smoothness conditions may not apply when the forward transform
is defined by algebraic maps. We do know that for the Radon transform defined
by systems of smooth manifolds the error term approaches zero as the mani-
folds approach hyperplanes Beylkin [1984]. Similarly, for the X-ray transform,
our numerical investigations indicate that the error term becomes small as the
trajectories approach straight lines.

A more general approach to the Radon transform is via the incidence function
P (X, μ) rather than double fibrations. Using notation similar to that introduced
in De Knock et al. [2006]:

R[u](μ,x) =
ˆ

δ(P (X, μ) − x)u(X)dX. (2.7)

In this integral, the expression δ(P (X, μ) − x) corresponds to the submanifold
where P (X, μ) − x = 0, so integration is along this submanifold. The param-
eter μ may include the angle of rotation and the coefficients of the projection

Electron Tomography and Multiscale Biology 115

map while x may include the coordinates in the image as well as other pa-
rameters. Note that P (X, μ) may be a vector function and the function u may
be defined on a manfold of dimension n, so the dimension of the submanifold
can be anything less than n. If we multiply P (X, μ) − x = P (μ,x;X), by any
smooth nonzero function h(μ,x;X), the submanifold does not change but in a
distributional sense δ(P (μ,x;X)h(μ,x;X)) = δ(P (μ,x;X))/h(μ,x;X). If h is
a function depending only on X, it may be absorbed into u, so changing the
incidence function is equivalent to changing the function u by a nonzero factor.
The incidence expression can also be modified to deselect certain trajectories.
This has application to artefact suppression.

An inversion formula for the oriented generalized Radon transform over sub-
manifolds of dimension n-1 is available Palamodov [2011]. In this case the trans-
form is dependent only on the point sets of the submanifolds and not the specific
form of the incidence relationship.

2.3 Alignment

For alignment purpose, TxBR makes use of point features. As part of sample
preparation, the experimentalist deposits gold beads on both surfaces of the
section. These beads are marked in the images by semi-automated (tracking)
procedures Amat et al. [2008]. Image alignment can be performed in TxBR with
any general set of object orientations, as long as the basic problem is overde-
termined. However, the sample preparation does not give a good distribution of
beads on both surfaces, so alignment is suboptimal. Furthermore, gold beads,
being very dense, produce dense reconstruction artifacts over a long range in the
object Lawrence et al. [2006]. We will discuss alternative procedures, based on
intrinsic features below. This may reduce or eliminate the need for beads.

The image alignment problem is intrinsically three dimensional. In particular
an alignment model entails calculation of position delineating structures in the
object, and a set of projection maps which map each trajectory into a point in
an image. The 3D position markers in the object are required to map into the
2D position markers in the image under these projection maps. This model is
calculated via an optimization which minimizes the reprojection error. The joint
data of a set of 3D coordinates and the parameters determining the projection
maps is termed an alignment model. This procedure entails an unavoidable in-
determinacy, because a warping of the object which carries the calculated set 3D
position markers into another set of 3D markers can be compensated by com-
posing the projection maps with the inverse warp. This “gauge ambiguity” in
the alignment may be exploited for image processing purposes. One important
application is in the stitching of reconstructions originating from montages and
serial sections. A more subtle aspect of the gauge ambiguity emerges when we ex-
press integration over trajectories in terms of a singular function. In this case, we
can control both the geometry of the reconstruction and the reconstructed den-
sity function. This is good for the image processing, if somewhat arbitrary with
regard to physical fidelity. This approach, although departing somewhat from
a classical physical model of the electron microscope, puts the mathematics of

116 A.F. Lawrence, S. Phan, and M. Ellisman

artefact suppression on a firm mathematical foundation. We discuss applications
to stitching of reconstructions and artifact suppression below.

Although we do not discuss the details in this paper, alignment and tracking
are both done by a bootstrapping process. We generally start with a crude two-
dimensional alignment of the electron microscope images, and use orthogonal
back projection along approximate straight line trajectories to get estimates of
the 3D coordinates of the beads in the object. These estimates are improved
via analysis of the proximity data of the initial straight line trajectories to
obtain better position estimates and bundle adjustment to obtain projections
along curvilinear trajectories. This process has been mostly automated and used
sucessfully in several ET reconstructions.

Alignment on Point Features. Inverting the transform RΓ via backprojec-
tion requires the construction of projection maps which are constant along the
trajectories through the sample. In particular, we require a set of projection
maps Pω so that

Pω

(
γ1
x,ω(t), γ2

x,ω(t), γ3
x,ω(t)

)
= (x1, x2). (2.8)

We can make various choices for the projection maps; one of the simplest
is the projective model, which roughly corresponds to a pinhole camera
Heyden and Åström [1997]:

λω (X1, X2, X3)

⎡⎣x1

x2

1

⎤⎦ = Porth

⎛⎜⎜⎝[Aω|Bω]

⎡⎢⎢⎣
X1

X2

X3

1

⎤⎥⎥⎦
⎞⎟⎟⎠ . (2.9)

In this model λω (X1, X2, X3) =
∑

iλ
i
ωXi + 1, Porthis the projection onto the

first two coordinates and [Aω |Bω] represents an affine map:

[Aω |Bω] =

⎡⎢⎢⎣
a11

ω a12
ω a13

ω b1

a21
ω a22

ω a23
ω b2

a31
ω a32

ω a33
ω b3

0 0 0 1

⎤⎥⎥⎦ . (2.10)

In practice, the λi
ω are small, so λω ∼ 1, and Pω can be represented as a pair of

rational polynomials. In order to calculate the various coefficients, we identify a
set of point-like features {X�} in the object, which can be tracked from image
to image:

T ω� = {(xω�,1, xω�,2) |ωε {ω1, ω2, · · · , ωN} , PωX� = xω�} . (2.11)

Here T ω� denotes the track of the ith point feature through the image series.
Estimation of the parameters of the projection maps and the 3D coordinates of
the features gives us an error term

E =
∑
ω,�

‖Pω(X�) − xω�‖2
, (2.12)

Electron Tomography and Multiscale Biology 117

so the parameters of the projection maps and coordinates of the features can be
calculated through an optimization procedure. Note that {X�} is a set of point
features, which is described as an XYZ model in Lawrence et al. [2006]. Initial
estimates are generally given through triangulation, as the object rotations are
already known approximately. Note that the T ω� are already known and that
the projections can be represented as sparse matrices in the track and rota-
tion indices, so with sufficient tracks, this can be made into an overdetermined
problem with a sufficient number of tracks Lawrence et al. [2006]. The projec-
tive alignment model can be extended in several ways. For example, we can add
nonlinear terms to account for the reprojection errors in the projective model.
In the present code, we can calculate polynomial corrections up to 6-th degree
in our present code Phan and Lawrence [2008]. This is done by calculating the
best projective or alternatively an orthogonal projection model, and then fixing
{X�} and the parameters λi

ω. Under these constraints, Pω = Pproj,ω + Pnonlin,ω

where Pnonlin,ω is a polynomial in the X-coordinates, and the nonlinear term is
determined by a regression calculation.

Finally, note that the solution to the alignment problem is not unique. Chang-
ing the projection map by a warping can be cancelled by composing the calcu-
lated density map with the inverse warp. This is refered as the gauge ambiguity
problem and can be used in subsequent image processing as for instance flatten-
ing the reconstructions (see below).

Alignment on Extended Features. For the most precise alignments, we
require point-like features consistent across series of images taken at various
rotations of the object. These features must be well-distributed in the object.
Some compromises are made in practice with for example point features only
visible in a few micrographs, or small spherical gold beads a few nanometers in
diameter deposited on only one of the surfaces of the object. As a result, less
than optimal reconstructions are generated.

The inner structure of cells is rich in membranes. From various observations,
we see that membranes most often occur as surfaces which bound enclosed re-
gions within the cell. Common practice in electron microscopy leads to strongly
stained membranes, which project to curves bounding identifiable regions in the
images. This raises the possibility of alignment of series of EM images via re-
construction of surfaces in the object from the observed contours in the images.
Under certain circumstances this problem reduces to a problem in projective
duality. In particular, if the family of maps is projective

We describe here the general case. We take sub-segments of observed contours.
These contours are projections of portions of surfaces in the object (surface
patches). We can assume that the surface patches are constructed in such a way
that we have no more than one contour segment at each rotation ω from each
surface patch 	 in the corresponding micrograph (Note that a given image may
have contour segments arising from several surface patches):

Cωρ = (xω�1(t), xω�2(t)) . (2.13)

118 A.F. Lawrence, S. Phan, and M. Ellisman

Coordinate functions xω�1(t) and xω�2(t) are described in practice with polyno-
mial functions of an arc length parameter t.

Working backward, we also assume that each image at rotation ω arises from
a curvilinear projection as defined by Equation 2.8. Projection maps Pω =
(Pω1 , Pω2) are given algebraically as polynomial maps of X. At last, we assume
that each surface patch 	 is described by an imbedding

S� : (t, u) �→ (Sρ1(t, u), Sρ2(t, u), Sρ3(t, u))

of an bounded open subset U of R2 into R3. Given these conditions, we can
represent the pre-image of each contour Cω� in surface patch via a function
uω�(t) specifying the relation between the two parameters u and t. This relartion
can be approximated with as well with a polynomial function. The projection
constraint of a patch 	 on its set of contours then writes:

PωS� (t, uωρ (t)) = Cω�(t) (2.14)

As the equivalent of 2.12 for the point marker case, we can define the following
error term:

E(1)
ω� =

ˆ t1

t0

‖PωS� (t, uω� (t)) − Cω�(t)‖2
dt (2.15)

In addition, it is possible to express more tangency constraints between the
surface patches and electron trajectories from geometrical arguments. A second
set of error terms is defined as:

E(2)
ω� =

ˆ t1

t0

∥∥∥∥∇Pω1 ×∇Pω2 ·
(

∂S�

∂t
× ∂S�

∂u

)∥∥∥∥2 dt (2.16)

where the cross product terms are evaluated at S� (t, uω�(t)) . Minimizing the
sum of all the error terms 2.15 and 2.16 with respect to projection and patch
parameters, one obtains the estimates for the projection maps in terms of the
known contour coefficients. Counting the parameters, we can see that the system
is overdetermined if there are sufficient coordinate patches, and the approxima-
tion to each curve segment in the images is of suffiently high degree compared to
the approximation for the curves in the coordinate patches. Thus this problem is
analogous to the bundle adjustment problem described in the previous section,
with coordinate patches taking the role of point features.

The remaining issue is obtaining initial estimates for the bundle adjustment.
Since the projections in an electron microscope are nearly projective, one may
estimate the maps by reconstructing the surfaces of small, well-defined objects
from the images. Projective duality Brand et al. [2004] or epipolar methods may
be employed Liang and Wong [2007] for this. Figure 1.1 (right) shows a recon-
struction obtained using contour alignment.

2.4 The Reconstruction Process

Subsequently to tracking and alignment, reconstruction proper entails calcula-
tion of object densities from the image data. This necessitates the inversion of

Electron Tomography and Multiscale Biology 119

the X-ray transform; filtered backprojection, algorithms based on Fourier meth-
ods and iterative methods are the most common. TxBR is based on filtered
backprojection. This method was originally selected by a process of elimination:
Fourier methods are less noise tolerant than filtered backprojection and itera-
tive methods tend to be computationally expensive. Iterative methods, although
attractive in terms of reconstruction quality, must be ruled out because of the
enormous volumes of data produced by wide-field electron microscopes. Further,
a convenient modification of the Fourier slice theorem is not available.

Problems with Fourier Methods. The transform RΓ may be represented
by a Fourier integral operator IΓ over a bounded region containing the object.
For the purposes of discussion we will ignore edge effects and assume that the
object density u(X) is zero outside this region. We take an alternative approach
where we represent and represent the Radon transform as a fanily of coordinate
transforms, one for each tilt. This will illustrate the dependence of the integral
in 2.7on the representation of the incidence relation

We consider the map Gω : R3 → R3 induced by the family of trajectories
Γω = {γx,ω} :

Gω (x, X3) = γx,ω(X3). (2.17)

Note that the map Qω(X) = (Pω (X) , X3) inverts Gω.
Now consider the classical Radon transform on u:

R (u ◦ Gω) (x, 0) =

t1ˆ

t0

u ◦ Gω(x, t)dt =

t1ˆ

t0

u (γx,ω (t)) dt = RΓ u(x, ω), (2.18)

where the LHS is the transform at zero rotation. The Fourier slice theorem may
be expressed as follows.

ũ � Gω(kx, ky, 0) = R̃Γ u(kx, ky; ω)

By the above equation the Fourier transform of R (u ◦ Gω) (x, 0) w.r.t. x is the
Fourier transform of RΓ u(x, ω) w.r.t. x. We can consider the map Gω as a
coordinate transform on R3. For any coordinate transform, G, the correspond-
ing transform on Fourier space is a Fourier integral operator Duistermaat et al.
[1994]. If uω = u ◦ Gω then

ũω(η) =
1

(2π)3

¨
ei(X·ξ−η·G−1

ω (X)) |det Gω(X)|−1 ũ(ξ)dXdξ ≡ IGω ũ(η) (2.19)

Note that u is defined on R3 so this formula makes sense in three dimensional
space. We can apply a warping transform to straighten the trajectories, and then
apply the Fourier slice theorem to obtain a slice of the Fourier transform of the
density function on the warped volume. The coordinate change then gives a map
into the unwarped volume. The problem with this is that the Fourier integral
operator may spread the image of the Fourier slice over other slices, so we are

120 A.F. Lawrence, S. Phan, and M. Ellisman

no longer in the situation of the classical Fourier slice theorem. This gives an
example of the sort of change we might expect when we change the form of
the incidence function. Furthermore the computational advantages of the Fast
Fourier Transform are lost when we must calculate a Fourier integral operator.
An alternative way of applying the fourier methods is to use the formulation of
De Knock et al. [2006]. This is an ongoing research.

2.5 Inversion in TxBR

As noted above, we employ for TxBR a modification of the standard filtered back-
projection process Natterer and Wübbeling [2001]. The electron micrographs are
filtered by means of a modified r-weighting. The transforms calculated via the
bundle adjustment are then applied to points of the object space to obtain cor-
responding points in the electron microscope images. The density values of the
points in the filtered images are pulled back in the object and averaged into
the density value there. This algorithm is computationally efficient, and can be
easily modified to work with curvilinear trajectories.

Problems with Filtering. For the generalized Radon transform, RΓ

we can define the adjoint transform R∗
Γ as the backprojection operator

Natterer and Wübbeling [2001]:

R∗
Γ v (X) =

ˆ

Pω(X)=x

v(x, ω)dω. (2.20)

Given some relatively mild conditions on the family of trajectories ΨΓ = R∗
Γ RΓ

is an elliptic pseudodifferential operator Guillemin [1985] as is Ψ∗
Γ = RΓ R∗

Γ .
Heuristically, we would like to invert Ψ∗

Γ on the range of RΓ so that we can express
the inverse to RΓ as the composition of the backprojection with a generalized
filtration operator:

u = R∗
Γ (Ψ∗

Γ)−1
v (2.21)

This is presently being investigated.
On the other hand, ΨΓ may be regarded as a convolution with a spatially

dependent point spread function:

ΨΓ u =
ˆ

K(X,Y)u(X)dX (2.22)

and the RHS form may be inverted approximately. One method is to divide the
object into subregions so that the operator is nearly constant over each subregion
and perform a local deconvolution. In TxBR we have chosen a simpler alternative:
to approximate the general filter by a simple 1-D filter. This is approximately
correct due to remapping.

Electron Tomography and Multiscale Biology 121

Remapping. TxBR employs a remap to remove lens distortions and improve
performance at the filtering step. Assuming that the electron trajectories are
straight-line and all parallel, rotation around a single tilt axis parallel to the
image plane should produce a simple apparent motion of point-like features in
the object. These particle tracks, from image to image, should present as straight
lines, and the point spread functions after a simple backprojection should be two-
dimensional. In order to approximate the ideal case the TxBR code calculates
image warpings which bring the marker trajectories as close to straight lines
as possible. In particular, the code computes the reprojected positions of the
markers. Once this is done a simple optimization procedure is used to calculate
the image warpings that bring the particle tracks as close to parallel straight
lines as possible. Since the warpings are parameterized as polynomial maps, this
optimization reduces to a simple regression.

We note that geometric aberrations in the optics further along the optical axis
than the object are generally two-dimensional. Image warping by sufficiently high
degree polynomial coordinate changes is sufficient to compensate for these effects.
Remapping, as performed by TxBR will also remove most of the distortions due
to helical trajectories and object warping during the course of image acquisition.

Backprojection. Strictly speaking backprojection along the electron trajecto-
ries from the aligned image data (log transformed) gives a complicated transform
of the original object density. Rather than a simple convolution with a fixed point
spread function, which we can represent computationally as a spatially depen-
dent convolution. At present, the remapping scheme described above gives results
which appear to be as good as the spatially dependent deconvolution schemes
we have tried. Because the error in the one dimensional filter increases as image
size increases, we expect that this may change. We will include this in TxBR as
an option in the future. This is especially appropriate for parallel machines and
desktop units with 4 graphics processor boards.

TxBR employs a fast recursion which reduces the polynomial evaluation to
relatively few additions. The form of the recursion is suited to a high degree of
paralllelization, for example graphics processor units.

The backprojection is the final step of the reconstruction. During the backpro-
jection routine, the density of an object point is evaluated from its corresponding
values in the filtered images. The projection maps are calculated in the align-
ment step, and are represented as polynomials in three variables. Evaluating the
polynomial functions on a large number of equidistant points can be compu-
tationally very expensive. To bypass this problem, we make use of a recursive
scheme which allows us to compute polynomials from neighbor to neighbor vox-
els in a X3-slice via simple additions. We proceed by calculating along the X1

coordinate. This reduces the problem to a single variable. In the case of a poly-
nomial function q of order n (of a single variable) knowledge of the first n finite
differences is required at one node qi

m to be able to calculate their values on
the next node qi+1

m = qi
m + qi+1

m+1 Finite differences of order n (and higher) are a
constant (or zero) over the entire grid making the scheme possible. Evaluating

122 A.F. Lawrence, S. Phan, and M. Ellisman

qi+1
m from m = n − 1 to 0 ends up to the polynomial evaluation of q = qi+1

0 on
node i+1. More details of the procedure may be found in Lawrence et al. [2006].

2.6 Artifact Reduction for Improved Reconstruction

Fig. 2.1. This figure corresponds to a piece of Figure 1.1. The left hand picture is a
tomogram obtained as a single tilt reconstruction, from one portion of the six-fold tilt
reconstruction. Reconstructions were renormalized and the difference is shown on the
right hand side. The range of pixel values in the difference is illustrative of the amount
of noise and artifact in single tilt reconstructions.

While montaging and serial sectioning allow to extend the 3D reconstruction di-
mensions, the result still carry undesirable artifacts that can undermine its final
resolution. Figure 2.1 illustrates the extent of the artifacts in a regular recon-
struction. This is especially true when the data is acquired sparsely to protect
the sample from excessive beam damage. The elimination of those reconstruc-
tion artifacts is essential in extending the range of spatial scales available to
EM tomography toward the imaging of proteins and protein structures. In ad-
dition improvements in reconstruction quality facilitate the application of AI
techniques associated with object recognition, segmentation and determination
of large-scale structures in biological objects. Artifacts essentially emerge from
two causes, (i) the discrete nature of the reconstruction algorithms and (ii) the
lack of information at high angles. The first one is mainly responsible for streaks
effects in the volume; the second one, often referred as the missing wedge prob-
lem, creates glass hour shape feature around electron dense area such as the gold
markers which are used for alignment purpose. Several methods have been pro-
posed to limit those effects. To remove the streaks, synthetic views can be gener-
ated between consecutive tilts in order to fill the missing information Cao et al.
[2010]. It is also possible to soften the very large electro-dense variations that
are responsible of the stronger artifacts, by using for instance in paintaing tech-
niques. Cross-validation techniques can also be used efficiently to this purpose
Cardone et al. [2005].

Electron Tomography and Multiscale Biology 123

In the same order of idea, we propose a method based on adequately mix-
ing equivalent measurements on a sample. Multiple tilt series are often used to
improve reconstruction quality. They allow for a better sampling of the recip-
rocal space, and improvements from just a single tilt series to a dual tilt series
reconstruction are quite noticeable. The common procedure with multiple tilt
series consists in grossly averaging the contribution of each tilt series in a direct
manner. It is possible however to apply a non-local weighting scheme when gen-
erating the final volume. This later is therefore not just taken as a simple sum of
the different tilt series. Since artifact patterns between series are mostly disjoint,
the idea is to weight accordingly the contribution of each tilt series, with a lesser
weight when artifacts might be significant. For instance, in the case of a dual
tilt series (binary fluid analogy):

u(r) = xuA(r) + (1 − x)uB(r), with x =
〈|∇uB|〉

〈|∇uA|〉 + 〈|∇ρuB|〉 (2.23)

The weighting factor x emphasizes contribution of the series with the lesser
density variation around a given point in space. Brackets denotes here an average
over the different directions and around the point of interest. Figure 2.2 displays
the improvement of such a procedure on the tomographic reconstruction of a
mitochondria from a drosophila cell. Improvements in the reconstruction (left
and middle) as well as the corresponding weighting factor are both displayed on
figure 2.2. The weight parameter x which is displayed on the right side of figure
2.2 offers an approximate map of the main reonstruction artifacts.

Fig. 2.2. Artifact attenuation via a mixture-like approach for a dual tilt series re-
construction of a mitochondria. Left: With a standard summation. Middle: With a
mixture-like cross-validation. Right: The weight parameter x in eq. 2.23.

3 The Computational Problems Associated with
Structural and Systems Biology

One example of a large scale problem in systems biology is understanding
the structural and functional complexity of the brain. This is intrinsically

124 A.F. Lawrence, S. Phan, and M. Ellisman

a multiscale problem, given that each cell is a spatially organized system of
nanomachines and that cells are organized into networks. Information processing
in the brain is certainly going on at many spatial scales so mapping the structure
and interactions must take account of organization from the molecular level up to
neuroanatomy. The initial phases of this work will require the image processing
of large sets of electron microscope imagery.

Although it is too early to delineate the outcome, new staining techniques
Machleidt et al. [2007], Shaner et al. [2005], Gaietta et al. [2002] are being used
to probe the functional organization of the brain. Information processing and
memory may depend as much on the interactions along filamentous networks
within cells as on the arrangements of axons, dendrites and synapses in networks
of neurons. Indications coming from current research point toward tight spatial
organization within cells, and correlation of domains within cells mediated by
signalling along networks of molecular fibers. Putting the structural components
together in a coherent picture is already an enormous challenge.

To give one specific example, one simplified model of information processing in
the brain pictures neural networks as assemblies of nodes which perform thresh-
olding operations and weighted sums Wolf and Guttmann [2007]. This model
reduces pattern recognition in the brain to operations in the tropical semiring.
Although physiological evidence supports such models, the cellular substrates
and organization in neural tissue is a mystery. These are the type of questions
which may be answered with these new techniques in light and electron mi-
croscopy.

Mapping of the 3D structure of the brain down to cellular ultrastructure
involves the identification and characterization of many structures. A partial
list would include mitochondria, golgi apparatus, sigmoid bodies, nuclei, cell
membranes, endoplasmic reticulum, lysosomes, nucleoli and primary cilia. This
requires identification, measurement and characterization of geometric attributes
peculiar to each ultrastructural species. To give a specific example from our
laboratory, one 3D reconstruction generated in a few days using a serial block face
technique Denk and Horstmann [2004] contained 40 cell nuclei. Manual tracing
of the relevant nucleus structures in a single tomogram section by a trained
technician typically requires about 3 hours, so manual characterization of the
entire nucleus over hundreds of tomogram sections would take many thousands
of hours. To be quantitative, an initial analysis of a 2 terabyte data set by a
team of student volunteers yielded an output covering 22% of the volume after
three months. We anticipate the same problem with analyzing large volume of
data generated with a transmission electron microscope. In fact, the problem
may be worse because in this case because of the finer details.

3.1 Serial Section and Montaging

Large field high resolution tomography for biological specimen necessary to
provide the multi-scale information remains a challenging task. In practice the
imaging, which mainly relies on the scattering contrast, is limited either by the
inelastic scattering events, the detector size or the magnetic lens aberrations.

Electron Tomography and Multiscale Biology 125

While the former restrict the specimen effective thickness to values (250–400nm
at 300kV) related to its electron mean free path, the latter restrict the lateral
dimensions of the area under scrutiny due to out-of focus effects at high tilt
angles.

Two particular techniques allow to overcome those limits: serial sectioning
and montaging. They bring however additional complications during the data
processing step.

To generate thicker reconstructions, the biological sample is physically sliced
into smaller adjacent parts, each of them running through a tomographic
process. This technique is known as serial sectioning and is also used in light
microscopy. The smaller volumes are then digitally reassembled into a larger
reconstruction. This stacking process can be intricate because of the possible
sample deformations as well as the curvilinear nature of the electron beam tra-
jectories. One advantage of the TxBR tomographic package is its ability to accu-
rately flatten the sections during the reconstruction process Phan et al. [2012].
This operation is possible as long as gold markers are available and well dis-
tributed on both side of the sections, and the specimen deformation is accurately
described with polynomial maps. In this case, the gauge ambiguity is lifted by
selecting mathematical solution for the intermediate reconstructions correspond-
ing to the flattest reconstruction.

Montaging allows to effectively increase the overall field of view of the speci-
men, while keeping a relatively fine pixel definition in the electron micrographs.
In a sense, it eliminates the need of large detectors (commonly used CCD arrays
are made of 4k×4k pixels), but a longer acquisition time is needed. To achieve
very large lateral reconstruction, the specimen is moved under the beam at dif-
ferent tile location and different orientation. Within TxBR, the reconstruction of
the entire region of interest is completed in one step, the bundle adjustment be-
ing carried for all the tiles simultaneously. This optimization process can quickly
become intensive with the number of tiles increasing, as entirely new markers
and new tilts join the computational process. Note also that warping effects in
montages can be also very pronounced as the sample is further exposed to the
electron beam. An alternative to moving the stage for montaging is available,
and consists in shifting the image coils of the electron microscope to build the
different tiles. The accessible area is still rather limited by out-of-focus effects.

3.2 Processing Requirements

In order to develop a 3D atlas corresponding to the light microscope images,
many tomographic reconstructions (serial sections or montages) are required.
Raw data input to tomographic reconstructions comprises between 60 images for
lower quality reconstructions and 360 images for higher quality reconstructions.
Therefore for the larger format images (8k×8k CCD cameras) a typical data set
for a single reconstruction may occupy as much as 50 gigabytes on disk, and
a single reconstruction may approach a terabyte. Data for montages and serial
sections will scale accordingly.

126 A.F. Lawrence, S. Phan, and M. Ellisman

In order to get some estimate of the magnitude of the computational problem,
we also note that the standard method, filtered backprojection, is of order N3,
where raw data images are N×N Natterer and Wübbeling [2001], Lawrence et al.
[2006]. A second complication arises from the non-linear nature of the problem
we need to solve. As discussed previously, the specimen can warp throughout the
data aquisition process. This effect is compounded by the circumstance that the
usual assumption in X-ray tomography that the illuminating radiation travels
along straight-line rays is not true in the electron microscope (see figure 1.2).
This requires the evaluation of polynomials of three variables and degree up to
five or six, so a naive implementation of the backprojection could increase the
computational burden by a factor of a several hundred Lawrence et al. [2006]
(see section 2.5 for the backprojection case). Computations involved in those
large scale ET reconstructions require both efficient algorithms and parallel pro-
cessing.

3.3 Parallel Processing Approaches

We have developed a parallel version of our software package. TxBR is in pro-
duction use and has been adapted for various parallel computers, computer clus-
ters and processors with multiple graphical processor unit (GPU) boards. In
recent months the high performance computing community has embraced GPG-
PUs (General Purpose Graphics Processing Units) for high performance desktop
computers. With the latest GPU cards approaching a top speed of a teraflop per
unit and for a relative cheap price per unit, it is possible to run computationally
intensive codes that were considered to be in the realm of clusters and supercom-
puters on inexpensive PC hardware. Each processing unit is capable of running
a thread of code making the architecture ideal for highly parallel problems.

The TxBR back-projection algorithm is by nature embarrassingly parallel.
Any sub-set of the final volume can be reconstructed independently, given a
data set of electron micrographs and their associated projection maps. We have
parallelized the backprojection portion of the TxBR code to run either on com-
puter clusters or on GPU cards. In both cases, the algorithm is quite similar. As
we note below, the main difference between the two approaches resides in the
amount of available memory (RAM) during computation, which de facto defines
the granularity of the reconstruction done at every node.

During the back-projection routine, density at each voxel of the reconstruction
receives a contribution from a corresponding pixel intensity of a pre-filtered
micrograph. This correspondence is given by the projection maps, which are
calculated during alignment. During the process, one micrograph, its associated
projection map as well as the subset being reconstructed should be available
in the RAM of each of the nodes. Electron micrographs can be larger than
8k×8k pixels (256Mb if encoded with float numbers). In today’s clusters, each
node should therefore be able to reconstruct a volume containing at least several
sections of the micrograph size.

Porting the TxBR back-projection code to run on a computer cluster has
proven to be straightforward, the application running at each node being the

Electron Tomography and Multiscale Biology 127

exact original single-threaded code. In practice, we used the MPI (Message Pass-
ing Interface) protocol and allows simultaneous initialization of the reconstruc-
tion threads in this parallel environment. In GPU cards, on the other hand, the
available RAM per node is hundred times smaller: the atomic reconstruction
subset at each individual node has to be smaller and was chosen to be one pixel
line. All the computation for each particular row and its backprojection into the
3D block are calculated in parallel with the other threads.

We have investigated the speed-ups seen by running the parallel version of the
algorithm on a PGPU with different data sizes and orders of approximations. A
speed-up for an algorithm is defined as the ratio of the computation time of a fast
serial implementation to the computation time on a parallel architecture. Parallel
computation time was observed by running several hundreds of CUDA threads
on an Nvidia GTX280 graphics card. The serial times were computed by running
the same jobs on a 2.8 GHz AMD Opteron processor. The trend is toward greater
speedup as the order of the polynomial approximation increases. The range of
the speedup was observed to be between 4 and 45 times. Generally, as the order
of the polynomial increases the processor units spend relatively more time in
arithmetic operations and relatively less time in accessing off-board memory.
This would imply less memory conflict and thus a higher effective computation
rate.

4 Conclusions: Toward Exascale Computing

As described above we have seen great improvements in processing speed and re-
construction quality over the past decade. Given the improvements in algorithms
and introduction of cluster technology, we have been able to reduce processing
time by three orders of magnitude in the past ten years. Unfortunately data
collection technology has not remained static. These improvements must con-
tend with increases in data collection. With the automation progress, we can
easily produce about a terabyte of image data per day. This compares with data
collection of one 2k×2k tilt series per day about ten years ago. In our lab, data
collection has increased by an approximate factor of 105, while processing speed
has improved by a factor of 102 (Moore’s) law. For the data reconstruction and
analysis to keep pace with data collection we have relied on improvements in
parallelism and algorithms. Can this progress be maintained into the future? On
the algorithms side, we are dealing with a situation where the computational
burden is on the order of N3 in the reconstruction size and linear in the order
of the approximations. If we were able to attain efficiencies similar to the FFT,
we might reduce this to N2 log(N) times a linear factor, the main computations
being the forward and inverse transforms, with application of some generaliza-
tion of the Fourier slice theorem. Bridging the gap between light microscopy and
electron microscopy may require 109 reconstructions per data set. This leaves a
factor of about 106 to be handled by increased parallelism.

Tomographic reconstruction is most likely not our biggest problem. As
mentioned above, understanding how the cellular nanomachinery functions to

128 A.F. Lawrence, S. Phan, and M. Ellisman

support the micromachinery of brain networks requires the identification and
characterization of many types of cellular organelles and their interrelations in
cellular ultrastructure. This is an enormous AI challenge. Three months effort
on the analysis of actual EM data by a team of trained technicians and stu-
dent volunteers at NCMIR resulted in the identification and processing of about
0.5% of the theoretical data output of one serial slice machine over the same
time period.

These observations are consistent with those of the participants of an ICiS
workshop held in Park City Utah during the summer of 2011 in Science [2011].
As with various fields in chemistry and physics, the biological sciences are mov-
ing towards exascale computing. Physical limitations in power dissipation and
integrated circuit feature size will probably prevent the successful extrapolation
of Moore’s law into the future. In addition component count given the expected
reliability of each component will result in unacceptable levels of reliability, ac-
cording to current standards. This is a tremendous challenge to current notions
of code verification and validation. (Verification is the proof that the code per-
forms the intended algorithm, replicably, while validation is the proof that the
algorithms exemplified in the code replicate physical reality to the expected de-
gree of accuracy.)

Much of our effort at NCMIR has been directed toward understand the struc-
ture of the brain. How the brain functions at the molecular level as a processor of
information, is currently beyond our understanding. On the other hand, efforts
to improve our knowledge are rapidly arriving at the limits in our implementa-
tions of Turing machines. Will further progress in the Turing era end in the near
future, and in so ending, limit our progress in understanding the brain? One
might hope that by studying the examples afforded by biology we could find a
way beyond this impasse.

Acknowledgments. This work was supported by grants from the NIH National
Center for Research Resources (NCRR) under award number P41RR008605, The
National Biomedical Computation Resource to Peter Arzberger, and award num-
ber P41RR004050, The National Center for Microscopy and Imaging Research
to Mark Ellisman.

References

Amat, F., Moussavi, F., Comolli, L.R., Elidan, G., Downing, K.H., Horowitz, M.:
Markov random field based automatic image alignment for electron tomography.
Journal of Structural Biology 131, 260–275 (2008)

Beylkin, G.: The inversion problem and applications of the generalized radon transform.
Communications on Pure and Applied Mathematics 37(5), 579–599 (1984)

Brand, M., Kang, K., Cooper, D.B.: Algebraic solution for the visual hull. In: Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2004, vol. 1, pp. I–30–I–35 (2004)

Cao, M., Zhang, H.B., Lu, Y., Nishi, R., Takaoka, A.: Formation and reduction of
streak artefacts in electron tomography. Journal of Microscopy 239(1), 66–71 (2010)

Electron Tomography and Multiscale Biology 129

Cardone, G., Grünewald, K., Steven, A.C.: A resolution criterion for electron tomogra-
phy based on cross-validation. Journal of Structural Biology 151(2), 117–129 (2005)
ISSN 1047-8477

De Knock, B., De Schepper, N., Sommen, F.: Curved radon transforms and factoriza-
tion of the veronese equations in clifford analysis. Complex Variables and Elliptic
Equations 51(5-6), 511–545 (2006)

Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct
three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)

Duistermaat, J.J., Guillemin, V.W., Hörmander, L., Brüning, J.: Mathematics Past
and Present: Fourier Integral Operators: Selected Classical Articles. Springer (1994)

Ehrenpreis, L.: The universality of the Radon transform. Clarendon Press, Oxford
(2003)

Frank, J.: Electron Tomography, 2nd edn. Plenum Publishing Corporation, New York
(2006)

Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky,
G.E., Tsien, R.Y., Ellisman, M.H.: Multicolor and electron microscopic imaging of
connexin trafficking. Science 296(5567), 503–517 (2002)

Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. Amer-
ican Mathematical Society, Providence (2003)

Goldman, R.D., Grin, B., Mendez, M.G., Kuczmarski, E.R.: Intermediate filaments:
versatile building blocks of cell structure. Curr. Opin. Cell Biol. 20(1), 28–34 (2008)

Greenleaf, A., Seeger, A.: Oscillatory and fourier integral operators with degenerate
canonical relations, pp. 93–141. Publicacions Matematiques (2002)

Guillemin, V.: On some results of gelfand in integral geometry. In: Proc. Symp. Pure
Math., vol. 43, pp. 149–155 (1985)

Hawkes, P.W.: Recent advances in electron optics and electron microscopy. Annales de
la Foundation Louis de Broglie 29, 837–855 (2004)

Heintzmann, R., Ficz, G.: Breaking the resolution limit in light microscopy. Methods
Cell Biol. 81, 561–580 (2007)

Helgason, S.: The Radon transform, 2nd edn. Progress in mathematics, vol. 5.
Birkhäuser, Boston (1999)

Heyden, A., Åström, K.: Euclidean reconstruction from almost uncalibrated cameras.
In: Proceedings SSAB 1997 Swedish Symposium on Image Analysis, pp. 16–20.
Swedish Society for Automated Image Analysis (1997)

Hörmander, L.: The analysis of linear partial differential operators. In: The Analysis
of Linear Partial Differential Operators. Springer, New York (1990)

Institute For Computing in Science. In: Park city Workshop (2011),
www.icis.anl.gov/programs/

Lawrence, A., Bouwer, J.C., Perkins, G., Ellisman, M.H.: Transform-based backprojec-
tion for volume reconstruction of large format electron microscope tilt series. Journal
of Structural Biology 154, 144–167 (2006)

Liang, C., Wong, K.-Y.K.: Robust recovery of shapes with unknown topology from the
dual space. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12),
2205–2216 (2007)

Machleidt, T., Robers, M., Hanson, G.T.: Protein labeling with flash and reash. Meth-
ods Mol. Biol. 356, 209–220 (2007)

Martone, M.E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludäscher, B., Ellisman,
M.H.: A cell-centered database for electron tomographic data. Journal of Structural
Biology 138(1-2), 145–155 (2002)

Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM,
Philadelphia (2001)

www.icis.anl.gov/programs/

130 A.F. Lawrence, S. Phan, and M. Ellisman

Palamodov, V.P.: Reconstructive integral geometry. Birkhäuser Verlag, Boston (2004)
Palamodov, V.P.: A uniform reconstruction formula in integral geometry.

arXiv:1111.6514v1 (2011)
Phan, S., Lawrence, A.: Tomography of large format electron microscope tilt series:

Image alignment and volume reconstr uction. In: CISP 2008: Congress on Image
and Signal Processing, vol. 2, pp. 176–182 (May 2008)

Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulun-
gowski, A., Obayashi, J., Ellisman, M.: Txbr montage reconstruction (submitted,
2012)

Quinto, E.T.: The dependence of the generalized radon transform on defining measures.
Transactions of the American Mathematical Society 257(2), 331–346 (1980)

Quinto, E.T.: Topological restrictions on double fibrations and radon transforms. Pro-
ceedings of the American Mathematical Society 81(4), 570–574 (1981)

Quinto, E.T.: Radon transforms, differential equations and microlocal analysis. Con-
temporary Mathematics 278, 57–68 (2001)

Reimer, L., Kohl, H.: Transmission electron microscopy: physics of image formation.
Springer (2008)

Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins.
Nat Methods 2(12), 905–909 (2005)

Sharafutdinof, V.A.: Ray Transforms on Riemannian Manifolds. Lecture Notes. Uni-
versity of Washington, Seattle (1999)

Wolf, L., Guttmann, M.: Artificial complex cells via the tropical semiring. In: CVPR
(2007)

Constant-Time Approximation Algorithms

for the Knapsack Problem

Hiro Ito1, Susumu Kiyoshima1, and Yuichi Yoshida1,2

1 School of Informatics, Kyoto University, Kyoto 606-8501
{itohiro@kuis,kiyoshima@ai.soc.i,yyoshida@kuis}.kyoto-u.ac.jp

2 Preferred Infrastructure, Inc, Tokyo 113-0033

Abstract. In this paper, we give a constant-time approximation algo-
rithm for the knapsack problem. Using weighted sampling, with which we
can sample items with probability proportional to their profits, our al-
gorithm runs with query complexity O(ε−4 log ε−1), and it approximates
the optimal profit with probability at least 2/3 up to error at most an
ε-fraction of the total profit. For the subset sum problem, which is a spe-
cial case of the knapsack problem, we can improve the query complexity
to O(ε−1 log ε−1).

1 Introduction

In the knapsack problem, we are given a set of items, each with a weight and a
profit, and the capacity of a knapsack. The objective is to pack items into the
knapsack so that their total weight does not exceed the capacity and their total
profit is as large as possible. The subset sum problem is a special case of the
knapsack problem, in which the weight of each item is equal to its profit.

We aim for designing constant-time approximation algorithms for the knap-
sack problem and the subset sum problem. To state our results, we need several
definitions and assumptions. First, we assume that the total weight and the to-
tal profit of items are normalized to 1. Since we cannot read the whole input in
constant time, we assume that we can sample items through an oracle. As sam-
pling models, we consider the weighted sampling model, in which we can sample
items with probability proportional to their profits, and the uniform sampling
model, in which items are sampled uniformly at random. A value z is called
an ε-approximation to a value z∗ if it satisfies z∗ − ε ≤ z ≤ z∗. A randomized
algorithm is called an ε-approximation algorithm if, given a sampling oracle to
access an input (and nothing else), it outputs an ε-approximation to the optimal
value with probability at least 2/3. We measure the efficiency of an algorithm
by the number accesses to the oracle, called query complexity. By constant-time
algorithms, we mean algorithms whose query complexities are constant. First,
we give a constant-time algorithm for the knapsack problem using weighted
sampling.

Theorem 1. In the weighted sampling model, for every ε > 0, there exists
an ε-approximation algorithm for the knapsack problem with query complexity
O(ε−4 log ε−1).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 131–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 H. Ito, S. Kiyoshima, and Y. Yoshida

We can improve the running time for the subset sum problem.

Theorem 2. In the weighted sampling model, for every ε > 0, there is an
ε-approximation algorithm for the subset sum problem with query complexity
O(ε−1 log ε−1).

One may feel that a constant additive error is too large. However, we have the
following lower bounds for both problems.

Theorem 3. For the knapsack problem and the subset problem, in the weighted
sampling model, for every ε > 0, any ε-approximation algorithm requires Ω(ε−1)
queries.

In particular, the theorem above indicates that we cannot obtain constant-time
algorithms when ε is sub-constant, say 1/

√
n.

In the uniform sampling model, the following strong lower bound holds.

Theorem 4. For the knapsack problem and the subset sum problem, in the uni-
form sampling model, for every ε > 0, any ε-approximation algorithm requires
Ω(n) queries.

We mention how to deal with general inputs, in which the total weight and
the total profit may not be 1. In such a case, assuming that we can obtain the
total weight W and the total profit P , we can make use of our algorithms for
normalized inputs. That is, for each time we sample an item with a weight w
and a profit p, we regard it as an item with a weight w/W and a profit p/P .
Also, we replace the capacity C of the knapsack by C/W . Then, it is easy to
observe that we can obtain constant-time εP -approximation algorithms.

One may think that allowing weighted sampling is a too strong assumption.
Indeed, existing constant-time algorithms handled weights by using only uniform
sampling [5, 14, 16]. However, these algorithms assume that weights are real
numbers in [1, d] for some constant d. Note that, under this assumption, we can
simulate weighted sampling by using uniform sampling: take a sample uniformly
at random and discard it with probability 1−w/d where w is the weight of the
sample. Then, we can get m items uniformly at random with an expected query
complexity dm. Thus, we have the following from Theorems 1 and 2.

Corollary 1. Suppose that the profit of every item is a real number in [1, d]
for some constant d. In the uniform sampling model, assuming that the total
weight and the total profit P of items are explicitly given, there are constant-
time εP -approximation algorithms for the knapsack problem and the subset sum
problem.

Related work. The knapsack problem and the subset sum problem are well-known
combinatorial optimization problems. See [11] for an extensive overview. Since
these problems are NP-hard [6], many approximation algorithms have been
developed. Notably, fully polynomial-time approximation schemes (FPTAS) for
these problems are shown by Ibarra and Kim [7] and subsequently their time
complexities are improved in several works [8–10, 12, 13].

Constant-Time Approximation Algorithms for the Knapsack Problem 133

Batu et al. [4] gave an algorithm for the bin packing problem in the weighted

sampling model. Its query complexity is Õ(
√
n · poly(1/ε)), and it outputs a

value x such that x∗ ≤ x ≤ (1 + ε)x∗ + 1 where x∗ is the optimal solution. In
contrast, our algorithm runs in constant time (at the cost of additive error ε).

Several constant-time approximation algorithms are known for graph prob-
lems. Let n denote the number of vertices in an input graph. In the adjacency
matrix model, in which we can query whether two vertices are adjacent, several
cut problems such as the maximum cut problem and the minimum bisection
problem can be approximated with additive error εn2 with a constant number of
queries [1, 2]. In the bounded-degree model, in which we can query neighbors of
vertices, the weight of the minimum spanning tree [5] and the size of the maxi-
mum matching [14, 16] can be approximated with additive error εn in poly(d/ε)
time where d is a degree bound. Extending these results, constant-time algo-
rithms for the maximum constraint satisfaction problems with degree bounds
are given [15].

Organization. We give definitions used throughout the paper in Section 2. In
Section 3, we give a constant-time approximation algorithm for the knapsack
problem. A proof of the main lemma is deferred to Section 4. Due to space
limit, we defer the proof of Theorem 2 to the full version. We give the proof of
Theorem 4 in Section 5, and we defer the proof of Theorem 3 to the full version.

2 Definitions

In this section, we formally define the knapsack problem and the subset sum
problem, and introduce some related notions.

An input of the knapsack problem is denoted as X = (I, C), where I is a
set of n tuples (wi, pi) and C > 0 is a positive real number. Here, the tuple
(wi, pi) represents an item with a weight wi, and a profit pi. We assume that
0 < wi ≤ C and 0 < pi for every i = 1, . . . , n. As described in the introduction,
we also assume that inputs are normalized so that the total weight and the total
profit are both equal to 1. That is, we have

∑n
i=1 wi =

∑n
i=1 pi = 1. Then, the

knapsack problem is defined as the following integer programming:

maximize z =

n∑
i=1

pixi,

subject to
n∑

i=1

wixi ≤ C,

xi ∈ {0, 1} (i = 1, 2, . . . , n).

The subset sum problem is a special case of the knapsack problem, in which
pi = wi holds for every i = 1, . . . , n.

We assume that we can distinguish two items of the same weight and profit.
The efficiency of an item (w, p) is defined as p/w, namely profit per unit weight.
We define opt(X) as the set of items in the optimal solution for an input X and
z(X) as the total profit of opt(X).

134 H. Ito, S. Kiyoshima, and Y. Yoshida

Fig. 1. A partition of an item set Fig. 2. Intervals of efficiency

3 A Constant-Time Algorithm for the Knapsack Problem

In this section, we give a constant-time ε-approximation algorithm for the
knapsack problem.

3.1 Overview of the Algorithm

We describe the overview of our algorithm.

1. Take a constant number of items using weighted sampling.
2. Based on the samples, construct a new instance X̃ = (Ĩ , C) such that z(X̃)

is a good approximation to z(X).

3. Compute the output by approximating z(X̃).

The size of X̃ will be independent of n so that we can approximate z(X̃) in
constant time. As a result our algorithm runs in constant time.

To describe the algorithm in detail, we introduce a partition of an item set. Let
Q be a set of pairs (w, p) such that w and p are real numbers with 0 < w, p < 1.
We divide Q into three parts (see Fig. 1):

L(Q) := {(w, p) ∈ Q : p > ε2}, (items of large profits)

S(Q) := {(w, p) ∈ Q : p ≤ ε2 and p/w ≥ ε2}, (items of small profits)

G(Q) := {(w, p) ∈ Q : p/w < ε2}. (garbage items)

L(I) corresponds to large-profit items. Since the total profit of I is 1, we have
|L(I)| ≤ 1/ε2. That is, there are only a constant number of items in L(I). More-
over, using weighted sampling, we can sample each item of L(I) with probability
at least ε2. Thus, we can get all items in L(I) by sampling a constant number
of items (see Lemma 2).

S(I) corresponds to small-profit high-efficiency items. Since there are many
items in S(I), we cannot sample all items in S(I) in constant time. However, by
using weighted sampling, we can learn the distribution of items in S(I). That
is, we can compute intervals of efficiency such that the total profit of items in
each interval is approximately ε (see Fig. 2). To explain how to compute these

Constant-Time Approximation Algorithms for the Knapsack Problem 135

intervals, let us first consider the probability that we sample one of the items
in Q := {(w, p) ∈ S(I) : p/w ≥ e} for some e. From the definition of weighted
sampling, this probability is equal to

∑
(w,p)∈Q p, that is, the total profit of items

in Q. Therefore, when we take m samples using weighted sampling, the expected
number of samples from Q is m

∑
(w,p)∈Q p. Then, if we define e1 so that the

number of sampled items from A0 := {(p, w) ∈ I : p/w ≥ e1} becomes mε, we
can expect that the total profit of A0 is approximately ε. Similarly if we define
e2 so that the number of sampled items from A1 := {(p, w) ∈ I : e2 ≤ p/w < e1}
becomes mε, we can expect that the total profit of A1 is approximately ε. In this
way, we can compute the intervals and learn the distribution of items in S(I).

G(I) corresponds to small-profit low-efficiency items. As we will show later,
these items are unimportant to approximate the optimal profit. Note that some
items are in L(I) or S(I) since the total profit is 1.

3.2 The Construction of X̃

We describe the construction of X̃ = (Ĩ , C), which is introduced in Section 3.1.
Suppose that e1, . . . , et is a sequence of real numbers such that A0(I), . . . , At(I) ⊆
I is a partition of S(I), A0(I), . . . , At−1(I) has total profit within [ε, ε+ ε2), and
At(I) ⊆ I has total profit within [0, ε+ ε2), where⎧⎨⎩A0(I) = {(w, p) ∈ S(I) : e1 ≤ p/w}.

Ak(I) = {(w, p) ∈ S(I) : ek+1 ≤ p/w < ek} (1 ≤ k ≤ t− 1).
At(I) = {(w, p) ∈ S(I) : p/w < et}.

Clearly, we can choose et ≥ ε2 from the definition of S(I). Note that, since the
total profit of Ai(I) (i = 0, . . . , t − 1) is at least ε and total profit of S(I) is at
most 1, t is at most ε−1. If a sequence of real numbers satisfies the condition
above, we call it equally partitioning with respect to I. In Lemma 3, we will give
how to obtain an equally partitioning sequence.

Now, we are ready to give the construction of Ĩ. For each ek (k = 1, . . . , t), we

make an item (ε2/ek, ε
2) and add
ε−1� copies of the item into Ĩ. Furthermore

we add all items of L(I) into Ĩ. In summary, we have

Ĩ = L(Ĩ) ∪ A0(Ĩ) ∪A1(Ĩ) ∪ · · · ∪ At−1(Ĩ)

where L(Ĩ) = L(I), Ak(Ĩ) = { (ε2/ek+1, ε
2), . . . , (ε2/ek+1, ε

2) }.

Here, Ak(Ĩ) consists of
ε−1� elements. Fig. 3 shows the construction of Ĩ.
For convenience, we will use the partition A1, . . . , At for an arbitrary set Q of

pairs. That is, we define A0(Q), . . . , At(Q) as follows.⎧⎨⎩A0(Q) := {(w, p) ∈ S(Q) : e1 ≤ p/w}.
Ak(Q) := {(w, p) ∈ S(Q) : ek+1 ≤ p/w < ek} (1 ≤ k ≤ t− 1).
At(Q) := {(w, p) ∈ S(Q) : p/w < et}.

136 H. Ito, S. Kiyoshima, and Y. Yoshida

0

p

w

2

1

1

0

p

w

2

1

1

Fig. 3. Inputs I (left) and Ĩ (right)

3.3 Relation between z(X) and z(X̃)

Here we show that we can approximate z(X) by z(X̃).

Lemma 1. Let X = (I, C) be an instance of the knapsack problem, and let X̃
be the instance constructed from X using an equally partitioning sequence with
respect to I. Then, z(X̃)− ε is a 6ε-approximation to z(X).

Proof. In order to show a lower bound on z(X̃), we construct J̃ ⊆ Ĩ based on

opt(X). The total weight of J̃ will be at most C so that we can pack J̃ into the

knapsack. Thus the total profit of J̃ will give a lower bound on z(X̃).

Now we will show how to construct J̃ . Since L(I) = L(Ĩ), we have L(opt(X))

⊆ L(Ĩ). Thus we can add all items of L(opt(X)) into J̃ . Next for k = 1, . . . , t, let

Pk be the total profit of Ak(opt(X)). Then, we add an item (ε2/ek, ε
2) ∈ Ak−1(Ĩ)

into J̃ exactly min{
Pkε
−2�,
ε−1�} times. In summary, J̃ is defined as follows.

J̃ = L(J̃) ∪A0(J̃) ∪ · · · ∪ At−1(J̃)

where L(J̃) = L(opt(X)), Ak(J̃) = { (ε2/ek+1, ε
2), . . . , (ε2/ek+1, ε

2) }.

Here, Ak(J̃) consists of min{
Pk+1ε
−2�,
ε−1�} elements.

Let us consider how much lower the total profit of J̃ is than the total profit
of opt(X). We can think that L(J̃) corresponds to L(opt(X)) and Ak−1(J̃) to

Ak(opt(X)). Since L(J̃) is equals to L(opt(X)), the difference of their total

profits is 0. The total profit of Ak−1(J̃) is

ε2 ·min{
Pkε
−2�,
ε−1�} ≥ min{Pk, ε} − ε2 ≥ Pk − 2ε2 (from Pk < ε+ ε2).

Thus the total profit of Ak−1(J̃) is lower than the total profit of Ak(opt(X)) by

at most 2ε2. Since t ≤ ε−1, this implies that the total profit of
⋃t

k=1 Ak−1(J̃) is

lower than the total profit of
⋃t

k=1 Ak(opt(X)) by at most 2ε. A0(opt(X)) and

G(opt(X)) do not have corresponding item sets in J̃ . Since the total profit of
A0(I) is less than ε + ε2, the total profit of A0(opt(X)) is also less than ε + ε2.
As for G(opt(X)), we have∑

(w,p)∈G(opt(X))

p <
∑

(w,p)∈G(opt(X))

ε2w ≤ ε2
∑

(w,p)∈I

w = ε2.

Constant-Time Approximation Algorithms for the Knapsack Problem 137

Therefore we can conclude that the total profit of J̃ is lower than the total profit
of opt(X) by at most 2ε+ ε+ ε2 + ε2 ≤ 5ε.

Next, let us consider the total weight of J̃ . L(J̃) has the same total weight

as L(opt(X)). The total weight of Ak−1(J̃) is less than the total weight of
Ak(opt(X)) since the former has higher efficiency items and lower total profit

than the latter. Therefore we can conclude that the total weight of J̃ is less than
that of opt(X). This means that the total weight is also less than C and we can

pack J̃ into the knapsack.
Thus we can conclude that there exists J̃ ⊆ Ĩ such that it can be packed into

the knapsack and its total profit is at least z(X)− 5ε. Therefore we have

z(X̃) ≥
∑

(w,p)∈J̃

p ≥ z(X)− 5ε. (1)

Next we will show an upper bound on z(X̃) by constructing J ⊆ I based on

opt(X̃). First we show how to construct J . As before, we have L(opt(X̃)) ⊆ L(I)

since L(Ĩ) = L(I). Therefore all items in L(opt(X̃)) can be added into J . Next,

for k = 1, . . . , t− 1, let P̃k be the total profit of Ak(opt(X̃)). Note that we have

P̃k ≤ ε since there are at most
ε−1� items in Ak(Ĩ) and their profits are exactly
ε2. Since the total profit of Ak(I) is at least ε and profit of each item is at most

ε2, there is a subset of Ak(I) whose total profit is in [P̃k − ε2, P̃k). We add this
subset into J . In summary, J is defined as follows.

J = L(J) ∪ A0(J) ∪ · · · ∪ At−1(J)

where L(J) = L(opt(X̃)),

Ak(J) is a subset of Ak(I) whose total profit is in [P̃k − ε2, P̃k).

Then, let us consider how much lower the total profit of J is than the total
profit of opt(X̃). We can think that L(J) corresponds to L(opt(X̃)) and Ak(J)

corresponds to Ak(opt(X̃)). The difference of total profit between L(J) and

L(opt(X̃)) is 0. The total profit of Ak(J) is by definition lower than the total

profit of Ak(opt(X̃)) by at most ε2. Therefore, we can conclude that the total

profit of J is lower than the total profit of opt(X̃) by at most ε2 · ε−1 = ε.
As before, it can be shown that the total weight of J is less than C. Therefore

we can conclude that there exists J ⊆ I such that it can be packed into the
knapsack and its total profit is at least z(X̃)− ε. Thus we have z(X) ≥ z(X̃)− ε.

Combining with (1), we have z(X)− 6ε ≤ z(X̃)− ε ≤ z(X). Thus z(X̃)− ε is
a 6ε-approximation to z(X). ��

3.4 The Algorithm and Its Analysis

Here we present a constant-time approximation algorithm for the knapsack prob-
lem and a proof of Theorem 1.

138 H. Ito, S. Kiyoshima, and Y. Yoshida

Algorithm 1. Knapsack(X = (I, C), ε)

Let R be the set of m := �1000ε−4 log ε−1� items sampled using weighted sampling.
Remove duplicated samples from R and sort S(R) by efficiency in non-increasing
order.
Let (w1, p1), . . . , (w|S(R)|, p|S(R)|) be the resulting sequence of items.

Set Δ := �m(ε+ ε2/2)	 and ẽk := pkΔ/wkΔ

(
k = 1, 2, . . . , t :=

⌊
|S(R)|

Δ

⌋)
.

Construct a new instance X̃ = (Ĩ, C) as defined in Section 3.2. That is, add �ε−1	
copies of the item (ε2/ẽk, ε

2) for each k and the items in L(R) to Ĩ.

Output KP-Approx(Ĩ , C, ε)− ε.

The algorithm Knapsack is shown in Fig. 1. We use an FPTAS for the knap-
sack problem as a subroutine (say, [9, 10]). We refer to it as KP-Approx. Given
an instance X = (I, C), KP-Approx outputs z such that (1−ε)z(X) ≤ z ≤ z(X).

Now we prove Theorem 1. In the proof, we use the following two lemmas.

Lemma 2. Let B = {(w, p) ∈ I : p ≥ δ}. By taking �6δ−1(log δ−1+1)� samples
using weighted sampling, we can get all items of B with probability at least 5/6.

Lemma 3. Assume ε ≤ 1/7. Then, with probability at least 5/6, the sequence
ẽ1, . . . , ẽt in Knapsack is a equally partitioning with respect to I.

Lemma 2 is a variation of the coupon collector’s problem and we omit the proof
in this conference version. Before giving the proof of Lemma 3, we first finish
the proof of Theorem 1.

Proof (of Theorem 1). First, the query complexity is clearly O(ε−4 log ε−1).

Now, we show the correctness of Knapsack. From Lemma 2, we have L(I) ⊆ Ĩ
with probability at least 5/6. From Lemma 3, with probability at least 5/6, the
sequence ẽ1, . . . , ẽt is equally partitioning with respect to I. Thus, using union
bound and Lemma 1, with probability at least 2/3, we have z(X)− 6ε ≤ z(X̃)−
ε ≤ z(X). Let z be the output by Knapsack. Then, using the fact z(X̃) ≤ 1, we
have z(X)− 7ε ≤ z − ε ≤ z(X). Thus, by calling Knapsack with ε/7, we get an
ε-approximation algorithm. ��

4 Proof of Lemma 3

We use a similar technique as in the proof of Lemma 1 in [4].

Proof. For any B ⊆ S(I), let e1, . . . , e|B| be a non-increasing sequence of effi-

ciency of items in B. From any set Q of pairs, B induces Â0(Q,B), . . . , Ât(Q,B)
such that

– Â0(Q,B) := {(w, p) ∈ Q : p/w ≥ e1}.
– Âk(Q,B) := {(w, p) ∈ Q : ek+1 ≤ p/w < ek} (1 ≤ k ≤ |B| − 1).

– Â|B|(Q,B) := {(w, p) ∈ Q : p/w < e|B|}.

Constant-Time Approximation Algorithms for the Knapsack Problem 139

We refer to B as the boundary set.
B is called bad if there is an Âk(S(I), B) such that the total profit is not in

[ε, ε+ ε2) (when 0 ≤ k ≤ |B| − 1) nor [0, ε+ ε2) (when k = |B|). Otherwise B is
good.

Knapsack sorts S(R) by efficiency in non-increasing order and picks kΔ-th
item for k = 1, . . . , t. Then ẽ1, . . . , ẽt are defined as the efficiency of these items.
Note that these items are uniquely determined by R. Let BR denote the set of
these items. Then it suffices to prove that BR is good with probability at least
5/6 provided R is a set of weighted samples.

We call B ⊆ S(I) destroyed by R if there is an Âk(S(I), B) such that the

number of items of R in Âk(S(I), B) is not in ((1 − ε/4)Δ, (1 + ε/4)Δ) (when
0 ≤ k ≤ |B| − 1) or not in [0, (1 + ε/4)Δ) (when k = |B|).

From the definition of BR, the number of items of R in Âk(S(I), BR) is exactly
Δ (when 0 ≤ k ≤ |BR|−1) or less than Δ (when k = |BR|). Therefore BR is not
destroyed by R. The number of items in BR is t =
|S(R)|/Δ� ≤ ε−1. Below we
will compute the probability of an event that R destroys every bad boundary set
B ⊆ S(R) such that |B| ≤ ε−1. When this event happens, any subset of S(R)
is good if it is not destroyed and it has at most ε−1 items. In particular, we can
conclude BR is good.

Let t′ be the number of items in a bad boundary set B. First we fix t′ and
compute the probability that B is not destroyed by R, conditioned on the event
that B ⊆ S(R).

Let us first assume that there is an Âk(S(I), B) with 0 ≤ k ≤ |B| − 1 and
the total profit less than ε. Without loss of generality, we can assume the first
t′ samples of R is B. Let Yi be an indicator random variable for the event that
i-th item of the remaining m′ := m− t′ items belongs to Âk(S(I), B). From the
definition of weighted sampling, we have

Pr [Yi = 1] =
∑

(w,p)∈Âk(S(I),B)

p ≤ ε.

Using linearity of expectation, we have

E[

m′∑
i=1

Yi] =

m′∑
i=1

E[Yi] =

m′∑
i=1

Pr[Yi = 1] ≤ m′ε.

When B is not destroyed by R, there are more than (1 − ε/4)Δ items of R in

Âk(S(I), B). Note that there is exactly one item of B in Âk(S(I), B). Using
Chernoff bounds, we have

Pr
[m′∑
i=1

Yi + 1 >
(
1− ε

4

)
Δ
]
≤ Pr

[m′∑
i=1

Yi ≥
(
1− ε

4

) ⌊
m′ε
(
1 +

ε

2

)⌋]

≤ Pr
[m′∑
i=1

Yi ≥
(
1 +

ε

5

)
E
[m′∑
i=1

Yi

]]
≤ e−m′ε3/75.

140 H. Ito, S. Kiyoshima, and Y. Yoshida

Next let us assume there is an Âk(S(I), B) such that the total profit is at least
ε+ε2. Again let Yi be an indicator random variable for the event that i-th sample
belongs to Âk(S(I), B). We have

E
[m′∑
i=1

Yi

]
=

m′∑
i=1

Pr[Yi = 1] ≥ m′(ε + ε2).

Using Chernoff bounds, we have

Pr
[m′∑
i=1

Yi + 1 <
(
1 +

ε

4

)
Δ
]
≤ Pr

[m′∑
i=1

Yi ≤
(
1− ε

5

)
E
[m′∑
i=1

Yi

]]
≤ e−m′ε3/75.

Let Destroy(B,R) be the event that R destroys by B. From above, we can con-
clude that

Pr[Destroy(B,R)
∣∣ B ⊆ S(R)] ≤ 2e−m′ε3/75 ≤ 2e−(m−ε−1)ε3/75

≤ 2e−999ε−1 log ε−1/75 = 2(ε−10)−999ε−1/750

≤ 2m−(ε−1+2).

In the last inequality, we use the fact ε ≤ 1/7 implies ε−6 ≥ 1000 log ε−1 and
999ε−1/750 ≥ ε−1 + 2.

We call R good if it destroys every bad boundary set B ⊆ S(R) such that
|B| ≤ ε−1. Let Good(R) be the event that R is good. Then, we have

Pr[Good(R)] ≥ 1−
∑

bad B:B⊆S(R)

Pr[Destroy(B,R)]

= 1−
∑

bad B

Pr[B ⊆ S(R)] · Pr[Destroy(B,R)
∣∣ B ⊆ S(R)]

≥ 1−
ε−1∑
t′=1

∑
bad B:|B|=t′

(
m

t′

)
· t′! ·

∏
(w,p)∈B

p · 2m−(ε−1+2)

≥ 1− 2m−(ε−1+2)
ε−1∑
t′=1

mt′

≥ 5/6.

Here we use the fact that, for B ⊆ S(I) such that |B| = t′, we have

Pr[B ⊆ S(R)] ≤
(
m

t′

)
t′!

∏
(w,p)∈B

p and
∑

B:|B|=t′

∏
(w,p)∈B

p ≤
(∑
(w,p)∈S(I)

p
)t′

≤ 1.

��

Constant-Time Approximation Algorithms for the Knapsack Problem 141

5 Lower Bounds

In this section, we prove Theorem 4 by showing lower bounds for the parti-
tion problem. In the partition problem, an instance is a set of weights I =
{w1, . . . , wn}, and the objective is to decide whether there is a subset I ′ ⊆ I
of items whose weights add up to 1/2. We call an instance I partitionable if
there is such a subset and ε-far from being partitionable if, for any subset I ′ ⊆ I,
the weight is at most 1/2 − ε or at least 1/2 + ε. An algorithm is called an ε-
testing algorithm for the partition problem, given an instance as an oracle access,
it decides whether it is partitionable or ε-far from it.

It is easy to see that an ε-approximation algorithm for the subset sum problem
can be used to obtain an ε-testing algorithm for the partition problem by setting
the capacity of the knapsack to be 1/2. Thus, to obtain Theorem 4, it suffices
to show the following.

Lemma 4. In the uniform sampling model, for every ε > 0, any ε-testing algo-
rithm for the partition problem requires Ω(n) queries.

To prove the lower bound, we introduce two instances I and J such that I is
partitionable while J is ε-far from being partitionable. Note that we can derive a
distribution PI over the domain {w1, . . . , wn} from I by setting PI(wn) =

1
n , and

PJ similarly from J . Then, we show that we need Ω(1/ε) queries to distinguish PI

from PJ . To this end, we use a lemma from [3]. For two probability distributions
P and Q over a domain D, the Hellinger distance between P and Q is

h(P,Q) :=
(
1−

∑
a∈D

√
P (a)Q(a)

) 1
2

=
(1
2

∑
a∈D

(√
P (a)−

√
Q(a)

)2) 1
2

.

Then, the following lemma holds.

Lemma 5 ([3]). Let P and Q be two distributions over a domain D with
h2(P,Q) ≤ 1/2, then to distinguish P from Q with probability at least 2/3 by
sampling, we need at least Ω(1

4h2(P,Q)) queries.

Proof (of Theorem 4). We assume n is even. The case when n is odd can be
treated similarly. Consider the following two instances I and J .

I =
{ 2ε

n− 2
, . . . ,

2ε

n− 2︸ ︷︷ ︸
n−2 items

,
1

2
− ε,

1

2
− ε
}

J =
{ 2ε

n− 2
, . . . ,

2ε

n− 2︸ ︷︷ ︸
n−2 items

,
1

2
+ ε,

1

2
− 3ε

}

Clearly, z(X) = 1/2 and z(Y) = 1/2−ε. Thus, ε-approximation algorithms must
distinguish these two instances with high probability. However, the Hellinger
distance between PI and PJ is h2(PI , PJ) =

1
2

(
4 · 1

n

)
= 2

n . From Lemma 5, we
need at least Ω(1

4h2(PI ,PJ)
) = Ω(n) queries. ��

142 H. Ito, S. Kiyoshima, and Y. Yoshida

References

1. Alon, N., de la Vega, W., Kannan, R., Karpinski, M.: Random sampling and ap-
proximation of MAX-CSPs. Journal of Computer and System Sciences 67(2), 212–
243 (2003)

2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for
dense instances of np-hard problems. In: Proc. 27th Annual ACM Symposium on
Theory of Computing (STOC), pp. 284–293. ACM (1995)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower bounds and
applications. In: Proc. 33rd Annual ACM Symposium on Theory of Computing,
pp. 266–275 (2001)

4. Batu, T., Berenbrink, P., Sohler, C.: A sublinear-time approximation scheme for
bin packing. Theoretical Computer Science 410(47-49), 5082–5092 (2009)

5. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on Computing 34(6), 1370–1379 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

7. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM 22, 463–468 (1975)

8. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polyno-
mial approximation scheme for the subset-sum problem. Journal of Computer and
System Sciences 66(2), 349–370 (2003)

9. Kellerer, H., Pferschy, U.: A new fully polynomial time approximation scheme for
the knapsack problem. Journal of Combinatorial Optimization 3, 59–71 (1999)

10. Kellerer, H., Pferschy, U.: Improved dynamic programming in connection with an
FPTAS for the knapsack problem. Journal of Combinatorial Optimization 8, 5–11
(2004)

11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
12. Lawler, E.L.: Fast approximation algorithms for knapsack problems. In: Proc. 18th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 206–
213 (1977)

13. Magazine, M., Oguz, O.: A fully polynomial approximation algorithm for the 0-1
knapsack problem. European Journal of Operational Research 8(3), 270–273 (1981)

14. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-
provements. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 327–336 (2008)

15. Yoshida, Y.: Optimal constant-time approximation algorithms and (unconditional)
inapproximability results for every bounded-degree CSP. In: Proc. 43rd Annual
ACM Symposium on Theory of Computing (STOC), pp. 665–674 (2011)

16. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation
algorithm for maximum matchings. In: Proc. 41st Annual ACM Symposium on
Theory of Computing (STOC), pp. 225–234 (2009)

Lower Bounds of Shortest Vector Lengths

in Random NTRU Lattices�,��

Jingguo Bi1,2 and Qi Cheng2

1 School of Mathematics
Shandong University

Jinan, 250100, P.R. China
jguobi@mail.sdu.edu.cn

2 School of Computer Science
University of Oklahoma
Norman, OK 73019, USA

qcheng@cs.ou.edu

Abstract. Finding the shortest vector of a lattice is one of the most im-
portant problems in computational lattice theory. For a random lattice,
one can estimate the length of the shortest vector using the Gaussian
heuristic. However, no rigorous proof can be provided for some classes of
lattices, as the Gaussian heuristic may not hold for them. In this paper,
we propose a general method to estimate lower bounds of the shortest
vector lengths for random integral lattices in certain classes, which is
based on the incompressibility method from the theory of Kolmogorov
complexity. As an application, we can prove that for a random NTRU
lattice, with an overwhelming probability, the ratio between the length
of the shortest vector and the length of the target vector, which corre-
sponds to the secret key, is at least a constant, independent of the rank
of the lattice.

Keywords: Shortest vector problem, Kolmogorov complexity, NTRU
lattices, random lattices, Gaussian heuristic.

1 Introduction

A lattice is a set of points in a Euclidean space with periodic structure. Given n
linearly independent vectors b1, . . . ,bn ∈ Rm(n ≤ m), the lattice generated by
them is the set of vectors

L(b1, . . . ,bn) = {
n∑

i=1

xibi : xi ∈ Z}

The vectors b1, . . . ,bn form a basis of the lattice.

� Partially supported by NSF of China Projects (No.61133013 and No.60931160442),
GIIFSDU Project (No. 11140070613184) and Tsinghua University Initiative Scien-
tific Research Program (No.2009THZ01002).

�� Partially supported by NSF under grants CCF-0830522 and CCF-0830524.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 143–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 J. Bi and Q. Cheng

The most famous computational problem on lattices is the shortest vector
problem (SVP): Given a basis of a lattice L, find a non-zero vector u ∈ L, such
that ‖ v ‖≥‖ u ‖ for any vector v ∈ L \ 0. For the hardness of SVP, Ajtai first
proved that SVP is NP-hard under a randomized reduction [1] and his result
was strengthened in [15][4][11][8]. An upper bound for the length of the shortest
vector is given in the famous Minkowski Convex Body Theorem. Nevertheless,
there is no known efficient algorithm which can always find a vector within the
Minkowski bound.

The study of random lattices has a long history, dated back from [18]. It turns
out that one can define a measure on the set of all n-dimensional lattices of a
fixed determinant, and have a precise estimation of the expected length of the
shortest vector [2], which can be summarized by the so-called Gaussian heuris-
tic. Given an n-dimensional lattice L with determinant det(L), the Gaussian
heuristic predicts that there are about vol(C)/det(L) many lattice points in a
measurable subset C of Rn of volume vol(C). It can be made precise, for exam-
ple, when C is convex and symmetric around the original point O, and vol(C)
is much bigger than det(L). If we take C to be an n-sphere centered at O, for
C to contain a point other than O, vol(C) should be about det(L) according to
the Gaussian heuristic. In other words, the length of the shortest vector can be
approximated by the radius of a sphere whose volume is det(L), which is about√

n/2eπdet(L)1/n. As an interesting comparison, the Minkowski Convex Body
Theorem asserts that if the volume of sphere C is greater than 2ndet(L), then it
must contain a nonzero lattice point. This gives an upper bound of the shortest
vector length at about

√
2n/eπdet(L)1/n, which is only twice as large as the

prediction made from the Gaussian heuristic.
Most of lattices appearing in cryptanalysis are random in some sense, but

many of them have integral bases and hence are not random according to the
above measure. See [17] for further discussions. The length of the shortest vector
may be much shorter than the prediction made from the Gaussian heuristic. In
this paper, we investigate the idea of using the theory of Kolmogorov complex-
ity to estimate the expected length of short vectors of a given random integral
lattice. Kolmogorov complexity has many applications in computational com-
plexity and combinatorics. It is an ideal tool to obtain lower bounds [14]. While
all the methods based on Kolmogorov complexity can be replaced by elementary
counting arguments, and our result is no exception, we believe that the Kol-
mogorov complexity method is conceptually simpler, more intuitive and more
systematic than a direct counting argument.

As a crucial application, we consider random NTRU lattices which are used
to analyze NTRU cryptosystems. The NTRU cryptosystem was first introduced
at the rump section of Crypto 96 by [7]. It operates in the ring of truncated
polynomials given by Z[X]/(XN−1). Let Sf and Sg be some sets of polynomials
in Z[x] of degree at most N −1 and of very small coefficients. Let q be a positive

integer. Select polynomials f(x) ∈ Sf and g(x) ∈ Sg. Let h(x) =
∑N−1

i=0 hix
i be

the polynomial such that

h(x)f(x) = g(x) (mod q, xN − 1).

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 145

Define the cyclic matrix

H =

⎛⎜⎜⎜⎝
h0 h1 · · · hN−1

hN−1 h0 · · · hN−2

...
. . .

...
h1 h2 · · · h0

⎞⎟⎟⎟⎠
The security of the NTRU cryptosystem is related to the difficulty of finding
short vectors in an NTRU lattice [6,7]:

LNTRU =

(
I H
0 qI

)
. (1)

We call an NTRU lattice (Sf , Sg)-random if f(x) is selected uniformly at random
from the invertible elements (in the ring (Z/qZ)[x]/(xN − 1)) in Sf , and g(x)
is selected uniformly in random from Sg.

Remark 1. A random NTRU lattice can not be obtained by selecting (h0, h1, h2,
· · · , hN−1) uniformly at random from (Z/qZ)N . In fact, a lattice obtained in
that manner is most likely not an NTRU lattice.

Interestingly Gaussian heuristic clearly does not hold for random NTRU lat-
tices. According to the Gaussian heuristic, the shortest vector length is Ω(

√
Nq).

However, the vector of the coefficients of f and g, which will be called the tar-
get vector, is in the lattice and has length O(

√
N), since f and g have very

small coefficients. Many researchers conjecture that the target vector is indeed
the shortest vector in the lattice in most of cases. However, no formal proof has
been provided.

Remark 2. It is important to bound the length of the shortest vector from below in
an NTRU lattice, since if the shortest vector is significantly shorter than the target
vector, say that it has length o(

√
N), then it can be recovered by an exhaustive

search in time 2o(N), and can be used in breaking NTRU cryptosystems [6].

In this paper, we prove that with an overwhelming probability, the ratio between
the length of the shortest vector and length of the target vector is at least a
constant. In other words, we prove that most likely, the target vector is as long
as the shortest vector up to a constant factor. As far as we know, this is the
first lower bound result on the lengths of the shortest vectors in random NTRU
lattices.

Remark 3. Since it is known that approximating the shortest vector by any
constant factor is NP-hard [11] for general lattices, this result provides a some
evidence for the security of the NTRU cryptosystem against the lattice reduction
attack. However, our results do not rule out other types of attacks that may not
be based on lattice reductions.

146 J. Bi and Q. Cheng

The rest of the paper is organized as follows. In Section 2, we will review some
backgrounds about lattices and Kolmogorov complexity. In section 3, we prove
the main theorem that allows us to compute lower bounds of the shortest vector
lengths in random lattices. In Section 4, we present and prove the lower bound
of the shortest vector lengths of random NTRU lattices. We conclude this paper
in Section 5. In this paper, we use log to denote the logarithm base 2 and use ln
to denote the natural logarithm.

2 Preliminaries

2.1 Lattices

Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the set

L(b1, . . . ,bn) = {
n∑

i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent vectors b1, . . . ,bn ∈ Rm.
The integers n and m are called the rank and dimension of the lattice. A lattice
can be conveniently represented by a matrix B, where b1, . . . ,bn are the row
vectors. The determinant of the lattice L is defined as

det(L(B)) =
√
det(BBT) (2)

The most famous computational problem on lattices is the shortest vector prob-
lem (SVP): Given a basis of a lattice L, find a non-zero vector u ∈ L, such that
‖ v ‖≥‖ u ‖ for any vector v ∈ L \ 0. The following is a well-known theorem on
the upper bound of the shortest vector length in lattice L.

Theorem 1. (Minkowski) Any lattice L of rank n contains a non-zero vector v
with

||v|| ≤ (1 + o(1))
√
2n/eπ det(L)

1
n

In many literatures, the theorem is presented with the upper bound
√
n det(L)

1
n ,

which is a little weaker but free of an additive error term.

2.2 Number of Integral Points in a Sphere

To obtain our results, it is important to have an accurate estimation of the
number of integral points inside of the n-sphere centered at the origin of radius
R. Denote the number by W (n,R). In general, one can approximate W (n,R)
by the volume of the sphere, denoted by V (n,R). This is an application of the
Gaussian Heuristic. However, if the radius of the sphere is small, compared to
the square root of the dimension, then the volume estimate is not very accurate.
More precisely, if the radius of the sphere R ≥ n1/2+ε, the number of integral
points in the sphere is equal to the volume

V (n,R) = (
√
πn+O(1))−1(

√
2πe

n
R)n

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 147

with a small additive error. If R is
√
αn for some small constant α, then the

estimation using volume is not so precise. To see this, note that when α < 1
2πe ,

the volume of the sphere is less than 1, yet it still contains many integral points.
We should use the result found in [16] to estimate W (n,R) for R = O(

√
n):

Proposition 1. Let α be a constant. Then there exists a constant δ, depending
only on α, such that W (n,

√
αn) ≥ eδn for n large enough. Moreover, as α gets

larger, δ is approaching ln(
√
2πeα).

To find δ from α, one defines θ(z) = 1+2
∑∞

i=1 z
i2 . Set δ(α, x) = αx+ln θ(e−x).

We can compute δ = minx≥0 δ(α, x). As a comparison between the number of
integral points in a ball and its volume, we have

W (n,
√
0.1n) ≈ e0.394415n, V (n,

√
0.1n) ≈ e0.267645n.

W (n,
√
0.5n) ≈ e1.07246n, V (n,

√
0.5n) ≈ e1.07236n.

For α > 0.5, the difference between logV (n,
√
αn)/n and logW (n,

√
αn)/n is

less than 0.0001. See Table 1 in [16]. We also have

Proposition 2. Let δ be a constant. Then there exists a constant α such that if
an n-sphere centered at the origin contains more than eδn many integral points,
the radius of the sphere must be greater than

√
αn for n large enough. As δ gets

larger, α is approaching e2δ/2πe.

2.3 Kolmogorov Complexity

The Kolmogorov complexity of a binary string x, conditional to y, is defined to
be the length of the shortest program that given the input y, prints the string x,
and is denoted by K(x|y). We define K(x) to be K(x|ε), where ε is the empty
string. It turns out that if one switches from one programming language to
another, the Kolmogorov complexity is invariant, up to an additive constant, as
long as both of the programming languages are Turing Universal. The book [14]
gave an excellent introduction to the theory of Kolmogorov complexity.

It can be shown that for any positive integer s, K(s) ≤ log s+O(1). If s = 1n,
the binary string of length n consisting of only 1, then K(s) ≤ logn + O(1).
Similarly if s is the first n binary digits of the number π after the decimal point,
then K(s) ≤ logn+O(1). From the examples, one can see that the Kolmogorov
complexity is a good measure of randomness in a string.

For each constant c, a positive integer x is c-incompressible if K(x) ≥ log(x)−
c. By a counting argument, one can show

Proposition 3. For any y, a finite set A of cardinality m has at least m(1 −
2−c) + 1 elements x with K(x|y) ≥ logm− c.

This observation yields a simple yet powerful proof technique — the incompress-
ibility method.

148 J. Bi and Q. Cheng

3 The Main Theorem

Theorem 2. Given a random integral lattice L ∈ Rm represented by a matrix
B ∈ Zn×m, let the vector v be the shortest vector of lattice L. Let S denote some
entries in B and B \ S denote the rest of entries in the matrix. Assume that
K(S|v,B \ S) = O(logm). Let R be a positive real number such that

logW (m,R) ≤ K(S|B \ S)− log2(m)

then the shortest vector is longer than R.

Proof. Suppose that the length of the short vectors is less than R. Then

K(v|m) ≤ logW (m,R) +O(1).

On the other hand, to describe S from B \ S, we only need to describe v in
addition to the program which computes S from B \ S and v, so we have

K(S|B \ S) ≤ K(S|v,B \ S) +K(v|m) + 2 logK(S|v,B \ S)
≤ K(v|m) +O(logm)

so K(v|m) ≥ K(S|B \ S)−O(logm), which is a contradiction.

To use the theorem, we select a part S of B such that K(S|B \ S) is large but
K(S|v,B \ S) is small, then according to the theorem, we have a good lower
bound on the length of the shortest vectors. In other words, if some part of
the matrix has high Kolmogorov complexity, yet it can be determined (almost)
uniquely by a short vector and the rest of the matrix, then the lattice has long
shortest vectors. The main technical part is to show that K(S|v,B \S) is small.
In some case, it is easy, as in the following remark, but in the case of NTRU
lattices, it is highly non-trivial.

Remark 4. As a simple application of this theorem, we can compute the lower
bound of the shortest vector lengths for the random knapsack lattice introduced
by [13,3]. A knapsack lattice is spanned by b1, . . . ,bn below:

b1 = (a1, 1, 0, . . . , 0)
b2 = (a2, 0, 1, . . . , 0)

...
bn = (an, 0, 0, . . . , 1),

where a1, a2, · · · , an are integers. We call the lattice random, if a1, a2, · · · , an
are selected uniformly and independently from r-bit integers. Random knapsack
lattices were used by Nguyen and Stehle [17] to assess the performance of LLL
algorithm. Note that if (v0, v1, · · · , vn) is the shortest vector, and assume w.l.o.g.
that v1 �= 0. Then we use a1 as S and apply the main theorem. Through a
routine calculation, we obtain that with probability at least 1 − 1

nr , the length

of the shortest vector in the knapsack lattice La1,a2,··· ,an is greater than
√

n+1
2πe ·

2
r

n+1 (1 +O(log(nr)n)), which is not far away from the Gaussian heuristic.

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 149

4 The Lower Bounds of Shortest Vectors Lengths of
NTRU Lattices

In this section, we first describe the NTRU cryptosystems in section 4.1. We
prove a technical lemma in section 4.2 and prove the lower bounds of shortest
vector lengths of NTRU lattices in section 4.3.

4.1 Description of the NTRU Cryptosystem

The NTRU algorithm was first introduced by [7] at the rump section of Crypto
96. It operates in the ring of truncated polynomials given by Z[X]/(XN − 1).
To describe the parameters of the NTRU cryptosystem, we begin by choosing a
prime N and two moduli p, q such that gcd(N, p) = gcd(p, q) = 1. Let R, Rp,
and Rq be the convolution polynomial rings

R = Z[x]/(xN − 1), Rp = (Z/pZ)[x]/(xN − 1), Rq = (Z/qZ)[x]/(xN − 1)

For any positive integers d1 and d2, define the set

T (d1, d2) =

⎧⎨⎩a(x) ∈ R :
a(x) has d1 coefficients equal to 1;
d2 coefficients equal to − 1;
has all other coefficients equal to 0

⎫⎬⎭
and the set

B(d) =

{
a(x) ∈ R :

a(x) has d coefficients equal to 1;
has all other coefficients equal to 0

}
Let Sf and Sg be some sets of polynomials of degree at most N − 1 and of
very small coefficients. Usually they are set to be T (d1, d2) or B(d3) for d1, d2
and d3 proportional to N . To prevent an exhaustive search attack, |Sf | and |Sg|
have to be large. In fact, there exists a constant γ such that for all the NTRU
implementations, |Sg| > 2γN . It implies that for a randomly chosen polynomial
g, its Kolmogorov complexity is larger than γN . The public parameters are
(N, p, q, Sf , Sg). The private key consists of two randomly chosen polynomials

f(x) =
∑N−1

i=0 fix
i ∈ Sf and g(x) =

∑N−1
i=0 gix

i ∈ Sg

compute

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp

then compute
h(x) = Fq(x) ∗ g(x) in Rq (3)

The public key is the polynomial h(x) =
∑N−1

i=0 hix
i. From Equation (3) we can

obtain the relationship

f(x) ∗ h(x) ≡ g(x) in Rq. (4)

150 J. Bi and Q. Cheng

Recall the definition of an NTRU lattice (1). The vector

(f0, f1, · · · , fN−1, g0, g1, · · · , gN−1)

is a very short vector in the lattice. Since usually g(1) = 0 for any g ∈ Sg, so
h(1) = 0 (mod q), thus this lattice has a trivial short vector (1N , 0N), which can
be shorter than the private key. If we adopt Coppersmith and Shamir’s approach
[6], and use a slightly different lattice of rank 2N − 2:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− 1/N −1/N · · · −1/N h0 h1 · · · hN−1

−1/N 1− 1/N · · · −1/N hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

−1/N −1/N · · · 1− 1/N h1 h2 · · · h0

0 0 · · · 0 q − q/N −q/N · · · −q/N
0 0 · · · 0 −q/N q − q/N · · · −q/N
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 −q/N −q/N · · · q − q/N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then the short vector (1N , 0N) is eliminated from the lattice. Coppersmith and
Shamir proved if one can find a sufficiently short vector in the NTRU lattice,
then the short vector gives us an equivalent private key.

4.2 A Technical Lemma

Let N be a prime and let q > N be a prime power rl. Given a short vector

v = (v1, v2, . . . , v2N) ∈ Z2N ,

in this section, we prove a lemma concerning the number of solutions in (Z/qZ)N

of the following linear system

h0v1 + hN−1v2 + . . .+ h1vN ≡ vN+1 (mod q)

h1v1 + h0v2 + . . .+ h2vN ≡ vN+2 (mod q)

... (5)

hN−1v1 + hN−2v2 + . . .+ h0vN ≡ v2N (mod q)

Note that if l > 1, Z/qZ is not a field.

Lemma 1. Let N be a prime and let q > N be a prime power rl. Suppose that
r is a primitive root in Z/NZ, and

(v1, v2, · · · , vN) ∈ ZN

is a non-zero vector whose �2 norm is less than
√
N . Assume that r does not

divide gcd(v1, v2, · · · , vN). Then there are at most q solutions in (Z/qZ)N for
the linear system (5).

The proof of lemma 1 is given in appendix because of the limit of space.

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 151

4.3 The Lower Bounds of Lengths of Shortest Vectors of NTRU
Lattices

In most implementations of NTRU cryptosystems (See IEEE P1363.1/D12 Draft
Standard for details), q is set to be a power of two, and N is a prime such that 2
has order N − 1 or (N − 1)/2 in (Z/NZ)∗. In this case, the modulo q operation
can be implemented as a bit-wise Boolean operation, thus it is more efficient
than operations of mod primes. In the following theorem, we will assume that
q is a prime power rl and r has order N − 1 in Z/NZ. It covers many NTRU
implementations including that q is a prime and that q is a power of 2.

Theorem 3. Let N be an odd prime. Let q < N2 be a prime power rl. Assume
that r has order N − 1 in (Z/NZ)∗. Suppose

K(h|N, q) ≥ γN

for some constant γ. The length of the shortest vector in LNTRU is greater than√
αN for some constant α depending only on γ.

Proof. Suppose the vector v = (v1, v2, . . . , v2N) ∈ Z2N is the shortest vector of
LNTRU . Hence it satisfies

gcd(v1, v2, . . . , v2N) = 1.

If it is (1N , 0N), then its length is
√
N . Otherwise there exists integers k1, . . . , kN

such that

v =

N∑
i=1

vibi +

N∑
j=1

kjbN+j. (6)

From equation (6), we can obtain the linear system (5). We see that in fact r
does not divide gcd(v1, v2, . . . , vN). We may assume that (v1, v2, · · · , vN) is a
nonzero vector whose �2 norm is less than

√
N . We want to solve the linear

system for (h0, h1, · · · , hN−1) ∈ (Z/qZ)N . It follows from Lemma 1 that there
are at most q solutions, hence

K(H |v, LNTRU \H) ≤ log q +O(1) = O(log(2N)).

We also have

K(H |LNTRU \H) = K(h|N, q) +O(1) ≥ γN,

and for some constant α

W (2N,
√
αN) = 2(γ−ε)N ,

by Proposition 2. So by our main theorem R ≥
√
αN .

In many implementations of the NTRU cryptosystem, Sf is set to be T (d+1, d),
Sg is set to be T (d, d), where d is an integer close to
N/3�. In this case, we
calculate α. We first compute a lower bound of the Kolmogorov complexity of h
if g is selected randomly in T (d, d).

152 J. Bi and Q. Cheng

Lemma 2. Assume that d =
βN� for some constant 1/10 < β ≤ 1/2. For an
invertible polynomial f , if we randomly select a polynomial g in T (d, d), then
with probability at least 1− 2−0.1N , we have

K(h|N, q) ≥ γN

for some constant γ, when N is large enough.

Proof. First observe that since f is invertible, we have

|K(g|N, q, f)−K(h|N, q, f)| = O(1),

and
K(h|N, q) ≥ K(h|N, q, f).

The cardinality of the set T (d, d) is(
N

d

)(
N − d

d

)
≥ 2(−2β log β−(1−2β) log(1−2β))N

NO(1)
.

So the lemma follows from Proposition 3 if we take γ = −2β log β − (1 −
2β) log(1− 2β)− 0.1.

Corollary 1. If Sg = T (
N/3�,
N/3�), then with probability greater than 1 −
2−0.1N , the shortest vector in a random NTRU lattice has length greater than√
0.28N.

Proof. By Lemma 2, we can take γ to be 1.48. Then

W (2N,
√
0.14 ∗ 2N) ≈ 21.48N = e0.51∗2N .

Hence R ≥
√
0.28N .

The above corollary shows that with an overwhelming probability, the shortest
vector in a random NTRU lattice is as long as the target vector, up to a constant
factor. Note that if the target vector is the shortest vector, then R =

√
4d+ 1 ≈√

4N/3 . It is an interesting open problem to close the gap.
For some instantiations of NTRU variants [5,9], the polynomial g is chosen

from binary polynomials, and f is in a special form. Note that one can get a
lower bound of the Kolmogorov complexity of g for whatever f is chosen by
counting Sg. Hence if the specific chosen values of q and N meet the condi-
tions in Lemma 1, then we can also get the lower bounds of the shortest vector
lengths of the corresponding NTRU lattices by the same method. We express
the observation in the following corollary:

Corollary 2. If there exists a positive constant γ such that |Sg| > 2γN , then
for any constant 0 < ε < γ, with probability greater than 1 − 2−εN , the shortest
vector in a random NTRU lattice has length greater than

√
αN , for a positive

constant α depending only on γ and ε.

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 153

5 Conclusion

In this paper, we propose a general method to bound the lengths of the shortest
vectors in random integral lattices. We obtain that with an overwhelming prob-
ability, the shortest vector length of a random NTRU lattice has length Ω(

√
N),

which is the same as the length of the target vector, up to a constant factor. The
main problem left open by this work is to prove that with a high probability,
the target vector is shortest in a random NTRU lattice.

References

1. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reductions
(extended abstract) In: Proc. 30th ACM Symp. on Theory of Computing (STOC),
pp. 10–19. ACM (1998)

2. Ajtai, M.: Random lattices and a conjectured 0-1 law about their polynomial time
computable properties. In: Proc. of FOCS 2002, pp. 13–39. IEEE (2002)

3. Coster, M.J., Joux, A., La Macchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern,
J.: An improved lowdensity subset sum algorithm. Computational Complexity 2,
111–128 (1992)

4. Cai, J.-Y., Nerurkar, A.: Approximating the SVP to within a factor (1 + 1/ dim)
is NP-hard under randomized reductions. J. Comput. System Sci. 59(2), 221–239
(1999)

5. Consortium for Efficient Embedded Security. Efficient embedded security standards
�1: Implementation aspects of NTRUEncrypt and NTRUSign, version (June 2,
2003)

6. Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998); First presented at the rump session of Crypto 1996

8. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In: Proc. 39th ACM Symp. on Theory of Computing
(STOC), pp. 469–477 (2007)

9. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005)

10. Ingleton, A.W.: The Rank of Circulant Matrices. J. London Math. Soc. s1-31,
445–460 (1956)

11. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In:
Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp.
126–135 (2004)

12. Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Addison-Wesley, Reading (1983)

13. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal
of the Association for Computing Machinery (January 1985)

14. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications,
2nd edn. Springer (1997)

154 J. Bi and Q. Cheng

15. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within
some constant. SIAM J. on Computing 30(6), 2008–2035 (2001); Preliminary ver-
sion in FOCS (1998)

16. Mazo, J.E., Odlyzko, A.M.: Lattice points in high-dimensional spheres. Monatsh.
Math. 110, 47–61 (1990)

17. Nguyen, P.Q., Stehlé, D.: LLL on the Average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

18. Siegel, C.L.: A mean Value theorem in geometry of numbers. Annals of Mathemat-
ics 46(2), 340–347 (1945)

A Appendix

Proof of Lemma 1

Proof. Since r is a primitive root modulo N , we have that

(xN − 1)/(x− 1) = xN−1 + xN−2 + · · ·+ 1

is an irreducible polynomial over Fr [12]. To determine the size of the solutions
of (5), We need to study the circulant matrix

V =

⎛⎜⎜⎜⎝
v1 vN · · · v2
v2 v1 · · · v3
...

...
. . .

...
vN vN−1 · · · v1

⎞⎟⎟⎟⎠ (7)

Let ω be the N -th primitive root of unit in the algebraic closure of Fr. One can
verify that

V

⎛⎜⎜⎜⎜⎜⎝
1
ωi

ω2i

...
ω(N−1)i

⎞⎟⎟⎟⎟⎟⎠ = (v1 + vNωi + · · ·+ v2ω
(N−1)i)

⎛⎜⎜⎜⎜⎜⎝
1
ωi

ω2i

...
ω(N−1)i

⎞⎟⎟⎟⎟⎟⎠
for 0 ≤ i ≤ N−1. Thus for some i, if v1+vNωi+ · · ·+v2ω

(N−1)i is not zero, then
it is an eigenvalue of V with the eigenvector (1, ωi, ω2i, · · · , ω(N−1)i). Hence if d
elements in {1, ω, ω2, · · · , ωN−1} are zeros of the polynomial vN +vN−1x+ · · ·+
v1x

N−1, then the rank of V is N − d over Fr [10]. Since v1, · · · , vN can not be
all 1, we have ∏

1≤i≤N−1

(v1 + vNωi + · · ·+ v2ω
(N−1)i)

is a nonzero element in Fr. To solve (5), we first compute the Hermite Normal
Form H of V through a sequence of elementary row transformations. Now we
do a case analysis based on the value of v1 + v2 + · · ·+ vN .

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices 155

Case 1: If
v1 + v2 + · · ·+ vN �= 0 (mod r),

then V is non-singular over Fr, thus there is no multiple of r in the diagonal line
of H , we can recover (h0, h1, . . . , hN−1) from v, and there is one unique solution.

Case 2: If
v1 + v2 + · · ·+ vN = 0 (mod r),

but
v1 + v2 + · · ·+ vN �= 0,

then V is non-singular over Q but is singular over Fr. Let r
t be the largest power

of r which divides v1 + v2 + · · ·+ vN . We have rt ≤ N < q, and rt is the largest
power of r which divides the product of all the diagonal elements in H . The
solution space of (5) has size at most rt < q.

Case 3: In the last case,

v1 + v2 + · · ·+ vN = 0,

the rank of V over Fr is N − 1, and the first N − 1 rows of V are independent
over Fr. Thus the solution space of (5) has size at most q.

Polynomial Time Construction of Ellipsoidal

Approximations of Zonotopes Given
by Generator Descriptions

Michal Černý and Miroslav Rada

Faculty of Informatics and Statistics, University of Economics, Prague,
Náměst́ı Winstona Churchilla 4, CZ13067 Prague 3, Czech Republic

{cernym,miroslav.rada}@vse.cz

Abstract. We adapt Goffin’s Algorithm for construction of the Löwner-
John ellipsoid for a full-dimensional zonotope given by the generator
description.

1 Introduction

The aim of this paper is twofold.
First, we describe the following algorithm. Let ε > 0 be fixed. Given a full-

dimensional zonotope Z ⊆ Rn, represented as a set of rational generators, the
algorithm constructs an ellipsoidal approximation of Z satisfying

E(n−2 · E, s) ⊆ Z ⊆ E((1 + ε) · E, s) (1)

in time polynomial in the bit-size of the generator description. Here E(E, s) is
the ellipsoid {x : (x − s)TE−1(x − s) ≤ 1}, where E is positive definite.

The approximation (1) is called ε-approximate Löwner-John ellipsoid for Z.
(The name comes from the well-known Löwner-John Theorem: for every full-
dimensional bounded convex set A ⊆ Rn, there exists an ellipsoid E(E, s) satis-
fying E(n−2 · E, s) ⊆ A ⊆ E(E, s).)

Second, we show how possible improvements of the factor n−2 in (1) are
related to the following problem:

given a zonotope represented as a set of rational genera-
tors and a rational number γ > 0, does Bγ ⊆ Z hold?

(2)

Here, Bγ = E(γ2 · I, 0) is the euclidian ball centered at zero with radius γ. The
problem (2) is in co-NP, but we do not have a conjecture whether or not it is
co-NP-complete.

We also construct several polynomial-time algorithms for testing geometric
properties of zonotopes given by rational generators.

Remark. Well-known Goffin’s Algorithm [5], [6] constructs an ε-approximate
Löwner-John ellipsoid for a general full-dimensional bounded polyhedron F

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 156–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Polynomial-Time Construction of Ellipsoidal Approximations of Zonotopes 157

given by the facet description (A, b). (The facet description of F consists of a ma-
trix A and a vector b such that F = {x : Ax ≤ b}.) Of course, Goffin’s method
can be applied to the zonotope Z as well. The problem is that the conversion
of the generator description to the facet description can take superpolynomial
time. The reason is that there exist zonotopes with a superpolynomial number
of facets compared to the number of generators ([2], [10]; see also [11]). Hence, if
we want to preserve polynomial time in the size of input, which is the bit-size of
the generator description, we cannot use Goffin’s method directly. We will take
the advantage of the fact that a zonotope given by the generator description is
a kind of an implicitly defined polyhedron in the sense of [6].

Remark. Zonotopes are centrally symmetric polyhedra. By Jordan’s Theorem,
every centrally symmetric, full-dimensional bounded convex set A ⊆ Rn can be
approximated with a better factor than n−2: we can even achieve E(n−1 · E, s)
⊆ A ⊆ E(E, s). But Jordan’s Theorem is nonconstructive and does not suggest
an algorithmic method. We show that the algorithmic improvement of (1) to the
form E(n−1 · E, s) ⊆ Z ⊆ E((1 + ε) · E, s) is related to the complexity of the
problem (2).

Remark. The ellipsoidal approximation (1) also gives us polynomial-time com-
putable upper and lower bounds on the volume of Z. Recall that we cannot
expect that it would be easy to compute the volume exactly: by [4], exact com-
putation of volume of a zonotope is a #P-hard problem.

Remark. Some applications of zonotopes and their approximations can be found
in [3], [7], [8].

2 Basic Definitions and the Main Theorem

Let A ⊆ Rn be a set and x ∈ Rn. We define A⊕ x := convexhull{A ∪ (A+ x)},
where A+ x = {a+ x : a ∈ A}. The operation ⊕ can be seen as a special case of
the Minkowski sum. A zonotope Z := Z(s; g1, . . . , gm) is the set {s}⊕g1⊕· · ·⊕gm.
The vectors g1, . . . , gm are called generators and the vector s is called shift. The
(m + 1)-tuple (s, g1, . . . , gm) is called generator description of Z. If the vectors
s, g1, . . . , gm are rational, we define the bit-size of (the generator description of)
the zonotope Z as size(Z) := size(s) +

∑m
i=1 size(gi), where size(·) denotes the

bit-size of a rational number/vector/matrix.
Our aim is to prove:

Theorem 1. For each ε > 0 there is a polynomial-time algorithm that computes
the ε-approximate Löwner-John ellipsoid (1) for a given full-dimensional zono-
tope represented by a rational generator description. ��

3 Some Properties of Zonotopes

Let a full-dimensional zonotope Z = Z(s; g1, . . . , gm) be given. Let ∂Z denote
the boundary of Z.

158 M. Černý and M. Rada

The zonotope Z is a centrally symmetric set; its center is Zc := s+ 1
2

∑m
i=1 gi.

Without loss of generality we can assume that (a) Zc = 0, and (b) if g is
a generator, then also −g is a generator. Using (b), the sequence g1, . . . , gm can
be ordered into the form g1, . . . , gm/2,−g1, . . . ,−gm/2. Then we can state the
following lemma.

Lemma 1. The matrix G := (g1, . . . , gm/2) satisfies Z = {Gα : −1 ≤ α ≤ 1,

α ∈ Rm/2}. ��

Let F be a k-dimensional face of Z and let A be its affine hull. A set of linearly
independent generators g′1, . . . , g

′
k which form a basis of A is called basis of the

facet F . We define bas(F) := {g′1, . . . , g′k}.
Remark. The basis need not be unique. Whenever we talk about bas(F), we
mean that bas(F) is some basis from set of all bases. It will be apparent that it
is not important which particular basis is chosen if more bases exist.

Given a point x ∈ Z, we define the degree of x as deg(x) := min{dim(F) :
F is a face of Z containing x}. The face F , for which the minimum is attained,
is denoted as F(x).

Theorem 2. Let Z denote a zonotope given by a rational generator description
and let x denote a rational vector.

(a) The relation x ∈ Z is polynomial-time decidable.
(b) The relation x ∈ ∂Z is polynomial-time decidable.
(c) The number deg(x) is polynomial-time computable.
(d) The set bas(F(x)) is polynomial-time computable. ��

Corollary 1. Let x ∈ Z be a point of degree ≤ n− 1. Then, a point x∗ with the
following property can be found in polynomial time: there is a facet F such that
{x, x∗} ⊆ F and x∗ is in the interior of F . ��

4 Sketch of Goffin’s Method

First we sketch the important ingredients of traditional Goffin’s method applica-
ble for a bounded full-dimensional polyhedron P given by the facet description
Ax ≤ b. Then, in Section 5, we restate the algorithm for zonotopes. All the
propositions stated here can be found in [6], [9].

Goffin’s Algorithm is a form of the Ellipsoid Method with shallow cuts. It con-
structs a finite sequence of ellipsoids E(E0, s0), E(E1, s1), . . . of shrinking volume
satisfying P ⊆ E(Ei, si) for all i.

The work in one iteration is as follows. Let the ellipsoid E(Ei, si) ⊇ P be
available; we either terminate or construct E(Ei+1, si+1). Instead of Ei, si we
write E, s only.

By shift we can assume that s = 0. We apply the transformation Φ : ξ �→
E−1/2ξ; under this transformation, the ellipsoid E(E, s = 0) is mapped to the
unit ball B = E(I, 0) and the polyhedron P = {x : Ax ≤ b} is mapped to the

Polynomial-Time Construction of Ellipsoidal Approximations of Zonotopes 159

polyhedron P ′ = {x : A′x ≤ b} with A′ = AE1/2. We shrink the unit ball B
slightly more than by a factor n, say by a factor n ·

√
1 + ε, where ε > 0 is a

small number: we set B′ := E(1
n2(1+ε) I, 0). We test whether

B′ ⊆ P ′. (3)

If the answer is positive, then we terminate — we have found an approximate
Löwner-John ellipsoid.

The test (3) can be performed easily. We know the facet description (A′, b); say
that aT1 x ≤ b1, . . . , a

T
k x ≤ bk are the inequalities of the system A′x ≤ b. Assume

further that they are normalized in the way that ‖a1‖ = · · · = ‖ak‖ = 1. We
test whether the following condition holds:

bj ≥
1

n ·
√
1 + ε

for all j = 1, . . . , k. (4)

If (4) holds, then the test (3) is successful. If (4) does not hold, there is an index
j0 such that bj0 < 1

n·
√
1+ε

. Then we have found a violated inequality aTj0x ≤ bj0
of P ′ which proves that the test (3) fails.

If the test (3) fails, we use the vector aj0 for a cut, called aj0-cut : we
construct the smallest-volume ellipsoid E ′ = E(E′, s′) containing the set B ∩{
x : aTj0x ≤ 1

n·
√
1+ε

}
and start a new iteration with E ′.

5 The Version for Zonotopes Given by Generator
Descriptions

Now we restate Goffin’s method for zonotopes given by generator descriptions.
Given a zonotope Z, we use the symbol L for the bit-size of its generator de-
scription.

5.1 An Initial Ellipsoid

We need an initial ellipsoid E(E0, 0) ⊇ Z. Using Lemma 1 we can set E(E0, 0) :=
E(m2 ·GGT, 0). The expression also shows that the matrix E0 can be computed
in time polynomial in L. And moreover:

Lemma 2. There exists a polynomial p1 such that vol(E0) ≤ 2p1(L). ��

5.2 A Lower Bound on Volume

For a proof of polynomial-time convergence of the algorithm we will need a lower
bound on volume of the zonotope Z. As the zonotope Z is full-dimensional,
we can choose j1, . . . , jn such that the generators gj1 , . . . , gjn are linearly in-
dependent. Setting G := (gj1 , . . . , gjn) we have vol(Z) ≥ | detG| > 0. As the
positive number | detG| can be computed by a polynomial time algorithm, we
have size(| detG|) ≤ p2(L) with some polynomial p2. Hence we have vol(Z) ≥
| detG| ≥ 2−p2(L).

Lemma 3. There exists a polynomial p2 such that vol(Z) ≥ 2−p2(L). ��

160 M. Černý and M. Rada

5.3 Parallel Cuts

We take the advantage of the fact that a zonotope is a centrally symmetric
body centered at zero. Central symmetry implies that whenever we know that
Z ⊆ {x : cTx ≤ γ}, then also Z ⊆ {x : cTx ≥ −γ}. It follows that we can use
parallel cuts. The following lemma on parallel cuts comes from [1]; see also [6],
where it has been used for a more general class of centrally symmetric polyhedra.

Lemma 4. Let c be a vector satisfying ‖c‖ = 1, let B = E(I, 0) be the n-
dimensional unit ball and let γ ∈ (0, 1√

n
). The smallest-volume n-dimensional

ellipsoid containing the set B ∩ {x : −γ ≤ cTx ≤ γ} is the ellipsoid E(E, 0) with

E = n(1−γ2)
n−1

(
I − 1−nγ2

1−γ2 · ccT
)
. We say that E results from B with a cut

(c, γ). ��

Lemma 5. Let ε > 0. Then there exists a constant κε ∈ (0, 1), depending only
on ε, such that the following holds: whenever a vector c satisfying ‖c‖ = 1 is given
and the ellipsoid E(E, 0) results from the unit ball B with a cut (c, γ := 1√

n(1+ε)
),

then vol(E) ≤ κε · vol(B). ��

5.4 Testing Whether Z Contains a Ball

The next crucial step is the test (3). In Section 4 we could perform the test (3)
in the form (4) using the fact that the facet description of the polyhedron under
consideration was available. However, now we cannot lean on that description.

At the moment we cannot design a polynomial-time algorithm for testing
whether a given zonotope Z, centered at zero, satisfies Bγ ⊆ Z, where Bγ =
E(γ2 · I, 0) is a ball with radius γ.

Problem. Let T be the problem “given a rational generator description of a full-
dimensional zonotope Z centered at zero and a rational number γ > 0, does
Bγ ⊆ Z hold?”. The problem T is in co-NP but we do not have a conjecture
whether or not it is co-NP-complete.

If the problem T is computationally hard, it seems to be a serious obstacle.
We overcome it for a certain price: we construct a smaller inscribed ellipsoid.
With Theorem 2(a) we can use essentially the same trick as in [6]: instead of
testing Bγ ⊆ Z we test whether

γei ∈ Z for all i = 1, . . . , n. (5)

(Here ei is the i-th column of the unit matrix.) If the test is successful, by central
symmetry we know that all the points ±γe1, . . . ,±γen are in Z; then also

Z ⊇ convexhull{±γei : i = 1, . . . , n} ⊇ E(γ
2

n , 0). (6)

We will perform the test with

γ =
1√

n(1 + ε)
. (7)

Polynomial-Time Construction of Ellipsoidal Approximations of Zonotopes 161

Then: if the test (5) is successful, we have E(1
n2(1+ε)I, 0) ⊆ Z; if the test (5) is

unsuccessful, we know an index j0 such that 1√
n(1+ε)

· ej0 �∈ Z.

5.5 The Separation Procedure

If the test (5) is unsuccessful, we know a point x0 = 1√
n(1+ε)

· ej0 satisfying

x0 �∈ Z. Then we would like to use Lemma 4 for a parallel (a, γ)-cut of the unit
ball B = E(I, 0) with some suitable a and with γ defined by (7). In Section 4
we selected a as the normal vector of the found violated inequality — but this
is not possible here because the facet description of Z is not available.

We will construct a separator a of x0 from Z, which will be used the for the
(a, γ)-cut.

Let G be the matrix from Lemma 1. Recall that we assume that the zonotope
Z is centered at zero.

Step 1. We set β∗ := max{β ∈ R : βx0 = Gα, −1 ≤ α ≤ 1} (using linear
programming). It follows that x∗ := β∗x0 ∈ ∂Z; hence, deg(x∗) ≤ n−1.

Step 2. If deg(x∗) < n − 1, we replace x∗ by a point of degree n − 1 using
Corollary 1.

Step 3. We know that deg(x∗) = n−1. Hence we have |bas(F(x∗))| = n−1. We

compute {h1, . . . , hn−1} = bas(F(x∗)). Observe that {x∗ +
∑n−1

i=1 λihi :
λ1, . . . , λn−1 ∈ R} is a hyperplane separating x0 from Z.

Step 4. We find a vector orthogonal to h1, . . . , hn−1: we set H := (h1, . . . , hn−1)
and define a0 := (I − H(HTH)−1HT)x0. The vector a := a0

‖a0‖ is the

output of the procedure.

By the theory of Section 3, all tests and operations can be performed in polyno-
mial time.

5.6 The Algorithm

Let ε > 0 be fixed. Let a generator description of a full-dimensional zonotope
Z be given. (Observe that an incorrect input — a zonotope which is not full-
dimensional — can be easily detected. It suffices to test that the generators
span Rn.)

At the beginning, we choose the initial ellipsoid E(E0, 0) ⊇ Z as described in
Section 5.1.

Let us describe the work in one iteration. We have E(Ei, 0) ⊇ Z from the

previous iteration; we will construct Ei+1. We apply the mapping Φ : ξ �→ E
−1/2
i

under which the ellipsoid E(Ei, 0) is projected to the unit ball E(I, 0) and the
zonotope Z generated by g1, . . . , gm is projected to a zonotope Z ′ generated by
Φ(g1), . . . , Φ(gm).

162 M. Černý and M. Rada

We set γ := 1√
n(1+ε)

and we perform the test (5) with γ and Z ′. If the test

passes, we can finish — by (6) we know that E(1
n2(1+ε)I, 0) ⊆ Z ′ ⊆ E(I, 0),

and hence E(1
n2(1+ε)Ei, 0) ⊆ Z ⊆ E(Ei, 0). It follows that E(1

1+εEi, 0) is the

ε-approximate Löwner-John ellipsoid for Z.
If the test (5) with γ and Z ′ fails, we determine the vector a using the separa-

tion algorithm of Section 5.5 and perform a cut (a, γ) using Lemma 4. We get a
matrix E from the lemma. We set Ei+1 := Φ−1(E) and the iteration is finished.

Convergence. Recall that L = size(Z). It is easy to show that the algorithm
terminates after no more than N := − 1

log2 κε
· [1 + p1(L) + p2(L)] = poly(L)

iterations, where p1 is the polynomial of Lemma 2, p2 is the polynomial of
Lemma 3 and κε is the constant of Lemma 5. (By Lemma 5 we know that the
volumes of the ellipsoids E(Ei, 0) are decreasing exponentially fast, and if the
algorithm does not terminate in N iterations, we get an ellipsoid E(EN , 0) ⊇ Z
with volume < 2−p2(L), which contradicts Lemma 3.)

6 Conclusion

The basic question is whether the statement of Theorem 1 can be improved.
In (6) we have lost the factor n−1 (or, in terms of lengths of semiaxes, a factor
n−1/2) not being able to test whether a zonotope contains a ball. If that test could
be implemented, then we could strengthen the theorem and find an ellipsoid
satisfying E(n−1 · E, 0) ⊆ Z ⊆ E((1 + ε) · E, 0). Even if the test could not be
implemented, it would be challenging to try to adapt the algorithm for finding
an approximation E(n−λ · E, 0) ⊆ Z ⊆ E((1 + ε) ·E, 0) with some λ ∈ (1, 2).

Acknowledgments. The work was supported by Grant No. P403/12/G097 of
the Czech Science Foundation.

References

1. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid method: A Survey. Operations
Research 29, 1039–1091 (1981)

2. Buck, R.C.: Partion of space. The American Mathematical Monthly 50, 541–544
(1943)

3. Černý, M., Antoch, J., Hlad́ık, M.: On the possibilistic approach to linear regres-
sion models involving uncertain, indeterminate or interval data. Technical Report,
Department of Econometrics, University of Economics, Prague (2011),
http://nb.vse.cz/~cernym/plr.pdf

4. Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed
volumes. SIAM Journal on Computing 27, 356–400 (1998)

5. Goffin, J.-L.: Variable metric relaxation methods. Part II: The ellipsoid method.
Mathematical Programming 30, 147–162 (1984)

6. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1993)

http://nb.vse.cz/~cernym/plr.pdf

Polynomial-Time Construction of Ellipsoidal Approximations of Zonotopes 163

7. Guibas, L.J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: Pro-
ceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
803–812. SIAM, Pennsylvania (2003)

8. Schön, S., Kutterer, H.: Using zonotopes for overestimation-free interval least-
squares — some geodetic applications. Reliable Computing 11, 137–155 (2005)

9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (2000)
10. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of

space by hyperplanes. Memoirs of the American Mathematical Society 154 (1975)
11. Ziegler, G.: Lectures on Polytopes. Springer, Heidelberg (2004)

Hardness and Approximation of the

Asynchronous Border Minimization Problem

(Extended Abstract)

Alexandru Popa1, Prudence W.H. Wong2, and Fencol C.C. Yung2

1 Department of Communications & Networking,
Aalto University School of Electrical Engineering, Aalto, Finland

alexandru.popa@aalto.fi
2 Department of Computer Science, University of Liverpool, UK

pwong@liverpool.ac.uk, ccyung@graduate.hku.hk

Abstract. We study a combinatorial problem arising from the microar-
rays synthesis. The objective of the BMP is to place a set of sequences
in the array and to find an embedding of these sequences into a common
supersequence such that the sum of the “border length” is minimized.
A variant of the problem, called P-BMP, is that the placement is given
and the concern is simply to find the embedding.

Approximation algorithms have been proposed for the problem [21]
but it is unknown whether the problem is NP-hard or not. In this pa-
per, we give a comprehensive study of different variations of BMP by
presenting NP-hardness proofs and improved approximation algorithms.
We show that P-BMP, 1D-BMP, and BMP are all NP-hard. In contrast
with the result in [21] that 1D-P-BMP is polynomial time solvable, the
interesting implications include (i) the array dimension (1D or 2D) differ-
entiates the complexity of P-BMP; (ii) for 1D array, whether placement
is given differentiates the complexity of BMP; (iii) BMP is NP-hard
regardless of the dimension of the array. Another contribution of the
paper is improving the approximation for BMP from O(n1/2 log2 n) to
O(n1/4 log2 n), where n is the total number of sequences.

1 Introduction

In this paper, we study an optimization problem called (asynchronous) border
minimization problem (BMP), arising from a biological problem of microarray
synthesis. We first describe the BMP (formal definition is given in Section 2)
and then explain its relation with the biological problem. The input is a set of
sequences S = {s1, s2, · · · , sn}. We want to find a common supersequence D of
S and an embedding εi for each sequence si into D, where εi is obtained by
inserting spaces into si up to length |D| with a constraint that the j-th position
of εi is either the character at the j-th position of D or a space. The border
length of si with respect to sj is the number of non-space positions of εi that are
different from εj. We then have to “place” the sequences into a

√
n×

√
n array

such that the total border length is minimized (the total border length is the

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 164–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Asynchronous Border Minimization Problem 165

sum of the border length between every two sequences that are neighbors in the
array). We study the complexity of BMP and give an approximation algorithm.

Motivation. DNA and peptide microarrays [7, 12] are important research tools
used in gene discovery, multi-virus discovery, disease and cancer diagnosis. Apart
from measuring the amount of gene expression [27], microarrays are an efficient
tool for making a qualitative statement about the presence or absence of biologi-
cal target sequences in a sample, e.g., peptide microarrays are used for detecting
tumor biomarkers [6, 23, 29]. Microarray design raises a number of challenging
combinatorial problems, such as probe selection [15,22,28], deposition sequence
design [18, 24] and probe placement and synthesis [3–5, 14, 16, 17].

A microarray is a plastic or glass slide consisting of thousands of sequences
called probes. The synthesis process [11] consists of two components: probe place-
ment and probe embedding. In the probe placement the goal is to place each probe
to a unique array cell. In the probe embedding we want to find a common su-
persequence of all sequences, called the deposition sequence, and a sequence of
2D arrays, called masks. The cells of a mask can be either opaque or transparent
allowing the deposition of the character associated with the mask. For any cell,
concatenating the characters for which the cell is transparent has to be the same
as the probe in that cell of the microarray. See Figure 1(a) for an example. The
embedding of a probe placed in a cell c is a sequence in which the ith character
is “−” if cell c is opaque in the ith mask, or the ith character of the deposition
sequence if transparent (Figure 1(b)).

Due to diffraction, the cells on the border between the masked and the un-
masked regions are often subject to unintended illumination [11], and can com-
promise experimental results. As the microarray chip is expensive to synthesize,
unintended illumination should be minimized. The magnitude of unintended il-
lumination can be measured by the border length of the masks used, which is
the number of borders shared between masked and unmasked regions, e.g., in
Figure 1(a), the border length of M1,M3,M4 is 2 and M2 is 4.

A synchronous variant of the problem was first studied [14] in which each
deposition character can only be deposited to the i-th position of the probe
sequences. Once the placement is fixed, the border length is unique and is pro-
portional to the Hamming distance of neighboring probes. Thus the only prob-
lem is the placement of the probes. The synchronous version is NP-hard [19],
O(

√
n)-approximable [20] and there are also some experimental results [4,16,17].

Previous Work on Asynchronous BMP. The Asynchronous Border Minimiza-
tion Problem (BMP) was introduced by Kahng et al. [16]. The problem appears
to be difficult as they studied a special case in which the deposition sequence
is given and the embeddings of all but one probes are known. A polynomial
time dynamic programming algorithm was proposed to compute the optimal
embedding of this single probe. This algorithm is used as the basis for several
heuristics [3–5, 16, 17] that are shown experimentally to reduce unintended il-
lumination. The dynamic programming [16] computes the optimal embedding
of a single probe in time O(�|D|), where � is the length of a probe and D is

166 A. Popa, P.W.H. Wong, and F.C.C. Yung

M1

M2

M3

M4

A
A

A A

C

C

CC

C

T
T

T

AC

CACT

TA

unmasked region

masked region

(a)

p = CT

A A

C

C

C

CC GG

T

T

T

T

TD

ε1

ε2

ε3
(b)

Fig. 1. (a) Asynchronous synthesis of a 2 × 2 microarray. The deposition sequence
D = CTAC corresponds to four masks M1, M2, M3, and M4. The corresponding
embeddings are −−AC, −TA−, CT−−, and C−A−. The masked regions are shaded.
The borders between the masked and unmasked regions are represented by bold lines.
(b) Different embeddings of probe p = CT into deposition sequence D = (ACGT)2.

the deposition sequence. The algorithm can be extended to an exponential time
algorithm to find the optimal embedding of all n probes in O(2n�n|D|) time.

To find both the placement and the embedding, Li et al. [21] proposed the first
randomized approximation algorithm with approximation ratio O(

√
n log2 n),

based on their O(log2 n)-approximation when placement is given. On a
one-dimensional array, they improved the approximation ratio to 3/2. If the
placement is given, the one-dimensional problem can be solved optimally in
polynomial time. It is however unknown whether the general problem is NP-
Hard or not. This leaves several open questions. Let us denote by P-BMP the
problem with placement already given.

– So far, only approximation algorithms for BMP have been proposed. An
open question is whether BMP is NP-Hard.

– P-BMP problem on 1D array can be solved optimally in polynomial time [21]
while approximation algorithms and exponential time optimal algorithms
have been proposed on 2D array. Two related questions are: Is 1D-BMP
NP-Hard? Is P-BMP on 2D array NP-Hard?

– Is it possible to improve the approximation algorithms for BMP or P-BMP?

Our Contributions. We give a comprehensive study of different variations of
the asynchronous border minimization problem. We answer the above questions
affirmatively by giving several NP-Hardness proofs and better approximation
algorithms. Our contributions are listed below (see Table 1 also):

1. For P-BMP, we show that the Shortest Common Supersequence problem [25]
can be reduced to P-BMP, implying that P-BMP is NP-Hard.
This means that the dimension differentiates the complexity of P-BMP as
we have seen in [21] that 1D-P-BMP is polynomial time solvable.

2. For 1D-BMP (placement not given), we give a reduction from the Hamming
Traveling Salesman Problem [8], implying the NP-Hardness of 1D-BMP.
This result implies that when the array is one dimensional, whether place-
ment is given differentiates the complexity of BMP (as 1D-P-BMP is poly-
nomial time solvable [21]).

Asynchronous Border Minimization Problem 167

Table 1. Results on BMP and P-BMP. Results in this paper are marked with an ∗.

Setting 2D 1D

BMP NP-Hard∗ NP-Hard∗

O(n1/4 log n)-approximate∗ 3
2
-approximate [21]

P-BMP NP-Hard∗ polynomial time solvable [21]
O(log n)-approximate∗

3. We then show that 1D-BMP can be reduced to BMP, i.e. BMP is NP-Hard.
This means that BMP is NP-Hard regardless of the dimension of the array.

4. We observe that the randomized approximation ratio for P-BMP can be
improved from O(log2 n) to O(log n). More interestingly, we improve the

ratio for BMP from O(n
1
2 log2 n) to O(n

1
4 log2 n).

We note that the reductions for (1) and (2) work for constant alphabet size.
An interesting implication of (1) is that with placement already given, the syn-
chronous problem [14] is trivial as the border length equals the Hamming dis-
tance. Nevertheless, the asynchronous problem is NP-hard. This indicates that
the difficulty of the asynchronous problem is due to both the asynchronicity and
the need to find a placement. Furthermore, our approximation algorithm also
gives a O(n

1
4) approximation for the synchronous problem.

Technically speaking, the results for (1) and (4) are more challenging. The
reduction for the NP-hardness proof of P-BMP proves that the Shortest Common
Supersequence problem on binary alphabets can be solved with polynomially
many calls to P-BMP. As for the approximation algorithm for BMP, we continue
to use the observation in [21] that if we can find a good placement, then we can
find a good embedding. Our improvement stems from a better placement, by
defining a metric and using the randomized algorithm in [9] for “embedding”
the metric into a tree distribution. This is a crucial step, since in this way we
can control both the border length on the rows and the border length on the
columns. An idea is to use an embedding in other metrics (e.g. Euclidean), but
it is not at all clear how this can yield a better approximation algorithm.

Organization of the Paper. Section 2 gives definitions and preliminaries.
Sections 3 and 4 give the hardness results for P-BMP and BMP, respectively.
Section 5 discusses approximation for BMP. We conclude in Section 6.

2 Preliminaries

We give the definition of the abstracted problem. We are given a set of n se-
quences S = {s1, s2, . . . , sn} to be placed on a

√
n×

√
n array, where

√
n is an

integer. We denote the t-th character of a sequence si by si[t]. Two cells in the
array (x1, y1) and (x2, y2) are said to be neighbors if |x1 − x2| + |y1 − y2| = 1,
i.e., they are on the left/right/top/bottom of each other (diagonal cells are not
neighbors). For each cell v, we denote the set of neighbors of v by N (v).

168 A. Popa, P.W.H. Wong, and F.C.C. Yung

Deposition Sequence, Placement and Embedding. A placement of S is a bi-
jective function φ that maps each sequence to a unique cell in the array. A
deposition sequence D is a common supersequence of the sequences in S. An
embedding of S into D is denoted by ε = {ε1, ε2, . . . , εn}, where εi is a length-
|D| sequence such that (1) εi[t] is either D[t] or a space “− ”; and (2) removing
all spaces from εi gives si. For example, there are four possible embeddings of
the sequence ACT into the deposition sequence ACGTACGT: AC−T− − −−,
AC−−−−−T, A−−−−C−T, and −−−−AC−T.

The border length of si with respect to sj , denoted by borderε(si, sj), is
the number of non-space positions p’s of εi that are different from εj, i.e., (i)
εi[p] �= ‘−’, and (ii) εi[p] �= εj [p]. Condition (ii) means that εj[p] = ‘−’. Note
that borderε(si, sj) �= borderε(sj , si).

Border Length and BMP. The border length of a placement φ and an embedding
ε is defined as the sum of borders over all pairs of probe sequences

BL(φ, ε) =
∑

si, sj :
φ(sj) ∈ N (φ(si))

borderε(si, sj) . (1)

The BMP is to find a placement φ and an embedding ε that minimizes BL(φ, ε).
When the placement is given, we call the problem P-BMP. We also consider the
BMP when the array is one dimensional, named 1D-BMP.

WMSA and MRCT. As shown in [21], P-BMP can be reduced to the weighted
multiple sequence alignment problem (WMSA), which in turn can be reduced to
the minimum routing cost tree problem (MRCT). In WMSA [2,10,13,26], we are
given k sequences S = {s1, s2, · · · , sk}. An alignment is S ′ = {s′1, s′2, · · · , s′k}
such that all s′i have the same length and s′i is formed by inserting spaces into
si. The problem is to minimize the weighted sum-of-pair score. In MRCT [1],
we are given a graph with weighted edges. In a spanning tree, the routing cost
between two vertices is the sum of weights of the edges on the unique path
between the two vertices in the spanning tree. The MRCT problem is to find a
spanning tree with minimum routing cost, which is defined as the sum of routing
cost between every pair of two vertices. The reduction results in [21] imply the
following lemma.

Lemma 1 ([21]). A c-approximation for MRCT implies a c-approximation for
P-BMP.

It is stated in [21] that Bartal’s algorithm [1] finds a routing spanning tree by
embedding a metric space into a distribution of trees with expected distortion
O(log2 n), implying MRCT is O(log2 n)-approximable [1]. Meanwhile, the ratio
is improved to O(log n) by Fakcharoenphol, Rao and Talwar [9]. With Lemma 1,
we have the following corollary. (Notice that we use the term embedding in
two contexts, probe embedding refers to finding the deposition sequence while
embedding a metric to trees is to obtain an approximation. This should be clear
from the context and should not cause confusion.)

Asynchronous Border Minimization Problem 169

Corollary 1. There is a randomized algorithm that is O(log n)-approximate for
the P-BMP.

3 P-BMP: Finding Embedding When Placement Is Given

We give a reduction from the Shortest Common Supersequence (SCS) to the
P-BMP.

Shortest Common Supersequence Problem.Given n sequences of characters, a
common supersequence is a sequence containing all n sequences as subsequences.
The Shortest Common Supersequence problem is to find a minimum-length com-
mon supersequence.

The reduction is from the SCS problem over binary alphabets, which is known
to be NP-Hard [25]. Suppose that the binary alphabet is {0, 1}. Consider an
instance of the SCS problem with a set S of k binary strings s1, · · · , sk. Let �i
be the length of si, � = max1≤i≤k �i and L =

∑
1≤i≤k �i. For any 1 ≤ p, q ≤ �,

we define an instance of P-BMP, denoted by I(p, q). As we show later, a shortest
common supersequence can be found by computing the optimal solutions for a
polynomial number of instances I(p, q).

The Input I(p, q). We construct a (2k+1)×(2k+1) array. The probe sequences
are over the alphabet {0, 1, $}, where $ is a character different from 0 or 1.
(Tables 2 (a) and (b) show examples of I(3, 3) and I(1, 1), respectively.)

– Except for row 2-4, each cell of rows 1, 5, 6, 7, 8, · · · , (2k + 1) of the array
contains the string “$”. We call these rows dummy-rows.

– All the cells of row 2 contain the same string “0p”. We call this row all-0-row.
– All the cells of row 4 contain the same string “1q”. We call this row all-1-row.
– Row 3 contains s1, s2, · · · , sk in alternate cells, and the rest of the cells

contain the string “$”, precisely, row 3 contains “$”, s1, “$”, s2, “$”, · · · ,
“$”, sk, “$”. We call this row seq-row.

Table 2. s1 = “010”, s2 = “100”, s3 =“00”. (a) The supersequence D = “010011” is
an optimal deposition sequence for I(3, 3). Ignoring the mask for the dummy strings
“$”, the optimal border length equals 2(p∗ + q∗)(2k + 1) + 2L = 100, where p∗ =
q∗ = k = 3 and L = 8. (b) The shortest common supersequence D = “0100” is an
optimal deposition for I(1, 1). The optimal border length equals to (2 × 7 + 2 × 7 +
2 × 3 + 2 × 2) + 2 × 8 = 54 (the first four terms refer to border length with top
and bottom boundaries and the last term with left and right). On the other hand,
2(p∗ + q∗)(2k + 1) + 2L = 44 < 54, where p∗ = q∗ = 1, k = 3 and L = 8.

(a)

$ $ $ $ $ $ $
000 000 000 000 000 000 000
$ 010 $ 100 $ 00 $

111 111 111 111 111 111 111
$ $ $ $ $ $ $
$ $ $ $ $ $ $
$ $ $ $ $ $ $

(b)

$ $ $ $ $ $ $
0 0 0 0 0 0 0
$ 010 $ 100 $ 00 $
1 1 1 1 1 1 1
$ $ $ $ $ $ $
$ $ $ $ $ $ $
$ $ $ $ $ $ $

170 A. Popa, P.W.H. Wong, and F.C.C. Yung

Common Supersequence and Deposition Sequence. Given an instance I(p, q),
we need at least one mask for the dummy strings “$”, and the best is to use
precisely one mask, say M$ for all these strings. We compute the border length
induced by M$. Row 1 (dummy-row) incurs a border length of 2k + 1 on the
bottom boundary with all-0-row, and row 5 (dummy-row) incurs 2k + 1 on the
top boundary with all-1-row. For seq-row, the border length on top boundary
with all-0-row is k + 1, on bottom boundary with all-1-row is also k + 1, and
within the seq-row on the left and right boundaries is 2k. Therefore, the border
length of M$ is 4(2k + 1). The total border length for I(p, q) equals to the
border length of M$ plus that of the remaining deposition sequence, which in
turn is related to a common supersequence of the sequences in S. Since the
border length of M$ is present in all embeddings, we ignore this quantity when
we discuss the border length for I(p, q). Lemma 2 states a relationship between
a common supersequence and an embedding of the probe sequences. Table 2(a)
gives an example.

Lemma 2. If D is a common supersequence of the sequences in S and the num-
ber of 0’s and 1’s in D is p∗ and q∗, respectively, then D is an optimal deposition
sequence for I(p∗, q∗) and the resulting optimal embedding has a border length of
2(p∗ + q∗)(2k + 1) + 2L.

Proof (Sketch). First of all, it is not difficult to observe that D is a deposition
sequence for I(p∗, q∗) since it is a common supersequence and has the same
number of 0’s and 1’s in the all-0-row and all-1-row of the array in I(p∗, q∗),
respectively. Notice that p∗ is at least the number of 0’s in each of si and similarly
q∗ is at least the number of 1’s. By examining each row, one can show that the
total border length equals 2(p∗ + q∗)(2k + 1) + 2L.

We then argue that this is the minimum border length for I(p∗, q∗). In any
deposition sequence, the number of 0’s and 1’s is at least p∗ and q∗, respectively.
Therefore, the all-0-row and the cells with ‘0’ on the seq-row together incur a
border length of at least 2p∗(2k + 1), and similarly, the all-1-row and the cells
with ‘1’ on the seq-row incur at least 2q∗(2k+1). The cell on the seq-row incurs
2L with the left and right boundaries. Therefore, no matter how we deposit
characters, the total border length is at least 2(p∗ + q∗)(2k + 1) + 2L. ��

Lemma 2 implies that if p+ q is large enough, we have a formula for the optimal
border length of the instance I(p, q) in terms of p, q, and L. The following lemma
considers the situation when p+ q is small. Table 2(b) gives an example. Due to
space limit, we leave the proof in the full paper.

Lemma 3. If D is a shortest common supersequence of the sequences in S and
the number of 0’s and 1’s in D is p∗ and q∗, respectively, then for any p1, q1 such
that p1 + q1 < p∗ + q∗, the optimal embedding for I(p1, q1) has a border length
greater than 2(p1 + q1)(2k + 1) + 2L.

Using Lemmas 2 and 3, we can find the optimal solution for SCS from optimal
solutions for P-BMP as follows. For all pairs of 1 ≤ p ≤ � and 1 ≤ q ≤ �, we find

Asynchronous Border Minimization Problem 171

the optimal solution to I(p, q). If the border length of the optimal solution equals
to 2(p+ q)(2k+1)+ 2L, then there is a common supersequence of length p+ q.
Among all such pairs of p and q, those with the minimum p + q correspond to
shortest common supersequences. Notice that there polynomially many, precisely
�2, pairs of p and q to be checked. We then have the following theorem.

Theorem 1. The P-BMP is NP-Hard.

4 BMP: Finding Placement and Embedding

4.1 1D-BMP: BMP on a 1D Array

The Hamming TSP. The input consists of a set of strings s1, s2, . . . sn over the
alphabet {0, 1}. We denote by ham(s1, s2) the Hamming distance between s1
and s2 (i.e. the number of positions on which s1 and s2 differ). The goal is to
find a permutation (we also call this permutation a tour) π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that the sum

∑n−1
i=1 ham(sπ(i), sπ(i+1)) is minimized. Ernvall

et al. prove that the Hamming TSP problem is NP-Hard [8].

Reduction. Consider a Hamming TSP instance with n binary strings s1, . . . sn.
We construct an instance of 1D-BMP with n sequences to be placed on an array
of size 1× n. We now define the alphabet Σ and the probe sequences S.

1. Alphabet: Σ = {0, 1, $}, where $ is a special character serving as a delimiter.
2. Probe sequences: for each string s = x1x2 . . . xk in the Hamming TSP in-

stance, where xi ∈ {0, 1}, we construct the probe sequence s′ = x1$
2n
x2$

2n

. . . $2n
xk, where � is the length of the longest string si.

Theorem 2. The 1D-BMP is NP-Hard if the size of the alphabet is at least 3.

4.2 BMP on 2D Array

In this section, we reduce the BMP on an 1 × n array to BMP on an n × n
array. This implies that the BMP is NP-Hard. Consider an instance I1 for the
1D-BMP where there are n sequences s1, s2, · · · , sn over an alphabet Σ, and
the length of si is �i. Let � = max1≤i≤n �i and let k > � be a large integer to
be determined later. We construct an instance I2 for BMP which contains two
types of sequences on the alphabet Σ′ = Σ ∪{x1, x2, · · · , xn}∪{$}, namely, the
given sequence and the dummy sequence.

– Dummy sequences: we create n2 − n dummy sequences each containing one
character $.

– Given sequences: for each si, we create a length k sequence xk−
i
i · si.

We claim that the best way is to put the given sequences on the top row. The
optimal solution for I1 would give an optimal solution for I2 and vice versa. Due
to space limit, we leave the proof to the full paper.

Theorem 3. The (two-dimensional) BMP is NP-Hard.

172 A. Popa, P.W.H. Wong, and F.C.C. Yung

5 A O(n
1
4 log2 n) Approximation Algorithm for the BMP

In this section we present a O(n
1
4 log2 n) randomized approximation algorithm

for the BMP, improving the previous O(n
1
2 log2 n) approximation. As mentioned

in Corollary 1 (Section 2), there is a O(log n) approximation for the P-BMP in
which the placement of the sequences is given. Therefore, to obtain an approxi-
mation for the BMP, it suffices to find a “good” placement of the sequences.

The intuitive ideas of our approximation algorithm are as follows. We first
define a distance function d(si, sj) for any pair of sequences si and sj , and this
gives a lower bound on border(si, sj) + border(sj , si) (this is similar to [21]). A
placement can be viewed as a permutation π. We define a function p(π) based
on d(si, sj) and show that p(π) is a lower bound on the border length of any
embedding (including the optimal one) for the permutation π. Therefore, if we
can find an embedding such that the border length is at most a certain factor
of p(π), then we have an approximation for BMP. We then observe that it is
difficult to find in polynomial time a permutation optimizing the value p(π) on
the general metric and turn to embedding the metric into a tree (distribution)
such that (in expectation) the distance on the tree dT (si, sj) satisfies the property
d(si, sj) ≤ dT (si, sj) ≤ O(log n)d(si, sj). Finally, we show that using an Euler
tour on the embedded tree as a permutation to place the sequences on the array
gives us a O(n

1
4) approximation on pT (π), which is the counter part of p(π)

with d(·) replaced by dT (·). Combining all the arguments above, we obtain a

O(n
1
4 log2 n) approximation for BMP. Details are as follows.

The Function p(π). We first derive a lower bound on the border length between
two sequences si and sj of length �i and �j , respectively. Let LCS(si, sj) denote
the longest common subsequence between si and sj and |LCS(si, sj)| denote
its length. For any embedding ε, the maximum number of common deposition
nucleotides between si and sj is |LCS(si, sj)|. Then, the border length is at least
�i + �j − 2|LCS(si, sj)| and we denote this quantity as d(si, sj). Therefore, the
sum of distances d(si, sj) is a lower bound on the optimal border length of a
given placement. We observe that this distance d(·) is a metric.

We further derive a lower bound on the overall border length of a placement.
A placement can be viewed as a permutation π : {1, . . . , n} → {1, . . . , n} such
that the sequences π(1), . . . , π(

√
n) are placed on the first row of the array in this

order, π(
√
n+1), . . . , π(2

√
n) on the second row and so on. Then any embedding

for a placement π has a border length at least p(π), which is defined as:

p(π) =

n−1∑
i=1

d(π(i), π(i + 1))−

√
n−1∑
i=1

d(π(i
√
n), π(i

√
n+ 1))

+

√
n∑

i=1

√
n−1∑
j=1

d(π(i + (j − 1)
√
n), π(i + j

√
n)) .

We name the problem to minimize this “proxy” value p(π) the Proxy problem.
Note that the border length for a placement π can be much larger than p(π)

Asynchronous Border Minimization Problem 173

as the embeddings needed to achieve d(si, sj) for all si and sj may not be
compatible with each other. Yet, using a similar argument as in [21], one can
show that given a placement π, the P-BMP approximation algorithm returns
an embedding with the border length less than O(log n)p(π) (c.f. Corollary 1).
Therefore, if we can place the sequences into the array such that the sum of the
distances between any neighbors is within a factor c of p(π), then we can apply
the O(log n) approximation algorithm for the P-BMP and obtain a O(c log n)
approximation for the BMP. We summarize this in the following proposition.

Proposition 1. A c-approximation algorithm for the Proxy problem implies a
O(c log n) approximation algorithm for the BMP.

Tree Embedding and Euler Tour to Approximate p(π). We optimize the
value p(π) by embedding the metric into a distribution of trees, with O(log n)
distortion using the algorithm of Fakcharoenphol, Rao and Talwar [9]. This ran-
domized embedding algorithm takes the input sequences as tree vertices and
returns a tree with a metric dT (·) defined by a tree such that in expectation
d(si, sj) ≤ dT (si, sj) ≤ O(log n)d(si, sj). The distance dT (si, sj) on the tree is
the sum of distances along the unique path between si and sj . Notice that the
resulting tree may have vertices in addition to the n input sequences. Using the
metric dT (si, sj), we define a counter part of pT (π) by replacing d(si, sj) with
dT (si, sj). Then a c-approximation to pT leads to a O(c log n) approximation to
p. Together with Proposition 1, we have the following proposition.

Proposition 2. If we can approximate the Proxy problem on a tree (i.e., ap-
proximate pT) within a factor of c, then we have a O(c log2 n) approximation to
the BMP.

We now present how to approximate pT . Our approximation algorithm for the
Proxy problem on trees is very simple: we consider the ordering of the vertices
given by an Euler tour of the tree (we ignore the additional vertices which do

not correspond to input sequences). We then prove that this is a O(n
1
4) approx-

imation algorithm for pT . Then, by Proposition 2 we are guaranteed to have a
O(n

1
4 log2 n) approximation algorithm for the BMP problem (see Algorithm 1).

Algorithm 1. The O(n
1
4 log2 n) approximation algorithm for the BMP

1: Input: The strings s1, s2, . . . , sn.
2: Define d(si, sj) = �i + �j − 2|LCS(si, sj)|
3: Embed the metric given by this distance and the set of input vertices into a tree

T using the algorithm from [9].
4: Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be the ordering of the sequences according to

an Euler tour of the tree T from which the additional vertices have been removed.
5: Place the sequences in the array according to π: π(1), . . . , π(

√
n) are placed on the

first row in this order, π(
√
n + 1), . . . , π(2

√
n) on the second row and so on. (See

Figure 2.)
6: Apply the P-BMP approximation algorithm in [21].
7: Output: The placement of the sequences on the array based on the Euler tour and

the embeddings given by the P-BMP approximation algorithm.

174 A. Popa, P.W.H. Wong, and F.C.C. Yung

(a) (b)

Fig. 2. (a) Suppose the embedding in [9] returns such a tree for 9 sequences. The ver-
tices that are mapped to input strings are labeled with numbers and the additional
vertices introduced by the embedding algorithm are labeled with letters. (b) The place-
ment of these sequences on the array according to an Euler tour of the tree, e.g.,
1, a, 2, 8, 3, 4, b, 5, 9, 6, 7. After removing the additional vertices a and b the ordering of
n the vertices corresponding to input sequences is: 1, 2, 8, 3, 4, 5, 9, 6, 7.

Theorem 4. The placement of the sequences in the
√
n×

√
n array in the order

given by the Euler tour gives a O(n
1
4 log2 n) approximation to the BMP problem.

6 Concluding Remarks

We give a comprehensive study of different variations of the Border Minimiza-
tion Problem and present NP-hardness proofs and approximation algorithms.
Contrasting with the previous result in [21] that the 1D-P-BMP is polynomial
time solvable, our hardness results show that (i) the dimension differentiates the
complexity of the P-BMP; (ii) for 1D array, whether placement is given differ-
entiates the complexity of the BMP; (iii) the BMP is NP-Hard regardless of the
dimension of the array.

Moreover, our techniques can be used to improve the approximation ratio
for the synchronous case from O(n1/2) to O(n1/4) using the placement method
given by Algorithm 1 (where the metric is defined by the Hamming distance
between the probes). Once a placement is found, the synchronous embedding
can be computed exactly in polynomial time.

Note that the NP-hardness reduction for the P-BMP works for alphabets of
size 3. In contrast, the hardness result for the BMP uses non-constant alphabets.
An open problem is to prove that the BMP is hard also on constant alphabets
(intuitively the BMP is harder than the P-BMP) but this does not seem to be
easy.

Another natural open question is to further improve approximation algorithms
for the BMP and the P-BMP and/or to derive inapproximability results.

Asynchronous Border Minimization Problem 175

References

1. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In: FOCS, pp. 184–193 (1996)

2. Bonizzoni, P., Vedova, G.D.: The complexity of multiple sequence alignment with
SP-score that is a metric. TCS 259(1-2), 63–79 (2001)

3. de Carvalho Jr., S.A., Rahmann, S.: Improving the Layout of Oligonucleotide Mi-
croarrays: Pivot Partitioning. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006.
LNCS (LNBI), vol. 4175, pp. 321–332. Springer, Heidelberg (2006)

4. de Carvalho Jr., S.A., Rahmann, S.: Microarray layout as quadratic assignment
problem. In: Proc. GCB, pp. 11–20 (2006)

5. de Carvalho Jr., S.A., Rahmann, S.: Improving the design of genechip arrays by
combining placement and embedding. In: Proc. 6th CSB, pp. 54–63 (2007)

6. Chatterjee, M., Mohapatra, S., Ionan, A., Bawa, G., Ali-Fehmi, R., Wang, X.,
Nowak, J., Ye, B., Nahhas, F.A., Lu, K., Witkin, S.S., Fishman, D., Munkarah,
A., Morris, R., Levin, N.K., Shirley, N.N., Tromp, G., Abrams, J., Draghici, S.,
Tainsky, M.A.: Diagnostic markers of ovarian cancer by high-throughput antigen
cloning and detection on arrays. Cancer Research 66(2), 1181–1190 (2006)

7. Cretich, M., Chiari, M.: Peptide Microarrays Methods and Protocols. Methods in
Molecular Biology, vol. 570. Human Press (2009)

8. Ernvall, J., Katajainen, J., Penttonen, M.: NP-completeness of the hamming sales-
man problem. BIT Numerical Mathematics 25, 289–292 (1985)

9. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC, pp. 448–455 (2003)

10. Feng, D.F., Doolittle, R.F.: Approximation algorithms for multiple sequence align-
ment. TCS 182(1), 233–244 (1987)

11. Fodor, S., Read, J., Pirrung, M., Stryer, L., Lu, A., Solas, D.: Light-directed,
spatially addressable parallel chemical synthesis. Science 251(4995), 767–773 (1991)

12. Gerhold, D., Rushmore, T., Caskey, C.T.: DNA chips: promising toys have become
powerful tools. Trends in Biochemical Sciences 24(5), 168–173 (1999)

13. Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology 55(1), 141–154 (1993)

14. Hannenhalli, S., Hubell, E., Lipshutz, R., Pevzner, P.A.: Combinatorial algorithms
for design of DNA arrays. Adv. in Biochem. Eng./Biotech. 77, 1–19 (2002)

15. Kaderali, L., Schliep, A.: Selecting signature oligonucleotides to identify organisms
using DNA arrays. Bioinformatics 18, 1340–1349 (2002)

16. Kahng, A.B., Mandoiu, I.I., Pevzner, P.A., Reda, S., Zelikovsky, A.: Scalable heuris-
tics for design of DNA probe arrays. JCB 11(2/3), 429–447 (2004); Preliminary
versions in WABI 2002 and RECOMB 2003

17. Kahng, A.B., Mandoiu, I.I., Reda, S., Xu, X., Zelikovsky, A.: Computer-aided
optimization of DNA array design and manufacturing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25(2), 305–320 (2006)

18. Kasif, S., Weng, Z., Detri, A., Beigel, R., De Lisi, C.: A computational framework
for optimal masking in the synthesis of oligonucleotide microarrays. Nucleic Acids
Research 30(20), e106 (2002)

19. Kundeti, V., Rajasekaran, S.: On the hardness of the border length minimization
problem. In: BIBE, pp. 248–253 (2009)

20. Kundeti, V., Rajasekaran, S., Dinh, H.: On the border length minimization problem
(BLMP) on a square array. CoRR, abs/1003.2839 (2010)

176 A. Popa, P.W.H. Wong, and F.C.C. Yung

21. Li, C.Y., Wong, P.W.H., Xin, Q., Yung, F.C.C.: Approximating Border Length for
DNA Microarray Synthesis. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 410–422. Springer, Heidelberg (2008)

22. Li, F., Stormo, G.: Selection of optimal DNA oligos for gene expression arrays.
Bioinformatics 17(11), 1067–1076 (2001)

23. Melle, C., Ernst, G., Schimmel, B., Bleul, A., Koscielny, S., Wiesner, A., Bogumil,
R., Möller, U., Osterloh, D., Halbhuber, K.-J., von Eggeling, F.: A technical tri-
ade for proteomic identification and characterization of cancer biomarkers. Cancer
Research 64(12), 4099–4104 (2004)

24. Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. Bioinformatics 19(suppl.2), 156–161 (2003)

25. Räihä, K.-J.: The shortest common supersequence problem over binary alphabet
is NP-complete. Theoretical Computer Science 16(2), 187–198 (1981)

26. Reinert, K., Lenhof, H.P., Mutzel, P., Mehlhorn, K., Kececioglu, J.D.: A branch-
and-cut algorithm for multiple sequence alignment. In: RECOMB, pp. 241–250
(1997)

27. Slonim, D.K., Tamayo, P., Mesirov, J.P., Golub, T.R., Lander, E.S.: Class predic-
tion and discovery using gene expression data. In: RECOMB, pp. 263–272 (2000)

28. Sung, W.K., Lee, W.H.: Fast and accurate probe selection algorithm for large
genomes. In: Proc. 2nd CSB, pp. 65–74 (2003)

29. Welsh, J., Sapinoso, L., Kern, S., Brown, D., Liu, T., Bauskin, A., Ward, R.,
Hawkins, N., Quinn, D., Russell, P., Sutherland, R., Breit, S., Moskaluk, C., Frier-
son Jr., H., Hampton, G.: Large-scale delineation of secreted protein biomarkers
overexpressed in cancer tissue and serum. PNAS 100(6), 3410–3415 (2003)

Asymptotic Limits of a New Type

of Maximization Recurrence
with an Application to Bioinformatics

Kun-Mao Chao1, An-Chiang Chu1, Jesper Jansson2, Richard S. Lemence2,3,
and Alban Mancheron4

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan 106
kmchao@csie.ntu.edu.tw, anchiang@gmail.com

2 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Jesper.Jansson@ocha.ac.jp, rslemence@gmail.com

3 Institute of Mathematics, College of Science, University of the Philippines,
Diliman, Quezon City, 1101 Philippines

4 Université Montpellier 2, LIRMM/CNRS, 161 rue Ada,
34095 Montpellier Cedex 5, France

alban.mancheron@lirmm.fr

Abstract. We study the asymptotic behavior of a new type of maxi-
mization recurrence, defined as follows. Let k be a positive integer and
pk(x) a polynomial of degree k satisfying pk(0) = 0. DefineA0 = 0 and for
n ≥ 1, let An = max0≤i<n{Ai+nk pk(

i
n
)}. We prove that limn→∞

An

nk =

sup{ pk(x)
1−xk : 0 ≤ x < 1}. We also consider two closely related maximiza-

tion recurrences Sn and S′
n, defined as S0 = S′

0 = 0, and for n ≥ 1,
Sn = max0≤i<n{Si +

i(n−i)(n−i−1)
2

} and S′
n = max0≤i<n{S′

i +
(
n−i
3

)
+

2i
(
n−i
2

)
+ (n− i)

(
i
2

)
}. We prove that limn→∞

Sn
n3 = 2

√
3−3
6
≈ 0.077350...

and limn→∞
S′
n

3(n3)
= 2(

√
3−1)
3

≈ 0.488033..., resolving an open problem

from Bioinformatics about rooted triplets consistency in phylogenetic
networks.

1 Introduction

A recurrence relation (or recurrence, for short) is an equation of the form Tn =
f(Tn−1, Tn−2, . . . , T0, n), where f is a specified function and n is an unspecified
positive integer, along with the values T0, T1, . . . , Tm for some finite, non-negative
integer m. Intuitively, a recurrence describes how the value of Tn for any n
depends on n and the values of the elements in the sequence T0, T1, . . . , Tn−1.

Recurrences are central to the analysis of algorithms [3]. In particular, when
recursion is involved, the worst-case running time Tn of an algorithm for an
input of size n can often be expressed in terms of Tn1 , Tn2 , . . . , Tnk

, where
n1, n2, . . . , nk < n, which naturally yields a recurrence. It can be argued that re-
currences are as important to Theoretical Computer Science as differential equa-
tions are to Physics. Over the years, elegant techniques for solving various types

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 177–188, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 K.-M. Chao et al.

of linear recurrences (i.e., recurrences for which the function f mentioned above
is a linear function) have been developed, and are now part of most standard
undergraduate and graduate algorithm theory courses [3]. However, much less is
known about how to solve nonlinear recurrences, and no general technique that
works for all types of nonlinear recurrences exists. Instead, people have focused
on asymptotically bounding the values of Tn as n → ∞ for various special cases
such as minimization recurrences of the form Tn = min1≤i<n{Ti+Tn−i}+ g(n),
where g is some auxiliary function, and maximization recurrences that use the
max-function [5,9,12,13,15]. Interestingly, such recurrences have shown up in
many different problems concerning random trees, Huffman coding, binomial
group testing, dynamic programming, dichotomous search problems, the design
of electrical circuits, binary search trees, quicksort, parallel divide-and-conquer
algorithms, computational geometry, and tree-drawing.

In this paper, we contribute to the existing repertoire of tools for analyzing
nonlinear recurrences. To be precise, we develop a technique for bounding the
asymptotic behavior of a new type of maximization recurrence, defined as follows.
Let k be a positive integer and pk(x) a polynomial of degree k satisfying pk(0) =
0. Define A0 = 0 and for n ≥ 1, let

An = max
0≤i<n

{
Ai + nk pk(

i
n)
}

We also consider two closely related maximization recurrences Sn and S′
n, defined

as S0 = S′
0 = 0, and for n ≥ 1,

Sn = max
0≤i<n

{
Si +

i(n−i)(n−i−1)
2

}
and

S′
n = max

0≤i<n

{
S′
i +
(
n−i
3

)
+ 2i

(
n−i
2

)
+ (n− i)

(
i
2

)}
where

(
x
y

)
= 0 if x < y. (At this point, the reader may like to verify that some

consecutive values of S′
n are: S′

0 = 0, S′
1 = 0, S′

2 = 0, S′
3 = 2, S′

4 = 7, S′
5 = 16,

S′
6 = 32, S′

7 = 55, S′
8 = 87, S′

9 = 130, S′
10 = 184, . . . , and this sequence does

not appear to follow any regular pattern.)
Below, we derive non-trivial, constant values of the expressions lim

n→∞
An/n

k,

lim
n→∞

Sn/n
3, and lim

n→∞
S′
n/3
(
n
3

)
.

1.1 Motivation

Our motivation for studying the maximization recurrences in this paper orig-
inates from a combinatorial problem in Bioinformatics related to phylogenetic
networks and rooted triplets consistency. This subsection describes the back-
ground; for further technical details, see [2] and [11].

One of the many objectives of Bioinformatics is to develop new concepts
and tools that can help researchers visualize the evolutionary history of a set

Asymptotic Limits of a New Type of Maximization Recurrence 179

of species. Traditionally, phylogenetic trees (rooted, unordered, distinctly leaf-
labeled trees in which every internal node has at least two children) have been
used for this purpose [4]. As might be expected, it is computationally prohibitive
in general to infer a reliable phylogenetic tree for a large set of species directly.
A promising alternative is the supertree approach [1,8] which first infers highly
accurate phylogenetic trees for many small, overlapping subsets of the species
and then applies a combinatorial algorithm to merge them into a single phyloge-
netic tree. One variant of the supertree approach takes as input a set R of rooted
triplets (binary phylogenetic trees with exactly three leaves each) whose leaf la-
bel sets overlap, and tries to construct a phylogenetic tree that is consistent with
the maximum possible number of rooted triplets from R, where a rooted triplet t
is said to be consistent with a phylogenetic tree T if t is an embedded subtree
of T . Ga̧sieniec et al. [6] presented a polynomial-time algorithm that outputs a
phylogenetic tree which is consistent with at least 1/3 of the rooted triplets in
any input set R, and also showed that for a particular set R of rooted triplets,
no phylogenetic tree can be consistent with more than 1/3 of its elements (to
see this, just take the set Rn of all 3

(
n
3

)
rooted triplets over a fixed leaf label

set of cardinality n, for any n ≥ 3). In this sense, the algorithm of Ga̧sieniec et
al. [6] is worst-case optimal for phylogenetic trees.

Due to certain evolutionary events such as hybridization that sometimes occur
in nature, not all evolution is treelike. Therefore, the phylogenetic tree model
was recently extended to phylogenetic networks that permit nodes to have more
than one parent (see, e.g., the surveys in [10,14]). One important special type of
phylogenetic network, introduced by Wang et al. [16] and later termed “galled-
tree” by Gusfield et al. [7], requires all cycles in the underlying undirected graph
to be node-disjoint. (Galled-trees are also known in the literature as “level-1
networks” [10,11,14].) Obviously, galled-trees can express more complicated evo-
lutionary relationships than phylogenetic trees. To measure how much more
powerful galled-trees really are, we can compare the optimal 1/3 bound stated
above for phylogenetic trees to the corresponding bound for galled-trees, and
this leads to the recurrence S′

n studied in the present paper. More precisely,
Jansson et al. [11] proved that for any n ≥ 3, no galled-tree can be consistent
with more than a fraction of S′

n/3
(
n
3

)
of the elements in the set Rn of all rooted

triplets over a fixed leaf label set of cardinality n. Later, Byrka et al. [2] gave a
polynomial-time algorithm that constructs a galled-tree consistent with at least
S′
n/3
(
n
3

)
of the rooted triplets in any input set R.

Jansson et al. [11] showed that for large enough values of n, it holds that
S′
n/3
(
n
3

)
< 0.4883. On the other hand, Byrka et al. [2] proved that S′

n/3
(
n
3

)
>

0.4800 for all n. However, both groups of authors were unable to derive tight
asymptotic bounds on S′

n/3
(
n
3

)
, and this has been one of the remaining open

problems for galled-trees. Computations have suggested that S′
n/3
(
n
3

)
is closer

to the upper bound 0.4883 than the lower bound 0.4800, and indeed, we settle the

issue in Section 3 by proving that lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033... Observe

that this improves the 5/12-ratio mentioned on p. 311 of [10] and the 48%-ratio
mentioned on p. 135 of [14].

180 K.-M. Chao et al.

The other two recurrences introduced in this paper, Sn and An, were studied
because of their connections to S′

n. As shown in Lemma 2 in Section 2 below,
the bound for S′

n/3
(
n
3

)
follows immediately from the bound for Sn/n

3, which is
slightly easier to compute. An is a special case of a generalization of Sn.

1.2 Related Work

The appearance of nonlinear recurrence relations eluding exact solutions in di-
verse fields of study has motivated many previous papers, including [5,9,12,13,15],
to investigate their asymptotic properties on a case-by-case basis. For exam-
ple, Fredman and Knuth [5] considered minimization recurrences of the form
Tn = min1≤i<n{a ·Ti+ b ·Tn−i}+ g(n), and Kapoor and Reingold [12] extended
their results and also studied analogous maximization recurrences. In [13], Li
and Reingold considered exact solutions and upper bounds for a special type
of recurrence of the form Tn = max1≤i<n{Ti + Tn−i + min{g(i), g(n − i)}}
involving minimization and maximization simultaneously, and in [9], Hwang
and Tsai derived asymptotic approximations of this recurrence for more gen-
eral auxiliary functions g. Saha and Wagh [15] studied a recurrence of the form
Tn = min1≤i<n{max{Ti + a · i, Tn−i} + b}. Nevertheless, due to the irregular
and often unpredictable behavior of nonlinear recurrences, general techniques
for analyzing them still seem far from reach.

1.3 Main Results and Organization of the Paper

We establish the relationships among the three recurrences An, Sn, and S′
n in

Section 2. Then, in Section 3, we prove that lim
n→∞

Sn

n3 = 2
√
3−3
6 ≈ 0.077350... and

that lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033... Next, in Section 4, we consider the ratio

An/n
k. We show that lim

n→∞
An

nk = sup{ pk(x)
1−xk : 0 ≤ x < 1}. Finally, Section 5

discusses generalizations of our techniques and an open problem.

2 Preliminaries

The two recurrences Sn and S′
n are related as follows.

Lemma 1. For all n ≥ 0, it holds that Sn = S′
n −

(
n
3

)
.

Proof. By induction on n. For n = 0, we have S0 = S′
0 = 0.

Next, suppose that Sk = S′
k −

(
k
3

)
for all k < n. Then, since

(
n
3

)
=
(
n−i
3

)
+

i
(
n−i
2

)
+ (n− i)

(
i
2

)
+
(
i
3

)
for every 0 ≤ i < n, we can rewrite S′

n as S′
n =

(
n
3

)
+

max
0≤i<n

{i
(
n−i
2

)
+S′

i−
(
i
3

)
}. By the induction hypothesis: S′

n−
(
n
3

)
= max

0≤i<n
{i
(
n−i
2

)
+

S′
i −
(
i
3

)
} = max

0≤i<n
{i
(
n−i
2

)
+ Si} = Sn. ��

Lemma 2. lim
n→∞

S′
n

3(n3)
= lim

n→∞
2Sn

n3 + 1
3 .

Asymptotic Limits of a New Type of Maximization Recurrence 181

Proof. From Lemma 1, we have lim
n→∞

S′
n

3(n3)
= lim

n→∞
Sn

3(n3)
+ 1

3 = lim
n→∞

2Sn

n3 + 1
3 . ��

Next, we consider the relationship between the recurrences Sn and An. Another
(equivalent) way to write Sn is:

Sn = max
0≤i<n

{
Si + n3 · p3(

i

n
) + n2 · p2(

i

n
)
}
,

where p3(x) =
x(1−x)2

2 and p2(x) =
−x(1−x)

2 . Looking at Sn defined in this way,
we are tempted to extend it to a more general type of recurrence as follows. Let
k be a positive integer and let p0(x), p1(x), . . . , pk(x) be polynomials such that
pd(x) is a polynomial of degree d for every d ∈ {0, 1, . . . , k}. Set G0 = p0(0), and
for n ≥ 1, define:

Gn = max
0≤i<n

{
Gi +

k∑
d=0

ndpd(
i

n
)
}
.

Now, if we restrict the recurrence Gn to the special case where pd(x) = 0 for all
d ∈ {0, 1, . . . , k − 1} and pk(0) = 0, we obtain precisely the recurrence An.

3 The Asymptotic Behavior of Sn and S′
n

In order to analyze the asymptotic behavior of Sn/n
3, we define sn = Sn/n

3

and rewrite Sn in terms of sn. This gives s0 = 0, and for n ≥ 1:

sn = max
0≤i<n

{sn,i}, where sn,i = p3(
i

n
) +

1

n
· p2(

i

n
) + si · (

i

n
)3.

Here, p3 and p2 are the polynomials p3(x) = x(1−x)2

2 and p2(x) = −x(1−x)
2 ,

introduced in Section 2. Consider the function p3(x)
1−x3 . It has a unique maximum

value on the interval [0, 1). Call this value α and let β be the point where α is

obtained, i.e., p3(β)
1−β3 = α. By straightforward calculations, we have α = 2

√
3−3
6 ,

β =
√
3−1
2 . In this section, we shall prove that lim

n→∞
sn = α.

First, we introduce two sequences ln, un (n ≥ 0) and show that they provide a
lower bound and an upper bound, respectively, on each term in the sequence sn.
Let l0 = u0 = 0 and, for n ≥ 1, define:⎧⎨⎩ ln = max

0≤i<n
{ln,i}, where ln,i = p3(

i
n) +

1
np2(

i
n) + α(i

n − 1
n)

3,

un = max
0≤i<n

{un,i}, where un,i = p3(
i
n) +

1
np2(

i
n) + α(i

n)
3.

In the next four lemmas, we show that the following chain of inequalities holds
for every integer n ≥ 1:

α(1 − 1

n
)3 ≤ ln ≤ sn ≤ un ≤ α.

182 K.-M. Chao et al.

Lemma 3. For all n ≥ 0, un ≤ α.

Proof. By the definition of α, we have p3(x)
1−x3 ≤ α, for 0 ≤ x < 1. This yields

p3(x) + αx3 ≤ α, for 0 ≤ x < 1. Since un is defined as max
0≤i<n

{p3(i
n) +

1
np2(

i
n) +

α(i
n)

3} and p2(x) ≤ 0 for all 0 ≤ x < 1, we have un ≤ α. ��
Lemma 4. For all n ≥ 0, sn ≤ un.

Proof. By induction on n. For n = 0, u0 = s0 = 0. Next, suppose sm ≤ um for all
m < n. For each integer 0 ≤ i < n, by Lemma 3, we have sn,i − un,i = si(

i
n)

3 −
α(i

n)
3 ≤ si(

i
n)

3 − ui(
i
n)

3 = (si − ui)(
i
n)

3 ≤ 0. Therefore,sn = max
1≤i<n

{sn,i} =

max
1≤i<n

{un,i + (sn,i − un,i)} ≤ max
1≤i<n

{un,i} = un. ��

Lemma 5. For all n ≥ 1, ln ≥ α(1− 1
n)

3.

Proof. For n ≤ 15, the inequality can be verified by computation. For n ≥ 16,
we show that ln ≥ α(1 − 1

n)
3. First note that:

(*1) Since β − 1
n ≤ �βn�

n ≤ β =
√
3−1
2 < 1

2 and p2(x) is decreasing on [0, 1
2],

we have p2(
�βn�
n) ≥ p2(β).

(*2) We have p3(x) ≥ p3(β) for x ∈ [0.302, β]. For n ≥ 16, �βn�
n > β − 1

n ≥
β − 1

16 > 0.302, therefore we have p3(
�βn�
n) > p3(β).

Then, it follows that:

ln − α(1 − 1

n
)3 ≥ ln,�βn� − α(1 − 1

n
)3

=p3(

βn�
n

)−p3(β) + α(1 − β3)︸ ︷︷ ︸
=0

+
1

n
p2(

βn�
n

) + α((

βn�
n

− 1

n
)3 − (1− 1

n
)3)

= p3(

βn�
n

)− p3(β)︸ ︷︷ ︸
≥0, by (∗2)

+α((

βn�
n

− 1

n
)3 − β3 + 1− (1− 1

n
)3) +

1

n
p2(

βn�
n

)

≥α((

βn�
n

− 1

n
)3 − (β− 2

n
)3 +

3−6β2

n
+

12β−3

n2
− 7

n3
) +

1

n
· p2(

βn�
n

)︸ ︷︷ ︸
≥p2(β), by (∗1)

≥α((

βn�
n

− 1

n
)3 − (β − 2

n
)3)︸ ︷︷ ︸

≥0

+
α

n
(3− 6β2 +

p2(β)

α
+

12β − 3

n
+

−7

n2︸ ︷︷ ︸
≥0, for n≥3

) ≥ 0.

��
Lemma 6. For all n ≥ 1, sn ≥ ln.

Proof. By induction on n. For n = 0, s0 = l0 = 0. Next, suppose sm ≥ lm,
for all m < n. For each integer 0 ≤ i < n, by Lemma 5, we have sn,i − ln,i =
si(

i
n)

3 − α(i
n − 1

n)
3 = si(

i
n)

3 − α(1 − 1
i)

3(i
n)

3 ≥ (si − li)(
i
n)

3 ≥ 0. Therefore,
max
0≤i<n

{sn,i} ≥ max
0≤i<n

{ln,i}, which gives sn ≥ ln. ��

Asymptotic Limits of a New Type of Maximization Recurrence 183

We now obtain the main result of this section:

Theorem 1. lim
n→∞

Sn

n3 = lim
n→∞

sn = α = 2
√
3−3
6 ≈ 0.077350....

Proof. By Lemmas 3–6, we have α(1− 1
n)

3 ≤ sn ≤ α. Therefore, α = lim
n→∞

α(1−
1
n)

3 ≤ lim
n→∞

sn ≤ α, i.e., lim
n→∞

sn = α. ��

Finally, using Theorem 1 together with Lemma 2 gives:

Corollary 1. lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033....

Remark. Corollary 1 gives a strengthening of the inapproximability bound in
Theorem 8 in [11]; just change the “0.4883” to any real number strictly larger

than 2(
√
3−1)
3 , for example “0.488034”. Moreover, we can strengthen Lemma 5

in [2] (which says that S′
n/3
(
n
3

)
> 0.4800) and the resulting approximation ratio

in Theorem 2 in [2] by observing that S′
n/3
(
n
3

)
= 2·Sn

n3· n2

(n−1)(n−2)+
1
3 ≥ 2·α·(n−1

n)3·
n2

(n−1)(n−2) +
1
3 by Lemmas 5 and 6, and then rewriting it as 2α · (n−1)2

(n−2)n + 1
3 >

2α+ 1
3 = 2(

√
3−1)
3 . In other words, S′

n/3
(
n
3

)
> 2(

√
3−1)
3 ≈ 0.488033....

4 The Asymptotic Behavior of An

The asymptotic behavior of An depends on the properties of pk(x)/(1−xk). We
define αp = sup{pk(x)/(1 − xk) : 0 ≤ x < 1}, when sup{pk(x)/(1 − xk) : 0 ≤
x < 1} < ∞.1 There are four possible cases:

(C1) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = ∞.

(C2) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp < ∞, and limx→1−
pk(x)
1−xk = αp.

(C3) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp = 0, and pk(0)
1−0k

= αp = 0.

(C4) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp < ∞, and there exists a βp, where

0 < βp < 1, such that
pk(βp)
1−βk

p
= αp.

The definition of An is max
0≤i<n

{nkpk(
i
n) + Ai}, for n > 0. If we substitute An

(m− 1) times recursively, we get

An = max
0≤i2<i1<n

{nkpk(
i1
n
) + ik1pk(

i2
i1
) +Ai2} = · · ·

= max
0≤im<···<i1<i0

{
m−1∑
t=0

ikt pk(
it+1

it
) +Aim}.

1 Note that we use “sup” instead of “max” for the following reason. For some pk(x),

e.g., k = 3, p3(x) = −x3 + x, there is no maximum value for pk(x)

1−xk , 0 ≤ x < 1.

However, there exists an upper bound for pk(x)

1−xk , 0 ≤ x < 1.

184 K.-M. Chao et al.

By choosing it = n− t, we define Ln with L0 = 0, and for n ≥ 1,

Ln = nkpk(
n− 1

n
) + Ln−1.

We substitute Ln (m− 1) times, which gives: Ln =
∑n−1

t=0 (n− t)kpk(
n−t−1
n−t).

Since An is taking the maximum value among all parameters {it}, we have
An ≥ Ln. For case (C1), we show that lim

n→∞
Ln

nk = ∞ in Lemma 7. It follows that

lim
n→∞

An

nk = ∞. For case (C2), we show that lim
n→∞

Ln

nk = αp and An also has an

upper bound αp. Therefore, lim
n→∞

An

nk = αp.

Lemma 7. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = ∞, then lim

n→∞
An

nk = ∞.

Proof. Assume that pk(x) =
k∑

i=1

cix
i. We observe that (n − t)kpk(

n−t−1
n−t) is a

polynomial of (n − t) with degree at most k. Furthermore, the coefficient of

(n− t)k in (n− t)kpk(
n−t−1
n−t) =

k∑
i=1

ci(n− t− 1)i(n− t)k−i equals
k∑

i=1

ci = pk(1).

For the reason that lim
x→1−

pk(x)
1−xk = ∞, we have pk(1) > 0.

Since Ln =
n−1∑
t=0

(n− t)kpk(
n−t−1
n−t), Ln is a polynomial of n with degree k+ 1.

Therefore, lim
n→∞

An

nk ≥ lim
n→∞

Ln

nk = ∞. ��

Lemma 8. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = αp < ∞ and lim

x→1−
pk(x)
1−xk = αp, then

lim
n→∞

An

nk = αp.

Proof. The proof of the upper bound of An is at most αp is similar to that of
Lemma 4.

Assume that pk(x) =
k∑

i=1

cix
i. The coefficient of (n− t) in (n− t)kpk(

n−t−1
n−t)

equals pk(1). However, for the reason that lim
x→1−

pk(x)
1−xk = αp, we have pk(1) = 0.

Hence, Ln is a polynomial with degree at most k.

Furthermore, the coefficient of (n − t)k−1 in (n − t)kpk(
n−t−1
n−t) =

k∑
i=1

ci(n −

t− 1)i(n− t)k−i is
k∑

i=1

−ici = −p′k(1). We have the coefficient of nk in Ln equals

that in
n−1∑
t=0

−p′k(1) · (n− t)k−1. Then the coefficient of nk in Ln equals
−p′

k(1)
k .

Since (x− 1) is a factor of pk(x), let qk(x) =
pk(x)
x−1 . Then d

dxpk(x) =
d
dx (qk(x)

(x− 1)) = qk(x) + (x− 1) d
dx(qk(x)). Hence, p

′
k(1) = qk(1). Moreover,

αp = lim
x→1−

pk(x)

1− xk
= lim

x→1−

(x− 1)qk(x)

1− xk
= lim

x→1−

−qk(x)

1 + x+ · · ·+ xk−1
=

−qk(1)

k
.

Asymptotic Limits of a New Type of Maximization Recurrence 185

Finally, we have lim
n→∞

L(n)
nk =

−p′
k(1)
k = −qk(1)

k = αp. Then, lim
n→∞

An

nk = αp. ��

Lemma 9. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = 0, then An = 0.

Proof. By induction on n. For n = 0, it holds that A0 = 0. Next, suppose that
Am = 0 for all m < n. Then, since αp = 0, we have pk(x) ≤ 0, for 0 ≤ x ≤ 1,
therefore

An = max
0≤i<n

{nkpk(
i

n
) +Ai} ≤ max

0≤i<n
{Ai} = 0. ��

To study the asymptotic value of An/n
k in case (C4), we define an = An/n

k,
and rewrite the recurrence for An in terms of an as follows. Let a0 = 0 and, for
n ≥ 1,

an = max
0≤i<n

{an,i}, where an,i = pk(
i

n
) + ai(

i

n
)k.

To find a lower bound of an, we rewrite an by recursively substituting it (m− 1)
times, for some value of m to be specified later.

an = max
0≤i1<n

{pk(
i1
n
) + (

i1
n
)kai1} = max

0≤i2<i1<n
{pk(

i1
n
) + (

i1
n
)k(pk(

i2
i1
) + (

i2
i1
)kai2)}

= · · · = max
0≤im<···<i1<i0=n

{(
m−1∑
t=0

(
it
n
)kpk(

it+1

it
)) + (

im
n
)kaim}.

By choosing it =
βt
pn� for an, we define ln,m = (

m−1∑
t=0

(
�βt

pn�
n)kpk(

�βt+1
p n�

�βt
pn�

)) +

(
�βm

p n�
n)kaim . For the condition that
βt−1

p n� >
βt
pn� with t < m to hold, we

need m to satisfy βm−1
p n ≥ βm

p n+1, i.e., n > 1
βm−1
p (1−βp)

. Since an is taking the

maximum value among all parameters {it}, we have an ≥ ln,m.
To show that ln,m converges to αp, we replace αp by pk(βp) +αpβ

k
p (m − 1)

times and find an expression for αp which looks similar to the formula for ln,m.

αp =pk(βp) + αpβ
k = pk(βp) + βk

p (pk(βp) + αpβ
k
p) = · · ·

=(

m−1∑
t=0

βtk
p pk(βp)) + βmk

p αp.

In the next lemma, we show that ln,m is close to αp based on two observations:
(1) βmk

p αp is very small for sufficiently large m; and (2) when
βt
pn� is large,

�βt+1
p n�

�βt
pn�

is close to βp and then we have βtk
p pk(βp) is close to (

�βt
pn�
n)kpk(

�βt+1
p n�

�βt
pn�

).

Lemma 10. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = αp < ∞ and there exists a βp, where

0 < βp < 1, such that
pk(βp)
1−βk

p
= αp, then lim

n→∞
An

nk = αp.

Proof. The proof of αp being the upper bound of an is similar to that of
Lemma 4. To pave the way for the lower bound of an, we introduce two no-
tations M1 and M2.

186 K.-M. Chao et al.

Consider the Taylor series expansion for pk(x) in βp: pk(x) = pk(βp) +∑k
i=1

f(i)(βp)
i! (x− βp)

i. For 0 ≤ x < 1, we have

|pk(x)− pk(βp)| ≤(x− βp)

k∑
i=1

|p
(i)
k (βp)

i!
(x − βp)

i−1|

≤(x− βp)

k∑
i=1

|p
(i)
k (βp)

i!
| (because 0 < x, βp < 1)

≤(x− βp)M1, where M1 =

k∑
i=1

|p
(i)
k (βp)

i!
|. (1)

Since pk(x) is a polynomial, there exists a maximum value of pk(x) on the interval
[0,1]. Let

M2 = max
0≤x≤1

{pk(x)}. (2)

Furthermore, for the reason that 0 < β < 1, we have:

βtk
p (βp −

βt+1
p n�

βt
pn�

) ≤
βtk
p

βt
pn�

≤
2βtk

p

βt
pn

≤ 2β
t(k−1)
p

n
≤ 2

n
, and (3)

βtk
p − (

βt
pn�
n

)k = (βt
p −

βt
pn�
n

)

k−1∑
i=0

((βt
p)

i(

βt

pn�
n

)k−1−i) ≤ k

n
. (4)

Since M1,M2, αp and βp are fixed values, for all ε > 0, there exists a positive
integer m such that:

βmk
p (2mM1 + kmM2 + αp) < ε. (5)

For n ≥ max{� 1
βmk
p

�, � 1
βm−1
p (1−βp)

�}, we have

|αp − an|
≤|αp − ln,m| (because ln,m ≤ an ≤ α)

≤|
m−1∑
t=0

(βtk
p f(βp)− (

βt
pn�
n

)kpk(

βt+1

p n�
[βt

pn]
))|+ |βmk

p αp − (

βm

p n�
n

)kam|

≤|
m−1∑
t=0

(βtk
p pk(βp)−βtk

p pk(

βt+1

p n�

βt

pn�
) + βtk

p pk(

βt+1

p n�

βt

pn�
)︸ ︷︷ ︸

=0

−(
[βt

pn]

n
)kpk(

βt+1
p n�

βt
pn�

))|

+ βmk
p αp

Asymptotic Limits of a New Type of Maximization Recurrence 187

=

m−1∑
t=0

|βtk
p (pk(βp)− pk(

βt+1
p n�

βt
pn�

)) + (βtk
p − (

βt
pn�
n

)k)pk(

βt+1

p n�

βt

pn�
)|+ βmk

p αp

≤
m−1∑
t=0

(|βtk
p (βp −

βt+1
p n�

βt
pn�

)M1|+ |(βtk
p − (

βt
pn�
n

)k)M2|) + βmk
p αp (by (1), (2))

≤ 1

n

m−1∑
t=0

|2M1 + kM2|+ βmk
p αp (by (3), (4))

≤βmk
p (m(2M1 + kM2) + αp) ≤ ε (by n ≥ � 1

βmk
p

� and (5)) ��

Combining Lemmas 7 – 10, we obtain the following result.

Theorem 2. limn→∞
An

nk = sup{ pk(x)
1−xk : 0 ≤ x < 1}.

Remark. When we take k = 3 and p3(x) = x(1−x)(1−x)
2 in An, we have

limn→∞ An/n
3 = (2

√
3 − 3)/6, which is equal to limn→∞ Sn/n

3. We can see
that the term p2(x) in Sn has no effect on the asymptotic behavior of Sn.

5 Concluding Remarks

We note that to analyzeminimization recurrences analogous to An, we can apply
our technique from Section 4 as follows. Suppose that Bn = min

0≤i<n
{nkpk(

i
n)+Bi}.

Let An = −Bn. Then An = max
0≤i<n

{nk · (−pk(
i
n)) +Ai}, and Theorem 2 gives:

Corollary 2. lim
n→∞

Bn

nk = inf{ pk(x)
1−xk : 0 ≤ x < 1}.

We conclude this paper by mentioning two open problems. First, to derive a
closed-form expression for the exact value of Sn or to determine that such a
formula does not exist is an open problem. Second, for the general case of Gn

(see Section 2), we can set gn = Gn/n
k and rewrite the recurrence relation as:

gn = max
0≤i<n

{
(

k∑
d=0

1

nk−d
pd(

i

n
)) + gi(

i

n
)k
}
.

For d < k, the term pd(
i
n) is multiplied by 1

nk−d . For sufficiently large n, the

part pd(
i
n) has a small effect on gn, for d < k. Hence, we conjecture that the

asymptotic behavior of gn is the same as that of an.

Acknowledgements. An-Chiang Chu was supported in part by the 2011 Sum-
mer Visiting Program from the Interchange Association, Japan. An-Chiang Chu
and Kun-Mao Chao were supported in part by NSC grants 98-2221-E-002-081-
MY3 and 100-2221-E-002-131-MY3 from the National Science Council, Taiwan.
Jesper Jansson and Richard S. Lemence were funded by the Special Coordination
Funds for Promoting Science and Technology, Japan.

188 K.-M. Chao et al.

References

1. Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends in Ecology and Evo-
lution 19(6), 315–322 (2004)

2. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approxima-
tion algorithms for maximizing triplet consistency within phylogenetic networks.
Journal of Discrete Algorithms 8(1), 65–75 (2010)

3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Massachusetts (2009)

4. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
5. Fredman, M.L., Knuth, D.E.: Recurrence relations based on minimization. Journal

of Mathematical Analysis and Applications 48(2), 534–559 (1974)
6. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing

evolutionary trees. Journal of Combinatorial Optimization 3(2-3), 183–197 (1999)
7. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic net-

works with constrained recombination. In: Proceedings of the Computational Sys-
tems Bioinformatics Conference (CSB2 2003), pp. 363–374 (2003)

8. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-
mica 24(1), 1–13 (1999)

9. Hwang, H.-K., Tsai, T.-H.: An asymptotic theory for recurrence relations based on
minimization and maximization. Theoretical Computer Science 290(3), 1475–1501
(2003)

10. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press (2010)

11. Jansson, J., Nguyen, N., Sung, W.: Algorithms for combining rooted triplets into a
galled phylogenetic network. SIAM Journal on Computing 35(5), 1098–1121 (2006)

12. Kapoor, S., Reingold, E.M.: Recurrence relations based on minimization and max-
imization. Journal of Mathematical Analysis and Applications 109(2), 591–604
(1985)

13. Li, Z., Reingold, E.M.: Solution of a divide-and-conquer maximin recurrence. SIAM
Journal on Computing 18(6), 1188–1200 (1989)

14. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions (2011)
15. Saha, A., Wagh, M.D.: Minmax recurrences in analysis of algorithms. In: Proceed-

ings of Southeastcon 1993. IEEE (1993)
16. Wang, L., Ma, B., Li, M.: Fixed topology alignment with recombination. Discrete

Applied Mathematics 104(1-3), 281–300 (2000)

Computing Bits of Algebraic Numbers

Samir Datta and Rameshwar Pratap

Chennai Mathematical Institute, Chennai, India
{sdatta,rameshwar}@cmi.ac.in

Abstract. We initiate the complexity theoretic study of the problem of
computing the bits of (real) algebraic numbers. This extends the work of
Yap on computing the bits of transcendental numbers like π, in Logspace.

Our main result is that computing a bit of a fixed real algebraic num-
ber is in C=NC

1⊆ L when the bit position has a verbose (unary) repre-
sentation and in the counting hierarchy when it has a succinct (binary)
representation.

Our tools are drawn from elementary analysis and numerical analysis,
and include the Newton-Raphson method. The proof of our main result is
entirely elementary, preferring to use the elementary Liouville’s theorem
over the much deeper Roth’s theorem for algebraic numbers.

We leave the possibility of proving non-trivial lower bounds for the
problem of computing the bits of an algebraic number given the bit
position in binary, as our main open question. In this direction we show
very limited progress by proving a lower bound for rationals.

1 Introduction

Algebraic numbers are (real or complex) roots of finite degree polynomials with
integer coefficients. Needless to say, they are fundamental objects and play in
important part in all of Mathematics.

The equivalence between reals with recurring binary expansions (or expan-
sions in any positive integral radix) and rationals is easy to observe. Thus com-
puting the bits of fixed rationals is computationally uninteresting. However,
the problem becomes interesting if we focus on irrational real numbers. Com-
putability of such numbers heralded the birth of of Computer Science in Turing’s
landmark paper [16] where the computability of the digits of irrationals like π, e
is first addressed.

Building on the surprising BaileyBorweinPlouffe (BBP) formula [5] for π, Yap
[19] shows that certain transcendental numbers such as π have binary expansions
computable in a small complexity class like deterministic logarithmic space. Mo-
tivated by this result we seek to answer the corresponding question for algebraic
numbers. The answers we get turn out to be unsatisfactory but intriguing in
many respects. In a nutshell, we are able to show only a very weak upper bound
to the “succinct” version of the problem and virtually no lower bounds. This gap
between best known (at least to our knowledge) upper and lower bounds easily
beats other old hard-to-crack chestnuts such as graph isomorphism and integer
factorization.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 189–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

190 S. Datta and R. Pratap

1.1 Versions of the Problem

The problem as stated in [19] asks for the n-th bit of the (infinite) binary se-
quence of an irrational real given n in unary. The succinct version of the problem
asks for the n-th bit, given n in binary. This version of the problem is naturally
much harder than the “verbose” version. We can solve the verbose version in
C=NC

1, a subclass of logspace. For the succinct version of the problem we are
unable to prove a deterministic polynomial or even a non-deterministic polyno-
mial upper bound. The best we can do is place it at a finite level in the counting
hierarchy (which includes the computation of the permanent at its first level).
Even more surprising is that we are unable to prove any non-trivial lower bound
for any irrational algebraic number. Intriguingly, we can prove Parity and in
general AC0[p] lower bounds for computing specific rationals.

1.2 Previous Proof Techniques

In his article [19], Yap used a BBP like [4] series to prove a logspace upper
bound for the (verbose version of) computing the bits of π. At the core of that
argument is the concept of bounded irrationality measure of π which intuitively
measures how inapproximable π is, by rationals. Roughly, the BBP-like series
was used to approximate π by rationals and then argue, via the bounded irra-
tionality measure, that, since there aren’t too many good approximations to π,
the computed one must match the actual expansion to lots of bit positions.

1.3 Our Proof Technique

Further progress was stymied by the extant ignorance of BBP like series for
most well-known irrationals. Our crucial observation is that approximating an
irrational can be accomplished by means other than a BBP-like series for instance
by using Newton-Raphson. Bounded irrationality measure for algebraic numbers
follows by a deep theorem of Roth [14]. But we show that we can keep our proof
elementary by replacing Roth’s theorem by Liouville’s Theorem [8] which has a
simple and elementary proof (see e.g. [15]).

An upper bound on the succinct version of the problem follows by observing
that Newton Raphson can be viewed as approximating the algebraic number by
a rational which is the ratio of two Straight Line Programs or SLP ’s. Allender
et al. [2] show how to compute bits of a single SLP in the Counting Hierarchy.
We extend their proof technique to solve the problem of computing a bit of the
ratio of two SLP’s in the Counting Hierarchy.

1.4 Related Work and Our Results

Yap [19] showed that the bits of π are in Logspace. This was the origin of this
endeavour and we are able to refine his result to the following:

Theorem 1. Let α be a real number with bounded irrationality measure, which
can be expressed as a convergent series and further the the mth term (for input

Computing Bits of Algebraic Numbers 191

m in unary) is in FTC0. Then the nth bit of α can be computed by a TC0 circuit

for n in unary and in PHPP
PP

for n in binary.

In particular, the above inclusions hold for π.
Somewhat paradoxically we get slightly weaker bounds for algebraic numbers.

As our main result, we are able to show that (for an explanation of the complexity
classes used in the statement please see the next section):

Theorem 2. Let p be a fixed univariate polynomial of degree d, having integer
coefficients. Then, nth bit of each real root of p can be computed in C=NC

1∩TCLL,

if n is given in unary, and in PHPP
PP

if n is given in binary.

Roughly twenty five years ago, Ben-Or, Feig, Kozen and Tiwari [7] studied the
problem of finding the roots of a univariate polynomial of degree n and m bit
coefficients, under the promise that all roots are real. Under this assumption they
are able to show that approximating the roots to an additive error of 2−μ for an
integer μ (which is presumably specified in unary) is in NC. Notice that while
their result concerns non-constant algebraic numbers it does not involve finding
the bits of the algebraic numbers only approximating them. Also, since they only
achieve unary tolerance their claimed upper bound of NC is not better than the
C=NC

1⊆ NC. Also their method does not work if the all-real-roots promise is
not satisfied.

A very recent paper [10] claims to place in TC0, the problem of computing
the complex roots of a constant polynomial to a given accuracy, even if the the
coefficients of the polynomial are given in binary.

1.5 Organization of the Paper

In Section 2 we start with pointers to relevant complexity classes and more
importantly known results from elementary analysis that we will need in our
proofs. In Section 3 we provide upper bounds on the complexity of composing
bivariate polynomials. This is used in the subsequent Section 4 where we view
Newton-Raphson as an iterated composition of bivariate polynomials. In this
section we prove that the method converges “quickly” if its initial point is in
a carefully picked interval and that we can efficiently identify such intervals. In
Section 5 we make use of the tools we have put together in the previous sections
to prove Theorem 1, 2. We also prove a lower bound on rationals in this section.
Finally in Section 6 we conclude with some open questions.

2 Preliminaries

2.1 Complexity Theoretic Preliminaries

We start off by introducing straight line programs. An arithmetic circuit is a
directed acyclic graph with input nodes labeled with the constants 0, 1 or with
indeterminates X1, . . . , Xk for some k. Internal nodes are labeled with one of

192 S. Datta and R. Pratap

the operations +,−, ∗. A straight-line program is a sequence of instructions cor-
responding to a sequential evaluation of an arithmetic circuit. We will need to
refer to standard complexity classes like NP,PP,PH and we refer the reader to
any standard text in complexity such as [3]. We will also use circuit complexity
classes like TC0,GapNC1 and we refer the reader to [17] for details.

One non-standard class we use is TCLL. This is inspired by the class FOLL
introduced in [6] which is essentially the class of languages accepted by a uniform
version of an FAC0 circuit iterated O(log logn) many times with an AC0-circuit
on top. We obtain a TCLL-circuit by adding a TC0-circuit on top of the iter-
ated block of FAC0-circuits. The class of languages accepted by such circuits
constitutes TCLL.

2.2 Mathematical Preliminaries

In order to upper bound the largest magnitude of roots of a polynomial we note
the following (e.g. see Chapter 6 Section 2 of [18]):

Fact 1. (Cauchy) Let p(x) =
∑d

i=0 aix
i be a polynomial. Then every root of

p(x) is smaller in absolute value than:

Mp = 1 +
1

|ad|
maxd−1

i=0 |ai|

We can consider [−Mp,Mp] as possible solution range which contains all the real
roots.

Fact 2. The Taylor (see [1]) series of a real (complex) function f(x) that is
infinitely differentiable in a neighborhood of a real (complex) number a is the
power series

∞∑
n=0

f (n)(a)

n!
(x− a)n

where f (n)(a) denotes the nth derivative of f evaluated at the point a.

We will need to lower bound the minimum distance between the roots of a
polynomial or the so called root separation. We use the following version of the
Davenport-Mahler theorem (see e.g. Corollary 29 (i) of Lecture VI from Yap [18]
for details of notation and proof):

Fact 3. (Davenport-Mahler) The separation between the roots of a univariate
polynomial p(x) of degree d is at least:√

3|disc(p)|||p||−d+1
2 d−(d+2)/2

Here, disc(p) is the discriminant of p and ||p||2 is the 2-norm of the coeffi-
cients of p. Further notice that a lower bound approximation to this bound can
be computed in FTC0 for constant polynomials p (since it involves computing

Computing Bits of Algebraic Numbers 193

lower bound approximations for radicals and powers of constants and cosntant
determinants).

We will also need an upper bound on the magnitude of the derivative of
a univariate polynomial in open interval (a, b). This is given by the so called
Markoff’s Theorem [12] (see also [13]):

Fact 4. Let p(x) be a degree d polynomial satisfying,

∀x ∈ (a, b), |p(x)| ≤ M(a,b)

Then the derivative p′(x) satisfies:

∀x ∈ (a, b), |p′(x)| ≤ M ′
(a,b) =

d2M(a,b)

b− a

2.2.1 Removing Rational and Repeated Roots
The rational roots of a polynomial can be dealt with the aid of the following,
easy to see, fact:

Fact 5. The rational roots of a monic polynomial (i.e. highest degree coefficient
is 1) with integer coefficients are integers.

To make p(x) =
∑d

i=0 aix
i monic, just substitute y = adx in ad−1

d p(x) to obtain a
monic polynomial q(y). Iterating over all integers in the range given by Fact 1 we
can find and eliminate the integer roots of q(y) and therefore the corresponding
rational roots of p(x).

In general, a polynomial will have repeated roots. If this is the case the re-
peated root will also be a root of the derivative. Thus it suffices to find the gcd
g of the given polynomial p and its derivative p′, since we can recursively find
the roots of p/g and g. As we will be focusing only on fixed polynomials the gcd
computation and the division will be in FTC0.

We will actually need a more stringent condition on the polynomials - i.e. p
does not share a root with its derivative p′ and even with its double derivative
p′′. Notice that the above procedure does not guarantee this. For example if
p(x) = x(x2 − 1), then p′(x) = 3x2 − 1 and p′′(x) = 6x. Thus, p and p′′ share a
root but p and p′ don’t.

So we will follow an iterative procedure in which we find the gcd of p, p′ to get
two polynomials p1 = p/(p, p′), p2 = (p, p′) (denoting gcd of p, q by (p, q)). For p1
we find the gcd (p1, p

′′
1) and set p3 = p1/(p1, p

′′
1), p4 = (p1, p

′′
1). Now we recurse

for the 3 polynomials p2, p3, p4 (whose product is p). Notice that the recursion
will bottom out when some gcd becomes a constant. As a result of the above
discussion we can assume hereafter that p does not share a root with either p′

or p′′.

2.2.2 Good Intervals
We define the concept of good intervals and exhibit a lemma concerning finding
them easily:

194 S. Datta and R. Pratap

Definition 3. Fix an interval I = [a, b] of length |I| = b − a. We will call the
interval I good for an integral polynomial p if it contains exactly one root (say
α) of p and no root of p′ and p′′.

Lemma 4. If p is a polynomial of degree d such that p doesn’t share a root with
its derivative and double derivative then there exist δ such that all intervals of
length less than δ contain at most one root of p and if they contain a root of p
then they do not contain any roots of p′ or p′′. As a consequence we can find
good intervals I in FTC0.

2.3 From Approximation to Exact Computation

We will use the following theorem (see e.g. Shidlovskii[15] or Yap [18])

Fact 6. (Liouville’s Theorem) If x is a real algebraic number of degree d ≥ 1,
then there exists a constant c = c(x) > 0 such that the following inequality holds
for any α ∈ Z and β ∈ N, α/β �= x:∣∣∣∣x− α

β

∣∣∣∣ > c

βd

The rest of this subsection is an adaptation of the corresponding material in
Chee Yap’s paper on computing π in L. The primary difference being that we
choose to pick the elementary Liouville’s Theorem for algebraic numbers instead
of the advanced arguments required for bounding the irrationality measure of
π. We could throughout replace the use of Liouville’s theorem by the much
stronger and deeper Roth’s theorem but prefer not to do so in order to retain
the elementary nature of the arguments.

Definition 5. Let x be a real number. Let {x} = x −
x� be the fractional part
of x. Further, let {x}n = {2nx} and xn be the n-th bit after the binary point.

It is clear that xn = 1 iff {x}n−1 ≥ 1
2 . For algebraic numbers we can sharpen

this:

Lemma 6. (Adapted from Yap[19]) Let x be an irrational algebraic number of
degree d and let c = c(x) be the constant guaranteed by Liouville’s theorem. Let
εn = c2−(d−1)n−2 then for n such that εn < 1

4 we have:

– xn = 1 iff {x}n−1 ∈ (12 + 2εn, 1− 2εn).
– xn = 0 iff {x}n−1 ∈ (2εn,

1
2 − 2εn).

Proof: Taking β = 2n in Liouville’s theorem we get: |x− 2−nα| > c(x)
2dn i.e.,∣∣2n−1x− α

2

∣∣ > c(x)

2d(n−1)+1 = 2εn. �

Consequently, we can find successive approximations {Sm}m∈N such that the
error terms Rm = x− Sm are small enough (as described below). xn is just the
n-th bit of Sm.

Computing Bits of Algebraic Numbers 195

3 Complexity of Composition

We investigate the complexity of composing polynomials. This will be useful
when we use the Newton-Raphson method to approximate roots of polynomials
since Newton-Raphson can be viewed roughly as an algorithm that iteratively
composes polynomials.

Definition 7. A univariate polynomial with integer coefficients is, an integral
polynomial. Any integral polynomial when evaluated on a rational value α

β , where
α, β are integers, can be expressed as the ratio of two bivariate polynomials in
α, β called the ratio polynomials of the integral polynomial.

Definition 8. Let p be an integral polynomial. For a positive integer t, the t-
composition of the polynomial denoted by p[t] is defined inductively as: p[1](x) =
p(x) and p[t+1](x) = p[t](p(x)).

Definition 9. Let f, g be a pair of bivariate polynomials. For a positive inte-
ger t define the t-bicomposition of (f, g) to be the pair of bivariate polynomials
(F [t], G[t]) as follows:

F [1](α, β) = f(α, β), G[1](α, β) = g(α, β),

and,
F [t+1](α, β) = f(F [t](α, β), G[t](α, β)),

G[t+1](α, β) = g(F [t](α, β), G[t](α, β)),

The following is a direct consequence of the definitions:

Proposition 10. The ratio polynomials of the t-composition of an integral poly-
nomial p are exactly the t-bicompositions of the ratio polynomials of p.

Definition 11. For an arithmetic complexity class C containing FTC0 we call
an integral polynomial C-computable if its ratio polynomials (viewed as functions
that take in the bit representations of its two (constant) arguments as inputs and
output an integer value) are in C.

Here we consider upper bounds on the complexity of computing compositions of
fixed integral polynomials. We have:

Lemma 12. Let p be a fixed integral polynomial, then given n in unary the
l-bicomposition (for l = O(�log n�)) of p is computable in GapNC1.

We now prove an orthogonal bound on the complexity of compositions.

Lemma 13. Suppose G is a layered graph of width O(n) and depth O(log n)
then reachability (from a vertex in the first layer to a vertex in the last layer)
can be done by an AC-circuit of depth O(log logn)

Proof: It suffices to show that the reachability between two layers which are
separated by another layer is in AC0, which is clear. �

196 S. Datta and R. Pratap

Note 1. In fact, from the proof it is clear that, if G contains O(log n) identical
layers then this reachability is in the class FOLL defined in [6].

Now we have:

Lemma 14. Let p be a fixed integral polynomial, then given n in unary the
l-bicomposition (for l = O(�log n�)) of p is computable in TCLL.

The following is a consequence of the definitions and of [9].

Lemma 15. If p is an integral polynomial which is C-computable (FTC0⊆ C),
then on input m,n in unary, where m > n, we can obtain the n-th bit of some
number that differs from p(αβ), by at most 2−m in C.

Now we describe the binary analog of the above lemma.

Note 2. In the remaining part of this section we denote polynomially bounded
integers by lower case letters e.g. n, t. We denote those with polynomial number
of bits by uppercase letters e.g. N, T . Finally we denote those with exponentially
many bits by calligraphic letters e.g. N ,D. This notation does not apply to ra-
tionals like u, σ.

Lemma 16. Let N and D be the outputs of two SLP’s. Computing the N th

(where N is input in binary) bit of an approximation (accurate up to an additive

error of 2−(N+1)) of N
D is in PHPP

PP
.

Proof: We will compute an under approximation of N
D with error less than

2−(N+1).
Let u = 1−D2−T where T ≥ 2 is an integer such that 2T−1 ≤ D < 2T . Hence

|u| ≤ 1
2 .

Notice that the higher order bit of T can be found by using PosSLP : we just
need to find an integer t such that 22

t ≤ D < 22
t+1

and both these questions are
PosSLP questions. Having found Ti a lower bound of T correct up to the higher
order i bits of T , i.e. 2Ti ≤ D < 2Ti+2i , we check if 2Ti+2i−1 ≤ D and update
Ti−1 to Ti + 2i−1 iff the inequality holds (and Ti−1 = Ti otherwise). Thus by
asking a polynomial number of PosSLP queries, we can determine T , so each

bit of T is in PHPP
PP

.
Now consider the series

D−1 = 2−T (1 − u)−1 = 2−T (1 + u+ u2 + ...)

Set D′ = 2−T (1 + u+ u2 + ...uN+1), then

D−1 −D′ ≤ 2−T
∑

I>N+1

2−I < 2−(N+1)

Now we need to compute N th bit of

N
2T

N+1∑
I=0

(1− D
2T

)I =
1

2(N+2)T

N+1∑
I=0

N (2T −D)I2(N+1−I)T (1)

Computing Bits of Algebraic Numbers 197

We need to compute the M = N + (N + 2)T th bit of: Y =∑N+1
I=0 N (2T −D)I2(N+1−I)T . Since each term in summation is large and there

are exponentially many terms in summation, so we will do computation modulo
small primes. Let YI denote the Ith term of summation.

Let Mn be the product of all odd primes less than 2n
2

. For such primes P let
HP,n denote inverse of Mn

P mod P . Any integer 0 ≤ YI < Mn can be represented

uniquely as a list (YI,P), where P runs over the odd primes bounded by 2n
2

and
YI,P = YI mod P .

Define the family of approximation functions appn(Y) to be∑
P

∑
I YI,PHP,nσP,n where σP,n is the result of truncating the binary

expansion of 1
P after 2n

4

bits. Notice that for sufficiently large n, and Y < Mn,

appn(Y) is within 2−2n
3

< 2−(N+1) of Y/Mn as in the proof of Theorem 4.2
of [2]. Continuing to emulate that proof further and using the Maciel-Therien
(see [11]) circuit for iterated addition, we get the same bound as for PosSLP in

[2] viz. PHPP
PP

. Notice that we have a double summation instead of a single
one in [2], yet it can be written out as a large summation and thus does not
increase the depth of the circuit. �

4 Establishing Quadratic Convergence

We use the famous Newton-Raphson method to approximate Algebraic Num-
bers. The treatment is tailored with our particular application in mind. There
are some features in the proof (for instance a careful use of Markoff’s result on
lower bounding the derivative of a polynomial) which led us to prove the cor-
rectness and rate of convergence of the method from scratch rather than import
it as a black-box.

Definition 17. (Newton-Raphson) Given an integral polynomial p and a start-
ing point x0, recursively define:

xi+1 = xi −
p(xi)

p′(xi)
,

whenever xi is defined and p′(xi) is non-zero.

Recall good intervals from Definition 3.

Definition 18. Given a good interval I for an integral polynomial p, let εi de-
note the error in the ith iteration of Newton-Raphson i.e. εi = |xi − α| when
starting with x0 ∈ I. Notice that εi is defined only when xi is.

Definition 19. We say that Newton-Raphson converges quadratically (with pa-
rameter M) for an integral polynomial p whenever M is a non-negative real such
that for any interval I which is good for p and of length at most min(1

4M2 ,
1
4), it

is the case that the errors at consecutive iterations (whenever both are defined)
satisfy εi+1 ≤ Mε2i .

198 S. Datta and R. Pratap

The following Lemma shows that not only are the errors at all iterations defined
under the assumptions of Lemma 19 but also, that, Newton-Raphson converges
“quickly”.

Lemma 20. If Newton-Raphson converges quadratically (with parameter M)
for an integral polynomial p, then for every i ≥ 0, the ith iterand, xi, is at

distance at most min(1
4M2 , 2

−2i/2) from the unique root of p in any good interval
I of length |I| ≤ min(14 ,

1
4M2). In particular, xi ∈ I for every i ≥ 0.

Proof: We proceed by induction on the number of iterations. For the base case,
notice that x0 is at distance at most ε0 ≤ min(14 ,

1
4M2) from the root.

Now assume that εi < min(1
4M2 , 2

−2i/2). Then,

εi+1 ≤ Mε2i

= (M
√
εi)ε

1.5
i

≤ (M

√
1

4M2
)ε1.5i

=
1

2
ε1.5i

≤ 2−12−1.5×2i/2

< 2−
√
2×2i/2

= 2−2(i+1)/2

Since εi+1 ≤ 1
2ε

1.5
i and ε0.5i < 1

22
(i−1)/2 < 1 for i ≥ 0, therefore, εi+1 < εi <

1
4M2 where the second inequality follows from the inductive assumption. This
completes the proof. �

Lemma 21. For any integral polynomial p and any good interval I thereof, there
exists a subinterval I ′ ⊆ I such that Newton-Raphson converges quadratically
in I ′.

Proof: Let the unique root of the integral polynomial p, contained in I, be α.
Thus, p(α) = 0. By Definition 18 the error in the i+ 1th iteration of Newton-
Raphson (whenever defined) is:

εi+1 = |xi+1 − α| =
∣∣∣∣12 p′′(ξi)p′(xi)

∣∣∣∣ ε2i
Since p′ does not have a root in that interval and p′′ is finite (because p is a
polynomial), the right hand side is well-defined.

In the good interval I, p′ is monotonic and hence the minimum (and maxi-
mum) value of p′ is attained at the end-points of I. Now we can upper bound
the absolute value |p′′| using upper bound for p′ and Markoff’s result (Fact 4).
Let this value be denoted by ρ1 and the minimum value of |p′| by ρ2 �= 0 (ρ2 = 0
would contradict the assumption that I does not contain a root of p′). Now, set
M to be ρ1

2ρ2
.

Computing Bits of Algebraic Numbers 199

Partition I into sub-intervals of length 1
4M2 and let I ′ be the unique subin-

terval containing a root of p : i.e. the unique sub-interval such that p takes
oppositely signed values at its end points. It is easy to see that Newton-Raphson
converges quadratically (with parameter M) in I ′. �

5 Putting It All Together

We now complete the proofs of Theorem 2 and Theorem 1.

Proof: (of Theorem 2) From Lemma 4 we can compute a good interval I. Then
using Lemma 21 we can find a subinterval of I such that Newton-Raphson will
converge quadratically in this interval.

Since Newton-Raphson converges quadratically, in order to obtain an inverse
exponential error in terms of n, (By Lemma 20) we need O(�log n�) iterations.
Now by Lemma 12 and 14, along with Lemma 15, we get that O(�log n�) com-
positions of Newton-Raphson (taking as initial point, the middle point of the
interval I ′ obtained from Lemma 21) can be computed in C=NC

1∩TCLL. Finally
Lemma 6 ensures that we have computed the correct bit value. The argument
for the binary case is analogous and uses Lemma 16 instead of Lemmas 12, 14,
and 15. �

Proof: (of Theorem 1) Let α be a constant have series of the form α =
∑∞

k=0 tk =
Sn + Rn where we have split the series into a finite sum Sn =

∑n
k=0 tk and a

remainder series Rn =
∑∞

k=n+1 tk. Each term tk of series can be written as a

rational number of the form tk = β−kc p(k)
q(k) where β is a real number p(k), q(k)

are fixed polynomial with integer coefficients and c ≥ 1 is an integer.
This series consist of summation of iterated multiplication, division and addi-

tion which can be computed by TC0 circuit. Since α has bounded irrationality
measure so its nth bit can be computed using Lemma 6. �

Using the BBP-like series for π [4] and its bounded irrationality measure, we
get:

Corollary 22. Computing nth bit of π is in TC0and PHPP
PP

, n in unary and
binary respectively.

5.1 Lower Bound

Finally we have theModp (for any odd prime p) hardness of the bits of a rational.
We still don’t have the proof of any kind of hardness of an irrational algebraic
number.

Lemma 23. For given a odd prime p and an integer X (having binary expan-
sion bn−1 . . . b0) then there exist an integer N , whose bits are constructible by
Dlogtime uniform projections, and a fixed rational number Q such that N th digit
in binary expansion of Q is 0 iff

∑
i bi ≡ (0 mod p).

200 S. Datta and R. Pratap

6 Conclusion

We take the first step in the complexity of Algebraic Numbers. Many questions
remain. We focus on fixed algebraic numbers - in general we could consider
algebraic numbers defined by polynomials of varying degrees/coefficients. We
have ignored complex algebraic numbers - they could present new challenges.
Most importantly, our study is, at best, initial because of the enormous gap
between lower bounds (virtually non-existent) and the upper bounds. Narrowing
this gap is one of our future objectives.

Acknowledgements. We would like to thank Eric Allender, V. Arvind,
Narasimha Chary B, Sourav Chakraborty, Raghav Kulkarni, Purusottam Rath,
K. V. Subrahmanyam, Rohith Varma and Chee K. Yap for illuminating discus-
sions and valuable comments on the draft. We also thank anonymous referees
of STACS 2012 for pointing out an error in the previous version and various
stylistic improvements.

References

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with For-
mulas, Graphs and Mathematical Tables. Dover, New York (1972)

[2] Allender, E., Bürgisser, P., Pedersen, J.K., Miltersen, P.B.: On the complexity of
numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

[3] Arora, S., Barak, B.: Computational Complexity - A Modern Approach, pp. 1–
579. Cambridge University Press (2009)

[4] Bailey, D.H.: A compendium of BBP-type formulas for mathematical constants.
Report. Lawrence Berkeley National Laboratory, Berkeley (2011)

[5] Bailey, D.H., Borwein, J.M., Borwein, P.B., Plouffe, S.: The quest for pi. The
Mathematical Intelligencer 19(1), 50–57 (1997)

[6] Barrington, D.A.M., Kadau, P., Lange, K.-J., McKenzie, P.: On the complexity
of some problems on groups input as multiplication tables. J. Comput. Syst.
Sci. 63(2), 186–200 (2001)

[7] Ben-Or, M., Feig, E., Kozen, D., Tiwari, P.: A fast parallel algorithm for determin-
ing all roots of a polynomial with real roots. SIAM J. Comput. 17(6), 1081–1092
(1988)

[8] Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn.
Oxford Univ. Press, New York (1979)

[9] Hesse, W., Allender, E., Mix Barrington, D.A.: Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–
716 (2002)

[10] Jerábek, E.: Root finding with threshold circuits. CoRR, abs/1112.3925 (2011)
[11] Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Com-

put. 146(1), 55–83 (1998)
[12] Markoff, A.: Sur une question posée par Mendeleieff. Bulletin of the Academy of

Sciences of St. Petersburg 62, 1–24 (1889)
[13] Ore, O.: On functions with bounded derivatives. Transactions of the American

Mathematical Society 43(2), 321–326 (1938)

Computing Bits of Algebraic Numbers 201

[14] Roth, K.F.: Rational approximations to algebraic numbers. Mathematika. A Jour-
nal of Pure and Applied Mathematics 2, 1–20 (1955)

[15] Shidlovskii, A.B.: Transcendental Numbers. de Gruyter, New York (1989)
[16] Turing, A.M.: On computable numbers, with an application to the entscheidungs

problem. Proc. London Math. Soc. 2(42), 230–265 (1936)
[17] Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in

theoretical computer science. Springer (1999)
[18] Yap, C.: Fundamental Problems in Algorithmic Algebra. Oxford University Press

(2000)
[19] Yap, C.: Pi is in log space (June 2010) (manuscript)

Approximating MAX SAT by Moderately
Exponential and Parameterized Algorithms�

Bruno Escoffier1, Vangelis Th. Paschos1,2, and Emeric Tourniaire1

1 Paris Sciences et Lettres, Université Paris-Dauphine, LAMSADE,
CNRS UMR 7243, France

2 Institut Universitaire de France
{escoffier,paschos,tourniaire}@lamsade.dauphine.fr

Abstract. We study approximation of the max sat problem by moder-
ately exponential algorithms. The general goal of the issue of moderately
exponential approximation is to catch-up on polynomial inapproxima-
bility, by providing algorithms achieving, with worst-case running times
importantly smaller than those needed for exact computation, approxi-
mation ratios unachievable in polynomial time. We develop several ap-
proximation techniques that can be applied to max sat in order to get
approximation ratios arbitrarily close to 1.

1 Introduction

Optimum satisfiability problems are of great interest from both theoretical and
practical points of view. Let us only note that several subproblems of max sat
and min sat are among the first complete problems for many approximability
classes [1,16]. On the other hand, in many fields (including artificial intelligence,
database system, mathematical logic, . . .) several problems can be expressed in
terms of versions of sat [3].

Satisfiability problems have in particular drawn major attention in the field
of polynomial time approximation as well as in the field of parameterized and
exact solution by exponential time algorithms. Our goal in this paper is to de-
velop approximation algorithms for max sat with running times which, though
being exponential, are much lower than those of exact algorithms, and with a
better approximation ratio than the one achieved in polynomial time. This ap-
proach has already been considered for max sat in [14,20], where interesting
tradeoffs between running time and approximation ratio are given. It has also
been considered for several other well known problems such as minimum set
cover [8,12], min coloring [5,7], max independent set and min vertex
cover [6], min bandwidth [13,18], etc. Similar issues arise in the field of FPT
algorithms, where approximation notions have been introduced, for instance,
in [9,15]. In this article, we propose several improvements of the results of [14]
and [20] using various algorithmic techniques.
� Research partially supported by the French Agency for Research under the DEFIS

program “Time vs. Optimality in Discrete Optimization”, ANR-09-EMER-010.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 202–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximating MAX SAT by Exp. and Param. Algorithms 203

Given a set of variables and a set of disjunctive clauses, max sat consists of
finding a truth assignment for the variables that maximizes the number of satis-
fied clauses. In what follows, we denote by X = {x1, x2, . . . , xn} the set of vari-
ables and by C = {C1, C2, . . . Cm} the set of clauses. Each clause consists of a
disjunction of literals, a literal being either a variable xi or its negation ¬xi. A
ρ-approximation algorithm for max sat (with ρ < 1) is an algorithm that finds
an assignment satisfying at least a fraction ρ of the maximal number of simulta-
neously satisfied clauses. The best known ratio guaranteed by a polynomial time
approximation algorithm is α = 0.796 obtained in [2], while it is known that the
problem (and even its restriction to instances where every clauses contain exactly
three literals) is not approximable in polynomial time with ratio 7/8 + ε, for any
ε > 0, unless P = NP [19]. A recent result [22] states that for any ε > 0, achieving
a ratio 7/8 + ε is even impossible to get in time O

(
2m1−ε′

)
for any ε′ > 0 unless

the exponential time hypothesis fails1. This latter result motivates the study of
exponential time approximation algorithms.

Dealing with exact solution, [10] gives an exact algorithm working in time
O∗(1.3247m) which is the best known bound so far wrt. the number of clauses2.
Dealing with the number n of variables, the trivial O∗(2n) bound has not yet
been broken down, and this constitutes one of the main open problems in the
field of exact exponential algorithms. The parameterized version of max sat
consists, given a set of clauses C and an integer k, of finding a truth assignment
that satisfies at least k clauses, or to output an error if no such assignment
exists. In [10] the authors give a parameterized algorithm for max sat running
in time O∗(1.3695k).

Using the same notation as in [10], we say that a variable x is an (i, j)-variable
if it occurs positively in exactly i clauses and negatively in exactly j clauses.
For any instance C of max sat, we will denote by OPT (C) (or OPT if no
ambiguity occurs) an optimal set of satisfied clauses. Finally, we denote by α the
ratio guaranteed by a polynomial time approximation algorithm. In general, ρ
will denote the approximation ratio of an algorithm, and, when dealing with
exponential complexity, γ will be the basis of the exponential term expressing
it.

In order to fix ideas, let us give a first simple algorithm, useful to understand
some of our results. In particular, it is one of the basic stones of the results
in [14]. It is based upon the following two well known reduction rules.

Rule 1. Any clause containing an (h, 0)- or a (0, h)-literal, h � 1, can be
removed from the instance. This is correct because we can set this literal to
TRUE or FALSE and satisfy the clauses that contain it.

Rule 2. Any (1, 1)-literal can be removed too. Let C1 = x1∨x2∨· · ·∨xp and
C2 = ¬x1∨x′

2∨· · ·∨x′
q be the only two clauses containing the variable x1. If there

exist two opposite literals � and ¬� in resp. C1 and C2, then we can satisfy both
clauses by setting x1 to true and � to false and therefore we can remove these
1 This hypothesis [21] says that max sat where each clause has three literals is not

solvable in subexponential time wrt. the number of variables.
2 We use the standard notation O∗(f) to denote f × p(m + n) for some polynomial p.

204 B. Escoffier, V.Th. Paschos, and E. Tourniaire

clauses. Otherwise, we can replace these clauses by C = x2∨· · ·∨xp∨x′
2∨· · ·∨x′

q .
The optimum in the initial instance is the optimum in the reduced instance
plus 1.

Algorithm 1. Build a tree as follows. Each node is labeled with a sub-instance
of max sat. The root is the initial instance. The empty instances (instances with
no clauses) are the leaves. For each node whose label is a non-empty sub-instance,
if one of the reductions above applies, then the node has one child labeled with
the resulting (reduced) sub-instance. Else, a variable x is arbitrarily chosen and
the node has two children: in the first one, the instance has been transformed by
setting x to FALSE (the literals x have been removed and the clauses containing
the literal ¬x are satisfied); in the second one, x is set to TRUE and the contrary
happens. Finally, for both children the empty clauses are marked unsatisfied.
Thus, each node represents a partial truth assignment. An optimal solution is a
truth assignment corresponding to a leaf that has the largest number of satisfied
clauses. �

To evaluate the complexity of Algorithm 1, we count the number of leaves in
the tree. Note that if the number of leaves is T (n), then the algorithm obviously
works in time O∗(T (n)). In the sequel, in order to simplify notations we will
use T (n) to denote both the number of leaves (when we express recurrences)
and the complexity. We consider two ways to count the number of leaves. The
former is by means of the variables. Each node has two children for which the
number of remaining variables decreases by 1. This leads to a number of leaves
T (n) � 2 × T (n − 1) and therefore T (n) = O∗(2n). The second is by means of
the clauses. On each node, if the chosen variable is an (i, j)-variable, then the
first child will have its number of clauses decreased by at least i and the second
child by at least j. The worst case, using the two reduction rules given above, is
i = 1 and j = 2 (or i = 2 and j = 1), that leads to T (m) = T (m− 1)+T (m− 2)
and therefore T (m) = O∗(1.618m).

In [14], the authors showed a way to transform any polynomial time approx-
imation algorithm (with ratio α) for max sat into an approximation algorithm
with ratio ρ (for any α � ρ � 1) and running time O∗(1.618(ρ−α)(1−α)−1m).
The basic idea of this algorithm is to build the same tree as in Algorithm 1
up to the fact that we stop the branching when enough clauses are satisfied.
Then the α-approximation polynomial algorithm is applied on the resulting sub-
instances. As already mentioned, the best value of α is 0.796 [2]. Dealing with
complexity depending on the number of variables, using local search techniques
Hirsch [20] devises for any ε > 0 and any k � 2 a randomized algorithm that
find with high probability a (1− ε) approximation for max-k-sat (restriction of
the problem to instances with clauses of size at most k) in time O∗ ((2 − cε,k)n)
where cε,k = 2ε/(k(1 + ε)). For max-2-sat, the complexity is improved down to
O∗ ((2 − 3ε/(1 + 3ε))n).

The paper is organized as follows. In Sections 2 and 3 we propose some im-
provements (for any ratio ρ) of the results of [14]. Figure 1 illustrates the rela-
tionship approximation ratio - running time of the different methods we develop

Approximating MAX SAT by Exp. and Param. Algorithms 205

in these sections and compare them with the result in [14]. More precisely, in
Section 2 two first results are presented: the first one uses roughly the same tech-
nique as in [14] (leading to Algorithm 2 in Figure 1) while the second one uses
a different approach consisting of splitting the instance in “small” sub-instances
(Algorithm 3 in Figure 1). In Section 3, we further improve these results for some
ratios using another technique consisting of approximately pruning a search tree
(Algorithm 5 in Figure 1). Note that Figure 1 is drawn using α = 0.796 as the
best polynomial time approximation ration, but a figure of similar shape would
follow with other possible values of α. In these sections, we also show that similar
results can be derived for FPT approximation algorithms where, given a ratio ρ
and an integer k, one has either to output a solution that satisfies at least ρk
clauses or to assert that no solution satisfies (at least) k clauses.

ρ

γ

0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

0.96904

Algorithm 5

Algorithm of [14]

Algorithm 2

Algorithm 3

Fig. 1. Evaluation of complexities for different methods

All these results deal with complexity depending on the number of clauses.
In Section 4, we consider complexity depending on the number of variables and
improve the results of [20] (see Figure 2) by giving for any ratio ρ � 1 a ρ-
approximate algorithm that is (1) deterministic, (2) valid for max sat (no re-
striction on the clauses length) and (3) with a much smaller running time (for
any ratio ρ). We conclude the article in Section 5 where we also briefly discuss
the min sat problem.

2 First Results

We provide in this section two first improvements of the result given in [14]. The
first one, given in Section 2.1, uses the same idea as [14] while the second one
uses a completely different technique and achieve improved running times (for
some approximation ratios) by splitting the initial instance in sub-instances of
smaller size.

206 B. Escoffier, V.Th. Paschos, and E. Tourniaire

Fig. 2. Comparison between the algorithm of [20] for max-2-sat (upper curve), the
algorithms for max sat (intermediate curve) and max-2-sat (lower curve) that will be
given in Section 4

2.1 Using a Better Parameterized Algorithm

In this section we briefly mention that the same technique as in [14] leads to
an improved result when we build the search tree according to the algorithm
from [10] instead of the search tree presented in Section 1. We so derive the
following algorithm, that is strictly better than the one of [14] (see Figure 1 in
Section 1).

Algorithm 2. Build a search-tree as the parameterized algorithm of [10] does3.
Stop the development of this tree at each node where at least (m (ρ − α)/(1 − α))
clauses are satisfied (recall that α is the best known polynomial approximation
ratio for max sat), or when the instance is empty. For each leaf of the so-pruned
tree, apply a polynomial α-approximation algorithm to complete the assignment
of the remaining variables; thus, each leaf of the tree corresponds to a com-
plete truth assignment. Return the assignment satisfying the largest number of
clauses. �

Proposition 1. For any ρ such that α � ρ � 1, Algorithm 2 achieves approxi-
mation ratio ρ in time O∗(1.3695m(ρ−α)/(1−α)).

2.2 Splitting the Clauses

In [6], it is shown that a generic method can give interesting moderately exponen-
tial approximation algorithms if applied in (maximization) problems satisfying
3 Note that we use only the search-tree of the algorithm of [10] (in particular, not the

initial kernelization in it), so that at least one branch of the tree corresponds to a
partial optimal assignment.

Approximating MAX SAT by Exp. and Param. Algorithms 207

some hereditary property (a property is said to be hereditary if for any set A
satisfying this property, and any B ⊂ A, B satisfies this property too). max sat
can be seen as searching for a maximum subset of clauses satisfying the property
“can be satisfied by a truth assignment”, and this property is clearly hereditary.
Therefore, we can adapt the splitting method introduced in [6] to transform any
exact algorithm into a ρ-approximation algorithm, for any rational ρ, and with
running time exponentially increasing with ρ.

Algorithm 3. Let p, q be two integers such that ρ = p/q. Split the set of clauses
into q pairwise disjoint subsets A1, · · · , Aq of size m/q (at most �m/q� if m/q is
not an integer). Then, consider the q subsets Ci = Ai∪Ai+1∪· · ·∪Ai+p−1 (if the
index is larger than q, take it modulo q) for i = 1, · · · , q. On each subset, apply
some exact algorithm for max sat. Return the best truth assignment among
them as solution for the whole instance. �

Proposition 2. Givenan exact algorithm for max sat running in time O∗(γm),
Algorithm 3 achieves approximation ratio ρ in time O∗(γρm).

Note if we consider an FPT algorithm working in time O∗(γk), using it in Algo-
rithm 3 with parameter ρk (instead of an exact one) leads to a ρ approximate
FPT algorithm working in time O∗(γρk). It is worth noticing that Algorithm 3
is faster than Algorithm 2 for ratios close to 1 (see Figure 1 in Section 1).

3 Approximate Pruning of the Search Tree

Informally, the idea of an approximate pruning of the search tree is based upon
the fact that, if we seek, say, a 1/2-approximation for a maximization problem,
then when a search-tree based algorithm selects a particular datum d for in-
clusion in the solution, one may remove one other datum d′ from the instance
(without, of course, including it in the solution). At worst, d′ is part of an opti-
mal solution and is lost by our solution. Thus, globally, the number of data in an
optimum solution is at most two times the number of data in the built solution.
On the other hand, with the removal of d′, the size of the surviving instance is
reduced not by 1 (due to the removal of d) but by 2.

This method can be adapted to max sat in the following way: revisit Al-
gorithm 1 and recall that its worst case with respect to m is to branch on
a (1, 2)-literal and to fix 1 (satisfied) clause on the one side and 2 (satisfied)
clauses on the other side. If we decide to also remove 1 more clause (arbitrarily
chosen) in the former case and 2 more clauses (arbitrarily chosen) in the latter
one, this leads to a running time T (m) satisfying T (m) � T (m− 2) + T (m− 4),
i.e., T (m) � O∗(1.27m). Since in the branches we have satisfied at least s � 1
clause (resp., s � 2 clauses) while the optimum satisfies at most s + 1 clauses
(resp., s + 2 clauses), we get an approximation ratio 0.5.

This basic principle is not sufficient to get an interesting result for max sat,
but it can be improved as follows. Let us consider the left branch where the
(1, 2)-literal is set to true, satisfying a clause C1. Instead of throwing away one

208 B. Escoffier, V.Th. Paschos, and E. Tourniaire

other clause, we pick two clauses C2 and C3 such that C2 contains a literal �
and C3 contains the literal ¬�, and we remove these two clauses. Any truth
assignment satisfies either C2 or C3, meaning that in this branch we will satisfy
at least 2 clauses (C1 and one among C2 and C3), while at worst the optimum
will satisfy these three clauses. In the other branch where 2 clauses are satisfied,
we pick two pairs of clauses containing opposite literals and we remove them.
This trick improves both the approximation ratio and the running time: now we
have an approximation ratio 2/3 (2 clauses satisfied among 3 clauses removed in
one branch, 4 clauses satisfied among 6 clauses removed in the other branch), and
the running time satisfies T (m) � T (m−3)+T (m−6), i.e., T (m) = O∗(1.17m).

In what follows, we generalize the ideas sketched above in order to work for
any ratio ρ ∈ Q.

Algorithm 4. Let p and q be two integers such as p
q = ρ−1

1−2ρ . We build the search
tree and, on any of its nodes, we count the number of satisfied clauses from the
root (we do not count here the clauses that have been arbitrarily removed). Each
time we reach a multiple of q, we pick p pairs of clauses with opposite literals and
we remove them from the remaining sub-instance. When such a sub-instance on
a node is empty, we arbitrarily assign a value on any still unassigned variable.
Finally, we return the best truth assignment so constructed. �

Note that it might be the case that at some point it is impossible to find p
pairs of clauses with opposite literals. But this means that (after removing q < p
pairs) each variable appears only positively or only negatively, and the remaining
instance is easily solvable in linear time.

Theorem 1. Algorithm 4 runs in time O∗(1.618m(2ρ−1)) and satisfies at least ρ·
|OPT | clauses.

Proof. Consider the leaf where the variables are set like in an optimum solution.
In this leaf, assume that the number of satisfied clauses is s×q+s′ (where s′ < q);
again, we do not count the clauses that have been arbitrarily removed. Then,
the algorithm has removed s× 2p clauses arbitrarily, among which at least s× p
are necessarily satisfied. In the worst case, the s × p other clauses are in OPT;
hence, |OPT | � 2sp + sq + s′. So, the approximation ratio of Algorithm 4 is at
least: (sq + sp + s′)/(sq + 2sp + s′) � ρ.

We now estimate the running time of Algorithm 4. For each node i of the tree,
denote by mi the number of clauses left in the surviving sub-instance of this node,
by zi the number of satisfied clauses from the root of the tree (we do not count
the clauses that have been arbitrarily removed) and set ti = mi − (2p/q)(zi

mod q).
For the root of the tree, zi = 0 and therefore ti = m. Let i be a node

with two children j (at least one clause satisfied) and g (at least two clauses
satisfied). Let us examine quantity tj when exactly one clause is satisfied. In
this case, zj = zi + 1. On the other hand: i) If zj mod q �= 0, then we have not
reached the threshold necessary to remove the 2p clauses. Then, mj = mi − 1
and tj = mj −2p/q(zj mod q) = mi −1−2p/q((zi mod q)+1) = ti −1−2p/q.

Approximating MAX SAT by Exp. and Param. Algorithms 209

If zj mod q = 0, then zi mod q = q − 1 and the threshold has been reached;
so 2p clauses have been removed. Then, mj = mi−1−2p, tj = mj = mi−1−2p
and ti = mi−2p/q(q−1) = mi−2p+2p/q. Finally, tj = ti−1−2p/q. Therefore,
in both cases i) and ii), tj � ti − 1 − 2p/q. Of course, by a similar argument, if
we satisfy g clauses, then the quantity ti is reduced by g(1 + 2p/q). This leads
to a running time T (t) � T (t − 1 − 2p/q) + T (t − 2 − 4p/q) and hence T (t) =
1.618t/(1+2p/q). Since initially t = m, we get T (m) = 1.618m/(1+2p/q). Taking into
account that p/q = (ρ − 1)/(1 − 2ρ), we get immediately 1/(1 + 2p/q) = 2ρ− 1.

��
Algorithm 4 can be improved if instead of using the simple branching rule in
the tree, the more involved case analysis of [10] is used. As already noted in
Section 2.1, we use only the search-tree of the algorithm of [10], that ensures
that at least one branch of the tree corresonds to a partial optimal assignment.
This derives the following algorithm.

Algorithm 5. Let p and q be two integers such as p
q = ρ−1

1−2ρ . Build the search-
tree of [10] and, on each node of it, count the number of satisfied clauses from the
root. Each time a multiple of q is reached, pick p pairs of clauses with opposite
literals and remove them from the resulting sub-instance. Return the best truth
assignment so constructed. �
To estimate the running time of Algorithm 5, we use nearly the same analysis
as in [10]. The only difference is that, at each step of the search tree, [10] counts
without distinction the satisfied and the unsatisfied clauses (clauses that became
empty), whereas we have to make a difference in the complexity analysis: a
satisfied clause reduces the quantity t by 1 + 2p/q in Algorithm 5, while an
unsatisfied clause reduces it by only 1.

By an exhaustive comparative study between the cases analyzed in [10] and
Algorithm 5, one can show that for any ρ the worst case is always reached by the
case (noted by 4.2 in [10]) T (m) = T (m− 2) + T (m− 3), that becomes T (m) =
T (m−2−2χ)+T (m−3−2χ) with χ = 2p/q in the analysis of Algorithm 5. On
the other hand, the claim of Theorem 1 dealing with the approximation ratio
of Algorithm 4 identically applies also for Algorithm 5. Putting all the above
together, the following theorem holds.

Theorem 2. For any ρ < 1, Algorithm 5 achieves approximation ratio ρ on
max sat with running time T (m) = O∗(γm), where γ is the real solution of the
equation X2α+3 − X − 1 = 0 and α = 2ρ−2

1−2ρ .

It is very well-known that, in every max sat-instance, at least m/2 clauses can
be always greedily satisfied. So for any such formula, |OPT | � m/2. Hence,
any algorithm with running time function of m is a parameterized algorithm
for max sat. This however may lead to uninteresting (its running time may be
worse than that of the parameterized algorithm of [10]), but we can improve
this. Indeed, we can show that the pruning method just described can be di-
rectly applied to the parameterized algorithm of [10] for the achievement of the
following parameterized approximation result.

210 B. Escoffier, V.Th. Paschos, and E. Tourniaire

Proposition 3. For any ρ < 1, max sat is approximable within ratio ρ in
time O∗(1.3695(2ρ−1)k), where k is the maximum number of satisfied clauses in
the instance.

4 Splitting the Variables

In this section, we present two algorithms that approximate max sat within
any approximation ratio smaller than 1, and with a computation time depending
on n (the number of variables). As mentioned in the introduction, Hirsch [20]
devises for any ε > 0 and any k � 2 a randomized algorithm that find with
high probability a (1− ε) approximation for max-k-sat in time O∗ ((2 − cε,k)n)
where cε,k = 2ε/(k(1 + ε)) (note that cε,k → 0 when k → ∞, so this does not
give a complexity cn with c < 2 for max sat). For max-2-sat, the complexity
is improved down to O∗ ((2 − 3ε/(1 + 3ε))n).

As we will see, the first algorithm of this section improves these results. It
builds several trees. Then, in each of them, as for Algorithm 2 in Section 2.1, it
cuts the tree at some point and completes variables’ assignment using a polyno-
mial approximation algorithm.

Algorithm 6. Let p and q be two integers such that p/q = (ρ − α)/(1 − α).
Build q subsets X1, · · · , Xq of variables, each one containing roughly p/q × n
variables, where each variable appears in exactly p subsets (as in Algorithm 3
in Section 2.2). For each subset Xi, construct a complete search tree, consid-
ering only the variables in the subset (i.e., the depth of each of these trees is
exactly |Xi| � p/q × n). For each of the leaves of these trees, run a polynomial
time algorithm guaranteeing a ratio α on the surviving sub-instance. Return the
best truth assignment among those built. �

Theorem 3. Algorithm 6 achieves ratio ρ in time O∗(2n(ρ−α)/(1−α)), for any
ρ � 1.

Algorithm 6 is both deterministic and valid for max sat. Moreover in [20] the
best running time is obtained for the restricted problem max-2-sat for which a
ρ = (1− ε)-approximate solution is found in time O∗ ((2 − 3(1 − ρ)/(4 − 3ρ))n).
Interestingly enough, (2 − 3(1 − ρ)/(4 − 3ρ)) is greater than 2(ρ−α)/(1−α) (with
α = 0.796) for any ρ < 1. Finally, note that for max-2-sat one can use Theorem 3
with the best polynomial time approximation ratio known for this problem,
i.e., α = 0.931 [17] (note that max-2-sat is not approximable in polynomial
time within ratio 0.955 unless P = NP [19]). See Figure 2 in Section 1 for a
comparison of running times.

Algorithm 6 builds a full search tree on each subset of variables. In particular,
when the ratio sought ρ tends to 1, the basis of the exponent in the complexity
tends to 2. Then, one might ask the following question: suppose that there is an
exact algorithm solving max sat in O∗(γn) (for some γ < 2), is it possible to find
a ρ approximation algorithm in time O∗(γn

ρ) where γρ < γ for some ρ ∈]α, 1]?
For any ρ ∈]α, 1]? This kind of reduction from an approximate solution to an

Approximating MAX SAT by Exp. and Param. Algorithms 211

exact one would allow to take advantage of any possible improvement of the
exact solution of max sat, which is not the case in Algorithm 6. Note that
finding an exact algorithm in time O∗(γn) for some γ < 2 is a famous open
question for max sat (cf. the strong exponential time hypothesis [21]) as well as
for some other combinatorial problems. It has very recently received a positive
answer for the Hamiltonian cycle problem in [4].

Indeed, we propose in what follows a ρ-approximation algorithms working in
time O∗(γn

ρ) with γρ < γ for any ρ ∈]α, 1].

Algorithm 7. Let p, q ∈ Q be such that p/q = 2ρ − 1. Build q subsets of
variables X1, . . . , Xq, each one containing p/q ×n variables (as in Algorithm 6).
For each Xi run the following steps:

i) assign weight 2 to every clause containing only variables in Xi, and weight 1
to every clause containing at least one variable not in Xi;

ii) remove from the instance the variables not in Xi; remove empty clauses;
iii) solve exactly this max weighted sat resulting instance, thus obtaining a

truth assignment for the variables in Xi;
iv) complete the assignment with a greedy algorithm: for each (i, j)-literal, if

i > j, then the literal is set to TRUE, else it is set to FALSE (and the instance
is modified accordingly). Return the best among the truth-assignments so-
produced. �

Lemma 1. If there is a max sat-algorithm working in time O∗(γn), then the
instances of max weighted sat in Algorithm 7 can be solved with the same
bound on the running time.

Theorem 4. Algorithm 7 achieves approximation ratio ρ in time O∗(γ(2ρ−1)n),
where O∗(γn) is the running time of an exact algorithm for max sat.

5 Discussion

We have proposed in this paper several algorithms that constitute a kind of
“moderately exponential approximation schemata” for max sat. They guarantee
approximation ratios that are unachievable in polynomial time unless P = NP,
or even in time 2m1−ε

under the exponential time hypothesis. To obtain these
schemata, several techniques have been used coming either from the polyno-
mial approximation or from the exact computation. Furthermore, Algorithm 7
in Section 4 is a kind of polynomial reduction between exact computation and
moderately exponential approximation transforming exact algorithms running
on “small” sub-instances into approximation algorithms guaranteeing good ra-
tios for the whole instance. We think that research in moderately exponential
approximation is an interesting research issue for overcoming limits posed to the
polynomial approximation due to the strong inapproximability results proved in
the latter paradigm.

We conclude this paper with a word about another very well known optimum
satisfiability problem, the min sat problem that, given a set of variables and a

212 B. Escoffier, V.Th. Paschos, and E. Tourniaire

set of disjunctive clauses, consists of finding a truth assignment that minimizes
the number of satisfied clauses. A ρ-approximation algorithm for min sat (with
ρ > 1) is an algorithm that finds an assignment satisfying at most ρ times the
minimal number of simultaneously satisfied clauses.

In [11] an approximability-preserving reduction between min vertex cover
and min sat is presented transforming any ρ-approximation for the former prob-
lem into a ρ-approximation for the latter problem. This reduction can be used
to translate any result on the min vertex cover problem into a result on the
min sat, the number of vertices in the min vertex cover instance being the
number of clauses in the min sat instance. For instance, the results from [6] for
min vertex cover lead to the following parameterized approximation result
for min sat: for every instance of min sat and for any r ∈ Q, if there exists
a solution for min sat satisfying at most k clauses, it is possible to determine
with complexity O∗(1.28rk) a 2 − r-approximation of it.

We also note that the method used in Algorithm 6 can be applied as well to
min sat with the following modification of the algorithm. Let p, q ∈ Q be such
that p/q = 2ρ − 1. Build q subsets of variables, each one containing p/q × n
variables. For each subset, construct a search tree, considering only the variables
in the subset (the depth of the trees is p/q×n). For each leaf of any of the so-built
trees, use some polynomial algorithm with ratio α on the surviving sub-instance.
Return the best of the truth assignments computed.

The complexity of the modification just described is the same as that of
Algorithm 6, i.e., O∗(2n(α−ρ)/(α−1)) (the best known ratio is α = 2), and a
similar analysis derives an approximation ratio α − (α − 1)p

q = ρ.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and approximation. In: Combinatorial Optimization Problems
and their Approximability Properties. Springer, Berlin (1999)

2. Avidor, A., Berkovitch, I., Zwick, U.: Improved Approximation Algorithms for
MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA
2005. LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)

3. Battiti, R., Protasi, M.: Algorithms and heuristics for max-sat. In: Du, D.Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp. 77–
148. Kluwer Academic Publishers (1998)

4. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: Proc. FOCS
2010, pp. 173–182. IEEE Computer Society (2010)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

6. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Appl. Math. 159(17), 1954–1970 (2011)

7. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min color-
ing by moderately exponential algorithms. Inform. Process. Lett. 109(16), 950–954
(2009)

Approximating MAX SAT by Exp. and Param. Algorithms 213

8. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min set
cover by moderately exponential algorithms. Theoret. Comput. Sci. 410(21-23),
2184–2195 (2009)

9. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

10. Chen, J., Kanj, I.A.: Improved exact algorithms for max sat. Discrete Appl.
Math. 142, 17–27 (2004)

11. Crescenzi, P., Silvestri, R., Trevisan, L.: To weight or not to weight: where is
the question? In: Proc. Israeli Symposium on Theory of Computing and Systems,
ISTCS 1996, pp. 68–77. IEEE (1996)

12. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inform. Process. Lett. 109(16), 957–961 (2009)

13. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411(40-42), 3701–3713 (2010)

14. Dantsin, E., Gavrilovich, M., Hirsch, E.A., Konev, B.: max sat approximation be-
yond the limits of polynomial-time approximation. Ann. Pure and Appl. Logic 113,
81–94 (2001)

15. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

16. Escoffier, B., Paschos, V.T.: A survey on the structure of approximation classes.
Computer Science Review 4(1), 19–40 (2010)

17. Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT. In: Proc. 3rd Israel Symp. on
Theory of Computing and Systems, pp. 182–189. IEEE Computer Society (1995)

18. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An Exponential Time 2-
Approximation Algorithm for Bandwidth. In: Chen, J., Fomin, F.V. (eds.) IWPEC
2009. LNCS, vol. 5917, pp. 173–184. Springer, Heidelberg (2009)

19. Håstad, J.: Some optimal inapproximability results. In: Proc. 29th Ann. ACM
Symp. on Theory of Comp., pp. 1–10. ACM (1997)

20. Hirsch, E.A.: Worst-case study of local search for Max-k-SAT. Discrete Applied
Mathematics 130, 173–184 (2003)

21. Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

22. Moshkovitz, D., Raz, R.: Two-query PCP with subconstant error. J. ACM 57(5)
(2010)

Computing Error Distance of Reed-Solomon Codes�

Guizhen Zhu1 and Daqing Wan2

1 Institute for Advanced Study
Tsinghua University, Beijing, 100084, P.R. China

zhugz08@mails.tsinghua.edu.cn
2 Department of Mathematics

University of California, Irvine, CA 92697-3875, USA
dwan@math.uci.edu

Abstract. Under polynomial time reduction, the maximum likelihood decoding
of a linear code is equivalent to computing the error distance of a received word.
It is known that the decoding complexity of standard Reed-Solomon codes at cer-
tain radius is at least as hard as the discrete logarithm problem over certain large
finite fields. This implies that computing the error distance is hard for standard
Reed-Solomon codes. Using the Weil bound and a new sieve for distinct coor-
dinates counting, we are able to compute the error distance for a large class of
received words. This significantly improves previous results in this direction. As
a corollary, we also improve the existing results on the Cheng-Murray conjec-
ture about the complete classification of deep holes for standard Reed-Solomon
codes.

Keywords: Reed-Solomon code, deep hole, character sum, distinct coordinates
counting.

1 Introduction

There is always a possibility that a signal is corrupted when transferred over a long
distance. Error-detecting and error-correcting codes alleviate the problem and make the
modern communication possible. The Reed-Solomon codes are very popular in engi-
neering a reliable channel due to their simplicity, burst error correction capabilities, and
the powerful decoding algorithms within small error distance they admit.

Let Fq be the finite field with q elements, where q is a prime power. For positive
integers k < n ≤ q, the generalized Reed-Solomon code, denoted by C, can be thought
of as a map from Fk

q → Fn
q, in which a message (a1, a2, . . . , ak) is mapped to a vec-

tor (f (x1), f (x2), . . . , f (xn)), where f (x) = akxk−1 + ak−1xk−2 + · · · + a1 ∈ Fq[x] and
{x1, x2, . . . , xn} ⊆ Fq is called the evaluation set. It is obvious that C is a linear subspace
of Fn

q with dimension k. When the evaluation set is the whole field Fq, the resulting code
is called the standard Reed-Solomon code, denoted by Cq. In the literature, the standard
Reed-Solomon code is often called the extended Reed-Solomon code. This name can
be confused (to us) to the generalized Reed-Solomon code.

� This work is partially supported by NSF of the USA and by the National Natural Science
Foundation of China (Grant No.60910118 and 61133013).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 214–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing Error Distance of Reed-Solomon Codes 215

The Hamming distance between two codewords is the number of coordinates in
which they differ. The error distance of a received word u ∈ Fn

q to the code C is the
minimum Hamming distance of u to codewords, denoted by d(u,C). A Hamming ball of
radius m is the set of vectors within Hamming distance m to some vector in Fn

q. The min-
imum distance of a code is the smallest distance between any two distinct codewords,
and is a measure of how many errors the code can correct or detect. The covering radius
of a code is the maximum possible distance from any vector in Fn

q to the closest code-
word. A deep hole is a vector which achieves this maximum. The minimum distance
of generalized Reed-Solomon codes is n − k + 1. The covering radius of generalized
Reed-Solomon codes is n − k.

1.1 Related Work

The pursuit of efficient decoding algorithms for Reed-Solomon codes has yielded in-
triguing results. If the radius of a Hamming ball centered at a received word is less than
half the minimum distance, there can be at most one codeword in the Hamming ball.
Finding this unique codeword (if it exists) is called unambiguous decoding. It can be
efficiently solved, see [1] for a simple algorithm. If the radius is somewhat larger, but
less than n − √n(k − 1), the number of codewords is of polynomial size. In this case,
the decoding problem can be efficiently solved by the Guruswami-Sudan list decoding
algorithm [6], which outputs all the codewords inside a Hamming ball. If the radius is
stretched further, the number of codewords in a Hamming ball may be exponential. We
then study the bounded distance decoding problem, which outputs just one codeword in
a Hamming ball of certain radius. More importantly, we can remove the restriction on
radius and investigate the maximum likelihood decoding problem, which is the problem
of computing a closest codeword to a given vector in Fn

q .
The complexity for decoding Reed-Solomon codes has also attracted attention re-

cently. Guruswami and Vardy [7] proved that the maximum likelihood decoding of
generalized Reed-Solomon codes is NP-hard. In fact, the weaker problem of deciding
deep holes for generalized Reed-Solomon codes is already co-NP-complete, see [3].
In the much more interesting case of standard Reed-Solomon codes, it is unknown if
decoding remains NP-hard. This is still an open problem. Cheng and Wan [4] [5] man-
aged to prove that the decoding problem of standard Reed-Solomon codes at certain
radius is at least as hard as the discrete logarithm problem over a large extension of a
finite field. This is the only complexity result that is known for decoding the standard
Reed-Solomon code.

Our aim of this paper is to study the problem of computing the error distance of the
standard Reed-Solomon code. We shall use algebraic methods. For this purpose, we
first define the notion of the degree of a received word. For u = (u1, u2, . . . , un) ∈ Fn

q, let

u(x) =
n∑

i=1

ui

∏
j�i(x − x j)∏
j�i(xi − x j)

∈ Fq[x] .

That is, u(x) is the unique (Lagrange interpolation) polynomial of degree at most n − 1
such that u(xi) = ui for 1 ≤ i ≤ n. For u ∈ Fn

q, we define deg(u) = deg(u(x)), called the
degree of u. It is clear that d(u,C) = 0 if deg(u) ≤ k − 1. Without loss of generality, we

216 G. Zhu and D. Wan

can assume that k ≤ deg(u) ≤ n − 1 and u(x) is monic. We have the following simple
bound.

Proposition 1 ([3]). For k ≤ deg(u) ≤ n − 1, we have the inequality

n − deg(u) ≤ d(u,C) ≤ n − k .

This result shows that if deg(u) = k, then d(u,C) = n − k and thus u is a deep hole.
As mentioned before, it is NP-hard to determine when d(u,C) = n − k (the deep hole
problem) for generalized Reed-Solomon codes. Thus, we will restrict our attention to
the most natural and important case, namely the standard Reed-Solomon code Cq. Even
in this restricted case, we cannot expect a complete solution to the problem of comput-
ing the error distance, as it is at least as hard as the discrete logarithm in a large finite
field. However, we expect that a lot more can be said for standard Reed-Solomon codes.
For instance, Cheng and Murray [3] conjectured the following complete classification
of deep holes for standard Reed-Solomon codes.

Conjecture 2 (Cheng-Murray). All deep holes for standard Reed-Solomon codes are
those words satisfying deg(u) = k. In other words, a received word u is a deep hole for
Cq iff deg(u) = k.

The deep hole problem for generalized Reed-Solomon codes is NP-hard. In contrast,
the Cheng-Murray conjecture implies that the deep hole problem for the standard Reed-
Solomon code can be solved in polynomial time. A complete proof of this conjecture
(if correct) seems rather difficult at present. As a theoretical evidence, they proved that
their conjecture is true if d := deg(u) − k is small and q is sufficiently large compared
to d + k. More precisely, they showed

Proposition 3 ([3]). Let u ∈ Fq
q such that 1 ≤ d := deg(u) − k ≤ q − 1 − k. Assume that

q ≥ max (k7+ε , d
13
3 +ε) for some constant ε > 0. Then d(u,Cq) < q − k, that is, u is not a

deep hole.

The method of Cheng-Murray is to reduce the problem to the existence of a ratio-
nal point on a hypersurface over Fq. They showed that the resulting hypersurface is
absolutely irreducible and then applied an explicit version of the Lang-Weil theorem.
However, they did not obtain the exact value of d(u,Cq), only the weaker inequality
d(u,Cq) < q − k. Li and Wan [11] improved their results using Weil’s character sum
estimate and the approach of Cheng-Wan [4] as follows.

Proposition 4 ([11]). Let u ∈ Fq
q such that 1 ≤ d := deg(u) − k ≤ q − 1 − k. If

q > max ((k + 1)2, d2+ε), k >

(
2
ε
+ 1

)
d +

8
ε
+ 2

for some constant ε > 0, then d(u,Cq) < q − k, that is, u is not a deep hole. If

q > max ((k + 1)2, (d − 1)2+ε), k >

(
4
ε
+ 1

)
d +

4
ε
+ 2

for some constant ε > 0, then d(u,Cq) = q − (k + d).

Computing Error Distance of Reed-Solomon Codes 217

Note that the last part of the proposition determines the exact error distance d(u,Cq)
under a suitable hypothesis. Using a similar character sum approach, Qunying Liao
[12] unified the above two results of Li-Wan and proved the following extension.

Proposition 5 ([12]). Let r ≥ 1 be an integer. For any received word u ∈ Fq
q, r ≤ d :=

deg u − k ≤ q − 1 − k. If

q > max

(
2

(
k + r

2

)
+ d, d2+ε

)
, k >

(
2
ε
+ 1

)
d +

2r + 4
ε
+ 2

for some constant ε > 0, then d(u,Cq) ≤ q − k − r.

In a recent preprint, Antonio Cafure etc. [2] uses a much more sophisticated algebraic-
geometry approach and obtains a slightly improvement of one of the Li-Wan results.

Proposition 6 ([2]). Let u ∈ Fq
q such that 1 ≤ d := deg(u) − k ≤ q − 1 − k. Assume that

q > max ((k + 1)2, 14d2+ε), k > d

(
2
ε
+ 1

)
,

for some constant ε > 0. Then d(u,Cq) < q − k, that is, u is not a deep hole.

Again, this result gives only the inequality d(u,Cq) < q − k, not the exact value of the
error distance d(u,Cq).

1.2 Our Results

In this paper, we prove the following result.

Theorem 7. Let r ≥ 1 be an integer and u ∈ Fq
q such that r ≤ d := deg(u)−k ≤ q−1−k.

There are positive constants c1 and c2 such that if

d < c1q1/2, (
d + r

2
+ 1) log2 q < k < c2q ,

then d(u,Cq) ≤ q − k − r.

Actually, our results are more general in the sense that it works for words represented
by low degree rational functions, not just low degree polynomials, see Theorem 15 for
details. Under the condition of k > (d+r

2 + 1) log2 q, Theorem 7 has significantly im-

proved the result of Proposition 5 as we weaken the condition k < q
1
2 in Proposition 5

to k < c2q for some constant c2. Put it in another way, our result now works for codes
with positive information rate, while Proposition 5 only works for codes with informa-
tion rate going to zero. Taking r = 1 or d in Theorem 7, we obtain similar significant
improvements of Li-Wan’s results as follows.

Corollary 8. Let u ∈ Fq
q such that 1 ≤ d := deg(u) − k ≤ q − 1 − k. There are positive

constants c1 and c2 such that if

d < c1q1/2, (
d + 3

2
) log2 q < k < c2q ,

218 G. Zhu and D. Wan

then d(u,Cq) < q − k; and if

d < c1q1/2, (d + 1) log2 q < k < c2q ,

then d(u,Cq) = q − k − d.

Compared with Proposition 4, Corollary 8 weakened the condition from k <
√

q to
k < c2q under the assumption k > (d+1) log2 q. This result shows that we can determine
the exact error distance for a much larger class of received words.

In our proof, we convert the problem of deciding the error distance of a received word
to a polynomial congruence equation. Compared with the geometric approach in [2][3],
our method is simpler and it gives stronger results. We use Weil’s character sum esti-
mate [14] and Li-Wan’s new sieve for distinct coordinates counting [9] to estimate the
number of solutions of the congruence. Compared with the classical inclusion-exclusion
principle used in [11] and [12], the Li-Wan’s new sieve for distinct coordinates count-
ing has more advantages on decreasing the number of error terms and improving the
accuracy of estimating. As a result, we are able to deduce a much weaker sufficient
condition for determining the error distance of a received word.

2 Preliminaries

2.1 Character Sums and the Weil Bound

We first review the theory of character sums in the form we need. Let Fq[x] be the
polynomial ring in one variable over Fq and h(x) be a fixed irreducible polynomial in
Fq[x] of degree 0 ≤ h < m − k + 1, where m > k. Let h(x) = xm−k+1h(1

x). Then h(x) is a
polynomial in Fq[x] with degree m − k + 1, and divisible by x.

Let χ : (Fq[x]/(h(x)))∗ −→ C∗ be a multiplicative character from the invertible ele-
ments of the residue class ring to the non-zero complex numbers. For g ∈ Fq[x], define

χ(g) =

{
χ(g mod h(x)), if gcd(g, h(x)) = 1;
0, otherwise .

This defines a multiplicative function of the polynomial ring Fq[x]. We need the follow-
ing form of the Weil bound as given in [14].

Proposition 9 (Weil). If χ � 1 but χ(F∗q) = 1, then
∣∣∣∣∣∣∣∣∣∣

∑

g∈Fq [x],g(0)=1
deg(g)=m−(k+r)

Λ(g)χ(g)

∣∣∣∣∣∣∣∣∣∣
≤ (m − k)q

m−(k+r)
2 .

and ∣∣∣∣∣∣∣∣∣
1 +

∑

g monic
deg(g)=m−k+r

Λ(g)χ(g)

∣∣∣∣∣∣∣∣∣
≤ (m − k − 1)q

m−(k+r)
2 ,

where Λ(g) is the Von-Mangoldt function on Fq[x], i.e. Λ(g) is equal to deg P if g is a
power of an irreducible polynomial P and equal to zero otherwise.

Computing Error Distance of Reed-Solomon Codes 219

2.2 Li-Wan’s New Sieve

Let D be a finite set. For a positive integer k, let Dk = D × D × · · · × D be the Cartesian
product of k copies of D. Let X be a subset of Dk. Denote

X = {(x1, x2, . . . , xk) ∈ X | xi � x j, i � j} .
Let f (x1, x2, . . . , xk) be a complex valued function defined over X. Denote

F =
∑

x∈X
f (x1, x2, . . . , xk) .

Let S k be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ S k can be uniquely
factorized as a product of disjoint cycles and each fixed point is viewed as a trivial cycle
of length 1. Namely,

τ = (i1i2 . . . ia1)(j1 j2 . . . ja2) . . . (l1l2 . . . ls) .

with ai ≥ 1, 1 ≤ i ≤ s. Define

Xτ = {(x1, . . . , xk) ∈ X | xi1 = · · · = xia1
, x j1 = · · · = x ja2

, . . . , xl1 = · · · = xlas
} .

Similarly, we can define
Fτ =

∑

x∈Xτ
f (x1, x2, . . . , xk) .

We say that τ is of type (c1, c2, . . . , ck) if it has exactly ci cycles of length i. Let
N(c1, c2, . . . , ck) be the number of permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)tc1

1 tc2

2 . . . t
ck

k .

We have the following combinational formula:

Lemma 10 ([9]). Suppose q ≥ d, if ti = q for d|i and ti = s for d � i, then we have

Ck(s, . . . , s, q, s, . . . , s, q, . . .) = k!

k/d�∑

i=0

(q−s
d + i − 1

i

)(
s + k − di − 1

k − di

)

≤ (s + k + (q − s)/d − 1)k .

where (x)k = x(x − 1) . . . (x − k + 1).

Definition 11. X is called symmetric if for any x ∈ X and any g ∈ S k, we have g◦x ∈ X.

Definition 12. A complex-valued function f defined on X is called normal on X if X is
symmetric and for any two S k conjugate elements τ and τ′ in S k, we have

∑

x∈Xτ
f (x1, x2, . . . , xk) =

∑

x∈Xτ′
f (x1, x2, . . . , xk) .

Proposition 13. If f is normal on X, then we have

F =
∑

∑
ici=k

(−1)k−∑ ci N(c1, c2, . . . , ck)Fτ .

220 G. Zhu and D. Wan

3 Main Theorem and Its Proof

The following lemma is immediate from the definition of the error distance.

Lemma 14. Let u ∈ Fq
q be a word with deg(u) = k + d, where k + 1 ≤ k + d ≤ q − 1.

Then, the error distance d(u,Cq) ≤ q − k − r for some 1 ≤ r ≤ d iff there exists a subset
{xi1 , xi2 , . . . , xik+r } ⊂ Fq and a polynomial g(x) ∈ Fq[x] of degree d − r such that

u(x) − v(x) = (x − xi1)(x − xi2) . . . (x − xik+r)g(x) ,

for some v(x) ∈ Fq[x] with deg(v(x)) ≤ k − 1.

Fix an ordering Fq = {x1, . . . , xq}. Our main result is the following

Theorem 15. Let r ≥ 1 be an integer and let u ∈ Fq
q be a received word. Denote

m = min

⎧⎪⎪⎨⎪⎪⎩deg w(x)

∣∣∣∣∣∣

(
w(x1)
h(x1) ,

w(x2)
h(x2) , . . . ,

w(xq)
h(xq)

)
= u, for some h(x) ∈ Fq[x],

(h(x), xq − x) = 1, deg h(x) + k ≤ deg w(x) ≤ q − 1.

⎫⎪⎪⎬⎪⎪⎭

Let r ≤ d := m − k ≤ q − 1 − k. There are positive constants c1 and c2 such that if

d < c1q1/2, (
d + r

2
+ 1) log2 q < k < c2q ,

then d(u,Cq) ≤ q − k − r.

Taking h(x) = 1 in the theorem, we have w(x) = u(x) and obtain the simpler polynomial
case stated in the introduction section.

Proof. Suppose w(x) is the polynomial with degree m, and h(x) is the corresponding
irreducible polynomial satisfying the definition of m. Shifting u by a constant codeword
if necessary, we may assume that w(0) � 0. Let h(x) = xm−k+1h(1

x). This is a polynomial

of degree m − k + 1 = d + 1. Let A = (Fq[x]/(h(x)))∗ and Â denote the group of all
characters of A. Let B̂ = {χ ∈ Â | χ(F∗q) = 1}, an abelian subgroup of order ≤ qd.

By Lemma 14, we know that d(u,Cq) ≤ q − k − r if and only if there exists a
polynomial f (x) ∈ Fq[x] with deg f (x) ≤ k − 1, such that

w(x)
h(x)

+ f (x) =
w(x) + f (x)h(x)

h(x)

has at least k+ r distinct roots in Fq. i.e. there exists a subset {x1, x2, . . . , xk+r} ⊂ Fq such
that

w(x) + f (x)h(x) = (x − x1)(x − x2) . . . (x − xk+r)v(x)

for some v(x) ∈ Fq[x] with deg(v(x)) = m − (k + r). It is sufficient to show that there
exists a subset {x1, x2, . . . , xk+r} ⊂ Fq such that

xmw(
1
x

) + xm f (
1
x

)h(
1
x

) = (1 − x1 x)(1 − x2 x) . . . (1 − xk+r x)xm−(k+r)v(
1
x

) .

Computing Error Distance of Reed-Solomon Codes 221

If we denote w̃(x) = xmw(1/x), f̃ (x) = xk−1 f (1/x), ṽ(x) = xm−(k+r)v(1/x), then we have

w̃(x) + f̃ (x)h(x) = (1 − x1x)(1 − x2x) . . . (1 − xk+r x)ṽ(x) , (3.1)

with deg w̃(x) = m, deg f̃ (x) ≤ k − 1 and deg ṽ(x) = m − (k + r) = d − r. Equation 3.1 is
equivalent to the congruence

(1 − x1 x)(1 − x2 x) . . . (1 − xk+r x)ṽ(x) ≡ w̃(x) (mod h(x)) . (3.2)

Since w̃(0) � 0, without loss of generality, we can assume that w̃(0) = 1 and hence
ṽ(0) = 1. Equation 3.2 is then equivalent to the following congruence

(1 − x1x)(1 − x2x) . . . (1 − xk+r x)ṽ(x)
w̃(x)

≡ 1 (mod h(x)) . (3.3)

The number of solutions in equation 3.3 is

Nu = #

{
(x1, . . . , xk+r, ṽ(x))

∣∣∣∣
(1−x1 x)(1−x2 x)...(1−xk+r x)ṽ(x)

w̃(x) ≡ 1 (mod h(x))
xi ∈ Fq distinct, deg ṽ(x) = m − (k + r), ṽ(0) = 1

}
.

Thus, Nu is the number of codewords v ∈ Cq with d(u, v) ≤ q − k − r. If Nu > 0, then
d(u,Cq) ≤ q − k − r. Using character sums, we find

Nu =
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

∑

χ∈B̂

χ

(
(1 − x1x)(1 − x2x) . . . (1 − xk+r x)ṽ(x)

w̃(x)

)
.

We first assume that r < d. In this case, to simplify the proof, we consider the following
weighted version

N =
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)
∑

χ∈B̂

χ

(
(1 − x1x)(1 − x2x) . . . (1 − xk+rx)ṽ(x)

w̃(x)

)
.

It is clear that if N > 0, then Nu > 0. We use Li-Wan’s new sieve (Proposition 13) to
estimate N.

Let X = Fk+r
q , X = {(x1, x2, . . . , xk+r) ∈ Fk+r

q | xi � x j, i � j},

f (x) = f (x1, x2, . . . , xk+r) = χ((1 − x1 x)(1 − x2 x) . . . (1 − xk+r x)) ,

F =
∑

x∈X
χ((1 − x1x)(1 − x2x) . . . (1 − xk+r x)) =

∑

x∈X
f (x) .

Obviously, X is symmetric and f is normal on X, we can use Proposition 13 directly to
compute F. In this case,

Fτ=
∑

xsts ∈Fq
1≤s≤k+r,1≤ts≤cs

χ(1−x11x) . . . χ(1−x1c1 x)χ2(1−x21x) . . . χk+r(1−x(k+r)1x) . . . χk+r(1−x(k+r)ck+r x) .

222 G. Zhu and D. Wan

If χ ∈ B̂ is non-trivial and χ(F∗q) = 1, by Weil’s bound and noting that χ(x) = 0 since
h̄(x) is divisible by x, we can see that

∣∣∣∣∣∣∣∣

∑

xi∈Fq

χ(1 − xix)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 +

∑

a∈Fq

χ(x − a)

∣∣∣∣∣∣∣∣
≤ (d − 1)q

1
2 .

We know that if χ � 1 and χh = 1, then h ≥ 2.

N =
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ) +
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)
∑

χ∈B̂
χ�1

χ

(
(1 − x1 x) . . . (1 − xk+1 x)ṽ(x)

w̃(x)

)

=
1

|B̂| (q)k+r(q
d−r − 1) +

1

|B̂|
∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)
∑

χ∈B̂
χ�1

∑

xi∈Fq ,distinct
1≤i≤k+r

χ

(
(1 − x1 x) . . . (1 − xk+r x)ṽ(x)

w̃(x)

)
.

Using the analysis above, we can get that

∣∣∣∣∣∣N −
1

|B̂| (q)k+r(q
d−r − 1)

∣∣∣∣∣∣ ≤
1

|B̂|

∣∣∣∣∣∣∣∣∣∣

∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)χ(ṽ)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∑

χ∈B̂
χ�1

χ−1(w̃)
∑

xi∈Fq ,distinct
1≤i≤k+r

χ ((1 − x1 x) . . . (1 − xk+r x))

∣∣∣∣∣∣∣∣∣∣

≤ 1

|B̂|dq
d−r

2

∑

χ∈B̂
χ�1

∑
∑

ici=k+r

N(c1, c2, . . . , ck+r)|Fτ |

≤ 1

|B̂|dq
3d−r

2 Ck+r((d − 1)q1/2, q, . . . , (d − 1)q1/2, q, . . .)

≤ dq
3d−r

2

|B̂|
(
dq1/2 + k +

q
2

)
k+r
.

So, in order to prove Nu > 0, it is sufficient to prove

(q)k+r(qd−r − 1) > dq
3d−r

2

(
dq1/2 + k +

q
2

)
k+r
.

Since we assumed that d > r, we get the following sufficient condition:

q

dq1/2 + k + q
2

>

⎛⎜⎜⎜⎜⎝
dq

3d−r
2

qd−r − 1

⎞⎟⎟⎟⎟⎠
1

k+r

.

With the assumption d < c1q1/2, k < c2q, it is sufficient to prove that there are positive
constants c1, c2 satisfying

c1 + c2 <

⎛⎜⎜⎜⎜⎝
dq

3d−r
2

qd−r − 1

⎞⎟⎟⎟⎟⎠
−1
k+r

− 1
2
.

This is possible if

(
dq

3d−r
2

qd−r−1

) 1
k+r

< 2 , that is, if k > (d+r
2 + 1) log2 q. This completes the

proof in the case r < d.

Computing Error Distance of Reed-Solomon Codes 223

Assume now that r = d. The above proof breaks down, but the theorem can be proved
in a similar way by working with the original un-weighted counting function Nu. Since
r = d, we have ṽ(x) = 1. Thus,

Nu =
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

1 +
1

|B̂|
∑

xi∈Fq ,distinct
1≤i≤k+r

∑

χ∈B̂
χ�1

χ

(
(1 − x1x) . . . (1 − xk+1x)

ũ(x)

)

=
1

|B̂| (q)k+r +
1

|B̂|
∑

χ∈B̂
χ�1

∑

xi∈Fq ,distinct
1≤i≤k+r

χ

(
(1 − x1x) . . . (1 − xk+r x)

ũ(x)

)
.

Using a similar estimate, we can deduce that
∣∣∣∣∣∣N −

1

|B̂| (q)k+r

∣∣∣∣∣∣ ≤
qd

|B̂|
(
dq1/2 + k +

q
2

)
k+d
.

To get N > 0, it is sufficient to have

(q)k+d > qd
(
dq1/2 + k +

q
2

)
k+d
.

This actually proves something stronger than what is stated in the theorem if r = d. The
proof is complete. ��

4 Conclusions

In this paper, we proved that for those received words represented by a low degree
rational function in a suitable sense, the error distance can be explicitly determined for
the standard Reed-Solomon codes. It would be very interesting to see if the square root
condition d < c

√
q in our main theorem can be improved to a linear condition d < cq

for some positive constant c. A similar problem in different contexts occurs in [5] and
[15].

References

1. Berlekamp, E., Welch, L.: Error correction of algebraic block codes. U.S. Patent Number
4633470 (1986)

2. Cafure, A., Matera, G., Privitelli, M.: Singularities of symmetric hypersurfaces and an appli-
cation to Reed-Solomon codes. arXiv 1109.2265v1 (September 10, 2011)

3. Cheng, Q., Murray, E.: On Deciding Deep Holes of Reed-Solomon Codes. In: Cai, J.-Y.,
Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 296–305. Springer, Heidel-
berg (2007)

4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-Solomon codes.
SIAM J. Comput. 37(1), 195–209 (2007)

5. Cheng, Q., Wan, D.: Complexity of decoding positive-rate Reed-Solomon codes. IEEE
Trans. Inform. Theory 56(10), 5217–5222 (2010)

6. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry
codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1995)

224 G. Zhu and D. Wan

7. Guruswami, V., Vardy, A.: A Maximum-likelihood decoding of Reed-Solomon codes is NP-
Hard. IEEE Trans. Inform. Theory 51(7), 2249–2256 (2005)

8. Li, J.Y., Wan, D.: On the subset sum problem over finite fields. Finite Fields Appl. 14, 911–
929 (2008)

9. Li, J.Y., Wan, D.: A new sieve for distinct coordinate counting. Science China Mathemat-
ics 53(9), 2351–2362 (2010)

10. Li, J.Y., Wan, D.: Counting subset sums of finite abelian groups. Journal of Combinatorial
Theory Series A 119(1) (January 2012)

11. Li, J.Y., Wan, D.: On error distance of Reed-Solomon codes. Science in China Mathemat-
ics 51(11), 1982–1988 (2008)

12. Liao, Q.: On Reed-Solomon Codes. Chinese Annals of Mathematics Series B 32B(1), 89–98
(2011)

13. Sudan, M.: Decoding of Reed-Solomon codes beyond the error-correction bound. J. Com-
plexity 13, 180–193 (2007)

14. Wan, D.: Generators and irreducible polynomials over finite fields. Mathematics of Compu-
tation 66, 119–1212 (1997)

15. Zhu, G., Wan, D.: An asymptotic formula for counting subset sums over subgroups of finite
fields. Finite Fields Appl. (2011), doi:10.1016/j.ffa.2011.07.010

Coordination Mechanisms

for Selfish Parallel Jobs Scheduling

(Extended Abstract)

Deshi Ye� and Guochuan Zhang��

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{yedeshi,zgc}@zju.edu.cn

Abstract. A set of parallel jobs must be scheduled in a grid, which has
multi clusters that consist of many identical processors, to minimize the
global objective function, the makespan. A parallel job requires several
processors for simultaneously executing and it needs some unit times
to finish its execution. In practice, each parallel job is owned by an
independent agent, which is selfish and select a cluster to minimize its
own completion time. This scenario can be represented as a coordination
mechanism game, in which the players are job owners, and the strategies
are the clusters, and the player’s disutility is the completion time of its
job in the corresponding schedule.

In this work, we design and analyze coordination mechanisms for ma-
chines, which aim to minimize the price of anarchy. We study two classes
of scheduling policies, the Bottom-Left based algorithms and the Shelf-
Packing based algorithms, both in a homogeneous grid and in a hetero-
geneous grid. We derive upper and lower bounds on the price of anarchy
of these coordination mechanisms. We also show that such games are
potential games that converge in a linear number of rounds.

1 Introduction

Recently cloud computing becomes more and more popular in large-scale and
distributed computing, with often competing economic interests. In such a dis-
tributed parallel computing environment, we study a natural game-theoretic
variant of parallel jobs scheduling problem: We assume that a parallel job that
may run simultaneously on more than one processor is managed by a selfish
agent, i.e., each job has an agent that aiming at placing the job on the cluster
such that its completion time is minimized. Several agents may select the same
cluster for processing, and the completion times of these jobs thus depend on
the positions they are allocated. One characterization of cloud computing is that
all the processing power is controlled by only a single entity, namely the service
provider. Thus it is reasonable to assume that the service provider will attempt
to balance the load on all clusters and minimize the makespan. On the other

� Research was supported by NSFC(11071215).
�� Research was supported by NSFC (10971192).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 225–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

226 D. Ye and G. Zhang

hand, in a cloud computing environment, the service provider is not able to
impose the control on the users. Rather, it can only design mechanisms (or pro-
tocols) specifying the rules of the game, with the goal such that the independent
and selfish choices of the users will result in a socially desirable outcome. How-
ever, different mechanisms (allocation policies of clusters for jobs) may result in
different costs of equilibria compared to the global social optimums. To reduce
the price of anarchy which measures the quality of an equilibrium to the optimal
social cost, we deal with our problem by introducing coordination mechanisms.

More precisely, the model of our studied game is described as follows.

1.1 The Model

We consider the problem of scheduling a set N of n parallel jobs that must be
assigned in a grid G that has m clusters. Each cluster hasM identical processors.
Job i is required to be processed on wi processors (sometime it is called degree
of parallelism, or the size of a job) and its processing time (or the length of a
job) is pi. The wi processors allocated to job i must be on the same cluster.
We study the rigid version of parallel jobs, i.e., a job cannot be executed if
it is allocated with processors not equal to wi. To minimize the communicate
overhead between processors, we require that the processors allocated to a job
shall be contiguous. Hence, without loss of generality, we assume that M = 1,
and 0 ≤ wi ≤ 1. Moreover, no preemption is allowed.

We introduce coordination mechanism[9] for our problem. A coordinationmech-
anism is a local scheduling policy, one for each cluster, which is an algorithm for
the cluster to schedule all its available jobs. The policy is run locally on each clus-
ter without any knowledge of other clusters. We assume that all the clusters adopt
the same policy. Once the policy is chosen by the clusters, it is known to all agents.

In our problem, every job is owned by a selfish agent who tries to minimize
its disutility (the completion time) by selecting a cluster on which its job will
run. In this game, each agent can move its job from cluster to cluster. The
completion time of a job on each cluster is determined by the local policy of
the corresponding cluster. Each agent attempts to minimize its own completion
time, while the social objective is to minimize the overall makespan.

Usually coordination mechanisms are designed according to the information
announced by the jobs. In this paper we consider two types of information,
the number of required processors and the processing times. According to the
number of required processors, we study the class of policies that are based on
the Bottom-Left rule, in which the jobs are sequenced in non-decreasing (or
non-increasing) order of theirs widths (or heights), respectively. According to
the processing time, we study the class of policies that are based on the Shelf-
Packing algorithms, in which the jobs are partitioned into different shelves by
their processing times.

In this paper, we consider pure Nash equilibria for selfish scheduling games. A
(pure) Nash equilibrium is a schedule such that no job has an incentive to move
from the current cluster to another cluster if all the other agents do not change
their decisions.

Coordination Mechanisms for Selfish Parallel Jobs Scheduling 227

There might exist several equilibria in a game. To measure the inefficiency of
a Nash equilibrium, we analyze the price of anarchy (PoA) for each coordination
mechanism. For any instance I, we denote CNE(I) to be the overall makespan
of a Nash equilibrium NE on the instance I and COPT (I) to be the overall
makespan of the optimal solution on the instance I. Then the PoA of the game
is defined to be

PoA = sup
I
{ supNE CNE(I)

COPT (I)
}.

In words, the price of anarchy is the worst-case ratio of the maximum makespan
in a Nash equilibrium to the optimal makespan. The optimal schedule is not
required to be a Nash equilibrium.

1.2 Our Contribution

The first contribution in this work is to prove the existence of Nash equilibria
for all the provided policies. Moreover, we show that these games are potential
games and converge to pure Nash equilibria in at most n rounds by the highest
priority best response strategy (see definitions in Section 6), which means that
given any initial solution, these games will converge to pure Nash equilibria in
a reasonable rounds.

The second contribution of this work is to present number of local policies
and analyze upper bounds on the price of anarchy. In a homogenous grid, for
the Bottom-Left based policies, the price of anarchy on Bottom-Left Decreasing
Width is at most of 3, while the price of anarchies on Bottom-Left Decreas-
ing Height, Bottom-Left Increasing Width, Bottom-Left Increasing Height are
unbounded. As a corollary, we extend the result to a general case where clus-
ters have a different number of processors, the price of anarchy on the policy
Bottom-Left Decreasing Width is also at most of 3. For the Shelf-Packing based
algorithms, we show that the price of anarchy on the policy First Fit Decreasing
Height (FFDH) is at most of 2.2 + 1/(2m), and the price of anarchy on the

policy NFSr Decreasing Height is 2r + r2

m(r−1) +
m−1
m max{1/r, r/(1 + r), r/3}

for any given r > 1, the bound is at most of 14/3 + 10/(3m) if we let r = 2.
In a heterogeneous grid with different speeds, the price of anarchy for Bottom-
Left Decreasing Width is at most of 3/2 +

√
2m+ 1/4 and the lower bound is

Ω(logm) which follows the instance given in [8]; the price of anarchy on the pol-
icy FFDH is at most 4.4− 1.7/m. The detailed results on the price of anarchies
are given in Table 1.

1.3 Related Works

A Nash equilibrium for selfish scheduling games was introduced in 1999 by
Koutoupias and Papadimitriou [19]. In that paper, the price of anarchy was
used to measure the deterioration in performance of a Nash equilibrium sched-
ule. However, in the machine scheduling, different local sequencing policies will
yield different Nash equilibria. The analysis of local sequencing policies was
called coordination mechanisms in the paper by Christodoulou, Koutsoupias,
and Nanavati [9].

228 D. Ye and G. Zhang

Table 1. The price of anarchy for different policies provided in this paper are marked
with ∗. All upper bounds and lower bounds hold for pure Nash equilibria.

Bottom-Left based policies Shelf-Packing based policies

Identical BLDW: UB=3;∗ LB=3 [2] FFDH: UB= 2.2 + 1/(2m) ∗

BLDH, BLIW, BLIH: Unbounded [2] NFSrDH : UB=14/3 + 10/(3m) ∗

Different Widths BLDW: UB=3;∗ LB=3 [2] Unbounded [28]

Different Speeds BLDW: UB= 3/2 +
√

2m+ 1/4; ∗ FFDH: UB=4.4− 1.7/m ∗

LB=Ω(logm) [8]

To the best of our knowledge, there is no previous work on the coordination
mechanisms for selfish parallel jobs scheduling. However there exist many pa-
pers studying equilibria and coordination mechanisms for sequential scheduling
problem, where a job requires only one processor. Four typical policies are Short-
estFirst, LongestFirst, Randomized, and Makespan. In the ShortestFirst and the
LongestFirst policies, each machine schedules its available jobs in non-decreasing
and non-increasing order of their processing times, respectively. In the Makespan
policy, each machine processes all its jobs in parallel, and so the completion time
of a job is the makespan of the machine. In the Randomized policy, the jobs are
scheduled in random order in each machine.

The Makespan policy has been considered as a standard in the study of self-
ish scheduling, which is called congestion games, we refer to surveys in [14,20].
Christodoulou, Koutsoupias, and Nanavati [9] studied the policy LongestFirst for
parallel machine and showed that the price of anarchy is 4/3− 1/(3m), where m
is the number of machines. Immorlica et al. [15] studied these scheduling policies
under several scheduling settings including the most general case of unrelated
machines. In the ShortestFirst policies, they proved that the bounds of price
of anarchy for parallel machines, related machines, and unrelated machines are
2− 1/m, Θ(logm), [logm,m], respectively, where m is the number of machines.
In the LongestFirst policies, the price of anarchy for related machines is [1.52,
1.59] followed by the work in [11,12]. Regards the coordination mechanisms for
unrelated machine scheduling, there are several works such as [1,7,15].

From a centralized optimization perspective, our problem is exactly the same
as the multiple strip packing problem, since scheduling a job i on wi consec-
utive processors during pi units of time is equivalent to packing a rectangle
of width wi and height pi. Zhuk [28] showed that there is no polynomial time
approximation algorithm with an absolute ratio better than 2. Ye et al. [26]
provided a (2 + ε)-approximation algorithm. Bougeret et al. [6] improved the
result to a 2-approximation and also presented an AFPTAS. Recently, Bougeret
et al. [5,4] designed 5/2-approximation algorithms for identical and heteroge-
neous platforms.

The online version of this problem has been studied in [23,26]. In [23] the
authors studied the model with jobs arrive over time and achieved a ratio of 3
without release times (and 5 with release times). Notice that these results do not
require the knowledge of the processing times of the jobs. Moreover, the clusters
may have a different number of processors. In [26] the authors studied jobs arrive
over list model, both deterministic and randomized algorithms are investigated.

Coordination Mechanisms for Selfish Parallel Jobs Scheduling 229

For the single strip or the classical strip packing problem, Coffman et al. [10]
showed that the algorithms NFDH (Next Fit Decreasing Height) and FFDH
(First Fit Decreasing Height) achieve approximation ratios 3 and 2.7, respec-
tively. Independently, Schiermeyer [21] and Steinberg [24] presented a
2-approximation algorithm. The current championship is due to Harren [13]
with an approximation algorithm of 5/3+ ε, where ε is any given small positive
number. Another important result is an asymptotic PTAS which was given by
Kenyon and Remila [18], and the additional constant was improved by Jansen
and Solis-Oba [16].

2 Preliminaries

The local scheduling policy on each cluster is an algorithmic manner. On the
other hand, from a centralized optimization perspective, scheduling of parallel
jobs on a single cluster is a variant of strip packing. There are many approxima-
tion algorithms for the strip packing problem, but most of them are Bottom-Left
base algorithm [2] and Shelf-Packing based algorithms [10,3]. An algorithm sat-
isfies the Bottom-Left property if a job is positioned at the most bottom and
left position available at the time of placement.

The order of jobs to be scheduled on the cluster is crucial to a coordina-
tion mechanism. In the following, we present the order sequence for each local
scheduling policy and how a policy works.

In the Bottom-Left Decreasing Width policy (BLDW), the jobs are sorted
in the order of non-increasing widths, and then these jobs are assigned by
Bottom-Left rules. The other policies Bottom-Left Decreasing Height (BLDH),
Bottom-Left Increasing Width (BLIW), Bottom-Left Increasing Height (BLIH)
are defined similarly. Note that in all above policies, the jobs are ordered in a
sequence if we break the tie in favor of the job with the smaller index.

Example. Given four jobs J1 = (0.3, 6), J2 = (0.5, 4), J3 = (0.7, 3), J4 =
(0.4, 2), the first parameter is the width of a job and the second parameter is
the height of a job, that are required to be assigned to a single cluster that its
numbers of processors are normalized to be 1. Figure 1 illustrates an assignment
by the policy Bottom-Left Decreasing Width. The makespan is 11.

An algorithm satisfies the Shelf-Packing property if jobs are grouped by their
processing times (or heights) and then contiguously pack jobs group by group.

In the policy First Fit Decreasing Height (FFDH), the jobs are ordered in
non-increasing heights and the next job j at any point in the packing sequence
to be packed is placed left-justified on the first (i.e., lowest) level (or block) on
which it will fit. If none of the current levels accommodate this job, a new level
of height pj will be created at the top and packing proceeds on the new level.

Example. Given four jobs J1 = (0.3, 6), J2 = (0.5, 4), J3 = (0.7, 3), J4 =
(0.4, 2), the first parameter is the width of a job and the second parameter is
the height of a job, which are required to be assigned to a single cluster that its
numbers of processors are normalized to be 1. Figure 2 shows a packing with the

230 D. Ye and G. Zhang

J1(0.3, 6)

J2(0.5, 4)

J3(0.7, 3)

J4(0.4, 2)
horizontal cut y

Width

Height

Fig. 1. A packing of the policy of Bottom-Left Decreasing Width(BLDW), and a hor-
izontal cut y

policy First Fit Decreasing Height and its schedule consists of blocks Bi. The
makespan is also 11.

In the policy NFSr Decreasing Height (NFSrDH), the jobs are ordered in
non-increasing heights and the job i is grouped to class k if rk < pi ≤ rk+1

for any given r > 1, and all the jobs in a class are assigned by the bin packing
algorithm Next Fit [10].

For the Makespan policy and the action profile x, the completion time of job i
on the cluster j is the sum of processing times that assigned to the same cluster,
i.e., CM

i (x) =
∑

xk=j pk. In words, the Makespan policy ignores the dimension of
widths for each agent and it becomes the congestion game [22,20] for the selfish
load balancing problem. Of course, a pure Nash equilibrium always exists in this
game under the Makespan policy [22].

A scheduling policy P receives a subset of the jobs as an input, and outputs
the allocate positions in which they will be processed. Hence, the output of a
scheduling policy is a vector O = {(o1, s1), (o2, s2), . . . , (ok, sk)}, where oi ∈ N
is a job and si is the start position of the job oi. For each policy P , the action
set Xi of the agent associated with each job i is the set of the cluster that the
job will run on. In our setting, each Xi equals the set of clusters, i.e. Xi = G.
Denote by X the set of all the action profiles. Denote the completion time of job
i by Cp

i (x) for every policy P and a specific action profile x ∈ X of agents. The
definition of a pure Nash equilibrium is given as below.

Definition 2.1. (Nash equilibrium) An action profile x = (x1, x2, . . . , xn) is a
pure Nash equilibrium in the game with policy P if for every job i Cp

i (x) ≤
Cp

i (yi, x−i) for every yi ∈ Xi and x ∈ X, where (yi, x−i) is the profile if just
agent i deviates from xi to yi.

Coordination Mechanisms for Selfish Parallel Jobs Scheduling 231

J1(0.3, 6)

J2(0.5, 4)

J3(0.7, 3)

J4(0.4, 2)

B1

B2

B3

Width

Height

Fig. 2. A packing of the policy of First Fit Decreasing Height (FFDH)

To study the pure strategy Nash equilibria on the local policies for each cluster,
we define the following algorithm Greedy POL, where POL is a local policy. In
this paper, the POL refers to BLDW, BLIW, BLDH, BLIH, NFSrDH, and
FFDH .

Greedy POL
Step 1: All the jobs are sorted according to the POL policy, and break ties with
smallest index. Denote the sequence of jobs to be σ. In this step, we just get the
order of jobs without doing any assignment.

Step 2: A job is assigned from this ordered sequence σ one by one to a clus-
ter such that its completion time is minimized. Specifically, in each iteration
i = 1, 2, . . . , n, we select a pair (i, j), where i is an unscheduled job and j
is a cluster. If CPOL

i (j) denotes the completion time of job i on the cluster
j by the local policy POL, then we assign job i to the cluster k such that
CPOL

i (k) = minj C
POL
i (j).

Theorem 2.2. For homogeneous (or heterogeneous) grids, if each cluster takes
the policy POL(BLDW, BLIW, BLDH, BLIH, NFSrDH, and FFDH), then
the set of Nash equilibria for this policy can be generated by the Greedy POL
algorithm.

Proof. First, we show the schedule generated by the algorithm Greedy POL is
an equilibrium. Suppose that a job i has a motivation to move from the current
cluster to another cluster. Let j be the cluster in which the job i can be completed
first. Then it would be beneficial for the job i to switch from the current cluster
to the cluster j. Note that a job i’s completion time is independent on the jobs

232 D. Ye and G. Zhang

with orders larger than i for any policy POL. On the other hand, the job i does
not affect the assignment of any job before i since the job with smaller index has
the higher priority in the policy POL. As a consequence, the greedy algorithm
would also have scheduled the job i on the cluster j. It is a contradiction.

The other direction can be proven by induction. The base step k = 1 job is
obvious. Consider a Nash equilibrium schedule π with k + 1 jobs. Let i be the
last job in the sequence generated by the policy POL. Let π′ be the schedule by
removing job i from the schedule π. Then π′ is also a Nash equilibrium since the
job i does not affect the assignment and the completion time of any job with
priority before i. Since the job i has no incentive to move, the job i has the
minimal completion time given the schedule π′. Therefore the job i was assigned
by the greedy POL algorithm. ��

3 The Price of Anarchy of Bottom-Left Based Policies

In the following we investigate the price of anarchy for the Nash equilibrium
schedule generated by the algorithm Greedy BLDW for the homogeneous grid.
Then we extend the result to the homogeneous unequal grid, where clusters
have a different number of processors. In this case, jobs cannot be assigned to
the cluster with total processors is fewer than the required number of processors.

3.1 Upper Bounds for Greedy BLDW

Note that the scheduling of parallel jobs can be regarded as the strip packing.
If we use the algorithm Bottom-Left Decreasing Width (BLDW) to assign the
rectangles, then any horizontal cut of this strip (see e.g. in Figure 1) lying under
the start position of the last rectangle whose upper side is located at the greatest
height is at least half full [2]. Then we have the following property.

Lemma 3.1. [2] For any schedule in a cluster by the algorithm BLDW, let S(i)
be the start time of job i that determines the makespan in this schedule, then at
least half of the clusters are busy until S(i).

Theorem 3.2. The price of anarchy on the policy Bottom-Left Decreasing Width
for a homogeneous grid is at most of 3 by the algorithm Greedy BLDW.

3.2 Homogeneous Unequal Clusters

In this section, we extend our analysis to the homogenous unequal clusters, where
clusters have a different number of processors.

Corollary 3.3. For homogeneous unequal clusters, but clusters can have a dif-
ferent number of processors, the Greedy Bottom-Left Decreasing Width algorithm
also generates the Nash equilibrium schedule for the Bottom-Left Decreasing
Widths policy coordination mechanism.

Corollary 3.4. The price of anarchy on the Bottom-Left Decreasing Width pol-
icy for homogeneous unequal clusters is of at most 3.

Coordination Mechanisms for Selfish Parallel Jobs Scheduling 233

3.3 Lower Bounds on the Price of Anarchy

For each coordination mechanism, the Nash equilibrium schedule is generated
by the greedy algorithm on this policy. The lower bound of the price of anarchy
can be easily obtained by m duplication of lower bound instances in a single
strip packing with that policy. Hence, we have the following corollaries.

Corollary 3.5. The price of anarchy of the Bottom-Left Decreasing Widths pol-
icy for a homogeneous cluster is at least 3. For the other policies, Bottom-Left
Increasing Widths, Bottom-Left Decreasing Heights and Bottom-Left Increasing
Heights, there are no constant price of anarchies for these coordination mecha-
nisms.

For the policy makespan, the price of anarchy is at least m. The instance can
be generated the greedy algorithm for parallel jobs scheduling [27,17], which
therefore the price of anarchy is tight.

4 The Price of Anarchy of Shelf-Packing Based Policies

Except Bottom-Left based algorithms, there are various approximate algorithms
for strip packing, but most of them are shelf algorithms based, which group items
by their heights (the processing times) and then contiguously pack items group
by group. The existing shelf packing algorithms are Next-Fit Decreasing Height
(NFDH) and First-Fit Decreasing Height, Next-Fit Shelf (NFSr) [3], First-Fit
Shelf FFr [3] and Revisited First-Fit shelf RSr [25] and so on.

Lemma 4.1. If the strips are with different widths, then the Shelf-Packing based
polices are not constant approximated.

Due to this negative result, we only study the Shelf-Packing based policies for
the clusters with the same widths. In the following, we just explore two policies:
NFSr Decreasing Height (NFSrDH) and First Fit Decreasing Height (FFDH),
the other policies can be extended similarly.

We first study the algorithm Greedy FFDH . The analysis of the price of
anarchy requires a black box analysis of the weight function in [10].

Theorem 4.2. The price of anarchy on the coordination mechanism FFDH is
at most 2.2 + 1/(2m) by the Greedy FFDH algorithm.

For the coordination mechanism NFSrDH, we have the following result.

Theorem 4.3. For any r > 1, the price of anarchy on the coordination mech-

anism NFSr Decreasing Height is at most 2r + r2

m(r−1) +
m−1
m max{1/r, r/(1 +

r), r/3} by the greedy NFSrDH algorithm.

234 D. Ye and G. Zhang

5 The Price of Anarchy for Clusters with Different
Speeds

In this section we deal with coordination mechanisms on a heterogeneous grid.
On this heterogeneous grid, all the clusters have the equal widths but each cluster
j is associated with a speed sj , sj ≥ 1. If a job i is assigned to the jth cluster
then pi/sj time units are needed to execute this job.

We derive upper bounds of the price of anarchies on the policies BLDW and
FFDH in the left. From Theorem 2.2, we know that a Nash equilibrium schedule
on the policy BLDW (FFDH) will be generated by the algorithm Greedy BLDW
(Greedy FFDH).

5.1 BLDW Policy in a Heterogeneous Grid with Different Speeds

Recall that for the Bottom-Left based policies, the price of anarchies on the
policies BLDH, BLIW, BLDH are unbounded. From the lower bound of ap-
proximation approach [8], the price of anarchy on the policy BLDW is at least
Ω(logm). However, the price of anarchy for the policy BLDW will be bounded
on m.

Theorem 5.1. The price of anarchy for the m heterogeneous clusters on the
policy BLDW is at most 3/2 +

√
2m+ 1/4 by the Greedy BLDW algorithm.

5.2 FFDH Policy in a Heterogeneous Grid with Different Speeds

In this section, we study the FFDH policy for a heterogeneous grid. Each cluster
takes the FFDH policy, and the shelves are assigned to clusters with earliest
completion time.

Theorem 5.2. For any heterogeneous grid with m clusters, the price of anarchy
on the FFDH policy is at most 4.4− 1.7/m by the Greedy FFDH algorithm.

6 Convergence of Pure Nash Equilibria

We have proven there exists a pure Nash equilibrium produced by Greedy POL
algorithm in Section 2. For any fixed local scheduling policy POL, we show
that this game is a potential game and always admits a pure Nash equilibrium.
Moreover, we show that the game converges to an equilibrium in reasonable
rounds by the highest-priority best-response strategy. An agent is said to be
unsatisfied if it can reduce its completion time by moving its job to a different
cluster. The highest-priority strategy always activates an agent with highest
priority among the unsatisfied agents. For example, the BLDW policy always
actives the agent who has the largest width among the unsatisfied agents. An
activated agent plays a best-response, i.e., the agent moves its job to the cluster
such that its completion time is minimal.

Coordination Mechanisms for Selfish Parallel Jobs Scheduling 235

Theorem 6.1. For any policy POL, the game is a potential game, and hence
every instance of the game admits at least one pure Nash equilibrium.

Theorem 6.2. For any policy POL, let x denote an action profile that maps the
agents to the clusters. Starting from x, the highest priority best response strategy
reaches a pure Nash equilibrium after each agent was activated at most once.

References

1. Azar, Y., Jain, K., Mirrokni, V.: (Almost) optimal coordination mechanisms for
unrelated machine scheduling. In: Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 323–332 (2008)

2. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9, 846–855 (1980)

3. Baker, B.S., Schwartz, J.S.: Shelf algorithms for two-dimensional packing problems.
SIAM Journal on Computing 12, 508–525 (1983)

4. Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: A Fast 5/2-
Approximation Algorithm for Hierarchical Scheduling. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 157–167. Springer,
Heidelberg (2010)

5. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximating the
Non-contiguous Multiple Organization Packing Problem. In: Calude, C.S., Sassone,
V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 316–327. Springer, Heidelberg (2010)

6. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation
Algorithms for Multiple Strip Packing. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)

7. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 815–824 (2009)

8. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal
on Computing 9(1), 91–103 (1980)

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

10. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level oriented two-dimensional packing algorithms. SIAM Journal on Computing 9,
808–826 (1980)

11. Dobson, G.: Scheduling independent tasks on uniform processors. SIAM Journal
on Computing 13, 705–716 (1984)

12. Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM
Journal on Computing 16, 554–560 (1987)

13. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-Approximation for
Strip Packing. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 475–487. Springer, Heidelberg (2011)

14. Heydenreich, B., Müller, R., Uetz, M.: Games and mechanism design in machine
scheduling-an introduction. Production and Operations Management 16(4), 437–
454 (2007)

15. Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for
selfish scheduling. Theoretical Computer Science 410, 1589–1598 (2009)

236 D. Ye and G. Zhang

16. Jansen, K., Solis-Oba, R.: New Approximability Results for 2-Dimensional Packing
Problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 103–
114. Springer, Heidelberg (2007)

17. Johannes, B.: Scheduling parallel jobs to minimize the makespan. Journal of
Scheduling 9(5), 433–452 (2006)

18. Kenyon, C., Remila, E.: Approximate Strip Packing. In: Proc. 37th Symp. Foun-
dations of Computer Science (FOCS), vol. 37, pp. 31–37 (1996)

19. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

20. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game theory.
Cambridge University Press (2007)

21. Schiermeyer, I.: Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

22. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multi-
processor scheduling. Informs Journal on Computing 19(1), 52–63 (2007)

23. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In:
IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
pp. 1–10 (2008)

24. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26, 401–409 (1997)

25. Ye, D., Han, X., Zhang, G.: A note on online strip packing. Journal of Combina-
torial Optimization 17(4), 417–423 (2009)

26. Ye, D., Han, X., Zhang, G.: Online multiple-strip packing. Theoretical Computer
Science 412(3), 233–239 (2011)

27. Ye, D., Zhang, G.: On-line scheduling of parallel jobs in a list. Journal of Schedul-
ing 10(6), 407–413 (2007)

28. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete
Mathematics and Applications 16(1), 73–85 (2006)

Computationally-Fair Group

and Identity-Based Key-Exchange�

Andrew C. Yao1 and Yunlei Zhao2

1 Tsinghua University, Beijing, China
2 Fudan University, Shanghai, China

Abstract. In this work, we re-examine some fundamental group key-
exchange and identity-based key-exchange protocols, specifically the
Burmester-Desmedet group key-exchange protocol [7] (referred to as the
BD-protocol) and the Chen-Kudla identity-based key-exchange proto-
col [9] (referred to as the CK-protocol). We identify some new attacks
on these protocols, showing in particular that these protocols are not
computationally fair. Specifically, with our attacks, an adversary can do
the following damages:

– It can compute the session-key output with much lesser computa-
tional complexity than that of the victim honest player, and can
maliciously nullify the contributions from the victim honest players.

– It can set the session-key output to be some pre-determined value,
which can be efficiently and publicly computed without knowing any
secrecy supposed to be held by the attacker.

We remark these attacks are beyond the traditional security models for
group key-exchange and identity-based key-exchange, which yet bring
some new perspectives to the literature of group and identity-based key-
exchange. We then present some fixing approaches, and prove that the
fixed protocols are computationally fair.

1 Introduction

Key-exchange (KE) protocols are basic to modern cryptography and to secure
systems in general. KE protocols are used to generate a common secret-key
among a set of users for encryption, authentication and for enforcing access-
control policies. Among them, the Diffie-Hellman key-exchange (DHKE) protocol
marked the birth of public-key cryptography, and serves as the basis for most
key-exchange protocols.

Usually, key-exchange (particularly DHKE) protocols are considered in the
two party setting under a public-key infrastructure (PKI). Two important exten-
sion dimensions are group key-exchange (GKE) and identity-based key-exchange
(IBKE). Group key-exchange extends the standard two-party KE protocol to the
multiple-party case. The Burmester-Desmedet group key-exchange protocol [7]

� This work is supported in part by NSFC grants No. 61033001 and No. 61070248.
Preliminary version of this work appears in the PCT patent file [20].

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 237–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 A.C. Yao and Y. Zhao

(referred to as the BD-protocol) is an extension of DHKE into the group setting,
which is one of the most fundamental group key-exchange protocols and serves
as a basis for many group key-exchange protocols in the literature. Identity-
based key-exchange simplifies public-key certificate management in traditional
PKI-based key-exchange, where users’ identities themselves can serve as the
public-keys (but at the price of introducing a trusted authority called private
key generator that generates the secret-keys for all users). A list of identity-
based key-exchange protocols have been developed in the literature [8], among
which the Chen-Kudla identity-based key-exchange protocol [9] (referred to as
the CK-protocol) is one of the most efficient IBKE protocols.

In this work, we re-examine the BD-protocol and the CK-protocol. We identify
some new attacks on these protocols, showing in particular that these protocols
are not computationally fair. Specifically, with our attacks, an adversary can do
the following damages:

– It can compute the session-key output with much lesser computational com-
plexity than that of the victim honest player, and can maliciously make the
contributions from the victim honest players be of no effect.

– It can set the session-key output to be some pre-determined value, which
can be efficiently and publicly computed without knowing any secret value
supposed to be held by the attacker.

We note these attacks are beyond the traditional security models for group key-
exchange and identity-based key-exchange,which yet bring some new perspectives
to the literature of group and identity-based key-exchange.We then present some
fixing approaches, and prove that the fixed protocols are computationally fair.

2 Preliminaries

If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running
A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ; r) denote the
experiment of picking r at random and letting y be A(x1, x2, · · · ; r). If S is a
finite set then x ← S, sometimes also written as x ∈R S, is the operation of
picking an element uniformly from S. If α is neither an algorithm nor a set then
x ← α is a simple assignment statement. A function f(λ) is negligible if for every
c > 0 there exists a λc such that f(λ) < 1

λc for all λ > λc.
Let G′ be a finite Abelian group of order N , G be a cyclic subgroup of prime

order q in G′. Denote by g a generator of G, by 1G the identity element, by
G \ 1G = G− {1G} the set of elements of G except 1G. Throughout this paper,
unless explicitly specified, for presentation simplicity we assume G is a multi-
plicative group, and use multiplicative notation to describe the group operation
in G′. (When G′ is defined w.r.t. elliptic curves over finite fields, usually addition
notation is used for the group operation in G′.)

Let (A = ga ∈ G, a) (resp., (X = gx ∈ G, x)) be the public-key and secret-
key (resp., the DH-component and DH-exponent) of player Â, and (B = gb ∈
G, b) (resp., (Y = gy ∈ G, y)) be the public-key and secret-key (resp., the DH-
component and DH-exponent) of player B̂, where a, x, b, y are taken randomly

Computationally-Fair Group and Identity-Based Key-Exchange 239

and independently from Z∗
q . The (basic version of) DHKE protocol [11] works

as follows: after exchanging their DH-components X and Y , player Â (resp., B̂)
computes the session-key K = Y x = gxy (resp., K = Xy = gxy). The security
of DHKE relies on the computational Diffie-Hellman (CDH) assumption over
G, which says that given X = gx, Y = gy ← G (i.e., each of x and y is taken
uniformly at random from Zq) no efficient (say, probabilistic polynomial-time)
algorithm can compute CDH(X,Y) = gxy.

We consider an adversarial setting, where polynomially many instances (i.e.,
sessions) of a Diffie-Hellman key-exchange protocol 〈Â, B̂〉 are run concurrently
over an asynchronous network like the Internet. To distinguish concurrent ses-
sions, each session run at the side of an uncorrupted player is labeled by a
tag, which is the concatenation, in the order of session initiator and then ses-
sion responder, of players’ identities/public-keys and DH-components available
from the session transcript. For identity-based key-exchange, we also include the
public-key of the private-key generator (that is a trusted authority) into the
session-tag. A session-tag is complete if it consists of a complete set of all these
components.

Admissible Pairing: Let ê : G × G → GT be an admissible pairing [2, 6],
where G is a cyclic multiplicative (or additive) group of order q generated by an
element g. Here, an admissible pairing ê satisfies the following three properties:

– Bilinear: If g1, g2 ∈ G, and x, y ∈ Zq, then ê(gx1 , g
y
2) = ê(g1, g2)

xy.
– Non-degenerate: ê(g, g) �= 1GT , where 1GT is the identity element in GT . In

particular, ê(g, g) is the generator of GT in case GT is also a cyclic group of
the same order q.

– Computable: If g1, g2 ∈ G, ê(g1, g2) ∈ GT can be computed in polynomial-
time.

2.1 Non-malleably Independent Dominant-Operation Values, and
Session-Key Computational Fairness

In this section, we review and discuss the notion of session-key computational
fairness recently introduced by Yao, et al [21].

For any complete session-tag Tag of a key-exchange protocol among n users
{U1, · · · , Un} where n ≥ 2, we first identify dominant-operation values w.r.t.
Tag and each user Ui, (V

i
1 , · · · , V i

m) ∈ G1×· · ·×Gm,m ≥ 2, which are specified
to compute the session-key K by the honest player Ui for a complete session
specified by the complete session-tag Tag, where Gk, 1 ≤ k ≤ m is the range of
V i
k . Specifically, K = FK(V i

1 , · · · , V i
m, T ag), where K is the session-key output

by user Ui, FK is some polynomial-time computable function (that is defined
by the session-key computation specified for honest players). We remark that
dominant operations are specific to protocols, where for different key-exchange
protocols the dominant operations can also be different.

Then, roughly speaking, we say that a key-exchange protocol enjoys session-
key computational fairness w.r.t some pre-determined dominant operations, if
for any complete session-tag Tag, the session-key computation involves the same

240 A.C. Yao and Y. Zhao

number of non-malleably independent dominant-operation values for each user
Ui, 1 ≤ i ≤ n, whether it is honest or malicious.

Definition 1 (non-malleable independence). For the dominant-operation
values, (V i

1 , · · · , V i
m) ∈ G1 × · · · × Gm, m ≥ 2 and 1 ≤ i ≤ n, w.r.t. a

complete session-tag Tag on any sufficiently large security parameter λ, we
say V i

1 , · · · , V i
m are computationally (resp., perfectly) non-malleably indepen-

dent, if for any polynomial-time computable (resp., any power unlimited) re-
lation/algorithm R (with components drawn from G1 × · · · × Gm × {0, 1}∗) it
holds that the following quantity is negligible in λ (resp., just 0):∣∣Pr[R(V i

1 , · · · , V i
m, T ag) = 1]− Pr[R(R1, · · · , Rm, T ag) = 1]

∣∣ ,
where Ri, 1 ≤ i ≤ m is taken uniformly and independently from Gi, and the
probability is taken over the random coins of R (as well as the choice of the
random function in the random oracle model [3]).

Remark: As clarified in [21], the above Definition 1 is defined w.r.t. any complete
session-tag and w.r.t. some pre-determined dominant operations, which does
not explicitly take the malicious player’s ability into account. But, this definition
ensures that, by the birthday paradox, for any successfully finished session among
a set of (malicious and honest) players, no matter how the malicious players
collude, it holds that: for any i, 1 ≤ i ≤ n and for any values (α1, · · · , αm) ∈
G1×· · ·×Gm, the probability that Pr[V i

k = αi] is negligible for any k, 1 ≤ k ≤ m
and any i, 1 ≤ i ≤ n.

Definition 2 ((session-key) computational fairness). We say a key-
exchange protocol enjoys session-key computational fairness w.r.t. some pre-
determined dominant operations, if for any complete session-tag Tag on any
sufficiently large security parameter λ, the session-key computation involves the
same number of (perfectly or computationally) non-malleably independent
dominant-operation values for any user Ui, 1 ≤ i ≤ n.

Remark: Note that the notion of “(session-key) computational fairness” is defined
w.r.t. some predetermined dominant operations that are uniquely determined by
the protocol specification. We remark that it is the task of the protocol designer
to specify the dominant operations (for which computational fairness can be
provably proved), which should also be natural and common to the literature.
Though computational fairness is defined w.r.t. some pre-determined dominant
operations, as clarified, this property holds for arbitrary efficient adversaries.
Also note that, for presentation simplicity, session-key computational fairness is
defined w.r.t. either perfect or computational non-malleable independence. In
general, we can define perfect (resp., computational) session-key computational
fairness w.r.t. perfect (resp., computational) non-malleable independence. Here,
we would like to point out that, session-key computational fairness refers to
the fairness in computing session-key, while the word “computational” in “com-
putational non-malleable independence” refers to indistinguishability between
probability distributions.

Computationally-Fair Group and Identity-Based Key-Exchange 241

More detailed discussions and clarifications, on the formulation of
non-malleable independence and session-key computational fairness, are referred
to [21].

3 Re-examination of the Burmester-Desmedet Group
Key-Exchange Protocol

In this section, we re-examine the Burmester-Desmedet GKE protocol [7], re-
ferred to as the BD-protocol for presentation simplicity. We show an attack
against the BD-protocol, where some malicious players can collude to nullify
the effects of victim honest players, and discuss the consequences of the iden-
tified attack. We then present a fixed protocol called computationally-fair BD-
protocol, and show the fixed protocol is computationally-fair (while the original
BD-protocol is not).

3.1 Brief Review of the Burmester-Desmedet Group Key-Exchange
Protocol

Suppose U1, U2, · · · , Un, n ≥ 2, be a group of parties who want to share a com-
mon group key among them. Let G be a cyclic group of order q generated by a
generator g. The BD-protocol works as follows:

– Each Ui, 1 ≤ i ≤ n, takes xi uniformly at random from Z∗
q , computes Xi =

gxi , and finally broadcasts Xi to all other users.
– After receiving Xj , for all j where 1 ≤ j �= i ≤ n, each user Ui computes

and broadcasts Zi = (Xi+1/Xi−1)
xi , where the indices are taken in a cycle

(i.e., mod n).
– Finally, each user Ui, 1 ≤ i ≤ n, computes the shared session-key K =

(Xi−1)
nxi · Zn−1

i · Zn−2
i+1 · · ·Zi−2. Note that the session-key generated by all

the users is the same, specifically K = gx1x2+x2x3+···+xnx1 .

The tag for a complete BD-protocol session is defined to be (U1, U2, · · · , Un, X1,
X2, · · · , Xn).

3.2 An Attack against the BD-Protocol

We demonstrate an attack against the BD-protocol. We illustrate our attack for
the case n = 3, where two malicious users U1 U2 collude to be against an honest
user U3.

1. The attack works as follows: U2 sets X2 to be X−1
1 (i.e., x2 = −x1),

then the shared DH-secret is K1 = K2 = K3 = g−x2
1, no matter what DH-

exponent x3 is chosen by the honest U3.

Consequence of the Attack: Note that, as x1 may be maliciously generated
by U1 (i.e., x1 can be an arbitrary value in Zq), the shared DH-secret g−x2

1 can be

1 The attack can be easily extended to the general case of n > 3, where some malicious
players collude to be against sets of honest players

242 A.C. Yao and Y. Zhao

an arbitrary value in G with no guarantee on its randomness and independence.
Furthermore, suppose the colluding U1 and U2 use the same X1 and X2 = X−1

1

in different sessions, then the shared session-keys among different sessions are
the same, i.e., always g−x2

1 , no matter what efforts are made desperately by
the third victim honest player. This is clearly unfair to the honest player U3.
We note that even the universally composable (UC) version of the BD-protocol,
proposed in [15, 16], still does not frustrate the above attack (specifically, the
fairness issue and particularly the above attack were not captured by the UC
framework there).

The above concrete attack shows some unfairness, in generating group session-
key, between honest victim players and malicious colluding players, and such an
unfairness issue can cause essential damages.

3.3 Computationally-Fair Group Key-Exchange

We present a variant of the BD-protocol, computationally-fair BD-protocol (re-
ferred to as the fBD-protocol for presentation simplicity). The fBD protocol
works as follows:

– Each Ui, 1 ≤ i ≤ n, takes xi uniformly at random from Z∗
q , computes Xi =

gxi , and finally broadcasts Xi to all other users.
– After receiving Xj , for all j where 1 ≤ j �= i ≤ n, each user Ui computes

and broadcasts
Zi = X

xih(Ui,xi,xi+1)
i+1 /X

xih(Ui−1,xi−1,xi)
i−1 , where the indices are taken in a

cycle, and h : {0, 1}∗ → Z∗
q is a hash function that is modeled to be a

random oracle in security analysis. Note that, as the indices are taken in

a cycle of n (i.e., mod n), Zn = X
xnh(Un,xn,x1)
1 /X

xnh(Un−1,xn−1,xn)
n−1 .

– Finally, each user Ui, 1 ≤ i ≤ n, computes the shared session-key
K = (Xi−1)

nxih(Ui−1,Xi−1,Xi) ·Zn−1
i ·Zn−2

i+1 · · ·Zi−2. Note that the session-key
output by all the users is the same, specifically

K = gx1x2h(U1,X1,X2)+x2x3h(U2,X2,X3)+···+xnx1h(Un,Xn,X1).

We note that the above fBD protocol can be converted into an authenticated
group KE by the general technique of [16], and password-based group KE by the
technique of [1]. It’s easy to check that our fBD-protocol ensures the following
properties in the random oracle model: (1) For any value α ∈ G/1G and any i,
1 ≤ i ≤ n, as long as Ui is honest, i.e., xi is distributed uniformly at random over
Z∗
q , it is guaranteed that the probability that the shared session-key K is equal

to α is negligible, no matter how the rest players collude against it. Formally,
we have:

For the fBD-protocol and any complete session-tag Tag, the dominant-
operation values specified for user Ui, 1 ≤ i ≤ n, are {V i

1 = gx1x2h(U1,X1,X2), V i
2 =

gx2x3h(U2,X2,X3), · · · , V i
n = gxnx1h(Un,Xn,X1)}. The function FK is specified to be

FK(V i
1 , V

i
2 , · · · , V i

n, T ag) = V i
1 · V i

2 · · ·V i
n.

Computationally-Fair Group and Identity-Based Key-Exchange 243

For the original BD-protocol and any complete session-tag Tag, the dominant
operation values for user Ui can be specified as, 1 ≤ i ≤ n, are {V i

1 = gx1x2 , V i
2 =

gx2x3 , · · · , V i
n = gxnx1}. The function FK is specified to be FK(V i

1 , V
i
2 , · · · , V i

n,
T ag) = V i

1 · V i
2 · · ·V i

n.

Theorem 1. In the random oracle model where the hash function h is assumed
to be a random oracle, the fBD-protocol is session-key computationally fair, while
the original BD-protocol is not, w.r.t. the above specified dominant operations.

Proof (sketch). For both the BD-protocol and the fBD-protocol, the dominant-
operation (involved in session-key computation) is defined to be modular expo-
nentiation. A complete session-tag Tag consists of (U1, U2, · · · , Un, X1,
X2, · · · , Xn).

For the fBD-protocol and any complete session-tag Tag, the dominant-
operation values specified for user Ui, 1 ≤ i ≤ n, are

{
V i
1 =

gx1x2h(U1,X1,X2), V i
2 =gx2x3h(U2,X2,X3), · · · , V i

n=gxnx1h(Un,Xn,X1)
}
. The function

FK is specified to be FK(V i
1 , V

i
2 , · · · , V i

n, T ag) = V i
1 · V i

2 · · ·V i
n. Let G1 = G2 =

· · · = Gn = G\1G, it is clear that, in the random oracle model, the distribution of
(V i

1 , V
i
2 , · · · , V i

n) is identical to the distribution of (R1, R2, · · · , Rn), where each
Rk, 1 ≤ k ≤ n is taken uniformly at random fromG\1G. That is, (V i

1 , V
i
2 , · · · , V i

n)
are perfectly non-malleably independent, and each user involves computing the
same number (say n) of non-malleably independent dominant operations values.
Thus, the fBD-protocol enjoys session-key computational fairness.

For the original BD-protocol and any complete session-tag Tag, the domi-
nant operation values specified for user Ui, 1 ≤ i ≤ n, are {V i

1 = gx1x2 , V i
2 =

gx2x3 , · · · , V i
n = gxnx1}. The function FK is specified to be FK(V i

1 , V
i
2 , · · · , V i

n,
T ag) = V i

1 · V i
2 · · ·V i

n. Clearly, with n = 3 as the illustration example, our
above attack shows that the distribution of (V i

1 , V
i
2 , V

i
3) under our attack is

(g−x2
1 , g−x1x3 , gx1x3), which is clearly different from the uniform independent

distribution (R1, R2, R3). Thus, the original BD-protocol is not of session-key
computational fairness. �

Computational Fairness vs. Contributiveness. A related notion, called
contributiveness, was also introduced in the literature of group key-exchange
(see e.g., [4,5,10,19]. Roughly speaking, the notion of contributiveness for group
key-exchange says that a subset of players cannot pre-determine the session-key
output. But, contributiveness says nothing about computational fairness in com-
puting the session-key output. As clarified in Section 2.1, computational fairness
says that each player needs to compute the same number of non-malleably inde-
pendent dominant-operation values in generating the session-key output. (To our
knowledge, the notion of non-malleably independent dominant-operation values
was not previously considered in the literature of group key-exchange.) If we
view each non-malleably independent dominant-operation value as a proof-of-
knowledge of the corresponding secrecy, our notion of computational fairness
ensures that a subset of malicious players cannot set the session-output to be
some value that can be publicly computed from the session transcript. From

244 A.C. Yao and Y. Zhao

these observations, we can see that computational fairness and contributiveness
are two fundamentally different notions.

4 Re-examination of the Chen-Kudla Identity-Based
Key-Exchange Protocol

In this section, we re-examine the Chen-Kudla identity-based key-exchange pro-
tocol [9], referred to as the CK-protocol for presentation simplicity. We show
an attack against the CK-protocol (for the case of Â = B̂), where an attacker
can successfully finish a session with a victim honest player but without know-
ing any secrecy supposed to be known by it. Moreover, the attacker can set the
session-key output to be some predetermined value with computational complex-
ity significantly lesser than that of the victim honest player. We then present a
fixed protocol called computationally-fair CK-protocol, and show that the fixed
protocol is computationally-fair (while the original CK-protocol is not).

4.1 Brief Review of the Chen-Kudla Identity-Based Key-Exchange
Protocol

Let ê : G×G → GT be an admissible pairing, where G is a cyclic multiplicative
(or additive) group of order q generated by an element g. For presentation sim-
plicity, below we assume G is a cyclic multiplicative group. The (basic version
of) Chen-Kudla protocol (with escrow) works as follows [9]:

– Setup: The trusted authority, Private Key Generator (PKG), chooses a
master secret-key s ∈ Z∗

q , and computes the public-key S = gs. PKG also
specifies a map-to-point hash function H1 : {0, 1}∗ → G and a key-derivation
function KDF . The public parameters are: (G,GT , ê, g, S,H1,KDF).

– User secret-key extract: For a user with identity Â, the public-key is given
by A = H1(Â), and the PKG generates the associated secret-key of the user
as SA = As. Similarly, a user of identity B̂ is of public-key B = H1(B̂) and
secret-key SB = Bs.

– Key agreement between two users Â and B̂:

1. Â picks x ∈ Z∗
q at random, computes X = Ax and sends X to B̂.

2. B̂ picks y ∈ Z∗
q at random, computes Y = By and sends Y to Â.

3. Â computesKÂ= ê(SA,Y Bx). Similarly, B̂ computesKB̂ = ê(XAy, SB).

Note that if Â and B̂ follow the protocol, they will compute the same
shared secret: KÂ = KB̂ = ê(A,B)s(x+y). Then, the actual session-key
is derived from K = KDF (KÂ) = KDF (KB̂).

The session-tag for a complete session of the CK-protocol is Tag=(S, Â,B̂,X, Y).

4.2 An Attack on the CK-protocol for Â = B̂

In some scenarios, a party may want to establish a secure channel with itself (i.e.,
Â = B̂ in this case). For example, a mobile user that communicates to its desktop

Computationally-Fair Group and Identity-Based Key-Exchange 245

computer, while both the mobile device and the desktop have the same identity
[17]. Below, we show an attack on the CK-protocol, by which an adversaryA can
successfully finish a session with Â in the same name of Â (i.e., impersonating
B̂ = Â) but without knowing the corresponding DH-exponent y (i.e., the discrete
logarithm of Y) or the secret-key SA. The attack works as follows:

After receiving X = Ax from Â, the adversary A (impersonating B̂ = Â)
randomly selects α ∈ Zq and sends back Y = gαX−1 in the same name B̂ = Â.

Note that, denote Y = Ay = By (recall A = B), Â does not know the secret
exponent y. Finally, A computes KB̂ = ê(S,A)α, and then derives the session-
key from KB̂. Note that, as B = A (and thus SA = SB) and Y = Ay = By and
XY = gα, ê(S,A)α = ê(gα, SA) = ê(XY, SA) = ê(XAy, SB) = KB̂. This shows
that A successfully finishes the session but without knowing either the DH-
exponent y or the secret-key SA. Moreover, suppose α = 0, then KB̂ = KÂ =
1GT , where 1GT is the identity element in GT . In general, α can be a small
number in Zq. This clearly indicates the unfairness between the attacker A and

the honest player Â in computing the session-key. The attacker can predicate the
session-key output and can only expend constant time (for the case α = 0) or one
paring and one small exponentiation (for the case of small non-zero α), while the
honest player Â has to compute at least one pairing and one full exponentiation.

4.3 Computational Fair Identity-Based Key-Exchange

In this section, we present a variant of the CK-protocol, referred to as
computationally-fair CK-protocol (fCK-protocol) for presentation simplicity.The
only difference between the fCK-protocol and the original CK-protocol is the
way of computing KÂ and KB̂. Specifically, in the fCK-protocol, the values
KÂ and KB̂ are set to be: KÂ = ê(SA, B

xcY d) and KB̂ = ê(XcAyd, SB),

where c = h(S, Â,X) and d = h(S, B̂, Y) and S is the public-key of PKG and
h : {0, 1}∗ → Z∗

q is a hash function that is modeled to be a random oracle in
security analysis.

For both the CK-protocol and the fCK-protocol, the dominant operation (in-
volved in session-key computation) is defined to be modular exponentiation in
the group GT . A complete session-tag Tag consists of (S, Â, B̂,X, Y). For the
fCK-protocol and any complete session-tag Tag = (S, Â, B̂,X, Y), the domi-
nant operation values specified for user Â (resp., B̂) are {V1 = ê(A,B)sxc, V2 =
ê(A,B)syd}, while for the original CK-protocol, the dominant operation values
specified for player Â (resp., B̂) are {V1 = ê(A,B)sx, V2 = ê(A,B)sy}.

Theorem 2. In the random oracle model where the hash function h : {0, 1}∗ →
Z∗
q is assumed to be a random oracle, the fCK-protocol is of session-key com-

putational fairness, while the original CK-protocol is not, w.r.t. the dominant
operations specified above.

Proof. Note that for fCK-protocol, KÂ = KB̂ = ê(A,B)sxc+syd, where c =

h(S, Â,X) and d = h(S, B̂, Y). Recall that X = Ax and Y = By. Recalll that for

246 A.C. Yao and Y. Zhao

both the CK-protocol and the fCK-protocol, the dominant operation (involved
in session-key computation) is defined to be modular exponentiation in the
group GT .

For the fCK-protocol and any complete session-tag Tag = (S, Â, B̂,X, Y), the
dominant operation values specified for user Â (resp., B̂) are {V1= ê(A,B)sxc,V2

= ê(A,B)syd}. The function FK is specified to be FK(V1, V2, T ag) = V1 · V2.
Let G1 = G2 = GT \ 1GT , it is clear that, in the random oracle model, the
distribution of (V1, V2) is identical to the distribution of (R1, R2), where each
R1, 1 ≤ k ≤ 2 is taken uniformly at random from GT \ 1GT . That is, (V1, V2)
are perfectly non-malleably independent, and each user involves computing the
same number (say 2) of non-malleably independent dominant operations values.
Thus, the fCK-protocol enjoys session-key computational fairness.

For the original CK-protocol and any complete session-tag Tag =
(S, Â, B̂,X, Y), the dominant operation values specified for player Â (resp.,
B̂) are {V1 = ê(A,B)sx, V2 = ê(A,B)sy}. The function FK is specified to be
FK(V1, V2, T ag) = V1 ·V2. Let R1GT

be the NP-relation that R1GT
(V1, V2, T ag)

= 1 if V1 · V2 = 1GT . Let Rα, for a value α ∈ Zq, be the NP-relation that
R1GT

(V1, V2, T ag) = 1 if V1 · V2 = ê(S,A)α. Then, our above attack shows
that the original CK-protocol does not enjoy session-key computational fairness
(particularly with respect to the relations R1GT

and Rα). �

References

1. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-Based Group
Key Exchange in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias,
A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Bresson, E., Manulis, M.: Securing Group Key Exchange Against Strong Corrup-
tions. In: ASIACCS 2008, pp. 249–260. ACM (2008)

5. Bohli, J.M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure Group Key Establish-
ment Revisited. International Journal of Information Security 6(4), 243–254 (2007)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

8. Choudary Gorantla, M., Gangishetti, R., Saxena, A.: A Survey on ID-Based Cryp-
tographic Primitives. Cryptology ePrint Archive, Report No. 2005/094 (2005)

9. Chen, L., Kudla, C.: Identity Based Key Agreement Protocols From Pairings. In:
IEEE Computer Security Foundations Workshop, pp. 219–233 (2002); Full version
available at: Cryptology ePrint Archive, Report 2002/184 (2002)

Computationally-Fair Group and Identity-Based Key-Exchange 247

10. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: A Non-malleable Group Key
Exchange Protocol Robust Against Active Insiders. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–475.
Springer, Heidelberg (2006)

11. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transaction on
Information Theory 22(6), 644–654 (1976)

12. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource Fairness and
Composability of Cryptographic Protocols. Journal of Cryptology 24(4), 615–658
(2011)

13. Goldwasser, S., Lindell, Y.: Secure Computation without Agreement. Journal of
Cryptology 18(3), 247–287 (2005)

14. Gordon, D.M.: A Survey of Fast Exponentiation Methods. Journal of Algo-
rithms 27(1), 129–146 (1998)

15. Katz, J., Shin, J.: Modeling Insider Attackss on Group Key Exchange. In: ACM
CCS 2005, pp. 180–189 (2005)

16. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

17. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

18. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography,
pp. 617–619. CRC Press (1995)

19. Mitchell, C.J., Ward, M., Wilson, P.: Key Control in Key Agreement Protocols.
Electronic Letters 34(10), 980–981 (1998)

20. Yao, A.C., Zhao, Y.: Method and Structure for Self-Sealed Joint Proof-
of-Knowledge and Diffie-Hellman Key-Exchange Protocols. PCT Patent,
No.PCT/CN2008/072794 (August 2008); Online available from Global Intellectual
Property Office (GIPO)

21. Yao, A.C., Zhao, Y.: A New Family of Practical Non-Malleable Diffie-Hellman
Protocols CoRR abs/1105.1071 (2011)

Timed Encryption with Application

to Deniable Key Exchange

Shaoquan Jiang

School of Computer Science and Engineering
University of Electronic Science and Technology of China

shaoquan.jiang@gmail.com

Abstract. We propose a new notion of timed encryption, in which the
security holds within time t while it is totally insecure after some time
T > t. We are interested in the case where t and T are both polynomial
and propose two schemes (with and without random oracles). We apply
this primitive to construct a new deniable key exchange that allows two
parties to securely agree on a secret while either of them can deny the
fact of communication and hence avoid an undesirable trace from it. Our
protocol is adaptively deniable and secrecy in the concurrent and non-
eraser model that allows session state reveal attacks and eavesdropping
attacks. Here a session state reveal attack in the non-eraser model means
that a user can not erase his intermediate data (e.g., due to the system
backup or recovery) and, when compromised, will give it to the attacker.
An eavesdropping attack, one of the major concerns in deniability, allows
an adversary to eavesdrop transcripts between honest users which he does
not know the randomness inside. Our protocol does not assume random
oracles (if the underlying timed encryption does not do so). The only
price we pay is a timing restriction. However, this restriction is rather
weak and it essentially asks a user to answer a message as soon as possible
and can be satisfied by almost all online protocols.

1 Introduction

We propose a new notion of timed encryption. This is a public key encryption,
except that the secrecy is required only in a predetermined length of time t and
that if afforded a longer time T , anyone can break it without a decryption key.
Here t and T are pre-determined during the system setup. All regular public
key encryptions can be regarded as a timed encryption with exponential T . We
are interested in the case where both t and T are polynomial in the security
parameter. This primitive has some interesting applications. For example, if an
auction only cares the verifiable fairness, we can do as follows. In the bidding
phase, a bidder can cast his bid using a timed encryption with a private key
known to nobody. We can set t and T such that the bid is private before open-
ing while after time T anyone can decrypt all bids and verify the correctness
of the result. For another example, in deniable authentication, a sender authen-
ticates a message while the receiver can not prove to a third party the fact of

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 248–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Timed Encryption with Application to Deniable Key Exchange 249

communication. Toward this, a receiver can first send a session key encrypted by
the sender’s timed encryption. The sender then decrypts this key, creates and
returns an authentication tag within time t. Since no one except the sender can
reply within time t, authentication is guaranteed. After time T > t, as anybody
can decrypt the key and create the tag, the deniability is achieved.

Related Works. Timed-release encryption (TRE) can be interpreted as “send
a message into the future”. It is different from a timed encryption. The latter
requires that within time t the owner of the private key is the unique person
that can decrypt while the former requires that no one can decrypt during this
period. There are two types of TREs in the literature; see blow.
Time-lock based TRE. In TRE [25,23], a sender generates a RSA scheme and
uses the modulus factorization to compute 2t squares efficiently in encryption
while any other person does not have this factoring and hence has to sequentially
repeat 2t squarings, due to which the decryption delay is achieved. This model is
different from a timed encryption since it is the sender (instead of the receiver)
that knows the factoring.
Trusted Agents based TRE. In this approach, the time delay is achieved since the
decryption requires a secret from trusted agents who will release it after time t;
see [3,14,6,10,7,8,24] for examples. This is different from a timed encryption as
the latter does not have a trusted agent.

A more related work is timed-commitment by Boneh and Naor [4], where a
committer can commit to message m which remains confidential within time t
and totally insecure after time T .

We will apply a timed encryption to a deniable key exchange, where deni-
ability essentially means that after interaction, one can later deny the fact of
communication. Deniability is formulated in the simulation paradigm: the view
of an attacker can be simulated by himself alone and hence can not claim the
participation of others. This property allows a user to avoid a disturbing but
lawfully serious trace. Di Raimondo et al. [13] and Yao and Zhao [26] consid-
ered the eavesdropping attacks that requires deniability remains valid even if
the adversary can eavesdrop some communication records between honest users
(note they formulate this attack by giving auxiliary inputs to the attacker).
Eavesdropping could be useful in violating the deniability as the randomness in
the record is unknown to the attacker and hence we can not say that he can
simulate a new execution if it is based on this record. Adaptive deniability is
considered in [19,20], where an adversary can corrupt any user adaptively. That
implies forward deniability in [26,11] that requires both initiator and responder
are deniable simultaneously. A session state reveal attack means that when a
protocol execution is promised, the internal state will be given to an adversary.
[26] considered the threat against the randomness leak (hence this attack).

Contribution. In this paper, we propose a new notion of timed encryption, in
which the encryption is secure within time t while it is totally insecure after time
T > t. We are interested in the case where t and T can be both polynomial in the
security parameter. We propose a construction provably secure in the random
oracle model and one without random oracles. Timed encryption is useful in

250 S. Jiang

applications where some intermediate data needs to keep private shortly but
later will be used for verification. We apply this primitive to construct a deniable
secure key exchange protocol. Our protocol is adaptively deniable and secrecy
in the concurrent non-eraser model and under session state reveal attacks and
eavesdropping attacks. Here the non-eraser model means that a user can not
erase his local temporary data which models the setting where temporary data
is not erased or it is recoverable. In Table 1, we compare our protocol (with
a random oracle free timed encryption) and known works. We stress that it
is always preferable to remove random oracles in any secure system as it is
known [9] that there exists a cryptographic system that is secure in the random
oracle model while it is insecure when replaced by any function. We can see

Table 1. Known Protocols vs. Ours (Preferred Properties are Marked in Black)

Protocol Deniability State Reveal in Concurr Forward Timing Random
with Eavesdrop Non-Eraser Model Deniable Deniable Oracle

[13] Non-Adaptive Not Allowed Yes No No No
[26] Non-Adaptive Allowed Yes Yes No Yes
[19] - Not Allowed Yes Yes No Yes
[20] - Allowed∗ Yes Yes No Yes

This work Adaptive Allowed Yes Yes Yes No
∗This attack is not considered in [20] but their protocol satisfies this.

that our protocol is the only one that is adaptively deniable in a model with
eavesdropping attacks. Specifically, there are attacks against adaptive deniability
of [13,26,19,20], although [13,26] are non-adaptively deniable and [19,20] do not
consider eavesdropping attacks. Other protocols have at least two measures with
undesired properties while ours has one undesired property of timing restriction.
Also our restriction is rather weak. It essentially requires a user to answer an
incoming message as soon as possible and can be satisfied by almost all protocols
that are executed online. Pass [5] noticed that deniability in the random oracle
model is not trustable. Our protocol, if using the random oracle based timed
encryption, is also in the random oracle model. However, our deniability proof
only uses the forceful decryption algorithm of the timed encryption and especially
no random oracle is used and hence deniability in this case is still random oracle
free (although its secrecy proof needs this).

2 Definitions

Notations. x ← S randomly samples x from a set S; A|B means A con-
catenating with B. Sometimes we also use AB for this. negl : N → R denotes
a negligible function: for any polynomial p(x), limn→∞ negl(n)p(n) = 0. For
functions f, g : N → R, write f(n) ≈ g(n) if f(n)−g(n) is negligible. PPT stands
for probabilistic polynomial time. Algorithm A (e.g., encryption) with input m
and randomness r is written as A(m; r). When r is unspecified, write as A(m).

Timed Encryption with Application to Deniable Key Exchange 251

2.1 Timed Encryption

Syntax. A public key encryption S = (S.Gen, S.Enc, S.Dec) is an encryption
scheme where S.Gen(1κ) generates a public key e and a private key d such that
anyone can compute a ciphertext c = S.Ence(m) to encrypt a message m with
e while only the person with d can decrypt m by computing S.Decd(c). Timed
encryption essentially is a public-key encryption, which, besides the normal en-
cryption and decryption, has a forceful decryption algorithm that decrypts a
ciphertext without a decryption key although inefficient. Formally,

Definition 1. A timed encryption is a tuple S = (S.Gen, S.Enc, S.Dec, S.Inv)
so that (S.Gen, S.Enc, S.Dec) is a public key encryption and S.Inv satisfies the
following. Let (e, d) ← S.Gen(1κ).

- Forceful Decryption S.Inv. For c = S.Ence(m), S.Inv(e, c) outputs m in
polynomial time.

Security. Essentially, we want to formalize the intuition that within a polyno-
mial time t (in the security parameter) the timed encryption is secure while after
a longer but still polynomial time T , anyone can forcefully decrypt it. We need
to be careful about the time complexity as it depends on the computation model.
Specifically, if the task is parallelizable, it can be computed faster in a parallel
model than a single processor model. This issue is considered by Boneh and Naor
[4] in their definition of timed commitment. They used the parallel random access
machine (PRAM) model for this purpose, where an adversary is modeled as a
machine with a polynomial number of parallel processors. Practically, the de-
gree of parallelism is a priori bounded. Hence, it is useful to consider a bounded
PRAM. For a fixed polynomial α, we call an adversary with α processors an
adversary in the α-PRAM model or an α-PRAM adversary.

An adversary is closely related to its attacking power. Our interest is an
adaptive chosen ciphertext attack. The chosen-ciphertext attack for a traditional
public key encryption is modeled in three stages. In stage one, the adversary can
query to decrypt any ciphertext created by himself. In stage two, he provides two
messages m0,m1 of equal length as its challenge pair and receives a challenge
ciphertext Cb of mb for b ← {0, 1}. In stage three, he can query to decrypt any
ciphertext other than Cb. Finally, he outputs a bit b′ and succeeds if b′ = b.

For a timed encryption, we only want to guarantee the security of a challenge
ciphertext within time t after its release. As stage one does not involve a chal-
lenge ciphertext, there is no need to impose a time constraint on the attacker.
As the forceful decryption runs in polynomial time, an adversary can decrypt
the ciphertext in this stage himself. So this stage actually can be removed. In
addition, since b′ should be computed within time t from releasing Cb, the time
for stage three is bounded by t. This leads to the following definition.

Definition 2. Let α, t, T be polynomials in the security parameter κ and t <
T. A timed encryption S = (S.Gen, S.Enc, S.Dec, S.Inv) is (α, t, T)-secure if the
following holds. Let (e, d) ← S.Gen(1κ).

252 S. Jiang

• Completeness. For any string C, Pr[S.Decd(C) �= S.Inv(e, C)] = negl(κ)
and S.Inv has a runtime no more than T .

• Secrecy. For any PPT α-PRAM adversary A in the two-stage game below,
Pr(b′ = b) ≈ 1/2.
- Stage One. Given e, A outputs m0,m1 of equal length. In turn, he will
receive Cb = S.Ence(mb) for b ← {0, 1}.

- Stage Two. A can issue any decryption query C �= Cb and receive
S.Decd(C). Finally, he outputs a bit b′ and succeeds if b′ = b and b′ is
produced in time t after receiving Cb.

If S is (α, t, T)-secure for any polynomial α, it is (t, T)-secure timed encryption.

2.2 Timed Commitment

Timed commitment is a special commitment whose secrecy is guaranteed only
within a given time. It was proposed by Boneh and Naor [4]. Our timed encryp-
tion is motivated by this. A timed commitment consists of a committer S and a
receiver R and proceeds in three phases.
Commit phase: To commit to a string w ∈ {0, 1}n, S and R execute a protocol
Com and the list of messages received by R is a commitment c to w.
Open phase: In the open phase, S sends w to R. Then, they execute a protocol
DCom, at the end of which R obtains a proof that w is the committed value.
Forced open phase: If S refuses to execute the open phase, there exists an algo-
rithm F-Open that takes c as input and, within time T , outputs w and a proof
that w is the commitment in c.

For security, Boneh and Naor requires the commitment remains confidential
against PPT PRAM adversary. We relax it to the α-PRAM model.

Definition 3. TC = (TC.Com, TC.DCom, TC.FO) is a (α, t, T)-secure timed commit-
ment if the follow conditions hold between a committer S and a receiver R:
Completeness: When R accepts in the commitment phase, his output c must
be a valid commitment for some w ∈ {0, 1}n such that TC.FO(c) = w.
Binding: If TC.Com(w) = c, then S can not convince R in the decommitment
phase that c is a commitment of w′ �= w. This holds information theoretically.
Soundness: At the end of commitment, R is convinced that there exists a
forceful open algorithm TC.FO(c) that outputs the committed w in time T .
Privacy: For any α-PRAM adversary A of time t, let tr be the transcript in
the commitment. Then, |Pr[A(tr, w) = 1]− Pr[A(tr, w′) = 1]| = negl(κ).
If TC is (α, t, T)-secure for any polynomial α, it is said a (t, T)-secure timed
commitment.

3 Timed Encryption in the Random Oracle Model

We now construct a concrete timed encryption in the random oracle model. The
idea is to decompose a plaintext into many parts. Each part is not long and deter-
ministically encrypted. With a decryption key, all parts can be quickly decrypted

Timed Encryption with Application to Deniable Key Exchange 253

while, without a decryption key, an attacker has to spend a considerable amount
of time (but still polynomial) in order to obtain them. This prevents a PRAM
adversary from decrypting the plaintext quickly. However, if “the considerable
amount of time” is given, one can forcefully decrypt it.

Construction 1. Let S = (S.Gen, S.Enc, S.Dec) be a public key encryption. Let
κ be a security parameter, n ∈ N and β be a constant. H : {0, 1}∗ → {0, 1}
(κ)
is a hash function (modeled as a random oracle), where �(κ) is polynomial in κ.
K = (K.Enc,K.Dec) is a symmetric encryption with key space {0, 1}
(κ).
Key Generation. Sample a public/private key pair (e, d) ← S.Gen(1κ).

Encryption. To encrypt m, take r0 ← {0, 1}κ, ri ← {0, 1}β log κ, i = 1, · · · , n.
Let sk = H(r0r1 · · · rn). Compute ci = S.Ence[ri;H(c0r0r1 · · · ri)] and c0 =
K.Encsk(m). Ciphertext C = r0c0 · · · cn.
Decryption with d. To decrypt C, compute ri = S.Decd(ci) for i = 1, · · · , n,
check if {ri}ni=1 is consistent with {ci}ni=1. If not, reject; otherwise, compute
m = K.Decsk(c0) for sk = H(r0r1 · · · rn).
Forceful Decryption. Given ciphertext C = (r0, c0, · · · , cn), search for r1 ∈
{0, 1}β logn such that c1 = S.Ence(r1;H(c0r0r1)). If r1 is found, similarly search
for r2 that is consistent with c2, then r3, · · · , rn. If some ri is not found, reject;
otherwise, output m = K.Decsk(c0) for sk = H(r0 · · · rn).

The security of our construction is shown in the following theorem, where K
and S are both semantically secure: ciphertexts of m0 and m1 are indistinguish-
able and K is also one-time unforgeable: given one ciphertext of m under secret
key k, it is hard to forge a new ciphertext under k. The details of theorem proof
appears in the full paper.

Theorem 1. Let S and K be semantically secure and K also be one-time unforge-
able. H is a random oracle. ε > 0 is a constant. μH and μE is the time to evaluate
H (with input length κ) and S.Enc (input length β log κ) respecitively. Then, our
scheme is (σ, tμH , μEnk

β)-secure if n ≥ max{3
√
σtκ−β/2 log κ, log2+ε κ}.

Efficiency. Decryption using d is dominated by n encryptions and n decryp-
tions of S (as n+1 hashes is relatively cheap). But if we decrypt in parallel using
n processors, each processor needs only one encryption and one decryption. En-
cryption is dominated by n encryptions of S. Note if the timed encryption is
plugged in a protocol that only requires the secrecy holds during the execution,
our scheme is practical as many protocols finish in seconds or even less.

4 Timed Encryption without a Random Oracle

Now we construct a timed encryption from a timed commitment. The idea fol-
lows. A timed commitment already has a forceful opening. But it lacks a private
key based decryption. To make up this, we can further encrypt the message using
a normal encryption. With a decryption key, one can obtain m from the normal
encryption while, without a decryption key, one can forcefully compute m from

254 S. Jiang

the timed commitment. To make sure the commitment and normal encryption
are consistent in m, we use a non-interactive zero-knowledge (NIZK). Formally,

Construction 2. Let (e, d) be a public/private key pair for a public key en-
cryption S. TCom is a timed commitment. P is a non-interactive zero knowledge
using a common random string σ for relation

Re =
{〈

(S.Ence[m; r], TCom[m; r′]),m, r, r′
〉
| m, r, r′ ∈ {0, 1}∗

}
.

To encrypt m, compute C = S.Ence[m; r], τ = TCom[m; r′] ,where r and r′ are
the randomness for C and τ respectively. π = Pσ[C, τ ;m, r, r′], where the input
is (C, τ) and witness is (m, r, r′). The final ciphertext is γ = (C, τ, π). Upon
γ = (C, τ, π), the normal decryption with d is to first verify if π is valid. If
yes, decrypt m = S.Decd(C); otherwise, ⊥ . Forceful decryption for γ is to first
verify π. If valid, open τ using the forceful opening algorithm T of TCom; reject
otherwise. Denote this scheme by S∗.

Security theorem is as follows, where we use a one-time simulation-sound
NIZK [18,22] which is NIZK such that when the attacker sees one simulated
proof of a false theorem he can not come up with a new proof of a false theorem.
Proof details appear in the full paper.

Theorem 2. If S is secure against an adaptive chosen-ciphertext attack, TCom
is a (α, t, T)-secure timed commitment and P is a one-time simulation-sound
NIZK, then S∗ is (α, t, T)-secure timed encryption. Further, if TCom is a (t, T)-
secure timed commitment, then S∗ is a (t, T)-secure timed encryption.

5 Application to Adaptive Deniable Key Exchange

Deniable key exchange is a protocol that allows two parties to securely establish
a common secret while neither of them can prove to a third party that the
protocol execution between them has actually occurred. This property prevents
the communication record from being maliciously used as an evidence (i.e., at
the court) against an honest user. In our security model, the secrecy is revised
from Bellare-Rogaway [1] and deniability is revised from [15,16,20,26].

Assume there are n parties P1, · · · , Pn. Pi and Pj might jointly execute a key
exchange protocol Ξ to establish a common secret (called session key).

Notions. Π
i
i denotes a protocol instance in Pi, which is a copy of Ξ in it

and �i is its instance id. sid
ii is a session identifier for Π
i
i and will be specified

when analyzing the protocol security. Supposedly, two communicating instances
should share the same session identifier. pid
ii is the partner party of Π
i

i that he

presumably interacts with. stat
ii is the internal state of Π
i
i . We also use stati

to denote an internal state for an unspecified instance in Pi. sk

i
i is the session

key in Π
i
i . Π
i

i and Π

j
j are partnered if (1) pid
ii = Pj and pid

j
j = Pi; (2)

sid
ii = sid

j
j . Intuitively, instances are partnered if they are jointly executing Ξ.

Timed Encryption with Application to Deniable Key Exchange 255

Adversarial Model. Now we introduce the attack model. Essentially, we
would like to capture the concern that the adversary can fully control the net-
work. In particular, he can inject, modify, block and delete messages, corrupt
users, etc. The formal model is defined as a game between a challenger and an
attackerA. The challenger maintains a set of oracles that represent events during
protocol executions. Attacks are modeled as queries to these oracles adaptively.
Send(i, �i,M). A can send message M to Π
i

i and receives whatever the latter
replies. This models Pi’s response to an incoming message.
Reveal(i, �i). A can ask to reveal Π
i

i and in turn receives state stat
ii . Note

that Pi’s long term secret key is not part of stat
ii . This threat is also called
session state reveal attack [2]. Security under this means that compromising one
session does not affect other sessions. For a successfully completed session, sk
ii
is part of stat
ii . So this oracle also models a session key loss attack.
Corrupt(i). A can corrupt Pi and obtains his long term secret and all internal
states {stat
ii }
i . In addition, Pi’s future action is taken by A. This models the
case where some users become malicious.
Test(i, �i). This is a security test and can be queried only once. Π
i

i must

have successfully completed and should not be compromised, where Π
i
i is com-

promised if it or its partnered session is Revealed, or if Pi or pid

i
i is Corrupted.

When this oracle is called, flip a coin b and provide αb to A, where α0 = sk
ii
and α1 ← K (K is the space of sk
ii).

In the end of game, A will output a guess bit b′. He is informed success if
b′ = b; otherwise, fail. We now are ready to define the protocol security which
consists of four properties below.

Correctness. If partnered Π
i
i and Π

j
j successfully complete, sklii = sk

j
j .

Secrecy. Let Succ(A) be event b′ = b. Then, Pr[Succ(A)] < 1
2 + negl(κ).

Authentication. Let Π
i
i be the test session and Non-Auth be the event: ei-

ther there does not exist any partnered instance for Π
i
i or its partnered instance

is not unique. Authentication requires Pr[Non-Auth(A)] = negl(κ). As in [20],
defining Non-Auth on the test session is for simplicity only.

Deniability. Deniability essentially requires that the adversary view can be
simulated by himself (i.e., using his knowledge only) and hence his view can
not be used as evidences against deniability of others. Note as an honest Pi’s
long-term secret is unknown to the adversary (and simulator), upon Corrupt(i),
it must be provided externally. We use a trusted third party to do this. In
addition, eavesdropping attacks have not been modeled in the previous oracles,
where an adversary observes the communication transcript between honest users,
the randomness of which is unknown to him. As mentioned before, this might
be useful for him to break the deniability. We model this by an oracle below,
maintained by the trusted third party.

Execute(i, �i, j, �j). Upon this, a protocol execution between Π
i
i and Π

j
j is

carried out. Finally, A and the simulator will be provided with a transcript tr.

256 S. Jiang

Deniability is formally defined as follows. Initially, a trusted party T generates
global parameters prams and, for each party Pi, a public key Ei (maybe empty)
and a private key Di. Consider two games Γ rea and Γ sim. In Γ rea, T provides
{Ei} and param to A and maintains all the previous oracles faithfully. In Γ sim,
T provides {Ei} and param to A and a simulator S. Then, S simulates the
oracles with A, except that Execute oracle is maintained by T and that upon
Corrupt(i), Di is provided by T to S. Finally, Ξ is deniable if adversary views
in Γ rea and Γ sim are statistically close.

Definition 4. A key exchange protocol Ξ is deniable secure if for any PPT A,
correctness, secrecy, authentication and deniability are all satisfied.

Remark. We will soon construct a key exchange protocol whose specification
requires a timing restriction (e.g., Pj requires that Flow3 be received within time
t after Flow2 sent). This type of protocol is covered in our model by requiring
the instance to maintain a local timer. So after Send(j, �j , F low1), Pj starts a
timer tj from 0 and when oracle Send(j, �j , F low3) is queried later, he will check
whether tj < t, and proceeds only if this is satisfied.

5.1 Construction

We now apply a timed encryption to construct a new key exchange protocol (also
see Fig. 1). Let S be a public key encryption. Initially, take (Ei, Di) ← S.Gen(1κ)

Pi Pj

C1 = Ej [k1|gx]
C1 ��

C2 = Ei[k2|C1|gy]
C2��

τ=MACk2(Pi|Pj |C1|C2|0) ��

If σ timely and
valid, sk = gyx;
reject otherwise.

If τ timely and
valid, sk = gyx;
reject otherwise.

σ=MACk1(Pi|Pj |C1|C2|1)��

Fig. 1. Our Timed Encryption-based Deniable Key Exchange tE-DKE

as user Pi’s public/private keys. p, q are large primes with q | p− 1. g ∈ Z∗
p has

an order of q. MAC: {0, 1}κ×{0, 1}∗ → {0, 1}κ is a message authentication code
with key space {0, 1}κ. Key exchange between Pi and Pj is as follows, where for
simplicity S.EncEi(·) and S.DecDi(·) are respectively denoted by Ei(·) and Di(·).

1. Pi takes x ← Zq, k1 ← {0, 1}κ, sends C1 = Ej [k1|gx] to Pj and starts timer
ti from 0.

Timed Encryption with Application to Deniable Key Exchange 257

2. Upon C1, Pj takes y ← Zq, k2 ← {0, 1}κ, sends C2 = Ei[k2|C1|gy] to Pi,
starts timer tj from 0.

3. Upon C2, Pi checks if Di(C2) = k2|C1|Y for some k2 ∈ {0, 1}κ and Y ∈ 〈g〉.
If no, reject; otherwise, send MACk2(Pi|Pj |C1|C2|0) to Pj .

4. Upon τ , if τ = MACk2(Pi|Pj |C1|C2|0) and tj < t, and if Dj(C1) = k1|X
for some X ∈ 〈g〉 and k1 ∈ {0, 1}κ, then set sk = Xy and send σ =
MACk1(Pi|Pj |C1|C2|1) to Pi; otherwise, reject.

5. Upon σ, if σ �= MACk1(Pi|Pj |C1|C2|1) or ti ≥ t, reject; otherwise sk = Y x.

Remark. To better understand our protocol, some remarks are necessary.
(1) One careful reader might realize that the final message flow seemingly can
be moved to the second round (i.e., put together with C2). If so, Pj needs to first
derive k1 from C1 in order to compute MACk1(∗) . However, this variant suffers
from a session state reveal attack. Indeed, assume Π
i

i sends C1 to Π

j
j . When

Π

j
j replies with C2 and σ, the attacker reveals the state of Π

j
j and obtains k1 in

C1. With k1, the attacker forges a new C′
2 and σ′ using a random y′. Now when

P
i
i successfully completes, it has no partner in Pj and in addition sk
ii is known

to the attacker. Note Π
i
i is not compromised and hence the attacker is allowed

to Π
i
i as the test session in which he always succeeds. A simple counter measure

for this is to erase k1 after computing σ (as k1 wont be used by P

j
j anymore).

However, this works only in the eraser model which is not our interest.

(2) If C1 is not encrypted in C2, the protocol again will suffer from a session state
reveal attack. Indeed, when an attacker A sees Π
i

i ’s message C1 = Ej [k1|gx], he
changes it to C′

1 = Ej [k
′
1|gx

′
] and sends it to Π

j
j . After seeing C2, he forwards

to Π
i
i . When Π
i

i sends out τ , A reveals Π
i
i and obtains k2, with which A

computes τ ′ that matches C′
1 and C2. Π

j
j then will be deceptively convinced.

However, Π

j
j has no partnered instance and hence is not compromised and can

be chosen as a test session, in which A always succeeds as x′ is known to him.
Our protocol will not suffer from this as C1 is encrypted in C2 and so A can not
mall C2 to C′

2 without changing k2.

(3) If gx is not encrypted in C1 but it is included in the input for τ and σ,
then it still suffers from a session state reveal attack. The procedure is similar
to the case in item (2).

5.2 Security

We analyze the deniable security. For this, we define session identifier and inter-

nal sates. For initiator Π
i
i and responderΠ

j
j , let sid
ii = sid

j
j = 〈Pi, Pj , C1, C2〉.

As (C1, C2) determines the session key, correctness follows. Let ri be encryption
randomness in Ci. msgi denotes the ith message in our protocol. For Pi, stati =
Pi|Pj |k1|x|ri|ti after msg1 sent; stati = Pi|Pj |k1|k2|x|ri|C2|Y |ti after msg3 sent;
stati = Pi|Pj |k1|k2|x|ri|C2|Y |sk finally. For Pj , statj = Pi|Pj |k2|y|rj |C1|tj af-
ter msg2 sent; statj = Pi|Pj |k1|k2|y|rj |C1|X |sk after msg4 sent. But if τ or σ
rejected, its state is not updated.

258 S. Jiang

Deniability idea. We need to simulate the oracles without an honest user’s
decryption key, which is simple except decryption of C1 or C2. This can be done
using the forceful decryption algorithm of the timed encryption. Specifically,
when receiving C2, the simulator suspends the adversary and forcefully decrypts
it. Similarly, we can deal with C1. As the forceful decryption has a polynomial
time, the simulator is legal. We remark that the suspension based simulation
was used by Dwork, Naor and Sahai [15,16]. Deniability follows.

Authentication and Secrecy can be proved using standard game hopping tech-
niques. The details can be found in the full paper.

Theorem 3. If S is (α, t, T)-secure and MAC is an existentially unforgeable
message authentication code, then tE-DKE is adaptively deniable secure against
any PPT α-PRAM adversary. Further, if S is a (t, T)-secure timed encryption,
then tE-DKE is adaptively deniable secure against any PPT adversary.

Comparison. If we use S without random oracles, then our protocol has adap-
tive deniability and secrecy in the non-eraser model under the session state reveal
attacks and eavesdropping attacks, where adaptivity means the party corruption
can be made at any time and is modeled through Corrupt(i) oracle and the non-
eraser model means the temporary data (e.g., k1, k2) is not erased. Session state
reveal attacks are modeled by Reveal(i, �i) oracle and eavesdropping attack is
modeled by Execute oracle. Raimondo et al. [13] has a non-adaptive deniability
in the eavesdropping attack in the standard model. Yao and Zhao [26] has all
our properties but in the random oracle model and with non-adaptive corrup-
tion. Jiang [19] and Jiang and Safavi-Naini [20] has an adaptive deniability in
the public random oracle model without eavesdropping attacks, where [19] is in
the eraser model while [20] is in the non-eraser model. Our only disadvantage
in deniable security is that the execution requires a timing restriction. However,
it is rather weak as it only requires to send msg3 (or msg4) as soon as possible.
Comparison results are summarized in Table 1.

Acknowledgement. This work is supported by NSFC (No. 60973161), Funda-
mental Research Funds for the Central Universities (No. ZYGX2010X015) and
Young Faculty plans of UESTC.

References

1. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

2. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Errors in Computational Complexity
Proofs for Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
624–643. Springer, Heidelberg (2005)

3. Blake, I.F., Chan, A.C.-F.: Scalable, Server-Passive, User- Anonymous Timed Re-
lease Public Key Encryption from Bilinear Pairing. In: ICDS 2005: Proceedings of
the 25th International Conference on Distributed Computing Systems, pp. 504–513
(2005)

4. Boneh, D., Naor, M.: Timed Commitments and Applications. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

Timed Encryption with Application to Deniable Key Exchange 259

5. Pass, R.: On Deniability in the Common Reference String and Random Oracle
Model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003)

6. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

7. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

8. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably Secure Timed-Release
Public Key Encryption. ACM Trans. Inf. Syst. Secur. 11(2) (May 2008)

9. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited
(Preliminary Version). In: STOC, pp. 209–218 (1998)

10. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional Oblivious Transfer
and Timed-Release Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

11. Di Raimondo, M., Gennaro, R.: New Approaches for Deniable Authentication. In:
ACM CCS (2005)

12. Di Raimondo, M., Gennaro, R.: New Approaches for Deniable Authentication. J.
Cryptology 22, 572–615 (2009)

13. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable Authentication and Key
Exchange. In: ACM CCS (2006)

14. Dodis, Y., Yum, D.H.: Time Capsule Signature. In: S. Patrick, A., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 57–71. Springer, Heidelberg (2005)

15. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: STOC 1998, pp.
409–418 (1998)

16. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. Journal of ACM
(2004)

17. Garay, J.A., Jakobsson, M.: Timed Release of Standard Digital Signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003)

18. Goldreich, O.: Foundations of Cryptography: Applications. Cambridge University
Press (2004)

19. Jiang, S.: Deniable Authentication on the Internet. In: Pei, D., Yung, M., Lin, D.,
Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 298–312. Springer, Heidelberg
(2008)

20. Jiang, S., Safavi-Naini, R.: An Efficient Deniable Key Exchange Protocol (Ex-
tended Abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52.
Springer, Heidelberg (2008)

21. Krawczyk, H.: SKEME, a versatile secure key exchange mechanism for Internet.
In: NDSS 1996, pp. 114–127 (1996)

22. Lindell, Y.: A Simpler Construction of CCA2-secure Public-key Encryption under
General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

23. Mao, W.: Timed-Release Cryptography. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 342–357. Springer, Heidelberg (2001)

24. Paterson, K.G., Quaglia, E.A.: Time-Specific Encryption, IACR eprint (2010)
25. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and time-release crypto

(1996) (unpublished manuscript)
26. Yao, A.C., Zhao, Y.: Deniable Internet Key Exchange. In: Zhou, J., Yung, M. (eds.)

ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010)

Online Makespan Scheduling of Linear

Deteriorating Jobs on Parallel Machines�

(Extended Abstract)

Sheng Yu1, Jude-Thaddeus Ojiaku2, Prudence W.H. Wong2, and Yinfeng Xu3

1 School of Business Administration, Zhongnan University of Economics and Law,
Wuhan, China

yusheng znufe@foxmail.com
2 Department of Computer Science, University of Liverpool, UK

{J.Ojiaku,pwong}@liverpool.ac.uk
3 School of Management, Xi’an Jiaotong University, China

yfxu@mail.xjtu.edu.cn

Abstract. Traditional scheduling assumes that the processing time of
a job is fixed. Yet there are numerous situations that the processing
time increases (deteriorates) as the start time increases. Examples in-
clude scheduling cleaning or maintenance, fire fighting, steel production
and financial management. Scheduling of deteriorating jobs was first in-
troduced on a single machine by Browne and Yechiali, and Gupta and
Gupta independently. In particular, lots of work has been devoted to
jobs with linear deterioration. The processing time pj of job Jj is a lin-
ear function of its start time sj , precisely, pj = aj + bjsj , where aj is
the normal or basic processing time and bj is the deteriorating rate. The
objective is to minimize the makespan of the schedule.

We first consider simple linear deterioration, i.e., pj = bjsj . It has
been shown that on m parallel machines, in the online-list model, LS

(List Scheduling) is (1+ bmax)
1− 1

m -competitive. We extend the study to
the online-time model where each job is associated with a release time.
We show that for two machines, no deterministic online algorithm is
better than (1 + bmax)-competitive, implying that the problem is more
difficult in the online-time model than in the online-list model. We also
show that LS is (1+bmax)

2(1− 1
m

)-competitive, meaning that it is optimal
when m = 2.

1 Introduction

Makespan scheduling of deteriorating jobs. Scheduling jobs (with fixed pro-
cessing time) on single or parallel machines is a classical problem [24]. Yet, there
are numerous situations that the processing time increases (deteriorates) as the
start time increases. For example, to schedule maintenance or cleaning, a delay

� This work is partially supported by NSF of China under Grants 71071123, 60736027
and 71101106. The work is partly done while Sheng Yu was at Xi’an Jiaotong Uni-
versity and was visiting University of Liverpool.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 260–272, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Makespan Scheduling of Linear Deteriorating Jobs 261

often requires additional efforts to accomplish the task. Other examples are found
in fire fighting, steel production and financial management [15, 21]. Scheduling
of deteriorating jobs was first introduced by Browne and Yechiali [3], and Gupta
and Gupta [11] independently. Both considered minimizing makespan on a single
machine. In [3], the processing time of a job is a monotone linear function of
its start time while non-linear functions are considered in [11]. Since then, the
problem has attracted a lot of attention, and has been studied in other time
dependent models. Comprehensive surveys can be found in [1, 6, 9], which also
discussed other objective functions.

Linear Deterioration. We focus on jobs with linear deterioration, which has
been studied in more detail due to its simplicity while capturing the essence of
real life situations. The processing time of a job is a monotone linear function
of its start time. Precisely, the processing time pj of a job Jj is expressed as
pj = aj + bjsj, where aj ≥ 0 is the “normal” or “basic” processing time, bj > 0
is the deteriorating rate, and sj is the start time. As the start time gets larger,
the actual processing time also gets larger.

Linear deterioration is further said to be simple if aj = 0, i.e., pj = bjsj . In
this case, in order to avoid trivial solution, it is natural to assume that the start
time of the first job is t0 > 0 since a start time of zero means that the processing
time of all jobs is zero. Mosheiov [20, 21] justified simple linear deterioration as
follows: as the number of jobs increases, the start time of jobs gets larger, and
the actual processing time of infinitely many jobs is no longer affected by the
normal processing time but only by the deteriorating rate.

Single and Parallel Machine Scheduling. Non-preemptive scheduling of jobs
with linear deterioration has been studied in both single and parallel machines
settings.1 The study first focuses on a single machine and all jobs are assumed
to be available for processing at the same time. Gupta and Gupta [11] observed
that with linear deterioration, it is optimal to process jobs in ascending order of
aj/bj. With simple linear deteriorating rate, the makespan is indeed independent
of the order of processing [21]2. On parallel machines, the problem becomes
intractable; it is NP-hard for two machines and strongly NP-hard form machines
because of the complexity of the corresponding problems with fixed processing
time [7]. Kang and Ng [13] proposed an FPTAS. For simple linear deterioration,
Kononov [14] and Mosheiov [22] independently showed that the problem is NP-
hard, and Ren and Kang [26] proposed an FPTAS.

Release Times and Online Algorithms. The above results assume that all jobs
are available at the same time and full job information (aj and bj) is known in
advance. In practice, jobs may be released at arbitrary times. We may also have
to make decisions based on the jobs currently presented without information
of future jobs. Pruhs, Sgall and Torng [25] formalized two online models. In
the online-list model, jobs are available to be processed at the beginning but

1 Preemptive scheduling of linear deteriorating jobs has been studied on single ma-
chine [23].

2 The makespan of running jobs J1, · · · Jn equals t0(1 + b1) · · · (1 + bn).

262 S. Yu et al.

are presented one by one. Each job is to be allocated to a machine and a time
period to execute before the next job is presented. Such allocation cannot be
changed once it is made. In the online-time model, jobs are released at arbitrary
times and a job is only known at its release time. The performance of online
algorithms is typically measured by competitive analysis [2]. An online algorithm
is c-competitive if for any input instance, its cost is no more than c times that
of the optimal offline algorithm.

For online parallel machine scheduling with fixed processing time, Graham [10]
has proposed the List Scheduling (LS) algorithm that schedules each job in turn
to the machine that can complete the job the earliest. He showed that LS is
(2 − 1

m)-competitive. Online algorithms and jobs with release times have been
studied extensively for fixed processing time [25]. Yet, not much is known for
deteriorating jobs with release times, let alone online algorithms.

For linear deteriorating jobs, jobs with release times have been studied in
[5,19]. In particular, it is explained in [19] in the application of steel production
how jobs with release time and deteriorating rate apply in the scenario. Cheng
and Ding [5] studied the complexity of the problem with release times, showing
that on a single machine it is strongly NP-hard for identical normal processing
time a or identical deteriorating rate b. Lee, Wu and Chung [19] proposed some
heuristics for the case of identical deteriorating rate and evaluated them by
experiments. The only work on online scheduling of deteriorating jobs that we are
aware of is by Cheng and Sun [4]. They considered parallel machine scheduling
of jobs with simple linear deterioration and the online-list model, showing that
LS is (1+bmax)

1− 1
m -competitive, where bmax is the maximum deteriorating rate.

As we will show later, this is the best possible for any deterministic online-list
algorithms. Several questions arise immediately following the work of [4].

– Intuitively, the problem becomes more difficult with arbitrary release times.
In particular, for simple linear deterioration, can we show a lower bound
larger than (1+ bmax)

1− 1
m ? Furthermore, what is the performance of LS for

simple linear deterioration when jobs have arbitrary release times?
– What is the performance of LS or other online algorithms for other linear

deterioration functions like pj = aj + bsj , pj = a + bjsj, and pj = aj + bjsj .

Availability Constraints. We further consider the scenario when a machine
is not always available [16–18]. This may arise due to maintenance or when
the machine is reserved for other purposes. When a job is interrupted by an
unavailable period, it may be resumed later or it may not be resumed and has
to restart again. We focus on non-resumable availability constraint.

This problem has been studied in single machine scheduling of simple linear
deteriorating jobs. Gawiejnowicz [8] proved that the problem is NP-hard for one
unavailable period and strongly NP-hard for an arbitrary number of unavailable
periods, while an FPTAS has been proposed for one unavailable period [12].
As far as we know, the only work on online algorithms shows that LS is an
optimal online-list algorithm for one unavailable period [12], with a competitive
ratio B/t0 where B > t0 is the beginning time of the unavailable period. An
immediate question is to extend the study to parallel machines.

Makespan Scheduling of Linear Deteriorating Jobs 263

Our Contribution. In this paper, we take one step forward to answer some of
the above questions. The main results are for simple linear deterioration, where
we first consider jobs with arbitrary release times. When scheduling on parallel
machines, we show that the problem with arbitrary times is more difficult: for
two machines, we give a lower bound of 1+ bmax on the competitive ratio, which
is strictly larger than the bound (1 + bmax)

1/2 for the online-list model. We also

show that the competitive ratio of LS is between 1+bmax and (1+bmax)
2(1− 1

m) for
m machines, while the ratio of RR (Round Robin) can be unbounded. Together
with the general lower bound, it implies that for two machines, LS is optimal
with competitive ratio 1 + bmax.

We then consider scheduling on two machines where one of them is unavail-
able during the interval [B,F], with t0 < B < F . For the online-list model,
we show that a modified LS algorithm is optimal with a competitive ratio of
min{

√
B/t0, 1 + bmax}.

Another linear deterioration function we consider is with identical deteriorat-
ing rate but different normal processing times, i.e., pj = aj+bsj. In this case, we
focus on the online-list model. Let amax and amin be the maximum and minimum
aj , respectively, and α = amax

amin
. We show that no online-list algorithm is better

than α-competitive, and show that Round Robin (RR) achieves this competitive
ratio. We also show that LS is α-competitive in a special case.

Technically speaking, the lower bounds for simple linear deterioration are more
technically involved. The adversaries work in stages. In each stage some jobs with
small b are released, forcing the online algorithm to schedule jobs evenly on all
machines; this is followed by a job with large b, forcing a large completion time.
On the other hand, the optimal algorithm reserves a machine for the job with
large b and then evenly distribute the remaining jobs on the other machines to
achieve the same makespan for each machine. The idea is similar to those for
fixed processing time, yet the crux is to work out the values of b’s. To analyze
the performance of LS, the key idea is to give a lower bound on the makespan
of the optimal algorithm in terms of the completion time of the machine having
the makespan in LS.

Organization of the Paper. Section 2 gives some notations and definitions. In
Section 3, we consider varying deteriorating rates while in Section 4, we consider
varying normal processing times. Finally, we conclude in Section 5.

2 Preliminaries

We are to schedule a set of n jobs J = {J1, J2, . . . , Jn} onto m machines
M1,M2, . . . ,Mm. For every job Jj , we denote by rj and pj the release time
and processing time, respectively. We assume that the jobs are indexed in in-
creasing order of release time, i.e., rj ≤ rj+1. The processing time pj depends
on the start time sj when the job starts being executed by a processor, i.e., pj
differs with different schedules. In particular, we consider linear deterioration in
which jobs are characterized by a normal processing time aj ≥ 0 and a deterio-
rating rate bj > 0 such that pj = aj + bjsj . When the normal processing time is

264 S. Yu et al.

identical, it is called simple linear deterioration. Denote by bmax the maximum
of bj , amax and amin the maximum and minimum of aj , and α = amax/amin.

Jobs arrive online and the information about the jobs are only known on
arrival. A schedule is to dispatch the jobs in J on machines and determine when
to run the jobs. Preemption is not allowed. Consider a schedule S. For 1 ≤ j ≤ n,
the completion time of job Jj in S is denoted by cj(S). For any 1 ≤ k ≤ m, the set
of jobs dispatched to Mk by S is denoted by J (k)(S). We simply use J (k) when

the context is clear. The makespan of machine Mk, denoted by C
(k)
max(S), is the

maximum completion time of the jobs on Mk by S. The makespan of S, denoted

by Cmax(S), is the maximum of the makespan over all machines. I.e., C
(k)
max(S) =

maxj∈J (k)(S){cj(S)} and Cmax(S) = max1≤k≤m{C(k)
max(S)}. The objective of

the problem is to minimize the makespan of the schedule produced.
We also consider the case when there is an availability constraint. In this

case, we consider only two machines and assume that machine M1 has a known
unavailable period [B,F], where t0 < B < F . The semi-online algorithm we
propose requires bmax is known in advance.

Round Robin (RR). Jobs are inserted into a list in increasing order of arrival.
The first job is dispatched to the first machine, and the next job is dispatched
to the next machine, i.e., Jj is dispatched to Mk where k = ((j−1) mod m)+1.

List Scheduling (LS). Jobs are inserted into a list in increasing order of arrival.
Whenever a machine becomes idle, the next job in the job list is dispatched to
the machine.

OPT. We denote the optimal offline algorithm (and its schedule) by OPT.

3 Simple Linear Deterioration pj = bjsj

In this section, we consider jobs with simple linear deteriorating rate, pj = bjsj ,
i.e., aj = 0. As we assume the normal processing time aj = 0 for all j, it is natural
to assume that the start time of the schedule is t0 > 0 instead of 0, otherwise,
pj would all be zero. We consider two scenarios. In Section 3.1, we consider
scheduling jobs with arbitrary release times on m machines. In Section 3.2, we
consider the case when one of the machines may be unavailable for a certain
period of time. In particular, we consider the special case with two machines
and all jobs are available at t0.

3.1 Online-Time Model: Scheduling Jobs with Arbitrary Release
Times

In this section, we consider jobs with arbitrary release time rj . We first make
some simple observations (proof in full paper).

Property 1. Consider scheduling of jobs with pj = bjsj.

(i) The completion time of any job Jj , cj = sj(1 + bj).

Makespan Scheduling of Linear Deteriorating Jobs 265

LS

OPT
J1 J1 J1

J1J1J1

J2J2

J2J2

J3

J3

t0 t1 t2

M1

M1

(i) (ii) (iii)

Fig. 1. The first three stages of the adversary for LS on three machines. The deterio-
rating rates b1, b2 and b3 of J1, J2 and J3 satisfy 1 + b1 = (1 + b)3, 1 + b2 = (1 + b)5,
and 1+ b3 = (1+ b)7. Note that the machines in OPT are busy all the time while those
in LS may be idle. (i) In Stage 1, jobs are released at t0. (ii) In Stage 2, newly arriving
jobs have a release time of t1 = t0(1 + b1) and cannot be scheduled earlier on M2 and
M3 in LS. (iii) In Stage 3, the release time t2 = t1(1+ b2). (Note that the length of the
jobs in the figure reflects the value of deteriorating rates but not the actual processing
time, which is increasing as start time increases.)

(ii) Consider any job set J where r denotes the earliest release time of jobs in
J . The makespan of scheduling these jobs on a single machine is at least
r
∏

j∈J (1 + bj).
(iii) Suppose J1, J2, · · · , Jn are indexed in increasing order of release times such

that rj ≤ rj+1. The makespan of any m-machine schedule is at least∏
1≤k≤m

r
1
m

k

∏
1≤j≤n

(1 + bj)
1
m .

Lower Bounds. We prove several lower bounds showing that RR is not com-
petitive (proof in full paper), and that the problem with arbitrary release times
admits a larger competitive ratio than that for the online-list model.

Lemma 1. Consider simple linear deteriorating jobs. The competitive ratio of
RR is unbounded. This also holds for the online-list model.

Lemma 2. Consider simple linear deteriorating jobs with arbitrary release
times. The competitive ratio of LS is at least (1 + bmax).

Proof (Sketch). The adversary works in stages and jobs are released at time ti in
Stage i, with t0 > 0. In each stage, the adversary releases some jobs with deteri-
orating rate b at time ti. LS would schedule these jobs evenly on the machines.
Then one job of a large deteriorating rate bi is released at ti and no matter
which machine LS schedules this job the completion time is big. On the other
hand, the optimal offline algorithm OPT can reserve one machine for the job
with large deteriorating rate and schedule the jobs with small deteriorating rate
on the remaining machines. This introduces a difference in the latest completion
time between LS and OPT in the current stage. The idea is similar to traditional
scheduling with fixed processing time and the main issue is to choose appropriate

266 S. Yu et al.

bi. Figure 1 shows the first three stages of the adversary. As to be shown in the
full paper, we define a sequence bi such that the difference between LS and OPT
keeps increasing, and finally leading to the competitive ratio stated. ��

The first stage of the above adversary can be used to show a lower bound on
any deterministic algorithm for the online-list model (proof in full paper).

Lemma 3. Consider simple linear deteriorating jobs. No deterministic online
algorithm is better than (1+bmax)

1− 1
m -competitive. This also holds for the online-

list model.

Next we consider two machines and extend the adversary in Lemma 2 to show
that when jobs have arbitrary release times, no deterministic online algorithm
is better than (1+ bmax)-competitive. The main difference is that after releasing
jobs of deteriorating rate b, the online algorithm not necessarily schedules these
jobs evenly between the two machines. Therefore, before the adversary releases
a job of deteriorating rate bk, more jobs are released to maintain the same
completion time on both machines and the number and deteriorating rate of
these intermediate jobs vary according to how the online algorithm schedule the
set of jobs of deteriorating rate b.

Theorem 1. Consider two-machine scheduling of jobs with arbitrary release
times and simple linear deteriorating rates. No deterministic online algorithm
is better than (1 + bmax)-competitive.

Upper Bound for LS. We prove that LS is at most (1+bmax)
2(1− 1

m)-competitive
when jobs have arbitrary release times. First of all, we claim that without loss of
generality, we can assume that at any time in the LS schedule, not all machines
are idle. Otherwise, suppose t is the latest time such that all machines are idle.
As LS is not idle whenever there are available jobs, this means that there is
a subset of jobs J ′ ⊆ J , all of which have release times strictly after t, and
J −J ′ are completed by LS before t. The makespan of LS on J ′ would remain
the same as on J . On the other hand, the makespan of OPT on J ′ is also the
same as on J since there is a possible schedule to complete all the jobs in J −J ′

before t. Therefore, we can make the following assumption without affecting the
competitive ratio of LS.

Observation 2 Without loss of generality, we may assume that at any time in
a LS schedule, not all machines are idle.

Let � be the index of a job with completion time Cmax(LS); break ties arbitrarily.
LetMp be the machine to which LS schedules J
. Because of the way LS schedules
job, we have the following property about s
(LS), the start time of J
.

Property 2. (i) s
(LS)=C
p
max(LS)/(1+b
). (ii) s
(LS)≤min1≤k≤m,k 	=p{C(k)

max(LS)}.

To analyze the performance of LS, we extend the analysis in [4] first to input such

that there is no idle time in the LS schedule, showing that LS is (1 + bmax)
1− 1

m -
competitive. In the general case when LS schedule may contain idle time, we use

Makespan Scheduling of Linear Deteriorating Jobs 267

Lemma 2 to upper bound the makespan of LS and use an averaging argument to
lower bound the makespan of OPT. The following theorem states the competitive
ratio of LS (proof in full paper).

Theorem 3. Consider m-machine scheduling of jobs with arbitrary release
times and simple linear deteriorating rate, LS is (1 + bmax)

2(1− 1
m)-competitive.

Corollary 1. For two machine scheduling of jobs with arbitrary release times
and simple linear deteriorating rate, LS is an optimal online algorithm with
competitive ratio 1 + bmax.

3.2 Online-List Model: Two Machine Scheduling with Availability
Constraint

In this section, we schedule jobs on two machines M1 and M2, where M1 is
unavailable during the period [B,F]. In particular, we consider non-resumable
availability constraint, i.e., if a job is partly processed on M1 before B, it has to
be restarted from the beginning when M1 becomes available at F . We consider
jobs that are available at t0, and have simple linear deteriorating rate. The
online algorithm has to schedule a job as it is given, before the next job is
presented, and the decision cannot be revoked. Furthermore, we assume that
the online algorithm knows the maximum deteriorating rate bmax in advance,
so we are considering semi-online algorithm. We first give a lower bound of
min{

√
B/t0, 1 + bmax} on the competitive ratio. Then, we give a modified LS

algorithm and show that it is min{
√

B/t0, 1+ bmax}-competitive, implying that
the algorithm is optimal.

It has been observed that on a machine that is entirely available, scheduling
jobs with whatever order gives the same makespan. However, this is not the case
if the machine is unavailable at some time. For example, given two jobs J1 and
J2 with deteriorating rate b1 and b2 such that 1+ b1 = 1+ ε and 1+ b2 = B/t0.
Processing J1 before J2 leads to a makespan of F (1 + b2) = FB/t0 since J2
cannot be completed before B and has to be started at F . Processing J2 before
J1 leads to a makespan of F (1 + ε).

Property 3. On the machine with unavailability, scheduling jobs in different or-
der may result in different makespan.

Lower Bounds. First, when t0(1 + bmax) ≤ B, we show in Lemma 4 that
no deterministic online-list algorithm is better than min{

√
B/t0, 1 + bmax}-

competitive. We present two adversaries, one for
√

B/t0 < 1+ bmax and one for√
B/t0 ≥ 1+ bmax. Second, when t0(1+ bmax) > B, we show in Lemma 5 (proof

in full paper) that no deterministic online algorithm is better than (1 + bmax)-
competitive. Then in Section 3.2, we give matching upper bounds.

Lemma 4. Suppose one of the two machines is unavailable during [B,F] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) ≤ B, no deter-
ministic online-list algorithm is better than min{

√
B/t0, 1 + bmax}-competitive.

268 S. Yu et al.

Proof (Sketch). Consider any online algorithmA. We show here an adversary for
the case

√
B/t0 ≥ 1+bmax. The case

√
B/t0 < 1+bmax is given in the full paper.

The adversary first gives six jobs of the same deteriorating rate b1 such that
1+ b1 = (B/t0)

1/4. If A does not schedule three jobs on each machine, then the
adversary stops. Otherwise, the adversary then gives two jobs of deteriorating
rate b2 such that 1 + b2 = (1 + ε)(B/t0)

1/4, for some small ε. In both cases, one
can show that the ratio can be made arbitrarily close to 1 + bmax. ��

Lemma 5. Suppose one of the two machines is unavailable during [B,F] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) > B, no deter-
ministic online-list algorithm is better than (1 + bmax)-competitive.

Upper Bound. We modify the LS algorithm to cater for the unavailability
period on M1 and we call the algorithm MLS. MLS distinguishes the cases of B
being small and large: t0(1 + bmax) ≤ B and t0(1 + bmax) > B.

Modified LS (MLS). If t0(1 + bmax) ≤ B, the interval [t0, t0(1 + bmax)] on M1

is reserved to process the first job with deteriorating rate bmax; otherwise, no
interval is reserved. Apart from the job for which a time interval is reserved, a
given job is scheduled on the machine that results in the minimum completion
time. This includes three options: scheduling on M1 before B (if the job can be
completed before B), scheduling on M1 after F , and scheduling on M2.

Let J
 be the job with the maximum completion time by MLS and Mp be the
machine MLS schedules J
. Note that Property 2 (i) remains valid for MLS but
(ii) only holds under the condition that s
 > F .

Property 4. (i) s
(MLS) = C
(p)
max(MLS)/(1 + b
). (ii) If s
(MLS) > F , then

s
(MLS) ≤ C
(k)
max(MLS), where k �= p.

Furthermore, we give a lower bound on Cmax(OPT) when s
 ≥ B (Property 5,
proof in full paper) Let CB be the latest completion time of the MLS schedule
on M1 before B. This property is used in Lemmas 6 and 7.

Property 5. If s
(MLS)≥B, then Cmax(OPT)≥s
(MLS)
√
(1+b
)

CB

B >s
(MLS).

We then proceed to analyze the performance of MLS, showing that the upper
bounds match the lower bounds in Lemmas 4 and 5.

Lemma 6. Suppose one of the two machines is unavailable during [B,F] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) ≤ B, MLS is a
semi-online-list algorithm and is min{

√
B/t0, 1 + bmax}-competitive.

Proof. Given any job set J , we consider the case s
 ≥ B here and give the proof
of the case s
 < B in the full paper

According to how MLS schedules jobs, J
 cannot be scheduled on M1 at CB ,
implying that CB(1 + b
) > B. Furthermore, since we are considering the case
t0(1+bmax) ≤ B, it means that MLS reserves the interval [t0, t0(1+bmax)] for the

Makespan Scheduling of Linear Deteriorating Jobs 269

first job with bmax, and hence, t0(1+bmax) ≤ CB . We can then obtain two bounds
on the ratio Cmax(MLS)/Cmax(OPT). First, by Property 5, Cmax(OPT) ≥ s
.

Cmax(MLS)

Cmax(OPT)
≤ s
(1 + b
)

s

≤ 1 + bmax .

Furthermore, by Property 5, Cmax(OPT) ≥ s

√
(1 + b
)

CB

B .

Cmax(MLS)

Cmax(OPT)
≤ s
(1+b
)

s

√
(1+b
)

CB

B

=
√
1 + b

√
B/CB≤

√
1+bmax

√
B/CB≤

√
B/t0,

where the last inequality is a consequence of t0(1 + bmax) ≤ CB . Therefore, the
ratio is at most min{

√
B/t0, 1 + bmax} as required. ��

The proof of Lemma 7 is given in the full paper.

Lemma 7. Suppose one of the two machines is unavailable during [B,F] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) > B, MLS is a
semi-online-list algorithm and is (1 + bmax)-competitive.

By Lemmas 4, 5, 6, and 7, we have the following corollary.

Corollary 2. Consider two machines one of which is unavailable during [B,F]
and jobs with simple linear deteriorating rates. MLS is an optimal semi-online-
list algorithm.

4 Online-List Model: Fixed Deteriorating Rate and
Varying Normal Processing Time pj = aj + b sj

In this section, we consider jobs with fixed deteriorating rate but varying normal
processing time. We focus on the online-list model in which jobs are presented
one by one. When a job is given, it is available for process, then the online
algorithm has to dispatch the job to a machine and specify the period of time to
process the job. This decision has to be made before the next job is given, and
cannot be changed once it is made. The machines are available for processing
starting from time 0.

Recall that J (k)(S) denote the set of jobs dispatched on machine Mk by
schedule S and n(k)(S) is the size of J (k)(S). Suppose J (k)(S) = {Jk,1, Jk,2, · · · ,
Jk,n(k)}. The completion time of Jk,1 denoted by ck,1 equals to ak,1. For the

second job, ck,2 = ak,2 + ak,1(1 + b). In general, for any 1 ≤ j ≤ n(k), the
completion time of the j-th job is

ck,j =
∑

1≤i≤j

ak,i(1 + b)j−i .

Therefore, given a set of jobs on a particular machine, the optimal offline schedule
is to schedule jobs in increasing order of normal processing time aj . Recall that
amax and amin denote the maximum and minimum value of aj , and α denotes
the ratio amax

amin
.

270 S. Yu et al.

4.1 Lower Bounds

In this section, we give a lower bound on any online-list algorithm.

Theorem 4. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, the competitive ratio of any online-list algorithm is no
better than α.

Proof (Sketch). We present the adversary and leaves the detail analysis in the
full paper. Consider any online-list algorithm A. The adversary first releases
mq jobs all with normal processing time a1, for some positive integer q. If A
schedules q+1 or more jobs on one of the machines, the adversary stops releasing
jobs. Otherwise, q jobs are dispatched on each machine. The adversary releases
another mq jobs with normal processing time a2 < a1. In both cases, we can
show that Cmax(A)/Cmax(OPT) can be made arbitrarily close to α. ��

4.2 Upper Bounds

In this section, we derive upper bounds on the performance of online algorithms
(proofs in full paper). First of all, we observe that if there is only one machine,
LS is at most α-competitive. We can then extend this proof to show that RR is
α-competitive for parallel machines.

Lemma 8. Consider the online-list model with jobs having fixed deteriorating
rate. On a single machine, the competitive ratio of LS is at most α.

When we consider parallel machines, we notice that for any schedule, the machine
with the maximum number of jobs has at least � n

m� jobs. On the other hand,
the algorithm RR schedules at most � n

m� jobs to any machine. Using the same
argument as Lemma 8, we have

Cmax(RR)

Cmax(OPT)
≤

amax

∑
1≤j≤� n

m �(1 + b)�
n
m �−j

amin

∑
1≤j≤� n

m �(1 + b)�
n
m �−j

= α .

Then we have the following theorem.

Theorem 5. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, the competitive ratio of RR is at most α.

Notice that the maximum number of jobs LS schedules to a machine may be
more than � n

m�. Nevertheless, the next lemma asserts that under the condition
that α ≤ 1 + b, a machine processing more jobs always has a larger makespan.
In this case, LS schedules at most � n

m� jobs to any machine, implying that LS
is α-competitive (Corollary 3).

Lemma 9. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, when α ≤ 1 + b, the makespan of a machine processing
more jobs is larger than that of a machine processing fewer jobs.

Corollary 3. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, when α ≤ 1+ b, the competitive ratio of LS is at most α.

Makespan Scheduling of Linear Deteriorating Jobs 271

5 Summary and Future Work

In this paper, we study online parallel machine scheduling of jobs with linear
deteriorating rate. Two linear deterioration functions have been considered. For
pj = bjsj and jobs with release times, we show that LS is (1 + bmax)

2(1− 1
m)-

competitive, where bmax is the maximum deteriorating rate. We also show that
on m machines, no online algorithm is better than (1 + bmax)

1− 1
m -competitive;

and on two machines, no online algorithm is better than (1+ bmax)-competitive.
We believe it is possible to extend the adversary for two machines tommachines.
An obvious open question to close the gap between the upper and lower bounds.

As for the study of availability constraint, we have given an optimal online-
list algorithm when there are two machines one of which has an unavailable
period. Extensions include considering more than two machines, more than one
unavailable periods, and/or more than one machines being unavailable. It is
also interesting to extend the study to the online-time model where jobs have
arbitrary release times.

For the linear deterioration function pj = aj + bsj , we give a lower bound
and show that RR achieves this competitive ratio. We believe LS also achieves
this ratio but we manage to show it for a special case. An immediate question
is to determine the competitive ratio of LS for all cases. Again it is interesting
to extend the study to the online-time model.

Another direction is to consider more general functions like pj = aj + bjsj ,
non-linear deterioration, or other time dependent functions [9], e.g., decrease in
processing time as start time increases captures the learning effect.

References

1. Alidaee, B., Womer, N.K.: Scheduling with time dependent processing times: Re-
view and extensions. J. of Operational Research Society 50(7), 711–720 (1999)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

3. Browne, S., Yechiali, U.: Scheduling deteriorating jobs on a single processor. Op-
erations Research 38(3), 495–498 (1990)

4. Cheng, M.B., Sun, S.J.: A heuristic MBLS algorithm for the two semi-online par-
allel machine scheduling problems with deterioration jobs. Journal of Shanghai
University 11(5), 451–456 (2007)

5. Cheng, T.C.E., Ding, Q.: The complexity of single machine scheduling with release
times. Information Processing Letters 65(2), 75–79 (1998)

6. Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-
dependent processing times. European J. of OR 152(1), 1–13 (2004)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

8. Gawiejnowicz, S.: Scheduling deteriorating jobs subject to job or machine avail-
ability constraints. European J. of OR 180(1), 472–478 (2007)

9. Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Berlin (2008)
10. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-

cal Journal 45(9), 1563–1581 (1966)

272 S. Yu et al.

11. Gupta, J.N.D., Gupta, S.K.: Single facility scheduling with nonlinear processing
times. Computers and Industrial Engineering 14(4), 387–393 (1988)

12. Ji, M., He, Y., Cheng, T.C.E.: Scheduling linear deteriorating jobs with an avail-
ability constraint on a single machine. Theoretical Computer Science 362(1-3),
115–126 (2006)

13. Kang, L.Y., Ng, C.T.: A note on a fully polynomial-time approximation scheme
for parallel-machine scheduling with deteriorating jobs. International Journal of
Production Economics 109(1-2), 108–184 (2007)

14. Kononov, A.: Scheduling problems with linear increasing processing times. In: Zim-
mermann, U., et al. (eds.) Operations Research Proceedings 1996, Berlin, pp. 208–
212 (1997)

15. Kunnathur, A.S., Gupta, S.K.: Minimizing the makespan with late start penalties
added to processing times in a single facility scheduling problem. European Journal
of Operation Research 47(1), 56–64 (1990)

16. Lee, C.Y.: Machine scheduling with an availability constraint. Journal of Global
Optimization 9(3-4), 395–416 (1996)

17. Lee, C.Y.: Machine scheduling with availability constraints. In: Leung, J. (ed.)
Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pp. 22.1–
22.13. Chapman and Hall, Boca Raton (2004)

18. Lee, C.Y., Lei, L., Pinedo, M.: Current trend in deterministic scheduling. Annals
of Operations Research 70, 1–42 (1997)

19. Lee, W., Wu, C., Chung, Y.: Scheduling deteriorating jobs on a single machine
with release times. Computers and Industrial Engineering 54(3), 441–452 (2008)

20. Mosheiov, G.: V-shaped policies for scheduling deteriorating jobs. Operations Re-
search 39, 979–991 (1991)

21. Mosheiov, G.: Scheduling jobs under simple linear deterioration. Computers and
Operations Research 21(6), 653–659 (1994)

22. Mosheiov, G.: Multi-machine scheduling with linear deterioration. INFOR: Infor-
mation Systems and Operational Research 36(4), 205–214 (1998)

23. Ng, C.T., Li, S.S., Cheng, T.C.E., Yuan, J.J.: Preemptive scheduling with simple
linear deterioration on a single machine. Theoretical Computer Science 411(40-42),
3578–3586 (2010)

24. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Upper
Saddle River (2002)

25. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, pp, 15.1–15.42. Chap-
man and Hall, Boca Raton (2004)

26. Ren, C.R., Kang, L.Y.: An approximation algorithm for parallel machine schedul-
ing with simple linear deterioration. Journal of Shanghai University 11(4), 351–354
(2007)

A Surprisingly Simple Way of Reversing Trace

Distance via Entanglement

Jun Yan�

School of Computer Science and Technology
University of Science and Technology of China

Hefei, Anhui 230027, China
and

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
junyan@ios.ac.cn

Abstract. Trace distance (between two quantum states) can be viewed
as quantum generalization of statistical difference (between two prob-
ability distributions). On input a pair of quantum states (represented
by quantum circuits), how to construct another pair, such that their
trace distance is large (resp. small) if the original trace distance is small
(resp. large)? That is, how to reverse trace distance? This problem origi-
nally arose in the study of statistical zero-knowledge quantum interactive
proof. We discover a surprisingly simple way to do this job. In partic-
ular, our construction has two interesting features: first, entanglement
plays a key role underlying our construction; second, strictly speaking,
our construction is non-black-box.

Keywords: Trace distance, entanglement, non-black-box construction,
statistical zero-knowledge quantum proof.

1 Introduction

The trace distance between two quantum states is a real number between zero
and one, measuring the closeness of these two states; it can be viewed as the
quantum generalization of statistical difference between two probability distribu-
tions in classical case. In analogy to statistical difference, trace distance between
two quantum states is closely related to their distinguishability [8, Lecture 3].
The problem of reversing trace distance belongs to a group of similar problems
under the name ”manipulating trace distance”, which can be viewed as quantum
generalization of manipulating statistical difference. Specifically, by ”manipulat-
ing” we mean on input a pair of quantum states, transform them into another
pair in polynomial time, such that the new pair may have effects like increasing,

� This work is supported by the National Natural Science Foundation of China (Grant
No.60833001).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 273–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

274 J. Yan

decreasing, or polarizing the original trace distance [7]. With respect to revers-
ing trace distance, we search for a polynomial-time transformation such that the
trace distance of the new pair is large (resp. small) if the original trace distance
is small (resp. large).

To manipulate trace distance, we have first to choose a representation of
quantum states. In this paper, we shall represent quantum state by a unitary
quantum circuit with prescribed output. That is, a quantum circuit Q naturally
encodes a quantum state in the following way: apply Q on quantum registers
(O,G) that are initialized in state |0〉; afterwards, the state of register O (output)
is treated as the quantum state encoded by Q, while register G (non-output, or,
garbage) is neglected. We shall denote by ρQ the quantum state encoded by
quantum circuit Q, which is equal to TrG

(
Q|0〉〈0|Q∗). Such representation of

quantum state by quantum circuit can be viewed as the quantum generalization
of representation of probability distribution by (classical) circuit [5].

The original motivation to study the manipulation of trace distance arises
from the study of complete problem for complexity class QSZK— statistical
zero-knowledge quantum proof. In more detail, Watrous [7] found such a com-
plete problem for QSZK as follows: its instance consists of a pair of quantum
states (represented by quantum circuits), whose trace distance is large for yes
instance while small for no instance; following [7], let us call this problem QSD
(Quantum State Distinguishability), which can be viewed as the quantum gener-
alization of problem SD (Statistical Difference) [5] that is complete for statisti-
cal zero-knowledge interactive proof. From the name of problem QSD, one can
imagine that manipulating trace distance plays an important role in QSZK com-
pleteness proof, as well as in the complexity-theoretic study of QSZK via this
complete problem; in particular, a way to reverse trace distance will immediately
imply that complexity class QSZK is closed under complement.

Apart from its connection to QSZK, the result of this paper will show that
reversing trace distance may be of interest in its own right, for our way of
reversing trace distance is essentially non-black-box, and closely connected to
a physical phenomenon known as decoherence.

Related Work

To prove QSZK completeness theorem, Watrous [7] studied transformations of
increasing, decreasing, and polarizing traced distance. With respect to reversing
trace distance, Watrous [7] proved that problems QSD and its complement are
both QSZK-complete, which implicitly gives a way to reverse trace distance.

We remark that Watrous’ work on QSZK and manipulating trace distance
can be viewed as a quantum generalization of Sahai and Vadhan’s seminal work
[5] on SZK (statistical zero-knowledge interactive proof) and manipulating sta-
tistical difference, respectively. In particular, the transformations of increasing,
decreasing, and polarizing traced distance given in [7] are straightforward gener-
alizations of corresponding transformations of manipulating statistical difference.
A transformation to reverse statistical difference is also given in [5]; however, it
is not clear whether this way can be generalized to quantum case. In spite of

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement 275

this, there is yet another way [6, section 4.4] of reversing statistical difference,
which could be generalized to quantum case straightforwardly, thanks to another
QSZK-complete problem given by Ben-Aroya, Schwartz, and Ta-Shma [1].

Motivation of Our Work

In classical case, to show the SZK-completeness of problem problem SD and
its complement SD, Sahai and Vadhan [5] actually gave a general reduction
from any problems in SZK to problem SD. So intuitively, plugging in problem
SD into this general reduction will give a way to reverse statistical difference.
However, this intuition does not work. This is because the general reduction is
only suitable for public-coin interactive proof system; but the natural protocol
for problem SD is private-coin. Though Sahai and Vadhan [5] can assume each
SZK interactive proof system is public-coin without loss of generality, due to
Okamoto’s [4] transformation, this restriction prevents us from obtaining the
explicit construction to reverse statistical distance directly.

Turing to quantum case, Watrous [7] generalized Sahai and Vadhan [5]’s result,
giving a general reduction from any problems in QSZK, and thus problem QSD,
to its complement QSD. Like in classical case, this reduction also implies a way to
reverse trace distance. What is more interesting, compared with classical case,
Watrous’ reduction does not suffer any restrictions such as public-coin. This
motivates us to plug problem QSD into the general reduction, having a look at
what the implied way of reversing trace distance is like.

Our Contributions

The main contribution of this paper is to extract a way of reversing trace distance
from Watrous’ QSZK completeness proof, and then give a direct proof for its
correctness.

Our construction to reverse trace distance is described in Fig. 1, which was
firstly obtained from Watrous’ QSZK completeness proof. (See the full version
of this paper [9] for detail.) For its correctness, we shall prove the following main
theorem of this paper.

Theorem 1. Given a pair of quantum circuits (Q0, Q1) encoding two quantum
states, we can construct another pair of quantum circuits (R0, R1), as described
in Fig. 1, such that

δ(ρQ0 , ρQ1) = 1− ε ⇒ δ(ρR0 , ρR1) ≤
√
2ε1/4,

δ(ρQ0 , ρQ1) = ε ⇒ δ(ρR0 , ρR1) ≥ 1/2−
√

ε/2,

where ε is an arbitrary small constant. In particular, for the special case in which
ε = 0, we have

δ(ρQ0 , ρQ1) = 1 ⇒ δ(ρR0 , ρR1) = 0,
δ(ρQ0 , ρQ1) = 0 ⇒ δ(ρR0 , ρR1) = 1/2.

276 J. Yan

On input a pair of quantum circuits Q0 and Q1 which act on quantum registers
(O, G) initialized in state |0〉 and output register O, we construct another pair of
quantum circuits R0 and R1, which act on quantum registers (O, G, B, C) initialized
in state |0〉 and output register (G, B). Specifically,

– R0|0〉 = 1√
2
|0〉C ⊗

(
Q0|0〉O⊗G ⊗ |0〉B +Q1|0〉O⊗G ⊗ |1〉B

)
, outputting quantum

state TrO⊗C(R0|0〉〈0|R∗
0).

– R1|0〉 = 1√
2

(
|0〉C ⊗ (Q0|0〉O⊗G)⊗ |0〉B + |1〉C ⊗ (Q1|0〉O⊗G)⊗ |1〉B

)
, outputting

quantum state TrO⊗C(R1|0〉〈0|R∗
1).

Fig. 1. Construction to reverse trace distance between two quantum states encoded by
quantum circuits

We have a remark about parameters in our main theorem. Note that if
δ(ρQ0 , ρQ1) = 1 − ε, then we have δ(ρR0 , ρR1) ≤

√
2ε1/4, which can be arbi-

trarily small if we choose ε small enough; this is quit good. However, when
δ(ρQ0 , ρQ1) = ε, we only have δ(ρR0 , ρR1) ≥ 1/2−

√
ε/2, which is bounded away

from 1 almost 1/2. We point out that this does not matter, for we can drive it
to 1 by a polarization lemma [7, Theorem 5].

One can see that our construction is very simple, as we promised; but after
a careful observation, it appears quite exotic, if one notices the output of the
resulting quantum circuits R0 and R1: they both discard registerO, while keeping
register G. That is, registers containing input quantum states are discarded,
while non-output registers are left! This is really surprising: after all, how can
we reverse trace distance if the information about the input quantum states
is lost? Additionally, since the (mixed) state of non-output register G could
be totally arbitrary (applying any unitary transformation on the non-output
register will not affect the state of output register), we even cannot expect it to
be meaningful, what use could it be to help reversing trace distance?

Though in principle we can prove a theorem that is similar to ours (maybe with
different parameters) as an immediate corollary ofWatrous’QSZK completeness
proof, such indirect proof cannot explain the underlying idea of our construction.
To seek for a satisfiable explanation of our construction, we manage to give a
direct proof for its correctness. This will be the main technical part of this paper.
It turns out that the underlying idea of our construction is similar to a common
quantum phenomenon known as decoherence, by which off-diagonal elements of
the original quantum state are lost. More detail is referred to section 4.

As for the technical contributions of this paper, we prove several technical
lemmas along the way of our direct proof, which may come in handy in other
places. Among others, we obtain a closed form for the 1-norm, or trace norm, of
Hermitian operators of the form∑

i

λi

(
xiy

∗
i ⊗ |0〉〈1|+ yix

∗
i ⊗ |1〉〈0|

)
,

where {xi}, {yi} are orthonormal sets, λi > 0, and
∑

i λi = 1. Detail is referred
to Lemma 1.

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement 277

Last, if we compare our construction with previous manipulations of trace
distance [7,1], we find that all previous constructions only deal with the output
state of the input quantum circuits (neglecting non-output); that is, they all treat
the input quantum circuit as a black-box device that was only used to generate
quantum state. We notice that this is also the case in classical setting; that is,
all known manipulations of statistical difference [6,5] treat (classical) circuit as
a black-box device to generate probability distribution. So in comparison, our
construction is indeed a bit different: though we still apply the input quantum
circuit as a black box, we differentiate its output and non-output parts; we no
longer only treat it as a black-box device to generate quantum state. Seeing from
this point, our construction has a bit non-black-box sense. Detail is referred to
section 4.

Organization

In section 2, we shall first review some preliminary materials, including relevant
linear algebra, quantum information and computation. Section 3 is devoted to
a direct proof for the special case (ε = 0) of our main theorem, while the proof
for the general case, which can be found in the full version of this paper [9], is
omitted here due to space limitation. Following is section 4, where we reveal the
underlying idea of our construction as we learn from the direct proof.

2 Preliminaries

2.1 Quantum Information and Relevant Linear Algebra

We assume readers are familiar with elementary quantum information and linear
algebra, which can be found in several standard textbooks (and lecture notes)
such as [3,2,8].

We first need to introduce some notations that we adopt in this paper. We
shall denote complex Euclidean space (or, Hilbert space) by scripted capital let-
ters, such as X ,Y. We use lower case letter like u, v, to denote vectors in the
space, with their conjugates denoted by u∗, v∗, respectively. Let L(X ,Y) be the
collection of all linear operators (or simply operators) mapping from space X to
space Y; let L(X) be a shorthand for L(X ,X). We denote operators by capital
letters, such as A,B, with corresponding adjoint operators (or, conjugate trans-
pose) denoted by A∗, B∗, respectively. The collection of Hermitian, unitary, and
positive semidefinite operators of L(X) are denoted by X , U(X), and Pos(X),
respectively.

Density operators are those positive semidefinite operators with trace equal to
one; let D(X) be the collection of all density operators over space X . We usually
use lowercase Greek letters, such as ρ, ξ, to denote density operators.

Operator Π ∈ L(X) is called a projector if Π2 = Π . In this paper, we shall
also describe a subspace by the projector projecting on this subspace. Moreover,
by abusing the notation, we shall write Π to represent the subspace on which
projector Π projects.

278 J. Yan

Given a Hermitian operator A ∈ H(X), suppose the collection of its eigenval-
ues are {λi} (with multiplicity). Then the 1-norm, or trace norm, of operator
A, which is denoted by ‖A‖1 (many literatures use ‖A‖tr), is equal to

∑
i |λi|.

Restricting to density operator, we can define the trace distance between two
density operators ρ and ξ, denoted by δ(ρ, ξ), as ‖ρ− ξ‖1 /2. We know that
the trace distance between two density operators is closely related to their dis-
tinguishability; it can be viewed as the quantum generalization of statistical
difference between two probability distributions (see [8, Lecture 3]). In analogy
to the support of a probability distribution, we define the support of a density
operator as its eigenspace corresponding to positive eigenvalues. We know that
in classical case, if two probability distributions have statistical difference one,
then they have disjoint support; we can generalize it to quantum case.

Fact 1. Suppose ρ0, ρ1 are two density operators in complex Euclidean space X .
If δ(ρ0, ρ1) = 1, then these two density operators can be simultaneously diago-
nalizable with disjoint supports.

We remark that the proof for this intuitive fact, which can be found in the full
version of this paper [9], is not that straightforward: in general, the basis which
diagonalizes operator ρ0 − ρ1 does not necessarily diagonalize both ρ0 and ρ1
simultaneously.

More notations are as below. For a joint quantum system (X, Y), we use
partial trace TrX and TrY to mean discarding register X and Y, respectively; we
use TrX⊥ to mean discarding registers other than register X.

There is yet another quantity, known as fidelity, to measure the distance
between two density operators. Let F (ρ, ξ) be fidelity of two density operators
ρ, ξ; we have the following fact.

Fact 2 (Uhlmann). Let X and Y be complex Euclidean spaces. Let ρ, ξ ∈ D(X)
be density operators, both having rank at most dim(Y), and let u ∈ X ⊗Y be any
purification of ρ. Then

F (ρ, ξ) = max {|u∗v| : v ∈ X ⊗ Y is a purification of ξ} .

What follows are a number of basic facts that we shall use frequently (sometimes
without explicit references) in this paper; all of them (with proof) can be found
in [8].

Fact 3. Suppose X ,Y are two complex Euclidean spaces. Let ρ ∈ D(X), ξ ∈
D(Y) be density operators. Then

‖ρ⊗ ξ‖1 = ‖ρ‖1 · ‖ξ‖1 .

Fact 4. Let X be a complex Euclidean space. Operator A ∈ L(X). Then

‖A‖1 = max {Tr(A∗U) | U ∈ U(X)} .

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement 279

Fact 5. Let u, v be two vectors in complex Euclidean space X . Then

‖uu∗ − vv∗‖1 = 2

√
1− |u∗v|2.

Fact 6. Let X ,Y be two complex Euclidean spaces. Operator A ∈ L(X ⊗ Y).
Then

‖TrYA‖1 ≤ ‖A‖1 .
Fact 7 (Fuchs-van de Graaf inequality). Let X be a complex Euclidean
space. Density operators ρ, ξ ∈ D(X). Then

2− 2F (ρ, ξ) ≤ ‖ρ− ξ‖1 ≤ 2
√
1− F (ρ, ξ)2.

Fact 8 (Unitary equivalence of purifications). Let X ,Y be two complex
Euclidean spaces and let ρ ∈ D(X) be a density operator such that rank (ρ) ≤
dim(Y). Then for any choice of purifications u1, u2 ∈ X ⊗Y of ρ, there exists a
unitary operator U ∈ U(Y) such that

(1X ⊗ U) u = v.

The next fact from [7, Lemma 12] can be viewed as the approximation version
of Fact 8.

Fact 9. Let X ,Y be complex Euclidean spaces. Let ρ, ξ ∈ D(X) be density op-
erators such that their ranks are at most dim(Y), and F (ρ, ξ) ≥ 1 − ε. Suppose
vectors u, v ∈ X ⊗ Y are purifications of ρ, ξ, respectively. Then there exists
unitary operator U ∈ U(Y) such that

‖(1X ⊗ U)u− v‖ ≤
√
2ε.

3 Direct Proof

Though we have an indirect proof (via QSZK completeness theorem) for the
correctness of our way of reversing trace distance, one of its drawbacks is that it
fails to explain the underlying idea of our construction. Since the construction
is quite simple, we strongly believe that a more direct proof should exist, and
hopefully, this direct proof may explain the idea of the construction. This section
is devoted to a direct proof for the special case of Theorem 1, which suffices for
our purpose.

From the construction described in Fig. 1, we have

ρR0 = TrO⊗C
(
R0|0〉〈0|R∗

0

)
=

1

2

(
TrO(Q0|0〉〈0|Q∗

0)⊗ |0〉〈0|+TrO(Q1|0〉〈0|Q∗
1)⊗ |1〉〈1|

+TrO(Q0|0〉〈0|Q∗
1)⊗ |0〉〈1|+TrO(Q1|0〉〈0|Q∗

0)⊗ |1〉〈0|
)
, (1)

ρR1 = TrO⊗C
(
R1|0〉〈0|R∗

1

)
=

1

2

(
TrO(Q0|0〉〈0|Q∗

0)⊗ |0〉〈0|+TrO(Q1|0〉〈0|Q∗
1)⊗ |1〉〈1|

)
, (2)

δ(ρR0 , ρR1) =
1

4
‖TrO(Q0|0〉〈0|Q∗

1)⊗ |0〉〈1|+TrO(Q1|0〉〈0|Q∗
0)⊗ |1〉〈0|‖1 .(3)

280 J. Yan

We note that compared with ρR1 , expression of ρR0 has two extra terms corre-
sponding to the off-diagonal elements.

Our goal is to estimate δ(ρR0 , ρR1), given δ(ρQ0 , ρQ1) is equal to either one or
zero, where

ρQ0 = TrG(Q0|0〉〈0|Q∗
0),

ρQ1 = TrG(Q1|0〉〈0|Q∗
1).

Case 1. δ(ρQ0 , ρQ1) = 1, or equivalently,
∥∥ρQ0 − ρQ1

∥∥
1
= 2. In this case, by

Fact 1, there exists an orthonormal basis of space O, with respect to which
both density operators ρQ0 and ρQ1 are simultaneously diagonalizable and with
disjoint support. Moreover, note that quantum state Q0|0〉 is a purification of
state ρQ0 (over space O⊗G), and Q1|0〉 is a purification of state ρQ1 . By Schmidt
decomposition theorem, it is easy to see that TrO(Q0|0〉〈0|Q∗

1) = 0; and plugging
this equation into equation (3) will yield δ(ρQ0 , ρQ1) = 0.

Case 2. δ(ρQ0 , ρQ1) = 0, or equivalently,
∥∥ρQ0 − ρQ1

∥∥
1
= 0. In this case ρQ0 =

ρQ1 . We can choose an orthonormal basis {zi} in space O such that

ρQ0 = ρQ1 =
∑
i

λi ziz
∗
i ,

where λi > 0 and
∑

i λi = 1. Again, by Schmidt decomposition theorem, there
exists two orthonormal sets {xi} and {yi} in space G such that

Q0|0〉 =
∑
i

√
λi zi ⊗ xi,

Q1|0〉 =
∑
i

√
λi zi ⊗ yi.

We thus have

TrO(Q0|0〉〈0|Q∗
1) =

∑
i

λi xiy
∗
i ,

TrO(Q1|0〉〈0|Q∗
0) =

∑
i

λi yix
∗
i .

Plugging the two equations above into equation (3) gives

δ(ρR0 , ρR1) =
1

4

∥∥∥∥∥∑
i

λi

(
xiy

∗
i ⊗ |0〉〈1|+ yix

∗
i ⊗ |1〉〈0|

)∥∥∥∥∥
1

.

We denote the operator inside the 1-norm of the equation above by A, that is,

A =
∑
i

λi

(
xiy

∗
i ⊗ |0〉〈1|+ yix

∗
i ⊗ |1〉〈0|

)
.

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement 281

For our purpose, we need to lowerbound ‖A‖1, and hopefully, it is Ω(1) (with
respect to the input length). Clearly, operator A is Hermitian; thus, all its eigen-
values are real, and its 1-norm is equal to the sum of the absolute value of all
the eigenvalues. However, it is not obvious at all how to estimate (lowerbound)
‖A‖1.

It turns out that our way to estimate ‖A‖1 is very tricky; we even can give a
closed form for ‖A‖1. Since this result might be found useful in other places, we
state it in the following lemma.

Lemma 1.

‖A‖1 =

∥∥∥∥∥∑
i

λi

(
xiy

∗
i ⊗ |0〉〈1|+ yix

∗
i ⊗ |1〉〈0|

)∥∥∥∥∥
1

= 2, (4)

where λi > 0,
∑

i λi = 1, and sets {xi} and {yi} are both orthonormal sets.

Proof. Our trick is to consider A2 instead of A. We have

A2 =
∑
i

λ2
i xix

∗
i ⊗ |0〉〈0|+

∑
i

λ2
i yiy

∗
i ⊗ |1〉〈1|.

Note that operator A2 happens to be diagonal, with respect to the basis that
could be any expansion of orthonormal set {xi ⊗ |0〉} ∪ {yi ⊗ |1〉}. The diago-
nal elements of A2 are

{
λ2
i , λ

2
i

}
(with multiplicity). Therefore, together with

operator A being Hermitian, we know that the collection of the absolute value
of eigenvalues of A are {λi, λi} (with multiplicity), summing up to two. Thus,
‖A‖1 = 2.

By equality (4), we have δ(ρQ0 , ρQ1) = ‖A‖1 /4 = 1/2.

4 A Retrospect of Our Construction

With the direct proof given in the previous section, now we are at a good position
to give a retrospect of our way of reversing trace distance.

Let us first look at the expressions for quantum states ρR0 (equation (1)) and
ρR1 (equation (2)). As we have observed, expression of ρR0 has two extra terms
than ρR1 which correspond to off-diagonal elements. This reminds us of decoher-
ence, a common quantum phenomena (see, e.g. [2, section 11.3]); that is, in its
simplest form, qubit initialized in state (|0〉+ |1〉)/

√
2 will forget its off-diagonal

elements (terms |0〉〈1| and |1〉〈0| in the expression of corresponding density op-
erator) and degrade into mixed state (|0〉〈0|+ |0〉〈0|)/2, after its interaction with
the environment. This degradation is due to this qubit being first entangled with
the environment which afterwards we cannot access. It is easy to compute that

δ
(
|0〉+ |1〉)/

√
2, (|0〉〈0|+ |0〉〈0|)/2

)
= 1/2,

which happens to be equal to δ(ρR0 , ρR1), when δ(ρQ0 , ρQ1) = 0 by our construc-
tion. Indeed, this is not the coincidence; the underlying idea of our construction
is exactly the same as the decoherence. Explanation follows.

282 J. Yan

Seeing from the construction described in Fig. 1, as well as the direct proof
for the special case in the previous section, we notice that

1. For quantum state R1|0〉, since qubit C is entangled with qubit B, thus
whatever the state of register O is, tracing out (C, O) will result in the off-
diagonal elements disappearing. Thus, the expression of density operator ρR1

(equation (2)) only has diagonal elements.
2. For quantum state R0|0〉, qubit C is unentangled with the rest of quantum

system; thus first tracing out qubit C has no effect. If δ(ρQ0 , ρQ1) = 0,
then further tracing out register O will keep off-diagonal elements. However,
if δ(ρQ0 , ρQ1) = 1, then further tracing out O will result in off-diagonal
elements disappearing, like decoherence. Thus, whether ρR0 has off-diagonal
elements or not depends on whether δ(ρQ0 , ρQ1) is equal to 0 or 1.

As a result, if δ(ρQ0 , ρQ1) = 0, then ρR0 has off-diagonal elements, and is thus
different from ρR1 ; on the other hand, if δ(ρQ0 , ρQ1) = 1, then ρR0 only has
diagonal elements, and is equal to ρR1 . Seeing from this, it is the entanglement
between the output quantum register (registerO) and the rest of quantum system
that ensures our construction work; this quite well explains the counter-intuitive
operation of discarding register O we take in our construction.

Let us take another look at our construction. Compared with all previous
known manipulation of trace distance [7], even classical manipulation of sta-
tistical difference [5,6], our construction seems a bit different. Specifically, our
construction keeps the non-output of quantum circuit generating the quantum
state. This is very interesting: strictly speaking, our construction is non-black-
box, by noting that black-box way only cares about the input-output behavior of
the device generating the quantum state (or probability distribution in classical
case). All previous known constructions are indeed black-box; for example, a
way to decrease trace distance is on input quantum state ρ0, ρ1 (represented by
quantum circuit), output ρ⊗k

0 , ρ⊗k
1 , where k is some polynomial of input length.

The non-black-box property of our construction can also be testified from
another aspect. Usually, the most notable advantage of black-box construction
over non-black-box construction is that black-box construction is quite generic
— applicable in many models of computation. For example, all constructions of
manipulating trace distance in [7] still work in general (non-unitary) quantum
circuit model. In comparison, however, it is not hard to see that our construction
would fail in general quantum circuit model. (Detail can be found in the full
version of this paper [9].)

We should point out that though our construction is non-black-box, it seems
that we only open the black box just a little: we only use the non-output, while
not inspecting the inner structure of the quantum circuit; we still apply the input
quantum circuits blindly (in our construction) as a black box.

A Surprisingly Simple Way of Reversing Trace Distance via Entanglement 283

Acknowledgement. We thank John Watrous for showing us the proof of
Fact 1 on website ”Theoretical Computer Science - Stack Exchange”, as an an-
swer to the author’s question ”does the trace norm of the difference of two den-
sity matrices being one imply these two density matrices can be simultaneously
diagonalizable?”.

References

1. Ben-Aroya, A., Schwartz, O., Ta-Shma, A.: Quantum expanders: Motivation and
construction. Theory of Computing 6(1), 47–79 (2010)

2. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and QuantumComputation. Grad-
uate Studies in Mathematics, vol. 47. American Mathematical Society (2002)

3. Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Informatioin.
Cambridge University Press (2000)

4. Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Com-
put. Syst. Sci. 60(1), 47–108 (2000)

5. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003); Preliminary version appears in FOCS 1997

6. Vadhan, S.: Ph.D Thesis: A Study of Statistical Zero-Knowledge Proofs (1999)
7. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS,

pp. 459–468 (2002)
8. Watrous, J.: Theory of Quantum Information (2008) Online Lecture Notes,

http://www.cs.uwaterloo.ca/~watrous/798/

9. Yan, J.: A surprisingly simple way of reversing trace distance via entanglement. Full
version, http://lcs.ios.ac.cn/~junyan/files/Yan12_reverse-trace-full.pdf

http://www.cs.uwaterloo.ca/~watrous/798/
http://lcs.ios.ac.cn/~junyan/files/Yan12_reverse-trace-full.pdf

Constructions for Binary Codes Correcting Asymmetric
Errors from Function Fields�

Jun Zhang and Fang-Wei Fu

Chern Institute of Mathematics and LPMC,
Nankai University, Tianjin, 300071, China
zhangjun04@mail.nankai.edu.cn,

fwfu@nankai.edu.cn

Abstract. Binary asymmetric error-correcting codes play an important role in
communication systems modeled by the binary symmetric channel. In this paper,
we study binary asymmetric error-correcting codes and give a general construc-
tion for binary asymmetric error-correcting codes. The construction makes an
improvement on the lower bounds of binary asymmetric error-correcting codes
in [17].

Keywords: Asymmetric error-correcting codes, code construction, global func-
tion fields, ray class groups.

1 Introduction

In some communication systems, the error probability from 1 to 0 is sufficiently higher
than the error probability from 0 to 1. So the study of binary asymmetric error-correcting
codes is very important, just as the binary error-correcting codes for communication
systems modeled by the binary symmetric channel. A number of researchers have
studied error-correcting codes for the binary asymmetric channel, constructed a lot of
good codes and derived lower and upper bounds for binary asymmetric error-correcting
codes, e.g., see [1]-[28], [30], [31], [33]-[36], [37] and [40]. In particular, Kløve [20]
made a collection of error-correcting codes for the binary asymmetric channel.

Several lower bounds for binary asymmetric error-correcting codes were obtained
by Varshamov’s constructions and their generalizations, e.g., see [20, Theorem 6.1]
and [11], [12], [18], [31] and [34]. Using the polynomial rings over finite fields, Fu
et al. [17] gave a simple construction for a class of binary asymmetric error-correcting
codes. However, the construction can obtain all those known lower bounds given by Var-
shamov’s constructions and their generalizations. Furthermore, some new lower bounds
for binary asymmetric error-correcting codes are obtained. In this paper, we generalize
the construction in [17] to function fields. Taking the rational function field, our con-
struction is essentially the construcion given in [17]. But taking proper function fields,
our construction makes an improvement on the lower bounds in [17].

� This research work is supported by the National Natural Science Foundation of China (Nos.
61171082, 10990011, 60872025).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 284–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields 285

In [39], Xing gave a construction for binary constant-weight codes from algebraic
curves over finite fields. In Sect. 2, with a little modification of the construction of
Xing, we present a general construction for binary asymmetric error-correcting codes.
In Sect. 3, some examples of using function fields of small genera are presented to
illustrate our improvement on the bounds in [17].

2 Construction

In this section, we present our construction. First, we recall some facts about function
fields.

We mention a global function field F/Fq to be an algebraic function field F of one
variable over the finite field Fq with the full constant field Fq.

We fix an Fq-rational place P0 of F/Fq and the integral ring

A = {x ∈ F : υP(x) � 0 for all prime divisors P � P0} .
Let P(F) be the set of all prime divisors of F, and let D =

∑
P∈P(F) υP(D)P be a positive

divisor of F with P0 � Supp(D). If x ∈ F∗, we define

x ≡ 1 mod D

to mean that
(x − 1)0 � D ,

where (x−1)0 denotes the zero divisor of the principal divisor div(x−1). More explicitly,
x ≡ 1 mod D is equivalent to saying that if P ∈ Supp(D), then x lies in the valuation
ring OP and υP(x − 1) � υP(D).

Consider the the group

FrD(A) =

⎧⎪⎪⎨⎪⎪⎩G =
∑

P�P0

nPP : Supp(G) ∩ Supp(D) = ∅
⎫⎪⎪⎬⎪⎪⎭

and its two subgroups

PrD(A) =

⎧⎪⎪⎨⎪⎪⎩
∑

P�P0

υP(x)P : x ∈ F∗ and υP(x) = 0 for all P ∈ Supp(D)

⎫⎪⎪⎬⎪⎪⎭

and

PrincD(A) =

⎧⎪⎪⎨⎪⎪⎩
∑

P�P0

υP(x)P : x ∈ F∗ and x ≡ 1 mod D

⎫⎪⎪⎬⎪⎪⎭ .

The factor group
ClD(A) = FrD(A)/PrincD(A)

is called the ray class group of A modulo D.
Corresponding with PrD(A) and PrincD(A), we define

AD = {x ∈ F∗ : div(x) − υP0 (x)P0 ∈ PrD(A)}

286 J. Zhang and F.-W. Fu

and
S = {x ∈ F∗ : div(x) − υP0 (x)P0 ∈ PrincD(A)} ,

respectively.
The following propositions can be found in [39].

Proposition 1. Notations as above, the canonical morphism

ϕ : AD → PrD(A)

given by

x �→ div(x) − υP0 (x)P0

induces an isomorphism

(AD/S)/F∗q � PrD(A)/PrincD(A) .

Proof. It is easy to see that the homomorphism of groups

ϕ : AD → PrD(A)/PrincD(A); x �→ div(x) − υP0 (x)P0 + PrincD(A)

is surjective by the definition ofAD. We want to verify F∗qS is the kernel.
If x ∈ AD is such that x �→ div(x) − υP0 (x)P0 + PrincD(A) = PrincD(A) , then

div(x) − υP0 (x)P0 + div(y) − υP0 (y)P0 = 0 ,

for some x ∈ F∗ and y ≡ 1 mod D. That is equivalent to

div(xy) − υP0 (xy)P0 = 0 .

So we have
div(xy) = 0 .

The condition div(xy) = 0 means xy ∈ F∗q. If y ∈ F∗q, then x ∈ F∗q. If y � F∗q, then
div(x) − υP0 (x)P0 = div(y−1) − υP0 (y−1)P0. But υP(y−1 − 1) = υP(1 − y) − υP(y) =
υP(1 − y) ≥ υP(D) for any P ∈ Supp(D). So div(y−1) − υP0 (y−1)P0 ∈ PrincD(A). And
hence x ∈ S.

So F∗qS is the kernel, and we have an isomorphism

(AD/S)/F∗q � PrD(A)/PrincD(A) . ��

For a prime divisor P of F and an integer n ≥ 1, we define U (0)
P to be the unit group of

OP, and define its subgroup U (n)
P to be

U (n)
P = {x ∈ OP : υP(x − 1) � n} .

Then we have the following proposition.

Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields 287

Proposition 2. Keep the notations above, we have

(1) U (0)
P /U

(1)
P � F̄∗P;

(2) U (r)
P /U

(r+1)
P � F̄+P for r � 1 .

Where F̄P denote the residue class fieldOP/P, F̄∗P and F̄+P mean the multiplicative group
of the nonzero elements of F̄P and the additive group of F̄P, respectively.

Proof. Since U (0)
P is the unit group of OP, we have a canonical homomorphism of

groups
U (0)

P → (OP/P)∗; x �→ x + P .

It is surjective for U (0)
P = OP − P. For any x ∈ U (0)

P , x = 1 in (OP/P)∗ if and only if
x− 1 ∈ P, i.e. υP(x− 1) � 1. So the kernel of the morphism is U (1)

P and U (0)
P /U

(1)
P � F̄∗P.

Let π be a uniformizer of P. For any element x in U (r)
P , there exists α ∈ U (0)

P ∪ {0}
such that x is of the form x = 1+απr + y for some y ∈ OP with υP(y) � r+1. Therefore
elements in U (r)

P /U
(r+1)
P have representatives απr + U (r+1)

P , then we define

U (r)
P /U

(r+1)
P → F̄+P ; x̄ = απr + U (r+1)

P �→ α .
Let’s check that it is a morphism from the multiplicative group U (r)

P /U
(r+1)
P to the addi-

tive group F̄+P . For xi = 1 + αiπ
r + yi (i = 1, 2) in U (r)

P for some yi ∈ OP,

x1x2 = (1 + α1π
r + y1)(1 + α2π

r + y2) = 1 + (α1 + α2)πr + y ,

where y = y1 + y2 + α1α2π
2r + y1α2π

r + y2α1π
r + y1y2 ∈ OP and υP(y) � r + 1.

So x1x2 is mapped to α1 + α2, and hence it is a morphism of groups.
Similarly as above, one can verify it is an isomorphism. ��

Write

D =
t∑

i=1

eiQi (ei � 1)

with deg(Qi) = di, i = 1, 2, · · · , t. And denote U (n)
Qi

simply by U (n)
i .

Proposition 3. Notations as above, we have

AD/S �
t∏

i=1

U (0)
i /U

(ei)
i .

Proof. For any x ∈ AD, we have υQi (x) = 0 and hence x ∈ U (0)
i . So we have a map

AD →
t∏

i=1

U (0)
i /U

(ei)
i ; x �→ (x̄, · · · , x̄) .

It is surjective. For any (x̄1, · · · , x̄t) ∈ ∏t
i=1 U (0)

i /U
(ei)
i , we can choose x′i ∈ U (0)

i such
that x′i + 1 � 0 and x′i − xi ∈ U (ei)

i , then replace xi by x′i . By the approximation theorem,
there exists x ∈ F∗ such that υQi (x − xi − 1) ≥ ei. Then by the strong inequality,

υQi (x) = min{υQi (x − xi − 1), υQi (xi + 1)} = υQi (xi + 1) = 0 .

288 J. Zhang and F.-W. Fu

So
x ∈ AD .

It is obvious that its kernel is S. So we have proved it is an isomorphism

AD/S �
t∏

i=1

U (0)
i /U

(ei)
i . ��

Proposition 4. Keep the above notations, denote by Cl(F) the divisor class group of F.
Then

FrD(A)/PrD(A) � Cl(F) .

And hence, ClD(A) is a finite group and its cardinality

hD(A) = (q − 1)−1h(F)
t∏

i=1

(qdi − 1)qdi(ei−1) ,

where h(F) is the divisor class number of F.

Proof. Using the strong approximation theorem, one can show the map

FrD(A)/PrD(A)→ Cl(F);
∑

P�P0

nPP + PrD(A) �→
∑

P�P0

nPP −
∑

nPP0 + Princ(F∗)

is an isomorphism. Combining the above isomorphism and Proposition 2.1 − 2.3, we
get the second part of the proposition. ��
By the last proposition, we see that hD(A) is independent of the choices of P0. So we
denote it by hD(F). Now, we give our construction.

For two binary n−tuples

x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)

the asymmetric distance between x and y is defined as

da(x, y) = max{N(x, y),N(y, x)}
where

N(x, y) = #{i : xi = 0 and yi = 1} .
For a binary code C ⊆ {0, 1}n, the minimum asymmetric distance of C is defined as

Δ(C) = min{da(x, y) : x, y ∈ C and x � y} .
Let Γ(n, Δ) denote the maximum number of codewords in a binary code of length n and
minimum asymmetric distance Δ.

Construction. Let T = {P0 = ∞, P1, · · · , Pn} be a set of Fq−rational places of a global
function field F/Fq and D a positive divisor of degree d with T ∩ Supp(D) = ∅. Then

Γ(n, d) � 2n

hD(F)
.

Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields 289

Proof. Consider the map

π : {0, 1}n → ClD(A); c = (c1, c2, · · · , cn) �→
n∑

i=1

ciPi + PrincD(A) .

For any G ∈ ClD(A), if u, v ∈ {0, 1}n, u � v such that

π(u) = π(v) = G ,

then
n∑

i=1

uiPi −
n∑

i=1

viPi = div(f) − υP0 (f) for some f ∈ S .

Write
n∑

i=1

uiPi −
n∑

i=1

viPi =
∑

i∈S
Pi −

∑

j∈T
P j

where S and T are two subsets of {1, 2, · · · , n} with no intersection. Then
∑

i∈S
Pi −

∑

j∈T
P j = div(f) − υ∞(f)∞

and
da(u, v) = max{#S , #T } .

If υ∞(f) ≥ 0, then
deg((f)0) = #S + υ∞(f) = #T ≥ #S .

Otherwise,
deg((f)0) = #S = #T − υ∞(f) ≥ #T .

In conclusion,

da(u, v) = deg((f)0) = deg((f − 1)0) � deg(D) = d .

Then there must exist at least one element G ∈ ClD(A) such that CG = π
−1(G) contains

at least 2n

hD(F) elements and any pair of elements in CG has asymmetric distance � d.
Hence CG is the desired binary asymmetric code. ��
Remark 5. 1. Indeed,

Γ(n, d) � max
{
#CG = #π−1(G) : G ∈ ClD(A)

}
.

2. For any integer d � 1, a divisor of degree d exists. If there is another rational place
Q � T , then we take D = dQ. Otherwise, dP0 is a divisor of degree d, by the
approximation theorem, a divisor of degree d that satisfies the assumption in the
construction exists. But we want to find such a D that it makes hD(F) as small as
possible. Put h(n, d) = minD,F(hD(F)), then

Γ(n, d) � 2n

h(n, d)
.

290 J. Zhang and F.-W. Fu

Decoding Algorithm. Assume the received vector is

y = (y1, y2, · · · , yn) ∈ {0, 1}n .
Find some element f ∈ PrincD(A) such that

G −
n∑

i=1

yiPi =

l∑

j=1

Pij + div(f) − υ∞(f)∞ ,

where 1 ≤ i1 < · · · < il ≤ n.
(1) If l = 0, then decode y to y.
(2) If 1 ≤ l ≤ d − 1, decode y to c = (c1, · · · , cn) where

c j =

{
y j, j � i1, · · · , il;
y j + 1, j = i1, · · · , il .

(3) Otherwise, we declare that the decoding has failed.

Remark 6. It can be considered as a generalization of the decoding algorithm for ratio-
nal function fields in [17].

3 Examples

In this section, by taking some function fields and some specific divisor D, we give
some examples to illustrate our construction. First, we take rational function fields and
obtain the lower bounds in [17]. Furthermore, we take same more function fields of
small genera and obtain some new lower bounds for binary asymmetric error-correcting
codes which improve the results in [17].

Example 7 (Rational function fields).
Let F = Fq(x) be the rational function field over Fq (the minimal prime power

q � n), D a prime divisor of degree d (such a prime divisor exists since an irreducible
polynomial in Fq[x] of degree d exists). Then

h(n, d) � hD(F) =
qd − 1
q − 1

= qd−1 + qd−2 + · · · + q + 1 .

It follows from the remark that

Γ(n, d) � 2n

qd−1 + qd−2 + · · · + q + 1
. (3.1)

Since any integer d can be written as d = 2r + 3s for some integers r � 0, s ∈ {0, 1}
and divisors of the form

∑r
i=1 Qi + sR exist where Qi and R are pairwise distinct prime

divisors of degree 2 and 3, respectively. We have

h(n, d) � hD(F) = (q2 − 1)r(q3 − 1)s .

Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields 291

It follows that

Γ(n, d) � (q − 1)2n

(q2 − 1)r(q3 − 1)s
. (3.2)

Moreover, for q = n + 1 and d ≥ 3, take a divisor D = P0 + D′ where P0 is the prime
divisor with a uniformizer x, and D′ is a prime divisor of degree d − 1. Then

Γ(n, d) � 2n

(n + 1)d−1 − 1
. (3.3)

For q ≥ n + 2 and d ≥ 3, take the divisor D = P0 + (d − 1)P1 where P0 is the prime
divisor with a uniformizer x, and P1 is the prime divisor with a uniformizer x− 1. Then

Γ(n, d) � 2n

qd−1 − qd−2
. (3.4)

For q = n +m, let Fq = {β1, · · · , βm, α1, · · · , αn}. If 2 ≤ d ≤ m, and D = Pβ1 + · · ·+ Pβd .
Then

Γ(n, d) � 2n

(q − 1)d−1
. (3.5)

If d > m, we can write d − m = 2r + s where r and s are two nonnegative integers and
s ∈ {0, 1}. Since r ≤ d

2 ≤ n
2 ≤ q

2 ≤ q(q−1)
2 , there are distinct prime divisors of degree 2,

saying P1, · · · , Pr. Take

D = (1 + s)Pβ1 + Pβ2 + · · · + Pβm + P1 + · · · + Pr .

Then

Γ(n, d) � 2n

(q − 1)m−1qs(q2 − 1)r
. (3.6)

So far, taking proper divisors D, we obtain all bounds appeared in Theorem 2 and
Theorem 3 in [17].

Example 8 (Elliptic function fields [35]).
Let q > 2 be a prime power. Then exists a maximal global function field F/Fq2 with

q2 + 2q+ 1 rational places (It is called maximal since it achieves the Hasse-Weil bound
N(F/Fq) � q + 1 + 2g

√
q.). Put n = q2 + 2q. For any integer d � 2, we know that a

prime divisor D of degree d exists (see [39]). Then we have

h(n, d) � hD(F) =
(q2 + 2q + 1)((q2)d − 1)

q2 − 1
.

Hence,

Γ(n, d) � 2n

(q2 + 2q + 1)(q2(d−1) + q2(d−2) + · · · + q2 + 1)
. (3.7)

292 J. Zhang and F.-W. Fu

The bound (3.7) is better than the bound (3.1) when

d ≥ 1
2

√
n ln n(1 + o(1)), n→ ∞ .

There are B2 = (q2 + q)(q2 − q − 2) prime divisors of degree 2 (see [32, Proposition
V.2.9]). Using prime divisors of degrees 2 and 3, we can get a similar bound as (3.2):

Γ(n, d) � (q2 − 1)2n

(q2 + 2q + 1)(q4 − 1)r(q6 − 1)s
, (3.8)

where d = 2r + 3s, s ∈ {0, 1}. The bound (3.8) is better than the bound (3.2) when

d ≥ 1
4

√
n ln n(1 + o(1)), n→ ∞ .

For n < q2 + 2q, we can choose proper divisors to derive similar bounds as (3.3)-(3.6).

Example 9 (Function fields of genus 2 [29]).
Let q > 3 be a prime power. Then exists a maximal global function field F/Fq2 with

q2 + 4q + 1 rational places. Put n = q2 + 4q. For any integer d � 2, we know that a
prime divisor D of degree d exists (see [39]). Then we have

h(n, d) � hD(F) =
(q + 1)4((q2)d − 1)

q2 − 1
.

Hence,

Γ(n, d) � 2n

(q + 1)4(q2(d−1) + q2(d−2) + · · · + q2 + 1)
. (3.9)

The bound (3.9) is better than the bound (3.1) when

d ≥ 1
2

√
n ln n(1 + o(1)), n→ ∞ .

Using prime divisors of degrees 2 and 3, we can get a similar bound as (3.2):

Γ(n, d) � (q2 − 1)2n

(q + 1)4(q4 − 1)r(q6 − 1)s
, (3.10)

where d = 2r + 3s, s ∈ {0, 1}. The bound (3.10) is better than the bound (3.2) when

d ≥ 1
4

√
n ln n(1 + o(1)), n→ ∞ .

For n < q2 + 4q, we can choose proper divisors to derive similar bounds as (3.3)-(3.6).

Example 10 (Hermitian function fields [32]).
Let F = Fq2 (x, y) be the function field over Fq2 defined by

yq + y = xq+1 .

Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields 293

Then the genus of F is g = (q − 1)q/2, and F/Fq2 has N = 1 + q3 rational places. Put
n = q3. For d � 3, it is easy to verify that there exists a prime divisor of degree d. Then
we have

h(n, d) � hD(F) =
(q + 1)(q−1)q((q2)d − 1)

q2 − 1
.

Hence,

Γ(n, d) � (q2 − 1)2n

(q + 1)(q−1)q((q2)d − 1)
. (3.11)

The bound (3.11) is better than the bound (3.1) when

d ≥ n2/3(1 + o(1)), n→ ∞ .
Using prime divisors of degrees 3 and 4, we can get a similar bound as (3.2). For n < q3,
we can choose proper divisors to derive similar bounds as (3.3)-(3.6).

References

1. Abdel-Ghaffar, K.A.S., Ferreira, H.C.: Systematic encoding of the Varshamov-Tenengol’ts
codes and the Constantin-Rao codes. IEEE Trans. Inform. Theory 44, 340–345 (1998)

2. Al-Bassam, S., Bose, B.: Asymmetric/unidirectional error correcting and detecting codes.
IEEE Trans. Computers C-43, 590–597 (1994)

3. Al-Bassam, S., Venkatesan, R., Al-Muhammadi, S.: New single asymmetric error-correcting
codes. IEEE Trans. Inform. Theory 43, 1619–1623 (1997)

4. Al-Bassam, S., Al-Muhammadi, S.: A single asymmetric error-correcting code with 213 code-
words of dimension 17. IEEE Trans. Inform. Theory 46, 269–271 (2000)

5. Berger, J.M.: A note on error detection codes for asymmetric channels. Inform. Contr. 4,
68–73 (1961)

6. Blaum, M.: Codes for Detecting and Correcting Unidirectional Errors. IEEE Computer So-
ciety Press, Los Alamitos (1993)

7. Borden, J.M.: Optimal asymmetric error detecting codes. Inform. Contr. 53, 66–73 (1982)
8. Borden, J.M.: A low-rate bound for asymmetric error-correcting codes. IEEE Trans. Inform.

Theory 29, 600–602 (1983)
9. Bose, B., Cunningham, S.: Asymmetric error correcting codes. In: Capocelli, R., De Santis,

A., Vaccaro, U. (eds.) Sequences II: Methods in Communication, Security, and Computer
Science, pp. 24–35. Springer, Heidelberg (1993)

10. Bose, B., Al-Bassam, S.: On systematic single asymmetric error-correcting codes. IEEE
Trans. Inform. Theory 46, 669–672 (2000)

11. Constantin, S.D., Rao, T.R.N.: On the theory of binary asymmetric error-correcting codes.
Inform. Contr. 40, 20–36 (1979)

12. Delsarte, P., Piret, P.: Spectral enumerators for certain additive-error-correcting codes over
integer alphabets. Inform. Contr. 48, 193–210 (1981)

13. Delsarte, P., Piret, P.: Bounds and constructions for binary asymmetric error-correcting codes.
IEEE Trans. Inform. Theory 27, 125–128 (1981)

14. Etzion, T.: Lower bounds for asymmetric and unidirectional codes. IEEE Trans. Inform.
Theory 37, 1696–1704 (1991)

15. Fang, G., van Tilborg, H.C.A.: Bounds and constructions of asymmetric or unidirectional
error-correcting codes. Appl. Algebra Engrg. Comm. Comput. 3(4), 269–300 (1992)

294 J. Zhang and F.-W. Fu

16. Freiman, C.V.: Optimal error detection codes for completely asymmetric binary channels.
Inform. Contr. 5, 64–71 (1962)

17. Fu, F.W., Ling, S., Xing, C.P.: New lower bounds and constructions for binary codes correct-
ing asymmetric errors. IEEE Trans. Inform. Theory 49(12), 3294–3299 (2003)

18. Helleseth, T., Kløve, T.: On group-theoretic codes for asymmetric channels. Inform.
Contr. 49, 1–9 (1981)

19. Kim, H., Freiman, C.: Single error-correcting codes for asymmetric binary channels. IRE
Trans. Inform. Theory IT-5, 62–66 (1959)

20. Kløve, T.: Error correcting codes for the asymmetric channel. Rep. 18-09-07-81, Dept. Math-
ematics, University of Bergen (1981) (revised in 1983 and updated in 1995)

21. Kløve, T.: Upper bounds on codes correcting asymmetric errors. IEEE Trans. Inform. The-
ory 27, 128–131 (1981)

22. Kløve, T.: On Robinson’s coding problem. IEEE Trans. Inform. Theory 29, 450–454 (1983)
23. McEliece, R.J.: Comment on ‘A class of codes for asymmetric channels and a problem from

the additive theory of numbers’. IEEE Trans. Inform. Theory 19, 137 (1973)
24. McEliece, R.J., Rodemich, E.R.: The Constantin-Rao construction for asymmetric error-

correcting-codes. Inform. Contr. 44, 187–196 (1980)
25. Rao, T.R.N., Chawla, A.S.: Asymmetric error codes for some LSI semi-conductor memories.

In: Proc. Ann. Southeastern Symp. Syst. Theory, pp. 170–171 (1975)
26. Rao, T.R.N., Fujiwara, E.: Error-Control Coding for Computer Systems. Prentice-Hall Inc.,

Englewood Cliffs (1989)
27. Robinson, J.P.: An asymmetric error-correcting ternary code. IEEE Trans. Inform. Theory 24,

258–261 (1978)
28. Saitoh, Y., Yamaguchi, K., Imai, H.: Some new binary codes correcting asymmet-

ric/unidirectional errors. IEEE Trans. Inform. Theory 36, 645–647 (1990)
29. Serre, J.P.: Nombre de points de courbes algébriques sur Fq in Sém. Théorie Nombres Bor-

deux 22, 1–8 (1982-1983)
30. Shiozaki, A.: Construction for binary asymmetric error-correcting codes. IEEE Trans. In-

form. Theory 28, 787–789 (1982)
31. Stanley, R.P., Yoder, M.F.: A study of Varshamov codes for asymmetric channels. Jet Prop.

Lab. Tech. Rep. 32-1526 14, 117–122 (1973)
32. Stichtenoth, H.: Algebraic function fields and codes. Springer, Berlin (1993)
33. Varshamov, R.R.: A class of codes for asymmetric channels and a problem from the additive

theory of numbers. IEEE Trans. Inform. Theory 19, 92–95 (1973)
34. Varshamov, R.R., Tenenholtz, G.M.: Correction code for single asymmetric error. Automat.

Remote Contr. 26, 286–290 (1965)
35. Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Supp. 2(4),

521–560 (1969)
36. Weber, J., De Vroedt, C., Boekee, D.: New upper bounds on the size of codes correcting

asymmetric errors. IEEE Trans. Inform. Theory 33, 434–437 (1987)
37. Weber, J., De Vroedt, C., Boekee, D.: Bounds and constructions for binary codes of length

less than 24 and asymmetric distance less than 6. IEEE Trans. Inform. Theory 34, 1321–1331
(1988)

38. Xing, C.: Constructions of codes from residue rings of polynomials. IEEE Trans. Inform.
Theory 48(11), 2995–2997 (2002)

39. Xing, C., Ling, J.: A construction of binary constant-weight codes from algebraic curves over
finite fields. IEEE Trans. Inform. Theory 51(10), 3674–3678 (2005)

40. Zhang, Z., Xia, X.: New lower bounds for binary codes of asymmetric distance two. IEEE
Trans. Inform. Theory 38, 1592–1597 (1992)

Stopping Set Distributions of Algebraic

Geometry Codes from Elliptic Curves�

Jun Zhang1, Fang-Wei Fu1, and Daqing Wan2

1 Chern Institute of Mathematics and LPMC,
Nankai University, Tianjin, 300071, China

zhangjun04@mail.nankai.edu.cn,
fwfu@nankai.edu.cn

2 Department of Mathematics, University of California,
Irvine, CA 92697-3875, USA

dwan@math.uci.edu

Abstract. The stopping sets and stopping set distribution of a binary
linear code play an important role in the iterative decoding of the linear
code over a binary erasure channel. In this paper, we study stopping
sets and stopping distributions of some residue algebraic geometry (AG)
codes. For the simplest AG code, i.e., generalized Reed-Solomon code, it
is easy to determine all the stopping sets. Then we consider AG codes
from elliptic curves. We use the group structure of rational points of
elliptic curves to present a complete characterization of stopping sets.
Then the stopping sets, the stopping set distribution and the stopping
distance of the AG code from an elliptic curve are reduced to the search,
computing and decision versions of the subset sum problem in the group
of rational points of the elliptic curve, respectively.

Keywords: Stopping sets, algebraic geometry codes, generalized Reed-
Solomon codes, elliptic curve, subset sum problem.

1 Introduction

Let C be a linear code over Fq with length n, dimension k and minimum distance
d. Denote [s] = {1, 2, · · · , s} for any integer s � 1. LetH be a parity-checkmatrix
of C. Here we need not assume that the rows of H are linearly independent,
but the rows of H must span the dual code C⊥. A stopping set S of C with
parity-check matrix H is a subset of [n] such that the restriction of H to S
does not contain a row of weight 1. The stopping set distribution {Ti(H)}ni=0

enumerates the number of stopping sets with size i of C with parity-check matrix
H . Note that ∅ is a stopping set and T0(H) = 1. The stopping set distribution
of a binary linear code characterizes the performance of the linear code under
iterative decoding over a binary erasure channel. A number of researchers have
recently studied the stopping sets and stopping set distributions, e.g., see [1–25].

� The first two authors are supported by the National Natural Science Foundation of
China (Nos. 61171082, 10990011 and 60872025).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 295–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 J. Zhang, F.-W. Fu, and D. Wan

The stopping distance s(H) of C with the parity-check matrix H is the min-
imum size of nonempty stopping sets. It plays an important role in the per-
formance analysis of the iterative decoding, just as the role of the minimum
Hamming distance d of a code for maximum-likehood or algebraic decoding.

Let H∗ be the parity-check matrix consisting of all non-zero codewords in the
dual code C⊥. For any parity-check matrix H , it is obvious that Ti(H) � Ti(H

∗)
for all i. Although the iterative decoding with parity-check matrix H∗ has the
highest decoding complexity, it achieves the best possible performance as it has
the smallest stopping set distribution. It is known from [17] and [10] that the
iterative decoding with parity-check matrix H∗ is an optimal decoding for the
binary erasure channel. From now on, we always choose the parity-check matrix
H∗ for linear codes in this paper. It is well-known that

Proposition 1 ([2]). Let C be a linear code, and let H∗ denote the parity-check
matrix for C consisting of all the nonzero codewords of the dual code C⊥. Then
s(H∗) = d(C).

By this proposition, we see that in general it is an NP-hard problem to compute
the stopping distance of an arbitrary linear code, as it is well-known [26] that
computing the minimum distance of an arbitrary linear code is an NP-hard
problem. It is even NP-hard [27] to approximate the stopping distance by a
constant factor. In particular, we will see that it is already an NP-hard problem
(under RP-reduction) to compute the stopping distance of AG codes from elliptic
curves.

There are only a few linear codes with good characterizations of stopping sets.
For an example, using finite geometry, Jiang and et al. [7] gave good character-
izations of stopping sets of some Reed-Muller codes. Then they determine the
stopping set distributions of these codes.

The generalized Reed-Solomon code C with parameters [n, k, d] is defined to
be

{(f(a1), · · · , f(an)) | deg(f) ≤ k − 1, f ∈ Fq[x]} ,

where {a1, · · · , an} ⊆ Fq. Its dual code C⊥ is a generalized Reed-Solomon code
with parameters [n, n− k, d⊥ = k + 1]. C⊥ is defined by polynomials of degree
< n− k. Since every polynomial of degree < n− k with n− k zeros will be zero
polynomial, any subset of [n] with cardinality � n − k + 1 is a stopping set of
C. And any n − k evaluations at n − k points there is a polynomial of degree
n−k−1 with the exact n−k−1 evaluations at the corresponding n−k points by
Lagrange interpolation. So any non-empty subset of [n] with cardinality � n−k
is not a stopping set of C.

Theorem 2. The non-empty stopping sets of any generalized Reed-Solomon
code C with parameters [n, k, d] are given as follows:

(i) any subset of [n] with cardinality � n− k + 1 is a stopping set,
(ii) any non-empty subset of [n] with cardinality � n−k is not a stopping set.

Stopping Set Distributions of AG Codes from Elliptic Curves 297

Corollary 3. The stopping set distribution of any generalized Reed-Solomon
code C with parameters [n, k, d] is

Ti(H
∗) =

⎧⎨⎩
1, if i = 0,
0, if 1 � i � n− k,(
n
i

)
, if i � n− k + 1 .

As a generalization of generalized Reed-Solomon codes, next we study the stop-
ping sets and stopping set distributions of AG codes.

Constructions of AG Codes

Without more special instructions, we fix some notation valid for the entire
paper.

– X/Fq is a geometrically irreducible smooth projective curve of genus g over
the finite field Fq with function field Fq(X).

– X(Fq) is the set of all Fq-rational points on X.
– D = {P1, P2, · · · , Pn} is a proper subset of rational points X(Fq).
– Without any confusion, also write D = P1 + P2 + · · ·+ Pn.
– G is a divisor of degree m (2g − 2 < m < n) with Supp(G) ∩D = ∅.

Let V be a divisor on X . Denote by L (V) the Fq-vector space of all rational
functions f ∈ Fq(X) with the principal divisor div(f) � −V , together with the
zero function. And Denote by Ω(V) the Fq-vector space of all Weil differentials
ω with divisor div(ω) � V , together with the zero differential (cf. [28]).

Then the residue AG code CΩ(D,G) is defined to be the image of the following
residue map:

res : Ω(G−D) → Fn
q ; ω �→ (resP1(ω), resP2 (ω), · · · , resPn(ω)) .

And its dual code, the functional AG code CL (D,G) is defined to be the image
of the following evaluation map:

ev : L (G) → Fn
q ; f �→ (f(P1), f(P2), · · · , f(Pn)) .

They have the code parameters [n, n−m + g − 1, d � m− 2g + 2] and [n,m−
g + 1, d � n−m], respectively.

For the simplest AG codes, i.e., generalized Reed-Solomon codes, we have
determined all the stopping sets. Then we consider AG codes CΩ(D,G) from
elliptic curves. In this case, using the Riemann-Roch theorem, the stopping sets
can be characterized completely as follows.

Main Theorem. Let E be an elliptic curve over Fq, D = {P1, P2, · · · , Pn} a
subset of E(Fq) such that the zero element O /∈ D and let G = mO (0 < m < n).
The non-empty stopping sets of the residue code CΩ(D,G) are given as follows:

(i) Any non-empty subset of [n] with cardinality � m − 1 is not a stopping
set.

(ii) Any subset of [n] with cardinality � m+ 2 is a stopping set.

298 J. Zhang, F.-W. Fu, and D. Wan

(iii) A ⊆ [n], #A = m + 1, is a stopping set if and only if for all i ∈ A, the
sum ∑

j∈A\{i}
Pj �= O .

(iv) A ⊆ [n], #A = m, is a stopping set if and only if∑
j∈A

Pj = O .

(v) Denote by S(m) and S(m+ 1) the stopping sets with cardinality m and
m+ 1 in the cases (iv) and (iii), respectively. Let

S+(m) =
⋃

A∈S(m)

{A ∪ {i} : i ∈ [n] \A} .

Then the union in S+(m) is a disjoint union, and we have

S(m+ 1) ∩ S+(m) = ∅ ,

and

S(m+ 1) = {all subsets of [n] with cardinality m+ 1} \ S+(m) .

The proof will be given in the next section. By this theorem, the stopping set
distribution of CΩ(D,G) follows immediately.

Corollary 4. Notation as above. The stopping set distribution of CΩ(D,G) with
the parity-check matrix H∗ is

Ti(H
∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if i = 0,
0, if 1 � i � m− 1,
#S(m), if i = m,(

n
m+1

)
− (n−m)#S(m), if i = m+ 1,(

n
i

)
, if i � m+ 2 .

Then by Corollary 4, we easily see that the stopping distance of CΩ(D,G) is
deg(G) or deg(G) + 1. But to decide it is equivalent to a decision version of
deg(G)-subset sum problem in the group E(Fq), which is an NP-hard problem
under RP-reduction [29]. Hence to compute the stopping distance of CΩ(D,G)
is NP-hard under RP-reduction. To compute the stopping set distribution is a
counting version of deg(G)-subset sum problem in the group E(Fq), so it is also
an NP-hard problem. But for special D ⊆ E(Fq) with strong algebraic structure,
it is possible to compute the complete stopping set distribution. For instance, if
we take D = E(Fq)\{O}, denote N = #E(Fq), E(Fq)[d] the d-torsion subgroup
of E(Fq), and

N(m, 0) =
1

N

∑
r|(N,m)

(−1)m+m
r

(
N/r

m/r

)∑
d|r

μ(r/d) |E(Fq)[d]| ,

respectively. Then we have

Stopping Set Distributions of AG Codes from Elliptic Curves 299

Theorem 5. The stopping set distribution of CΩ(D,G) with the parity-check
matrix H∗ is

Ti(H
∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if i = 0,
0, if 1 � i � m− 1,
N(m, 0)−N(m− 1, 0), if i = m,(

n
m+1

)
− (n−m)(N(m, 0)−N(m− 1, 0)), if i = m+ 1,(

n
i

)
, if i � m+ 2 .

2 Stopping Set Distributions of AG Codes from Elliptic
Curves

In this section, we consider AG codes from elliptic curves. Let X = E be an
elliptic curve over the finite field Fq, D = {P1, P2, · · · , Pn} a subset of the set
E(Fq) of rational points such that the zero element O /∈ D and an integer
0 < m < n. let G = mO.

Lemma 6. Let D and G be as above. For the AG code CΩ(D,G), we have
(i) Any non-empty subset of [n] with cardinality � m − 1 is not a stopping

set.
(ii) Any subset of [n] with cardinality � m+ 2 is a stopping set.

Proof. (i) Recall that the AG code CΩ(D,G) has the minimum distance d � m.
By Proposition 1, there must be no non-empty stopping set with cardinality
� m− 1.

(ii) Recall that the dual code

CΩ(D,G)⊥ = CL (D,G)

has the minimum distance d⊥ � n − m. So any codeword in the dual code of
CΩ(D,G) has at most n− d⊥ � m zeros. Then the restriction of any codeword
in the dual code to any subset of indices [n] with cardinality � m+2 has at least
2 non-zeros. And hence any subset of [n] with cardinality � m+ 2 is a stopping
set. ��

According to Lemma 6, it is enough to consider the cases that subsets of [n]
with cardinality m and m + 1. Below we use the group E(Fq)[30, 31] to give a
description of these two classes of stopping sets.

(i) Suppose A ⊆ [n] with cardinality m+ 1 is not a stopping set. Then there
are some i ∈ A and f ∈ L (G) such that

f ∈ L (G−
∑

j∈A\{i}
Pj) \ L (G −

∑
j∈A

Pj) .

But
deg(G−

∑
j∈A\{i}

Pj) = m−m = 0 ,

300 J. Zhang, F.-W. Fu, and D. Wan

and
div(f) � −G+

∑
j∈A\{i}

Pj ,

both sides have degree zero. so

div(f) = −G+
∑

j∈A\{i}
Pj =

∑
j∈A\{i}

(Pj −O) .

In this case, A ⊆ [n], #A = m + 1, is not a stopping set if and only if there
exists some i ∈ A such that the sum

∑
j∈A\{i} Pj in the group E(Fq) is O.

(ii) Suppose A ⊆ [n] with cardinality m is not a stopping set. Then there are
some i ∈ A and f ∈ L (G) such that

0 �= f ∈ L (G−
∑

j∈A\{i}
Pj) \ L (G−

∑
j∈A

Pj) .

So A ⊆ [n] with cardinality m is a stopping set if and only if for any i ∈ A, we
have

L (G−
∑

j∈A\{i}
Pj) = L (G−

∑
j∈A

Pj) .

But
deg(G−

∑
j∈A\{i}

Pj) = 1 � 2g − 1 = 1 ,

by Riemann-Roch theorem, we have

dim

⎛⎝L (G−
∑

j∈A\{i}
Pj)

⎞⎠ = 1− g + 1 = 1 .

So A ⊆ [n] with cardinality m is a stopping set if and only if

L (G−
∑
j∈A

Pj) �= 0 .

That is, there exists some

0 �= f ∈ L (G−
∑
j∈A

Pj) .

The same as the proof in (i), the last condition is equivalent to

div(f) = G−
∑
j∈A

Pj .

So A ⊆ [n] with cardinality m is a stopping set if and only if∑
j∈A

Pj = O

in the group E(Fq).
From the argument above and Lemma 6, we get the main theorem.

Stopping Set Distributions of AG Codes from Elliptic Curves 301

Theorem 7. Let E be an elliptic curve over the finite field Fq, D = {P1, P2,
· · · , Pn} a subset of E(Fq) such that the zero element O /∈ D and let G = mO
(0 < m < n). The non-empty stopping sets of the residue code CΩ(D,G) are
given as follows:

(i) Any non-empty subset of [n] with cardinality � m − 1 is not a stopping
set.

(ii) Any subset of [n] with cardinality � m+ 2 is a stopping set.
(iii) A ⊆ [n], #A = m + 1, is a stopping set if and only if for all i ∈ A, the

sum ∑
j∈A\{i}

Pj �= O .

(iv) A ⊆ [n], #A = m, is a stopping set if and only if∑
j∈A

Pj = O .

Let us give an example to illustrate the theorem.

Example 8. Let E be an elliptic curve defined over F5 by the equation

y2 = x3 + x+ 1 .

Then E has 9 rational points: the infinity point O and P1 = (0, 1), P2 = (4, 2),
P3 = (2, 1), P4 = (3, 4), P5 = (3, 1), P6 = (2,−1), P7 = (4,−2), P8 = (0,−1).
Using Group Law Algorithm 2.3 in [31], one can check that E(F5) forms a cyclic
group with Pi = [i]P1. Let D = {P1, P2, · · · , P8} and G = 3O.

By Theorem 7, all nonempty stopping sets of CΩ(D,G) are given as follows:

(i) subsets of [n] with cardinality � 5;
(ii) {1,2,3,7}, {1,2,3,8}, {1,2,4,5}, {1,2, 4,7}, {1,2,4,8}, {1,2,5,7}, {1,2,5,8},

{1,2,7,8}, {1,3,4,6}, {1,3,4,7}, {1,3,4,8}, {1,3,6,7}, {1,3,6,8}, {1,4,5,6}, {1,4,5,7},
{1,4,5,8}, {1,4,6,7}, {1,4,7,8}, {1,5,6,8}, {1,5,7,8}, {1,6,7,8}, {2,3,5,6}, {2,3,5,7},
{2,3,5,8}, {2,3,6,7}, {2,3,6,8}, {2,4,5,6}, {2,4,5,7}, {2,4,5,8}, {2,4,6,7}, {2,4,7,8},
{2,5,6,8}, {2,5,7,8}, {2,6,7,8}, {3,4,5,6}, {3,4,5,7}, {3,4,5,8}, {3,4,6,7}, {3,5,6,8},
{4,5,7,8};

(iii) {1,2,6}, {1,3,5}, {2,3,4}, {3,7,8}, {4,6,8}, {5,6,7}.
So the stopping set distribution of CΩ(D,G) with the parity-check matrix H∗

is

Ti(H
∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if i = 0,
6, if i = 3,
40, if i = 4,(
8
i

)
, if i � 5,

0, otherwise .

And hence the minimum distance of the code CΩ(D,G) is 3 by Proposition 1.

302 J. Zhang, F.-W. Fu, and D. Wan

Theorem 7 describes all the stopping sets of residue AG codes from elliptic
curves. Next, we establish the relationship between the set of stopping sets with
cardinality m and the set of stopping sets with cardinality m+ 1.

Denote by S(m) and S(m+1) the stopping sets with cardinality m and m+1
in the cases (iv) and (iii) in Theorem 7, respectively. Let S+(m) be the extended
set of S(m) defined as follows

S+(m) =
⋃

A∈S(m)

{A ∪ {i} : i ∈ [n] \A} .

Theorem 9. Notation as above. We have

S(m+ 1) ∩ S+(m) = ∅ ,

and

S(m+ 1) = {all subsets of [n] with cardinality m+ 1} \ S+(m) .

Moreover, the union in the definition of S+(m) is a disjoint union. Hence

#S(m+ 1) =

(
n

m+ 1

)
−#S+(m) =

(
n

m+ 1

)
− (n−m)#S(m) .

Proof. First, S(m+1)∩S+(m) = ∅ is obvious by parts (iii) and (iv) of Theorem 7.
So

S(m+ 1) ⊆ {all subsets of [n] with cardinality m+ 1} \ S+(m) .

On the other hand, for any A /∈ S(m + 1) and #A = m + 1, by Theorem 7
(iii), there is some i ∈ A such that

∑
j∈A\{i} Pj = O. By Theorem 7 (iv),

A \ {i} ∈ S(m). So

A = (A \ {i}) ∪ {i} ∈ S+(m).

Hence

S(m+ 1) = {all subsets of [n] with cardinality m+ 1} \ S+(m) .

If there exist A ∈ S(m), A′ ∈ S(m), i /∈ A and i′ /∈ A′ such that

A ∪ {i} = A′ ∪ {i′} ∈ S+(m) ,

then we have i ∈ A′, i′ ∈ A and A \ {i′} = A′ \ {i}.
Since ∑

j∈A

Pj =
∑
j∈A′

Pj = O ,

we get Pi = Pi′ . So
A = A′, i = i′ .

Stopping Set Distributions of AG Codes from Elliptic Curves 303

That is, the union in the definition of S+(m) is a disjoint union. And the formula

#S(m+ 1) =

(
n

m+ 1

)
−#S+(m) =

(
n

m+ 1

)
− (n−m)#S(m)

follows immediately. ��

Remark 10. The above theorem shows how we can get S(m + 1) from S(m).
Conversely, if we know S(m + 1), then by the above theorem, we can exclude
S(m + 1) from the set of all subsets of [n] with m + 1 elements to get S+(m).
For any I ∈ S+(m), we calculate

∑
i∈I Pi. Then there is some index jI ∈ I such

that ∑
i∈I

Pi = Pj(I) .

By the definitions of S(m) and S+(m), we have

S(m) = {I \ {j(I)} | I ∈ S+(m)} .

In the above example, by Theorem 7(iv), S(3) consists of all the subsets of [8]
whose sums have 9 as a divisor. Then by Theorem 9, S(4) follows immediately
from S(3).

Corollary 11. The minimum distance and the stopping distance of the residue
AG code CΩ(D,G) is deg(G) or deg(G) + 1. Explicitly, if #S(m) > 0, we have
the stopping distance

s(CΩ(D,G)) = d(CΩ(D,G)) = m = deg(G) .

If #S(m) = 0, we have #S(m+ 1) > 0 and hence

s(CΩ(D,G)) = d(CΩ(D,G)) = m+ 1 = deg(G) + 1 .

Proof. It obviously follows from Proposition 1, Theorems 7 and 9.

Remark 12. For general subset D ⊆ E(Fq), to decide whether #S(m) > 0 is
the decision m-subset sum problem in E(Fq). It is known that the decision m-
subset sum problem in E(Fq) in general is NP-hard under RP-reduction [29]. So
to compute the stopping distance of CΩ(D,G) is NP-hard under RP-reduction.

But for subset D ⊆ E(Fq) with special algebraic structure, it is possible to com-
pute an explicit formula for #S(m), and hence #S(m+1) and the whole stopping
set distribution by Theorem 9. In the following, we consider the standard elliptic
code CΩ(D,G), i.e., D = E(Fq) \ {O}.

Proposition 13 ([32]). Suppose we are given the isomorphism

A ∼= Z/n1 × Z/n2 × · · · × Z/ns

304 J. Zhang, F.-W. Fu, and D. Wan

with n = |A| = n1 · · ·ns. Given b ∈ A, suppose (b1, b2, · · · , bs) is the image of b
in the isomorphism. Let N(k, b) be the number of k-subsets of A whose elements
sum to b. Then

N(k, b) =
1

n

∑
r|(n,k)

(−1)k+
k
r

(
n/r

k/r

)
Φ(r, b) ,

where Φ(r, b) =
∑

d|r,(ni,d)|bi μ(r/d)
∏s

i=1(ni, d) and μ is the usual Möbius func-
tion defined over the integers.

Set A = E(Fq) in Proposition 13. Denote N = #E(Fq), and E(Fq)[d] the d-
torsion subgroup of E(Fq), respectively. Then we have

Theorem 14. The number of stopping sets of CΩ(D,mO) with cardinality m
is

#S(m) = N(m, 0)−N(m− 1, 0) ,

where

N(m, 0) =
1

N

∑
r|(N,m)

(−1)m+m
r

(
N/r

m/r

)∑
d|r

μ(r/d) |E(Fq)[d]| .

Proof. Suppose
E(Fq) ∼= Z/n1 × Z/n2

for some integer n1, n2 ∈ Z. It is obvious that

|E(Fq)[d]| =
2∏

i=1

(ni, d)

and
#S(m) = N(m, 0)−N(m− 1, 0) .

��

So together with Theorems 7 and 9, we obtain Theorem 5.
Thanks to Schoof [30] and Voloch [33], there are a few possible classes of

groups of rational points of elliptic curves over finite fields. Then by combining
Theorems 7, 9 and 14, we can determine the stopping set distribution of the
standard residue AG code CΩ(D,mO) from any elliptic curve E/Fq provided
that we know the group structure E(Fq). Explicitly, we can compute #S(3) in
Example 8:

#S(3) = 1
9

∑
s|(9,3)(−1)3+

3
s

(9/s
3/s

)∑
d|s μ(s/d)#E(Fq)[d]

−
(

1
9

∑
s|(9,2)(−1)2+

2
s

(9/s−1
2/s

)∑
d|s μ(s/d)#E(Fq)[d]

)
= 10− 4 = 6 .

So #S(4) =
(
8
4

)
− (8 − 3)#S(3) = 40. This agrees with the exhaust calculation

in Example 8.

Stopping Set Distributions of AG Codes from Elliptic Curves 305

3 Conclusion

In the case g = 0, we have a complete understanding of the stopping sets and
stopping set distributions of generated Reed-Solomon codes. In the case g = 1,
using the group structure of rational points of elliptic curves, we can obtain all
the stopping sets of algebraic geometry codes from elliptic curves. Then deter-
mining the stopping sets, the stopping set distribution and the stopping distance
of CΩ(D,G) are reduced to deg(G)-subset sum problems in finite abelian groups.
In the case g > 1, only partial results can be proved. For instance, for fixed g > 1,
we conjecture that computing the stopping distance is NP-hard. We leave this
as an open problem.

References

[1] Schwartz, M., Vardy, A.: On the stopping distance and the stopping redundancy
of codes. In: Proceedings International Symposium on Information Theory, ISIT
2005, pp. 975–979 (2005)

[2] Schwartz, M., Vardy, A.: On the stopping distance and the stopping redundancy
of codes. IEEE Transactions on Information Theory 52(3), 922–932 (2006)

[3] Etzion, T.: On the stopping redundancy of Reed-Muller codes. IEEE Transactions
on Information Theory 52(11), 4867–4879 (2006)

[4] Han, J., Siegel, P.: On the stopping redundancy of MDS codes. In: IEEE Interna-
tional Symposium on Information Theory, pp. 2491–2495 (July 2006)

[5] Han, J., Siegel, P., Roth, R.: Single-exclusion number and the stopping redundancy
of MDS codes. IEEE Transactions on Information Theory 55(9), 4155–4166 (2009)

[6] Han, J., Siegel, P.H.: Improved upper bounds on stopping redundancy. IEEE
Transactions on Information Theory 53(1), 90–104 (2007)

[7] Jiang, Y., Xia, S.T., Fu, F.W.: Stopping set distributions of some Reed-Muller
codes. IEEE Transactions on Information Theory 57(9), 6078–6088 (2011)

[8] Xia, S.T., Fu, F.W.: Stopping set distributions of some linear codes. In: Informa-
tion Theory Workshop, ITW 2006, pp. 47–51. IEEE, Chengdu (2006)

[9] Xia, S.T., Fu, F.W.: On the stopping distance of finite geometry LDPC codes.
IEEE Communications Letters 10(5), 381–383 (2006)

[10] Weber, J., Abdel-Ghaffar, K.: Stopping set analysis for Hamming codes. In: 2005
IEEE Information Theory Workshop, p. 4 (August- September 1, 2005)

[11] Wadayama, T.: Average stopping set weight distributions of redundant random
ensembles. IEEE Transactions on Information Theory 54(11), 4991–5004 (2008)

[12] Ikegaya, R., Kasai, K., Shibuya, T., Sakaniwa, K.: Asymptotic weight and stopping
set distributions for detailedly represented irregular LDPC code ensembles. In:
Proceedings. International Symposium on Information Theory, ISIT 2004, p. 208
(June-July 2, 2004)

[13] Orlitsky, A., Viswanathan, K., Zhang, J.: Stopping set distribution of LDPC code
ensembles. IEEE Transactions on Information Theory 51, 929–953 (2005)

[14] Laendner, S., Milenkovic, O.: LDPC codes based on latin squares: Cycle struc-
ture, stopping set, and trapping set analysis. IEEE Transactions on Communica-
tions 55(2), 303–312 (2007)

[15] Krishnan, K., Shankar, P.: Computing the stopping distance of a Tanner graph is
NP-hard. IEEE Transactions on Information Theory 53(6), 2278–2280 (2007)

306 J. Zhang, F.-W. Fu, and D. Wan

[16] Kashyap, N., Vardy, A.: Stopping sets in codes from designs. In: Proceedings of
IEEE International Symposium on Information Theory, p. 122 (June -July 4, 2003)

[17] Hollmann, H.D.L., Tolhuizen, L.M.G.M.: On parity-check collections for iterative
erasure decoding that correct all correctable erasure patterns of a given size. IEEE
Transactions on Information Theory 53(2), 823–828 (2007)

[18] Hehn, T., Milenkovic, O., Laendner, S., Huber, J.: Permutation decoding and
the stopping redundancy hierarchy of cyclic and extended cyclic codes. IEEE
Transactions on Information Theory 54(12), 5308–5331 (2008)

[19] Han, J., Siegel, P., Vardy, A.: Improved probabilistic bounds on stopping redun-
dancy. IEEE Transactions on Information Theory 54(4), 1749–1753 (2008)

[20] Feldman, J., Wainwright, M., Karger, D.: Using linear programming to decode
binary linear codes. IEEE Transactions on Information Theory 51(3), 954–972
(2005)

[21] Esmaeili, M., Amoshahy, M.: On the stopping distance of array code parity-check
matrices. IEEE Transactions on Information Theory 55(8), 3488–3493 (2009)

[22] Di, C., Proietti, D., Telatar, I., Richardson, T., Urbanke, R.: Finite-length analysis
of low-density parity-check codes on the binary erasure channel. IEEE Transac-
tions on Information Theory 48(6), 1570–1579 (2002)

[23] Abdel-Ghaffar, K., Weber, J.: Complete enumeration of stopping sets of full-rank
parity-check matrices of Hamming codes. IEEE Transactions on Information The-
ory 53(9), 3196–3201 (2007)

[24] Tanner, R.: A recursive approach to low complexity codes. IEEE Transactions on
Information Theory 27(5), 533–547 (1981)

[25] Hollmann, H.D., Tolhuizen, L.M.: Generic erasure correcting sets: Bounds and con-
structions. Journal of Combinatorial Theory, Series A 113(8), 1746–1759 (2006);
Special Issue in Honor of Jacobus H. van Lint

[26] Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory 43(6), 1757–1766 (1997)

[27] Cheng, Q., Wan, D.: A deterministic reduction for the gap minimum distance
problem: [extended abstract]. In: Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, pp. 33–38. ACM, New York (2009)

[28] Stichtenoth, H.: Algebraic function fields and codes, 2nd edn. Graduate Texts in
Mathematics, vol. 254. Springer, Berlin (2009)

[29] Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Transactions on
Information Theory 54, 402–406 (2008)

[30] Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory, Ser.
A 46(2), 183–211 (1987)

[31] Silverman, J.H.: The arithmetic of elliptic curves, 2nd edn. Graduate Texts in
Mathematics, vol. 106. Springer, Dordrecht (2009)

[32] Li, J., Wan, D.: Counting subset sums of finite abelian groups. Journal of Combi-
natorial Theory, Series A 119(1), 170–182 (2012)

[33] Voloch, F.: A note on ellipic curves over finite fields. Bull. Soc. Math. France 116,
455–458 (1988)

Energy-Efficient Network Routing

with Discrete Cost Functions

Lin Wang1,4, Antonio Fernández Anta2,
Fa Zhang1, Chenying Hou1,4, and Zhiyong Liu3,�

1 Center for Advanced Computing Research and Key Lab of Intelligent Information
Processing, Institute of Computing Technology, Chinese Academy of Sciences

{wanglin,zhangfa,houchenying}@ict.ac.cn
2 Institute IMDEA Networks
antonio.fernandez@imdea.org

3 China State Key Lab for Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences

zyliu@ict.ac.cn
4 Graduate University of Chinese Academy of Sciences

Abstract. Energy consumption is an important issue in the design and
use of networks. In this paper, we explore energy savings in networks
via a rate adaptation model. This model can be represented by a cost-
minimization network routing problem with discrete cost functions. We
formulate this problem as an integer program, which is proved to be
NP-hard. Then a constant approximation algorithm is developed. In our
proposed method, we first transform the program into a continuous-cost
network routing problem, and then we approximate the optimal solution
by a two-step rounding process. We show by analysis that, for uniform
demands, our method provides a constant approximation for the uniform
network routing problem with discrete costs. A bicriteria network routing
problem is also developed so that a trade-off can be made between energy
consumption and network delay. Analytical results for this latter model
are also presented.

Keywords: network optimization, network routing, approximation.

1 Introduction

Energy-aware computing has recently become a hot research topic. The increas-
ingly widespread use of Internet and the sprouting of data centers are having a
dramatic impact on the global energy consumption. The energy consumed comes
from the aggregate power used by many devices (CPUs, hubs, switches, routers).
Recent studies ([13], [14]) show that there is significant room for energy saving
in current networks in general. The main reason for this is that these networks

� This research was supported in part by the Comunidad de Madrid grant S2009TIC-
1692, Spanish MICINN grant TEC2011-29688-C02-01, and National Natural Science
Foundation of China grant 61020106002, 61161160566.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 307–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 L. Wang et al.

are designed with a significant level of redundancy and over-provisioning, to
guarantee QoS and to tolerate peak load and traffic variations. However, since
networks usually carry only a small fraction of the peak, a significant portion
of the energy consumed is wasted. Ideally, the energy consumed in a network
should be proportional to the traffic load carried.

Prior work on energy efficiency have mostly focused on two techniques to save
energy: speed scaling and powering down. Under speed scaling, it is assumed that
the power consumed by a device working at speed s has the form P = sβ , where
β > 1 is a constant. This comes from the well known cube-root rule, which states
that the speed is approximately the cube root of the power consumed. Thus, the
general energy saving model with speed scaling results in a network routing
problem with a convex polynomial cost function fe(xe) = μex

β
e , where μe and

β are constants, and xe is the total traffic carried by device e (see [5], [7], [8],
[11], [17]). Another approach to save energy is achieved by powering down the
devices while they are idle. Andrews et al. [4] considered that network elements
operate only in the full-rate active mode or the zero-rate sleeping mode. They
demonstrated a trade-off between energy consumption and latency. Nedevschi
et al. [15] explored both speed scaling and power down to reduce global energy
consumption. Heller et al. [9] proposed a centralized method named ElasticTree,
which powers down some of the routers or switches and then yields the energy-
efficient routes in the data center network. At the same time, some other models,
such as the adversary queueing model, were used to explore the energy saving
in networks [3].

In this paper we consider an energy saving model called rate adaptation. In
this model, network devices can operate in one of several speeds and each device
chooses a proper state according to its current traffic load. Gunaratne et al. [12]
first proposed a method which worked with the adaptive link rate (ALR). Also
in [15], the authors studied the rate adaptive model combined with powering
down devices. Here we will present a formal model that uses rate adaptation as
power saving strategy and provides route assignment for message transmission
from a global view of the network. Then an approximation method to solve the
energy saving problem will be developed.

1.1 Related Work

The network routing problem is described as follows. We are given a set of traffic
demands and want to inseparably route them over a transmission network. The
total traffic xe on link e incurs a cost which is defined by a cost function fe(xe).
Our objective is to find routes for all demands so that the total incurred cost∑

e fe(xe) is minimized.
There has been significant work on the general network routing problem.

Note that the complexity of this problem depends on the cost function defined
on each edge. For instance, if we choose fe(·) as subadditive functions which
have the property of economies of scale, the problem becomes the well-studied
Buy-at-Bulk problem. Awerbuch and Azar [6] provided an O(log2 n) random-
ized approximation algorithm for this problem. Andrews [1] showed that for

Energy-Efficient Network Routing with Discrete Cost Functions 309

any constant γ > 0, there is no O(log
1
2−γ N)-approximation algorithm for non-

uniform Buy-at-Bulk, and there is no O(log
1
4−γ N)-approximation algorithm for

the uniform version, unless NP ∈ ZPTIME (npolylog n).
Closely related to our paper is the work of Andrews et al. [2]. The authors

studied a new kind of minimum-cost network design with (dis)economic of scale
and presented a polylogarithmic approximation algorithm to solve this problem.
In [5], randomized rounding was used to achieve a constant approximation for
uniform demands. Bansal et al. [7] studied the speed scaling model with arbi-
trary cost functions. They gave a (3+ ε)-competitive algorithm for this problem.
Unlike the works mentioned above, we focus on the network routing problem
with discrete cost functions rather than continuous ones.

1.2 Our Results

We aim to solve the minimum-energy routing in this paper. In Section 2, we
give the formalized expression of the model and then prove it is hard to approx-
imate. In Section 3, we introduce our proposed method. It first transforms the
model into a general network routing problem with continuous cost functions.
This is done by transforming the discrete function f(·) into a continuous func-
tion g(·) introducing a bounded error. Then uses a two-step rounding process
to approximate the optimal set of routes. An analysis is given to show that our
method obtains a constant approximation for this problem. In Section 4, we ex-
tend our model to a bicriteria network routing problem which considers not only
the energy cost but also the latency so that trade-off can be made between the
performance and energy consumption. Last, in Section 5, we draw conclusions.

2 The Model

We are given a directed graph G = (V,E) and a set of traffic demands D =
(d1, d2, ..., dk) where the ith demand, 1 ≤ i ≤ k, requests di units of bandwidth
provisioned between a source node si and a sink node ti. Unless otherwise said,
in the following we assume unit demands, i.e., di = 1. We assume that links
represent the abstracted resources, and each link can operate at one of a constant
number of different rates R1 < R2 < ... < Rm. Note that for energy conservation
consideration, it is reasonable to set numbers of different rates for newly designed
network devices. Each rate Ri, 1 ≤ i ≤ m, has an cost of f(Ri). Our goal is to
route all demands in a unsplittable fashion with the objective of minimizing the
total cost. Note that unsplittable routing is important in many cases in order to
avoid packets reordering.

2.1 Hardness

Not surprisingly, the minimum cost routing problem with discrete functions is
NP-hard. Furthermore, we show here that, in general, it cannot even be approx-
imated. This is shown in the following theorem.

310 L. Wang et al.

Theorem 1. There is no polynomial time approximation algorithm for the min-
imum cost routing problem with any finite approximation ratio, unless P=NP.
This holds even if all links have the same cost function f(·), and the function is
discrete and takes only 2 values.

Proof. We prove the theorem by using reduction from the edge-disjoint paths
(EDP) problem. This problem decides whether a given collection of pairs (a
source and a sink in each pair) of nodes can be connected via edge-disjoint
paths in a given network. It is known that EDP is NP-hard. We show now that
any algorithm A that ρ-approximates (1 ≤ ρ < ∞) the minimum cost network
routing problem for uniform discrete cost functions of 2 values can be used to
solve the EDP problem. This will prove the theorem.

Consider an instance of the EDP problem on a network G. The instance of
the network routing problem has one unit demand for each pair of nodes. The
cost function is as follows.

f(x) =

{
0 x ≤ 1,

1 1 < x .
(1)

Observe that if there are disjoint paths for the pairs of the EDP problem, then
the network routing problem has a solution of zero cost. Then, algorithm A
must return a solution that also has zero cost. On the other hand, if there are
no disjoint paths, the optimal solution of the network routing problem has cost
at least 1, and A will return a solution whose cost is in the interval [1, ρ]. Hence,
the algorithms A can be used to solve the EDP problem.

From the above reduction, we conclude that the problem is hard to be approxi-
mated because we have not given any restrictions on f(Ri)/f(Ri−1) which may
be unbounded. If we bound the ratio between any two adjacent steps of the cost
function, the reduction in the proof of Theorem 1 can not be built, and the in-
approximability result may not hold any more. In particular, the problem with
restricted step ratio can be approximated by a constant approximation ratio.
We will give the details in the following sections and will discuss the step cost
function with step ratio restriction. From now on, we will regard the above ratio
as a constant.

2.2 Integer Program Formulation

Formally, we can formulate the described routing problem with integer program
(P1). The binary variable yi,e indicates whether demand i uses link e, while
xe is the total load on e. Flow conservation means that for each demand i the
source si generates a flow of di, the sink absorbs a flow di, and for the other
vertices the incoming and outgoing flows of demand i are the same. Observe
that for xe ≤ ze, f(xe) = f(ze). This results in the discrete property of the cost
function f(·). More precisely, f(x) is a non-decreasing step function of x, where
x is the speed of each link. In practice, cost functions for network resources can

Energy-Efficient Network Routing with Discrete Cost Functions 311

be different. Here we just take a uniform cost function for convenience. There is
no doubt that solving (P1) is NP-hard for the 0 − 1 constraint on variable yi,e.
Since solving our network routing problem is NP-hard (as implicitly shown in
Theorem 1), so we have no hope on finding the optimal solution.

(P1) min
∑
e

f(ze)

subject to

xe =
∑
i

yi,e ∀e

xe ≤ ze ∀e
ze ∈ {R0, R1, ..., Rm} ∀e
yi,e ∈ {0, 1} ∀i, e
yi,e : flow conservation

3 The Approximation Algorithm

In this section, it is shown how to approximate a solution of (P1). First we use
a particular interpolation method to transform the cost function of the origi-
nal program into a continuous one, which is indeed to relax the discretion. It
makes the program to be solvable while introducing a bounded error. Then, we
approximately solve the transformed program by a two-step rounding process.
This process assigns routes to the demands and determines the rates of links.
We assign a path for each demand by randomized rounding and then round the
link rates based on the determined routes. At last, we analyze the performance
of the proposed method.

3.1 Transforming the Program

We use a special interpolation method to simplify our optimization program by
replacing the step function f(·) with a continuous function g(·). Before apply-
ing interpolation, we have to decide the form of the function g(x) we want to
get. It has suggested that most network devices consume energy in a superad-
ditive manner [5]. That is, doubling the speed more than doubles the energy
consumption. Hence the energy curve is often modeled by a polynomial function
g(x) = μxβ where μ and β are constants associated with network elements. More
precisely, the parameter β in the ordinary form of energy consumption has been
usually assumed to be in the interval (1, 3) [10]. The objective here is to trans-
form a step cost function into a function in the form of g(x) = μxβ . Although,
as mentioned, typically β will be larger than 1, and hence g(·) will be a convex
function, the proposed interpolation method does not impose such restriction.

Now we discuss how to apply the transformation from a step function to a
continuous one. A common approach has been using midpoints of the steps as

312 L. Wang et al.

discrete values and fitting by mean squares. This approach is not appropriate
if the step of the function have unequal length. Another popular method is to
do interpolation on a set of points which is obtained by sampling the original
function. Unfortunately, using this technique the error of the interpolation de-
pends on the sampling method we choose, and is hard to be estimated. Here we
use an alternative [16] based on integral minimization, where each point on the
original function has to be considered as an observation. Without depending on
some other parameters, the method works well for the fitting of step functions.

Definition. Consider the original function f(x), and the one to be fitted g(x),
as described before. f(x) is defined as follow.

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1, x0 < x ≤ x1,

y2, x1 < x ≤ x2,

...

ym, xm−1 < x ≤ xm,

(2)

where in our case yi = f(Ri) (1 ≤ i ≤ m) is the energy consumption value of
each state and xi = Ri, xi+1 = Ri+1 (0 ≤ i < m) represents the lower and
upper boundaries of the speed for each state. We aim to fit g(x) to f(x).

Integral Minimization. The integral to minimize can be represented as

G(μ, β) =

∫
[f(x)− g(x|μ, β)]2dx

=

m∑
i=1

∫ xi

xi−1

[yi − (μxβ)]2dx .
(3)

Since g(x) is not a linear function, this minimization problem is hard to solve.
But it is linear in a logarithmic transformation. Observe that

log(g(x)) = logμ+ β log x . (4)

Let us define vi = log yi, w = log x, and μ′ = logμ. Then, the alternative integral
that we will in fact use can be obtained as

H(μ, β) =

m∑
i=1

∫ wi

wi−1

[vi − (μ′ + βw)]2dw. (5)

And now (5) is to be minimized with respect to the parameters of the general
quadratic equation. Necessary conditions obtained by setting the first partial
derivatives equal to zero are

Energy-Efficient Network Routing with Discrete Cost Functions 313

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂H

∂μ′ =
m∑
i=1

∫ wi

wi−1

−2[vi − μ′ − βw]dw = 0,

∂H

∂β
=

m∑
i=1

∫ wi

wi−1

−2w[vi − μ′ − βw]dw = 0 .

(6)

It is obvious that the second derivatives are all positive. By solving equation (6),
we can get the values of parameters μ′ and β, and from μ′ it is obtained μ. From
these, the objective function g(x) of the interpolation can be determined.

Bound on the Interpolation Error. As our method is proposed to approxi-
mate the optimal solution, it is important to bound the error introduced. Dur-
ing the interpolation process, the error comes from the gap between the original
function f(x) and the fitted function g(x). We define this gap as follow.

Gap = max
x

{
f(x)

g(x)
,
g(x)

f(x)

}
. (7)

While using this gap definition as interpolation error, we can show the following
theorem.

Theorem 2. Given a f(x) such that yi/yi−1 ≤ σ (σ > 1), the interpolation
error satisfies Gap ∈ [2σ

σ+1 , σ], when y0 �= 0.

Proof. (Sketch) The proof is conducted as follows. It can be shown that functions
f(·) and g(·) intersect in each interval [Ri−1, Ri]. This is the key of the proof.
Then, consider two cases f(x) ≥ g(x) and f(x) ≤ g(x). In both cases we assume
there is a bound δ for the interpolation error, and then we derive that δ satisfies
some conditions in order to maintain the bound. Thus we obtain the results.

As a result, the error is not so big because our interpolation method aims to
minimize the error. Another observation is that the cost is decreased when
f(x) > g(x) but increased when f(x) < g(x). This brings a two side effects
on the error.

New Integer Program. Once the function g(x) is obtained, the optimization
can be rewritten as follows.

(P2) min
∑
e

g(xe)

subject to

xe =
∑
i

yi,e ∀e

yi,e ∈ {0, 1} ∀i, e
yi,e : flow conservation

314 L. Wang et al.

The problem now turns into an integer program with a convex1 objective func-
tion. Of course we can conclude that the problem is still NP-hard for the convex
objective and the 0-1 constraint on yi,e.

3.2 Two-Step Rounding

In this section, we introduce a two-step rounding method to complete the routing
and rates determination. Our routing problem has been transformed into integer
programming (P2) with a convex objective function. After solving (P2), we also
need to choose a proper transmission rate for each link.

First we use randomized routing in (P2) to approximate the optimal cost and
extract routing paths for all demands. The basic idea of randomized routing
is to use random choices to convert an optimal solution of a relaxation of the
problem into a probabilistically provable approximation to the optimal solution
of the original problem. To apply it to (P2), first the binary constraint yi,e ∈
{0, 1} is relaxed to yi,e ∈ [0, 1]. This transforms the integer program into a
linear program (with convex objective function), which is optimally solvable in
polynomial time. Then, we get the optimal fractional solution by solving the
relaxed convex programming. Finally, randomized decisions are used to round
the fractional flow.

We use the Raghavan-Thompson randomized rounding. The algorithm runs as
follows. Once the optimal fractional solution has been found, the flow assigned to
links is mapped to flows in paths as follows. For each demand i, first we generate
a sub-graph Gi defined by links e where y∗i,e > 0. (The flows, or weights, y∗i,e
are the optimal fractional solution of the relaxed program.) Then, we extract a
path p connecting the source and destination nodes and select the weight y∗i,e
of the bottleneck link e ∈ p to be the weight of this path, which is denoted as
wp. Hereafter the weight y∗i,e of each link e in path p is decreased by wp. Run
the above procedure repeatedly until all weights y∗i,e on the Gi become zero.
Because of the flow conservation constraint, this can always be achieved. At
last, we randomly select one path for each demand i using the path weights as
probabilities. After this rounding, there is one path for each demand.

Secondly, the state of each link should be determined after the demand routes
have been chosen. We select the speed of each link via the following rounding
procedure. First, the carried traffic x̂e of each link e is calculated as x̂e =

∑
i ˆyi,e,

where ˆyi,e is the amount of demand i that traverses link e after the rounding.
Then for each link, we search the collection of possible operational speeds and
choose the minimal se that can support the carried traffic. More formally,

se = min{Ri|(i ∈ [1,m]) ∧ (x̂e ≤ Ri)}. (8)

With this the minimum cost routing problem with discrete cost functions has
been solved as we have determined the link states and routed all the demands.

1 Assuming β ≥ 1. If β < 1, then g(·) is a concave function, and hence we have
an instance of the Buy-at-Bulk problem. As mentioned, there is no constant ratio
approximation in this case.

Energy-Efficient Network Routing with Discrete Cost Functions 315

3.3 Performance Evaluation

Now we analyze the approximation ratio of the proposed approximation algo-
rithm. Let x∗

e be the flow on link e under the optimal fractional routing, x̂e

be the rounded flow, and se be the selected operating state for link e by our
methods. We show,

Theorem 3. Let the ratio between any two adjacent steps of cost function f(·)
be bounded by σ. For unit demands, the expected cost obtained with our routing
method, E[

∑
e f(se)], is a γ-approximation of the optimal solution with respect

to the discrete cost function f(x), where γ is a constant.

The proof of this theorem proceeds by two steps. First we give the relation
between solution by our two-step rounding and the one by Raghavan-Thompson
randomized rounding. And then we bound the latter to optimal. Using these two
results, we obtain the approximation ratio of the two-step rounding.

For the optimal fractional solution, the cost can be represented as
∑

e g(x
∗
e),

and for the solution by Raghavan-Thompson randomized rounding, it is
∑

e g(x̂e),
while after the two-step rounding, it is

∑
e f(se). As we have discussed before, the

gap between the original function f(x) and the fitted function g(x) has two sides
effect on the total cost. Assume se = Ri, consider the following case.

Lemma 1. If the ratio between any two adjacent steps of cost function f(·) is
bounded by σ, then f(se) ≤ σ2g(x̂e).

Proof. The result follows since, from Theorem 2, the largest gap between g(x̂e)
and f(x̂e) is σ. Then, from the relation between se and x̂e (see Eq. 8), also
f(se) ≤ σf(x̂e). And by Theorem 2, we have f(se) ≤ σ2f(x̂e), which completes
the proof.

Now we can give the proof of Theorem 3.

Proof. The expected cost of the solution found is E[
∑

e f(se)]. From Lemma 1,
we have that f(se) ≤ σ2g(x̂e), and hence E[

∑
e f(se)] ≤ σ2E[

∑
e g(x̂e)]. As it

was shown in [5], there is a constant δ such that E[
∑

e g(x̂e)] ≤ δ
∑

e g(x
∗
e).

To complete the proof, we observe from Theorem 2 that, for all x, g(x)/σ ≤
f(x). Then, if C∗ is the cost the optimal solution of the routing problem with the
step function f(·), the optimal fractional solution of the relaxation of P2 satisfies
that C∗ ≥

∑
e g(x

∗
e)/σ. Putting it all together, we have that E[

∑
e f(se)] ≤

σ2δ
∑

e g(x
∗
e) ≤ σ3δC∗.

This result can be applied to uniform demands easily. For uniform demands
where each traffic demand requests a bandwidth di = d, the total flow on each
edge is d times of that in the case with unit demands. So we have,

Corollary 1. For uniform demands, our routing method can also obtain a γ-
approximation to the optimal integral solution in expectation, where γ is a
constant.

316 L. Wang et al.

4 Model Extension: Bicriteria Network Routing

We give an extension to model (P2) in this section. For practical applications,
we should consider the network performance as well as the energy consumption.
There are many issues related to the network performance, like queueing de-
lay, transmission delay etc. For convenience consideration, here we just take the
transmission delay from si to ti for demand i as an example, but other assump-
tions can also work in our extended model. In order to express this new added
metric, we assume on each edge e of original graph G = (V,E), we have given
a scale le to describe the latency. Thus our routing problem has two objectives,
which are energy saving and network latency minimization.

We first consider the case in which the average latency of routing all the
demands is restricted to be smaller than a value of L. So for the model (P2), we
have an additional constraint∑

i

∑
e

le · yi,e ≤ L . (9)

For solving this problem, we can simply introduce a Lagrange multiplier λ and
then move the constraint to the objective function as

min
∑
e

g(xe) + λ(
∑
i

∑
e

leyi,e − L) . (10)

Using the Lagrange relaxation, we can solve the constrained minimum cost rout-
ing problem we have just talked in previous sections. And by the property of
Lagrange relaxation, easily we have that solutions obtained by Lagrange relax-
ation are always the lower bound of the optimal integer solution. By setting λ
to different values, we choose a good solution from the results.

As to better understand the trade-off between energy saving and network
latency, we now analyse the bicriteria network routing model. The problem can
be described as minimizing both energy consumption and network latency as two
objectives. Here we use an aggregated objective function method to deal with it.
Recall that in (P2) we only take energy consumption in consideration, and aim to
minimize it. Now we introduce a parameter α to make a convex combination of
the two objectives of interest (minimizing both energy consumption and latency).
As we have presented, after the interpolation process, the energy consumption
cost is given by a convex function. Denote the energy cost as Coste and latency
cost as Costl. The total cost is obtained as Cost = α · Coste + (1 − α)Costl.

The convex combination can preserve the convex property of the two indi-
vidual costs. And thus our routing problem with objective to minimizing the
combined cost is still a convex programming. So the methods we proposed in
the previous sections are still contributing. At the same time, the introduced pa-
rameter α provide flexibility in our model where adjusting α to different values
leads to different trade-off effects for the two unrelated metrics. In particular,
when α is set to be zero, the total cost only consists of the latency cost. Thus
the problem is degraded to be the shortest path routing, which is polynomial

Energy-Efficient Network Routing with Discrete Cost Functions 317

time solvable. And α = 1 leads to the routing problem with only one objective
to minimize the energy cost, which we have just studied before.

We explore now the ratio between the latency of the routes found with our
method and the latency of the shortest paths. That is the stretch ratio ri, that we
define for a demand i as the latency of paths we obtain divides by the latency of
shortest paths. Then we define the Stretch as the maximum stretch ratio among
all demands.

Stretch = max
i∈[1,k]

{ri} . (11)

Using this definition, we have

Theorem 4. There is no bound between the latency of the paths used in the
trade-off method and the latency of the shortest paths. In other words, the stretch
can not be bounded.

The proof of this theorem is omitted from this extend abstract. As a result, the
only way to obtain good performance for this trade-off is to choose a proper
value for α. In practice, we can vary α in (0, 1) to get the relation between the
two objectives, which helps to determine the parameter. Usually, satisfying the
necessary performance requirements, we aim to maximize the energy savings.

5 Conclusion

In this paper, we investigate the network routing problem with discrete cost
functions which aims to route demands under a minimum cost way. The problem
comes from the green computing sceneries which are quite important recently.
Our contributions are mainly on the following results: for the rate adaptive
energy-saving strategy, we give a model expression by an integer program which
is believed to be NP-hard; our proposed method for solving this problem consists
of two parts. First we provide a particular interpolation method to transform
the discrete cost function into a continuous one which makes the complicated
integer program solvable. Then a two-step rounding method is developed to
give routes to demands and determine link rates by approximately solving the
integer program. By using this method, we obtain a constant approximation to
the optimal for uniform demands; also we discuss how to extend our original
model to a bicriteria network routing which can give trade-off between the two
metrics.

References

1. Andrews, M.: Hardness of Buy-at-Bulk Network Design. In: Proceedings of the
38th Annual Symposium on Foundations of Computer Science (FOCS), pp. 115–
124. IEEE Computer Society, Washington, DC (2004)

2. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-Cost Network Design with
(Dis)economies of Scale. In: Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 585–592. IEEE Computer Society, Wash-
ington, DC (2010)

318 L. Wang et al.

3. Andrews, M., Antonakopoulos, S., Zhang, L.: Energy-aware Scheduling Algorithms
for Network Stability. In: Proceedings of 29th Annual IEEE International Confer-
ence on Computer Communications (INFOCOM), pp. 1359–1367. IEEE Press,
Shanghai (2011)

4. Andrews, M., Fernández, A.A., Zhang, L., Wenbo, Z.: Routing and Scheduling
for Energy and Delay Minimization in the Powerdown Model. In: Proceedings
of 29th Annual IEEE International Conference on Computer Communications
(INFOCOM). IEEE Press, San Diego (2010)

5. Andrews, M., Fernández A.A., Zhang, L., Wenbo, Z.: Routing for Energy Mini-
mization in the Speed Scaling Model. In: Proceedings of 29th Annual IEEE In-
ternational Conference on Computer Communications (INFOCOM). IEEE Press,
San Diego (2010)

6. Awerbuch, B., Azar, Y.: Buy-at-bulk Network Design. In: Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 542–550.
IEEE Computer Society, Washington, DC (1997)

7. Bansal, N., Chan, H.L., Pruhs, K.: Speed Scaling with an Arbitrary Power Func-
tion. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 693–701. Society for Industrial and Applied Mathematics,
New York (2009)

8. Bansal, N., Kimbrel, T., Pruhs, K.: Speed Scaling to Manage Energy and Temper-
ature. Journal of the ACM 54(1), 1–39 (2007)

9. Brandon, H., Srinivasan, S., Priya, M., Yiannis, Y., Puneet, S., Sujata, B., Nick,
M.: ElasticTree: Saving Energy in Data Center Networks. In: Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, pp.
249–264. USENIX Association, Berkeley (2010)

10. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A., Wellman, J., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware Mi-
croarchitecture: Design and Modeling Challenges for Next-generation Microproces-
sors. IEEE Micro 20(6), 26–44 (2000)

11. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Energy
Efficient Online Deadline Scheduling. In: Proceedings of the 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 795–804. Society for Industrial and
Applied Mathematics, New Orleans (2007)

12. Gunaratne, C., Christensen, K., Nordman, B., Suen, S.: Reducing the Energy Con-
sumption of Ethernet with Adaptive Link Rate (ALR). IEEE Transaction on Com-
puters 57(4), 448–461 (2008)

13. Gupta, M., Singh, S.: Greening of the Internet. In: Proceedings of the 2003 Con-
ference on Applications, Technologies, Architectures and Protocols for Computer
Communications (SIGCOMM), pp. 19–26. ACM Press, Karlsruhe (2003)

14. Kurp, P.: Green Computing. Communication of the ACM 51(10), 11–13 (2008)
15. Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., Wetherall, D.: Reducing

Network Energy Consumption via Sleeping and Rate-adaptation. In: Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pp. 323–336. USENIX Association, San Francisco (2008)

16. Burt, S.R.: Curve fitting to step functions. Agricultural & Applied Economics
Association 46(2), 662–672 (1964)

17. Yao, F., Demers, A., Shenker, S.: A Scheduling Model for Reduced CPU Energy.
In: 36th Annual Symposium on Foundations of Computer Sciences, pp. 374–382
(1995)

An Algorithmic View

on Multi-Related-Segments: A Unifying Model
for Approximate Common Interval

Xiao Yang1, Florian Sikora2,5, Guillaume Blin2,
Sylvie Hamel3, Romeo Rizzi4, and Srinivas Aluru6

1 GSAP, Broad Institute of MIT & Harvard, USA
xiaoyang@broadinstitute.org

2 Université Paris-Est, LIGM, UMR 8049, France
{sikora,gblin}@univ-mlv.fr

3 DIRO, Université de Montréal, QC, Canada
hamelsyl@iro.umontreal.ca

4 DIMI, Università di Udine, Udine, Italy
romeo.rizzi@uniud.it

5 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Germany
6 DECE, Iowa State University, USA

aluru@iastate.edu

Abstract. A set of genes that are proximately located on multiple chro-
mosomes often implies their origin from the same ancestral genomic
segment or their involvement in the same biological process. Among the
numerous studies devoted to model and infer these gene sets, the recently
introduced approximate common interval (ACI) models capture gene
loss events in addition to the gene insertion, duplication and inversion
events already incorporated by earlier models. However, the computa-
tional tractability of the corresponding problems remains open in most
of the cases. In this contribution, we propose an algorithmic study of a
unifying model for ACI, namely Multi-related-segments, and demon-
strate that capturing gene losses induces intractability in many cases.

1 Introduction

The genetic blueprint of an organism is encoded in a set of DNA sequences,
known as chromosomes. During evolution, some subsequences of a chromosome
diverged while others, known as genes, were conserved among different organ-
isms. A chromosome is typically represented as a sequence of genes, then
evolution is described as a series of discrete events: gene insertion, loss, dupli-
cation and inversion. One of the most important goals in comparative genomics
is to identify a set of genes that are in proximate locations on multiple chromo-
somes and their actual chromosomal occurrences. Indeed, preservation of gene
co-locality tends to indicate that the corresponding genes either form a func-
tional unit (e.g., operons) or result from speciation or duplication events [12].
In the literature, the former is termed “gene cluster” [3], whereas the latter is

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 319–329, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

320 X. Yang et al.

known as “synteny” [22]. Both were extensively studied during the past decade,
and numerous models and algorithms were proposed to define and identify them.
From an algorithmic point of view, we present a unified model to capture ap-
proximate common intervals and provide tractability results in association with
evolutionary events.

2 Gene Proximity: Properties and Models

Modeling gene proximity based on biological intuition is known to be difficult, but
some key properties have been raised by Hoberman and Durand [12]. We present
a formalization of these properties by developing the notion of Multi-related-

segments [20,21], meanwhile, show that some of them are inadequately captured
by existing models. We consider here related algorithmic aspects.

2.1 Key Properties of Gene Proximity

Observing the co-occurrence of a gene set A in different chromosomal segments
indicates the common origin of these segments. Genes in A are referred as an-
cestral genes. Naturally, these segments of interest are subject to evolutionary
constraints. The first crucial constraint consists in evidence of any gene of inter-
est as being ancestral. This property is usually related to observing a minimum
β occurrences of such a gene among the segments, thereby reducing the pos-
sibility of misinterpreting what is in fact a chance occurrence. Secondly, each
segment contributes sufficiently to the ancestral gene set. More formally, each
segment contains at least εm different ancestral genes. Then, consider gene loss
and insertion events that may have occurred, such an segment may not neces-
sarily contain all ancestral genes while each may pick up genes independently.
To constrain the frequency of these events so that the signal of common origin
can still be detected, local and global ancestral gene density constraints apply.
The former is captured by allowing at most α interleaving genes between two
consecutive ancestral genes, while the latter is captured by allowing a maximum
εl gene losses in each segment and a maximum εt total gene losses among all
segments.

2.2 Existing Models

Consider k chromosomes, each represented as a permutation over a given gene
set A. A conserved segment [14] consists of a set of genes that occur consecu-
tively in the same order on every input chromosome. Once the constraint of the
preserved ordering is removed, it leads to the common interval (CI) model
definition [19]. If the unordered pair of the first and the last genes of a CI is the
same on each chromosome, this CI is moreover called conserved [5]. Furthermore,
if we relax the constraint that genes in a CI have to be consecutive in each chro-
mosomal occurrence – namely, two genes belonging to a CI can be interleaved by
a bounded number of genes not belonging to it – the definition of gene-teams

An Algorithmic View on Multi-Related-Segments 321

(GT) model [4] follows. The GT model is of higher biological relevance since it
in addition captures gene insertions. The aforementioned models can be applied
to strings to account for gene duplications, but the number of resulting gene
sets complying the model may increase exponentially. More recently, approxi-
mate common interval (ACI) models were introduced [1,17,7,13], where not
all ancestral genes need to occur in every segment. Among these, Median gene

cluster (Mgc) model [7] is the most recent formulation, but the complexity
of this model remains open.

3 Multi-Related Segments Model

We now present Multi-related-segments (Mrs) model [20,21], which is de-
fined as consisting of a set of segments of interest, each evolved from an ances-
tral segment with gene set A via gene insertion, loss, duplication, and inversion
events. Formally, a Mrs is defined as follows. To ensure evidence of being ances-
tral genes, each gene in A occurs in at least β (≥ 2) segments. Each segment of
interest has to contain at least εm different ancestral genes and is maximal (i.e.,
not extendable by including surrounding genes) – thus, imposing a constraint
on the minimum contribution to A. Similar to the GT model, the local ancestral
gene density is constrained allowing at most α non-ancestral genes between any
two consecutive ancestral genes. To control global ancestral gene density, we re-
quire each segment to induce no more than εl gene losses and the total number of
gene losses of all segments to be lower than εt. Then, given a set of chromosomes
and parameters α, β, εm, εl and εt, the general problem is to identify all Mrs.

The formulation of Mrs captures existing models and holds a better biological
intuition. Mrs corresponds to a CI when β = k, εm = |A| and α = 0, and to a
GT when α ≥ 0. Compared with these two models, Mrs further captures gene
loss events. Note that this aspect was already considered in the Mgc model [7].
Nevertheless, there are several major differences. Firstly, Mrs captures the same
origin of more than two segments in the absence of strong pairwise similarity
information, such as differential gene loss [18] and uber-operon [8] – which is
not the case for Mgc due to the requirement that segments pairwisely share
some common genes. Secondly, the minimum evidence of a gene being ancestral
is more flexible in Mrs by requiring β occurrences of any ancestral gene – which
has to be at least k

2 in Mgc. Finally, the local ancestral gene density is not
required in Mgc – which is, as explained in [12], crucial.

From an algorithmic point of view, regarding all above mentioned models,
complexity increases when chromosomes are delineated as strings rather than
permutations: the problem is still tractable when considering CI [2,9] but folds
into the hardness as soon as conserved CI is considered [6]. The GT model, which
captures gene insertions, duplications and inversions, is polynomial on permu-
tations [4] but exponential over strings [16]. Considering the complexity of ACI
models, which further captures gene losses, an algorithm with O(kn3 + occ) run
time over strings was proposed [1] where occ is bounded by the number of sub-
strings of the genomes. In this paper, we further investigate the complexity of

322 X. Yang et al.

ACI models, by considering from an algorithmic point of view the problem of
Mrs inference. Since known algorithmic results are available in previous mod-
eling of gene duplications, insertions and inversions, our focus is on deriving if
the problem is tractable when trying to model gene losses.

4 Complexity Analysis of MRS

One has to note that, in the following, we will set the numerical parameters of
the model to specific values. This just consists in an algorithmic trick for ease
of proof. We first consider the case when the ancestral gene set A is a priori
known. The problem, termed LocateMrs, then corresponds to locate, given k
chromosomes S = {S1, S2, . . . , Sk} represented as strings, a feasible Mrs orig-
inating from A. We prove that this problem is NP-hard even in the restricted
case where |CS(Si)| = |Si| and meanwhile, at most one substring per Si can
belong to the resulting Mrs, for every Si ∈ S. It follows that LocateMrs prob-
lem is NP-hard. Next, we prove LocateMrs to be fixed-parameter tractable
(FPT) [10], and provide an efficient dynamic programming solution. Then, we
prove that the optimization problem to identify all Mrs is hard to approximate.
Finally, we show that with the removal of the maximum number of gene loss con-
straint and the maximum number of substrings per input sequence constraint, a
polynomial algorithm can be derived. Due to space constraint, some proofs are
deferred to the full version of the paper.

4.1 Identify a MRS Given A
Let us consider that no gene insertion is allowed (α = 0), β ≥ 2 and εt = εl = ∞.
Then, by definition, any Mrs consists of substrings involving only genes in A.
Thus, each input chromosome can be pre-processed in order to remove any gene
not belonging to A, resulting in a sequence of substrings. One may then filter
out any substring that does not respect the minimum contribution to A criterion
(i.e., using εm). Any remaining substring will be referred as of interest. Finally,
since in the Mrs definition, we are looking for maximal substrings (i.e., not
extendable by including surrounding genes), any substring of interest will be
either kept or fully removed in the solution.

Definition 1. LocateMrs: Given a character set A, a string set S =
{S1

1 , S
2
1 , . . . , S

1
2 , S

2
2 , . . . , S

1
k, S

2
k . . .} where Si

j corresponds to the ith substring of

interest of Sj (i.e., jth chromosome), find a subsets S ′ ⊆ S corresponding to a
Mrs, such that A =

⋃
S∈S′ CS(S) and each character of A appears in at least

two elements of S ′, and ∀Sa
i , S

b
j ∈ S ′, i �= j.

We will prove that LocateMrs is hard but fixed-parameter tractable. We first
consider that |S| = |CS(S)| for any S ∈ S (i.e., S is a permutation). Note
that this problem is in NP. Indeed, given a subset S ′ of S, one can check in
polynomial time that each character of A appears in at least two elements of S ′

and that no more than one substring Si
j of any Sj belongs to S ′. To prove that

An Algorithmic View on Multi-Related-Segments 323

ST

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1 = u1x1u2x2u3x3 – v1w1v2w2v3w3z3
T2 = v2x2v3x3u4x4 – u2w2u3w3z3v4w4z4
T3 = w3x3v4x4u5x5 – u3v3z3u4w4z4v5w5z5
T4 = w4x4v5x5u6x6 – u4v4z4u5w5z5v6w6

T5 = v1x1w5x5v6x6 – u1w1u5v5z5u6w6

SX

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1,1 = x1 S2,1 = x2 S6,1 = x6

S1,2 = u1 – w1 S2,2 = u2 – w2 S6,2 = u6 – w6

S1,3 = u1 – v1 S2,3 = u2 – v2 S6,3 = u6 – v6

S1,4 = w1 – v1 S2,4 = w2 – v2 S6,4 = w6 – v6

S3,1 = x3 S4,1 = x4 S5,1 = x5

S3,2 = u3 – v3 S4,2 = u4 – v4 S5,2 = u5 – v5
S3,3 = w3 – v3 S4,3 = w4 – v4 S5,3 = w5 – v5

Fig. 1. Illustration of the construction on the following instance of X3C: X =
{1, 2, 3, 4, 5, 6} and T = {(1,2,3), (2, 3, 4), (3, 4, 5), (4, 5,6), (1, 5, 6)}. A correspon-
dance between the solutions of the problems is highlighted in bold.

this problem is moreover NP-hard, we provide a polynomial reduction from the
NP-complete problem Exact Cover by 3-sets (X3C) [11]: Given a finite set
X = {x1, . . . , x|X |} and a family T = {t1, . . . , t|T |} of triples over X , is there a
subfamily T ′ ⊆ T such that every xi ∈ X is contained in exactly one element of
T ′ ?

X3C problem is hard even in the special case where each element of X appears
at most three times in T [11]. Then, it is sufficient to consider the case where
each element appears either two or three times. Indeed, any triple containing
some element that occurs only once has to be part of any solution and can
be removed from further consideration. According to the problem definition, a
solution corresponds to a selection of one among the at most three occurrences
of any element of X . Without loss of generality, we fix the triple order in T .

Let us now provide the construction from any instance (X , T) of X3C problem
(an example is given in Figure 1). For each element xi ∈ X , let xi, ui, vi, wi and
zi be some characters. The set S will be built on |T | sequences, which represent
the triples of T , and four (resp. three) additional sequences, which represent any
element of X occurring twice (resp. three times) in T . Let ST = {T1, . . . T|T |}
(resp. SX) be the set of sequences representing the triples (resp. the elements of
X). Moreover, we use the symbol “–” to separate the non-adjacent substrings
in a given string, e.g., S = S1 – S2 – S3. Note that, the order of the characters
in these substrings is not important according to the definition of Mrs. Let us
first construct ST as follows. First, for each element xi ∈ X occurring twice in
T , concatenate uixi (resp. vixi) to T 1

j (initially empty) and viwi (resp. uiwi)

to T 2
j (initially empty) if the first (resp. second) occurrence of xi appears in

the jth triple of T . Second, for each element xi ∈ X occurring three times in
T , concatenate uixi (resp. vixi and wixi) to T 1

j and viwizi (resp. uiwizi and

uivizi) to T 2
j if the first (resp. second and third) occurrence of xi appears in

324 X. Yang et al.

the jth triple of T . Let us now construct the set SX . For each element xi ∈ X
occurring two times in T , add the following four sequences to SX : Si,1 = xi,
Si,2 = ui – wi, Si,3 = ui – vi, Si,4 = wi – vi. And, for each element xi ∈ X
occurring three times in T , add the following three sequences to SX : Si,1 = xi,
Si,2 = ui – vi, Si,3 = wi – vi. We finally define A to be the set of all characters
used in the construction.

Lemma 1. There exists a solution T ′ ⊆ T to X3C problem over (X , T) if and
only if in the corresponding built instance (A,S) of LocateMrs there exists a
subset S ′ ⊆ S corresponding to a Mrs.

Correctness of Lemma 1 implies the following result.

Theorem 1. LocateMrs problem is NP-complete even in the special case
where none of the input strings contains duplicated characters and at most one
substring Si

j of every Sj can belong to any solution S ′.

We now prove that LocateMrs belongs to the class of the fixed-parameter
tractable (FPT) problems [10]. In other words, it can be solved efficiently by an
algorithm exponential only with respect to a fixed parameter – |A| in our case
– while polynomial in the size of the input.

Theorem 2. LocateMrs problem is Fixed-Parameter Tractable in |A|

To show this, we provide a dynamic programming solution. According to Lo-

cateMrs definition, one has to select exactly one substring of interest among
all of them in each sequence Sj . A naive algorithm may try all such combina-
tions and check for each if any character appears in at least two substrings. Such
an algorithm has an exponential running time. We will prove that by using an
efficient dynamic programming strategy, one may hold the exponential factor in
the size of the ancestral gene set. Note that one does not need to compute the
exact number of times each character occurs but only to ensure that it occurs in
at least two substrings in the solution. According to this remark, consider a fixed
ordering of characters (a1, a2, . . . , a|A|) of A, we compute after adding substring
S to the current solution a vector C = (c1, c2, . . . , c|A|), where ci ∈ {0, 1, 2} de-
notes respectively that ai is not contained, contained in one, or contained in at
least two substrings. For example, consider A = {1, 2, 3, 4, 5} and current solu-
tion S ′ = {124}, one may derive a vector C = (2, 1, 0, 2, 1) after adding substring
“1445” to S ′. The main property of this representation is that, given A, there
are only 3|A| possible vectors. Further, let μ(x) and χS (x) denote, respectively,
the position of x in the fixed ordering of A and the boolean function indicating
whether x occurs in S. We define a boolean dynamic table D indexed by the last
substring added and the vector C for the current solution. The main recursion1

is defined as follows:

1 The base case is made in Algorithm 1.

An Algorithmic View on Multi-Related-Segments 325

D(Si
j , (c1, . . . c|A|)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 – if ∃i′, j′ < j s.t. D(Si′

j′ , (c
′
1, . . . c

′
|A|)) = 1

and ∀1 ≤ l ≤ |A|, χ
Si
j
(x) + c′l = min{2, cl}

where μ(x) = l
0 – otherwise

Algorithm 1. LocateMrs(A, S = {S1
1 , S

2
1 , . . . , S

1
2 , S

2
2 , . . . , S

1
k, S

2
k, . . .})

1: Initialize all entries of D to 0
2: for each Si

1 ∈ S do D(Si
1, (c1, . . . , c|A|)) = 1 where ∀x ∈ Si

1, cμ(x) = χ
Si
1
(x) done

3: for j = 2 to k do
4: for each Si

j ∈ S do Fill out D(Si
j , (c1, . . . , c|A|)) done

5: end for
6: for each Si

k ∈ S do
7: if D(Si

k, (2, . . . , 2)) = 1 then return True end if
8: end for
9: return False

Given this function, one can apply Algorithm 1. The algorithm computes, for
each sequence Sj the possible character set solution induced by any combination
of substrings of interest from sequences Sj′ with j′ < j. Therefore, any entry
D(Si

j , (2, . . . , 2)) = 1 corresponds to a Mrs being found. One may, using a
simple back-tracking technic, rebuild one optimal solution. Let us now prove the
time complexity of this algorithm. In order to fill out D, one has to compute
|S| × 3|A| entries. Indeed, there are at most |S| different substrings and 3|A|

possible character sets. The main recursion needs, for each entry, to browse at
most |S| × 3|A| other entries of D. This leads to an overall O((|S| × 3|A|)2)
running time algorithm. Hence, the problem is FPT with respect to |A|.

4.2 Identify All MRS When A Is Unknown

We will prove that finding all Mrs problem is hard even in the special case where
none of the sequences contains duplicated characters and in any solution S ′, for
any sequence Sj at most one substring Si

j ∈ S ′ (i.e., α = 0, β ≥ 2, εt = εl = ∞).
First, note that the problem is in NP since given a subset S ′ of S, one can

polynomially check that each element of A appears in at least two substrings
and no more than one substring of any sequence belongs to S ′. To prove that
this problem is moreover NP-hard, we provide a polynomial reduction from the
NP-complete problem X3C [21] based on a slight modification of the reduc-
tion of the previous section. Indeed, if one replaces each of the separations “–”
between substrings of interest by a unique character appearing only once in S,
then by definition, those added characters will never be part of a Mrs since any
character should appear at least twice in a Mrs. Due to the unextandability
property of Mrs, one should be able to find neither a smaller nor a bigger sub-
string of interest in each sequence than in the LocateMrs formulation. The
rest of the proof still holds, leading to the following theorem.

326 X. Yang et al.

Theorem 3. Finding a Mrs problem is NP-complete even in the special case
where none of the sequences contains duplicated characters and in any solution
S ′, at most one substring from each Sj belongs to S ′.

Let us then consider the optimization version of the problem (Definition 2) where
one wants to find a Mrs induced by the maximum unknown ancestral gene set
(in other words, one constrains the minimum size of A), and at the same time,
at most one substring of each Sj can belong to the Mrs.

Definition 2. MaxMrs: Given a set of k strings S = {S1, . . . Sk}, find any
possible (A,S ′) where S ′ = {S′

1, S
′
2, . . . S

′
k : S′

i is a substring of Si}, A =⋃k
i=1 CS(S′

i), and |A| is maximum.

We will demonstrate that this optimization problem is hard to approximate.
Meanwhile, we show that the inapproximability of this problem may stem from
forbidding more than one substring per input chromosome, the relaxation of
which leads to polynomiality.

In the following, we consider that β ≥ 2, α = 0, εm = 1, and εt = εl = ∞. We
prove the inapproximability of MaxMrs below by proposing a reduction from
the Minimum Set Cover (MinSC) problem: Given a family F of subsets of a
finite universe U , find a set cover F ′ for U – that is a subfamily F ′ ⊆ F whose
union is U – of the minimum cardinality.

Since any character appearing once in an input string will not be part of
a Mrs, we use the symbol “–” to denote any such character. The presence of
symbol “–” will induce, in MaxMrs problem, that characters appearing before
and after it in any input string cannot be part of the same solution. Given
any instance (F ,U) of MinSC, where U = {u1, . . . un} and F = {Fi : Fi =
{u1

i , u
2
i , . . . u

ni

i }, 1 ≤ i ≤ m}, we define a set of strings S = {S0, . . . , Sk=2m}
with S0 = u1 . . . un, Si = S1

i – S2
i = u1

iu
2
i . . . u

ni

i – vi and Sm+i = vi, for
1 ≤ i ≤ m.

Lemma 2. If there exists a cover F ′ ⊆ F for U (i.e. U =
⋃

F∈F ′ F) then there
exists a solution (A,S ′) (i.e. a Mrs) for the built up instance S of MaxMrs

such that |A| = n+m− |F ′|.

Lemma 3. Given a solution (A,S ′) for a built up instance S of MaxMrs,
we can construct in polynomial-time a cover F ′ ⊆ F for U , such that |F ′| ≤
m− (|A| − n).

Proof. We first define a polynomial-time subroutine that transforms any solution
(A,S ′) to an equally good solution where CS(S0) ⊆ A. For any character of S0

not belonging to A – say uj , add to S ′ one substring S1
i that was not in S ′

but contains uj , meanwhile, remove from S ′ correspondingly two substrings S2
i

and Sm+i. Every such replacement operation will change a given vi by uj in A
without decreasing the cardinality of A (i.e. an equally good solution). Once this
subroutine has been applied to (A,S ′), one can build a coverF ′ = {Fi : S

2
i �∈ S ′}.

The subroutine guarantees that all elements of S0 belong to F ′ – a cover for U .

An Algorithmic View on Multi-Related-Segments 327

Clearly, |A| − n corresponds to the number of vjs belonging to A. Considering
S1, S2...Sm (where S2

j s appear), there exist at most m − (|A| − n) strings such

that S2
j �∈ S ′; inducing that |F ′| ≤ m− (|A| − n). ��

Theorem 4. MaxMrs is APX-hard even in the special case where, for every
input string Si, |CS(Si)| = |Si|.

Proof. Consider Minimum 3-SetCover-3 (Min3SC-3), a subproblem of
MinSC, where the size of any set in F is bounded by 3 as well as the num-
ber of times each character of U occurs in F . We will prove the theorem by
contradiction, assuming that MaxMrs admits a Polynomial-Time Approxima-
tion Scheme (PTAS), i.e. one would be able to find an approximation algorithm
leading to an approximate solution (AAPX ,SAPX), which compared with the op-
timal solution (AOPT ,SOPT), induces |AAPX | ≥ (1−ε) · |AOPT | for a parameter
ε > 0. Accordingly, under the same assumption, we will prove that Min3SC-3

also admits a PTAS, i.e. one would be able to find an approximation algorithm
leading to an approximate solution FAPX , which compared with the optimal
solution FOPT , induces |FAPX | ≤ (1 + γ) · |FOPT | for a parameter γ > 0 – a
contradiction to the fact that Min3SC-3 is APX-hard [15].

Since each character of U occurs at most three times in F , the size of the
ground set used to build F is at most 3n, leading to m ≤ 3n. Moreover, any
cover F ′ ⊆ F of U is at least of size n

3 since F is composed of sets of size at
most three. Hence, n

3 ≤ |FOPT | and consequently, m ≤ 9 · |FOPT |.
If we have an approximate solution (AAPX ,SAPX), then

By Lemma 3, |FAPX | ≤ m− (|AAPX | − n)
By assumption, m− (|AAPX | − n) ≤ m− ((1 − ε) · |AOPT | − n)
By Lemma 2, |AOPT | = n+m− |FOPT |
Which leads to, |FAPX | ≤ ε · n+ ε ·m+ (1− ε) · |FOPT |
(m ≤ 3n ≤ 9|FOPT |) ≤ 12ε · |FOPT |+ (1− ε) · |FOPT |
Finally, ≤ (1 + 11ε) · |FOPT | ��

We now prove the following result on restricted instances.

Theorem 5. If one restricts neither the maximum number of gene losses per
substring of interest, nor the maximum number of substrings of interest per chro-
mosome, and if every input sequence contains no duplicated characters, finding
all the Mrs becomes a polynomial task.

Proof. Consider a graph G = (V,E) obtained from S in such a way that a
vertex is assigned to every character in each string Si ∈ S and a red (resp.
blue) colored edge is created between any two adjacent characters (resp. any
two vertices representing identical characters). Given this representation, the
notion of character set naturally extends to any subgraph G[V ′] of G as the set
of represented characters by V ′. Our method consists in an iterative procedure
which stops when none of the following operations can be applied anymore.
The results will consist of a set of connected components, each corresponding
to a Mrs. The first operation consists in removing from V any vertex which

328 X. Yang et al.

is only incident to red colored edges. This polynomial operation results in the
removal of genes not appearing twice in a candidate connected component. The
second operation gets rid of candidates not fulfilling the minimum contribution
to the ancestral gene set by pruning any red edge-induced subgraph G′ such
that |CS(G′)| < εm. This operation can be done in linear time by browsing any
connected component. Once none of these operations can be done anymore, it is
easy to see that each remaining connected component corresponds to a Mrs. ��

References

1. Amir, A., Gasieniec, L., Shalom, R.: Improved approximate common interval. Inf.
Process. Lett. 103(4), 142–149 (2007)

2. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing Common In-
tervals of K Permutations, with Applications to Modular Decomposition of Graphs.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790.
Springer, Heidelberg (2005)

3. Bergeron, A., Chauve, C., Gingras, Y.: Bioinformatics Algorithms: Techniques and
Applications, ch. 8, pp. 177–202. Wiley & Sons, Inc. (2008)

4. Bergeron, A., Corteel, S., Raffinot, M.: The Algorithmic of Gene Teams. In: Guigó,
R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 464–476. Springer, Hei-
delberg (2002)

5. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applica-
tions to genome comparison. J. Comput. Biol. 13(7), 1340–1354 (2006)

6. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with
duplications: a computational complexity point of view. ACM TCBB 4(4), 523–534
(2007)

7. Böcker, S., Jahn, K., Mixtacki, J., Stoye, J.: Computation of median gene clusters.
J. Comput. Biol. 16(8), 1085–1099 (2009)

8. Che, D., Li, G., Mao, F., Wu, H., Xu, Y.: Detecting uber-operons in prokaryotic
genomes. Nucleic Acids Res. 34(8), 2418–2427 (2006)

9. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. JDA 5(2),
330–340 (2007)

10. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory

of NP-completeness. W.H. Freeman (1979)
12. Hoberman, R., Durand, D.: The Incompatible Desiderata of Gene Cluster Proper-

ties. In: McLysaght, A., Huson, D.H. (eds.) RCG 2005. LNCS (LNBI), vol. 3678,
pp. 73–87. Springer, Heidelberg (2005)

13. Jahn, K.: Efficient computation of approximate gene clusters based on reference
occurrences. Journal of Computational Biology 18(9), 1255–1274 (2011)

14. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. U S A 81(3), 814–818 (1984)

15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complex-
ity classes. J. Comput. System Sci. 43, 425–440 (1991)

16. Pasek, S., Bergeron, A., Risler, J.L., Louis, A., Ollivier, E., Raffinot, M.: Identifica-
tion of genomic features using microsyntenies of domains: domain teams. Genome
Res. 15(6), 867–874 (2005)

17. Rahmann, S., Klau, G.W.: Integer Linear Programs for Discovering Approximate
Gene Clusters. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI),
vol. 4175, pp. 298–309. Springer, Heidelberg (2006)

An Algorithmic View on Multi-Related-Segments 329

18. Simillion, C., Vandepoele, K., de Peer, Y.V.: Recent developments in computational
approaches for uncovering genomic homology. Bioessays 26(11), 1225–1235 (2004)

19. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica 26(2), 290–309 (2000)

20. Yang, X., Aluru, S.: A Unified Model for Multi-genome Synteny and Gene Cluster
Inference. Technical report, Iowa State University (2009)

21. Yang, X., Aluru, S.: An improved model for gene cluster inference. In: BiCob 2010,
pp. 190–195 (2010)

22. Yang, X., Aluru, S.: Algorithms in Computational Molecular Biology: Techniques,
Approaches and Applications, ch. 32, pp. 725–747. Wiley & Sons, Inc. (2011)

The Worst Case Behavior

of Randomized Gossip�

H. Baumann1, P. Fraigniaud1, H.A. Harutyunyan2, and R. de Verclos3

1 LIAFA, CNRS and University Paris Diderot, France
2 Concordia University, Montréal, Canada

3 ENS Lyon, France

Abstract. This paper considers the quasi-random rumor spreading
model introduced by Doerr, Friedrich, and Sauerwald in [SODA 2008],
hereafter referred to as the list-based model. Each node is provided with
a cyclic list of all its neighbors, chooses a random position in its list, and
from then on calls its neighbors in the order of the list. This model is
known to perform asymptotically at least as well as the random phone-
call model, for many network classes. Motivated by potential applications
of the list-based model to live streaming, we are interested in its worst
case behavior.

Our first main result is the design of an O(m+n log n)-time algorithm
that, given any n-node m-edge network G, and any source-target pair
s, t ∈ V (G), computes the maximum number of rounds it may take for
a rumor to be broadcast from s to t in G, in the list-based model. This
algorithm yields an O(n(m + n log n))-time algorithm that, given any
network G, computes the maximum number of rounds it may take for a
rumor to be broadcast from any source to any target, in the list-based
model. Hence, the list-based model is computationally easy to tackle in
its basic version.

The situation is radically different when one is considering variants of
the model in which nodes are aware of the status of their neighbors, i.e.,
are aware of whether or not they have already received the rumor, at
any point in time. Indeed, our second main result states that, unless P =
NP, the worst case behavior of the list-based model with the additional
feature that every node is perpetually aware of which of its neighbors
have already received the rumor cannot be approximated in polynomial

time within a (1
n
)
1
2
−ε multiplicative factor, for any ε > 0. As a byproduct

of this latter result, we can show that, unless P = NP, there are no
PTAS enabling to approximate the worst case behavior of the list-based
model, whenever every node perpetually keeps track of the subset of its
neighbors which have sent the rumor to it so far.

Keywords: Rumor spreading, broadcast, gossip, random phone-call
model.

� The first two authors are supported by the ANR projects DISPLEXITY and PROSE,
and by the INRIA project GANG.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 330–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Worst Case Behavior of Randomized Gossip 331

1 Introduction

Randomized rumor spreading, also known as randomized gossip, or epidemic
protocol, is a simple, scalable and naturally fault-tolerant protocol to dissemi-
nate information in networks. It has been proposed for various applications, in-
cluding, e.g., the maintenance of replicated databases [9], publish-subscribe [8],
application-level multicast [4,28], and live streaming [23]. The random phone-call
model [34], in its push variant, captures the essence of such a protocol. Commu-
nications proceed in synchronous rounds and, at each round, a node aware of an
atomic piece of information selects one of its neighbors in the network, uniformly
at random, and forwards the piece of information to that node. It was noticed
in [10] that a quasi-random analogue to the random phone-call model, hereafter
referred to as the list-based model, where each node is provided with a cyclic
list of all its neighbors, chooses a random position in its list, and from then on
calls its neighbors in the order of the list, performs asymptotically at least as
well as in the random phone-call model. By “performs as well”, it is meant that,
in expectation, or with a certain probability, the numbers of rounds required
for a piece of information initiated at any source node to reach all nodes in the
network, are of similar order of magnitude in both models. This holds for a large
number of networks classes, even when the lists are given by an adversary.

In fact, results in the literature demonstrate that randomized phone-call ru-
mor spreading and list-based rumor spreading offer performances close to the
best that can be achieved for large classes of networks, that is, close to the opti-
mal communication schedule that could be computed by a centralized algorithm
aware of the structure of the entire network. For instance, it is known [10,19,25]
that, for almost all random graphs in Gn,p with p above the connectivity thresh-
old lnn/n, both protocols perform asymptotically in O(log n) rounds, with high
probability (whp), that is with probability at least 1−O(1/nα) for some α > 0.

Unfortunately, such a nice behavior of the different variants of randomized
rumor spreading is, for many reasons, not sufficient to guarantee a good per-
formance for all kinds of applications. First, the random graph model Gn,p is
not necessarily reflecting the structure of real world networks. For arbitrary
networks, the behavior of randomized rumor spreading is not precisely known.
Upper bounds on the number of rounds required for an information to spread
over all nodes are known [6,7,10,11,26,38,39]. However, although these bounds
are often tight, they are general and therefore do not necessarily capture the be-
havior of rumor spreading for each networkG. This holds even if one restricts the
analysis to networks with given properties such as bounded edge-expansion [38],
bounded node-expansion [39], or bounded conductance [6,7,26] (see also [5]).
Second, applications like file sharing or data streaming require sending a large
number of information pieces — called packets or chunks or frames, depending on
the context. In such circumstances, results in expectation, or even whp, may not
guarantee that some (or even a constant fraction) of these pieces will not experi-
ence high delay, which may result in increasing the packet loss ratio, preventing
good reception of files. Indeed, “whp” refers to a certain statistical guarantee
expressed as a function of the network size n. Thus, if the number of packets is

332 H. Baumann et al.

of a similar or larger order of magnitude than n, then this guarantee may not
be sufficient to prevent several “bad events” to occur. Third, applications like
audio or video streaming requires to control the jitter, i.e., the difference in time
between the reception of two consecutive packets. Again, results on expectation,
or even whp, may not allow the designer to calibrate well the size of application
buffers so as to make sure that high jitter will not prevent a good reception of
the audio or video stream.

It is worth noticing that enforcing higher probability 1−O(1/nα) of success for
each packet, i.e., increasing α, does not necessarily provide a solution to the above
concerns. Indeed, for doing so, one must assume that the analysis of the protocol
allows us to establish explicit tradeoffs between the probability of success and the
bound on the number of rounds for the specific network, or class of networks,
we are dealing with. Moreover, it may happen that explicit tradeoffs are not
tight enough, in the sense that increasing the probability of success above the
desired threshold may result in a bound on the number of rounds that actually
exceeds the worst case behavior of the randomized gossip protocol. For instance,
it is proved in [10] that list-based gossip propagates a rumor to all nodes of the
hypercube in at most 1542 · log n rounds, with probability at least 1− 1/n. This
bound on the number of rounds is above the trivial bound log2 n on the worst
case behavior of the list-based protocol in hypercubes, for all reasonable values
of the number of nodes1.

So, in order to address the above concerns, this paper tackles the question of
how bad randomized rumor spreading can be.

More specifically, given a network G, we are interested in computing the worst
case behavior of randomized rumor spreading in G. Since the general version of
randomized gossip does not prevent a packet to ping-pong between two adjacent
nodes for an arbitrarily large number of rounds, we perform our investigation
in the framework of list-based randomized rumor spreading. In this context, the
worst case behavior of the protocol is given by a worst case choice for the cyclic
lists of neighbors provided to the nodes, combined with a worst case choice for
the starting positions in these lists. Let us denote by tsn(G, s, t) the maximum
number of rounds it can take for a packet initiated at source s to reach target
t in network G when applying the list-based randomized rumor spreading, and
let tsn(G) = maxs,t∈V (G) tsn(G, s, t). The index “sn” stands for “skip none”, as
every node visits its list blindly, sending the information to each of its neighbors,
ignoring the fact that it may be aware that some neighbors have already received
the information from other nodes. Thus, tsn(G) is an absolute upper bound on
the maximum delay between two consecutive packets spread in the network using
the randomized list-based protocol. Of course, this bound captures only delays
caused by the protocol itself, and ignores other reasons that may cause delay,
like traffic congestion, which are beyond the scope of this paper.

1 Although the main concern of [10] was not necessarily optimizing the constant in
front of the log n factor, we stress that even diminishing this constant by several
orders of magnitude would still result in a bound greater than log2 n for reasonable
values of n.

The Worst Case Behavior of Randomized Gossip 333

It is easy to come up with networks for which tsn(G) = Ω(n) (e.g., com-
plete networks and star networks), and with other networks for which tsn(G) =
O(log n) (e.g., complete binary trees). However, computing tsn(G) for an arbi-
trary network G does not appear as easy (see Section 2.1). The analysis becomes
even more tricky when one is dealing with natural optimization of the list-based
protocol. For instance, at every round, every node could skip sending a piece
of information to neighbors from which it had received the same piece during
previous rounds, including the neighbor from which it received the piece first.
We denote by tss(G, s, t) and tss(G) the corresponding worst case performances
of the list-based protocol, where the index “ss” stands for “skip senders”. More
generally, one can assume some underlying mechanism enabling nodes to be
perpetually aware of the subset of neighbors which are already informed, and
we define tsi(G, s, t) and tsi(G) as the corresponding worst case performances
of the list-based protocol, where the index “si” stands for “skip informed”. To
illustrate the difficulty of the skip-informed model, note that it is only known
that 3

2 logn ≤ tsi(Qd) ≤ 1
2 log

2 n for the d-dimensional hypercube Qd (see [31]).
By definition, for every network G, and every source-target pair s, t ∈ V (G), we
have

Ω(log n) ≤ tsi(G, s, t) ≤ tss(G, s, t) ≤ tsn(G, s, t) ≤ O(n).

The lower bound Ω(log n) follows from the fact that, at each round, an informed
node can inform at most one uniformed node, which implies that the number of
informed nodes at most doubles at each round. The upper bound O(n) follows
from the fact that the sum of node degrees along a shortest path from the
source to any node cannot exceed 3n [19]. This paper is interested in the design
of algorithms to compute the above three parameters tsn, tss, and tsi for any
given network G and any source-target pair (s, t).

1.1 Our Results

We exhibit exponential gaps between tsn, tss, and tsi. Specifically, we show that
there are networks G and source-target pairs s, t ∈ V (G) such that tsn(G, s, t) =
Ω(n) whereas tss(G, s, t) = O(log n). Similarly, we show that there are networks
G and source-target pairs s, t ∈ V (G) such that tss(G, s, t) = Ω(n) whereas
tsi(G, s, t) = O(log n). Hence, small variations in the implementation of the list-
based randomized rumor spreading protocol can have a tremendous impact on
the worst case behavior of the protocol.

Our first main result is the design of anO(m+n log n)-time algorithm, that, for
any given n-node m-edge network G, and any pair (s, t) of nodes in G, computes
tsn(G, s, t). More specifically, for any fixed target t, our algorithm computes a
set of lists L = {Lu, u ∈ V } such that, for any source s, broadcasting from
s to t according to this set L takes tsn(G, s, t) rounds. Thus, our algorithm
directly yields an O(n(m + n logn))-time algorithm that, given any n-node m-
edge network G, computes the maximum number of rounds tsn(G) it may take
for a rumor to be broadcast from any source to any target, in the list-based
model. Hence, the list-based protocol is computationally easy to tackle in its
basic version.

334 H. Baumann et al.

The situation is radically different when one is considering the two aforemen-
tioned variants of the protocol. Indeed, we show that, unless P = NP, there are
no PTAS (polynomial-time approximation scheme) for tss(G, s, t). More specifi-
cally, we show that there are no polynomial-time algorithms enabling to approx-
imate tss(G, s, t) up to multiplicative factor 1

2 + ε for arbitrarily small positive ε,
unless P = NP. This result is actually based on a construction used to es-
tablish our second main result stating that, unless P = NP, tsi(G, s, t) cannot

be approximated in polynomial time within a (1
n)

1
2−ε multiplicative factor, for

any ε > 0.
The results of this paper can be extended to directed graphs. In the con-

text of directed graphs, the skip-none model remains tractable (i.e., solvable in
polynomial time), and the skip-informed model remains intractable. Actually,
it is possible to show that, for both skip-sender and skip-informed models, the
worst case performances of the list-based protocol cannot be approximated in
polynomial time within a (1

n)
1−ε multiplicative factor, for any ε > 0.

The point of view of the adversary. Whether our results can be viewed as good
news depends on the perspective. On one hand, it is a good news because the
existence of a polynomial-time algorithm for the skip-none model guarantees
that the designer can calibrate its application according to the maximum delay
experienced by a packet. On the other hand, the same result states that, if the
broadcast protocol does not use randomization, and just uses lists to distribute
the packets to neighbors in a round-robin manner, then an adversary can easily
compute the lists that will generate the worst performance for rumor spreading.
Instead, our inapproximability result for the skip-informed model shows that a
deterministic adversary will experience serious difficulties in computing the worst
case lists in general. This is just a relative good news for the designer since the
skip-informed model requires perpetual exchanges of signaling messages between
neighbors, which may be hard to implement. Instead, removing from the list the
entries corresponding to neighbors from which a node has received a packet does
not require extra communication facilities. Hence, using the skip-sender model
could be a good solution for the designer, if hard to approximate (as, e.g., in
directed networks). So far, our upper bound 1

2 + ε does not guarantee that an
adversary cannot efficiently generate lists for which the (deterministic) list-based
protocol would perform poorly.

1.2 Other Related Work

The one-to-all broadcast problem has a long history, initiated in the 1960s by
investigations aiming at understanding the structure of networks enabling fast
information dissemination (see [32] for a survey). Motivated by the emergence of
tightly coupled multi-processor architectures for parallel computers in the 1980s,
lots of investigations have addressed the broadcast problem in specific network
families, including hypercubes and butterfly-like graphs (see the surveys [22,33]).
The problem of computing an optimal (i.e., minimum time) broadcast protocol

The Worst Case Behavior of Randomized Gossip 335

for an arbitrary source in an arbitrary network is known to be hard, even to ap-
proximate [12], and a sub-logarithmic approximation algorithm has been derived
only recently [13] (see also [2,37]).

Randomized rumor spreading has been introduced in [24] where it is proved
that it performs in O(log n) rounds in the complete graphs (see also [36]). Its
“push” variant has been then analyzed for various graph topologies, including
random graphs [25], hypercubes [19], Star graphs [15], Cayley graphs [16], regular
graphs [18], and random regular graphs [20]. The “push-pull” variant aiming
at reducing the number of transmissions has been analyzed in [3,14,17,21,34].
Other variants of randomized rumor spreading, aiming at reducing the amount
of randomness, have been successfully described in [10,11,27].

The worst case behavior of randomized rumor spreading has already been
addressed in the literature, in the framework of so-called “messy” broadcasting,
introduced in [1], where tsi, tss and tsn are denoted by t1, t2, t3, respectively.
For instance, it was proved in [30] that, for every network G, tsn(G) ≤ 2n− 3.
Specific network topologies have been considered in [31]. For instance, regarding

hypercubes, it is known that tss(Qd) =
d(d−1)

2 +1, tsn(Qd) =
d(d+1)

2 , but it is not
known whether tsi(Qd) = O(d) or tsi(Qd) = Ω(d2), or whether it lies between
these two bounds (see [29,31]).

2 Model and Preliminary Results

2.1 The List-Based Model

Let G = (V,E) be a simple and connected n-node graph, and let s ∈ V be
a source node. We are interested in computing the time it takes for a rumor
initiated at s to reach all nodes in G, in the list-based model. Communications
perform in synchronous rounds. At each round, every node informed of the ru-
mor sends this rumor to one of its neighbors. Each broadcast scenario can be
described by assigning an ordered list Lu to every node u ∈ V , listing its neigh-
bors in G in some order. Upon reception of the rumor for the first time, say at
round r, node u propagates the rumor by sending it to its ith neighbor in list Lu

at round r + i, 1 ≤ i ≤ deg(u) where deg(u) denotes the degree of u in G. Note
that u may send the rumor to neighbors that already got it from other nodes. It
will actually even send the rumor back to the node from which it originally got
the rumor. To take into account this phenomenon, the model has three different
variants.

– The skip none (sn) variant. This is the basic version of the list-based model,
as described above: every node u propagates the rumor to all its neigh-
bors, in the order defined by the list Lu. Let L = {Lu, u ∈ V }, and let
�(G,L, s, t) be the number of rounds it takes for a rumor initiated by s
to reach node t when the rumor is spread in G according to the protocol
defined by the lists in L. We define tsn(G, s, t) = maxL �(G,L, s, t) and
tsn(G) = maxs,t∈V tsn(G, s, t).

336 H. Baumann et al.

– The skip senders (ss) variant. When a node u performs rumor spreading
according to Lu, this variant assumes that u skips sending the rumor to
nodes from which it has received the rumor so far. More precisely, assume u
receives the rumor at round r. For i ≥ 1, let Si be the subset of u’s neighbors
from which u has received the same rumor at some round in [r, r+ i− 1]. At
round r+ i, node u sends the rumor to the next neighbor in the list Lu \Si.
We then define tss(G, s, t) and tss(G) as above.

– The skip informed (si) variant. This variant assumes the existence of an
underlying mechanism letting every node know which of its neighbors has
received the rumor, at any point in time. More precisely, assume u receives
the rumor at round r. For i ≥ 1, let Ii be the subset of u’s neighbors which
are aware of the rumor before round r+ i. At round r+ i, node u sends the
rumor to the next neighbor in the list Lu \ Ii. We then define tsi(G, s, t) and
tsi(G) as above.

The three models skip informed, skip senders, and skip none are respectively
denotedM1,M2, andM3 in [1]. Observe that the model skip-sender is practical in
case of the broadcasting of a single rumor, while the model skip-none is probably
the most practical in case of a sequence of rumors. Indeed, the former model
requires every node to maintain the list of neighbors from which it has already
received every message, while the latter model is oblivious to multiple receptions
of the same message. The last variant, skip-informed, is the most efficient of the
three variants, for it avoids a node to receive the same message again and again
at different rounds. Nevertheless, there are n-node graphs G satisfying tsi(G)−1.
(We obviously have tsi(G) ≤ n− 1 for every n-node graph since at least one new
node gets informed at each round in the skip-informed variant). The following
result actually characterizes the “slowest” graphs for the skip-informed variant
(due to lack of space, the proof is omitted).

Property 1. For every n-node graph, tsi(G) − 1 if and only if G is an interval
graph.

Note that the characterization of the “slowest” graphs for the skip-none model
turns out to be far more difficult. In particular, they cannot be characterized by
a finite list of excluded minors or subgraphs. Indeed, for any graph H , there is
a worst-case graph G containing H as a subgraph: it is obtained by connecting
the nodes of H and those of a complete graph K of size at least |V (H)| by a
complete bipartite graph, with a universal node u connected to all nodes in H ,
all nodes in K, and to an additional node t. With s in the complete graph K, we
have tsn(G, s, t) = 2n− 3 where n = |V (H)|+ |V (K)|+ 2. See [30] for a subset
of all possible slowest graphs.

2.2 Exponential Gaps

In order to illustrate the differences between the three variants of the list-based
model, we underline the existence of exponential gaps between the three param-
eters tsn, tss, and tsi. The property below deals with the skip-none variant versus

The Worst Case Behavior of Randomized Gossip 337

the skip-sender variant (due to lack of space, the proof, as well as the proof of
next property are omitted).

Property 2. There exists a graphG = (V,E) and s, t ∈ V such that tsn(G, s, t) =
Ω(n) whereas tss(G, s, t) = O(log n).

The next result deals with the skip-sender variant versus the skip-informed
variant.

Property 3. There exists a graph G = (V,E) and s, t ∈ V such that tss(G, s, t) =
Ω(n) whereas tsi(G, s, t) = O(log n).

Remark. Using the same graph as Property 2, one can prove that there exists
a graph G such that tsn(G) = Ω(n) whereas tss(G) = O(log n). On the other
hand, it is not clear whether such an exponential gap exists for tss versus tsi.
The best we know is the existence of a graph G such that tss(G) = Ω(n) whereas
tsi(G) = O(

√
n).

3 A Polynomial-Time Algorithm for the “Skip None”
Variant

This section is dedicated to our first main result. We show that the model skip-
none is computationally tractable.

Theorem 1. There exists an algorithm running in time O(m + n logn) in n-
node m-edge graphs which, for any graph G = (V,E) and any target t ∈ V ,
computes the n values tsn(G, s, t), for all s ∈ V .

Proof. We describe an algorithm that achieves the performance claimed in the
statement of the theorem. This algorithm is described in Algorithm 1. To each
node v ∈ V are associated three variables: a non-negative integer value(v), a
boolean tag(v), and an auxiliary variable maxlab(v) ∈ {1, . . . , deg(v)}. We will
prove that, after the algorithm completes, we have tsn(G, s, t) = value(s) for
every s ∈ V . The boolean tag(v) indicates whether value(v) is fixed (tag(v) = 1)
or can still be updated (tag(v) = 0). The auxiliary variable maxlab(v) indicates
the maximum label that can currently be assigned to incident edges of v, during
the execution of the algorithm. Indeed, to each edge {u, v} ∈ E are associated
two labels label(u, v) and label(v, u). We will prove that, after the algorithm
completes, for every node u, we have all labels label(u, v) pairwise distinct for
all nodes v in the neighborhood N(u) of u, with values between 1 and deg(u).

First, observe that, by the setting of label(u, v) in the while-loop in
Algorithm 1, we do have 1 ≤ label(u, v) �= label(u, v′) ≤ deg(u) for any two
neighbors v, v′ of u. Using this fact, we directly get that tsn(G, s, t) ≥ value(s)
for every s. To see why, let us consider the protocol where each node u receiving
the message at time τ forwards the message to v ∈ N(u) at time τ + label(u, v),
where N(u) denotes the set of neighbors of u. This protocol is consistent with the

338 H. Baumann et al.

Input: G = (V,E), and t ∈ V ;
Output: tsn(G, s, t) for every s ∈ V ;

value(t)← 0;
tag(t)← 0;
forall the u ∈ V \ {t} do

value(u)←∞;
tag(u)← 0;
maxlab(u)← deg(u)

end
while ∃u | tag(u) = 0 do

v ← argmin{value(u) | tag(u) = 0};
forall the u ∈ N(v) do

label(u, v)← maxlab(u);
maxlab(u)← maxlab(u)− 1;
value(u)← min{value(u), label(u, v) + value(v)}

end
tag(v)← 1;

end
output value(s) for every s ∈ V .

Algorithm 1: Algorithm for computing tsn

skip-none model. Therefore, tsn(G, s, t) ≥ distD(s, t) where the distance is com-
puted in the weighted digraph D obtained by replacing every edge {u, v} by two
arcs (u, v) and (v, u), with respective weights label(u, v) and label(v, u). Now,
by construction, we have distD(s, t) = value(s) as the assignment of value(s)
performed by Algorithm 1 is achieved in a way similar to Dijkstra’s algorithm,
applied for computing the single-target shortest-paths in directed graphs with
nonnegative weights. In our algorithm, the edge-weights are the edge-labels,
which are set online, while running the algorithm. Thus, tsn(G, s, t) ≥ value(s).

Now we show that tsn(G, s, t) ≤ value(s) for every s. Note that the value of
a node can only decrease while processing the algorithm, and, once a node is
tagged 1, its value remains unchanged until the end of the algorithm, Moreover,
the following holds:

(�) once a node is tagged 1, its value is upper bounded by the final values of all
nodes still tagged 0.

Indeed, when a node v is tagged 1, it has the minimum value x = value(v)
among all nodes currently tagged 0. Let us consider u with tag(u) = 0. By the
choice of v, we have value(u) ≥ x. If value(u) is eventually modified, the new
value is of the form label(u,w) + value(w) where tag(w) = 0. Since tag(w) = 0,
we have value(w) ≥ x, and thus the new value(u) is at least x+ 1.

We prove tsn(G, s, t) ≤ value(s) by contradiction. Assume that there exists a
node s with value(s) < tsn(G, s, t). Among these nodes, let v be the node that
is tagged 1 first. At the moment v is tagged 1, some of its neighbors w1, . . . , wk0

The Worst Case Behavior of Randomized Gossip 339

are tagged 0 while others wk0+1, . . . , wk0+k1 are tagged 1, with k0+k1 = deg(v).
If v has no neighbors tagged 1, then either v = t and value(t) = tsn(G, t, t) = 0,
or value(v) = ∞. In both cases, we would have value(v) ≥ tsn(G, v, t). So,
we have k1 > 0. Assume, w.l.o.g., that the nodes wi are indexed so that, for
1 ≤ i < k0 + k1, wi is (eventually) tagged 1 after wi+1 is. Therefore, for any i,
1 ≤ i ≤ k0 + k1, by the setting of the labels from deg(v) down to 1, we have

(��) if wi is tagged 1, then label(v, wi) = i,

and, as a direct consequence of (�), we get

(� � �) if wi+1 is also tagged 1, then value(wi) ≥ value(wi+1).

We are now ready to establish a contradiction. Let Σ be set of permutations of
1, . . . , deg(v). We have tsn(G, v, t) ≤ maxπ∈Σ min1≤i≤k0+k1(π(i)+ tsn(G,wi, t))
where π(i) is the time at which v sends the information to wi. We get the
following:

tsn(G, v, t) ≤ max
π∈Σ

min
1≤i≤k1

(π(k0 + i) + tsn(G,wk0+i, t))

≤ max
π∈Σ

min
1≤i≤k1

(π(k0 + i) + value(wk0+i)) because v is the first node

tagged 1 among those satisfying value(v) < tsn(G, v, t)

= min
1≤i≤k1

(k0 + i+ value(wk0+i)) because of (� � �)

= min
1≤i≤k1

(label(v, wk0+i) + value(wk0+i)) because of (��)

= value(v)

Thus, we get tsn(G, v, t) ≤ value(v), a contradiction.
Finally, the running time of Algorithm 1 is O(m + n logn), as the running

time of the algorithm is the same as the running time of Dijkstra’s algorithm.
(Here we assume that the nodes whose tags are null are stored in a priority
queue implemented by a Fibonacci heap). ��

Corollary 1. There exists an algorithm running in time O(n(m + n logn)) in
n-node m-edge graphs which, for any graph G, computes tsn(G).

4 Inapproximability Results

In this section, we show that, as opposed to the skip none variant of the list-
based model, the two other variants of the model are hard to approximate. Given
a maximization problem P , we say that a (polynomial-time) algorithm A is a ρ-
approximation algorithm for P if for any instance x of P , we have ρ ·OPT(x) ≤
A(x) ≤ OPT(x). First, we show that the worst case performance of the list-
based protocol in the skip-informed model is essentially non approximable.

Theorem 2. Unless P = NP, tsi(G, s, t) cannot be approximated in polynomial

time within a (1
n)

1
2−ε multiplicative factor, for any ε > 0.

340 H. Baumann et al.

s
t

x1

xi

xp

x0
i

x1
i

Cl

C1

Cq

x1
i,1

x1
i,l

x1
i,q

R1
i,l

T 1
i

T 0
i

S1
i

A
B

S0
i

Fig. 1. Graphical representation of the gadget used in the proof of Theorem 2

Proof. The proof is by reduction from 3-SAT. Actually, for convenience, we do
a reduction from the negation of E3-SAT (exactly 3-SAT), denoted by E3-DNF-
UNSAT. Let Φ be a E3-DNF formula, i.e., a disjunction of clauses where each
clause is a conjunction of exactly three literals. Φ is in E3-DNF-UNSAT if and
only if there exists an assignment of its variables such that Φ is false.

We will use the following gadget, called diode. A diode D is a graph of size
2ν + 1, for any ν power of 2, with two identified nodes, called entrance and
exit, each of them of degree 1. It is obtained from a complete binary tree T
with ν leaves by (1) connecting the leaves of T as a complete graph Kν, (2)
adding an entrance node vin connected to the root of T , and (3) adding an
exit node vout connected to one arbitrary leaf of T . It is easy to check that
tsi(D, vin, vout) = Θ(log ν) and tsi(D, vout, vin) = ν +Θ(log ν). Thus D satisfies
a “diode property”, i.e., messages flow rapidly in one direction from vin to vout,
while they flow very slowly in the other direction from vout to vin.

Let Φ be an E3-DNF formula with p variables x1, . . . , xp and q clauses
C1, . . . , Cq. Given Φ, we construct a graph G with two identified nodes s and
t, such that tsi(G, s, t) is polynomial if Φ is in E3-DNF-UNSAT, and logarith-
mic otherwise. A graphical representation of G is displayed in Figure 1. To each
variable xi corresponds a node xi in G, called variable node. The source node
s is the root of a complete binary tree A of depth �log p�, and every variable

The Worst Case Behavior of Randomized Gossip 341

node is a leaf of this tree. Fix ν ≥ max{p, q}. Each variable node xi is the en-
trances of 2ν different diodes, each with 2ν + 1 nodes. Two nodes x0

i and x1
i ,

called false-node and true-node, respectively, are associated to each variable xi,
1 ≤ i ≤ p. (They will correspond to the two possible assignments of xi, true
or false). The nodes x0

i and x1
i are roots of complete binary trees, T 0

i and T 1
i ,

respectively, each with ν leaves. The 2ν leaves of T 0
i and T 1

i are the 2ν exits of
the 2ν diodes corresponding to xi. Nodes x0

i and x1
i are also roots of complete

binary trees, S0
i and S1

i , respectively, each of depth �log q�. The first q leaves of
the tree Sα

i are denotes by xα
i,1, . . . , x

α
i,q , for α ∈ {0, 1}, where xα

i,l corresponds
to the variable xi and the clause Cl, 1 ≤ i ≤ p, and 1 ≤ l ≤ q. Assume that the
literal xi appears in Cl. If it appears positively (respectively, negatively), then
x1
i,l (respectively, x

0
i,l) is the root of a binary tree R1

i,l (respectively, R
0
i,l) with

ν leaves where all leaves are connected into a clique. Theses leaves are called
duplicates of x1

i,l (respectively, x
0
i,l). To each clause Cl correspond a node Cl in

G, called clause node. Let us rewrite the clause so that a literal x appearing
positively in a clause C is denoted by x1, while a literal x appearing negatively
in a clause C is denoted by x0. We connect the clause node Cl = xαi

i ∧x
αj

j ∧xαk

k

to all duplicates of xαi

i,l , x
αj

j,l and xαk

i,k, respectively. Finally, the target node t is
the root of a complete binary tree B of depth �log q�, whose leaves are the q
clause nodes. The graph G has n = 4pν2 + 4pν + 6qν +O(pq) nodes.

We now show that tsi(G, s, t) changes radically according to whether Φ is
unsatisfiable or not. Note that once an interior node of any of the complete
binary trees in G is informed, all the nodes in that tree are informed in a number
of rounds logarithmic in the size of the tree, thus in O(log ν) rounds.

First, we show that if Φ is unsatisfiable then tsi(G, s, t) ≥ ν. The fact that Φ is
unsatisfiable means that there is an assignment xαi

i , αi ∈ {0, 1}, of the p variables
so that Φ is false. Let us fix such an assignment. Once the variable-node xi is
informed, it starts forwarding the message to the ν entrances of the ν different
diodes leading toward xαi

i , which takes ν rounds. (Since tsi(D, vout, vin) > ν in a
diode D, these ν entrances do not get the message before it is received from xi).
Then, xαi

i gets informed at round Θ(log ν). However, node x1−αi

i gets informed
only after ν rounds. The same delay holds for their respective duplicates. Since
Φ is false, each clause is false. Thus, in any clause Cl, if all literals are false, then
the clause node Cl is informed after at least ν rounds. On the other hand, if at
least one literal is true, then Cl is informed in Θ(log ν) rounds. Let us consider
the ν duplicates of a node xαi

i,l with xαi

i false in the clause Cl by the assignment.
These duplicates form a clique. It is possible to inform only one duplicate per
round. Indeed, up to round ν, the clause node Cl and the informed duplicates
send the message to the same uninformed duplicate. Due to the delay of ν rounds
caused by xi while sending the message to the ν diodes, these duplicates will not
get informed via the tree Rαi

i,l before round ν. Therefore, the clause node Cl can
wait until round ν before sending the message to an interior node of the tree B
rooted at t. Overall, t does not get the message before round ν.

Next, we show that if Φ is not unsatisfiable then tsi(G, s, t) = O(log ν). The
fact that Φ is not unsatisfiable means that, for every assignment of the variables,

342 H. Baumann et al.

Φ is true, i.e., there is a clause whose three literals are true. Let us fix a broadcast
schedule from s to t in G, denoted by S. By construction of G, each variable node
gets informed in O(log ν) rounds in S. Thus, we only care about the first node
informed by each variable node in S. If this node is the root of the tree of the
diode leading toward its true-node, then the corresponding variable is assigned
to true, else it is assigned to false. That way, S yields an assignment of the p
variables. Since Φ is not unsatisfiable, there is a clause Cr such that its three
literals are true. The three true- or false-nodes that make Cr true are informed
in O(log ν) rounds. The same holds for all the corresponding duplicates of these
three nodes. Therefore, after O(log ν) rounds, Cr has to send the message in the
tree B rooted at t. Thus t is informed in O(log ν) rounds.

From this we derive that unless P = NP, tsi(G, s, t) cannot be approximated
in polynomial time within a (1ν)

1−ε multiplicative factor, for any ε > 0. The
theorem follows by choosing ν arbitrarily large, polynomially in p and q. ��

Remark. The construction in the proof of Theorem 2 can be used to show that,
unless P = NP, tsi(G) cannot be approximated in polynomial time within a

(1n)
1
3−ε multiplicative factor, for any ε > 0. This construction can also be used

to prove that, unless P = NP, tss(G, s, t) cannot be approximated in polynomial
time within a 2

3 + ε multiplicative factor, for any ε > 0. Indeed, with the same
graph G, same source, and same target as in the proof, one can show that if Φ
is unsatisfiable then tss(G, s, t) ≥ 3ν, while, if Φ is satisfiable then tss(G, s, t) =
2ν +Θ(log ν). The following improves this bound.

Theorem 3. Unless P = NP, tss(G, s, t) cannot be approximated in polynomial
time within a 1

2 + ε multiplicative factor, for any ε > 0.

Proof. We construct a graph G, with source node s and target node t, by modi-
fying the construction in the proof of Theorem 2 as follows. First, we replace the
diodes by paths of length ν/2. The second transformation concerns the connec-
tions between x1

i,l (respectively x0
i,l) and their duplicates. If xi appears positively

(respectively negatively) in Cl then x1
i,l (respectively x0

i,l) is the root of a com-
plete binary tree with ν leaves. Each of these leaves is one extremity of a path
of length ν/2. The other extremities of these paths are the new duplicates of
x1
i,l (respectively x0

i,l). As in the proof of Theorem 2, these duplicates are con-
nected to the corresponding clause node. We show that if Φ is unsatisfiable then
tss(G, s, t) ≥ 2ν, else tss(G, s, t) ≤ ν +Θ(log ν). To see why, we just observe the
following.

(1) Once the variable node xi is informed, one of the two nodes x0
i or x1

i is
informed in ν/2 +Θ(log ν) rounds. (This node is the one that is the root of the
tree connected to the first path chosen by xi). Note that the message takes at
least ν−O(log ν) rounds for a neighbor of xi to be informed by a node different
from xi. Thus xi spends ν rounds to send the message to the ν paths leading to
the same node xα

i . The node x1−α
i thus gets the information with a delay of ν

rounds.
(2) If a clause is true, then at time ν + Θ(log ν) the corresponding clause

node has no other choice than sending the message within the tree B rooted

The Worst Case Behavior of Randomized Gossip 343

at t. Indeed, as observed in (1), the message takes at least ν − O(log ν) rounds
to return to the clause-node, thus this node can spend approximately ν rounds
before sending the message within the tree B rooted at t.

Apart from the two above modifications, each increasing the broadcast time
by an additive factor ν/2, the proof follows from the same arguments as in the
proof of Theorem 2. ��

Remark. The same construction as in the proof of Theorem 3 can be used to
show that, unless P = NP, tss(G) cannot be approximated in polynomial time
within a 1

2 + ε multiplicative factor, for any ε > 0.
It is worth noticing that there is a fundamental reason why the construction

provided for the skip-informed model in the proof of Theorem 2 does not provide
better inapproximability bounds in the skip-sender model. Essentially, diodes do
not exist in the skip-sender model. Indeed, in this latter model, if information
flows at a certain rate from s to t, then it flows at the same rate from t to s.
The following result states formally this crucial symmetry property satisfied by
the skip-sender model (due to lack of space, the proof is omitted).

Theorem 4. Let G be a connected graph, and let s, t be two nodes in G, both
of degree 1. Then tss(G, s, t) = tss(G, t, s).

Note that a diode for the skip-none model does exist. In fact the diodes for the
skip-none and skip-informed models are instances enabling to establish exponen-
tial gaps between the models (see Properties 2 and 3).

5 The Case of Directed Graphs

The results of this paper can be extended to directed graphs. In the context of
directed graphs, the skip-none model remains tractable (i.e., solvable in poly-
nomial time), and the skip-informed model remains intractable. Actually, it is
possible to show that, for both skip-sender and skip-informed models, the worst
case performances of the list-based protocol cannot be approximated in polyno-
mial time within a (1n)

1−ε multiplicative factor, for any ε > 0. Indeed, in the
case of directed graphs, it is easy to construct diodes, the core gadget used in
the proof of Theorem 2, whereas diodes do not exist in undirected graphs for
the skip-sender model (cf. Theorem 4).

References

1. Ahlswede, R., Haroutunian, H.S., Khachatrian, L.H.: Messy broadcasting in net-
works. In: Communications and Cryptography, pp. 13–24. Kluwer Academic Pub-
lishers (1994)

2. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Multicasting in Heterogeneous Net-
works. In: Proc. 30th ACM Symp. on the Theory of Computing (STOC), pp.
448–453 (1998)

344 H. Baumann et al.

3. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomised broadcasting in
random regular networks with applications in peer-to-peer systems. In: Proc. 27th
ACM Symp. on Principles of Distributed Computing (PODC), pp. 155–164 (2008)

4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized Gossip Algorithms.
IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)

5. Censor-Hillel, K., Shachnai, H.: Partial information spreading with application
to distributed maximum coverage. In: Proc. 29th ACM Symp. on Principles of
Distributed Computing (PODC), pp. 161–170 (2010)

6. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour Spreading and Graph Con-
ductance. In: Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (SODA), pp.
1657–1663 (2010)

7. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour
spreading with conductance. In: Proc. 42nd ACM Symp. on Theory of Comp.
(STOC), pp. 399–408 (2010)

8. Costa, P., Migliavacca, M., Picco, G.P., Cugola, G.: Epidemic algorithms for reli-
able content-based publish-subscribe: An evaluation. In: Proc. 24th International
Conference on Distributed Computing Systems (ICDCS), pp. 552–561 (2004)

9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H., Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Main-
tenance. In: Proc. 6th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 1–12 (1987)

10. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: Proc.
19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 773–781 (2008)

11. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom Rumor Spreading: Ex-
panders, Push vs. Pull, and Robustness. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555,
pp. 366–377. Springer, Heidelberg (2009)

12. Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for
the directed telephone broadcast problem. SIAM Journal on Computing 35(3),
672–689 (2005)

13. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast:
path out of jungle. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 76–85 (2003)

14. Elsässer, R.: On the communication complexity of randomized broadcasting in
random-like graphs. In: Proc. 18th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pp. 148–157 (2006)

15. Elsässer, R., Lorenz, U., Sauerwald, T.: On randomized broadcasting in star graphs.
Discrete Applied Mathematics 157(1), 126–139 (2009)

16. Elsässer, R., Sauerwald, T.: Broadcasting vs. Mixing and Information Dissemi-
nation on Cayley Graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 163–174. Springer, Heidelberg (2007)

17. Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting.
In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 218–227
(2008)

18. Elsässer, R., Sauerwald, T.: On the runtime and robustness of randomized broad-
casting. Theoretical Computer Science 410(36), 3414–3427 (2009)

19. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS,
vol. 450, pp. 128–137. Springer, Heidelberg (1990)

The Worst Case Behavior of Randomized Gossip 345

20. Fountoulakis, N., Panagiotou, K.: Rumor Spreading on Random Regular Graphs
and Expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX
2010, LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

21. Fraigniaud, P., Giakkoupis, G.: On the bit communication complexity of random-
ized rumor spreading. In: Proc. 22nd ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pp. 134–143 (2010)

22. Fraigniaud, P., Lazard, E.: Methods and Problems of Communication in Usual
Networks. Discrete Applied Mathematics 53, 79–133 (1994)

23. Frey, D., Guerraoui, R., Kermarrec, A.-M., Monod, M.: Boosting Gossip for Live
Streaming. In: Proc. 10th Int. Conference on Peer-to-Peer Computing (P2P), pp.
1–10 (2010)

24. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-
lengths. Discrete Applied Mathematics 10, 57–77 (1985)

25. Frieze, A., Molloy, M.: Broadcasting in Random Graphs. Discrete Applied Mathe-
matics 54, 77–79 (1994)

26. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance.
In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science (STACS),
pp. 57–68 (2011)

27. Giakkoupis, G., Woelfel, P.: On the randomness requirements of rumor spreading.
In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 449–461
(2011)

28. Gupta, I., Kermarrec, A.-M., Ganesh, A.: Efficient Epidemic-Style Protocols for Re-
liable and Scalable Multicast. In: Proc. 21st Symp. on Reliable Dist. Syst. (SRDS),
pp. 180–189 (2002)

29. Hart, T., Harutyunyan, H.A.: Improved messy broadcasting in hypercubes and
complete bipartite graphs. Congressus Numerantium 156, 124–140 (2002)

30. Harutyunyan, H.A., Hell, P., Liestman, A.L.: Messy broadcasting — Decentralized
broadcast schemes with limited knowledge. Discrete Applied Math. 159(5), 322–327
(2011)

31. Harutyunyan, H.A., Liestman, A.L.: Messy Broadcasting. Parallel Processing Let-
ters 8(2), 149–159 (1998)

32. Hedetniemi, S., Hedetniemi, S., Liestman, A.: A survey of gossiping and broad-
casting in communication networks. Networks 18, 319–349 (1986)

33. Hromković, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in
interconnection networks. In: Combinatorial Network Theory, pp. 125–212. Kluwer
Academic (1995)

34. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: Proc. 41st IEEE Symp. on Foundations of Computer Science (FOCS), pp.
565–574 (2000)

35. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Pro-
cessing Letters 37(1), 21–25 (1991)

36. Pittel, B.: On spreading a rumour. SIAM J. Applied Math. 47, 213–223 (1987)
37. Ravi, R.: Rapid Rumor Ramification: Approximating the minimum broadcast time.

In: Proc. 35th Symp. on Foundations of Computer Science (FOCS), pp. 202–213
(1994)

38. Sauerwald, T.: On Mixing and Edge Expansion Properties in Randomized Broad-
casting. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 196–207.
Springer, Heidelberg (2007)

39. Sauerwald, T., Stauffer, A.: Rumor spreading and vertex expansion on regular
graphs. In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms (SODA), pp.
462–475 (2011)

Holographic Algorithms on Domain Size k > 2

Zhiguo Fu1,� and Jin-Yi Cai2,��

1 Mathematics School of Jilin University, Changchun, Jilin Prov. 130024, China
fuzg@jlu.edu.cn

2 Computer Sciences Department, University of Wisconsin Madison,
WI 53706, USA
jyc@cs.wisc.edu

Abstract. An essential problem in the design of holographic algorithms
is to decide whether the required signatures can be realized by match-
gates under a suitable basis. For domain size two, [1,3] characterized
all functions directly realizable as matchgate signatures without a basis
transformation, and [7] gave a polynomial time algorithm for the real-
izability problem for symmetric signatures under basis transformations.
We generalize this to arbitrary domain size k. Specifically, we give a
polynomial time algorithm for the realizability problem on domain size
k ≥ 3. Using this, one can decide whether suitable signatures for a holo-
graphic algorithms on domain size k are realizable and if so, to find a
suitable linear basis to realize these signatures by an efficient algorithm.

Keywords: Holographic Algorithms, Matchgates, Simultaneous Realiz-
ability Problem.

1 Introduction

Valiant [12] introduced holographic algorithms with matchgates. Computation
in these algorithms is expressed and interpreted through a choice of linear basis
vectors in an exponential “holographic” mix. Then the actual computation is
carried out, via the Holant Theorem, by the Fisher-Kasteleyn-Temperley algo-
rithm for counting the number of perfect matchings in a planar graph [8,9,10].
This methodology has produced polynomial time algorithms for a variety of
problems, and minor variations of which are known to be NP-hard.

For example, Valiant showed that the restrictive SAT problem #7Pl-Rtw-
Mon-3CNF (counting the number of satisfying assignments of a planar read-twice
monotone 3CNF formula, modulo 7) is solvable in P [13]. The same counting
problem without mod 7 is known to be #P-complete [15], and the problem mod
2 is ⊕P-complete [15]. The surprising tractability mod 7 is due to the unexpected
existence of some basis transformations for matchgate signatures.

For a general CSP-type counting problem, one can assume there is a natu-
ral parameter k, called its domain size. This is the range over which variables

� Supported by Youth Foundation of Jilin University 450060445374.
�� Corresponding Author. Supported by NSF CCF-0914969.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 346–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Holographic Algorithms on Domain Size k > 2 347

take values. For example, Boolean CSP problems all have domain size 2. A k-
coloring problem on graphs has domain size k. In holographic algorithms one
considers a linear transformation, which can be expressed as a 2n × k matrix
M = (α0, α1, · · · , αk−1). This is called a basis of k components, and n is called
the size of the basis1. A holographic algorithm is said to be on domain size k
if the respective signatures are realized by matchgates using a basis of k com-
ponents. When designing a holographic algorithm for any particular problem,
an essential step is to decide whether there is a linear basis for which certain
signatures of both generators and recognizers can be simultaneously realized.
This is called the Simultaneous Realizability Problem (SRP). These signatures
are specified by families of algebraic equations, and dealing with such algebraic
equations can be difficult since they are typically exponential in size. Searching
for their solutions is what Valiant called “enumeration” of “freak objects” in [12].
While finding the “exotic” solution is artistry, the situation with ever more com-
plicated algebraic constraints on such signatures can quickly overwhelm such an
artistic approach (as well as a computer search). Meanwhile, failure to find such
solutions to a particular algebraic system yields no proof that such solutions do
not exist and it generally does not give us any insight as to why.

In [1,3,4,7], a systematic theory has been built for symmetric signatures of
domain size 2. First, they established a complete characterization of matchgates
and their signatures without a basis transformation, called standard signatures.
Then they characterized the symmetric signatures realizable over all bases with
2 components, and the algebraic varieties of bases. It is known that bases with
2 components and size 1 are fully general for domain size 2 [5,6]. From these
results, they gave a polynomial time algorithm for SRP on domain size 2. The
algorithm enables one to decide, for domain size 2, whether suitable signatures
for a holographic algorithm are realizable and if so, to find a suitable linear basis
to realize these signatures by an efficient algorithm.

In [12], all the problems are solved by holographic algorithms on domain size
2 with the exception of PL-FO-2-COLOR, for which Valiant gave a holographic
algorithm on domain size 3. Recently, Valiant in [14] used holographic algorithms
on domain size 3 to compute the parity of the following quantities for degree
three planar undirected graphs: the number of 3-colorings up to permutation
of colors, the number of connected vertex covers, and the number of induced
forests or feedback vertex sets. In each case, he presented a “magic” design of
a 2 × 3 basis M , and signatures realizable by matchgates with M , to derive
the algorithm. Obviously, utilizing bases of more components is useful. But for
holographic algorithms on domain size k ≥ 3 over bases of size 1, the realizability
theory of [4,7] cannot be directly applied. One technical difficulty is that a basis
as a 2× k matrix has no inverse when k ≥ 3.

In this paper, we solve SRP on domain size k ≥ 3 for symmetric signatures
over a basis of size 1. Our idea can be summarized as follows: Let R and G be a

1 Following [12], to allow greater flexibility in the design of holographic algorithms, a
basis here may not be linearly independent, e.g., when n = 1, k = 3. However to be
applicable to matchgates, the number of rows must be a power of 2.

348 Z. Fu and J.-Y. Cai

pair of recognizer and generator that a holographic algorithm needs respectively.
First we present a necessary and sufficient condition to check if the recognizer R
is realizable in polynomial time. This is a necessary condition for the holographic
algorithm. If R is realizable, we can construct a recognizer R′ and a generator
G′ on domain size 2 from R and G such that, R and G are simultaneously
realizable iff R′ and G′ are simultaneously realizable. Checking if R′ and G′ are
simultaneously realizable can be done in polynomial time by the algorithm of [7]
since they are signatures of domain size 2. When R and G are simultaneously
realizable, we can efficiently compute a common basis of R and G from a common
basis of R′ and G′ found by the algorithm of [7].

The above result is proved by ruling out a degenerate case, which happens
when all the recognizers are of the form α⊗n, where α is a vector of k entries. We
will argue that holographic algorithms which only use degenerate recognizers are
not interesting. They essentially degenerate into ordinary algorithms, without
any holographic superpositions.

2 Background and Some Results about Domain Size 2

2.1 Some Background

In this section, we review some definitions and results. More details can be found
in [1], [3], [7], [12], [13].

Let G = (V,E,w) be a weighted undirected planar graph, where w assigns
edge weights. A generator (resp. recognizer) matchgate Γ is a tuple (G,X) where
X ⊆ V is a set of external output (resp. input) nodes. The external nodes are
ordered clock-wise on the external face. Γ is called an odd (resp. even) matchgate
if it has an odd (resp. even) number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with n output
nodes is assigned a contravariant tensor G of type (n0). Under the standard basis

[e0 e1] =
(
1 0
0 1

)
, it takes the form G with 2n entries, where

Gi1i2···in = PerfMatch(G− Z), i1, i2, . . . , in ∈ {0, 1}.

Here Z is the subset of the output nodes having the characteristic sequence
χZ = i1i2 · · · in, G − Z is the graph obtained from G by removing Z and its
adjacent edges. PerfMatch(G − Z) is the sum, over all perfect matchings M of
G−Z, of the product of the weights of matching edges in M . (If all weights are
1, this is the number of perfect matchings.) G is called the standard signature of
the generator Γ . We can view G as a column vector (whose entries are ordered
lexicographically according to χZ).

Similarly a recognizer Γ ′ = (G′, X ′) with n input nodes is assigned a covariant
tensor R of type (0n). Under the standard basis, it takes the form R with 2n

entries,
Ri1i2···in = PerfMatch(G− Z), i1, i2, . . . , in ∈ {0, 1},

Holographic Algorithms on Domain Size k > 2 349

where Z is the subset of the input nodes having the characteristic sequence
χZ = i1i2 · · · in. R is called the standard signature of the recognizer Γ ′. We can
view R as a row vector (with entries ordered lexicographically).

Generators and recognizers are essentially the same as far as their standard
signatures are concerned. The distinction is how they transform with respect
to a basis transformation over some field (the default is C). A basis M of size
1 contains k vectors (α0 α1 · · · αk−1), each of them has dimension 2. We use
the following notation: M = (aij) = (α0 α1 · · · αk−1), where i ∈ {0, 1} and
j ∈ {0, 1, . . . , k− 1}. Unless otherwise specified, we assume rank(M) = 2 in this
paper because a basis of rank(M) ≤ 1 is useless. Under a basis M , we can talk
about the signature of a matchgate after the transformation.

Definition 1. The contravariant tensor G of a generator Γ has signature G
under basis M iff M⊗nG = G is the standard signature of the generator Γ .

Definition 2. The covariant tensor R of a recognizer Γ ′ has signature R under
basis M iff RM⊗n = R where R is the standard signature of the recognizer Γ ′.

Definition 3. A contravariant tensor G (resp. a covariant tensor R) is realiz-
able over a basis M iff there exists a generator Γ (resp. a recognizer Γ ′) such
that G (resp. R) is the signature of Γ (resp. Γ ′) under basis M .

We have

Gi1i2···in =
∑

j1,j2,...,jn∈{0,1,...,k−1}
Gj1j2···jnai1j1a

i2
j2
· · · ainjn .

where il ∈ {0, 1}, for l = 1, 2, · · · , n.

Rj1j2···jn =
∑

i1,i2,...,in∈{0,1}
Ri1i2···ina

i1
j1
ai2j2 · · · a

in
jn

.

where jl ∈ {0, 1, · · · , k − 1}, for l = 1, 2, · · · , n.

Definition 4. A signature (Rj1j2···jn), where jt ∈ {0, 1, · · · , k−1} is symmetric
if R···js···jt··· = R···jt···js···, for all 1 ≤ s < t ≤ n. Similarly for (Gj1j2···jn).

We denote a symmetric signature of domain size 2 by [x0, x1, · · · , xn], where xi

is the value of a signature entry whose Hamming weight (the number of 1’s) of
its index is i. For k ≥ 3, let the distinct indices that occur among i1i2 · · · in in
Ri1i2···in be s1, s2, . . . , sl ∈ {0, 1, · · · , k− 1}, and let sj occur tj ≥ 0 times. Then

Ri1i2···in can be denoted by R
(s1s2···sl)
t1t2···tl . For example, R00 = R

(0)
2 , R01 = R

(0,1)
11 .

On domain size 3, for example, a recognizer R = (R00, R01, R02, R10, R11,
R12, R20, R21, R22) is symmetric iff R01 = R10, R02 = R20 and R12 = R21. We
also use the following notation

R22

R02 R12

R00 R01 R11

350 Z. Fu and J.-Y. Cai

A symmetric generator signature of arity 3 on domain size 3 can be denoted as

G222

G022 G122

G002 G012 G112

G000 G001 G011 G111

In the design of holographic algorithms so far, symmetric signatures are most
useful since they have a clear combinatorial meaning. Unless otherwise specified,
we only consider symmetric signatures in the following discussion.

A matchgrid Ω = (A,B,C) is a weighted planar graph consisting of a disjoint
union of: a set of g generators A = (A1, A2, · · · , Ag), a set of r recognizers
B = (B1, B2, · · · , Br), and a set of f connecting edges C = (C1, C2, · · · , Cf),
where each Ci edge has weight 1 and joins an output node of a generator with
an input node of a recognizer, so that every input and output node in every
constituent matchgate has exactly one such incident connecting edge.

Let G(Ai,M) be the signature of generator Ai under the basis M and
R(Bj ,M) be the signature of recognizer Bj under the basis M . Let
G =

⊗g
i=1 G(Ai,M) and R =

⊗r
j=1 R(Bj ,M) be their tensor product, then

Holant(Ω) is defined to be the contraction of these two product tensors (the sum
over all indices of the product of the corresponding values of G and R), where
the corresponding indices match up according to the f connecting edges in C.

Valiant’s Holant Theorem is

Theorem 1. (Valiant [12]) For any mathcgrid Ω over any basis M , let Γ be its
underlying weighted graph, then

Holant(Ω) = PerfMatch(Γ).

The FKT algorithm can compute the weighted sum of perfect
matchings PerfMatch(Γ) for a planar graph in P. So Holant(Ω) is computable in P.

2.2 Some Results on Signatures of Domain Size 2

In this subsection, we review some results concerning signatures on domain size 2
(more details can be found in [1], [7]) and we prove some results about symmetric
signatures on domain size 2 that will be used.

Theorem 2. [7] A symmetric signature [x0, x1, · · · , xn] on domain size 2 is
realizable on some basis iff there exist three constants a, b, c (not all zero) such
that for all i, 0 ≤ i ≤ n− 2,

axi + bxi+1 + cxi+2 = 0.

Definition 5. A symmetric signature [x0, x1, · · · , xn], where n ≥ 2, is called

non-degenerate iff rank

[
x0 · · · xn−1

x1 · · · xn

]
= 2. Otherwise it is degenerate.

Holographic Algorithms on Domain Size k > 2 351

Definition 6. Assume that R = (Ri1i2···in) is a recognizer on domain size
k ≥ 3, then the signature R(s,t) = (Rj1j2···jn), where 0 ≤ s < t ≤ k − 1, and
j1, j2, . . . , jn = s, t (and whose entries are ordered lexicographically), is called
the restriction of R to s, t.

For example, the restriction of R to 0, 1 for R = (R00, R01, R02, R10, R11,
R12, R20, R21, R22) is R

(0,1) = (R00, R01, R10, R11).

Lemma 1. [7] A symmetric signature [x0, x1, · · · , xn] on domain size 2 is de-
generate iff it has the form λ(a, b)⊗n for some λ, a, b.

Lemma 2. [1] A symmetric signature [x0, x1, · · · , xn] is the standard signature
of some even (odd) matchgate iff xi = 0 for all odd (even) i, and there exist r1
and r2 not both zero, such that for every even 2 ≤ k ≤ n (odd 3 ≤ k ≤ n),

r1xk−2 = r2xk.

Definition 7. The Simultaneous Realizability Problem (SRP) for domain
size 2:

Input: A set of symmetric signatures for generators and/or recognizers of do-
main size 2.
Output: A common basis of these signatures if one exists; “NO” if they are not
simultaneously realizable.

In [7] a characterization is given for the set of all possible 2-component bases for
which a symmetric signature [x0, x1, · · · , xn] as a recognizer (resp. a generator) is
realizable. A polynomial time algorithm is given to find these algebraic varieties.

Lemma 3. Assume that M =
(
a0
0 a0

1

a1
0 a1

1

)
=
(
α0

α1

)
is not of full rank and R =

RM⊗n, then R is degenerate.

Proof. Since M is not of full rank, there are constants a0, a1 and a vector α
such that α0 = a0α, and α1 = a1α. Assume R = (Ri1i2···in), then

R =
∑

i1i2···in

Ri1i2···ina
i1ai2 · · ·ainα⊗n = λα⊗n,

where λ =
∑

i1i2···in

Ri1i2···ina
i1ai2 · · ·ain . Thus R is degenerate by Lemma 1.

Lemma 4. A symmetric standard signature [x0, x1, · · · , xn] is degenerate iff it
has the form [λ, 0, · · · , 0] or [0, · · · , 0, λ].

Proof: If xi �= 0 for any i ∈ {1, 2, · · · , n − 1}, then xi−1 = 0, xi+1 = 0 by

Lemma 2. It follows that rank
(
xi−1 xi

xi xi+1

)
= 2. This implies that xi = 0 for

1 ≤ i ≤ n− 1.

If x0 �= 0 and xn �= 0, then rank
(
x0 xn−1

x1 xn

)
= 2.

So a symmetric standard signature [x0, x1, · · · , xn] is degenerate iff it has the
form [λ, 0, · · · , 0] or [0, · · · , 0, λ].

352 Z. Fu and J.-Y. Cai

Definition 8. A symmetric recognizer R of domain size k ≥ 3 is degenerate iff
for any i �= j, 0 ≤ i, j ≤ k−1, the restriction of R to i, j is degenerate. Otherwise
it is non-degenerate.

Lemma 5. Assume that a recognizer R = RM⊗n on any domain size k is
realizable over a full rank basis M , where R is a standard signature, then R is
degenerate iff R = [λ, 0, · · · , 0] or [0, · · · , 0, λ].

Proof. This is equivalent to proving that R is degenerate iff R is degenerate.
If R is degenerate, then R = λ(1, 0)⊗n, or λ(0, 1)⊗n. Then clearly R =

λ[(1, 0)M]⊗n, or λ[(0, 1)M]⊗n. Conversely, let M ′ be a 2 by 2 submatrix of
M with rank 2. Without loss of generality suppose it is column-indexed by 0
and 1. Let R′ = R(0,1) be the restriction of R to 0, 1. If R is degenerate, then so
is R′ and there is a vector β and constant λ such that R′ = λβ⊗n by Lemma 1.
It follows that R = λα⊗n is degenerate, where α = βM ′−1.

3 SRP of Signatures on Domain Size k

If a basis M of size 1 is not of full rank 2, then any holographic algorithm
using M is trivial. So in this section, we assume that k ≥ 3 and the basis

M =
(
α0 α1 · · · αk−1

)
has full rank 2, where αi =

(
a0
i

a1
i

)
, a0i , a

1
i ∈ C.

The lexicographic order on {0, 1, · · · , k − 1} × {0, 1, · · · , k − 1} is as follows,
and is used in Definition 9:

(i, j) < (k, l) iff i < k or (i = k and j < l).

Definition 9. For a non-degenerate recognizer R, R(τ,λ) is called the leading
non-degenerate domain size 2 part of R, where in lexicographic order

(τ, λ) = min{(s, t)|R(s,t) is non-degenerate}.

Lemma 6. If R = RM⊗n, then R is symmetric iff R is symmetric.

Proof. If R is symmetric, it is obvious that R is symmetric.
Conversely, since rank(M)=2, there are αi, αj such that rank(αi αj) = 2. If

R is symmetric, then R(i,j) = R(αi αj)
⊗n is symmetric. Thus R = R(i,j)A⊗n is

symmetric, where A = (αi αj)
−1.

3.1 Degenerate Recognizers

Theorem 3. If a symmetric recognizer R is degenerate and realizable, then
R = λα⊗n, where α is a vector of k entries.

Proof. Let R = RM⊗n. By Lemma 5, R = [λ, 0, · · · , 0] or [0, · · · , 0, λ]. Let
M =

(
β
γ

)
, then R = λβ⊗n or λγ⊗n.

As indicated in [5], a holographic algorithm that only employs degenerate
recognizers is trivial, and we will not discuss them any further.

Holographic Algorithms on Domain Size k > 2 353

3.2 Simultaneous Realizable Problem on Domain Size k

In this section, we assume that R is a symmetric non-degenerate recognizer on
domain size k and R(τ,λ) is the leading non-degenerate domain size 2 part of R.

Remark 1. Assume that R = RM⊗n, then R(τ,λ) = R(ατ αλ)
⊗n. So (ατ αλ)

has rank 2 by Lemma 3.

For 0 ≤ w ≤ k − 1 and w �= τ, λ, we define

Aw =

(
R

(τλw)
n,0,0 R

(τλw)
n−1,1,0 · · · R(τλw)

1,n−1,0 R
(τλw)
n−1,0,1 · · · R(τλw)

1,n−2,1 · · · R(τλw)
1,0,n−1

R
(τλw)
n−1,1,0 R

(τλw)
n−2,2,0 · · · R

(τλw)
0,n,0 R

(τλw)
n−2,1,1 · · · R(τλw)

0,n−1,1 · · · R(τλw)
0,1,n−1

)
,

bw =
(
R

(τλw)
n−1,0,1 R

(τλw)
n−2,1,1 · · · R(τλw)

0,n−1,1 R
(τλw)
n−2,0,2 · · · R(τλw)

0,n−2,2 · · · R(τλw)
0,0,n

)
.

Then we have the following Lemma:

Lemma 7. If R = RM⊗n, then AwX = bw has a unique solution Xw =
(
x0
w

x1
w

)
for 0 ≤ w ≤ k− 1, w �= τ, λ. We also write Xτ =

(
x0
τ

x0
τ

)
=
(
1
0

)
and Xλ =

(
x0
λ

x1
λ

)
=(

0
1

)
. Then M = (ατ αλ)Mτ,λ, where Mτ,λ =

(
x0
0 x0

1 · · · x0
k−1

x1
0 x1

1 · · · x1
k−1

)
has rank 2.

Proof: Since rank(ατ αλ) = 2, there exists a unique solution
(
x0
w

x1
w

)
of the system

of linear equations (ατ αλ)X = αw for 0 ≤ w ≤ k − 1, and

M = (ατ αλ)

(
x0
0 x0

1 · · · x0
k−1

x1
0 x1

1 · · · x1
k−1

)
.

Now we prove that
(
x0
w

x1
w

)
is the unique solution of AwX = bw, for w �= τ, λ.

Firstly, rank(Aw) = 2 since R(τ,λ) is a submatrix of Aw and is non-degenerate.
So the solution of AwX = bw is unique if it exists.

Secondly, by definition we have

R
(s1s2···sl)
t1t2···tl = Ri1i2···in = 〈R,αi1 ⊗ αi2 ⊗ · · · ⊗ αin〉.

Here 〈·, ·〉 denotes inner product. Since R is symmetric,

〈R,αi1 ⊗ αi2 · · · ⊗ αin〉 = 〈R,α⊗t1
s1 ⊗ α⊗t2

s2 ⊗ · · · ⊗ α⊗tl
sl

〉
where tj > 0 is the cardinality of sj ∈ {0, 1, · · · , k − 1} in {i1, i2, · · · , in} and
l∑

j=1

tj = n. So for i+ j < n,

R
(τλw)
i,j,n−i−j = 〈R,α⊗i

τ ⊗ α⊗j
λ ⊗ α⊗n−i−j−1

w ⊗ αw〉
= 〈R,α⊗i

τ ⊗ α⊗j
λ ⊗ α⊗n−i−j−1

w ⊗ (x0
wατ + x1

wαλ)〉
= x0

w〈R,α⊗i+1
τ ⊗ α⊗j

λ ⊗ α⊗n−i−j−1
w 〉

+ x1
w〈R,α⊗i

τ ⊗ α⊗j+1
λ ⊗ α⊗n−i−j−1

w 〉
= x0

wR
(τλw)
i+1,j,n−i−j−1 + x1

wR
(τλw)
i,j+1,n−i−j−1.

354 Z. Fu and J.-Y. Cai

This implies that
(
x0
w

x1
w

)
is a solution of AwX = bw and completes the proof.

We can illustrate Lemma 7 by Fig 1.

R
(τλw)
n,0,0 R

(τλw)
n−1,1,0 R

(τλw)
n−2,2,0 · · · R

(τλw)
0,n,0

�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

�
�

��
R

(τλw)
n−1,0,1 R

(τλw)
n−2,1,1 R

(τλw)
0,n−1,1

· · ·
�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

�
�

��

· · · · · · · · · · · · · · ·
�
�
��

�
�

��

�
�
��

�
�

��

R
(τλw)
1,0,n−1 R

(τλw)
0,1,n−1

�
�
��

�
�

��
R

(τλw)
0,0,n

x0
w x1

w

x0
w x1

w x0
w x1

w

x0
w x1

w x0
w x1

w x0
w x1

w

x0
w x1

w x0
w x1

w x0
w x1

w x0
w x1

w

Fig. 1. αw=x0
wατ + x1

wαλ, every triangle corresponds to a linear equation and

(
x0
w

x1
w

)
is their unique common solution

Theorem 4. A non-degenerate recognizer R is realizable iff
(i) The leading domain size 2 part of the signature R(τ,λ) is realizable,

(ii) AwX = bw has a unique solution
(
x0
w

x1
w

)
, for 0 ≤ w ≤ k − 1 and w �= τ, λ,

(iii) R = R(τ,λ)M⊗n
τ,λ , where Mτ,λ =

(
x0
0 x0

1 · · · x0
k−1

x1
0 x1

1 · · · x1
k−1

)
with

(
x0
τ

x1
τ

)
=
(
1
0

)
and(

x0
λ

x1
λ

)
=
(
0
1

)
.

Proof: If R = RM⊗n, then R(τ,λ) = R(ατ αλ)
⊗n is realizable. Furthermore,

by Lemma 7, AwX = bw has a unique solution
(
x0
w

x1
w

)
for 0 ≤ w ≤ k − 1 and

w �= τ, λ, andM = (ατ αλ)Mτ,λ, whereMτ,λ =
(
x0
0 x0

1 · · · x0
k−1

x1
0 x1

1 · · · x1
k−1

)
with

(
x0
τ

x1
τ

)
=
(
1
0

)
and

(
x0
λ

x1
λ

)
=
(
0
1

)
. Thus

R = RM⊗n = R(ατ αλ)
⊗nM⊗n

τ,λ = R(τ,λ)M⊗n
τ,λ .

Conversely, since R(τ,λ) is realizable, there exists a basis (ατ αλ) such that

R(τ,λ) = R(ατ αλ)
⊗n.

So
R = R(τ,λ)M⊗n

τ,λ = R(ατ αλ)
⊗nM⊗n

τ,λ = R((ατ αλ)Mτ,λ)
⊗n.

Holographic Algorithms on Domain Size k > 2 355

This implies that R is realizable over the basis M = (ατ αλ)Mτ,λ.

Remark 2. If a recognizer R is realizable,Mτ,λ can be constructed in polynomial
time by Theorem 4. Then we can construct in polynomial time an n×n invertible

matrix M ′
τ,λ such that Mτ,λM

′
τ,λ =

(
1 0 0 · · · 0
0 1 0 · · · 0

)
by linear algebra.

Lemma 8. Let R0 = RM ′⊗n
τ,λ and R′ be the restriction of R0 to 0, 1, then R′ =

R(τ,λ).

Proof

R0 = RM ′⊗n
τ,λ = R(τ,λ)M⊗n

τ,λM ′⊗n
τ,λ = R(ατ αλ)

⊗nM⊗n
τ,λM ′⊗n

τ,λ = R
(
ατ αλ 0 · · · 0

)⊗n . (1)

So R′ = R(τ,λ).

Now let R0 = RM ′⊗n
τ,λ , G0 = (M ′−1

τ,λ)⊗nG and let R′, G′ be the restriction of
R0, G0 to 0, 1 respectively, then we have the following theorem:

Theorem 5. Suppose R is a non-degenerate and realizable recognizer. Then
R,G are simultaneously realizable if and only if R′, G′ are simultaneously re-
alizable.

Proof: If R,G are simultaneously realizable and R = RM⊗n,M⊗nG = G, then

R0 = RM ′⊗n
τ,λ = R(MM ′

τ,λ)
⊗n,

(MM ′
τ,λ)

⊗nG0 = (MM ′
τ,λ)

⊗n(M ′−1
τ,λ)⊗nG = M⊗nG = G.

Since MM ′
τ,λ =

(
ατ αλ 0 · · · 0

)
, we have

R′ = R(ατ αλ)
⊗n, (ατ αλ)

⊗nG′ = G.

Thus R′, G′ are simultaneously realizable.
Conversely, if R′, G′ are simultaneously realizable, then there is a basis (γ0 γ1)

such that

R′ = R(γ0 γ1)
⊗n, (γ0 γ1)

⊗nG′ = G.

Recall that R is assumed to be realizable. If we denote R0 = (Ri1i2···in), then
Ri1i2···in = 0 if there is some it �∈ {0, 1}, since by equation (1), R0 = (Ri1i2···in) =

R
(
ατ αλ 0 · · · 0

)⊗n
.

Then by Theorem 4 and Lemma 8

R = R(τ,λ)M⊗n
τ,λ = R′M⊗n

τ,λ = R((γ0 γ1)Mτ,λ)
⊗n.

Furthermore, since(
γ0 γ1 0 · · · 0

)
= (γ0 γ1)

(
1 0 0 · · · 0
0 1 0 · · · 0

)
= (γ0 γ1)Mτ,λM

′
τ,λ,

we have

G = (γ0 γ1)
⊗nG′ =

(
γ0 γ1 0 · · · 0

)⊗n
G0 = ((γ0 γ1)Mτ,λ)

⊗nG.

This implies that R,G are simultaneously realizable over the basis (γ0 γ1)Mτ,λ.

356 Z. Fu and J.-Y. Cai

3.3 An Algorithm for Simultaneous Realizability Problem on
Domain Size k

Definition 10. The Simultaneous Realizability Problem on domain size k
Input: A set of symmetric signatures for generators G and/or recognizers R on
domain size k.
Output: A common basis of these signatures if any exists; “NO” if they are not
simultaneously realizable.

Algorithm 1
1. Check if R is realizable by Theorem 4. If not, output “NO” and halt. Otherwise
find R(τ,λ), Mτ,λ and M ′

τ,λ.

2. Let R′ be the restriction of R0 = RM ′⊗n
τ,λ to 0, 1, and G′ be the restriction of

G0 = (M ′−1
τ,λ)⊗nG to 0, 1, respectively. Check whether R′, G′ are simultaneously

realizable by the algorithm in [7]. If not, output “NO” and halt. Otherwise, output
(γ0 γ1)Mτ,λ where (γ0 γ1) is the common basis of R′, G′ found by the algorithm
in [7].

Theorem 6. The above algorithm is a polynomial time algorithm for SRP on
domain size k.

Proof: Obviously, checking if the recognizers are realizable can be done in poly-
nomial time and finding R(τ,λ), Mτ,λ and M ′

τ,λ can be done in polynomial time
by Lemma 7. Then we can check if R′, G′ can be simultaneously realizable and if
so, find a common basis of R′, G′ by the algorithm of domain size 2 in polynomial
time.

4 Some Examples

In [12],[14], Valiant gave several polynomial time holographic algorithms using
signatures on domain size 3. This includes the parity of the number of induced
forests or feedback vertex sets, the number of connected vertex covers, and PL-
FO-2-COLR for degree three undirected planar graphs. Applying Theorem 5, we
can show that all the required signatures used in these algorithms can be sys-
tematically derived. We take the problem of the parity of the number of induced
forests for undirected planar graphs of degree at most three as an example to
illustrate our procedure. Other problems are similar.

The problem is as follows: Given a planar undirected graph G of maximum
degree 3, and an integer k, determine the parity of the number of sets of k nodes
that induce a forest in G.

Consider the following three generators and one recognizer on domain size 3:

G1 = (x, 1, 1),

G2 = (x, 0, 0, 0, 1, 0, 0, 0, 1),

G3 = (x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

R = (1, 1, 1, 1, 2, 0, 1, 0, 2)

Holographic Algorithms on Domain Size k > 2 357

In symmetric signature notation we have

G2 =
1

0 0
x 0 1

G3 =

1
0 0

0 0 0
x 0 0 1

If R =
2

1 0
1 1 2

is realizable, it can be characterized by Fig 2.

R00 R01 R11

R02 R12

R22

�
�
���

�
�

���

�
�
���

�
�

���

�
�
���

�
�

���

x1
2x0

2 x1
2x0

2

x1
2x0

2

Fig. 2. α2 = x0
2α0 + x1

2α1, every triangle corresponds a linear equation and

(
x0
2

x1
2

)
is

unique common solution

Note thatGi are respectively the so-calledGeneralized Equality functions
of arity 1, 2, and 3. For example, G000

3 = x,G111
3 = 1 and G222

3 = 1 and all other
entries of G3 are zero. Also note that R12 = R21 = 0.

In the given graph G, we replace each vertex of degree one, two and three by a
generator with the signatureG1, G2 and G3 respectively, and replace each edge of
G by the recognizer R, a binary function on domain size 3. We form a machgrid
Ω by connecting the generators and recognizers naturally. Then we consider each
state σ (i.e. a 0,1,2-coloring of the edges of the matchgrid Ω, which corrresponds
to each combination of values on the generator/recognizer connections). Since
the Gi are Generalized Equality functions, This is equivalent to a 0,1,2-
coloring of the vertices of G. Due to R12 = R21 = 0, no vertices of color 1
and 2 can be connected, if σ has a non-zero contribution in the Holant sum.
If we remove all the vertices of G assigned 0, the remaining vertices must form
connected components each colored with color 1 or color 2 only. We can regard
any 0,1,2-coloring as a two-coloring: one color Z corresponds to color 0, and
the other color Y corresponds to color 1,2. Note that all 0,1,2-colorings with a
non-zero contribution corresponding to the same Z/Y two-coloring has the same
contribution.

Then the Holant will be the sum over all such Z/Y two-colorings of G of x�Z

times the value X = 2�CC(σ)+�Y Y (σ), where !Z is the number of Z nodes, and
!CC(σ) is the number of connected components induced in G by the removal of
the Z nodes and the edges adjacent to them, and !Y Y (σ) is the number of edges
joining a pair of nodes both colored by Y . If G has n nodes and the number of

358 Z. Fu and J.-Y. Cai

Z nodes is fixed as n− k, then the minimum number of divisors of 2 in X is 2k,
and is achieved iff the Y Y edges induce a forest in G. Holant(Ω) is a polynomial
in x, a parameter in the signatures Gi. By interpolation, we can compute this
polynomial if this Holant can be evaluated in polynomial time. Hence, if one
divides the coefficient of xn−k in this polynomial Holant(Ω) by 2k, then the
parity of that number is the desired solution.

We can show that these signatures are simultaneously realizable, by
Algorithm 1.

Step 1. R(0,1) = (1, 1, 1, 2) is non-degenerate, so the recognizer R is non-
degenerate.

R(0,1) = (1, 1, 1, 2) is the leading non-degenerate domain size 2 part of R and
this symmetric signature [1, 1, 2] is realizable on domain size 2 by Theorem 2.
Next we solve the system of linear equations A2X = b2, where

A2 =

⎛⎜⎝R
(012)
2,0,0 R

(012)
1,1,0

R
(012)
1,1,0 R

(012)
0,2,0

R
(012)
1,0,1 R

(012)
0,1,1

⎞⎟⎠=

⎛⎝1 1
1 2
1 0

⎞⎠ , b2 =

⎛⎜⎝R
(012)
1,0,1

R
(012)
0,1,1

R
(012)
0,0,2

⎞⎟⎠=

⎛⎝1
0
2

⎞⎠ .

Solving A2X = b2 we find the unique solution

(
2
−1

)
. We can illustrate the

A2X = b2 by Fig 3.

�
�
�
���

�
�
�

��	

�
�
�
���

�
�
�

��	

�
�
�
���

�
�
�

��	

1 1 2

1 0

2

2 -1 2 -1

2 -1

Fig. 3. α2 = x02α0 + x12α1, every triangle corresponds a linear equation and

(
2
−1

)
is their unique common solution

Then R = R(0,1)M⊗2
0,1 , where M0,1 =

(
1 0 2
0 1 −1

)
. So R is realizable from

Theorem 4.
Furthermore,

M ′
0,1 =

⎛⎝1 0 2
0 1 −1
0 0 1

⎞⎠−1

=

⎛⎝1 0 −2
0 1 1
0 0 1

⎞⎠.

Holographic Algorithms on Domain Size k > 2 359

Step 2. The restriction to 0,1 of M ′−1
0,1 G1, (M

′−1
0,1)⊗2G2 and (M ′−1

0,1)⊗3G3 are,
respectively, (x+2, 0), (x+4, −2, −2, 2) and (x+8 ,−4 ,−4 , 2 ,−4 , 2 , 2 , 0),

and the restriction to 0,1 ofRM ′⊗2
0,1 is (1, 1, 1, 2). We find a common basis

(
1 1
0 −1

)
for these signatures of domain size 2 by the algorithm of [7]. Thus we find the
common basis (

1 1
0 −1

)
M0,1 =

(
1 1 1
0 −1 1

)
for the signatures G1, G2, G3 and R.

References

1. Cai, J.-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algo-
rithms. Int. J. Software and Informatics 1(1), 3–36 (2007)

2. Cai, J.-Y., Choudhary, V.: Valiant’s Holant Theorem and matchgate tensors.
Theor. Comput. Sci. 384(1), 22–32 (2007)

3. Cai, J.-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations.
Theory Comput. Syst. 45(1), 108–132 (2009)

4. Cai, J.-Y., Lu, P.: On Symmetric Signatures in Holographic Algorithms. Theory
Comput. Syst. 46(3), 398–415 (2010)

5. Cai, J.-Y., Lu, P.: Basis Collapse in Holographic Algorithms. Computational Com-
plexity 17(2), 254–281 (2008)

6. Cai, J.-Y., Lu, P.: Holographic algorithms: The power of dimensionality resolved.
Theor. Comput. Sci. 410(18), 1618–1628 (2009)

7. Cai, J.-Y., Lu, P.: Holographic Algorithms: From Art to Science. J. Computer and
System Sciences 77, 41–61 (2011)

8. Kasteleyn, P.W.: The statistics of dimmers on a lattice. Physica 27, 1209–1225
(1961)

9. Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph
Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

10. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics - an exact
result. Philosophical Magazine 6, 1061–1063 (1961)

11. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial
time. SIAM Journal of Computing 31(4), 1229–1254 (2002)

12. Valiant, L.G.: Holographic Algorithms. SIAM J. on Computing 37(5), 1565–1594
(2008)

13. Valiant, L.G.: Accidental Algorithms. In: Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 509–517 (2006)

14. Valiant, L.G.: Some Observations on Holographic Algorithms. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 577–590. Springer, Heidelberg (2010)

15. Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on
3-regular planar graphs. Theor. Comput. Sci. 384(1), 111–125 (2007)

A Refined Exact Algorithm

for Edge Dominating Set

Mingyu Xiao1,� and Hiroshi Nagamochi2

1 School of Computer Science and Engineering, University of Electronic Science and
Technology of China, China

myxiao@gmail.com
2 Department of Applied Mathematics and Physics, Graduate School of Informatics,

Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. We present an O∗(1.3160n)-time algorithm for the edge dom-
inating set problem in an n-vertex graph, which improves previous exact
algorithms for this problem. The algorithm is analyzed by using the
“Measure and Conquer method.” We design new branching rules based
on conceptually simple local structures, called “clique-producing ver-
tices/cycles,” which significantly simplify the algorithm and its running
time analysis, attaining an improved time bound at the same time.

1 Introduction

An edge dominating set of a graph G = (V,E) is a subset M of edges such that
each edge in E −M is adjacent to at least one edge in M . The edge dominating
set problem (EDS), to find an edge dominating set of minimum size, is a basic
NP-hard graph problem and has been extensively studied in the line of research
on worst-case analysis of exact exponential algorithms for NP-hard optimization
problems. Yannakakis and Gavril [17] showed that EDS is NP-hard even when
the graph is restricted to planar or bipartite graphs of maximal degree three.
Randerath and Schiermeyer [10] designed the first nontrivial algorithm for EDS,
which runs in O∗(1.4423|E|) time, where the O∗-notation suppresses polynomial
factors. The upper bound on the running time was improved frequently later.
Raman et al. [9] showed an O∗(1.4423n)-time algorithm, where n = |V | is the
number of vertices. Fomin et al. [4] further improved this result to O∗(1.4082n)
by considering the treewidth of the graph. By using the Measure and Conquer
method, Van Rooij and Bodlaender [11] designed a simple O∗(1.3323n)-time
algorithm, and further improved the running time bound to O∗(1.3226n) by
checking a number of local structures. When the graph is restricted to graphs
of maximal degree three, the result can be improved to O∗(1.2721n) [13]. There
are also a numerous contributions to the parameterized algorithms for EDS with
parameter k being the size of the edge dominating set [3,4,1,15,14]. Currently,
the best result is the O∗(2.3147k)-time algorithm introduced in [14]. In this

� Supported in part by Grant 60903007 of NSFC, China.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 360–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Refined Exact Algorithm for Edge Dominating Set 361

paper, we will use the Measure and Conquer method to design an improved
exact algorithm for EDS, which can also be used to derive faster algorithms for
some related problems, such as the weighted edge dominating set problem, the
minimum maximal matching problem, the matrix domination problem and so
on. In fact, the extensions to related problems are omitted here due to space
limited.

The Measure and Conquer method, first introduced by Fomin et al. [5], is a
powerful method used to analyze the running time of branching algorithms. Most
of the currently best known exact algorithms to particular NP-hard problems
are obtained by using this method. The idea behind the Measure and Conquer
method is to focus on the choice of the measure, instead of creating algorithms
with more and more branching and reduction rules. In this method, coefficients
involved in the measure, typically called weights, need to be fixed so as to min-
imize the established running time. To establish the best value of the weights,
usually we need to solve a quasiconvex program. Although the algorithm may be
simple, in the analysis, we need to consider many cases and get a large number
of constraints in the quasiconvex program. Sometimes it is hard to check the
cases by hand. In [11], a simple algorithm for EDS is presented by using the
Measure and Conquer method, and further improvements are claimed by means
of additional branching rules based on a list of local structures. However, a large
number of cases arisen and some detailed analysis are omitted in the proof in
their extended abstract. In this paper, we will also use the Measure and Conquer
method to analyze the algorithm. We identify conceptually simple local struc-
tures, called “clique-producing vertices/cycles” to design new branching rules,
which makes the algorithm much simpler, attaining an improved time bound at
the same time. Finally we can clearly list out the constraints in our quasiconvex
program and point out the bottlenecks for our solutions.

Our algorithm for EDS is based on enumeration vertex covers. The idea of
this method is introduced in Sec. 2. The branching rules used in the algorithm
are given in Sec. 3. Then the algorithm and the analysis are presented in Sec. 4
and Sec. 5 respectively. Some proofs are removed due to the space limited, which
can be found in the full version of this paper [16].

2 Enumeration-Based Algorithms

Given a graph G, a subset C of vertices of G is called a vertex cover, if any
edge in G is incident on at least one vertex in C. A subset I of vertices of G
is called an independent set, if there is no edge between any two vertices in
I. EDS is an important problem studied from the view of enumeration vertex
covers [3,11,4,13]. Note that the vertex set of an edge dominating set is a vertex
cover. Conversely, given a minimal vertex cover C, a minimal edge dominating
set that contains C in the set of its end points can be computed in polynomial
time by computing a maximum matching in the induced graph G[C] and adding
an edge for each unmatched vertex in C. This observation reduces the problem
to that of finding such a minimal vertex cover C. However, it is not easy to find

362 M. Xiao and H. Nagamochi

a “right” vertex cover. The idea is to enumerate all minimal vertex covers to
find it. All minimal vertex covers can be enumerated in O(1.4423n) time [6,8],
which immediately yields an O∗(1.4423n)-time algorithm for EDS. We will use a
branch-and-reduce method to find vertex covers. We fix some part of a minimal
vertex cover and then try to extend it.

For a set F of edges, let V (F) denote the set of all end points of edges in F .
For a subset A ⊆ V in G, an edge dominating set M is called an anontated edge
dominating set (AEDS for short) if with A ⊆ V (M). Let μ(G,A) denote the
size of a minimum AEDS in G. Denote U = V − A. When U = ∅, our task is
to find a minimum edge dominating set M such that V (M) = V in the graph
G, and such set M can be constructed by finding a maximum matching in G in
polynomial time.

Suppose that G[U] contains a clique component (a connected component that
is a clique) Q. Including Q into A means to augment G by introducing a new
vertex vQ that is adjacent to all vertices in Q and set A′ := A ∪ V (Q) ∪ {vQ}.
Let G′ be the resulting graph. Clearly μ(G′, A′) ≤ μ(G,A) + 1, since |V (Q) −
V (M)| ≤ 1 for any minimum AEDS in (G,A). Van Rooij and Bodlaender [11]
proved that for any minimum AEDS M ′ in (G′, A′), vQ is incident to either
exactly one edge uvQ ∈ M ′ or exactly two edges uvQ, u

′vQ ∈ M ′ with adjacent
vertices u, u′ ∈ V (Q). In the former (resp., latter) case, M = M ′ − {uvQ}
(resp., M = (M ′ − {uvQ, u′vQ}) ∪ {uu′}) is a minimum AEDS in (G,A). Thus,
a minimum AEDS in (G,A) can be obtained from a minimum AEDS in (G′, A′)
in linear time. This tells us that clique components in the G[U] do not cause any
trouble in finding a minimum AEDS.

Based on this idea, we search for a minimum ADES M , keeping track of a set
A of annotated vertices . The vertices in U = V −A are called undecided vertices.
We use some branching rules to deal with vertices in U and include any newly
created clique components into A.

3 Branching Rules and Some Structural Properties

We introduce the branching rules used to move vertices in U out of this set. Note
that each vertex is either in the vertex set of a minimum edge dominating set
or not. Let v be an arbitrary vertex in U . Then we can branch on v by either
including it into A or excluding it from G for a minimum AEDS. In the first
branch, we add v to the current A. In the second branch, we remove v from G
and add all neighbors of v to A. This is the simplest branching procedure in
our algorithm, called branching on a vertex v. In our algorithm, once a clique
component Q is newly created in G[U], we include Q into A. We use another
branching procedure “branching on a 4-cycle.” We say that abcd is a 4-cycle, if
there exist four edges ab, bc, cd and da in G[U]. Branching on a 4-cycle abcd
means that we branch by including either {a, c} or {b, d} into A. The correctness
of this rule follows from the observation: for a 4-cycle abcd, any vertex cover in
the graph contains either {a, c} or {b, d} [12].

A Refined Exact Algorithm for Edge Dominating Set 363

When we execute two branching procedures, we choose vertices or 4-cycles
carefully to reduce the time complexity. We introduce several rules to choose
vertices or 4-cycles for branching in our algorithm. For a vertex v ∈ U in graph
G[U], let d(v) be the degree of v in G[U], N(v) the set of all neighbors of v in
G[U], N [v] = N(v) ∪ {v} the set of vertices with distance at most 1 from v,
N2(v) the set of vertices with distance exactly 2 from v in G[U], and N2[v] =
N2(v)∪N [v]. For a subset X ⊆ U of vertices, let N(X) denote the neighbors of
X , i.e., N(X) = ∪v∈XN(v)−X , and d(X) denote the number of edges between
X and U −X .

A vertex v ∈ U is called a clique-producing vertex (cp-vertex for short) if at
least one clique component will be generated by removing v from G[U]. Note
that any degree-1 vertex is adjacent to a cp-vertex. A 4-cycle abcd is called a
clique-producing cycle (cp-cycle for short) if removing {a, c} or {b, d} generates
at least one clique component. When G[U] contains a cp-vertex, we branch on
an optimal cp-vertex, where a cp-vertex v is optimal if removing v generates the
largest total size of cliques. Otherwise we will branch on a cp-cycle or a vertex of
maximum degree. We branch on cp-cycles when the maximum degree is ≤ 3. For
branching on a vertex of maximum degree d, we may choose an “optimal degree-
d vertex.” A degree-d vertex v ∈ U is called an optimal degree-d vertex if (i) the
degree sequence d(u1) ≤ d(u2) ≤ · · · ≤ d(ud) of the d neighbors u1, u2, . . . , ud of
v is lexicographically minimum over all degree-d vertices; and (ii) d(N [v]) (the
number of edges between N [v] and N2(v)) is maximized among such vertices v
satisfying (i). The following properties on optimal degree-d vertices are used in
our algorithm.

Lemma 1. Let v be an optimal degree-d vertex in a connected d-regular graph
H that is not a clique. The d(N [v]) ≥ 4 for d = 3. If H contains more than 6
vertices, then d(N [v]) ≥ 6 for d = 4.

Lemma 2. Let v be an optimal degree-4 vertex in a graph with maximum degree
4 which has no cp-vertices. Assume that v has one degree-3 neighbor and three
degree-4 neighbors. If d(N [v]) < 5, then d(N [v]) = 3 and N2(v) contains a vertex
of degree ≤ 3.

4 The Algorithm

Our algorithm for EDS is described in Fig. 1.

5 The Analysis

We will use the Measure and Conquer method to analyze the running time
bound of our algorithm. We set a vertex weight function W : N∗ → R∗ in
the graph according to the degree of the vertex (where N∗ and R∗ denote the
sets of nonnegative integers and nonnegative reals, respectively). We denote by
wi the weight W (v) of a vertex v of degree i ≥ 0 in G[U]. Then we adopt
w =

∑
v∈U W (v) =

∑
i wini as the measure of the graph, where ni is the number

364 M. Xiao and H. Nagamochi

Input: A graph G = (V,E) and a partition of V into sets A and U . Initially
A = ∅ and U = V .
Output: A minimum AEDS.

1. If {There is a clique component Q in G[U]}, include Q into A.
2. Elseif{There are some cp-vertices in G[U]}, branch on an optimal cp-

vertex v by adding it to A or removing it from G.
3. Elseif {There is a vertex v of degree ≥ 5 in G[U]}, by adding it to A or

removing it from G.
4. Elseif{There are some degree-4 vertices in G[U]}, branch on an optimal

degree-4 vertex by adding it to A or removing it from G.
5. Elseif{There is a cp-cycle abcd in G[U]}, branch on it by including either
{a, c} or {b, d} into A.

6. Elseif{There are some degree-3 vertices in G[U]}, branch on an optimal
degree-3 vertex by adding it to A or removing it from G.

7. Elseif {G[U] contains only components of cycles of length ≥ 5}, branch
on any degree-2 vertex by adding it to A or removing it from G.

8. Else (Now U = ∅ holds.) Compute the candidate AEDS and return the
smallest one.

Fig. 1. Algorithm EDS(G)

of degree-i vertices in U . In our algorithm, when w = 0, the problem can be
solved in polynomial time directly. We also require that wi ≤ 1 for all i’s. Then
the measure w is not greater than the number n of vertices. If we can get a
running time bound related to measure w, then we can also get a running time
bound related to n.

Let C(w) denote the worst-case running time αw to find a solution in graphs
that have measure at most w in our algorithm, where α > 1 is a constant. To
get a running time bound of the algorithm, we show how much the measure w
can be reduced in each branching step in the algorithm and then determine an
upper bound on α.

To simplify case analysis of our algorithm, we set w0 = 0 and wi = 1 for i ≥ 4.
We only need to decide the best values of w1, w2 and w3. We use Δwi to denote
wi − wi−1 for i ≥ 1, where Δwi = 0, i ≥ 5. Furthermore we let the weight w
meet the conditions:

Δw1 ≥ Δw2 ≥ Δw3 ≥ Δw4 ≥ 0 and w3 +Δw3 ≥ w4 + 3Δw4. (1)

5.1 Preliminaries

Next, we give the framework of the analysis of branching on a vertex in G[U].
Let v ∈ U be a vertex of maximum degree d in G[U]. Assume that v has di
neighbors of degree i ∈ [0, n]. Then d =

∑n
i=1 di =

∑d
i=1 di. Assume that the

algorithm will branch on v by including it into A or removing from G. Now we
analyze how much we can reduce w in each branch. For a subset X ⊆ U , we

A Refined Exact Algorithm for Edge Dominating Set 365

use δ(X) to denote the amount of w being reduced by removing the vertices in
X out the current U , where δ(X) depends on X itself, the neighbors of X and
any possible cliques resulting from the removal of X . More precisely, δ(X) in the
current graph G[U] is given as follows

δ(X) = δ′(X) + δ′′(X) + δ′′′(X)

such that δ′(X) =
∑

v∈X wd(v), δ
′′(X) =

∑
u∈N(X)(wd(u)−wd′(u)), and δ′′′(X) =∑

i≥1 kiiwi−1, where d′(u) and ki denote the degree of a vertex u ∈ U −X and
the number of cliques with size i newly created by the removal of X in the graph
G[U −X].

Now, we consider branching on a single vertex v. In the branch where v is
moved into A, we can delete a degree-d vertex v and reduce the degree of all
neighbors of v by 1 in G[U]. We have δ(v) ≥ δ′(v) + δ′′(v) with

δ′(v) = wd and δ′′(v) =
∑

1≤i≤d

diΔwi.

In the branch where v is removed from G, we also add N(v) to A. Then we will
delete N [v] from G[U], and reduce the degree of the vertices in N2(v). We get
δ(N [v]) ≥ δ′(N [v]) + δ′′(N [v]) with

δ′(N [v]) = wd +
∑

1≤i≤d

diwi and δ′′(N [v]) =
∑

u∈N2(v)

(wd(u) − w|N(u)−N(v)|).

By (1), a lower bound on δ′′(N [v]) can be obtained as follows:

δ′′(N [v]) ≥ d(N [v])Δwd′ ,

where d′ is the maximum degree of a vertex in N2(v).
We introduce some lemmas to reduce the case analysis for the running time

of our algorithm.

Lemma 3. For four values a ≥ 0, b ≥ 0, t ≥ 0 and t′ such that a ≤ b and t ≥ t′,
it holds C(w − a) + C(w − b) ≤ C(w − (a− t)) + C(w − (b+ t′)).

In our analysis, we often need to evaluate an upper bound on the formula C(w−
(δ′(v)+ δ′′(v)))+C(w− (δ′(N [v])+ρ)) for branching on a vertex v, where ρ ≥ 0
is a lower bound on δ′′(N [v]).

Lemma 4. For indices j < k, let d′ be defined by d′j = dj − 1, d′k = dk + 1 and
d′i = di (i �= j, k). Then it holds

C(w − (wd +
∑n

i=1 diΔwi)) + C(w − (wd +
∑n

i=1 diwi + ρ))
≤ C(w − (wd +

∑n
i=1 d

′
iΔwi)) + C(w − (wd +

∑n
i=1 d

′
iwi + ρ′))

if ρ ≥ 0 and wj +Δwj ≥ wk +Δwk + (ρ′ − ρ).

366 M. Xiao and H. Nagamochi

5.2 Step 2

In Step 2, we branch on an optimal cp-vertex v. Let H be the component of G[U]
containing v. After Step 1 is applied, H is not clique. Removing v generates at
least one new clique from H . In both branches of adding v to A and removing it
from G, all the vertices in the cliques will be removed from U . Let k be the total
size of the generated cliques. If k ≥ 2, then at least three vertices will be removed
from U by removing each of v and N [v], and one of the removed vertices is of
degree ≥ 2, and we have recurrence

C(w) ≤ 2C(w − (w2 + 2w1)). (2)

For k = 1, v has exactly one degree-1 neighbor and d(v) ≥ 3 (otherwise k ≥ 2 due
the optimality of v). Hence we have δ(v) ≥ w3+w1 and δ(N [v]) ≥ w3+2w2+w1,
which implies recurrence

C(w) ≤ C(w − (w3 + w1)) + C(w − (w3 + 2w2 + w1)). (3)

5.3 Step 3

In Step 3, the algorithm will select a vertex v of maximum degree d ≥ 5 inG[U] to
branch on. Notice that after Step 2, there is no degree-1 vertex in U . We get the
recurrence C(w) ≤ C(w−δ(v))+C(w−δ(N [v])) ≤ C(w−δ(v))+C(w−δ′(N [v])).
Since we can apply Lemma 4 to indices k > j ≥ 3 and ρ′ = ρ = 0, we only need
to analyze the case where each neighbor of v is of degree 2 or ≥ 5. Let q be the
number of degree-2 neighbors of v. Then it holds

C(w) ≤ C(w − δ(v)) + C(w − δ′(N [v]))

= C(w − (wd +
∑d

i=1 diΔwi)) + C(w − (wd +
∑d

i=1 diwi))
≤ C(w − (1 + qΔw2)) + C(w − (d+ 1− q + qw2)),

and we get recurrences

C(w) ≤ C(w − (1 + qΔw2)) + C(w − (6− q + qw2)), q = 0, 1, . . . , 5. (4)

5.4 Step 4

In this step, we will branch on an optimal degree-4 vertex v in G[U]. Let di
denote the number of degree-i neighbors of v. After Step 2, it holds d1 = 0.

Case 1. d2 = 4 and d3+d4 = 0: In this case, no two neighbors of v are adjacent
since otherwise v would be a cp-vertex. Hence δ′′(N [v]) ≥ 4Δw4, and we have
recurrence

C(w) ≤ C(w − (w4 + 4Δw2)) + C(w − (w4 + 4w2 + 4Δw4))
= C(w − (1 + 4w2 − 4w1)) + C(w − (5− 4w3 + 4w2)).

(5)

Case 2. d2 = 3 and d3 + d4 = 1: Since w3 +Δw3 ≥ w4 +Δw4 by (1), we can
apply Lemma 4 with j = 3, k = 4 and ρ′ = ρ = 0 to evaluate the recurrence

A Refined Exact Algorithm for Edge Dominating Set 367

C(w) ≤ C(w− δ(v))+C(w− δ′(N [v])). Hence we only need to consider the case
of d2 = 3 and d4 = 1, and we get

C(w) ≤ C(w − (w4 + 3Δw2 +Δw4)) + C(w − (2w4 + 3w2))
= C(w − (2− w3 + 3w2 − 3w1)) + C(w − (2 + 3w2)).

(6)

Case 3. d2 = d3 + d4 = 2: Analogously with Case 2, we only need to consider
the case of d2 = d4 = 2 to evaluate the recurrence C(w) ≤ C(w− δ(v)) +C(w−
δ′(N [v])) by Lemma 4. Hence we get

C(w) ≤ C(w − (w4 + 2Δw4 + 2Δw3)) + C(w − (w4 + 2w4 + 2w3))
= C(w − (3− 2w2)) + C(w − (3 + 2w3)).

(7)

Case 4. d2 = 1 and d3 + d4 = 3: We first consider the case of d2 = 1 and
d4 = 3. In this case, there are at least two edges between N(v) and N2(v), and
δ′′(N [v]) ≥ ρ′ = 2Δw4. Then we get the recurrence

C(w) ≤ C(w − δ(v)) + C(w − (δ′(N [v]) + ρ′))
≤ C(w − (w4 + 3Δw4 +Δw2)) + C(w − (4w4 + w2 + 2Δw4))
= C(w − (4− 3w3 + w2 − w1)) + C(w − (6− 2w3 + w2)).

(8)

By Lemma 4, the other cases will be covered by the case of d2 = 1 and d4 = 3,
since for ρ = 0 and ρ′ = 2Δw4, it holds that w3 +Δw3 ≥ w4 + Δw4 + 2Δw4

by (1).

Case 5. d2 = 0 and d3 + d4 = 4: We first consider the case of d4 = 4. In this
case, all vertices in G[U] are of degree 4, and we will select an optimal degree-4
vertex v. Let H be the 4-regular graph containing v. If H has only 6 vertices,
then all vertices in H will be removed from U when v is removed from G, and
branching on v gives a recurrence

C(w) ≤ C(w − (w4 + 4Δw4)) + C(w − 6) = C(w − (5− 4w3)) + C(w − 6).(9)

Let H contains more than 6 vertices. Then d(N [v]) ≥ 6 by Lemma 1, and
δ′′(N [v]) ≥ ρ′ = 6Δw4. We get the recurrence

C(w) ≤ C(w − δ(v)) + C(w − (δ′(N [v]) + ρ′))
≤ C(w − (w4 + 4Δw4)) + C(w − (w4 + 4w4 + 6Δw4))
= C(w − (5− 4w3)) + C(w − (11− 6w3)).

(10)

For the other case, we get the recurrence C(w) ≤ C(w−δ(v))+C(w−(δ′(N [v])+
ρ)), where ρ is a lower bound on δ′′(N [v]). Similarly, by using Lemma 4 we can
prove that the other cases will be covered by the case of d4 = 4.

5.5 Step 5

In this step, we will branch on a cp-cycle abcd. Note that G[U] has none of clique
components, cp-vertices and vertices of degree > 3 after applying Steps 1-4. In

368 M. Xiao and H. Nagamochi

the branch where a and c (resp., b and d) are included into the 4-cycle, we will
delete {a, c} (resp., {b, d}) from G[U] and reduce the degree of b and d (resp., a
and c) by 2.

If removing each of {a, c} and {b, d} generates a clique, then we get recurrence
C(w) ≤ 2C(w − 3w2), which is covered by (2). If removing one of {a, c} and
{b, d} generates cliques whose total size is at least 2, then we get recurrence
C(w) ≤ C(w − 2w2) + C(w − 4w2), which is covered by (3) by Δw2 ≥ Δw3.

The remaining case is that removing one of {a, c} and {b, d} generates a clique
with size 1 and removing the other one does not generate any clique. Thus, only
one vertex, say a, in the 4-cycle is of degree 2 and the other three are of degree
3. Then we have δ({a, c}) ≥ w2 + w3 + 2(w3 − w1) + Δw3 = 4w3 − 2w1, and
δ({b, d}) ≥ 2w3 + w2 + (w3 − w1) + 2Δw3 = 5w3 − w2 − w1. Therefore, we get

C(w) ≤ C(w − (4w3 − 2w1)) + C(w − (5w3 − w2 − w1)). (11)

5.6 Step 6

In this step, we will branch on optimal degree-3 vertices in G[U], where every
vertex is of degree 2 or 3. Let N(v) = {a, b, u}, where d(a) ≥ d(b) ≥ d(u) ≥ 2 is
assumed without loss of generality. We distinguish two cases.

Case 1. Vertex u is of degree 2: We first show that δ(v) ≥ 3w3 − w2 − w1 and
δ(N [v]) ≥ 4w3. Since Δw3 ≤ Δw2, we observe that δ(v) ≥ w3 + 2Δw3 +Δw2 =
3w3−w2−w1. Vertex u is not adjacent to a or b if a and b are adjacent, otherwise
there would be a cp-cycle which must have been eliminated by Step 5. Also no
two degree-2 neighbors of v are adjacent (otherwise v would be a cp-vertex).
For d(a) = d(b) = d(u) = 2, it holds d(N [v]) ≥ 3 and we have δ(N [v]) ≥
w3 + 3w2 + 3Δw3 = 4w3. For d(a) = 3 and d(b) = d(u) = 2, d(N [v]) = 0 would
imply that a degree-2 neighbor is a cp-vertex, and it holds d(N [v]) ≥ 2 by the
parity condition of degrees, indicating that δ(N [v]) ≥ 2w3+2w2+2Δw3 = 4w3.
Finally for d(a) = d(b) = 3 and d(u) = 2, d(N [v]) = 1 would imply that N(v)
contains a cp-vertex, and it holds d(N [v]) ≥ 3 by the parity condition of degrees,
from which we have δ(N [v]) ≥ 3w3 + w2 + 3Δw3 ≥ w3 + 3w2 + 3Δw3 = 4w3.
Then we get recurrence

C(w) ≤ C(w − (3w3 − w2 − w1)) + C(w − 4w3). (12)

We here further show that the algorithm will branch on a cp-vertex after in-
cluding v into A. By combining the ‘child’ recurrence together with the ‘parent’
recurrence, we derive a better recurrence than (12).

Note that in the branch where v is including into A, vertex u will become a
degree-1 vertex. Then G[U − {v}] contains some cp-vertices and the algorithm
will further branch on an optimal cp-vertex v∗ in the next step. We also note that
any degree-2 vertex can not be in a 4-cycle in G[U], since there is no cp-cycle.
Then in G[U − {v}], each vertex is adjacent to at most one degree-1 vertex.

If the removal of v∗ generates cliques of total size at least 2, we have the
following arguments. Since v∗ is adjacent to at most one degree-1 vertex in

A Refined Exact Algorithm for Edge Dominating Set 369

G[U − {v}], we see that δ(v∗) ≥ w3 + w2 + w1 and δ(N [v∗]) ≥ w3 + 2w2 + w1.
By combining this and (12), we get a recurrence

C(w) ≤ C(w − (3w3 − w2 − w1)− (w3 + w2 + w1))
+C(w − (3w3 − w2 − w1)− (w3 + 3w2 + w1)) + C(w − 4w3)

= C(w − 4w3) + C(w − (3w3 + 2w2)) + C(w − 4w3).
(13)

Otherwise, the removal of v∗ generates a clique of size 1. Then v∗ can only be a
degree-3 vertex in G[U − {v}]. Without loss of generality, we assume the three
neighbors of v∗ are u′, a′ and b′, where d(u′) = 1, d(a′) ≥ 2 and d(b′) ≥ 2. We
here show that δ(v∗) ≥ 3w3 − 2w2 + w1 and δ(N [v∗]) ≥ 3w3 + w1.

Since Δw3 ≤ Δw2, we observe that δ(v
∗) ≥ w3+2Δw3+w1 = 3w3−2w2+w1.

For d(a′) = d(b′) = 2, a′ and b′ are not adjacent (otherwise v∗ would be a cp-
vertex the removal of which generates a clique a′b′ with size 2), and there are
two edges between N(v∗) and N2(v

∗), implying that δ(N [v∗]) ≥ w3+2w2+w1+
2Δw3 = 3w3+w1. For d(a

′) = 3 and d(b′) = 2, there is at least one edge between
N(v∗) and N2(v

∗), and we have δ(N [v∗]) ≥ w3+w1+w2+w3+Δw3 = 3w3+w1.
Finally for d(a′) = d(b′) = 3, there are at least two edges between N(v∗) and
N2(v

∗), and we obtain δ(N [v∗]) ≥ 3w3+w1+2Δw3 ≥ w3+2w2+w1+2Δw3 =
3w3 + w1. Then for branching on v∗ we get the recurrence

C(w) ≤ C(w − (3w3 − 2w2 + w1)) + C(w − (3w3 + w1)). (14)

Recurrence (12) is followed by (14). This gives the recurrence

C(w) ≤ C(w − (3w3 − w2 − w1)− (3w3 − 2w2 + w1))
+C(w − (3w3 − w2 − w1)− (3w3 + w1)) + C(w − 4w3)

= C(w − (6w3 − 3w2)) + C(w − (6w3 − w2)) + C(w − 4w3).
(15)

Case 2. Vertex u is of degree 3: Note that for this case, the component is a
3-regular graph. By Lemma 1, we know that d(N [v]) ≥ 4. If d(N [v]) = 6, then
δ′′(N [v]) ≥ 6Δw3 and we branch on v with the following recurrence

C(w) ≤ C(w − (4w3 − 3w2)) + C(w − (10w3 − 6w2)). (16)

Assume that d(N [v]) = 4. Then By branching on v, we have recurrence

C(w) ≤ C(w − (4w3 − 3w2)) + C(w − (8w3 − 4w2)). (17)

To get better recurrences, we further analyze how our algorithm continues branch-
ing operations after including v into A. Note that for this case, each degree-3
vertex in the regular graph in G[U] is contained in a triangle, and no two tri-
angles share an edge (otherwise it would form a cp-cycle). Then after removing
v from G[U], the graph has not a degree-1 vertex nor a triangle containing two
degree-2 vertices. Then, there are no cp-vertices in G[U −{v}]. It is still possible
that G[U − {v}] contains a cp-cycle (see the following Case 2.1). If G[U − {v}]
contains no cp-cycle, the algorithm will select an optimal degree-3 vertex to
branch on, which will be adjacent to a degree-2 vertex (see the following Case
2.2). Let the three neighbors of v be a, b and c, where a and b are adjacent.

370 M. Xiao and H. Nagamochi

Case 2.1. Vertices a and b are in a 4-cycle abut in G[U]: Since each degree-3 vertex
in the regular graph in G[U] is contained in a triangle, the 4-cycle abut must
share edges with two triangles, say abv and uty. Then after branching on the
degree-3 vertex v with (17) and the algorithm will further branch on the cp-cycle
abut in the first branch which includes v into A (note that no other cp-vertex
or cp-cycle can be created in this branch). Since only two adjacent vertices are
degree-3 vertices in the cp-cycle, Then each branch of removing {a, u} and {b, t}
reduces w by w3 +w2 + (w3 −w1) +w2 +Δw3 = 3w3 +w2 −w1. By combining
this and (17), we get

C(w) ≤ 2C(w − (4w3 − 3w2)− (3w3 + w2 − w1)) + C(w − (8w3 − 4w2))
= 2C(w − (7w3 − 2w2 − w1)) + C(w − (8w3 − 4w2)).

(18)

Case 2.2. Vertices a and b are not in any 4-cycle in G[U]: We still branch on v
with (17). In the branch where v is included into A, we will get three degree-2
vertices a, b and c, where a and b are adjacent, and c is in a triangle, say ca′b′.

In this branch, the algorithm will select a vertex v′ adjacent to a degree-
2 vertex (one of {a, b, c}) to branch on with recurrence (12). In the subbranch
where v′ is included into A, there is a cp-vertex v′′ (by denoting u1 and t1 (resp.,
u2 and t1) be the two degree-3 vertices adjacent to a and b (resp., a′ and b′), if
v′ = ui, then v′′ = ti; if v

′ = ti, then v′′ = ui (i ∈ {1, 2})). Then algorithm will
further branch on v′′ with the following recurrence

C(w) ≤ C(w − (w3 + 2Δw3 + w2 + w1)) + C(w − (3w3 + 2Δw3 + w2 + w1))
= C(w − (3w3 − w2 + w1)) + C(w − (3w3 − w2 + w1)).

Considering all these together, we will get

C(w) ≤ C(w − (4w3 − 3w2)− (3w3 − w2 − w1)− (3w3 − w2 + w1))
+C(w − (4w3 − 3w2)− (3w3 − w2 − w1)− (3w3 − w2 + w1))
+C(w − (4w3 − 3w2)− (4w3)) + C(w − (8w3 − 4w2))

= 2C(w − (10w3 − 5w2)) + C(w − (12w3 − 5w2)) + C(w − (8w3 − 4w2)).

(19)

5.7 Step 7

In this step, the maximum degree of G[U] is 2, and G[U] contains only compo-
nents of cycles of length ≥ 5. The algorithm will branch on any vertex in the
cycle and then branch on optimal cp-vertices in paths created. Lemma 1 in [11]
implies that

Lemma 5. Algorithm EDS(G) branches on a component of cycle of length l ≥ 5
in G[U] into at most 2l/3 subbranches, in which all the l vertices are removed
from U .

By Lemma 5, we can get the following recurrence C(w) ≤ 2l/3C(w− lw2), which
is equivalent to

C(w) ≤ 21/3C(w − w2). (20)

A Refined Exact Algorithm for Edge Dominating Set 371

5.8 Putting All Together

Each of the worst recurrences derived in the above will generate a constraint in
our quasiconvex program to solve a best value for w1, w2 and w3. By solving
Recurrence (i) above, we will get that C(w) ≤ (αi(w1, w2, w3))

w , where 2 ≤ i ≤
20 (i �= 12, 14, 17). We choose a value of w1, w2 and w3 satisfying (1) such that
max2≤i≤20, i	=12,14,17{αi(w1, w2, w3)} is minimized. By solving this quasiconvex
program according to the method introduced in [2], we get a running time bound
of O(1.3160w) by setting w1 = 0.8120, w2 = 0.9006 and w3 = 0.9893 for our
problem. Now the tight constraints are Δw2 ≥ Δw3 in (1), (2), (10) and (16).

Theorem 1. Algorithm EDS(G) can find a minimum edge dominating set in
an n-vertex graph G in O∗(1.3160n) time.

References

1. Binkele-Raible, D., Fernau, H.: Enumerate and Measure: Improving Parame-
ter Budget Management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS,
vol. 6478, pp. 38–49. Springer, Heidelberg (2010)

2. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: SODA, pp. 781–
790. ACM Press (2004)

3. Fernau, H.: edge dominating set: Efficient Enumeration-Based Exact Algo-
rithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 142–153. Springer, Heidelberg (2006)

4. Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On two techniques of combining
branching and treewidth. Algorithmica 54(2), 181–207 (2009)

5. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Conquer: Domination – A
Case Study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

6. Johnson, D., Yannakakis, M., Papadimitriou, C.: On generating all maximal inde-
pendent sets. Information Processing Letters 27(3), 119–123 (1988)

7. Plesnik, J.: Constrained weighted matchings and edge coverings in graphs. Disc.
Appl. Math. 92, 229–241 (1999)

8. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
9. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerat-

ing maximal independent sets and other techniques. Theory of Computing Sys-
tems 42(3), 563–587 (2007)

10. Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set.
Technical Report zaik 2005-501, Universität zu Köln, Germany (2005)

11. van Rooij, J.M.M., Bodlaender, H.L.: Exact Algorithms for Edge Domination. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225.
Springer, Heidelberg (2008)

12. Xiao, M.: A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree
Graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 281–292. Springer, Heidelberg (2010)

13. Xiao, M.: Exact and Parameterized Algorithms for Edge Dominating Set in 3-
Degree Graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS,
vol. 6509, pp. 387–400. Springer, Heidelberg (2010)

372 M. Xiao and H. Nagamochi

14. Xiao, M., Kloks, T., Poon, S.-H.: New Parameterized Algorithms for the Edge
Dominating Set Problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 604–615. Springer, Heidelberg (2011)

15. Xiao, M., Nagamochi, H.: Parameterized Edge Dominating Set in Cubic Graphs.
In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp.
100–112. Springer, Heidelberg (2011)

16. Xiao, M., Nagamochi, H.: A Refined Exact Algorithm for Edge Dominating Set.
TR 2011-014. Kyoto University (2011)

17. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.
Math. 38(3), 364–372 (1980)

Finite Automata over Structures

(Extended Abstract)

Aniruddh Gandhi1, Bakhadyr Khoussainov1, and Jiamou Liu2

1 Department of Computer Science, University of Auckland, New Zealand
2 School of Computing and Mathematical Sciences
Auckland University of Technology, New Zealand

agan014@aucklanduni.ac.nz, bmk@cs.auckland.ac.nz,
jiamou.liu@aut.ac.nz

Abstract. We introduce a finite automata model for performing com-
putations over an arbitrary structure S . The automaton processes se-
quences of elements in S . While processing the sequence, the automaton
tests atomic relations, performs atomic operations of the structure S ,
and makes state transitions. In this setting, we study several problems
such as closure properties, validation problem and emptiness problems.
We investigate the dependence of deciding these problems on the under-
lying structures and the number of registers of our model of automata.
Our investigation demonstrates that some of these properties are related
to the existential first order fragments of the underlying structures.

1 Introduction

Most algorithms use methods, operations, and test predicates over an already
defined underlying structure. For instance, algorithms that use integer variables
assume that the underlying structure contains the set of integers Z and the usual
operations of addition +, multiplication ×, and the predicate ≤. Similarly algo-
rithms that work on graphs or trees assume that the underlying structure consists
of graphs and trees with operations such as adding or deleting a vertex or an edge,
merging trees or graphs, and test predicates such as the subtree predicate. Gen-
erally, an algorithm over an algebraic structure S = (D; f0, . . . , fn, R0, . . . , Rk),
where each fi is a total operation on D and each Ri is a predicate on D, is a
sequence of instructions that uses the operations and predicates of the structure.
This simple observation has led to the introduction of various models of com-
putations over arbitrary structures and their analysis. The first example here is
the class of Blum-Shub-Smale (BSS) machines [2], where the underlying struc-
ture is the ordered ring of the reals. The model is essentially a multiple register
machine that stores tuples of real numbers and that can evaluate polynomials
at unit cost. The second example is the work of O. Bournez, et al. [5], where
the authors introduce computations over arbitrary structures thus generalizing
the work of L. Blum, M. Shub and S. Smale [2]. In particular, among several
results, they prove that the set of all recursive functions over arbitrary structure
S is exactly the set of decision functions computed by BSS machines over S.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 373–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

374 A. Gandhi, B. Khoussainov, and J. Liu

The third example is various classes of counter automata that use counters in
different ways [6,7,10,14,16].

In this paper, we introduce the notion of finite automata over algebraic struc-
tures which accept or reject finite sequences of elements from the domain of the
underlying structure. Our main motivation here is that our model is the finite
automata analogue of BSS machines over arbitrary structures. Namely, we define
finite state automata over any given structure S. Such an automaton is equipped
with a finite number of states, a fixed number of registers, a read only head that
always moves to the right in the tape and transitions between the states. The
automaton processes finite sequences of elements of S. During the computation,
given an input from the sequence, the automaton tests the input against the
values of the registers. Depending on the outcomes of the test, the automaton
updates the register values by performing basic operations on the input and the
register values and then makes a transition to a state. Given a structure S, we
use the term S-automata to denote the instantiation of this computation model
for S.

Another motivation is that our model can also be viewed as finite automata
over an infinite alphabet when the underlying structure S is infinite. We mention
that there has recently been a lot of interest in the study of finite automata over
infinite alphabets due to investigations in program verification and databases,
[1,3,4,9,19,21]. One goal of these investigations is to extend automata-theoretic
techniques to words and trees over data values. Several models of computations
have been proposed towards this goal. Examples of such automata models include
Kaminsky and Francez’s register automata [11], Neven, Schwentick and Vianu’s
pebble automata [17], Bojanczyk’s data automata [3] and Alur’s extended data
automata [1]. While all the above automata models allow only equality tests
between data values, there has also been automata model proposed for linearly
ordered data domains [20]. The existence of many such models of automata over
either structures or infinite alphabets calls for a general yet simple framework
to formally reason about such finite state automata. This paper addresses this
issue and suggests one such framework.

One important property of our model is that the class of all languages recog-
nized by deterministic S-automata is closed under all the Boolean operations.
Furthermore, every language recognized by an S-automaton over a (computable)
structure is decidable. Thus S-automata do not generate undecidable languages.
Another important implication of our definition is that one can recast many
decision problems about standard finite automata in our setting. For instance,
we address the emptiness problem for S-automata and investigate the interplay
between decidability and undecidability of the emptiness problem by varying
the structure S. In particular, we provide examples of fragments of arithmetic
over which the emptiness problem becomes decidable or undecidable. The third
implication is that our model recasts the emptiness problem for finite automata
by refining the problem as follows. One would like to design an algorithm that,
given an S-automaton over the structure S, and a path from an initial state to
an accepting state in the automaton, builds an input sequence from the structure

Finite Automata over Structures 375

S that validates the path. We call this the validation problem for S-automata.
We will investigate the validation problem for S-automata and connect it with
the first order existential fragment of the underlying structure S. Roughly, the
existential fragment of the structure S is equivalent to finding solutions to sys-
tems of equations and in-equations in the structure. We show that the validation
problem for S-automata is decidable if and only if the existential fragment of
the structure S is decidable.

It is still a speculation that our model provides a general framework for all
other known models of automata. However, generality of our model comes from
the following observations: (1) we can vary the underlying structures and thus
investigate models of finite automata over arbitrary structures, (2) in certain
precise sense our machines can simulate Turing machines, (3) many known au-
tomata models (e.g pushdown automata, Petri nets, visibly pushdown automata)
can easily be simulated by our model but whether decidability results for these
models can be derived from decidability results of our model remains to be seen.

The rest of the paper is organized as follows. Section 2 provides basic defi-
nitions and introduces the notion of S-automata over structures. Section 3 dis-
cusses some basic properties of S-automata. Section 4 investigates the validation
problem that we mentioned above. Section 5 investigates the emptiness prob-
lem and provides both negative and positive cases. The emphasis here is on the
study of S-automata when the structure S constitutes some natural fragments of
arithmetic. For instance we show that the emptiness problem for automata with
two registers over the structure (N; +1,−1,=, pr1, 0) is undecidable. In contrast
to this we show that the emptiness problem for automata with one register over
much richer structure (N; +,×,=,≤, pr1, pr2, c1, . . . , ck) is decidable. Section 6
discusses potential future work.

2 The Automata Model

A structure S consists of a (possibly infinite) domainD and finitely many atomic
operations f1, . . . , fm, relations R1, . . . , Rn and constants c1, . . . , c
 on the set
D. We denote this by

S = (D; f1, . . . , fm, R1, . . . , Rn, c1, . . . , c
).

To simplify our notation, we consider structures whose operations and relations
have arity 2. Generally speaking, the structures under consideration can be ar-
bitrary structures. Therefore the operations and relations are not necessarily
computable. However, we will always assume that given two elements x1, x2 in
the domain, computing the value of fi(x1, x2) as well as checking Rj(x1, x2) can
be carried out effectively for all i and j. We denote the set of all atomic opera-
tions and the set of all atomic relations of S by Op(S) and Rel(S), respectively.

Definition 1. A D-word of length t is a sequence a1 . . . at of elements in the
domain D. A D-language is a set of D-words.

376 A. Gandhi, B. Khoussainov, and J. Liu

Given a structure S with domain D, we investigate a certain type of programs
that process D-words. Informally, such a program reads a D-word as input while
updating a fixed number of registers. Each register holds an element in D at
any given time. Whenever the program reads an element from the input D-
word, it first checks if some atomic relations hold on this input element and the
current values of the registers, then applies some atomic operations to update
the registers. The program stops when the last element in the D-word is read.

We model such programs using finite state machines and call our model (S, k)-
automata (k ∈ N). An (S, k)-automaton keeps k changing registers as well as
� constant registers. The � constant registers store the constants c = c1, . . . , c

and their values are fixed. Each changing register stores an element of D at any
time. We normally use m1, . . . ,mk to denote the current values of the chang-
ing registers. Inputs to the automaton are written on a one-way read-only tape.
Every state q is associated with k + � atomic relations P1, . . . , Pk+
 ∈ Rel(S).
Whenever the state q is reached, the (S, k)-automaton reads the next element x
of the input D-word and tests the predicate Pi(x,mi) for each i ∈ {1, . . . , k} and
Pk+j(x, cj) for each j ∈ {1, . . . , �}. The (S, k)-automaton then chooses a transi-
tion depending on the outcome of the tests and moves to the next state. Each
transition is labelled with k operations, say g1, . . . , gk ∈ Op(S). The automaton
changes the value of its ith register from mi to gi(mi, x). After all elements on
the input tape have been read, the (S, k)-automaton stops and decides whether
to accept the input depending on the current state. Here is a formal definition.

Definition 2. An (S, k)-automaton is a tuple A = (Q,α, x,Δ, q0, F) where Q
is a finite set of states, the mapping α is a function from Q to Relk+
(S), x ∈ Dk

are the initial values of the registers, q0 ∈ Q is the initial state, F ⊆ Q is the set
of accepting states and Δ ⊆ Q×{0, 1}k+
×Q×Opk(S) is the transition relation of
A. The (S, k)-automaton is deterministic if for each q ∈ Q, b ∈ {0, 1}k+
, there
is exactly one q′ and g ∈ Opk(S) such that (q, b, q′, g) ∈ Δ. A (deterministic)
S-automaton is a (deterministic) (S, k)-automaton for some k.

One can view each state q of an S-automaton as a test state and an operational
state; the state q is a test state because the predicates from α(q) are tested on
tuples of the form (a,m) where a is the input and m is a value from the registers.
The state q is an operational state because depending on the outcomes of the
tests, an appropriate list of operations are applied to the tuples (m, a).

To define runs of S-automata, we introduce the following notations. For any
k ∈ N, given a tuple P = (P1, . . . , Pk) ∈ Relk(S), m = (m1, . . . ,mk) ∈ Dk

and a ∈ D, we let χ(P ,m, a) = (b1, . . . , bk) ∈ {0, 1}k such that bi = 1 if
S |= Pi(a,mi) and bi = 0 otherwise, where 1 ≤ i ≤ k. Fix an (S, k)-automaton
A. A configuration of A is a tuple r = (q,m) ∈ Q × Dk. Given two config-
urations r1 = (q,m), r2 = (q′,m′) and a ∈ D, by r1 ↪→a r2 we denote that
(q, χ(α(q), (m, c), a), q′, g1, . . . , gk) ∈ Δ and m′

i = gi(mi, a) for all i ∈ {1, . . . , k}.

Finite Automata over Structures 377

Definition 3. A run of A on a D-word a1 . . . an is a sequence of configurations

r0, r1, r2, . . . , rn

where r0 = (q0, x1, . . . , xk) and ri−1 ↪→ai ri for all i ∈ {1, . . . , n}. The run
is accepting if the state in the last configuration rn is accepting. The (S, k)-
automaton A accepts the D-word a1 . . . an if A has an accepting run on a1 . . . an.
The language L(A) of the automaton is the set of all D-words accepted by A.

We say a D-language L is (deterministic) S-automata recognizable if L = L(A)
for some (deterministic) S-automata A. The next section presents several exam-
ples of S-automata recognizable languages and discuss some simple properties of
S-automata. These examples and properties provide justification to investigate
S-automata as a general framework for finite state machines.

3 Simple Properties of S-Automata

We present several examples to establish some simple properties of S-automata
and S-automata recognizable D-languages. The first result shows that when S
is a finite structure, S-automata recognize regular languages. We use S[a] to
denote the structure obtained from S by adding constants a to the signature.
Suppose that the structure S contains an atomic equivalence relation ≡ of finite
index. Let Σ = {σ1, . . . , σk} be the set of all equivalence classes of ≡. For
every word w = w1 . . . wn over the alphabet Σ, let R(w) be the D-language
{a1 . . . an | ai ∈ wi for all i = 1, . . . , n}. For every language L over Σ, let R(L)
be the D-language

⋃
w∈LR(w).

Theorem 4. Let ai be an element from the ≡-equivalence class σi, where i =
1, . . . , k. Then each of the following is true.

– For every regular language L over Σ, the D-language R(L) is recognized by
an (S[a1, . . . , ak], 0)-automaton.

– Suppose S contains only one atomic relation ≡ and the atomic operations
of S are compatible with ≡. For every S-automata recognizable D-language
W , there is a regular language L over Σ such that W = R(L).

Example 5. Using Theorem 4 one can present many example of S-automata
recognizable D-languages.

(a) Regular languages over Σ = {σ1, . . . , σk} are recognized by (S, 0)-automata
where S = (Σ; =, σ1, . . . , σk).

(b) Let S be a finite structure with domain D where equality is part of the sig-
nature. Any D-language acceptable by an S-automaton is a regular language
over the alphabet D.

(c) Let S be (Z;≡) where ≡= {(i, j) | i = j = 0 or ij > 0}. The following
Z-languages is recognized by (S[−1, 0, 1], 0)-automata:

{n0 . . . nk | k ∈ N, nj > 0 when j is even and nj < 0 when j is odd}.

We now single out two functions that will be used throughout the paper.

378 A. Gandhi, B. Khoussainov, and J. Liu

Definition 6. For i ∈ {1, 2}, define projection on the ith coordinate as an
operation pri : D

2 → D such that pri(a1, a2) = ai for all a1, a2 ∈ D.

The next example shows that for infinite structures of the form S = (D; =
, pr1, pr2), the class of (S, k)-automata recognizable D-languages properly con-
tains the class of (S, k − 1)-automata recognizable D-languages.

Example 7 (Separation between (S, k)-automata and (S, k + 1)-automata). Let
S = (D; =, pr1, pr2) with D infinite. For k > 0, let Dk be the D-language

{a0 . . . ak | ∀i, j ∈ {0, . . . , k} : i �= j ⇒ ai �= aj}.

It is easy to see that an (S, k)-automaton recognizes the D-language Dk but no
(S, k − 1)-automaton recognizes Dk.

The next example shows that deterministic S-automata form a proper subclass
of S-automata. Furthermore, the class of S-automata recognizable D-languages
is not closed under Boolean operations in the general case.

Example 8 (Separation between deterministic and nondeterminstic S-automata).
Let S = (N; +, pr1,=, 1). Let L be the N-language {1nm | n,m ∈ N,m ≤ n}. It
is clear that an (S, 1)-automaton recognizes L. However, such an S-automaton is
necessarily nondeterministic. One may prove that no deterministic S-automaton
recognizes L. Now let L′ be the N-language {1nm | n,m ∈ N,m > n}. One may
prove that no S-automaton recognizes L′. Since N∗ \ L = {ε} ∪ {1nmw | n,m ∈
N,m �= 1, w ∈ N+}∪L′, it is easy to see that the class of S-automata recognizable
N-languages is not closed under the set operations.

The rest of the section focuses on deterministic S-automata. The next theorem
shows that the class of deterministic S-automata recognizableD-languages forms
a Boolean algebra.

Theorem 9 (Closure under Boolean operations). Let S be a structure.
The class of languages recognized by deterministic S-automata is closed under
union, intersection and complementation.

Below we present two examples of deterministic S-automata where the structure
S has the set of natural numbers N as its domain.

Example 10. Let S = (N; +, pr1,=). Let F contain all Fibonacci sequences, i.e.
N-words a1a2 . . . an (n ∈ N) where ai+2 = ai+1 + ai for i ∈ {1, . . . , n− 2}. Then
a deterministic (S, 2)-automaton accepting F is shown in Fig 1.

The next example shows how deterministic S-automata may be used to accept
execution sequences of algorithms.

Example 11. Let S = (N; +, /, pr2,=, 0) where / denotes the modulo operation
on natural numbers, where a/b = r means r < b and r+ bq = a for some q ∈ N.
Euclid’s algorithm computes the greatest common divisor of two given natural
numbers x, y ∈ N by repeatedly computing the sequence a1, a2, a3, . . . such that

Finite Automata over Structures 379

q0 := q1 := q2 := q3 :=

q4 :=

{ 0/1:pr1
0/1:+

{ 0/1:+
0/1:+

{ 0/1:+
1:pr1

{ 1:pr1
0/1:+

{ 0/1:pr1
0/1:pr1

{ 0:pr1
0/1:pr1

{ 0/1:pr1
0/1:pr1

Fig. 1. An (S , 2)-automaton accepting the Fibonacci sequences. The initial value is
(0, 0).

a1 = x, a2 = y, and ai = ai−2/ai−1 for i > 2. The procedure terminates when
ai = 0 and declares that ai−1 is gcd(x, y). We call such a sequence a1, a2, a3, . . .
an Euclidean path. For example, the N-word 384 270 114 42 30 12 6 0
is an Euclidean path. Note that if a1 . . . an is an Euclidean path, then an−1 =
gcd(a1, a2). Hence an Euclidean path can be thought of as a computation of
Euclid’s algorithm. Then a deterministic (S, 2)-automaton accepting the set of
all Euclidean paths is shown in Fig 2.

q0 q1 q2 q3

q5q4

⎧⎪⎨
⎪⎩

0/1 : +

0/1 : pr1
0

⎧⎪⎨
⎪⎩

0/1 : /

0/1 : +

0

⎧⎪⎨
⎪⎩

1 : pr1
0/1 : /

0

⎧⎪⎨
⎪⎩

0/1 : /

1 : pr1
0

⎧⎪⎨
⎪⎩

0/1 : pr1
1 : pr1
1

⎧⎪⎨
⎪⎩

0/1 : pr1
0/1 : pr1
1

⎧⎪⎨
⎪⎩

0/1 : pr1
0/1 : pr1
1

⎧⎪⎨
⎪⎩

1 : pr1
0/1 : pr1
1

⎧⎪⎨
⎪⎩

0 : pr1
0/1 : pr1
0/1

⎧⎪⎨
⎪⎩

0/1 : pr1
0 : pr1
0/1

⎧⎪⎨
⎪⎩

0/1 : pr1
0/1 : pr1
0/1

⎧⎪⎨
⎪⎩

0/1 : pr1
0/1 : pr1
0/1

Fig. 2. An ((N; +, /,pr1,=, 0), 3)-automaton accepting the Euclidean paths. The initial
value is (0, 0, 0). The mapping α maps every state q to the tuple (=,=,=).

380 A. Gandhi, B. Khoussainov, and J. Liu

4 The Validation Problem

This section discusses the validation problem for automata over a given structure
S. The main result is that deciding the validation problem on S-automata is
equivalent to deciding the existential theory of the structure S (see Theorem 13
below). The validation problem is formulated as follows.

Validation Problem. Design an algorithm that, given an S-automaton A and
a path p in A from the initial state to an accepting state, decides if there exists
a D-word a such that a run of A over a proceeds along p.

Obviously the problem depends on the given structure S. For instance, if S is
a finite structure then, by Example 5(b), both the validation and the emptiness
problem are decidable. The validation problem for S-automata turns out to be
equivalent to solving systems of equations and in-equations over the structure.
More formally, we define the following:

Definition 12. The existential theory of S, denoted by Th∃(S) is the set of all
existential sentences true in S, that is,

Th∃(S) = {ϕ | S |= ϕ and ϕ is an existential sentence}.

The following is the main result of this section:

Theorem 13. The validation problem for S[pr1, pr2,=]-automata is decidable
if and only if Th∃(S) is decidable.

5 The Emptiness Problem

This section discusses the emptiness problem for S-automata.

Emptiness Problem. Design an algorithm that, given a structure S and an
(S, k)-automaton A, decides if A accepts at least one D-word.

A sink state in an S-automaton is a state whose all outgoing transitions loop
into the state itself. All accepting sink states can be collapsed into one accepting
sink state, and all non-accepting sink states can be collapsed into one non-
accepting sink state. Therefore we can always assume that every S-automaton
has at most 2 sink states.

Definition 14. We call an S-automaton acyclic if its state space without the
sink states is an acyclic graph.

Note that in any acyclic S-automaton, there are only finitely many paths from
the initial state to an accepting state. Hence the emptiness problem is compu-
tationally equivalent to the validation problem.

Theorem 15. The emptiness problem of acyclic S[pr1, pr2,=]-automata is de-
cidable if and only if S has decidable existential theory.

Finite Automata over Structures 381

The above theorem immediately provides a wide range of structures S for which
the emptiness problem of acyclic S[pr1, pr2,=]-automata is decidable. Below we
list several examples of such structures. The structures (a-c) are well-known to
have decidable first-order theory, (d) has decidable theory by [18], and (e,f) have
decidable theory since they are instances of automatic structures [12].

Example 16. The emptiness problem is decidable for acyclic S[pr1, pr2,=]-auto-
mata where S is the following structures and c1, . . . , ck are constants in the
respective domain:

(a) (N; +, <,≤, c1, . . . , c
).
(b) (N;×, c1, . . . , c
).
(c) Any finitely generated Abelian group.
(d) (N; +, pow2, c1, . . . , c
) where the function pow2 : N2 → N is the function

(x, y) → 2x.
(e) (Q; +,≤, c1, . . . , c
) where Q is the set of rational numbers.

(f) The Boolean algebra of finite and co-finite subsets of N.

Theorem 15 above poses the following question. Let S be a structure with un-
decidable existential theory, find k such that the emptiness problem for acyclic
(S, k)-automata is undecidable. Speculatively there might be a structure S with
undecidable existential theory (and hence undecidable emptiness problem for
acyclic S-automata) such that for each k the emptiness problem for acyclic
(S, k)-automata is decidable, but we don’t know any such example. Below we
provide an example of a structure S such that the emptiness problem for acyclic
(S, 1)-automata is undecidable.

Let G = (V,E) be a computable graph for which testing whether each node
is isolated is undecidable (the reader is referred to [8] for the existence of such a
graph). Then the following acyclic (G[pr2,=], 1)-automaton A has undecidable
emptiness problem. The (G, 1)-automaton A has four states q0, q1, qf , qs where
qf , qs are sink states and F = {qf}. The mapping α maps q0 to = and q1 to E.
The transitions on q0 and q1 are

{(q0, b, q1, pr2) | b = 0, 1} ∪ {(q1, 0, qs, pr2)} ∪ {(q1, 1, qf , pr2)}

We now give a more natural example of a structure S where emptiness problem
is undecidable for acyclic (S, k)-automata with small k. By a reduction from
Hilbert’s tenth problem[15], one obtain the following theorem.

Theorem 17. Consider the following structures:

SZ = (Z; +,×, pr1, pr2,=, 0) and SN = (N; +,×, pr1, pr2,=, 0).

(a) The emptiness problem for deterministic acyclic (SZ, 11)-automata is unde-
cidable.

(b) The emptiness problem for deterministic acyclic (SN, 12)-automata is unde-
cidable.

382 A. Gandhi, B. Khoussainov, and J. Liu

A natural question is the decidability of the emptiness problem if we remove the
acyclicity constraint. We denote with +1 and −1 the binary operations on N2

such that +1(x, y) = x+1 and −1(x, y) = x− 1 (Note that -1 is not total). The
next theorem shows that if we remove the acyclicity constraint, the emptiness
problem is undecidable for S-automata with a small number of registers.

Theorem 18. Let S1 = (N; +1,−1,=, pr1, 0) and S2 = (N,+1,=, pr1, pr2, 0).

(a) The emptiness problem for deterministic (S1, 2)-automata is undecidable.
(b) The emptiness problem for deterministic (S2, 4)-automata is undecidable.

The next question is whether the emptiness problem is undecidable if we lower
the number of register even further.

Theorem 19. Let S be the structure (N; +,×, pr1, pr2,=,≤, c1, . . . , c
) where
c1, . . . , c
 are constants in N. The emptiness problem for (S, 1)-automata is de-
cidable.

Another way of restricting the automata is to put constraints on the allowable
transitions of the automata. We show in the following that by allowing only
those transitions that compare the input or a changing register with constants,
the emptiness problem may become decidable. Our motivation is to analyze
those algorithm in which comparisons occur only between variables and a fixed
number of constant values. For example we may allow the comparison a < 5 but
not the comparison a < b where a, b are variables. With this in mind, we now
introduce a class of automata which we call the constant comparing automata.
We would like to show such automata have a decidable emptiness problem. For
the sake of convenience we add the relation U = N2 to our structures. This can
be done without any loss of generality.

Definition 20. Let S be a structure that contains = as an atomic relation and
� constants c1, . . . , c
 in its signature. A constant comparing (S, k)-automaton is
A = (Q,α, y,Δ, q0, F) such that for every q ∈ Q, α(q) = (R1, . . . , Rk+
) satisfies
the following conditions:

– There is at most one i ∈ {1, . . . , k} such that Ri is the = relation.
– For all j ∈ {1, . . . , k} apart from i (if it exists) we have Rj = U .

The (S, k)-automaton A is a strongly constant comparing S-automaton if no
such i exists.

Note that by definition an (S, 1)-automaton is also a constant comparing
S-automaton. Hence the next theorem can be viewed as a generalization of
Theorem 19.

Theorem 21. Let S be the structure (N; +,×, pr1, pr2,=,≤, U, c1, . . . , c
) where
c1, . . . , c
 are arbitrary constants in N. The emptiness problem for constant com-
paring S-automata is decidable.

Finite Automata over Structures 383

Note that the structure S in Theorem 21 does not contain subtraction as part of
the signature. If subtraction is added to the signature, one may show by slightly
modifying the proof of Theorem 18(a) that the emptiness problem becomes
undecidable. However, the emptiness problem becomes decidable if we restrict
to strongly constant comparing S-automata as shown by the following theorem.

Theorem 22. Let S = (N; +,−, pr1,=,≤, c1, . . . , c
) where c1, . . . , c
 are con-
stants in N.

(a) The emptiness problem for constant comparing (S, 2)-automata is undecid-
able if � ≥ 2.

(b) The emptiness problem for strongly constant comparing S-automata is de-
cidable.

6 Discussion and Future Work

One natural direction for future work is to obtain more generic results on the
emptiness problem. This may require to identify the common properties of the
automata over different structures discussed in this paper, and see how differ-
ent existing types of automata with external memory (e.g. bounded reversal
counter machines, flat counter automata, pushdown automata) fit into this gen-
eral framework.

Another interesting direction for future work is to identify structures for which
this type of automata enjoy closure under the set operations (even in the nonde-
terministic case) and hence identify connections of these automata with certain
logic over the underlying structures.

A third possible direction is to analyze automata over structures whose do-
mains are not natural numbers. Some interesting examples of such structures
include real closed fields, the boolean algebra of finite and co-finite subsets with
the subset predicate etc.

In this paper we have focused our attention on the decidability of emptiness
problem for our automata model. However other classical automata-theoretic
decidability problems such as the universality problem, the language inclusion
problem and the equivalence problem are also topics for future work.

References

1. Alur, R., Černý, P., Weinstein, S.: Algorithmic Analysis of Array-Accessing Pro-
grams. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 86–101.
Springer, Heidelberg (2009)

2. Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over
the Real Numbers: NP-completeness, Recursive Functions and Universal Machines.
Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

3. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-Variable
Logic on Words with Data. In: Proceedings of LICS 2006, pp. 7–16. IEEE Computer
Society (2006)

384 A. Gandhi, B. Khoussainov, and J. Liu

4. Bojanczyk, M., David, C., Muscholl, M., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: Proceedings of PODS 2006, pp. 10–19.
ACM (2006)

5. Bournez, O., Cucker, F., Jacobé de Naurois, P., Marion, J.-Y.: Computability over
an Arbitrary Structure. Sequential and Parallel Polynomial Time. In: Gordon, A.D.
(ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 185–199. Springer, Heidelberg (2003)

6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 577–588. Springer, Heidelberg (2006)

7. Comon, S., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Pres-
burger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

8. Ershov, Y., Goncharov, S., Marek, V., Nerode, A., Remmel, J.: Handbook of Recur-
sive Mathematics: Recursive Model Theory. Studies in Logic and the Foundations
of Mathematics. North-Holland (1998)

9. Figueira, D.: Reasoning on words and trees with data. Ph.D. Thesis, ENS Cachan,
France (2010)

10. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
J. ACM 25(1), 116–133 (1978)

11. Kaminsky, M., Francez, N.: Finite memory automata. Theor. Comp. Sci. 134(2),
329–363 (1994)

12. Ishihara, H., Khousainov, B., Rubin, S.: Some Results on Automatic Structures.
In: Proceedings of LICS 2002, p. 235. IEEE Computer Society (2002)

13. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: Procedings of LICS 2009, pp. 4–13. IEEE Computer So-
ciety (2009)

14. Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

15. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
16. Minsky, M.: Recursive unsolvability of Post’s problem of “Tag” and other topics

in theory of Turing machines. Annals of Math. 74(3) (1961)
17. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite

alphabets. ACM Tran. Comput. Logic 15(3), 403–435 (2004)
18. Point, F.: On Decidable Extensions of Presburger Arithmetic: From A. Bertrand

Numeration Systems to Pisot Numbers. J. Symb. Log. 65(3), 1347–1374 (2000)
19. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet.

In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg
(2006)

20. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data
domains. In: Proceedings of STACS 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 81–92 (2011)

21. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: Pro-
ceedings of LICS 2009, pp. 157–166. IEEE Computer Society (2009)

Deterministic Distributed Data Aggregation

under the SINR Model

Nathaniel Hobbs1, Yuexuan Wang1, Qiang-Sheng Hua1,
Dongxiao Yu2, and Francis C.M. Lau2

1 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, P.R. China

hobbs.nathaniel@gmail.com, {amywang,qshua}@mail.tsinghua.edu.cn
2 Department of Computer Science, The University of Hong Kong,

Pokfulam Road, Hong Kong
{dxyu,fcmlau}@cs.hku.hk

Abstract. Given a set of nodes V, where each node has some data value,
the goal of data aggregation is to compute some aggregate function in the
fewest timeslots possible. Aggregate functions compute the aggregated
value from the data of all nodes; common examples include maximum
or average. We assume the realistic physical (SINR) interference model
and no knowledge of the network structure or the number of neighbors
of any node; our model also uses physical carrier sensing. We present a
distributed protocol to compute an aggregate function in O(D+Δ log n)
timeslots, where D is the diameter of the network, Δ is the maximum
number of neighbors within a given radius and n is the total number of
nodes. Our protocol contributes an exponential improvement in running
time compared to that in [18].

Keywords: SINR interference model, data aggregation, physical carrier
sensing.

1 Introduction

In this paper, we concentrate on minimizing latency when performing data aggre-
gation, a fundamental operation in wireless networks. Informally, our problem
is to, given a set of nodes distributed in a two-dimensional Euclidean plane,
compute an aggregate function (e.g. a maximum or average, see below for for-
mal definition) on the input data from all nodes in the network, and let every
node be aware of this value in as little time as possible. A practical, real world
application of data aggregation would be to compute an average temperature in
a wireless sensor network, for example.

To put things into context, we adopt the physical SINR (signal to interference
plus noise ratio) model. In the SINR model, the signal of a message from a sender
propagates through the Euclidean plane continuing on into infinity, but fades
with distance. A transmission is said to be successful if and only if the signal
power at the intended recipient is sufficiently strong against background noise
and the received signal power (seen as interference) of concurrent transmissions.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 385–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

386 N. Hobbs et al.

Centralized algorithms for data aggregation under the SINR model have been
widely studied [20,17,18,9]; however, more realistic distributed algorithms have
not yet received significant attention. To the best of our knowledge, the only dis-
tributed data aggregation algorithm under SINR is given in [18]. Under stronger
restrictions on the initial knowledge that nodes have and aided by physical carrier
sensing, our protocol offers an exponential improvement in running time over [18].

Our algorithm is deterministic and confines nodes to only one piece of knowl-
edge: a polynomial estimate of the total number of nodes in the network. Our
distributed protocol makes extensive use of physical carrier sensing: the ability
to sense when the shared channel used by all nodes is occupied. Technically, we
develop a novel node election process using physical carrier sensing and make
new use of the maximal independent set algorithm in [27], which may be of
independent interest.

1.1 Our Contribution and Techniques

This paper presents an algorithm that is able to calculate (distributive and alge-
braic) aggregate functions in a deterministic, distributed way under the physical
(SINR) model. When all nodes can perform physical carrier sensing, have access
to a global clock and synchronously wake up, we show that an aggregate function
can be computed in O(D+Δ logn) timeslots. A trivial lowerbound for any data
aggregation protocol is Ω(D + Δ) timeslots [19], so our algorithm is at worst
an O(log n) approximation to an optimal solution. To the best of the authors’
knowledge, the current best distributed data aggregation algorithm is presented
in [18] which has a running time that depends on the logarithm of the ratio of
the longest and shortest links in the network. In the worst case this could require
Ω(n) timeslots; our algorithm can therefore offer an exponential improvement.
Our algorithm makes new use of finding maximal independent sets and we also
present a practical technical novelty of a node election process aided by the use
of physical carrier sensing.

1.2 Related Previous Work

The SINR model is more realistic than graph-based models (e.g. the protocol
interference model), as shown both experimentally and theoretically [6,21,24].
In a seminal work, Moscibroda and Wattenhofer first abstracted and researched
the connectivity problem in wireless networks in the context of the SINR model
[23]. Their work on centralized connectivity algorithms with arbitrary power as-
signments (e.g. non-uniform power) was subsequently expanded on in [25,22,7].
Related to the connectivity problem, i.e. creating a connected spanning tree on a
given set of nodes in a minimal number of timeslots, is that of scheduling : sched-
ule a given a set of communication links in as few timeslots as possible. The
scheduling problem was shown to be NP-complete in [4] (an O(log n) approxi-
mation was given in [5]). Halldorsson et al. proved hardness results for One-Shot
scheduling (i.e. scheduling as many links as possible in a single timeslot) with
uniform power (i.e. where every node transmits with the same, fixed power)

Deterministic Distributed Data Aggregation under the SINR Model 387

in [10,11]. Kesselheim extended the result to the power control version of the
problem in [15].

Among results for data aggregation in graph theoretic models, Li et al. studied
the problem in the decentralized setting in [19]: an algorithm whose resulting
schedule was shown to be within a constant factor of the optimal is given. A
number of centralized algorithms have also been proposed [29,28,14].

There have been several results for centralized data aggregation algorithms
under the SINR model. Li et al. studied the problem in [20] using uniform power
with an asymptotically optimal scheduling algorithm of latency O(Δ+R), where
R is the radius of the network and Δ the maximum number of neighbors of any
node. Recently, this work was expanded on in [17], where an asymptotically op-
timal algorithm was produced for geometric minimum latency data aggregation
in the dual power model. In the same paper, the authors show that no algorithm
can have an approximation ratio better than Ω(log n) in metric SINR as well as
the NP-hardness of minimum latency data aggregation under geometric SINR.
Hua et al. study the minimum latency link scheduling problem for arbitrary
directed acyclic networks under both precedence and SINR constraints in [13]
where they show hardness results and give approximation algorithms. In [18], Li
et al. presented an algorithm with latency O(log3 n), assuming that the trans-
mission power of each node is large enough to cover the maximum distance in
the network. Halldorsson et al. very recently presented a centralized algorithm
for scheduling using non-uniform power that gives a constant approximation to
an optimal scheduling [9]. In the same work, he shows that any algorithm that
uses oblivious power assignments will require Ω(n) time slots for connectivity
under certain node distributions.

Under the SINR model, to the best of our knowledge, the only decentralized
data aggregation algorithm was given by Li et al. in [18]. When every node in the
network knows its position, the network diameter, the number of neighbors, and
has access to a global clock, [18] gives a distributed algorithm to perform data ag-
gregation whose running time depends on the logarithm of the ratio of the longest
and shortest links in the network, which may be Ω(n) in the worst case.

2 Model and Related Terminologies

2.1 Model

We consider a set of nodes V := {x1, x2, · · · , xn} distributed arbitrarily in the
Euclidean plane. The Euclidean distance between two nodes xi, xj ∈ V is denoted
by d(xi, xj). A directed link λij represents a communication request from sender
xi to receiver xj , where the length of λij = d(xi, xj).

As in [8], we assume that transmissions are put into synchronized slots of
equal length. All communication among nodes are done in synchronized rounds
and nodes wake up and begin the execution of the algorithm synchronously. In
any given time slot t, a node x can either transmit or receive a message, but not
both. In every time slot, a power assignment is assigned to every node in a time
slot, and is non-zero for node x ∈ V if and only if x is to transmit a message in

388 N. Hobbs et al.

time slot t. Formally, a power assignment Pt is a function Pt �→ R+. A schedule
S = (P1, P2, · · · , P|S|) is a sequence of |S| power assignments.

Considering a link λsr in the network, with sender xs transmitting at power
Ps(r) to receiver xr, the SINR at xr is:

SINRxr(xs, xr) =

Ps(r)
d(xs,xr)α

N +
∑

xi,xj∈V\{xs}
Pi(j)

d(xi,xr)α

(1)

where N > 0 is the ambient noise, 2 < α ≤ 6 is the path loss ex-
ponent (the amount that the signal from xs degrades over distance), and∑

xi,xj∈V\{xs}
Pi(j)

d(xi,xr)α
is the total signal strength (viewed as interference at

xr) of other concurrently transmitting senders. Receiver xr is said to have suc-
cessfully received the transmission from xs if and only if the SINRxr(xs, xr)
exceeds a given threshold β ≥ 1.

We consider data aggregation in the unknown neighborhood model, i.e. nodes
have no knowledge of the number of neighboring nodes within any given radius
from themselves. Nodes do, however, have a polynomial estimate (specifically
an upperbound) to the total number of nodes in the network. This assumption
will not affect the asymptotic time bounds of our proposed algorithm compared
to when the exact total number of nodes is known. Each node has a unique ID
from the interval [1, n] using the same number of bits, i.e. each node has a unique
logn bit identifier, where nodes with smaller IDs pad their lower order bits by
a prefix of 0s.

Every node is equipped with the ability to perform physical carrier sensing pro-
vided by a Clear Channel Assessment (CCA) circuit [26]. This is a natural as-
sumption, as physical carrier sensing is widely used in wireless protocols such as
Zigbee and Wi-Fi (IEEE 802.15.4 and 802.11 standards, respectively) [31]. For a
given threshold T , a node can sense if the shared channel is occupied if the power
sensed at that node by a transmitting neighbor is greater than or equal to T . A
carrier sensing range Rs [3] is mapped from the carrier sensing power threshold
T : Rs = (PT)

1/α where P is the transmission power. A node xi can carrier sense a
node xj if and only if the distance between xi and xj is no larger than Rs.

In the absence of other concurrently transmitting nodes, let Rmax = (Pmax

β·N)(1/α)

be the maximum distance that a successful transmission can be from by a sender
transmitting at power Pmax. For a given distribution of nodes, Δ is the maximum
number of nodes that lie within radius Rmax centered around any node. If a node
xj is within the transmission radius of sender xi, we say that the two nodes are
within one “hop” from one another. Let h(xi, xj) be the minimum hop distance
between two nodes xi and xj . We define the diameter D of the network to be
D = maxxi,xjh(xi, xj).

2.2 Related Terminologies

AGGREGATION FUNCTION: In general, there are three classes of aggregation
functions [12]: distributive (e.g. maximum, minimum, sum, count), algebraic
(e.g. variance, average), and holistic (e.g. kth largest/smallest). Our algorithm is

Deterministic Distributed Data Aggregation under the SINR Model 389

only concerned with distributive and algebraic aggregate functions, and does not
apply to holistic functions as in [16], Kuhn et al. proved that the decentralized
computation of holistic functions is strictly harder than distributive or algebraic
ones. As in [20], we define an aggregation function f to be distributive if for
every pair of disjoint data sets X1, X2, f(X1 ∪X2) = h(f(X1), f(X2)) for some
function h. For example, when f is sum, h can also be set to sum.

An algabraic aggregation function is defined as a combination of k distributive
functions, k a constant, i.e. f(X) = h(g1(X), g2(X), · · · , gk(X)). For example,
when f is average, then k = 2, g1 and g2 are the distributive functions g1(X) =∑

xi∈X xi, g2(X) =
∑

xi∈X 1 and h(g1, g2) = g1/g2. We assume that an algabraic
function f is given in formula h(g1, g2, · · · , gk), so we can just compute gi(X)
distributively for i ∈ [1, k] and h(g1, g2, ·, gk) at each node once all data has
arrived.

Hereafter, we use the aggregate function maximum as an example for the sake
of intelligibility, but any distributive aggregation function could easily be chosen.

Definition 1. (MAXIMAL INDEPENDENT SET (MIS)): In a graph G =
(V,E), V a set of vertices and E edges, a set S is a maximal independent set if
every edge of graph G has at least one endpoint in S and every vertex not in S
has at least one neighbor in S.

Definition 2. (CONNECTED DOMINATING SET (CDS)): For a graph G =
(V,E), a subset V ′ of V is a dominating set if for all vertices xi ∈ V \ V ′, there
exists an adjacent node xj ∈ V ′. Nodes in V ′ are called dominators, whereas
nodes in V \V ′ are called dominatees. A subset C of V is a connected dominating
set (CDS) if C is a dominating set and C induces a connected subgraph. By
definition, an MIS is a dominating set.

3 Data Aggregation Algorithm

Each node begins with some value. Our protocol will have every node in the
network become aware of the highest value among them. The role of the domi-
nators will be to collect data from their respective dominatee neighbors and then
disseminate the highest value among them to all other nodes in the CDS.

We construct a CDS by first conducting an “election” process, where nodes
decide whether or not they are dominators. The collection of these dominators
will “cover” all nodes in the network, i.e. for all non-dominator nodes there
exists a dominator within a certain radius Rcollect. The dominators will be such
that the distance to the closest neighboring dominator will not be more than
three hops away with respect to Rcollect (c.f. Fig. 1). We will ensure that that
the dominating set is connected by allowing dominators to transmit to all nodes
within a range RCDS = 3 ·Rcollect.

390 N. Hobbs et al.

Rcollect
Rcollect

RCDS = 3 ·Rcollect

Rcollect

Fig. 1. An example of a MIS with respect to Rcollect. The nodes at the center of the
disks are dominators.

3.1 Algorithm Overview

We model our network as a “unit” disc graph with respect to an elaborately
chosen scaling factor. When adopting a uniform power assignment, the graph
can be modelled as a “unit” disc graph G = (V,E,RCDS), where an edge λij ∈ E
exists between xi and xj if and only if d(xi, xj) ≤ RCDS. It should be noted that
our model differs from traditional unit disc graphs because contention for access
to the shared wireless channel can cause interferences when trying to receive
messages. Because of this, we adopt the novel MIS algorithm that utilizes a
collision detection based method presented in [27]. The running time of this
algorithm is O(log n), will be denoted by tMIS , and is known by all nodes.

In our algorithm, we find maximal independent sets in order to accomplish
three different goals. The first MIS (performed with respect to Rcollect) is com-
puted to select which nodes will be in the dominating set, i.e. the dominators.
Each node not in this initial MIS, but which lies within a disc of radius Rcollect

around some dominator, will be the dominatee of that dominator.
In order to deal with eventual wireless interferences, we expand on a coloring

method used by Yu et al. in [30]. A second round of MISes (a constant number,
each with respect to Rcollect color) will be used to color the dominators; dominators
of the same color (color1) can successfully send/receive a transmission to/from
one of their dominatees (at a distance Rcollect) in a single timeslot. See Fig. 2(a)
for reference. In order to ensure that only one dominatee of any given dominator
sends in any given timeslot, the dominator will use O(log n) timeslots to perform
a binary search to grant the dominatee with the highest ID permission to send
its data. A logarithmic number of timeslots, then, will suffice for every domina-
tor in the network to successfully receive a message from one of their respective
dominatees.

A third round ofMISes (again, a constant number, but with respect toRCDS color)
will be used to color dominators in such a way that dominators of the same color
(color2) can send messages to neighboring dominators (as far as RCDS away) in
order to disseminate values across the entire network. See Fig. 2(b) for reference.

Because no node knows the value of Δ, we cannot have dominators wait to
collect data from all of their dominatees before disseminating values across the

Deterministic Distributed Data Aggregation under the SINR Model 391

Rcollect color

Rcollect

xi
xj

xk

(a) A coloring resulting from a round
of MISes with respect to Rcollect color.
The nodes in the center of the disks
are dominators, the rest dominatees. By
Lemma 2. xi and xk may collect data
from a dominatee at the same time.

RCDS

Rcollect color

RCDS color

Rcollect

RCDS

xi

xj

xk

xl

(b) Completed Preprocessing. By
Lemma 2 and 3, xi and xj can
exchange messages with their domina-
tees. Similarly, by Lemma 2, xi and xl

can successfully broadcast to all other
nodes within radius RCDS at the same
time.

Fig. 2.

network. We therefore carry out the aggregation process in rounds where, in
a single round, dominators first collect data from just one of their respective
dominatees then transmit values to neighboring dominators. The number of
rounds this will take is unknown to the dominators. In our analysis, however, we
bound the number of rounds required. In addition, because, while dominators
are collecting data from their dominatees a logarithmic number of timeslots are
required, it would be disadvantageous for dominators who wish to disseminate
values throughout the CDS to wait for the collecting dominators to finish. We
therefore restrict the dominatee collection process to be performed during even
time slots, allowing dominators to perform the dissemination process during odd
timeslots.

3.2 Algorithm

The entire data aggregation algorithm is broken up into three separate parts.
Algorithm 1 defines the main data aggregation algorithm. It begins by running
the preprocessing subroutine defined in Algorithm 2 where the dominating set is
defined and colors are given. Algorithm 1 then goes on to ensure that dominators
collect data from their dominatees and disseminate data throughout the CDS.
Algorithm 3 is a subroutine that allows dominators to elect their dominatee of
the highest node ID who has not sent yet to collect data from.

392 N. Hobbs et al.

Algorithm 1

Initially, max val = initial val, sent value = null, dominator = FALSE, elected dominatee = null,
color1 = null, color2 = null, new max = FALSE
1: Run Algorithm 2 to decide if dominator, and if so, get colors
2: loop
3: \\ Even timeslots dominators collects value from dominatees.
4: if Timeslot even then
5: for i = 0 to collector colors do
6: elected dominatee = result of Algorithm 3 on input color = i.
7: if dominator = TRUE and color1 = i and elected dominatee �= null

then
8: Transmit with power Pcollect data request to elected dominatee

and listen for one timeslot. If value received greater than
max val, update max val and set new max = TRUE.

9: else
10: Listen for one timeslot and if receive request for node ID that

matches your own to send value, send at power Pcollect and set
sent val = TRUE.

11: \\ Odd timeslots dominators broadcast their max val
12: if Timeslot odd then
13: for i = 0 to CDS colors do
14: if dominator = TRUE and color2 = i and new max = TRUE then
15: Transmit max val with power PCDS, set new max = FALSE.
16: else
17: Listen for one timeslot. If receive value greater than max val

then update max val and set new max = TRUE.

.

. Data Aggregation

Algorithm 2. Preprocessing Subroutine

1: \\Elect dominators
2: Perform MIS algorithm [27] with power Pdominator

3: if In MIS then
4: dominator = TRUE
5: \\Color dominators for successful dominatee data collection
6: for i = 0 to collector colors do
7: if dominator = TRUE and color1 = null then
8: Use tMIS timeslots to perform MIS algorithm in [27] with power Pcollect color

9: if In MIS then color1 = i
10: else Stay quiet for tMIS timeslots.
11: \\Color dominators for successful CDS transmission
12: for i = 0 to CDS colors do
13: if dominator = TRUE and color2 = null then
14: Use tMIS timeslots to perform MIS algorithm [27] with power PCDS color

15: if In MIS then color2 = i
16: else Stay quiet for tMIS timeslots.

Deterministic Distributed Data Aggregation under the SINR Model 393

Algorithm 3. Dominatee Election Subroutine

Require: color
Ensure: elected dominatee
1: L′ = 0, L = �n/2�, R = n− 1, elected dominatee = null
2: if dominator = TRUE and color1 = color then
3: Transmit with power Pcollect request for nodes with node IDs in range [0, n−1]

to reply, then listen for one timeslot. If sense occupied channel via physical
carrier sensing, execute the while loop. Else, stay quiet for 2 log n timeslots
and return null.

4: while L �= R do
5: Transmit with power Pcollect request for nodes with node IDs in range

(L,R] to reply, then listen for one timeslot.
6: if sense node response via physical carrier sense then L′ = L,L = �(L+

R)/2�
7: else R = L,L = �(L′ + L)/2�
8: Return L.
9: else
10: for 2(log n+ 1) timeslots do
11: if dominator = FALSE and sent value = FALSE then
12: Listen. If receive request for ID, then transmit with power Pdominator

if ID in range.
13: else Stay quiet.
14: Return null.

We define many parameters for our algorithm, most of them fairly contrived.
Their intricacy largely stems from a method we use to bound interferences in
Lemma 2. The parameters have been calculated so that our methods will work.
We define the following parameters for our algorithm, and some intuition re-
garding them follows.

1. constants: (i) collector colors = (2[96β(2α−1+ α−1
α−2)]

1
α +1)2, (ii) CDS colors

= (6[96β(2α−1 + α−1
α−2)]

1
α + 1)2

2. Radii: (i) Rcollect = min
{

(Nβ/T)(1/α)Rmax

3[96β(2α−1+α−1
α−2)]

1
α
, 1
3 · (12)

1
αRmax)

}
(ii) RCDS =

3Rcollect, (iii) Rcollect color = [96β(2α−1 + α−1
α−2)]

1
αRcollect, (iv) RCDS color =

[96β(2α−1 + α−1
α−2)]

1
αRCDS

3. Powers: (i) Pdominator = TRα
collect, (ii) Pcollect color = TRα

collect color,
(iii) PCDS color = TRα

CDS color, (iv) Pcollect = 2NβRα
collect, and (v) PCDS =

2NβRα
CDS

collector colors and CDS colors are the number of colors needed to color all dom-
inators for successful dominatee data collection and CDS data dissemination,
respectively.

Rcollect is the radius in which dominators are intended to collect data from their
respective dominatees. RCDS is the radius with respect to which our graph is
connected and also the furthest distance any dominator is to its closest neighbor-
ing dominator.Rcollect color (resp. RCDS color) is the minimum distance between two

394 N. Hobbs et al.

dominators that share the same color1 (resp. color2); that is, it is the “buffer” dis-
tance between two simultaneously collecting (resp. disseminating) dominators.

All our power assignments are static. Pdominator is the power level used when
electing domintators; it is also used by dominatees for the physical carrier sensing
binary search. Pcollect color (resp. PCDS color) is the power level used when coloring
dominators (i.e. performing an MIS) with respect to Rcollect color (resp. RCDS color).
Pcollect is the power level used when exchanging messages between domina-
tors/dominatees. PCDS is the power level used when dominators are transmitting
to neighboring dominators that compose the CDS. Strictly speaking, we define
our powers in relation to Pmax. Formally, we let max{PCDS color, PCDS} = Pmax,
so RCDS will be a constant fraction of Rmax.

1

Lastly, we define the following node attributes: dominator, a Boolean to define
if node is a dominator (TRUE) or dominatee (FALSE). color1 (resp. color2),
all nodes that have the same color can simultaneously broadcast within radius
Rcollect (resp. RCDS). initial val is the initial value that the node begins with
(e.g. initial temperature). max val is the current maximum value thus received
by the node. sent val is a Boolean used by dominatees to keep track of whether
they have sent their initial val to their respective dominator.

4 Analysis

In this section we will give a detailed analysis of our algorithm, show its correct-
ness and bound its running time.

Lemma 1. ([27])The total time to compute a MIS in each stage is tMIS =
O(log n) and each node computing it knows whether or not they are in it.

Recall that tMIS is knownby all nodes in advance of their execution ofAlgorithm1.

Lemma 2. Dominators that have the same color1 (resp. color2) can successfully
broadcast a message to all nodes within the disc of radius Rcollect (resp. RCDS)
centered around them in the same timeslot.

Proof. We have a set of dominators that all share the same color1. Let xi be
some such dominator and xj one of its dominatees. Recall d(xi, xj) ≤ Rcollect.
We claim that no matter how many other dominators of color1 transmit, that
xj can successfully receive a message sent by xi.

Using a method first developed by Moscibroda et al. in [23], and expanded on
in [30], we use a “ring method” to show that interferences are bounded. Because
all simultaneously transmitting dominators lie at distance at least Rcollect color

from each other, then discs of radius Rcollect color/2 centered at each such domi-
nator do not overlap. Let Rl = {xk : lRcollect color ≤ d(xi, xk) ≤ (l+1)Rcollect color}.
Notice now, that all discs of radius Rcollect color/2 in Rl around the dominators
are completely contained within the extended ring R+

l = {xk : lRcollect color −
Rcollect color/2 ≤ d(xi, xk) ≤ (l + 1)Rcollect color + Rcollect color/2}. See Fig. 4 for
reference.
1 We assume that graph G(V,E,RCDS) is connected.

Deterministic Distributed Data Aggregation under the SINR Model 395

xi

xj

Rcollect

Rcollect color

R+
1 =

R1 = Rcollect color

Rcollect color/2

x′
k

xk

Rcollect color

Rcollect color+
2 ·Rcollect color/2

Fig. 3. A simple layout the rings R1 and R+
l surrounding a dominator xi. The disks

surrounding dominators of the same color1 of radius Rcollect/2 do not overlap, e.g. with
dominator xi and xk. By Lemma 2, xj can successfully receive a transmission from
dominator xi, despite simultaneously transmitting dominators of the same color1 as xi

(like xk and x′
k).

We bound the interference by dominators in these rings on xi’s dominatee xj .
Denote the interference received by unwanted dominator xk on xj as Ikj . Then

the interference IRl

j on xj by all unwanted senders of the same color1 as xi in
ring Rl is at most:

I
Rl
j =

∑
xk∈Rl with given color1

Ikj

≤ Area(R+
l)

Area(Disc(Rcollect color/2))
· Pcollect

(lRcollect color −Rcollect)α

=
π((l + 1)Rcollect color +Rcollect color/2)

2 − π(lRcollect color −Rcollect color/2)
2

π(Rcollect color/2)2
· Pcollect

(lRcollect color −Rcollect)α

=
8(2l + 1)Pcollect

(lRcollect color −Rcollect)α
<

48Pcollect

(l − 1/2)α−1Rα
collect color

(2)
The last inequality comes from the fact that Rcollect color > 2Rcollect (recall that

Rcollect color = [96β(2α−1 + α−1
α−2)]

1
αRcollect). We can now bound the total inter-

ference at a dominatee xj of xi by simultaneously transmitting domintators:

Ij =

∞∑
l=1

48Pcollect

(l − 1/2)α−1Rα
collect color

≤ 48Pcollect

Rα
collect color

∞∑
l=1

1

(l − 1/2)α−1

=
48Pcollect

Rα
collect color

(2(α−1) +

∞∑
l=2

1

(l − 1/2)α−1
) ≤ 48Pcollect

Rα
collect color

(2(α−1) +
α− 1

α− 2
) ≤ N

(3)

396 N. Hobbs et al.

By the value of Pcollect, the SINR at xj from its transmitting dominator xi is:

SINRxj(xi, xj) ≥ Pcollect/R
α
collect

Ij+N ≥ β. Therefore, all simultaneously transmitting

dominators of the same color1 can successfully broadcast a message to their
respective dominatees.

The proof for successful transmission of dominators with color2 is similar, and
is omitted for brevity. ��

Lemma 3. Dominatees within the disc of radius Rcollect centered around their
respective dominators (of the same color1) can transmit a message to those dom-
inators successfully in the same timeslot.

Proof. This lemma is the converse of Lemma 2. That is to say, all dominators of
color1 are now receievers and one of their respective dominatees is now the sender.

If there are two dominators of the same color1 xi and xk with respective
dominatees xj and xl (c.f. Fig. 3), then we know by Lemma 2 that both xj and
xl can both successfully receive a message from their dominator. The interference
received by a dominatee xj by sending dominator xk is equal to the amount of
interference at xk when their roles are reversed.

Formally, the interference received by a dominatee xj received by a foreign
dominator xk is Pk

d(xj,xk)α
. Clearly, if xj sends at power Pj = Pk, then the inter-

ference received at xk will be identical. ��

Lemma 4. Dominators performing a binary search in Algorithm 3 can success-
fully sense responses from dominatees using physical carrier sensing.

Proof. This proof is omitted for brevity.

Lemma 5. The number of dominators contained in a disc of radius Rcollect color

(resp. RCDS color) is a constant no more than collector colors = (2[96β(2α−1 +
α−1
α−2)]

1
α + 1)2 (resp. CDS colors = (6[96β(2α−1 + α−1

α−2)]
1
α + 1)2).

Proof. The proof follows from a simple area argument is omitted for brevity.

Lemma 6. Each dominator can elect a dominatee with the highest ID that has
not sent yet and then collect a message from it in O(log n) timeslots.

Proof. In line 3 of Algorithm 3, one timeslot is used for all dominators of color1
to transmit a message to see if any dominatees respond; by Lemma 2, this will
be successfully received by their respective dominatees. Another timeslot is used
to wait for a reply; by Lemma 4, any reply will be sensed. If there is none, then
dominators wait for 2 logn timeslots for others to finish. In the ith iteration of the
while loop on line 4 of Algorithm 3, dominators that sensed a response broadcast
a message requesting dominatees with a range covering 1/2i of all total node IDs
to respond. This takes one timeslot to accomplish, and because only dominators
of the same color1 perform this broadcast, by Lemma 2, all of their respective
dominatees will successfully receive it. These dominators listen for one timeslot
to allow the dominatees to respond; dominatees within the ID range who have
not sent their information yet use this timeslot to reply with a message at power

Deterministic Distributed Data Aggregation under the SINR Model 397

Pdominator and by Lemma 4, the dominatees respective dominators will be able
to sense this response. The range is then halved and the process repeated. After
logn iterations of this process (each taking two timeslots), the dominatee with
the highest ID will be discovered by each corresponding dominator. This binary
search, then, takes a total of 2 logn+ 2 timeslots.

Another combined two timeslots are used in line 8 and 10 of Algorithm 1 for
dominators of the same color1 to collect the actual data value of their respec-
tive elected dominatees. By Lemma 2 (resp. Lemma 3), each dominatee (resp.
dominator) is able to receive the message successfully.

For the set of dominators of the same color1 to successfully receive a message
from a dominatee, then, uses 2 logn+4 timeslots. The for loop in line 5 of Algo-
rithm 1 has dominators of all (constantly many) colors perform this collection.
Thus, O(log n) timeslots are sufficient for each dominator to successfully collect
data from one of their respective dominatees. ��

Theorem 1. For all placements of nodes in the plane, there exists a schedule
using O(D+Δ logn) timeslots for the highest value in the network to be known
by all nodes.

Proof. Each node knows in advance the amount of time required (tMIS =O(logn))
to perform the MIS algorithm in [27]. By Lemma 1, The election of dominators
takes tMIS timeslots. A constant number of executions, collector colors (resp.
CDS colors), of the MIS algorithm in [27] are needed to color the dominators with
their color1 (resp. color2) for the dominatee data collection (resp. data dissemina-
tion) process by Lemma 5. By Lemma 1, each coloring needs O(log n) timeslots.
The total running time of the preprocessing subroutine in Algorithm 2 is therefore
O(log n).

In each iteration of the loop in line 2 of Algorithm 1, by Lemma 6, each dom-
inator will be able to successfully collect a data item from one of its dominatees
in O(log n) timeslots. After Δ iterations of this loop, the maximum value of any
node in the network will be contained in the dominating set, requiring a total of
O(Δ log n) timeslots.

In the same iteration of the loop, by Lemma 2, eachdominator of the same color2
will be able to broadcast its current highest value to neighboring dominators, and
by Lemma 5 the number of colors to iterate through is constant. Because domina-
tors disseminating data do not have to wait for dominators collecting data to per-
form their binary search (as they occur during different timeslot intervals), each
dominator will be able to successfully broadcast a message to all nodes in the disc
of radius RCDS surrounding them in a constant number of timeslots. At this point
becauseRCDS is a constant fraction ofRmax, at mostO(D) timeslots are needed for
the highest value to be disseminated throughout the network.

The entire execution time required for the aggregate function to be computed
and known by all nodes in the network is therefore O(D + Δ log n) and the
theorem follows. ��

398 N. Hobbs et al.

5 Conclusions

In this paper, under the SINR interference model aided by physical carrier sens-
ing, we present a distributed, deterministic algorithm for computing (distribu-
tive and algabraic) aggregate functions in wireless networks. With no knowledge
beyond a polynomial estimate of the number of nodes in the network, our de-
centralized protocol computes an aggregate function and ensures the result is
obtained by every node in the network using only O(D +Δ logn) timeslots. In
particular, aided by the use of physical carrier sensing, our protocol can outper-
form the distributed data aggregation technique used in [18] by an exponential
factor despite the fact our protocol is more limited in its initial knowledge of
the network. As a future work, the study of distributed data aggregation using
non-uniform powers could be particularly meaningful as they have been shown
to have significant effects on reducing time complexity in some cases [2,23]. An-
other natural future direction would be to investigate distributed data aggrega-
tion algorithms under SINR computing holistic aggregate functions. Extending
our work to cases without physical carrier sensing abilities and/or under the
asynchronized communication model, when nodes do not share a global clock,
would also be beneficial directions of future study.

Acknowledgements. This work was supported in part by the National Basic
Research Program of China Grant 2011CBA00300, 2011CBA00302, the National
Natural Science Founda- tion of China Grant 61103186, 61073174, 61033001,
61061130540, the Hi-Tech research and Development Program of China Grant
2006AA10Z216, and Hong Kong RGC-GRF grants 714009E and 714311.

References

1. Chen, X., Hu, X., Zhu, J.: Minimum Data Aggregation Time Problem in Wireless
Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794,
pp. 133–142. Springer, Heidelberg (2005)

2. Fanghanel, F., Kesselheim, T., Racke, H., Vocking, B.: Oblivious Interference
Scheduling. In: PODC (2009)

3. Fu, L., Liew, S., Huang, J.: Effective Carrier Sensing in CSMA Networks under
Cumulative Interference. In: INFOCOM (2010)

4. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR.
In: Mobihoc (2007)

5. Goussevskaia, O., Wattenhofer, R., Halldorsson, M., Welzl, E.: Capacity of Arbi-
trary Wireless Networks. In: INFOCOM (2009)

6. Gronkvist, J., Hansson, A.: Comparison Between Graph-based and Interference
Based STDMA Scheduling. In: Mobihoc (2001)

7. Gu, Z., Wang, G., Hua, Q.-S., Wang, Y.: Improved Minimum Latency Aggregation
Scheduling in Wireless Sensor Networks under the SINR Model. In: CWSN (2011)

8. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions
on Information Theory (2000)

9. Halldorsson, M.M., Mitra, P.:Wireless Connectivity and Capacity. In: SODA (2012)

Deterministic Distributed Data Aggregation under the SINR Model 399

10. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

11. Halldorssson, M.M., Wattenhofer, R.: Computing Wireless Capacity (2010) (un-
published manuscript)

12. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

13. Hua, Q.-S., Wang, Y., Yu, D., Tan, H.: Minimum Latency Link Scheduling for
Arbitrary Directed Acyclic Networks under Precedence and SINR Constraints.
Journal of Interconnection Networks 12(1-2), 87–107 (2011)

14. Huang, S.C.-H., Wan, P., Vu, C.T., Li, Y., Yao, F.: Nearly Constant Approxima-
tion for Data Aggregation Scheduling in Wireless Sensor Networks. In: INFOCOM
(2007)

15. Kesselhelm, T.: A Constant-factor Approximation for Wireless Capacity Maxi-
mization with Power Control in the SINR Model. In: SODA (2011)

16. Kuhn, F., Locher, T., Wattenhoffer, R.: Tight Bounds for Distributed Selection.
In: SPAA (2007)

17. Lam, N.X., An, M.K., Huynh, D.T., Nguyen, T.N.: Minimum Latency Data Ag-
gregation in the Physical Interference Model. MSWiM (2011)

18. Li, H.-X., Wu, C., Hua, Q.-S., Lau, F.C.-M.: Latency-minimizing Data Aggregation
in Wireless Sensor Networks under Physical Interference Model. Ad Hoc Networks
(2012); Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks
under Physical Interference Model. MSWiM (2010)

19. Li, X.-Y., Wang, Y., Wang, Y.: Complexity of Data Collection, Aggregation, and
Selection for Wireless Sensor Networks. IEEE Transactions on Computers (2011)

20. Li, X.-Y., Xu, X.H., Wang, S.G., Tang, S.J., Dai, G.J., Zhao, J.Z., Qi, Y.: Ef-
ficient Data Aggregation in Multi-hop Wireless Sensor Networks under Physical
Interference Model. In: MASS (2009)

21. Maheshwari, R., Jain, S., Das, S.R.: A Measurement Study of Interference Modeling
and Scheduling in Low-power Wireless Netowrks. In: SenSys (2008)

22. Moscibroda T.: The Worst Case Capacity of Wireless Sensor Networks. In: IPSN
(2007)

23. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Net-
works. In: INFOCOM (2006)

24. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-based
Models. In: Hotnets (2006)

25. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control Meets SINR: the
Scheduling Complexity of Arbitrary Topologies. In: Mobihoc (2006)

26. Scheideler, C., Richa, A., Santi, P.: An O(log n) Dominating Set Protocol for Wire-
less Ad-hoc Networks under the Physical Interference Model. In: Mobihoc (2008)

27. Schneider, J., Wattenhofer, R.: What Is the Use of Collision Detection (in Wireless
Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 133–147. Springer, Heidelberg (2010)

28. Wan, P.-J., Huang, S.C.-H., Wang, L.X., Wan, Z.Y., Jia, X.H.: Minimum-latency
Aggregation Scheduling in Multihop Wireless Networks. In: Mobihoc (2009)

29. Yu, B., Li, J., Li, Y.: Distributed Data Aggregation Scheduling in Wireless Sensor
Networks. In: INFOCOM (2009)

30. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed Local Broadcasting Algo-
rithms in the Physical Interference Model. In: DCOSS (2011)

31. Zheng, J., Jamalipour, A.: Wireless Sensor Networks: a Networking Perspective.
Wiley-IEEE Press, Hoboken (2009)

Tensor Rank and Strong Quantum

Nondeterminism in Multiparty Communication

Marcos Villagra1, Masaki Nakanishi2,
Shigeru Yamashita3, and Yasuhiko Nakashima1

1 Nara Institute of Science and Technology, Nara 630-0192, Japan
{villagra-m,nakashim}@is.naist.jp

2 Yamagata University, Yamagata 990-8560, Japan
m-naka@e.yamagata-u.ac.jp

3 Ritsumeikan University, Shiga 525-8577, Japan
ger@cs.ritsumei.ac.jp

Abstract. In this paper we study quantum nondeterminism in multi-
party communication. There are three (possibly) different types of non-
determinism in quantum computation: i) strong, ii) weak with classical
proofs, and iii) weak with quantum proofs. Here we focus on the first
one. A strong quantum nondeterministic protocol accepts a correct input
with positive probability, and rejects an incorrect input with probability
1. In this work we relate strong quantum nondeterministic multiparty
communication complexity to the rank of the communication tensor in
the Number-On-Forehead and Number-In-Hand models. In particular,
by extending the definition proposed by de Wolf to nondeterministic
tensor-rank (nrank), we show that for any boolean function f , 1) in the
Number-On-Forehead model, the cost is upper-bounded by the logarithm
of nrank(f); 2) in the Number-In-Hand model, the cost is lower-bounded
by the logarithm of nrank(f). This naturally generalizes previous results
in the field and relates for the first time the concept of (high-order) ten-
sor rank to quantum communication. Furthermore, we show that strong
quantum nondeterminism can be exponentially stronger than classical
multiparty nondeterministic communication. We do so by applying our
results to the matrix multiplication problem.

Keywords: Multiparty communication, quantum nondeterminism,
tensor rank, exponential separation, matrix multiplication.

1 Introduction

Background. Nondeterminism plays a fundamental role in complexity theory.
For instance, the P vs NP problem asks if nondeterministic time is strictly
more powerful than deterministic time. Even though nondeterministic models
are unrealistic, they can give insights into the power and limitations of realistic
models (i.e., deterministic, random, etc.).

There are two ways of defining a nondeterministic machine, using randomness
or as a proof system: a nondeterministic machine i) accepts a correct input with

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 400–411, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tensor Rank and Strong Quantum Nondeterminism 401

positive probability, and rejects an incorrect input with probability one; or ii)
is a deterministic machine that receives besides the input, a proof or certificate
which exists if and only if the input is correct. For classical machines (i.e., ma-
chines based on classical mechanics), these two notions of nondeterminism are
equivalent. However, in the quantum setting they can be different. In fact, these
two notions give rise to (possibly) three different kinds of quantum nondetermin-
ism. In strong quantum nondeterminism, the quantum machine accepts a correct
input with positive probability. In weak quantum nondeterminism, the quantum
machine outputs the correct answer when supplied with a correct proof, which
could be either classical or quantum.

The study of quantum nondeterminism in the context of query and commu-
nication complexities started with de Wolf [15]. In particular, de Wolf [15] intro-
duced the notion of nondeterministic rank of a matrix, which was later proved to
completely characterize strong quantum nondeterministic communication [16].
In the same piece of work, it was proved that strong quantum nondeterministic
protocols are exponentially stronger than classical nondeterministic protocols.
In the same spirit, Le Gall [8] studied weak quantum nondeterministic com-
munication with classical proofs and showed a quadratic separation for a total
function.

Weak nondeterminism seems a more suitable definition, mainly due to the re-
quirement of the existence of a proof, a concept that plays fundamental roles in
complexity theory. In contrast, strong nondeterminism lends itself to a natural
mathematical description in terms of matrix rank.Moreover, strong nondetermin-
ism is a more powerful model capable of simulating weak nondeterminism with
classical and quantum proofs. The reverse, if weak nondeterminism is strictly a
less powerful model or not is still an open problem.

The previous results by de Wolf [16] and Le Gall [8] were on the context of
2-party communication complexity, i.e., there are two players with two inputs
x and y each, and they want to compute a function f(x, y). Let rank(f) be
the rank of the communication matrix Mf , where Mf [x, y] = f(x, y). A known
result is 1

2 log rank(f) ≤ Q(f) ≤ D(f) [2], where D(f) is the deterministic
communication complexity of f and Q(f) the quantum exact communication
complexity1. It is conjectured that D(f) = O(logc rank) for some arbitrary
constant c. This is the log-rank conjecture in communication complexity, one
the biggest open problems in the field. If it holds, implies that Q(f) and D(f)
are polynomially related. This is in contrast to the characterization given by de
Wolf [16] in terms of the nondeterministic matrix-rank, which is defined as the
minimal rank of a matrix (over the complex field) whose (x, y)-entry is non-zero
if and only if f(x, y) = 1.

Contributions. In this paper, we continue with the study of strong quan-
tum nondeterminism in the context of multiparty protocols. Let k ≥ 3 be the
number of players evaluating a function f(x1, . . . , xk). The players take turns
predefined at the beginning of the protocol. Each time a player sends a bit

1 All logarithms in this paper are base 2.

402 M. Villagra et al.

(or qubit if it is a quantum protocol), he sends it to the player who follows
next. The communication complexity of the protocol is defined as the minimum
number of bits that need to be transmitted by the players in order to compute
f(x1, . . . , xk). There are two common ways of communication: The Number-On-
Forehead model (NOF), where player i knows all inputs except xi; and, Number-
In-Hand model (NIH), where player i only knows xi. Also, any protocol naturally
defines a communication tensor Tf , where Tf [x1, . . . , xk] = f(x1, . . . , xk).

Tensors are natural generalizations of matrices. They are defined as multi-
dimensional arrays while matrices are 2-dimensional arrays. In the same way,
the concept of matrix rank extends to tensor rank. However, the nice properties
of matrix rank do not hold anymore for tensors; for instance, the rank could be
different if the same tensor is defined over different fields [6].

We extend the concept of nondeterministic matrices to nondeterministic ten-
sors. The nondeterministic tensor rank, denoted nrank(f), is the minimal rank
of a tensor (over the complex field) whose (x1, . . . , xk)-entry is non-zero if and
only if f(x1, . . . , xk) = 1.

Let NQNOF
k and NQNIH

k denote the k-party strong quantum nondetermin-
istic communication complexity for the NOF and NIH models respectively.

Theorem 1. Let f : ({0, 1}n)k → {0, 1}, then NQNOF
k (f) ≤ �lognrank(f)�+

1, and NQNIH
k (f) ≥ �lognrank(f)�+ 1.

This theorem generalizes the previous result by de Wolf, as it can be seen that by
letting k = 2 we obtain exactly [16, Lemma 3.2]. Also, since NQNIH

k is a lower
bound for exact NIH quantum communication2, denoted QNIH

k , we obtain the
following corollary:

Corollary 2. �lognrank(f)�+ 1 ≤ QNIH
k (f).

One of the first direct consequences of Theorem 1 is on the equality function.
The k-party equality function EQk(x1, . . . , xk) = 1 if and only if x1 = · · · =
xk. A nondeterministic tensor for EQk is superdiagonal with non-zero entries
in the main diagonal, and 0 anywhere else. Thus, it has 2n rank, and implies
NQNOF

k (EQk) ≤ n + 1 and NQNIH
k (EQk) ≥ n + 1. However, note that the

communication complexity of EQk is upper-bounded byO(n) in the NOF model,
however this could be a very loose bound. In general, NQNOF

k cannot be lower-
bounded by lognrank. To see this, it is easy to show that in the NOF model
there exists a classical protocol for EQk with a cost of 2 bits3. In contrast, the
lower bound on NQNIH

k (EQk) is not that loose; using the trivial protocol, where
all players send their inputs, we have that NQNIH

k (EQk) = O(kn).

2 An exact quantum protocol accepts a correct input and rejects an incorrect input
with probability 1.

3 Let the first player check if x2, . . . , xk are equal. If they are, he sends a 1 bit to the
second player, who will check if x1, x3, . . . , xk are equal. If his strings are equal and
he received a 1 bit from the first player, he sends a 1 bit to all players indicating
that all strings are equal [7, Example 6.3].

Tensor Rank and Strong Quantum Nondeterminism 403

A more interesting function is the generalized inner product defined for-
mally as GIPk(x1, . . . , xk) = (

∑k
i=1

∧n
j=1 xij) mod 2. We know that (2n −

1)k/2 ≤ nrank(GIPk) (see [14] for a proof), and thus, NQNIH
k (GIPk) ≥ n +

�log(k/2)� + 1. In NIH, using the trivial protocol where each player send their
inputs, we obtain (with Corollary 2) a bound in quantum exact communication
of �log(k/2)�+n+1 ≤ QNIH

k (GIPk) ≤ (k−1)n+1. Improving the lower bound
will require new techniques for explicit construction of linear-rank tensors, with
important consequences to circuit lower bounds [13] (see for example the paper
by Alexeev, Forbes, and Tsimerman [1] for state-of-the-art tensor constructions).
In general, we are still unable to upper-bound NQNIH

k (f) in terms of log nrank.
Although the bounds given by Theorem 1 could be loose for some func-

tions, they are good enough for other applications. For instance, we show in
Section 4 a separation between the NOF models of strong quantum nonde-
terminism and classical nondeterminism. We do so by applying Theorem 1 to
the matrix multiplication problem. This separation is super-polynomial when
k = o(log n), and exponential when k = O(1). To our knowledge, this is the first
exponential quantum-classical separation for a total function in any multiparty
communication model4.

2 Preliminaries

In this paper we assume basic knowledge of communication complexity and
quantum computing. We refer the interested reader to the books by Kushilevitz
and Nisan [7] and Nielsen and Chuang [11] respectively. In this section we give
a small review of tensors and quantum communication.

2.1 Tensors

A tensor is a multi-dimensional array defined over some field. An order-d tensor
is an element of the tensor product of d vector spaces.

Definition 3 (Simple Tensor). Let |vi〉 ∈ V ni be an ni-dimensional vector
for 1 ≤ i ≤ d on some vector space V ni . The jthi component of |vi〉 is de-
noted by vi(ji) for 1 ≤ ji ≤ ni. The tensor product of {|vi〉} is the tensor T ∈
V n1 ⊗ · · · ⊗ V nd whose (j1, . . . , jd)-entry is v1(j1) · · · vd(jd), i.e., T [j1, . . . , jd] =
v1(j1) · · · vd(jd). Then T = |v1〉 ⊗ · · · ⊗ |vd〉 and we say T is a rank-1 or simple
order-d tensor. We also say that a tensor is of high order if its order is three or
higher.

From now on, we will refer to high-order tensors simply as tensors, and low-order
tensor will be matrices, vectors, and scalars as usual.

4 A previous separation, super-polynomial when k = o(
√

log n/ log log n) and expo-
nential when k = O(1), was found by Gavinsky and Pudlák [3] for a relational
communication problem in the simultaneous message passing model.

404 M. Villagra et al.

It is important to note that the set of simple tensors span the space V n1 ⊗
· · · ⊗ V nd , and hence, there exists tensors that are not simple. This leads to the
definition of rank.

Definition 4 (Tensor Rank). The rank of a tensor T is the minimum r such
that T =

∑r
i=1 Ai for simple tensors Ai.

This agrees with the definition of matrix rank. The complexity of computing
tensor rank was studied by H̊astad [4] who showed that it is NP-complete for
any finite field, and NP-hard for the rational numbers.

The process of arranging the elements of an order-k tensor into a matrix is
known as matrization. Since there are many ways of embedding a tensor into a
matrix, in general the permutation of columns is not important, as long as the
corresponding operations remain consistent [6].

2.2 Strong Quantum Nondeterministic Multiparty Communication

In a multiparty communication protocol there are k ≥ 3 players trying to
compute a function f . Let f : Xk → {0, 1} be a function on k strings x =
(x1, . . . , xk), where each xi ∈ X and X = {0, 1}n. There are two common ways
of communication between the players: The Number-In-Hand (NIH) and the
Number-On-Forehead (NOF) models. In NIH, player i only knows xi, and in
NOF, player i knows all inputs except xi. First we review the classical defintion.

Definition 5 (Classical Nondeterministic Multiparty Protocol). Let k
be the number of players. Besides the input x, the protocol receives a proof or
certificate c ∈ {0, 1}+. The players take turns in an order predefined at the
beginning of the protocol. To communicate, a player sends exactly one bit to
the player that follows next. The computation of the protocol ends when the last
player computes f . If f(x) = 1 then, there exists a c that makes the protocol
accept the input, i.e., the last player outputs 1. If f(x) = 0 then, the protocol
rejects the input for all c, i.e., the last player outputs 0. The cost of the protocol
is the length of c plus the total number of bits communicated.

Hence, the classical nondeterministic multiparty communication complexity, de-
noted Nk(f), is defined as the minimum number of bits required to compute
f(x). If the model is NIH or NOF, we add a superscript NNIH

k (f) or NNOF
k (f)

respectively. Note that, the definition of the multiparty protocols in this paper
(classical and quantum) are all unicast, i.e., a player sends a bit only to the player
that follows next. This is in contrast to the more common blackboard model. In
this latter model, when a player sends a bit, he does so by broadcasting it and
reaching all players inmediately. Clearly, any lower bound on the blackboard
model is a lower bound for the unicast model.

To model NOF and NIH in the quantum setting, we follow the work of Lee,
Schechtman, and Shraibman [9], as originally defined by Kerenidis [5].

Definition 6 (Quantum Multiparty Protocol). Let k be the number of
players in the protocol. Define the Hilbert space by H1 ⊗ · · · ⊗ Hk ⊗ C, where

Tensor Rank and Strong Quantum Nondeterminism 405

each Hi is the Hilbert space of player i, and C is the one qubit channel. To com-
municate the players take turns predefined at the beginning of the protocol. On
the turn of player i:

1. in NIH, an arbitrary unitary that only depends on xi is applied on Hi ⊗ C,
and acts as the identity anywhere else;

2. in NOF, an arbitrary unitary independent of xi is applied on Hi ⊗ C, and
acts as the identity anywhere else.

The cost of the protocol is the number of rounds.

If there is no entanglement, the initial state is a pure state |0〉 ⊗ · · · ⊗ |0〉|0〉.
In general, the initial state could be anything that is independent of the input
with no prior entanglement. If the final state of the protocol on input x1, . . . , xk

is |ψ〉, it outputs 1 with probability p(x1, . . . , xk) = 〈ψ|Π1|ψ〉, where Π1 is a
projection onto the |1〉 state of the channel.

We say that T is a nondeterministic communication tensor if T [x1, . . . , xk] �= 0
if and only if f(x1, . . . , xk) = 1. Thus, T can be obtained by replacing each 1-
entry in the original communication tensor by a non-zero complex number. We
also define the nondeterministic rank of f , denoted nrank(f), to be the minimum
rank over the complex field among all nondeterministic tensors for f .

Definition 7 (Strong Quantum Nondeterministic Protocol). A k-party
strong quantum nondeterministic communication protocol outputs 1 with positive
probability if and only if f(x) = 1.

The k-party quantum nondeterministic communication complexity, denoted
NQk(f), is the cost of an optimum (i.e., minimal cost) k-party quantum non-
deterministic communication protocol. If the model is NIH or NOF, we add a
superscriptNQNIH

k (f) orNQNOF
k (f) respectively. From the definition it follows

that NQk is a lower bound for the exact quantum communication complexity
Qk for both NOF and NIH.

Lemma 8 (Lee, Schechtman, and Shraibman [9]). After � qubits of com-
munication on input (x1, . . . , xk), the state of a quantum protocol without shared
entanglement can be written as∑

m∈{0,1}�

|A1
m(x1)〉|A2

m(x2)〉 · · · |Ak
m(xk)〉|m
〉,

where m is the message sent so far, m
 is the �-th bit in the message, and each
vector |At

m(xt)〉 corresponds to the t-th player which depends on m and the input
xt. If the protocol is NOF then xt = (x1, . . . , xt−1, xt+1, . . . , xk); if it is NIH then
xt = (xt).

3 Proof of Theorem 1

The arguments in this section are generalizations of a previous result by de Wolf
[16] from 2-party to k-party communication.

406 M. Villagra et al.

First we need the following technical lemma. It is a generalization of [16,
Lemma 3.2] from k = 2 to any k ≥ 3. See below for a proof.

Lemma 9. If there exists k families of vectors {|Ai
1(xi)〉, . . . , |Ai

r(xi)〉} ⊆ Cd

for all i with 2 ≤ i ≤ k and xi ∈ {0, 1}n such that

r∑
i=1

|A1
i (x1)〉 ⊗ · · · ⊗ |Ak

i (xk)〉 = 0 if and only if f(x1, . . . , xk) = 0,

then nrank(f) ≤ r.

Now we proceed to prove the lower bound in Theorem 1.

Lemma 10. NQNIH
k (f) ≥ �lognrank(f)�+ 1

Proof. Consider a NIH �-qubit protocol for f . By Lemma 8 its final state is

|ψ〉 =
∑

m∈{0,1}�

|A1
m(x1)〉 · · · |Ak

m(xk)〉|m
〉. (1)

Assume all vectors have the same dimension d. Let S = {m ∈ {0, 1}
 : m
 = 1},
and consider only the part of the state that is projected onto the 1 state of the
channel,

|φ(x1, . . . , xk)〉 =
∑
m∈S

|A1
m(x1)〉 · · · |Ak

m(xk)〉|1〉. (2)

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f(x1, . . . , xk) = 0. Thus, by
Lemma 9, we have that nrank(f) ≤ |S| = 2
−1, which implies the lower bound.

��

Proof (Lemma 9). First note that the case k=2 was proven by de Wolf [16,
Lemma 3.2]. Here we give a proof for k ≥ 3. We divide it in two cases: when k
is odd and even.

Even k: There are k size-r families of d-dimensional vectors. We will construct
two new families of vectors denoted D and F . First, divide the k families in
two groups of size k/2. Then, tensor each family in one group together in the
following way: for each family {|Ai

1(xi)〉, . . . , |Ai
r(xi)〉} for 1 ≤ i ≤ k/2 construct

a new family

D =

⎧⎨⎩
k/2⊗
i=1

|Ai
1(xi)〉, . . . ,

k/2⊗
i=1

|Ai
r(xi)〉

⎫⎬⎭ =

{
|A1(y)〉, . . . , |Ar(y)〉

}
,

where y = (x1, . . . , xk/2). Do the same to construct F for k/2 + 1 ≤ i ≤ k
obtaining

F =

⎧⎨⎩
k⊗

i=k/2+1

|Ai
1(xi)〉, . . . ,

k⊗
i=k/2+1

|Ai
r(xi)〉

⎫⎬⎭ =

{
|B1(z)〉, . . . , |Br(z)〉

}
,

Tensor Rank and Strong Quantum Nondeterminism 407

where z = (xk/2+1, . . . , xk). Thus, D and F will become two size-r family of
vectors, each vector with dimension dk/2. Then apply the theorem for k = 2 on
these two families and the lemma follows.

Odd k: Here we can use the same approach by constructing again two new
families D and F by dividing the families in two groups of size
k/2� and �k/2�.
However, although both families will have the same size r, the dimension of
the vectors will be different. In fact, the dimension of the vectors in one family
will be d′ = d
k/2� and in the other d′ + 1. So, in order to prove the theorem
we will consider having two size-r families {|A1(y)〉, . . . , |Ar(y)〉} ⊆ Cd′

and
{|B1(z)〉, . . . , |Br(z)〉} ⊆ Cd′+1.

Denote the entry of each vector |Ai(y)〉, |Bi(z)〉 by Ai(y)u and Bi(z)v respec-
tively for all (u, v) ∈ [d′]× [d′ + 1].

Note that, if f(y, z) = 0 then
∑r

i=1 Ai(y)uBi(z)v = 0 for all (u, v); if f(y, z) =
1 then

∑r
i=1 Ai(y)uBi(z)v �= 0 for some (u, v). This holds because each vector

|Ai(y)〉 and |Bi(z)〉 are the set of vectors |At
i(x

t)〉 tensored together and sepa-
rated in two families of size
k/2� and �k/2� respectively.

The following lemma was implicitly proved by de Wolf [16] for families of
vectors with the same dimension. However, we show that the same arguments
hold even if the families have different dimensionality (see [14] for a proof).

Lemma 11. Let I be an arbitrary set of real numbers of size 22n+1, and let
α1, . . . , αd′ and β1, . . . , βd′+1 be numbers from I. Define the quantities

ai(y) =
d′∑

u=1

αuAi(y)u and bi(z) =
d′+1∑
v=1

βvBi(z)v.

Also let

v(y, z) =

r∑
i=1

ai(y)bi(z) =

d′∑
u=1

d′+1∑
v=1

αuβv

(
r∑

i=1

Ai(y)uBi(z)v

)
.

There exists α1, . . . , αd′ , β1, . . . , βd′+1 ∈ I such that for every (y, z) ∈ f−1(1) we
have v(y, z) �= 0.

Therefore, by the lemma above we have that v(y, z) = 0 if and only if f(y, z) = 0.
Now let |ai〉 and |bi〉 be 2n-dimensional vectors indexed by elements from {0, 1}n,
and let M =

∑r
i=1 |ai〉〈bi|. Thus M is an order-k tensor with rank r. ��

Lemma 12. NQNOF
k (f) ≤ �lognrank(f)�+ 1.

The proof of Lemma 12 follows by fixing a proper matrization (separating the
cases of odd and even k) of the communication tensor, and then applying the
2-party protocol by de Wolf [16] (see [14] for a full proof).

408 M. Villagra et al.

4 A Quantum-Classical Super-Polynomial Separation

In this section, we show that there exists a function with a super-polynomial gap
between classical and quantum NOF models of quantum strong nondeterminism.

Theorem 13. There is a super-polynomial gap between NNOF
k and NQNOF

k

when k = o(logn), and exponential when k = O(1).

In particular, we analyze the following total function: Let X1 = · · · = Xk =
{0, 1}n×n be the set of all n× n boolean matrices. Also let xi ∈ Xi be a n × n
boolean matrix, and denote by xixj the multiplication of matrices xi and xj

over the binary field. Define

F (x1, . . . , xk) = (x1x2 · · ·xk)11,

i.e., F (x1, . . . , xk) is the entry in the first row and first column in x1 · · ·xk.
This matrix multiplication function was studied by Raz [12], who showed

a Ω(n/2k) lower bound in the blackboard model of NOF bounded-error com-
munication. However, this lower bound also holds for the classical blackboard
nondeterministic NOF communication denoted NNOF

k (F). The reason is that
the proof by Raz is based on an upper bound for discrepancy. Since NNOF

k (f) =
Ω(1/Disc(f)) for any f where Disc(f) is the discrepancy [10], we immediately
obtain the following corollary:

Corollary 14. NNOF
k (F) = Ω(n/2k).

The condition on the number of players in Theorem 13 comes from this lower
bound. Improving it will require new techniques for classical multiparty commu-
nication.

Since any lower bound in the blackboard model also holds in the unicast
model, we can use Corollary 14 to prove a separation for the unicast models in
this paper. The following lemma implies the theorem.

Lemma 15. NQNOF
k (F) = O(k logn).

Proof. By Theorem 1 we just need to give a tensor with rank at most O(nk).
Denote each entry of the matrix xi by xi[p, q], i.e., the (p, q)-entry of xi. Also,
all the operations in this proof are assumed to be over the binary field.

Let
T [x1, . . . , xk] = (x1 · · ·xk)11,

which is just the function F plugged into T .
First, note that the multiplication is between n × n matrices. Hence, the

maximum rank of the product is at most n. Therefore, we can write each entry
of T as

T [x1, . . . , xk] =

⎛⎝⎛⎝ n∑
j1=1

xj1
1

⎞⎠ · · ·

⎛⎝ n∑
jk=1

xjk
k

⎞⎠⎞⎠
11

=

n∑
j1,...,jk=1

(xj1
1 · · ·xjk

k)11. (3)

Tensor Rank and Strong Quantum Nondeterminism 409

The notation xj
i can be interpreted as the jth term in the rank decomposition

of matrix xi. Now fix j1, . . . , jk, and by the definition of matrix multiplication
we get that

(xj1
1 · · ·xjk

k)11 =

n∑
i1,...,ik−1=1

xj1
1 [1, i1]x

j2
2 [i1, i2] · · ·xjk

k [ik−1, 1]. (4)

Equations (3) and (4) have nk and nk−1 terms. Putting them both together, we
have that T [x1, . . . , xk] have n2k−1 summands. This already have O(nk) terms;
however, we need to make sure that each term in the summation defines a rank-1
tensor.

For each m ∈ {1, . . . , nk} define

Tm[x1, . . . , xk] = xj1
1 [1, i1]x

j2
2 [i1, i2] · · ·xjk

k [ik−1, 1], (5)

for some j1, . . . , jk, i1, . . . , ik−1 that directly corresponds to m (fix some bijection
between m and j1, . . . , jk, i1, . . . , ik−1). Then, let y1, . . . , yn×n ∈ {0, 1}n×n be an
enumeration of all n× n boolean matrices. For instance, y1 is the all-0 matrix,
and yn×n is the all-1 matrix. Define vectors

|v1〉 =
(
yj11 [1, i1], . . . , y

j1
2n×n [1, i1]

)
and |vk〉 =

(
yjk1 [ik−1, 1], . . . , y

jk
2n×n [ik−1, 1]

)
;

and for r = 2, . . . , k − 1 define

|vr〉 =
(
yj11 [ir−1, r], . . . , y

jk
2n×n [ir−1, r]

)
.

Note that each vector has 2n×n components, and are indexed by the set of n×n
boolean matrices. If we pick k matrices yi1 , . . . , yik , we get that

Tm[yi1 , . . . , yik] = yj1i1 [1, i1] . . . , y
jk
i1
[ik−1, 1]. (6)

This way, Tm = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vk〉 for all m. Thus, Tm has rank 1, and

T =
∑n2k−1

m=1 Tm.
To see that Tm is indeed a rank-1 tensor, assume that rank(Tm) > 1. Then (6)

has at least one extra summand. That extra summand can only come from (4) or
(3). It cannot be from (4) because that is the definition of matrix multiplication.
If it were from (3), it would violate the assumption that each matrix xi has rank
at most n, thus, yielding a contradiction. ��

5 Concluding Remarks

In this paper we studied strong quantum nondeterministic communication com-
plexity in multiparty protocols. In particular, we showed that i) strong quantum
nondeterministic NOF communication complexity is upper-bounded by the log-
arithm of the rank of the nondeterministic communication tensor; ii) strong

410 M. Villagra et al.

quantum nondeterministic NIH communication complexity is lower-bounded by
the logarithm of the rank of the nondeterministic communication tensor. These
results naturally generalizes previous work by de Wolf [16]. Moreover, the lower
bound on NIH is also a lower bound for quantum exact NIH communication.
This fact was used to show a Ω(n+ log k) lower bound for the generalized inner
product function.

We also showed an exponential separation between quantum strong nonde-
terministic communication and classical nondeterministic communication in the
NOF model. To our knowledge, this is the first separation for a total function
in any multiparty model. It remains as an open problem, a separation (of any
kind) between other multiparty models, e.g., bounded-error, NIH, etc.

In order to prove strong lower bounds using tensor-rank in NIH, we need
stronger construction techniques for tensors. The fact that computing tensor-
rank isNP-complete suggests that this could be a very difficult task. Alternatives
for finding lower bounds on tensor-rank include computing the norm of the
communication tensor, or a hardness result for approximating tensor-rank.

References

1. Alexeev, B., Forbes, M., Tsimerman, J.: Tensor rank: Some lower and upper
bounds. In: Proceedings of the 26th Annual IEEE Conference on Computational
Complexity (2011)

2. Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polyno-
mials. In: Proceedings of the 16th Annual IEEE Conference on Computational
Complexity, pp. 120–130 (2001)

3. Gavinsky, D., Pudlák, P.: Exponential separation of quantum and classical non-
interactive multi-party communication complexity. In: Proceedings of the 23rd
IEEE Annual Conference on Computational Complexity, pp. 332–339 (2008)

4. H̊astad, J.: Tensor rank is np-complete. Journal of Algorithms 11(4), 644–654
(1990)

5. Kerenidis, I.: Quantum Multiparty Communication Complexity and Circuit Lower
Bounds. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484,
pp. 306–317. Springer, Heidelberg (2007)

6. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Review 51(3),
455–500 (2009)

7. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997)

8. Le Gall, F.: Quantum Weakly Nondeterministic Communication Complexity. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 658–669.
Springer, Heidelberg (2006)

9. Lee, T., Schechtman, G., Shraibman, A.: Lower bounds on quantum multiparty
communication complexity. In: Proceedings of the 24th IEEE Conference on Com-
putational Complexity (2009)

10. Lee, T., Shraibman, A.: Disjointness Is Hard in the Multi-party Number-on-the-
Forehead Model. In: Proceedings of the 23rd IEEE Annual Conference on Compu-
tational Complexity (2008)

11. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000)

Tensor Rank and Strong Quantum Nondeterminism 411

12. Raz, R.: The bns-chung criterion for multi-party communication complexity. Com-
putational Complexity 9, 113–122 (2000)

13. Raz, R.: Tensor-rank and lower bounds for arithmetical formulas. In: Proceedings
of the 42nd ACM Symposium on Theory of Computing, pp. 659–666 (2010)

14. Villagra, M., Nakanishi, M., Yamashita, S., Nakashima, Y.: Tensor rank and strong
quantum nondeterminism in multiparty communication. Tech. Rep. TR12-004,
Electronic Colloqium on Computational Complexity (2012)

15. de Wolf, R.: Characterization of non-deterministic quantum query and quantum
communication complexity. In: Proceedings of the 15th Annual IEEE Conference
on Computational Complexity, pp. 271–278 (2000)

16. de Wolf, R.: Nondeterministic quantum query and quantum communication com-
plexities. SIAM Journal on Computing 32(3), 681–699 (2003)

Speed Scaling Problems

with Memory/Cache Consideration

Weiwei Wu1, Minming Li2, He Huang3, and Enhong Chen4

1 Division of Mathematical Sciences, Nanyang Technological University
2 Department of Computer Science, City University of Hong Kong
3 School of Computer Science and Technology, Soochow University

4 School of Computer Science, University of Science and Technology of China
wweiwei2@gmail.com, minming.li@cityu.edu.hk, huangh@suda.edu.cn,

cheneh@ustc.edu.cn

Abstract. We study the speed scaling problems with memory/cache
consideration. Each job needs some time for its memory operation when
it is fetched from the memory/cache. Two models are investigated, the
non-cache model and the with-cache model. The objective is to minimize
the energy consumption while satisfying the time constraints of the jobs.
The non-cache model is a variant of the ideal model where each job i
needs a fixed ci time for its memory operation. The with-cache model fur-
ther considers the case that the cache (a memory device with much faster
accessing time but limited space) is provided. The uniform with-cache
model is a special case when all ci values are the same. We prove that
the optimal solution of the non-cache model can be computed in polyno-
mial time. For the with-cache model, we show that it is NP-complete to
compute the optimal solution. For the aligned jobs (where later released
jobs do not have earlier deadlines) in the uniform with-cache model, we
derive an O(n4) time algorithm to compute the optimal schedule. For
the general jobs for with-cache model with resource augmentation where
the memory operation time speeds up by at most s times, we propose a
(2α s

s−1
)α/2-approximation algorithm.

1 Introduction

In recent years, tremendous growth of portable electronic devices is seen due
to advances in processor, memory and communication technologies. Since such
devices are often powered by batteries, energy-efficient execution of jobs to pro-
long battery lifetime becomes quite important. Currently, processors capable of
operating at a range of voltages and frequencies are already available (e.g. In-
tel’s SpeedStep technology and AMD’s PowerNow technology). The capability
of the processor to adjust voltages is often referred to in the literature as DVS
(Dynamic Voltage Scaling) techniques. Since energy consumption is at least a
quadratic function of the supply voltage (hence CPU speed), it saves energy to
run the processor at the lowest possible constant speed while still meeting all
the timing constraints, rather than running at full speed and then switching to
idle.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 412–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speed Scaling Problems with Memory/Cache Consideration 413

One of the earliest theoretical models for the speed scaling problems based
on DVS was introduced by Yao, Demers and Shenker [14] in 1995. The power
consumption function P (s) in the processor is convex and usually assumed to be
P (s) = sα where s is the speed and α is a constant larger than 1. Each job has a
release time ri, deadline di and workload wi. The schedule should decide which
job and what speed to execute at time t. The energy consumption is the integra-
tion of power function over all time t. The goal is to minimize the energy usage
while satisfying all the timing constraints of n jobs. This model is referred to as
the ideal model in the literature. They gave a polynomial time algorithm to com-
pute the minimum-energy schedule (MES). Several online heuristics were also
considered including the Average Rate Heuristic (AVR) and Optimal Available
Heuristic (OPA). The constant competitiveness of AVR and OPA are respec-
tively derived in [14][4] which verifies the effectiveness of the online algorithms.

Later on, under various related models and assumptions, more algorithms for
energy-efficient scheduling have been proposed. When the CPU can only change
speed gradually instead of instantly, [8] discussed about some special cases that
can be solved optimally in polynomial time. [13] studied the acceleration model
where the rate of speed change is bounded by a constantK. They derived efficient
algorithm to compute the optimal solution for aligned jobs where earlier released
jobs have no larger deadlines. Aside from the above DVS models, there are also
other extensions. For example, Irani et.al. [11] investigated the approximation
algorithms for an extended scenario where the processor can be put into a low-
power sleep state when idle and a certain amount of energy is needed when the
processor changes from the sleep state to the active state. [10][1] gave a survey
on algorithmic problems in power management for DVS.

Although abundant research has been done with different assumptions on
CPU speed changing ability, it was not until year 2003 that a more realistic
model was proposed by Seth et.al. [12]. The new model incorporates the effect
of memory operations into the original DVS model. They pointed out that the
memory access time depends on the front-side bus (FSB) instead of the proces-
sor frequency. In most of the systems, the FSB is a fixed value. The memory
operations therefore cannot speed up as other computational operations may do.
Since the execution time of memory operations is not affected by the processor
frequency, the workload of each job is now divided into two parts: computa-
tional component whose execution time scales inverse proportionally with the
CPU speed and memory component whose execution time is fixed. Furthermore,
if cache locking techniques are supported, then we need to further consider which
jobs to put in the cache to reduce the total energy consumption because jobs
placed in the cache need less memory execution time. Recently, more works are
done based on this model for periodic jobs. For example, [6] extends the model
by allowing the periodic jobs to have deadlines earlier than the end of the period
and enforcing a discrete number of processor speeds. Aydin et. al. [2] extends
the model by assuming different power dissipation and different on-chip/off-chip
workload characteristics for different tasks. Most recently, Yang et. al. [15] intro-
duced a preemption control technique which can significantly reduce the number

414 W. Wu et al.

of preemptions and at the same time minimize the energy consumption. For more
works on this model, please refer to [7] [9]. In this paper, we theoretically study
the following two models which considers the memory operation and the non-
periodic jobs. The non-cache model is a generalization of the ideal model where
each job i requires a fixed ci time to finish the memory operation besides its
computational workload wi. The with-cache model in addition allows the jobs to
be placed into the cache (a device with much faster accessing speed than normal
memory) to further save the time of memory operations. The number of jobs
to be stored in the cache (limited space) is bounded by a constant N . We say
a schedule has k evictions if it allocate k jobs to the memory. The algorithm
should decide the allocation and speed of jobs to achieve minimum energy con-
sumption. The uniform with-cache model is a special case where every job has
the same ci value.

Since the non-cache model generalizes the ideal model, some of the basic
properties in the ideal model [14][11] still work. Our results are the following. We
redesign an algorithm using a greedy idea similar to [14] for the non-cache model
and show its optimality. For the with-cache model, we prove that optimizing
the energy for general jobs is NP-complete. We then study the aligned jobs in
the uniform with-cache model. We derive an O(n4) time dynamic programming
algorithm to compute the optimal solution. Note that these results only rely
on the assumption that P (s) is convex. Then we consider the general jobs in
the with-cache model with stricter but common assumption that P (s) = sα

(α ≥ 1). We study the resource augmentation setting of this problem where the
jobs’ eviction time can speed up by s times, which will be referred to as the
s-speed with-cache model. In the resource augmentation setting, an algorithm is
c-approximation if it always outputs a solution (given the s-speed augmented
resource) that is at most c times that of the optimal solution for 1-speed with-
cache model. We propose a (2α s

s−1)
α/2-approximation for the s-speed with-

cache model.
The organizations of this paper is as follows. In Section 2, we review the

models of speed scaling problems. In Section 3, we study the non-cache model.
From Section 4 on, we turn to the with-cache model. The NP-completeness of
the optimization problem for the with-cache model is presented. Section 4.1
derives a dynamic programming algorithm for the uniform with-cache model. In
Section 4.2, the s-speed resource augmentation setting of the with-cache model
is studied. Section 5 is the concluding remark. Due to space limit, some of the
proofs are omitted.

2 Formulation

The input J is composed of n jobs Ji = (ri, di, wi, ci) where 1 ≤ i ≤ n. Each job
i (or Ji) has a release time ri, deadline di, workload wi and memory operation
time ci.

In the non-cache model, a schedule S should specify three functions, the speed
s(t) for time t, the function δ(t, i) that indicates whether time t is used for the

Speed Scaling Problems with Memory/Cache Consideration 415

computation operation for job i, and the function ρ(t, i) that indicates whether
time t is used for the memory operation for job i. When time t is used for the
computation operation (memory operation) for job i, we say job i is executed
(or evicted) at time t. Hence, δ(t, i) (or ρ(t, i)) equals 1 if job i is executed (or
evicted) at time t. At most one job is executed or evicted at any time t, i.e.∑

i∈J (δ(t, i) + ρ(t, i)) ≤ 1. The condition
∑

i∈J ρ(t, i) = 1 implies that s(t) = 0
because no job is executed at time t. The goal is to find a feasible schedule
to minimize the energy consumption E =

∫∞
0 sα(t)dt. A schedule is feasible if

it satisfies both the workload constraint
∫ di

ri
s(t)δ(t, i)dt ≥ wi and the eviction

time constraint
∫ di

ri
ρ(t, i)dt ≥ ci. We assume a preemptive setting where the

unfinished workload of a job that is suspended can be resumed later, without
any penalty. For the memory operation, when eviction preemption is allowed,
the job’s eviction time can be allocated to serval separate intervals (Jobs would
be resumed at that break later). While eviction preemption is not allowed, the
job’s eviction time should be allocated to a contiguous interval. In this work, we
focus on the case that the eviction preemption is allowed.

In the with-cache model, with the support of cache locking techniques, we need
to decide which jobs to put in the cache to reduce the energy. Job i has eviction
time ci if it is allocated in the memory and eviction time 0 if it is allocated in the
cache. bi = 1 indicates that job i is allocated in the cache while bi = 0 otherwise.

The eviction time constraint is
∫ di

ri
ρ(t, i)dt ≥ 0 if bi = 1 and

∫ di

ri
ρ(t, i)dt ≥ ci

if bi = 0. We assume that each job occupies one slot of the memory/cache. The
cache is usually much smaller than memory. Assume that the cache has N slots
while the memory has unbounded size. To reduce the energy consumption, a
schedule will allocate as many jobs to the cache as possible (which reduce the
memory operation time of the jobs), i.e.

∑
1≤i≤n bi = N . We say a schedule

has k evictions if k jobs are stored in the memory. Set K = n−N . Clearly the
optimal solution has K evictions. The uniform with-cache model is a special case
of the with-cache model, where every job has the same length of eviction time c
if it is allocated in the memory (That is, Ji = (ri, di, wi, c)).

In the resource augmentation setting of the with-cache model, the jobs’ evic-
tion time can speed up by s times, which is referred to as the s-speed with-cache
model. Given the s-speed augmented resource, an algorithm is c-approximation
if it always outputs a solution that is at most c times that of the optimal solution
for the 1-speed with-cache model.

By abusing the notation, we use OPT to denote both the optimal schedule and
the energy in the optimal schedule for a specified model (if the context is clear).
Define OPT = ∞ when the input instance has no feasible schedule. We use set
R (or D) to denote all the release times (or deadlines) of the jobs. Define rmin =
mini∈J ri and dmax = maxi∈J di. By W[t1,t2](S) we denote the total workload
that is executed in interval [t1, t2] in schedule S. Given a schedule, the maximal
interval that has the same speed is called block. The peak block is the one which has
the maximum speed among all blocks of a schedule. The time t is said tight in S if
it is used to execute some job i which has deadline/release time exactly at t in S
(respectively, we say t is a tight deadline/tight release time in S).

416 W. Wu et al.

3 Non-cache Model

In this section, we study the exact algorithm to compute OPT for the non-cache
model. The idea is to fix the schedule block by block. The convexity of the power
function brings us a fundamental fact,

Fact 1. Assume that there exists a schedule to execute jobs j1, j2 respectively
in two separate intervals with length t1, t2 and speed s1, s2 where s1 > s2. Then
another feasible schedule which moves partial workload of j1 to be executed in
j2’s interval with new speeds s′1 ≥ s′2 where s′1 < s1 and s′2 > s2 reduces the total
energy consumed by these two jobs.

To simplify our discussion, we define the virtual speed of job j to be the speed of
its eviction interval, which is actually zero in schedule S. If S executes job j with
speed sj (one speed by the provable property (P1) in Lemma 1 below), then we
set the virtual speed of j in its eviction interval to be sj. Thus in the following,
when we say a block [a, b] in S, we mean the maximal interval which has the
same speed (including the virtual speed) in S. Consider the case that S executes
job j with eviction interval arranged in [tj , dj]. For unification, w.l.o.g we assume
that OPT executes virtual workload sj(dj − tj) of j in interval [tj , dj]. Thus in
this case we can also say that dj is a tight deadline in S. We start by presenting
some basic properties that are extended from the ideal model [14]. Since the
non-cache model generalizes the ideal model, we reprove such properties and use
it to derive a key observation Lemma 1 to find the peak block. Using this lemma,
we derive Theorem 1 to compute the optimal solution. The general idea is as
follows: identify the peak block which correspond to the largest-speed block in
the original instance and then re-scaling the jobs to a new instance; iteratively
find the new peak block which can be verified to be the second largest-speed
block of the original instance. The proof is presented in the full version of the
paper.

Lemma 1. The optimal solution of the non-cache model has three properties,

(P1). There is an optimal schedule with jobs being executed in EDF order.
(P2). OPT always executes one job with a single speed. OPT is composed of

blocks.
(P3). For a peak block B = [a, b] in OPT, a is a tight arrival time and b is a

tight deadline.
by which we have the following observation for a peak block, the speed in the peak

block B = [a, b] of OPT is

∑
i:[ri,di]⊆[a,b]

wi

b−a−
∑

i:[ri,di]⊆[a,b]

ci
.

Theorem 1. The optimal solution for the non-cache model can be computed in
O(n3) time.

Speed Scaling Problems with Memory/Cache Consideration 417

4 With-Cache Model

We start by presenting the complexity of the general with-cache model in the
following theorem. The proof is omitted in this version.

Theorem 2. Computing the optimal solution for the speed scaling problem in
the with-cache model is NP-complete.

4.1 Aligned Jobs in Uniform With-Cache Model

In this section we design an O(n4) time algorithm for the aligned jobs (where ear-
lier released jobs have no larger deadlines) in the uniform with-cache model. The
idea is to compute the optimal schedule by a dynamic programming algorithm.
Before showing the details, we illustrate an example to demonstrate a different
property of the optimal solutions’ structure between the non-cache model and
the with-cache model. The proof in Section 3 implies that the optimal solution
for the non-cache model with jobs executed in EDF order is unique (This can
be verified by observing the uniqueness of the schedule in the peak block of
the optimal solution). However, this property does not hold in the with-cache
model. We construct an instance for illustration. The instance is composed of
three jobs, J1 = (0, 2, 4, 1), J2 = (0, 7, 3, 1), J3 = (5, 7, 4, 1). Set K = 1, α = 2.
There are three cases (corresponding to selecting one job to store in the cache)
among the feasible schedules. The minimum energy consumption can only be
achieved by allocating job 1 or job 3 to the cache. Moreover, the peak block is
interval [0, 2] with speed 4 when we choose job 3, while the peak block is interval
[5, 7] with speed 4 when we choose job 1. Both of these two schedules achieve
the minimum cost 32. Clearly, the optimal schedule (restricted to EDF order)
for the with-cache model is not unique. Thus the idea of greedy-like algorithm
for the non-cache model is difficult to extend to the with-cache model.

Iterative Function
Given an interval [t1, t2] where t1, t2 ∈ R ∪ D, we denote by J(t1, t2) the job set
that would be assigned to this interval. We define the assignment of jobs J(t1, t2)
as below,
1. If t1 ∈ R ∧ t2 ∈ D, then assign all jobs with [ri, di] ⊆ [t1, t2] to J(t1, t2).
2. If t1 ∈ R ∧ t2 ∈ R, then assign all jobs with t1 ≤ ri < t2 to J(t1, t2).
3. If t1 ∈ D ∧ t2 ∈ D, then assign all jobs with t1 < di ≤ t2 to J(t1, t2).
4. If t1 ∈ D ∧ t2 ∈ R, then assign all jobs with [ri, di] ∩ (t1, t2) �= ∅ to J(t1, t2).

Denote by E(t1, t2, k) the minimum cost (energy) among all feasible schedules
that finish the jobs J(t1, t2) with exactly k evictions. By abusing the notation
we also use J(t1, t2) to denote the total workload of these jobs if the context is

clear. Let s0(t1, t2) =
J(t1,t2)
t2−t1−kc for every pair t1, t2 ∈ R∪D. In the initialization

iteration, set E(t1, t2, k) = s0(t1, t2)
α(t2 − t1 − kc) if executing all jobs J(t1, t2)

with speed s0(t1, t2) in EDF order in interval [t1, t2] is feasible. Otherwise set
E(t1, t2, k) = ∞. We will prove the following iterative function as stated in
Lemma 2 which is crucial to our polynomial time algorithm.

418 W. Wu et al.

Lemma 2. If t1, t2 are tight times in OPT, then
E(t1, t2, k) = min

t:t1<t<t2,t∈R∪D
min

0≤i≤k
{E(t1, t, k− i) +E(t, t2, i)} where t1, t2 ∈ R∪D.

For simplicity, we first explain it in the ideal model and then extend the reason-
ing to the uniform with-cache model.

Dynamic Programming Algorithm in the Ideal Model
Note that [13] derived an improvedO(n2) time algorithm to compute the optimal
solution for aligned job in the ideal model. We restudy this problem and present
a extendable dynamic programming algorithm to compute such a solution in a
loss of O(n) factor of time. Since the ideal model is a special case of the non-
cache model (where all ci = 0), the lemmas proved in Section 3 still hold for
the ideal model. Let the peak block in OPT be [a, b], then a, b are tight. Denote
by E(t1, t2) the minimum cost among all feasible schedules that finish the jobs
J(t1, t2). We derive the following execution rule and operation rule with the
proof omitted.

Lemma 3. Execution rule: If [t1, t2] is a block in OPT, then OPT executes
exactly the jobs J(t1, t2) in interval [t1, t2]. The corresponding speed in this in-

terval is J(t1,t2)
t2−t1

.

Operation rule: If [t1, t], [t, t2] are two adjacent blocks in OPT, then J(t1, t) ∩
J(t, t2) = ∅ and J(t1, t2) = J(t1, t) ∪ J(t, t2) for all t1 < t < t2, t ∈ R ∪ D.

We are now ready to present the iterative function for the ideal model in
Lemma 4. Note that the iterative function computes E(t1, t2) by summing up
two values E(t1, t), E(t, t2) which implicitly computes a schedule/cost for jobs
J(t1, t) ∪ J(t, t2). When computing E(rmin, dmax), the final iteration computes
a schedule for jobs J(rmin, t) ∪ J(t, dmin). An implicit corollary by Lemma 3 is
that jobs J(rmin, t) ∪ J(t, dmin) in the final iteration exactly equals the input
jobs J .

Lemma 4. If t1, t2 are tight times in OPT, then E(t1, t2) =
min

t:t1<t<t2,t∈R∪D
E(t1, t) + E(t, t2).

Proof. We prove this lemma by induction on the number of jobs in J . When
|J | = 1, OPT is composed of one block. OPT can be computed in the initial-
ization step by computing E(rmin, dmax). When |J | = 2, OPT is composed of
at most two blocks. These two blocks are separated at time t ∈ R ∪ D. W.l.o.g
assume that t is a tight deadline in OPT. We have t ∈ D in this case. Moreover,
OPT executes jobs J(rmin, t) in interval [rmin, t] and jobs J(t, dmax) in inter-
val [t, dmax]. The value E(t, dmax) (or E(rmin, t)) is computed by calculating
(J(t,dmax))

α

(dmax−t)α−1 (or (J(rmin,t))
α

(t−rmin)α−1) in the initialization step. The total value of these

two blocks E(rmin, dmax) can be obtained in the second iteration when com-
puting min

t:rmin<t<dmax,t∈R∪D
E(rmin, t) + E(t, dmax). For the case that there are

k jobs, we assume the induction basis that the iterative function can compute the

Speed Scaling Problems with Memory/Cache Consideration 419

optimal schedule in [t, dmax] (or [rmin, t]) when there are i jobs
(i ∈ {1, . . . , k − 1}) being executed there. W.l.o.g assume that t is a tight
deadline in OPT. We have t ∈ D in this case. Assume that |J(rmin, t)| = k1
where 1 ≤ k1 < k and |J(t, dmax)| = k2 where k2 = k − k1, OPT exe-
cutes jobs J(rmin, t) in interval [rmin, t] and jobs J(t, dmax) in interval [t, dmax].
The value E(t, dmax) (or E(rmin, t)) can be computed by the induction ba-
sis since 1 ≤ k1, k2 ≤ k − 1. By enumerating all possible times t ∈ D, the
minimum value of E(rmin, t) + E(t, dmax) among all rmin < t < dmax is ex-
actly the cost of OPT E(rmin, dmax). Now we extend the setting to the case
that t1, t2 are the input in function E(·, ·) (instead of rmin, dmax). If t is a
tight time in OPT, then OPT executes jobs J(t1, t) in interval [t1, t] and jobs
J(t, t2) in interval [t, t2]. The same proof stated above can be used to show
E(t1, t2) = min

t:t1<t<t2,t∈R∪D
E(t1, t) + E(t, t2).

With the iterative function in hand, now it is easy to prove Theorem 3.

Theorem 3. For the ideal model with aligned jobs, OPT can be computed by
dynamic programming algorithm in O(n3) time.

Dynamic Programming Algorithm in the Uniform With-Cache Model
Finally we extend the result to the uniform with-cache model (Theorem 4). The
extension is then simple where we mainly update the iterative function for the
ideal model to be the form in Lemma 2. The running time needs another O(n)
factor comparing to Theorem 3 since there is one more inner loop in the updated
iterative function.

Theorem 4. For aligned jobs in the uniform with-cache model, OPT can be
computed in O(n4) time.

4.2 With-Cache Model: Approximation Algorithm for General Jobs
with Resource Augmentation

Theorem 2 shows that optimizing the energy for the with-cache model is NP-
complete. In this section, we study the approximation algorithms in the resource
augmentation setting, i.e. the s-speed with-cache model.

Note that the definition of approximation algorithms for resource-augmentation
setting implicitly indicates that the 1-speed with-cache model has a feasible solu-
tion. That is, given the input jobs andK, there is a feasible schedule which finishes
all the jobs in time and uses only K evictions. We will design an algorithm which
either shows that the input is infeasible for the 1-speed with-cache model, or out-
puts a feasible solution for the s-speed with-cache model which incurs an energy
at most c times that of the optimal solution in the 1-speed with-cache model.

Define V = {[t1, t1+ l1), [t2, t2+ l2), . . . , [tk, tk+ lk)} to be the configuration of
the eviction intervals where [ti, ti + li) is used for job eviction and ti + li < ti+1.
Given V and jobs J , schedule SJ

V should not execute any workload of J in the
eviction intervals defined by V . We first show an algorithm which determines
whether the instance for the 1-speed with-cache model is infeasible. If not, it

420 W. Wu et al.

Algorithm 1. Compute the configuration V
Compute that maximum throughput m for problem P using the dynamic program-
ming algorithm in [5]. Denote the computed schedule to be S̄ and the intervals (for
the execution of m jobs in H) generated in the schedule to be V̄.
if m < K then

return that the 1-speed with-cache model is infeasible.
else

Choose K jobs which has the least length of eviction time. Denote by V the interval
configuration induced by V̄ which is only used for eviction for the selected K jobs.

end if
Return V.

further returns a configuration of the eviction intervals for future use. We use P
to denote the following problem. Given the input instance J for the with-cache
model, letH = {Ji = (ri, di, ci), i ∈ J } be the induced job instance where wi = 0
for all i. For job Ji in H, we need to allocate ci units of time in its alive interval
[ri, di] and each unit time is assigned to at most one job. The objective is to
maximize the number of jobs that are allocated without conflict. We observe that
this problem is in fact 1|rj , pmtn|

∑
Uj in the scheduling literature. [5] shows

that the optimal solution of P can be computed by dynamic programming in
O(n4) time. Our algorithm adopts their result. A feasible schedule S (for the 1-
speed with-cache model) which allocates K evictions for J implies the existence
of a feasible schedule S̄ which completes K jobs in H. Since if the problem P
has maximum number of jobs m with m < K, then this shows that there is no
feasible schedule for the 1-speed with-cache model with K evictions. We return
a configuration V for the remaining case K ≤ m. Note that K ≤ m does not
necessarily indicate the feasibility for the 1-speed with-cache model. However,
we will prove that there exists a O(1)-approximation algorithm with s-speed
resource augmentation. Now we present our algorithm that returns a schedule
AV RJ

V′ and the performance of the algorithm is proved in Theorem 5 .

Algorithm 2. Schedule with performance guarantee.

1. Let V be the configuration returned by Algorithm 1.
2. Let V ′ be the configuration induced by V where every job’s eviction time can
speed up by s times.
3. Compute hV′(i) for each job i. Schedule each job i with speed hV′(i) in the non-
eviction interval of V ′ in EDF order. Denote the resulting schedule as AV RJ

V′ .

Theorem 5. There is a (2α s
s−1)

α/2-approximation for s-speed with-cache model.

Proof. Denote by h(i) = wi

di−ri
the intensity of job i. Algorithm AVR was first

proposed in [14] for the ideal model. It executes the jobs in EDF order with
speed s(t) =

∑
i

h(i) · alive(i, t) where indication function alive(i, t) equals 1 if

t ∈ [ri, di) and otherwise 0. Obviously, AVR is feasible for jobs in the ideal model.
In the with-cache model, we define hV(i) to be the intensity of job i excluding

Speed Scaling Problems with Memory/Cache Consideration 421

the eviction intervals V . That is, hV(i) = wi

di−ri−
∫ di
t=ri

ρ(V,t)dt
where indication

function ρ(V , t) denotes whether t belongs to the eviction intervals or not. We
adopt the idea of algorithm AVR and our schedule AV RJ

V executes the jobs in

EDF order with speed s(t) =
∑
i

hV(i) · alive(i, t) · ρ(V , t). Obviously, the speed

is zero for the time that belongs to the eviction intervals. We observe two useful
properties of algorithm AV RJ

V below.
First, assuming that V ,V ′ are two configurations with V ⊆ V ′ and job i in

J has hV′(i) ≤ r · hV(i), then we have AV RJ
V′ ≤ rα · AV RJ

V . This is because

AV RJ
V′ =

∫∞
t=0(
∑
i

hV′(i) · alive(i, t) · ρ(V ′, t))αdt ≤
∫∞
t=0(

∑
i

r · hV(i) · alive(i, t) ·

ρ(V ′, t))αdt ≤
∫∞
t=0

(
∑
i

r·hV(i)·alive(i, t)·ρ(V , t))αdt ≤ rα
∫∞
t=0

(
∑
i

hV(i)·alive(i, t)·

ρ(V , t))αdt = rαAV RJ
V where the first step follows from the assumption that

hV′(i) ≤ r · hV(i) and the second step holds by ρ(V ′, t) ≤ ρ(V , t) since V ⊆ V ′.
Second, if V ′ is the configuration induced by V (Returned by Algorithm 1) where
every job’s eviction time can speed up by s times, then we have hV′(i) ≤ s

s−1 ·h(i).
We show the reasoning below. Note that the configuration V computed in Algo-
rithm 1 uses K evictions. Moreover, each unit of time is only used by at most
one job for eviction. Thus for each job i, the total length of eviction time in
interval [ri, di] induced by V is at most di − ri. In the s-speed augmentation
setting, the total length of eviction time in interval [ri, di] induced by V ′ is at
most di−ri

s . Thus the interval that can be used for job execution has length at

least di−ri− di−ri
s . We have hV′(i) ≤ wis

(di−ri)(s−1) ≤
s

s−1h(i) where h(i) =
wi

di−ri
.

Now we prove that AV RJ
V′ is (2α s

s−1)
α/2-approximation . Let ∅ be the con-

figuration with total eviction time of length 0. Each job i has h∅(i) = h(i)
in AV RJ

∅ . Clearly ∅ ⊆ V ′. We have AV RJ
V′ ≤ (s

s−1)
αAV RJ

∅ by combining

the two properties above. Observe that AV RJ
∅ ≤ (2α)α

2 OPTJ
∅ by [3]. Thus

AV RJ
V′ ≤ (2α s

s−1)
α/2 · OPTJ

∅ . Finally, let Vopt be the optimal configuration
of eviction time in the optimal schedule for the with-cache model, we have
AV RJ

V′ ≤ (2α s
s−1)

α/2 · OPTJ
Vopt

. This is because the optimal energy consump-
tion without eviction time is strictly less than that for the optimal configuration
Vopt. Hence, the theorem is proved.

5 Conclusion

We study the DVS-based energy minimization problem in more practical models
which consider the memory operation time and present several algorithms for
the non-cache model and with-cache model. Optimizing the energy in with-
cache model is proved NP-complete and our approximation algorithm relies on
a s-speed resource augmentation, thus one possible future direction is to study
the approximation algorithm without such resource augmentations.

422 W. Wu et al.

References

1. Albers, S.: Energy-efficient Algorithms. Communications of the ACM 53(5) (2010)
2. Aydin, H., Devadas, V., Zhu, D.: System-level Energy Management for Periodic

Real-Time Tasks. In: Proceedings of the 27th IEEE Real-Time Systems Sympo-
sium, pp. 313–322 (2006)

3. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.R.: Average Rate Speed Scaling.
In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 240–251. Springer, Heidelberg (2008)

4. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic Speed Scaling to Manage Energy and
Temperature. In: Proceedings of the 45th Annual Symposium on Foundations of
Computer Science, pp. 520–529 (2004)

5. Baptiste, P.: An O(n4) algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Operations Research Letters 24(4), 175–180
(1999)

6. Bini, E., Buttazzo, G., Lipari, G.: Speed Modulation in Energy-Aware Real-Time
Systems. In: IEEE Proceedings of the 17th Euromicro Conference on Real-Time
Systems, pp. 3–10 (2005)

7. Choi, K., Soma, R., Pedram, M.: Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance Trade-off Based on the Ratio of Off-
chip Access to On-chip Computation Times. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems 24(1), 18–28 (2005)

8. Hong, I., Qu, G., Potkonjak, M., Srivastavas, M.B.: Synthesis techniques for low-
power hard real-time systems on variable voltage processors. In: Proceedings of the
IEEE Real-Time Systems Symposium, pp. 178–187 (1998)

9. Hsu, C.H., Feng, W.C.: Effective Dynamic Voltage Scaling Through CPU-
Boundedness Detection. In: The 4th IEEE/ACM Workshop on Power-Aware Com-
puting Systems, pp. 135–149 (2004)

10. Irani, S., Pruhs, K.: Algorithmic Problems in Power Management. ACM SIGACT
News 36(2), 63–76 (2005)

11. Irani, S., Shukla, S., Gupta, R.K.: Algorithms for Power Savings. Journal ACM
Transactions on Algorithms 3(4) (2007)

12. Seth, K., Anantaraman, A., Mueller, F., Rotenberg, E.: Fast: Frequency-Aware
Static Timing Analysis. In: Proceedings of the 24th IEEE Real-Time System Sym-
posium, pp. 40–51 (2003)

13. Wu, W., Li, M., Chen, E.: Min-Energy Scheduling for Aligned Jobs in Accelerate
Model. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 462–472. Springer, Heidelberg (2009)

14. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proc. IEEE Symp. Foundations of Computer Science (FOCS), pp. 374–382 (1995)

15. Yang, C.Y., Chen, J.J., Kuo, T.W.: Preemption Control for Energy-Efficient Task
Scheduling in Systems with a DVS Processor and Non-DVS Devices. In: Proceed-
ings of the 13th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 293–300 (2007)

On the Amount of Nonconstructivity in Learning
Formal Languages from Positive Data

Sanjay Jain1, Frank Stephan2, and Thomas Zeugmann3

1 Department of Computer Science
National University of Singapore, Singapore 117417

sanjay@comp.nus.edu.sg
2 Department of Computer Science and Department of Mathematics

National University of Singapore, Singapore 117543
fstephan@comp.nus.edu.sg

3 Division of Computer Science, Hokkaido University
N-14, W-9, Sapporo 060-0814, Japan

thomas@ist.hokudai.ac.jp

Abstract. Nonconstructive computations by various types of machines
and automata have been considered by e.g., Karp and Lipton [18] and
Freivalds [9, 10]. They allow to regard more complicated algorithms from
the viewpoint of more primitive computational devices. The amount of
nonconstructivity is a quantitative characterization of the distance be-
tween types of computational devices with respect to solving a specific
problem.

This paper studies the amount of nonconstructivity needed to learn
classes of formal languages from positive data. Different learning types
are compared with respect to the amount of nonconstructivity needed to
learn indexable classes and recursively enumerable classes, respectively,
of formal languages from positive data. Matching upper and lower bounds
for the amount of nonconstructivity needed are shown.

1 Introduction

The research subject studied in this paper derives its motivation from various
sources which we shortly present below. Nonconstructive methods of proof in
mathematics have a rather long and dramatic history. The debate was especially
passionate when mathematicians tried to overcome the crisis concerning the
foundations of mathematics.

The situation changed slightly in the forties of the last century, when noncon-
structive methods found their way to discrete mathematics. In particular, Paul
Erdős used nonconstructive proofs masterly, beginning with the paper [8].

Another influential paper was Bārzdiņš [4], who introduced the notion of
advice in the setting of Kolmogorov complexity of recursively enumerable sets.
Karp and Lipton [18] introduced the notion of a Turing machine that takes
advice to understand under what circumstances nonuniform upper bounds can
be used to obtain uniform upper bounds. Damm and Holzer [7] adapted the

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 423–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

424 S. Jain, F. Stephan, and T. Zeugmann

notion of advice for finite automata. Later Cook and Krajiček [6] initiated the
study of proof systems that use advice for the verification of proofs. Even more
recently, Beyersdorff et al. [5] continued along this line of research.

Quite often, we experience that finding a proof for a new deep theorem is
triggered by a certain amount of inspiration. Being inspired does not mean that
we do not have to work hard in order to complete the proof and to elaborate
all the technical details. However, this work is quite different from enumerating
all possible proofs until we have found the one sought for. Also, as experience
shows, the more complicated the proof, the higher is the amount of inspiration
needed. These observations motivated Freivalds [9, 10] to introduce a qualitative
approach to measure the amount of nonconstructivity (or advice) in a proof.
Analyzing three examples of nonconstructive proofs led him to a notion of non-
constructive computation which can be used for many types of automata and
machines and which essentially coincides with Karp and Lipton’s [18] notion
when applied to Turing machines.

As outlined by Freivalds [9, 10], there are several results in the theory of
inductive inference of recursive functions which suggest that the notion of non-
constructivity may be worth a deeper study in this setting, too. Subsequently,
Freivalds and Zeugmann [11] introduced a model to study the amount of non-
constructivity needed to learn recursive functions.

The present paper generalizes the model of Freivalds and Zeugmann [11] to
the inductive inference of formal languages. We aim to characterize the difficulty
to learn classes of formal languages from positive data by using the amount of
nonconstructivity needed to learn these classes. We shortly describe this model.
The learner receives growing initial segments of a text for the target language L,
where a text is any infinite sequence of strings and a special pause symbol # such
that the range of the text minus the pause symbol contains all strings of L and
nothing else. In addition, the learner receives as a second input a bitstring of fi-
nite length which we call help-word. If the help-word is correct, the learner learns
in the desired sense. Since there are infinitely many languages to learn, a param-
eterization is necessary, i.e., we allow for every n a possibly different help-word
and we require the learner to learn every language contained in {L0, . . . , Ln}
with respect to the hypothesis space (Li)i∈N chosen (cf. Definition 6). The diffi-
culty of the learning problem is then measured by the length of the help-words
needed, i.e., in terms of the growth rate of the function d bounding this length.
As in previous approaches, the help-word does not just provide an answer to the
learning problem. There is still much work to be done by the learner.

First, we consider the learnability of indexable classes in the limit from pos-
itive data and ask for the amount of nonconstructivity needed to learn them.
This is a natural choice, since even simple indexable subclasses of the class of
all regular languages are known not to be inferable in the limit from positive
data (cf. [13, 15, 23]). Second we investigate the amount of nonconstructivity
needed to infer recursively enumerable classes of recursively enumerable lan-
guages. Moreover, several variations of Gold’s [13] model of learning in the limit
have been considered (cf., e.g., [15, 21, 23] and the references therein). Thus, it

On the Amount of Nonconstructivity in Learning Formal Languages 425

is only natural to consider some of these variations, too. In particular, we shall
study conservative learning and strong-monotonic inference.

We show upper and lower bounds for the amount of nonconstructivity in
learning classes of languages from positive data. The usefulness of this approach
is nicely reflected by our results which show that the function d may considerably
vary. In particular, the function d may be arbitrarily slow growing for learning
indexable classes in the limit from positive data (cf. Theorem 1), while we have
an upper bound of log n and a lower bound of log n− 2 for conservative learning
of indexable classes from positive data (cf. Theorems 2 and 3). Furthermore, we
have a 2 logn upper bound and a 2 log n − 4 lower bound for strong-monotonic
inference of indexable classes from positive data (cf. Theorems 4 and 5).

Moreover, the situation changes considerably when looking at recursively enu-
merable classes of recursively enumerable languages. For learning in the limit
from positive data we have an upper bound of log n and a lower bound of log n−2,
while for conservative learning even any limiting recursive bound on the growth
of the function d is not sufficient to learn all recursively enumerable classes of
recursively enumerable languages from positive data (cf. Theorems 7, 8 and 9).
Due to the lack of space several proofs and details are omitted. A full version of
this paper is available as technical report (cf. [16]).

2 Preliminaries

Any unspecified notations follow Rogers [22]. In addition to or in contrast with
Rogers [22] we use the following. By N = {0, 1, 2, . . .} we denote the set of all
natural numbers, and we set N+ = N \ {0}.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set
of set S. Let ∅, ∈, ⊂, and ⊆ denote the empty set, element of, proper subset,
and subset, respectively. Let S1, S2 be any sets; then we write S1 �S2 to denote
the symmetric difference of S1 and S2, i.e., S1 �S2 = (S1 \ S2) ∪ (S2 \ S1). By
maxS and min S we denote the maximum and minimum of a set S, respectively,
where, by convention, max ∅ = 0 and min ∅ = ∞.

We use T to denote the set of all total functions of one variable over N.
Let n ∈ N+; then the set of all partial recursive functions and of all recursive
functions of one and n variables over N is denoted by P , R, Pn, Rn, respectively.
Let f ∈ P , then we use dom(f) to denote the domain of the function f , i.e.,
dom(f) = {x | x ∈ N, f(x) is defined}. By range(f) we denote the range of f ,
i.e., range(f) = {f(x) | x ∈ dom(f)}.

It is technically most convenient to define recursively enumerable families of
recursively enumerable languages as follows. Any ψ ∈ P2 is called a numbering.
Let ψ ∈ P2, then we write ψi instead of λx.ψ(i, x). We set Wψ

i = dom(ψi)
and refer to it as the ith enumerated language. Clearly, the sets Wψ

i ⊆ N are
recursively enumerable.

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N with
x < y we have, if both f(x) and f(y) are defined then f(x) < f(y). By Rmon

we denote the set of all strictly monotonic recursive functions.

426 S. Jain, F. Stephan, and T. Zeugmann

Let Σ be any fixed finite alphabet, and let Σ∗ be the free monoid over Σ. Any
L ⊆ Σ∗ is a language. Furthermore, we fix a symbol # such that # /∈ Σ. By
REG we denote the class of all regular languages (cf., e.g., [24]). Furthermore,
we use C or L to denote any (infinite) class and family of languages, respectively.

Definition 1 (Gold [13]). Let L be any language. Every total function t : N →
Σ∗ ∪ {#} with {t(j) | j ∈ N} \ {#} = L is called a text for L.

Note that the symbol # denotes pauses in the presentation of data. Further-
more, there is no requirement concerning the computability of a text. So, any
order and any number of repetitions is allowed. For any n ∈ N we use t[n] to
denote the initial segment (t(0), . . . , t(n)). Additionally we use content(t[n]) =df

{t(0), . . . , t(n)} \ {#} and content(t) =df {t(j) | j ∈ N} \ {#} to denote the
content of an initial segment and of a text, respectively.

An algorithmic learner M finds a rule (grammar) from growing initial seg-
ments of a text. On each initial segment the learner M has to output a hypothesis
which is a natural number, i.e., M(t[n]) ∈ N. Then the sequence (M(t[n]))n∈N

has to converge (to some representation of the input), i.e., there is a j ∈ N such
that M(t[n]) = j for all but finitely many n ∈ N.

So, we still have to specify the semantics of the numbers output by M . In
order to do so, we need the following.

Definition 2 (Angluin [2]). A family (Lj)j∈N of languages is said to be uni-
formly recursive if there exists a recursive function f : N×Σ∗ → {0, 1} such that
Lj = {w | w ∈ Σ∗, f(j, w) = 1} for all j ∈ N. We call f a decision function.

Definition 3. A class C of non-empty recursive languages is said to be in-
dexable if there is a family (Lj)j∈N of uniformly recursive languages such that
C = {Lj | j ∈ N}. Such a family is said to be an indexing of C.
By ID we denote the collection of all indexable classes.

Note that REG, and also the class of all context-free languages and the class
of all context-sensitive languages form an indexable class. Further information
concerning indexable classes and their learnability can be found in [21, 23].

So, when dealing with the learnability of indexable classes, it is only natural to
interpret the hypotheses output by M with respect to a chosen indexing of a class
containing the target class C (cf. Definition 4 below). On the other hand, when
considering recursively enumerable classes C of recursively enumerable languages,
then we always take as hypothesis space the family (Wψ

i)i∈N, where ψ ∈ P2 is
the numbering defining the class C.

Definition 4. Let C be an indexable class. A family H = (Lj)j∈N is said to be
an indexed hypothesis space for C if (Lj)j∈N is uniformly recursive and C ⊆
{Lj | j ∈ N}.

Following [20], if C = {Lj | j ∈ N} then we call H class preserving and if
C ⊆ {Lj | j ∈ N} then the hypothesis space H is said to be class comprising.

On the Amount of Nonconstructivity in Learning Formal Languages 427

Now we are ready to provide the formal definition of learning in the limit
from text. Following Gold [13] we call our learners inductive inference machines
(abbr. IIM). To unify notations, in the definitions below we use H = (hj)j∈N to
denote our hypothesis spaces, where we assume the interpretation given above.

Definition 5 (Gold [13]). Let C be any class of languages, let H = (hj)j∈N be
a hypothesis space for C, and let L ∈ C. An IIM M is said to learn L in the limit
from text with respect to H if

(1) for every text t for L there is a j ∈ N such that the sequence (M(t[n]))n∈N

converges to j, and
(2) L = hj.

An IIM M learns C in the limit from text with respect to H if M learns all
L ∈ C in the limit from text with respect to H.

The collection of all classes C for which there is an IIM M and a hypothesis
space H such that M learns C in the limit from text with respect to H is denoted
by LimTxt.

In the following modifications of Definition 5 additional requirements are made.
An IIM M is said to be consistent if for all relevant texts t and all n ∈ N the
condition content(t[n]) ⊆ hM(t[n]) is satisfied (cf. Angluin [1], Barzdin [3]).

An IIM M is said to be conservative if for all relevant texts t and all n, m ∈
N the following condition is satisfied. If j = M(t[n]) �= M(t[n + m]) then
content(t[n + m]) �⊆ hj (cf. Angluin [2]).

We call an IIM M strong-monotonic if for all relevant texts t and all numbers
n, m ∈ N the following condition is satisfied. If j = M(t[n]) �= M(t[n + m]) = k
then hj ⊆ hk must hold (cf. Jantke [17], Lange and Zeugmann [19]).

We denote the resulting learning types by ConsTxt, ConsvTxt, and SmonTxt,
respectively.

After having defined several learning models, it is only natural to ask why
should we study learning with nonconstructivity. The answer is given by the
fact that many interesting language classes are not learnable from text. As shown
in [23], even quite simple classes cannot be learned from text, e.g., the class

C = {aj | j ∈ N
+}

⋃
k∈N+

{a	 | 1 ≤ � ≤ k} . (1)

We aim to characterize quantitatively the difficulty of such learning problems by
measuring the amount of nonconstructivity needed to solve them.

The learners used for nonconstructive inductive inference take as input not
only growing initial segments t[n] of a text t but also a help-word w. The help-
words are assumed to be encoded in binary. So, for such learners we write
M(t[n], w) to denote the hypothesis output by M . Then, for all the learning
types defined above, we say that M nonconstructively identifies L with the
help-word w provided that for every text t for L the sequence (M(t[n], w))n∈N

converges to a number j such that hj = L (for LimTxt) and M is consistent
(conservative, strong-monotonic) for ConsTxt (for ConsvTxt, and SmonTxt), re-
spectively. More formally we have the following definition.

428 S. Jain, F. Stephan, and T. Zeugmann

Definition 6. Let C be any class of languages, let H = (hj)j∈N be a hypothesis
space for C, and let d ∈ R. An IIM M infers C with nonconstructivity d(n) in
the limit with respect to H, if for each n ∈ N there is a help-word w of length
at most d(n) such that for every L ∈ C ∩ {h0, h1, . . . , hn} and every text t for L
the sequence (M(t[m], w))m∈N converges to a hypothesis j satisfying hj = L.

Clearly, Definition 6 can be directly modified to obtain nonconstructive conser-
vative and strong-monotonic learning.

Looking at Definition 6 it should be noted that the IIM may need to know
either an appropriate upper bound for n or even the precise value of n in order
to exploit the fact that the target language L is from C ∩ {h0, h1, . . . , hn}.

To simplify notation, we make the following convention. Whenever we talk
about nonconstructivity log n, we assume that the logarithmic function to the
base 2 is replaced by its integer valued counterpart �log n�+1, where log 0 =df 1.

Now we are ready to present our results. Note that some proofs have been
influenced by ideas developed in the quite a different context, i.e., the paradigm
of learning by erasing (also called co-learning). We do not explain it here but
refer the reader to Jain et al. [14] as well as to Freivalds and Zeugmann [12].

3 Results

Already Gold [13] showed that REG /∈ LimTxt and as mentioned in (1), even
quite simple subclasses of REG are not in LimTxt. So, we start our investigations
by asking for the amount of nonconstructivity needed to identify any indexable
class in the limit from text with respect to any indexed hypothesis space H.

3.1 Nonconstructive Learning of Indexable Classes

As we shall see, the needed amount of nonconstructivity is surprisingly small.
To show this result, for every function d ∈ Rmon we define its inverse dinv as
follows dinv (n) = μy[d(y) ≥ n] for all n ∈ N. Recall that range(d) is recursive
for all d ∈ Rmon . Thus, for all d ∈ Rmon we can conclude that dinv (n) ∈ R.

Theorem 1. Let C ∈ ID be arbitrarily fixed, let d ∈ Rmon be any function,
and let H = (Lj)j∈N be any indexed hypothesis space for C. Then there is a
computable IIM M such that the class C can be identified with nonconstructivity
log dinv (n) in the limit from text with respect to H.

Proof. Assuming any help-word w of length precisely log dinv (n), the IIM M cre-
ates a bitstring containing only 1s that has the same length as w. This bitstring
is interpreted as a natural number k.

So, k ≥ dinv (n), and thus

u∗ =df d(k) ≥ d(dinv (n)) ≥ n . (2)

We continue to define the IIM M in a way such that it will learn every language
L ∈ C ∩ {L0, . . . , Lu∗} from every of its texts. So, fix any such L, let t be any
text for L, and let m ∈ N.

On the Amount of Nonconstructivity in Learning Formal Languages 429

Now, the idea to complete the proof is as follows. In the limit, the IIM M
can determine the number � of different languages enumerated in L0, . . . , Lu∗
as well as the least indices j1, . . . , j	 of them and can then find the language
among them which is equal to L. We assume the lexicographical ordering ≤lo of
all strings from Σ∗, i.e., si ≤lo si+1 for all i ∈ N.

Using m, t[m], and the decision function f for H, the IIM M computes the
least number r such that m ≤ r and s ≤lo sr for all s ∈ content(t[m]). Next, M
computes

Lr
0 = {w | w ≤lo sr, f(0, w) = 1}

Lr
1 = {w | w ≤lo sr, f(1, w) = 1}
...

Lr
u∗ = {w | w ≤lo sr, f(u∗, w) = 1} ,

and chooses the least indices j1, . . . , j	m from 0, 1, . . . , u∗ of all the distinct lan-
guages in Lr

0, . . . , L
r
u∗ . From these languages Lr

jz
all those are deleted for which

content(t[m]) �⊆ Lr
jz

(the inconsistent ones). From the remaining indices, the
least index j is output such that |Lr

j \ content(t[m])| is minimal.
Now, it easy to see that the sequence (�m)m∈N converges to �, the number of

the different languages enumerated in L0, . . . , Lu∗ , and that the IIM M finds in
the limit the least indices j1, . . . , j	 for these pairwise different languages. From
these languages Lj1 , . . . , Lj�

the ones satisfying L \ Ljz �= ∅ are deleted.
That leaves all those Ljz with L ⊆ Ljz . Now, by assumption there is a least

j ∈ {0, . . . , u∗} with Lj = L. If L ⊂ Ljz , then there is a string s ∈ Ljz \ L, and
as soon as this string appears in the competition, the index j wins. Thus, the
sequence (M(t[m], w))m∈N converges to j. ��
So there is no smallest amount of nonconstructivity needed to learn REG and
any subset thereof in the limit from text. But the amount of nonconstructivity
cannot be zero, since then we would have REG ∈ LimTxt. One can define a total
function t ∈ T such that t(n) ≥ d(n) for all d ∈ Rmon and all but finitely many n.
Hence, log tinv is then a lower bound for the amount of nonconstructivity needed
to learn REG in the limit from text for the technique used to show Theorem 1.

We continue by asking what amount of nonconstructivity is needed to obtain
conservative learning from text for any indexable class. Now, the situation is
intuitively more complex, since ConsvTxt ⊂ LimTxt (cf. [2, 20]). Also, it is
easy to see that the IIM M given in the proof of Theorem 1 is in general not
conservative. But the basic idea still works mutatis mutandis provided we know
the number � of different languages enumerated in L0, . . . , Ln.

Theorem 2. Let C ∈ ID be arbitrarily fixed, and let H = (Lj)j∈N be an indexed
hypothesis space for C. Then there is a computable IIM M such that the class
C can be conservatively identified with nonconstructivity log n from text with
respect to H.

Proof. Let H = (Lj)j∈N be any indexed hypothesis space for C, and let n ∈ N.
The help-word w is defined as follows. Since the IIM also needs to know a bound

430 S. Jain, F. Stephan, and T. Zeugmann

on n, we always assume n to be a power of 2. Intuitively, we then add one bit
and write the binary representation of the exact number � of pairwise different
languages enumerated in L0, . . . , Ln behind the leading 1 including leading zeros.
But of course we do not need the leading 1 in the help-word, since it can be added
by the IIM M . So if the help-word w has length k, then the added leading 1
with k− 1 zeros gives n and the bitstring w without the added leading 1 gives �.

Given �, the desired IIM M can find the least indices of these � pairwise
different languages by using the decision function f from the proof of Theorem 1
above, where r is large enough to detect � different languages.

The rest is done inductively. The IIM M checks whether or not t(0) ∈ Lr
jz

,
z = 1, . . . , �, and deletes all languages which fail. Then M orders the remaining
sets Lr

jz
with respect to set inclusion, and outputs the index of the minimal one

with the smallest index. For m > 0, the IIM M then checks whether or not
content(t[m]) ⊆ LM(t[m−1]). If it is, it outputs M(t[m − 1]).

Otherwise, it checks whether or not content(t[m]) ⊆ Lr
jz

, z = 1, . . . , �, and
deletes all languages which fail. Then M orders the remaining sets Lr

jz
with

respect to set inclusion, and outputs the index of the minimal one with the
smallest index. ��
We also have the following lower bound.

Theorem 3. There is a class C ∈ ID and an indexed hypothesis space H for it
such that for every IIM that learns C conservatively with respect to H less than
log n − 2 many bits of nonconstructivity are not enough.

Next, we look at strong-monotonic learning. Again the situation is more complex,
since SmonTxt ⊂ ConsvTxt (cf. [20]). We add L0 = ∅ to every hypothesis space
allowed, i.e., we always consider class comprising hypothesis spaces.

Theorem 4. Let C ∈ ID be arbitrarily fixed, and let H = (Lj)j∈N be an indexed
hypothesis space for C. Then there is a computable IIM M such that the class
C can be strong-monotonically identified with nonconstructivity 2 logn from text
with respect to H.

Proof. The key observation is that it suffices to know the following number p =
|{(i, j) | Li �⊆ Lj , i, j = 0, . . . , n}| . So, the help-word is just the binary encoding
of p and n which is done mutatis mutandis as in the proof of Theorem 2. The
rest is not too difficult, and thus omitted.

Again, the bound given in Theorem 4 cannot be improved substantially, since
we have the following lower bound.

Theorem 5. There is a class C ∈ ID and an indexed hypothesis space H for
it such that for every IIM that learns C strong-monotonically with respect to H
less than 2 logn − 4 many bits of nonconstructivity are not enough.

Having these general results, we can also ask what happens if we allow a suitably
chosen hypothesis space for REG such as all DFAs. Then for all i, j ∈ N equality
Li = Lj and subset Li ⊆ Lj are decidable, and thus we are in the setting
described in the proof of Theorem 1. That is we have the following theorem.

On the Amount of Nonconstructivity in Learning Formal Languages 431

Theorem 6. Let C ⊆ REG be arbitrarily fixed, let d ∈ Rmon be any function,
and let H = (Lj)j∈N be any indexed hypothesis space for C. Then there is a
computable IIM M such that the class C can be strong-monotonically identified
with nonconstructivity log dinv (n) from text with respect to H.

3.2 Nonconstructive Learning of Recursively Enumerable Classes

Next, we turn our attention to the amount of nonconstructivity needed to learn
recursively enumerable classes of recursively enumerable languages.

Theorem 7. Let ψ ∈ P2 be any numbering. Then there is always an IIM M
learning the family (Wψ

i)i∈N+ in the limit from text with nonconstructivity log n

with respect to (Wψ
i)i∈N+ .

Proof. The help-word w is essentially the same as in the proof of Theorem 2,
i.e., it is a bitstring of b of length log n which is the binary representation of �,
the number of pairwise different languages enumerated in Wψ

1 , . . . , Wψ
n plus n.

Let L ∈ C ∩ {Wψ
1 , . . . , Wψ

n } and let t be any text for L. On input any t[m]
and the help-word w the desired IIM M executes the following.

(1) For all 0 < i ≤ n enumerate Wψ
i for m steps, that is, M tries to compute

ψi(0), . . . , ψi(m) for at most m steps and enumerate those arguments x for
which ψi(x) turns out to be defined. Let Wψ

i,m be the resulting sets, 0 < i ≤ n.
(2) For all pairs (i, j) with 0 < i, j ≤ n check whether or not Wψ

i,m \ Wψ
j,m �= ∅.

If it is, let d(i, j) be the least element in Wψ
i,m \ Wψ

j,m. If there is no such
element, we set d(i, j) = ∞.

(3) Using the numbers d(i, j) then M checks whether or not there are � pairwise
different languages among Wψ

1,m, . . . , Wψ
n,m. If not, then M(t[m]) = 0.

Otherwise, let S = {i | 0 < i ≤ n, Wψ
j,m �= ∅} and consider all sets S̃ ⊆ S

satisfying |S̃| = �. For each such set S̃ = {j1, . . . , j	} compute the numbers
xj,k =df min(Wψ

j,m �Wψ
k,m) for all j, k ∈ S̃, where j < k and let s(S̃) be

the maximum of all those xj,k. Furthermore, for each set S̃ we consider the
�-tuple (j1, . . . , j), where ji < ji+1, i = 1, . . . , � − 1. Using these tuples,
we can order them lexicographically and then choose the first set S̃ in this
order for which s(S̃) is minimized, i.e., s(S̃) ≤ s(Ŝ) for all Ŝ with Ŝ ⊆ S and
|Ŝ| = �. Let i1, . . . , i	 be the elements of this set S̃ in their natural order.
Then M takes the languages Wψ

i1,m, . . . , Wψ
i�,m into consideration. From these

candidate hypotheses i1, . . . , i	 the least i is output for which t[m] contains
all finite d(i, j), j = i1, . . . , i	, and t[m] does not contain any of the finite
d(j, i), j = i1, . . . , i	. If there is no such i, then M(t[m]) = 0.

We have to show that M learns L in the limit from t. Note that the � pairwise
different languages are found in the limit, since the minimal element in the
symmetric difference of the two languages tends to infinity if the two languages
are equal (if any element is found at all). So, the set of candidate hypotheses
stabilizes in the limit, and by construction M then outputs the correct i as soon
as the initial segment is large enough. We omit details. ��

432 S. Jain, F. Stephan, and T. Zeugmann

The IIM defined in the proof of Theorem 7 even witnesses a much stronger result,
i.e., it always converges to the minimum index i of the target language.

The following lower bound shows that Theorem 7 cannot be improved sub-
stantially.

Theorem 8. There is a numbering ψ ∈ P2 such that no IIM M can learn the
family (Wψ

i)i∈N+ in the limit from text with nonconstructivity log n − 2 with
respect to (Wψ

i)i∈N+ .

The situation considerably changes if we require conservative learning. In order
to present this result, we need the following. A function h : N → N is said to be
limiting recursive if there is a function h̃ ∈ R2 such that h(i) = lim

n→∞ h̃(i, n).

Theorem 9. For every limiting recursive function h there is a recursively enu-
merable family (Wψ

i)i∈N of recursive languages such that no IIM with noncon-
structivity at most h can learn (Wψ

i)i∈N conservatively with respect to (Wψ
i)i∈N.

4 Conclusions

We have presented a model for the inductive inference of formal languages from
text that incorporates a certain amount of nonconstructivity. In our model, the
amount of nonconstructivity needed to solve the learning problems considered
has been used as a quantitative characterization of their difficulty.

We studied the problem of learning indexable classes under three postulates,
i.e., learning in the limit, conservative identification, and strong-monotonic infer-
ence. As far as learning in the limit is concerned, the amount of nonconstructivity
needed to learn any indexable class can be very small and there is no smallest
amount that can be described in a computable way (cf. Theorem 1).

Moreover, we showed upper and lower bounds for conservative learning of
indexable classes and for strong-monotonic inference roughly showing that the
amount of nonconstructivity needed is log n for conservative learning and 2 logn
for strong-monotonic inference.

However, if we allow canonical indexed hypothesis spaces for REG such that
equality of languages is decidable, then the amount of nonconstructivity needed
to learn REG even strong-monotonically can be made very small.

Finally, we studied the problem to learn recursively enumerable classes of re-
cursively enumerable languages. In this setting, the amount of nonconstructivity
needed to learn in the limit is log n, while there is not even a limiting recursive
bound for the amount of nonconstructivity to learn all recursively enumerable
classes of recursively enumerable languages conservatively.

Acknowledgment. This research was performed partially while the third au-
thor was visiting the Institute of Mathematical Sciences at the National Univer-
sity of Singapore in September 2011. His visit was supported by the Institute.
Sanjay Jain was supported in part by NUS grant numbers C252-000-087-001
and R252-000-420-112, and Frank Stephan was supported in part by NUS grant
number R252-000-420-112.

On the Amount of Nonconstructivity in Learning Formal Languages 433

References

[1] Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences 21(1), 46–62 (1980)

[2] Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45(2), 117–135 (1980)

[3] Barzdin, J.: Inductive inference of automata, functions and programs. In: Proc.
of the 20th International Congress of Mathematicians, Vancouver, Canada, pp.
455–460 (1974); republished in Amer. Math. Soc. Transl. 109 (2), 107– 112 (1977)

[4] Bārzdiņš, J.M.: Complexity of programs to determine whether natural numbers
not greater than n belong to a recursively enumerable set. Soviet Mathematics
Doklady 9, 1251–1254 (1968)

[5] Beyersdorff, O., Köbler, J., Müller, S.: Proof systems that take advice. Information
and Computation 209(3), 320–332 (2011)

[6] Cook, S., Krajiček, J.: Consequences of the provability of NP ⊆ P/poly . The
Journal of Symbolic Logic 72(4), 1353–1371 (2007)

[7] Damm, C., Holzer, M.: Automata that Take Advice. In: Hájek, P., Wiedermann,
J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)

[8] Erdős, P.: Some remarks on the theory of graphs. Bulletin of the American Math-
ematical Society 53(4), 292–294 (1947)

[9] Freivalds, R.: Amount of Nonconstructivity in Finite Automata. In: Maneth, S.
(ed.) CIAA 2009. LNCS, vol. 5642, pp. 227–236. Springer, Heidelberg (2009)

[10] Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. The-
oretical Computer Science 411(38-39), 3436–3443 (2010)

[11] Freivalds, R., Zeugmann, T.: On the Amount of Nonconstructivity in Learning Re-
cursive Functions. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648,
pp. 332–343. Springer, Heidelberg (2011)

[12] Freivalds, R., Zeugmann, T.: Co–Learning of Recursive Languages from Positive
Data. In: Bjørner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181,
pp. 122–133. Springer, Heidelberg (1996)

[13] Gold, E.M.: Language identification in the limit. Inform. Control 10(5), 447–474
(1967)

[14] Jain, S., Kinber, E., Lange, S., Wiehagen, R., Zeugmann, T.: Learning languages
and functions by erasing. Theoretical Computer Science 241(1-2), 143–189 (2000)

[15] Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn: An Intro-
duction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[16] Jain, S., Stephan, F., Zeugmann, T.: On the amount of nonconstructivity in learn-
ing formal languages from text. Tech. Rep. TCS-TR-A-12-55, Division of Com-
puter Science, Hokkaido University (2012)

[17] Jantke, K.P.: Monotonic and non-monotonic inductive inference. New Generation
Computing 8(4), 349–360 (1991)

[18] Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’ Enseignement
Mathématique 28, 191–209 (1982)

[19] Lange, S., Zeugmann, T.: Types of monotonic language learning and their char-
acterization. In: Haussler, D. (ed.) Proc. 5th Annual ACM Workshop on Compu-
tational Learning Theory, pp. 377–390. ACM Press, New York (1992)

[20] Lange, S., Zeugmann, T.: Language learning in dependence on the space of hy-
potheses. In: Pitt, L. (ed.) Proceedings of the Sixth Annual ACM Conference on
Computational Learning Theory, pp. 127–136. ACM Press, New York (1993)

434 S. Jain, F. Stephan, and T. Zeugmann

[21] Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive lan-
guages from positive data: A survey. Theoretical Computer Science 397(1-3), 194–
232 (2008)

[22] Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill (1967); reprinted, MIT Press 1987

[23] Zeugmann, T., Lange, S.: A Guided Tour Across the Boundaries of Learning
Recursive Languages. In: Lange, S., Jantke, K.P. (eds.) GOSLER 1994. LNCS
(LNAI), vol. 961, pp. 190–258. Springer, Heidelberg (1995)

[24] Zeugmann, T., Minato, S., Okubo, Y.: Theory of Computation. Corona Publishing
Co, Ltd. (2009)

Computing in the Fractal Cloud:

Modular Generic Solvers for
SAT and Q-SAT Variants

Denys Duchier, Jérôme Durand-Lose, and Maxime Senot�

LIFO, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2

{denys.duchier,jerome.durand-lose,maxime.senot}@univ-orleans.fr

Abstract. Abstract geometrical computation can solve hard combina-
torial problems efficiently: we showed previously how Q-SAT —the sat-
isfiability problem of quantified boolean formulae— can be solved in
bounded space and time using instance-specific signal machines and frac-
tal parallelization. In this article, we propose an approach for construct-
ing a particular generic machine for the same task. This machine deploys
the Map/Reduce paradigm over a discrete fractal structure. Moreover
our approach is modular : the machine is constructed by combining mod-
ules. In this manner, we can easily create generic machines for solving
satifiability variants, such as SAT, #SAT, MAX-SAT.

Keywords: Abstract geometrical computation, Signal machine, Frac-
tal, Satisfiability problems, Massive parallelism, Model of computation.

1 Introduction

Since their first formulations in the seventies, problems of Boolean satisfiability
have been studied extensively in the field of computational complexity. Indeed,
the most important complexity classes can be characterized —in terms of re-
ducibility and completeness— by such problems e.g. SAT for NP [4] and Q-SAT
for PSPACE [21]. As such, it is a natural challenge to consider how to solve
these problems when investigating new computing machinery: quantum, NDA
and membrane [20], optical [13], hyperbolic spaces [18], etc. (for an overview of
the status of NP-complete problems under several physical assumptions, see [1]).

This is the line of investigation that we have been following with signal ma-
chines, an abstract and geometrical model of computation. We showed previously
how such machines were able to solve SAT [6] and Q-SAT [7] in bounded space
and time and in quadratic collision depth, a model-specific time complexity mea-
sure defined by the maximal number of consecutives collisions, which is better
suited to the strong parallelism of signal machines. But in both cases, the ma-
chines were instance-specific i.e. depended on the formula whose satifiability was

� This work was partially supported by the ANR project AGAPE, ANR-09-BLAN-
0159-03.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 435–447, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 D. Duchier, J. Durand-Lose, and M. Senot

to be determined. The primary contribution of the present paper is to exhibit a
particular generic signal machine for the same task: it takes the instance formula
as an input encoded (by a polynomial-time Turing machine) in an initial con-
figuration. This single machine replaces the whole family of machines designed
previously (one machine for each formula) and formulae are now represented by
inputs (as for classical algorithms) instead of being encoded by signals and rules
of machines. We further improve our previous results by describing a modular
approach that allows us to easily construct generic machines for other variants
of SAT, such as #SAT or MAX-SAT. We also introduce a new technical gadget,
the lens device, which automatically scales by half any beam of signals. These
constructions are in cubic collision depth instead of quadratic for the previous
instance-specific solutions.

The model of signal machines, called abstract geometrical computation, in-
volves two types of fundamental objects: dimensionless particles and collision
rules. We use here one-dimensional machines: the space is the Euclidean real
line, on which the particles move with a constant speed. Collision rules describe
what happens when several particles collide. By representing continuous time
on a vertical axis, we obtain two-dimensional space-time diagrams, in which the
motion of the particles are represented by lines segment called signals. Signal ma-
chines can simulate Turing machines and are thus Turing-universal [11]. Under
some assumptions and by using the continuity of space and time, signal machines
can simulate analog models such as computable analysis [10] and they can even
be super-Turing by embedding the black hole model (forecasting a black-hole in
signal machines is highly indecidable as shown in [9]).

Other geometrical models of computation exist: colored universes [15], geomet-
ric machines [14], optical machines [19], interaction nets [17], piecewise constant
derivative systems [2], tilings [16], etc.

All these models, including signal machines, belong to a larger class of models
of computation, called unconventional, which are more powerful than classical
ones (Turing machines, RAM, while-programs. . .). Among all these abstract
models, the model of signal machines distinguishes itself by realistic assump-
tions respecting the major principles of physics —finite density of information,
respect of causality and bounded speed of information— which are, in general,
not respected all at the same time by other models. Nevertheless, signal machines
remain an abstract model, with no a priori ambition to be physically realizable,
and is studied for theoretical issues of computer sciences such as computability
power and complexity measures.

As signal machines take their origins in the world of cellular automata, not
only can they be a powerful tool for understanding the latter’s complex behav-
iors, implementing computations [12] and proving universality [3] but they too
can be viewed as a massively parallel computational device. This is the approach
proposed here: we put in place a fractal compute grid, then use the Map/Reduce
paradigm to distribute the computations, then aggregate the results.

Computing in the Fractal Cloud 437

The Map/Reduce pattern, pioneered by Lisp, is now standard in functional
programming: a function is applied to many inputs (map), then the results are
aggregated (reduce). Google extended this pattern to allow its distributed com-
putation over a grid of possibly a thousand nodes [5]. The idea is to partition the
input (petabytes of data) into chunks, and to process these chunks in parallel
on the available nodes. When solving combinatorial problems, we are also faced
with massive inputs; namely, the exponential number of candidate solutions.
Our approach is to distribute the candidates, and thus the computation, over an
unbounded fractal grid. In this way, we adapt the map/reduce pattern for use
over a grid with fractal geometry.

Our contribution in this paper is three fold: first, we show how Q-SAT can
be solved in bounded space and time using a generic machine, where the input
(the formula) is simply compiled into an initial configuration. This improves on
our previous result where the machine itself depended on the formula. Second,
we propose the first architecture for fractally distributed computing (the fractal
cloud) and give a way to automatically shrink the data into this structure by
means of a lens device. Third, we show how generic machines for many variants
of SAT can be assembled by composing independent modules, which naturally
emerged from the generalization of our previous family of machines into a single
machine solving Q-SAT. Each module can be programmed and understood in-
dependently. We also discuss notions and choices of complexity measures which
strongly depend of the considered model of computation, and we argue that col-
lision depth, a time complexity measure introduced in [6], is more relevant to
signal machines. The collision depth of the given construction is cubic in the size
of the input formula and space complexity is exponential.

The paper is structured as follow. Signal machines are introduced in Section 2.
Section 3 presents the fractal tree structure used to achieve massive parallelism
and how general computations can be inserted in the tree. Section 4 details this
implementation for a Q-SAT solver and Section 5 explains how some variants of
satisfiability problems can be solved with the same approach. Complexities are
discussed in Section 6 and conclusions and remarks are gathered in Section 7.

2 Definitions

Signal machines are an extension of cellular automata from discrete time and
space to continuous time and space. Dimensionless signals/particles move along
the real line and rules describe what happens when they collide.

Signals. Each signal is an instance of a meta-signal. The associated meta-signal
defines its speed. Figure 1 presents a very simple space-time diagram. Time is
increasing upwards and the meta-signals are indicated as labels on the signals.
Generally, we use over-line arrows to indicate the direction and speed of propaga-
tion of a meta-signal. For example, −→a and ⇐=a denote two different meta-signals:
the first travels to the right at speed 1, while the other travels to the left at
speed −3. w and a are both stationary meta-signals.

438 D. Duchier, J. Durand-Lose, and M. Senot

Meta-signals Speed

w, a 0
−→a 1
=⇒a 3
⇐=a −3

w w

=⇒a

⇐=a
−→a

a

Collision rules

=⇒a ,w → ⇐=a ,w
−→a ,⇐=a → a

Initial configuration

{w,−→a ,=⇒a }@0
{w}@1

Fig. 1. Geometrical algorithm for computing the middle

Collision rules. When a set of signals collide i.e. when they are at the same spa-
tial location at the same time, they are replaced by a new set of signals according
to a matching collision rule. A rule has the form: σ1, . . . , σn → σ′

1, . . . , σ
′
p where

all σi are meta-signals of distinct speeds as well as σ′
j (two signals cannot collide

if they have the same speed and outcoming signals must have different speeds).
A rule matches a set of colliding signals if its left-hand side is equal to the set of
their meta-signals. By default, if there is no exactly matching rule for a collision,
the behavior is defined to regenerate exactly the same meta-signals. In such a
case, the collision is called blank. Collision rules can be deduced from space-time
diagrams as on Fig. 1 where they are also listed on the right.

Definition 1. A signal machine M is a triplet M = (M,S,C) where M is a
finite set of meta-signals, S : M → R is the speed function which assigns a real
speed to each meta-signal and C is the set of collision rules.

An initial configuration c0 is a finite set c0 = {(σi, xi) | σ ∈ M and x ∈ R}.
For a signal σi at initial position xi, we also note σi@ xi.

A signal machine is executed starting from an initial configuration which cor-
responds to the input. The evolution of a signal machine can be represented
geometrically as a space-time diagram: space is always represented horizontally,
and time vertically, growing upwards. The geometrical algorithm displayed in
Fig. 1 computes the middle: the new a is located exactly halfway between the
initial two w. Constructions given in the present paper are achieved by a rational
signal machine: all speeds and initial positions are rational values (in particular,
speeds take just a few integer values: −3,−1, 0, 1 and 3). It follows that every
collision happens at rational coordinates.

3 Computing in the Fractal Cloud

Constructing the fractal. The fractal structure that interests us is based on the
simple idea of computing the middle illustated in Fig. 1. We just indefinitely
repeat this geometrical construction: once space has been halved, we recursively
halve the two halves, and so on.

Computing in the Fractal Cloud 439

(a) Constructing the fractal cloud (b) Distributing a computation

Fig. 2. Computing in the fractal cloud

This is illustrated in Fig. 2(a) and can be generated by the following rules1:

w,⇐=a → w,=⇒a −→a ,⇐=a → ⇐=a ,←−a , a,−→a ,=⇒a

using {w,−→a ,=⇒a }@0 and {w}@1 as the initial configuration. This produces a stack
of levels: each level is half the height of the previous one. As a consequence, the
full fractal has width 1 and height 1.

Distributing a computation. The point of the fractal is to recursively halve space.
At each point where space is halved, we position a stationary signal (a vertical
line in the space-time diagram). We can use this structure, so that, at each
halving point (stationary signal), we split the computation in two: send it to the
left with half the data, and also to the right with the other half of the data.

The intuition is that the computation is represented by a beam of signals, and
that stationary signals split this beam in two, resulting in one beam that goes
through, and one beam that is reflected.

Unfortunately, a beam of constant width will not do: eventually it becomes
too large for the height of the level. This can be clearly seen in Fig. 2(b).

The lens device. The lens device narrows the beam by a factor of 2 at each level,
thus automatically adjusting it to fit the fractal (see Fig. 3). It is implemented by
the following meta-rule: unless otherwise specified, any signal −→σ is accelerated
by ⇐=a and decelerated and split by any stationary signal s.

1 For brevity, we will always omit the rules which can be obtained from the others by
symmetry. We refer to the extended version [8] for more details.

440 D. Duchier, J. Durand-Lose, and M. Senot

−→σ

=⇒σ

←−σ −→σ

⇐=a

t 3t

t

t

(a) Narrows by 2 (b) Effect on propagation

Fig. 3. The lens device

Generic computing over the fractal cloud. With the lens device in effect, generic
computations can take place over the fractal by propagating a beam from an
initial configuration. We write [(−→σn . . .−→σ1)spawn] for an initial configuration
with a sequence −→σn . . .−→σ1 of signals disposed from left to right on the space line.
Geometrically, it can easily be seen that, in order for the beam to fit through
the first level, the sequence −→σn . . .−→σ1 must be placed in the interval (− 1

4 , 0).

Modules. A module is a set of signals which correspond to a given task. We
describe a module by the parametric abstraction defining its instance-specific
contribution to the initial configuration in the form [module] = −→σn . . .−→σ1 and by
the generic (i.e. instance-independent) collision rules describing how this module
interacts with other modules.

Stopping the fractal. For finite computations, we don’t need the entire fractal.
The [until(n)] module can be inserted in the initial configuration to cut the

fractal after n levels have been generated. We set: [until(n)] = −→z −→ζ
n−1

.

Table 1. Stopping the fractal

=⇒
ζ ,←−a →←−a◦,

=⇒
ζ

=⇒
ζ , a→ a◦

=⇒
ζ , a◦ →

←−
ζ , a◦,

−→
ζ

=⇒z ,←−a →←−a◦,=⇒z =⇒z ,←−a◦ →←−a ,=⇒z =⇒z , a◦ →←−z , a,−→z
=⇒z , a→ a,=⇒z =⇒z ,−→a → −→a◦ =⇒a ,←−a◦ → ∅

The subbeam
−→
ζ

n−1
are the inhibitors for −→z . One inhibitor is consumed at

each level, after which =⇒z takes effect and turns ←−a into ←−a◦ which finally anni-
hilates the constructing signals via the rule =⇒a ,←−a◦ → ∅, bringing the fractal to
a stop. Thus, a computation [(−→σn . . .−→σ1[until(n)])spawn] uses only n levels.
It can be seen geometrically that, for the collision of =⇒z with −→a to occur before
the latter meets with ⇐=a , −→z must initially be placed in (− 1

6 , 0).

Computing in the Fractal Cloud 441

4 A Modular Q-SAT Solver

Q-SAT is the satisfiability problem for quantified Boolean formulae (QBF). A
QBF is a closed formula of the form φ = Q1x1Q1x2 . . .Qnxn ψ(x1, x2, . . . , xn)
where Qi ∈ {∃, ∀} and ψ is a quantifier-free formula of propositional logic. A
classical recursive algorithm for solving Q-SAT is:

qsat(∃x φ) = qsat(φ[x ← false]) ∨ qsat(φ[x ← true])

qsat(∀x φ) = qsat(φ[x ← false]) ∧ qsat(φ[x ← true])

qsat(β) = eval(β)

where β is a ground Boolean formula. This is exactly the structure of our con-
struction: each quantified variable splits the computation in 2, qsat(φ[x ← false])
is sent to the left and qsat(φ[x ← true]) to the right, and subsequently the re-
cursively computed results that come back are combined (with ∨ for ∃ and ∧ for
∀) to yield the result for the quantified formula. This process can be viewed as
an instance of Map/Reduce, where the Map phase distributes the combinatorial
exploration of all possible valuations across space using a binary decision tree,
and the Reduce phase collects the results and aggregates them using quantifier-
appropriate Boolean operations. Our Q-SAT solver is modularly composed as
follows (modules decide, map:sat, and reduce:qsat are described below):
[([reduce:qsat(Q1x1 . . . Qnxn)][map:sat(ψ)]

[decide(n)][until(n+ 1)])spawn]

4.1 Setting Up the Decision Tree

For a QBF with n variables, we need 1 level per variable, and then at level n+1
we have a ground propositional formula that needs to be evaluated. Thus, the
first module we insert is [until(n+ 1)] to create n+ 1 levels. We then insert
[decide(n)] because we want to use the first n levels as decision points for
each variable. This is simply achieved by taking [decide(n)] = −→α n

(one signal
−→α per level) with the following rules: =⇒α , a → x (turning stationary signal into
assigning ones) and =⇒α , x → ←−α , x,−→α (splitting the remaining −→α for next levels).

4.2 Compiling the Formula

The intuition is that we want to compile the formula into a form of inverse
polish notation to obtain executable code using postfix operators. At level n+1

all variables have been decided, and have become
−→
t or

−→
f . The ground formula,

regarded as an expression tree, can be executed bottom up to compute its truth
value: the resulting signal for a subexpression is sent to interact with its parent
operator. The formula is represented by a beam of signals: each subformula is
represented by a (contiguous) subbeam. A subformula that arrives at level n+1
starts evaluating when it hits the stationary a. When its truth value has been
computed, it is reflected so that it may eventually collide with the incoming
signal of its parent connective.

442 D. Duchier, J. Durand-Lose, and M. Senot

Compilation. For binary connectives, one argument arrives first, it is evaluated,
and its truth value is reflected toward the incoming connective; but, in order to
reach it, it must cross the incoming beam for the other argument and not interact
with the connectives contained therein. For this reason, with each subexpression,

we associate a beam −→γ k
of inhibitors that prevents its resulting truth value

from interacting with the first k connectives that it crosses. We write C[[ψ]] for
the compilation of ψ into a contribution to the initial configuration, and ‖ ψ ‖
for the number of occurrences of connectives in ψ. The following scheme of
compilation produces an initial configuration wich has a size —the number of
signals— at most quadratic in the size s of the input formula. Clearly, for each
node (i.e. symbol) of the formula, only a linear number of inhibitor signals −→γ
can be added, so C[[ψ]] is composed by at most O(s · s) = O(s2) signals. The
compilation is done by induction on the formula:

C[[ψ]] = C[[ψ]]0

C[[ψ1 ∧ ψ2]]
k
=

−→∧ −→γ k
C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[ψ1 ∨ ψ2]]
k
=

−→∨ −→γ k
C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[¬ψ]]k = −→¬ −→γ k
C[[ψ]]

C[[xi]]
k
= [var(xi)]

−→γ k

Variables. We want variable xi to be decided at level i. This can be achieved
using i−1 inhibitors. For variable xi, the idea is to protect

=⇒x from being assigned

into
←−
f and

−→
t until it reaches the ith level. This is achieved with a stack of i− 1

signals
=⇒
β : at each level, the first

=⇒
β turns the stationary signal x into x◦(the

non-assigning version of x) and disappears. The following
=⇒
β and =⇒x are simply

split, =⇒x taking x◦ back into x. After the first i − 1 levels, all the
−→
β have been

consumed so that =⇒x finally collides directly with x and splits into
←−
f going left

and
−→
t going right. The variable xi is initially coded by: [var(xi)] = −→x −→β

i−1
.

Table 2. Coding and assigning variables

=⇒
β , x→ x◦

=⇒
β , x◦ →

←−
β , x◦,

−→
β

=⇒x , x→←−f , x,−→t =⇒x , x◦ →←−x , x,−→x

Evaluation. When hitting a at level n + 1,
=⇒
t is reflected as

←−
T , and

=⇒
f as

←−
F :

these are their activated versions which can interact with incoming connectives
to compute the truth value of the formula according to the rules given in Tab. 3
for ∧ (other connectives are similar, cf [8]). See Fig. 4(a) for an example.

Storing the results. In order to make the result easily exploitable by the Re-
duce phase, we now store it with a signal −→s as the stationary signal at level
n+ 1; it replaces a, which becomes a signal t or f. The complete Map phase is
implemented by: [map:sat(ψ)] = −→s C[[ψ]] .

Computing in the Fractal Cloud 443

=⇒γ a

=⇒γ

←−γ
+

=⇒γ

a

=⇒t
←−γ
+

=⇒t

←−γ
+

=⇒t

a

=⇒t ←−γ
+

=⇒t
←−γ
+

=⇒¬ ←−γ
+

=⇒¬◦ ←−γ
+

=⇒t ←−T

=⇒t

a

=⇒t ←−γ
+ =⇒¬◦

←−T
=⇒¬ ←−T

=⇒∧ ←−γ
+

=⇒t

←−T

=⇒
f

a

=⇒∧◦
←−T =⇒t

←−F
=⇒t

a

=⇒∨

←−T =⇒∧
←−F

=⇒
f+ ←−T

=⇒
f

a

=⇒
t+

←−F
=⇒t

a

=⇒s

←−T
=⇒
T

a

=⇒c

t

←−t

(a) Evaluation
case x1 = x2 = x3 = t

[(−→c −→∀ 2−→∃−→s −→∨−→∧−→x −→¬−→x −→β −→x −→β 2−→γ 2−→α 3−→z −→ζ 3)spawn]

(c) Initial configuration

=⇒c , t→←−t =⇒c , f →←−f

−→
t ,∃L,←−t →←−t −→

t ,∀L,←−t →←−t
−→
t ,∃L,

←−
f →←−t −→

t ,∀L,
←−
f →←−f

−→
f ,∃L,←−t →←−t

−→
f ,∀L,←−t →

←−
f

−→
f ,∃L,

←−
f →←−f −→

f ,∀L,
←−
f →←−f

−→f ∀ R

←−t −→f ∀ L

←−t −→t ∀ R

←−t −→f ∀ L

←−t

−→f

∀ R

←−
f −→t

∀ L

←−
f

−→f

∃ L

←−
f

←−
f

(b) Aggregation

Fig. 4. Example ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

4.3 Aggregating the Results

As explained earlier, the results for an existentially (resp. universally) quantified
variable must be combined using ∨ (resp. ∧).

Setting up the quantifiers. We turn the decision points of the first n levels into
quantifier signals. Moreover, at each level, we must also take note of the direction
in which the aggregated result must be sent. Thus ∃L represents an existential
quantifier that must send its result to the left. Rules are given by table Tab. 4.

For this, we set: [reduce:qsat:init(Q1x1 · · ·Qnxn)] =
−→
Qn . . .

−→
Q1 .

Aggregating the results. Actual aggregation is initiated by −→c and then executes
according to the rules given in Fig 4(b). We just have [reduce:qsat:exec] = −→c .
The complete Reduce phase is implemented by
[reduce:qsat(Q1x1 · · ·Qnxn)] =

[reduce:qsat:exec][reduce:qsat:init(Q1x1 · · ·Qnxn)] .

444 D. Duchier, J. Durand-Lose, and M. Senot

Table 3. Evaluation rules for ∧ connective

=⇒
t , a→←−T , a

=⇒
f , a→←−F , a =⇒γ , a→←−γ+, a

=⇒∧ ,←−T → =⇒∧+
=⇒
f+,
←−
T → =⇒

f
=⇒∧+,
←−
T → =⇒

t

=⇒∧ ,←−F → =⇒
f+

=⇒
f+,
←−
F → =⇒

f
=⇒∧+,
←−
F → =⇒

f

=⇒∧ ,←−γ+ → =⇒∧◦
=⇒∧◦,
←−
T →←−T ,

=⇒∧ =⇒∧◦,
←−
F →←−F ,

=⇒∧

Table 4. Setting up the quantifiers and the direction of the results

x,
⇐=∃ → ∃R

=⇒∃ , x→ ∃L x,
⇐=∀ → ∀R

=⇒∀ , x→ ∀L

5 Machines for SAT Variants

Similar machines for variants of SAT can be obtained easily, typically by using
different modules for the Reduce phase. All the details of modules and rules can
be found in [8].

#SAT. Counting the number of satisfying assignments for ψ can be achieved
using a module implementing a binary adder with signals as shown in Fig. 5.

−→
1

−→
1

−→
δ

−→ε

←−
1

←−
δ

←−ε−→
0

−→
0

−→
1

−→
δ

−→ε

−→
δ

+0
R

+1
R

+1
R

+0
R

Fig. 5. Computing 3 + 1

ENUM-SAT. Returning all the satisfying
assignments for a propositional formula ψ
can be achieved easily by adding a module
which stores satisfying assignments as sta-
tionary beams and which annihilates the
non-satisfying ones.

MAX-SAT. It consists in finding the max-
imum number of clauses that can be sat-
isfied by an assignment. Here we must
count (with the previous adder module)
the number of satisfied clauses rather than
the number of satisfying assignments, and
then stack a module for computing the
max of two binary numbers.

6 Complexities

As mentioned in Sect. 1, we implement algorithms for satisfiability problems
on signal machines in order to investigate the computational power of our ab-
stract geometrical model of computation and to compare it to others. As we

Computing in the Fractal Cloud 445

shall see, for such comparisons to be meaningful, the way complexity is mea-
sured is essential and must be adapted tot he nature of the computing machine.

Fig. 6. The whole diagram

Since signal machines can be regarded as
the extension of cellular automata from
discrete to continous time and space, it
might seem natural to measure time (resp.
space) complexity of a computation us-
ing the height (resp. width) of its space-
time diagram. But, in our applications to
SAT variants, these are bounded and in-
dependant of the formula: the Map phase
is bounded by the fractal, and, by sym-
metry, so is the Reduce phase. Indeed, in
general, by an appropriate scaling of the
initial configuration, a finite computation
could be made as small as desired. Thus,
height and width are no longer pertinent
measures of complexity.

Instead, we should regard our construc-
tion as a massively parallel computational device transforming inputs into out-
puts. The input is the initial configuration at the bottom of the diagram, and the
output is the truth value signal coming out at the top of the whole construction,
as seen in Fig. 6 for formula ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

2. The transformation
is performed in parallel by many threads: a thread here is an ascending path
through the diagram from an input to the output, and the operations executed
by the thread are the collisions occurring on this path.

Formally, we view a space-time diagram as a directed acyclic graph of collisions
(vertices) and signals (arcs) oriented according to causality. Time complexity is
then defined as the maximal size of a chain of collisions i.e. the length of the
longest path, and space complexity as the maximal size of an anti-chain i.e.
the size of the maximal set of signals pairwise un-related. This model-specific
measure of time complexity is called collisions depth.

For the present construction, if s is the size of the formula and n the number
of variables, space complexity is exponential: during evaluation, 2n independent
computations are executed in parallel, each one involving less than s2 signals, so
that the total space complexity is in O(s2 · 2n).

Regarding the time complexity: the initial configuration contains at most
O(s2) signals (from the compilation process as explained in Sect. 4, other mod-
ules adding only a linear number of signals). The primary contribution to the
number of collisions along an ascending path comes, at each of the n levels,
from the reflected beam crossing the incoming beam. Thus a thread involves
O(n · s2) collisions, making the collision depth cubic in the size of the formula

2 All the diagrams used as examples in the paper were generated by Durand-Lose’s
software, implemented in Java, and corresponds to a run of our Q-SAT solver for
the running example.

446 D. Duchier, J. Durand-Lose, and M. Senot

instead of quadratic for our previous family of machines [7]. So here the measure
of the time complexity takes one more polynomial degree (from quadratic to
cubic) when we get an algorithm which is independent of the input instead of
an instance-dependent one. This gives us an idea of the price for genericity.

7 Conclusion

We showed in this paper that abstract geometrical computation can solve Q-
SAT in bounded space and time by means of a single generic signal machine.
This is achieved through massive parallelism enabled by a fractal construction
that we call the fractal cloud. We adapted the Map/Reduce paradigm to this
fractal cloud, and described a modular programming approach making it easy
to assemble generic machines for SAT variants such as #SAT or MAX-SAT.

As we explained in Sect. 6, time and space are no longer appropriate mea-
sures of complexity for geometrical computations. This leads us to propose new
definitions of complexity, specific to signal machines , and taking in account the
parallelism of the model: time and space complexities are now defined respec-
tively by the maximal sizes of a chain and an anti-chain, when the diagram
is regarded as a directed acyclic graph. Time complexity thus defined is called
collision depth and is cubic for the construction given here.

Although the model is purely theoretical and has no ambition to be physically
realizable, it is a significant and distinguishing aspect of signal machines that
they solve satifiability problems while adhering to major principles of modern
physics —finite density and speed of information, causality— that are typically
not considered by other unconventional models of computation. They do not,
however, respect the quantization hypothesis, nor the uncertainty principle.

We are now furthering our research along two axes. First, the design and
applications of other fractal structures for modular programming with fractal
parallelism. Second, the investigation of computational complexity classes, both
classical and model-specific for abstract geometrical computation.

References

1. Aaronson, S.: NP-complete problems and physical reality. SIGACT News 36(1),
30–52 (2005)

2. Asarin, E., Maler, O.: Achilles and the Tortoise Climbing up the Arithmetical
Hierarchy. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–
483. Springer, Heidelberg (1995)

3. Cook, M.: Universality in elementary cellular automata. Compl. Syst. 15(1), 1–40
(2004)

4. Cook, S.: The complexity of theorem proving procedures. In: 3rd Symp. on Theory
of Computing (STOC 1971), pp. 151–158. ACM (1971)

5. Dean, J., Ghemawat, S.: Map/Reduce: simplified data processing on large clus-
ters. In: 6th Symp. on Operating Systems Design & Implementation (OSDI 2004).
USENIX Association (2004)

Computing in the Fractal Cloud 447

6. Duchier, D., Durand-Lose, J., Senot, M.: Fractal Parallelism: Solving SAT in
Bounded Space and Time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010. LNCS, vol. 6506, pp. 279–290. Springer, Heidelberg (2010)

7. Duchier, D., Durand-Lose, J., Senot, M.: Massively parallel automata in Euclidean
space-time. In: IEEE 4th Int. Conf. on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW 2010), pp. 104–109. IEEE Computer Society (2010)

8. Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular
generic solvers for SAT and Q-SAT variants (extended version). Arxiv preprint
arXiv:1105.3454 (2011), http://arxiv.org/abs/1105.3454

9. Durand-Lose, J.: Forecasting Black Holes in Abstract Geometrical Computation
is Highly Unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006.
LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

10. Durand-Lose, J.: Abstract Geometrical Computation and Computable Analysis.
In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC
2009. LNCS, vol. 5715, pp. 158–167. Springer, Heidelberg (2009)

11. Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal signal
machines. Theoret. Comp. Sci. 412, 57–67 (2011)

12. Fischer, P.: Generation of primes by a one-dimensional real-time iterative array.
Jour. ACM 12(3), 388–394 (1965)

13. Goliaei, S., Jalili, S.: An optical solution to the 3-SAT problem using wavelength
based selectors. The Journal of Supercomputing, 1–10 (2010)

14. Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theoret. Comp.
Sci. 68(1), 71–87 (1989)

15. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-
model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

16. Jeandel, E., Vanier, P.: Π 0
1 Sets and Tilings. In: Ogihara, M., Tarui, J. (eds.)

TAMC 2011. LNCS, vol. 6648, pp. 230–239. Springer, Heidelberg (2011)
17. Mackie, I.: A Visual Model of Computation. In: Kratochv́ıl, J., Li, A., Fiala, J.,

Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 350–360. Springer, Heidelberg
(2010)

18. Margenstern, M., Morita, K.: NP problems are tractable in the space of cellular
automata in the hyperbolic plane. Theoret. Comp. Sci. 259(1-2), 99–128 (2001)

19. Naughton, T., Woods, D.: An optical model of computation. Theoret. Comput.
Sci. 334(1-3), 227–258 (2005)

20. Păun, G.: P-systems with active membranes: Attacking NP-Complete problems.
Jour. of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

21. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: 5th
ACM Symp. on Theory of Computing (STOC 1973), vol. 16, pp. 1–9 (1973)

http://arxiv.org/abs/1105.3454

Online Optimization of Busy Time

on Parallel Machines�

(Extended Abstract)

Mordechai Shalom1, Ariella Voloshin2,
Prudence W.H. Wong3, Fencol C.C. Yung3, Shmuel Zaks2

1 TelHai College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

2 Department of Computer Science, Technion, Haifa, Israel
{variella,zaks}@cs.technion.ac.il

3 Department of Computer Science, University of Liverpool, Liverpool, UK
pwong@liverpool.ac.uk, ccyung@graduate.hku.hk

Abstract. We consider the following online scheduling problem in which
the input consists of n jobs to be scheduled on identical machines of
bounded capacity g (the maximum number of jobs that can be pro-
cessed simultaneously on a single machine). Each job is associated with
a release time and a completion time between which it is supposed to
be processed. When a job is released, the online algorithm has to make
decision without changing it afterwards. We consider two versions of the
problem. In the minimization version, the goal is to minimize the total
busy time of machines used to schedule all jobs. In the resource alloca-
tion maximization version, the goal is to maximize the number of jobs
that are scheduled under a budget constraint given in terms of busy time.
This is the first study on online algorithms for these problems. We show
a rather large lower bound on the competitive ratio for general instances.
This motivates us to consider special families of input instances for which
we show constant competitive algorithms. Our study has applications in
power aware scheduling, cloud computing and optimizing switching cost
of optical networks.

Keywords: Interval scheduling, busy time, resource allocation, online
algorithms, cost minimization, throughput maximization.

1 Introduction

The Problem. Job scheduling on parallel machines has been widely studied
(see, e.g., the surveys in [4, 8, 24]). In particular, much attention was given to
interval scheduling [17], where jobs are given as intervals on the real line, each
representing the time interval during which a job should be processed; each
job has to be processed on some machine, and it is commonly assumed that a
machine can process a single job at any given time.

� This work was supported in part by the Israel Science Foundation grant No. 1249/08
and British Council Grant UKTELHAI09.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 448–460, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Online Optimization of Busy Time on Parallel Machines 449

In this paper we consider online interval scheduling with bounded parallelism.
Formally, the input is a set of n jobs J = {J1, . . . , Jn}. Each job, Jj , is associ-
ated with an interval [rj , cj] during which it should be processed. Also, given is
the parallelism parameter g ≥ 1, that is the maximum number of jobs that can
be processed simultaneously by a single machine. At any given time t a machine
Mi is said to be busy if there is at least one job Jj scheduled to it such that
t ∈ [rj , cj], otherwise Mi is said to be idle at time t. We call the time period
in which a machine Mi is busy its busy period. In this work we study two opti-
mization problems MinBusy and MaxThroughput. In MinBusy we focus on
minimizing the total busy time over all machines. Note that a solution minimiz-
ing the total busy time may not be optimal in terms of the number of machines
used. In MaxThroughput, the resource allocation version of the problem, we
are given a budget T of total machine busy time and the objective is to maximize
the number of scheduled jobs under this constrain. The input to our scheduling
problems can be viewed as an interval graph, which is the intersection graph of a
set of intervals on the real line. It has one vertex for each interval in the set, and
an edge between every pair of vertices corresponding to intersecting intervals. In
our setting, each vertex corresponds to a job, and there is an edge between two
jobs whose processing times overlap.

Applications. Our scheduling problems can be directly interpreted as power-
aware scheduling problems in cluster systems. These problems focus on mini-
mizing the power consumption of a set of machines (see, e.g., [28] and references
therein) measured by the amount of time the machines are switched on and pro-
cessing, i.e. the total busy time. It is common that a machine has a bound on
the number of jobs that can be processed at any given time.

Another application of the studied problems comes from cloud computing
(see, e.g., [22, 27]). Commercial cloud computing provides computing resources
with specified computing units. Clients with computation tasks require certain
computing units of computing resources over a period of time. Clients are charged
in a way proportional to the total amount of computing time of the computing
resource. The clients would like to minimize the charges they have to pay (i.e.
minimize the amount of computing time used) or maximize the amount of tasks
they can compute with a budget on the charge. This is in analogy to our mini-
mization and maximization problems, respectively.

Our study is also motivated by problems in optical network design (see,
e.g., [7, 9, 10]). Optical wavelength-division multiplexing (WDM) is the leading
technology that enables us to deal with the enormous growth of traffic in com-
munication networks, like the Internet. In an optical network, communication
between nodes is realized by lightpaths, each of which is assigned a certain color.
As the energy of the signal along a lightpath decreases, regenerators are needed in
order to regenerate the signal, thus the associated hardware cost is proportional
to the length of the lightpaths. Furthermore, connections can be “groomed” so
that a regenerator placed at some node v and operating at some color λ can
be shared by at most g connections colored λ and traversing v. This is known
as traffic grooming. The regenerator optimization problem on the path topology

450 M. Shalom et al.

is in analogy to our scheduling problem in the sense that the regenerator cost
measured in terms of length of lightpaths corresponds to the busy time while
grooming corresponds to the machine capacity.

In the above three applications, it is natural to consider online version of
the problem where jobs arrive at arbitrary time and decisions have to be made
straightaway (see e.g., [20, 22, 27]).

Related Work. Some of the earlier work on interval scheduling considers the
problem of scheduling a feasible subset of jobs with maximum total weight, i.e.,
a maximum weight independent set (see, e.g., [1] and surveys in [14, 15]). There
is wide literature on real-time scheduling, where each job has to be processed
on some machine during a time interval between its release time and due date.
There are also studies on real-time scheduling, where each machine has some
capacity and each job has a demand of a certain machine capacity; however, to
the best of our knowledge, all of this prior work refers to different flavor of the
model than the one presented here (see, e.g., [1,5,6,23]). Interval scheduling has
been studied in the context of online algorithms and competitive analysis [16,18].
It is also common to consider both minimization and maximization versions of
the same scheduling problem, see e.g., [2] but in that model the machines have
unit capacity.

Our study also relates to batch scheduling of conflicting jobs, where the con-
flicts are given as an interval graph. In p-batch scheduling model (see, e.g., Chap-
ter 8 in [4]) a set of jobs can be processed jointly. All the jobs in the batch start
simultaneously, and the completion time of a batch is the last completion time
of any job in the batch. (For known results on batch scheduling, see, e.g., [4].)
Our scheduling problem differs from batch scheduling in several aspects. In our
problems, each machine can process g jobs simultaneously, for some g ≥ 1, the
jobs need not be partitioned to batches, i.e., each job can start at different time.
Also, while in known batch scheduling problems the set of machines is given, we
assume that any number of machines can be used for the solution. Finally, while
common measures in batch scheduling refer to the maximum completion time of
a batch, or a function of the completion times of the jobs, we consider the total
busy times of the machines.

The complexity of MinBusy was studied in [29], which showed that the prob-
lem is NP-Hard already for g = 2. The work [11] considered the problem where
jobs are given as intervals on the line with unit demand. For this version of
the problem it gives a 4-approximation algorithm for general inputs, and better
bounds for some subclasses of inputs. In particular, 2-approximation algorithms
were given for instances where no job interval is properly contained in another
(“proper” instance), and instances where any two job intervals intersect, i.e., the
input forms a clique (see same approximation but different algorithm and analy-
sis in [12]). The work [13] extends the results of [11], considering the case where
each job has a different demand on machine capacity and possibly has some slack
time. The work [21] improves upon [11] on some subclasses of inputs and initi-
ates the study of MaxThroughput for which a 6-approximation is proposed
for clique instances and a polynomial time algorithm is proposed for “proper”

Online Optimization of Busy Time on Parallel Machines 451

clique instances. These special instances have been considered in [13,21], though
under the off-line setting.

Our Contribution. We study deterministic online busy time optimization (both
minimization and maximization variants). For the MinBusy problem we first
show that g is a lower bound for the competitive ratio of any online algorithm.
We therefore consider special instances. One special set of instances we consider
is the clique instances where any two job intervals intersect, and the one-sided
clique instances where all jobs have the same release time or same completion
time. Specifically, we show the following:

– Lower and upper bounds of 2 and (1+ϕ) respectively, where ϕ = (1+
√
5)/2

is the Golden Ratio, for one sided clique instances, and extension to the
clique instances with a blow up of 2 in the ratio.

– A 5-competitive online algorithm for one sided clique instances.

For theMaxThroughput problem we first show that no online algorithm is bet-
ter than (gT/2)-competitive. We therefore consider special instances, for which
we show the following:

– Asymptotic and absolute competitive ratios of at least 2 and at least 2− 2
g+1 ,

respectively, for feasible one sided clique instances.
– A constant competitive online algorithm with ratio depending on g, but at

most 9/2, for feasible one-sided clique instances.

Organization of the Paper. In Section 2 we present some preliminaries. We
consider online busying time minimization and maximization in Sections 3 and
4, respectively. We then conclude in Section 5 with some open problems and
further research directions. Most proofs can be found in our technical report [26].

2 Notations and Preliminaries

Unless otherwise specified, we use lower case letters for indices and specific times,
and upper case letters for jobs, time intervals and machines. Moreover, we use
calligraphic characters for sets (of jobs, intervals and machines).

The input consists of a set of machinesM = {M1,M2, · · · , }, an integer g rep-
resenting the machine parallelism bound, and a set of jobs J = {J1, J2, · · · , Jn}
each of which is associated with an interval [rJ , cJ] during which it is supposed
to be processed, where rJ and cJ denote the relese time and completion time of
the job, respectively. We use jobs and time intervals interchangably throughout
the paper. We assume that the given set M of machines is infinite as we do not
aim at optimizing the number of machines. We are to decide a schedule to assign
jobs to the machines.

To define the objective of the problem, we first define the notion of length
and span of intervals. Given a time interval I = [rI , cI], the length of I is

len(I)
def
= cI − rI . The notion extends to a set I of intervals; namely the length

of I is len(I) =
∑

I∈I len(I). Two intervals are said to be overlapping if their
intersection contains more than one point. For example, the two intervals [1,2]

452 M. Shalom et al.

and [2,3] are considered to be non-overlapping. For a set I of intervals we define

SPAN(I) def
= ∪I∈II and span(I) def

= len(SPAN(I)) We refer to both of them as
the span of a set of interval, when the intention is clear from the context. For
example, if I = {[1, 3], [2, 4], [5, 6]}, then SPAN(I) = {[1, 4], [5, 6]} span(I) = 4,
and len(I) = 5. Note that span(I) ≤ len(I) and equality holds if and only if
I is a set of pairwise non-overlapping intervals. A (partial) schedule is a (par-
tial) function from the set of jobs J to the set of machines M. A schedule is
said to be valid if every machine processes at most g jobs at any given time.
In this definition a job [rJ , cJ] is considered as not being processed at time cJ .
For instance, a machine processing jobs [1, 2], [2, 3], [1, 3] is considered to be pro-
cessing two jobs at time 2. Note that this is consistent with the definition of
the notion overlapping intervals, and equivalent to saying that the intervals do
not contain their completion time, i.e. are half-open intervals. Given a (partial)
schedule s : J �→ M, we denote by J s

i the set of jobs assigned to machine Mi by

schedule s, i.e. J s
i

def
= s−1(Mi). The cost of machine Mi in this schedule is the

length of its busy interval, i.e. busysi
def
= span(J s

i). We further denote the set of

jobs scheduled by s as J s def
= ∪iJ s

i . The cost of schedule s is costs
def
=
∑

i busy
s
i ,

and its throughput is tputs
def
= |J s|. When there is no ambiguity on the schedule

in concern, we omit the superscripts (e.g. we use Ji for J s
i , etc.).

We consider two variants of the problem: MinBusy is the problem of mini-
mizing the total cost of scheduling all the jobs, and MaxThroughput is the
problem of maximizing the throughput of the schedule subject to a budget given
in terms of total busy time. These two problems are formally defined as follows:

MinBusy

Input: (M,J , g), where M is an infinite set of machines, J is a set of jobs
(i.e. time intervals), and g is the parallelism bound.
Output: A valid schedule s : J �→ M.
Objective: Minimize costs.

MaxThroughput

Input: (M,J , g, T) where M is an infinite set of machines, J is a set of
jobs, g is the parallelism bound, and T is a budget given in terms of total
busy time.
Output: A valid partial schedule s : J �→ M such that costs ≤ T .
Objective: Maximize tputs.

Without loss of generality, we assume that each machine is busy over a con-
tiguous time interval. Note that the definition of busy time measures the time
that a machine is actually processing some job. If a machine is busy over sev-
eral contiguous time interval, then we can replace it with several machines that
satisfy the assumption, changing neither the feasibility nor the measure of the
schedule. For example, if a machine is busy over [1, 2] and [3, 4], we can replace

Online Optimization of Busy Time on Parallel Machines 453

this machine with two machines, one busy over [1, 2], the other over [3, 4] and
this does not change the total busy time.

Special Cases. A set of jobs J is a clique set if there is a time t common to all
the jobs in J . This happens if and only if the corresponding interval graph is a
clique. When J is a clique set we call the corresponding instance ((M,J , g) or
(M,J , g, T)) a clique instance. A clique instance in which all jobs have the same
release time or the same completion time is termed a one-sided clique instance.

A set of jobs J is proper if no job in the set properly includes another. Note
that in this case for two jobs J, J ′ ∈ J , rJ ≤ rJ′ if and only if cJ ≤ cJ′ . We
denote this fact as J ≤ J ′ and w.l.o.g. we assume the jobs are numbered in a
such a way that J1 ≤ J2 ≤ . . . ≤ Jn.

Online Algorithms. When a job is given, an online algorithm has to assign
it to a machine or reject it with no future knowledge of jobs to be given. We
consider deterministic online algorithms and analyze the performance by com-
petitive analysis [3]. We denote by s∗ an optimal schedule (for MinBusy or
MaxThroughput). The cost of s∗ is denoted by cost∗ and its throughput by
tput∗. An online algorithm A for MinBusy is c-competitive, for c ≥ 1, if there
exists a constant b ≥ 0 such that for all input instances, its cost is at most
c · cost∗ + b. For MaxThroughput, A is c-competitive, for c ≥ 1, if there ex-
ists a constant b ≥ 0 such that for all input instances, its benefit is at least
(1/c) · tput∗ − b. Note that in both cases, the competitive ratio is ≥ 1. When
the additive constant b is zero, A is said to be strictly c-competitive and c is its
absolute competitive ratio.

Consider MinBusy in which we schedule all jobs in J . The following observa-
tion gives two immediate lower bounds for the cost of any schedule of MinBusy.

Observation 1. For any instance (M,J , g) of MinBusy and a valid schedule

s for it, the following bounds hold: the parallelism bound: costs ≥ len(J)
g , span

bound: costs ≥ span(J), and costs ≤ len(J).

The parallelism bound holds since a machine can process at most g jobs at any
time. The span bound holds because at any time t ∈ SPAN(J), at least one
machine is busy. The length bound holds because len(J) is the total busy time
if each job is allocated a distinct machine.

By the parallelism bound and length bound, the following holds.

Proposition 1. For MinBusy, any online algorithm is strictly g-competitive.

The following relationship between MinBusy and MaxThroughput is ob-
served in [21].

Proposition 2. [21] There is a polynomial time reduction from the MinBusy

problem to the MaxThroughput problem.

454 M. Shalom et al.

3 Cost Minimization-MinBusy Problem

3.1 General Instances

We consider general instances for MinBusy. We show a lower bound for any
online algorithm (Theorem 2) and present a greedy algorithm (Theorem 3).

Lower Bound. We first describe a lower bound of 2 on any algorithm Alg. The
adversary releases jobs with release and completion time in the interval [0, T],
for some arbitrarily large T . Let k be an integer, r = 0 be the release time
of the jobs to be released, t = T be the remaining time to be considered, and
� = t/kg−1 be a parameter of the length of jobs to be released.

We first release a job of length t at time r and suppose Alg assigns the job
to machine M . We then release jobs of lengths �, �k, �k2, · · · , all at time r, until
a machine different from M is used. Suppose this job is of length �kj (note that
j ≤ g − 1). Then we set parameters r′ = �kj , t′ = t − r and �′ = t′/kg−1. We
then release paths of length �′, �′k, · · · with release time at r′, until a machine
different from M is used. Repeat until a machine different from M is used for
the whole interval [0, T].

With this adversary, costs ≥ 2T : T for the very first job, and T for the paths
not assigned to M . One can use the same machine for all jobs except for the
shortest ones, and cost∗ ≤ T (1+1/kg−1). An arbitrarily large k implies that the
competitive ratio of Alg is no better than 2. By extending this idea we prove:

Theorem 2. [26] For MinBusy, no online algorithm has an absolute compet-
itive ratio better than g.

Upper Bound. With Proposition 1 and Theorem 2, the competitive ratio is
tight in terms of g. Yet the adversary in Theorem 2 makes use of jobs of many
different lengths. In particular the adversary needs to generate jobs of length kg

2

,
requiring kg

2 ≤ T , i.e. g ≤
√
logk T . When this is not the case, we have a better

result: Algorithm BucketFirstFit achieves a competitive ratio depending on
the span of the longest job.

Algorithm 1. BucketFirstFit

1: Classify the jobs into buckets: a job of length in [2k, 2k+1− 1] belongs to bucket k,
for k ≥ 1.

2: Assign machine to jobs in each bucket in a First-Fit manner independently of other
buckets.

3: When a job J in bucket k arrives
4: for each machine M already assigned a job from bucket k do
5: if it is valid to assign J to M then
6: Assign J to M . return
7: end if
8: end for
9: Assign J to a new machine.

Online Optimization of Busy Time on Parallel Machines 455

The analysis and the correctness proofs of BucketFirstFit can be found in
our technical report [26].

Lemma 1. Let J k be the set of jobs of bucket k and s be a schedule returned
by BucketFirstFit. Then costs(J k) ≤ 6cost∗(J k).

Theorem 3. For MinBusy, BucketFirstFit is (6 log spanmax)-competitive
where spanmax is the maximum span of a job.

Finally we note that the constant 6 above can be improved to 5 by modifying
the algorithm to work with powers of 4 instead of powers of 2. Generally if the
algorithm divides the lightpaths into buckets according to powers of some α > 1
(like Algorithm 2 below), at each bucket we get a ratio of 2α+2 and therefore an
overall competitive ratio of (2α+2) logα spanmax = 2 α+1

logα log spanmax. Choosing

α = 4 brings the value of the coefficient to the minimum of 2 4+1
log 4 = 5.

3.2 One-Sided Clique Instances

Upper Bound. We consider one-sided clique instances and present theGreedy-

Bucket algorithm (Algorithm 2). We show that it is strictly (1+ϕ)-competitive
where ϕ = (1+

√
5)/2 is the Golden Ratio. Without loss of generality, we assume

that all jobs have the same release time.
GreedyBucket depends on a parameter α > 1 to be determined in the

sequel. A job J is categorized to a bucket according to len(J): the bucket of a
job J ∈ J is the minimum value of i such that len(J) ≤ αi. For i ≥ 1, bucket i
consists of jobs J such that αi−1 < len(J) ≤ αi.

Algorithm 2. GreedyBucket(α)

1: Determine the bucket i of the input job J according to the parameter α.
2: If bucket i has no current machine, then use a new machine and make it the current

machine of bucket i.
3: If there are already g jobs assigned to the current machine of bucket i, then use a

new machine and make it the current machine of bucket i.
4: s(J)← the current machine of bucket i.

The analysis and the correctness proofs of GreedyBucket can be found in
our technical report [26].

Theorem 4. [26] For MinBusy, GreedyBucket(1 + ϕ) is strictly (1 + ϕ)-

competitive for one-sided clique instances, where ϕ = 1+
√
5

2 is the Golden Ratio.

Lower bound

Lemma 2. [26] For MinBusy, no on-line algorithm has an absolute competi-
tive ratio better than (1+1/x) for one-sided clique instances, where x is the root
of the equation xg−1 = (x+ 1)/(x− 1).

For g = 2, this implies a lower bound of
√
2 and for larger values of g, we have

an increasing lower bound approaching 2.

456 M. Shalom et al.

3.3 Clique Instances

We present the online algorithm LeftOrRight(A) for clique instances, which
assumes the knowledge of the time t common to all jobs, and takes as parameter
an online algorithm A for one-sided clique instances.

Algorithm 3. LeftOrRight(A)

1: Two copies of the online algorithm A are run, Al for some jobs on the left of the
common time t and Ar for some jobs on the right.

2: When a job J with interval [rJ , cJ] arrives, compute the lengths to the left and
right to the common time t, i.e., the two quantities t− rJ and cJ − t.

3: if t− rj ≥ cJ − t then
4: Create an input job Jl with interval [rJ , t]
5: Feed Jl to Al.
6: Assign J to the machine that Al assigns Jl

7: else
8: Create an input job Jr with interval [t, cJ]
9: Feed Jr to Ar.
10: Assign J to the machine that Ar assigns Jr.
11: end if

The analysis and the correctness proofs of LeftOrRight(A) can be found
in our technical report [26].

Lemma 3. [26] If the competitive ratio of A is c, then the competitive ratio of
LeftOrRight(A) for clique instances is at most 2 · c.

Corollary 1. For MinBusy and clique instances, the algorithm
LeftOrRight(GreedyBucket(1 + ϕ)) is 2(1 + ϕ)-competitive, where

ϕ = 1+
√
5

2 is the Golden Ratio.

4 Throughput Maximization-MaxThroughput Problem

4.1 Basic Results

In this section we consider the MaxThroughput problem (M,J , g, T). An
input instance is said to be feasible if there is a schedule that assigns all the
jobs with total machine busy time at most T , i.e., tput∗ = |J |. The following
proposition asserting that the problem does not admit a small competitive ratio
for general instances.

Proposition 3. [26] No online algorithm for MaxThroughput is better than
gT -competitive even with an additive term g−1, while there exists a strictly gT -
competitive online algorithm.

Online Optimization of Busy Time on Parallel Machines 457

Following Proposition 3, from now on we consider only feasible one-sided clique
instances. Proposition 4 asserting that both simple greedy algorithm and algo-
rithm GreedyBucket do not admit a small competitive ratio.

Proposition 4. [26] For feasible one-sided clique instances of
MaxThroughput (i) the simple greedy algorithm is Ω(R)-competitive
and (ii) GreedyBucket is Ω(R

logR)-competitive even when g = 2.

4.2 Lower Bounds for Feasible One-Sided Clique Instances

In this section we show two lower bounds on the competitive ratio of online al-
gorithms for feasible one-sided clique instances, one for the absolute competitive
ratio for any fixed value of g and the other for the general case

Lemma 4. [26] Let Alg be a c-competitive online algorithm for feasible one-
sided clique instances, with an additive constant b. If c(b + 1) < g then

c ≥ 2− 4b+ 2

g + 2b+ 1
.

The condition in Lemma 4 holds when g + b or b = 0, leading to Theorem 5.

Theorem 5. Consider feasible one-sided clique instances. (i) Any online algo-
rithm has a competitive ratio of at least 2. (ii) For any fixed value of g, any
online algorithm has an absolute competitive ratio of at least 2− 2

g+1 .

4.3 Online Algorithm for Feasible One-Sided Clique Instances

In this section we propose an online algorithm that achieves a constant asymp-
totic competitive ratio for every fixed g. Since the given instance is feasible, we
have tput∗ = |J |.

We start by defining a few terms and notations for the algorithm. We cat-
egorize the input jobs into buckets according to their lengths, namely given
a job J ∈ J we define bucket(J) as the smallest non-negative integer i such

that T
2i+1 < len(J) and Ji

def
= {J ∈ J | bucket(J) = i}. In other words we have

∀J ∈ Ji,
T

2i+1 < span(J) ≤ T
2i . We also define the following two dynamic vari-

ables. Ti: The total busy time incurred by the algorithm to schedule Ji except
its first g jobs in the order of arrival. T ∗

i : A set of �logT � variables (one for each
bucket) satisfying, (a) T ∗

i ≥ 0, (b) T ∗
i is non-decreasing, and (c)

∑
i T

∗
i ≤ cost∗.

In BalanceBudget, accept(J) stands for scheduling J with the smallest pos-
sible machine under use in bucket i such that the schedule continued to be valid
after assigning J ; and if no such machine exists J is assigned a new machine.
reject(J) means that J is not assigned, i.e. s(J) is undefined.

Rest of the analysis and the correctness proofs of BalanceBudget can be
found in our technical report [26].

Theorem 6. [26] Consider MaxThroughput and feasible one-sided clique
instances. For every fixed g, BalanceBudget is a constant-competitive online
algorithm where the constant depends on g and is at most 9/2.

458 M. Shalom et al.

Algorithm 4. BalanceBudget

When a job J arrives do:
i← bucket(J)
if |Ji| ≤ g then

if i ≥ 3 then accept(J) � (+)
else reject(J)
end if

else
if Ti ≤ 3

4
T ∗
i would hold after accepting J then accept(J) � (*)

else reject(J)
end if

end if

Note that BalanceBudget can be modified so that it gets some integer
parameter β ≥ 2 to indicate how many buckets from which we do not accept the
first g paths (marked (+) in Algorithm 4). In the above presentation we assumed,
for simplicity that β = 3. In general the competitive ratio is a decreasing function
of β, but the additive constant of β · g increases with β.

5 Summary and Future Work

In this work we have studied online busy time optimization problems. We have
shown some rather large lower bounds for general instances, and this motivated
us to consider special families of instances for which we have shown better online
algorithms. This is the first work that deals with online algorithms for this
setting, and, as such, it calls for a variety of open problems, as detailed below.

Some open problems are closely related to those studied in this work, includ-
ing: (a) We have shown a constant competitive algorithm for one sided clique
instances of the MinBusy problem and extended it to clique instances. Lower
bounds are also given. An immediate open question is to close the gaps be-
tween the upper and lower bounds. (b) The lower bounds and algorithms for the
MaxThroughput problem in one-sided clique instances do not have matching
counterparts. Specifically is there a constant-competitive algorithm for those in-
stances when g is not fixed? On the other hand is there a lower bound for these
instances when g is fixed? (c) The lower bounds of the MaxThroughput prob-
lem for one-sided clique instances, clearly extend to general instances. Are there
better lower bounds for the general instances or is there a constant-competitive
algorithm?

More general open problems naturally arise, including: (a) Consider jobs hav-
ing associated benefit and maximize the total benefit of scheduled jobs. (b) In
this work the jobs are supposed to be processed during the whole period from
start time rj to completion time cj . We can consider jobs of other characteristics:
(1) One may consider jobs that also have a processing time pj and have to be pro-
cessed for pj consecutive time units during the interval [rj , cj] (see e.g. [13,25]).
(2) One may also consider malleable jobs which can be assigned several machines

Online Optimization of Busy Time on Parallel Machines 459

and the actual processing time depends on the number of machines allocated (see
e.g., [19, 25]).

As we have mentioned, our work is closely related to power-aware scheduling,
cloud computing and optical network design. In our technical report [26] there
are expansions to cover more general problems in these three applications.

References

1. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM, 1–23
(2000)

2. Bhatia, R., Chuzhoy, J., Freund, A., Naor, J.: Algorithmic Aspects of Bandwidth
Trading. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 751–766. Springer, Heidelberg (2003)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

4. Brucker, P.: Scheduling Algorithms, 5th edn. Springer (2007)

5. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved Approximation
Algorithms for Resource Allocation. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 401–414. Springer, Heidelberg (2002)

6. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans-
actions 34, 501–507 (2002)

7. Chen, S., Ljubic, I., Raghavan, S.: The regenerator location problem. Net-
works 55(3), 205–220 (2010)

8. J.Y.-T.L. (ed.): Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRS Press (2004)

9. Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi,
C.V., Tanzi, A., Zanardi, A.: A framework for regenerator site selection based on
multiple paths. In: OFC, pp. 1–3 (2010)

10. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.:
On the complexity of the regenerator placement problem in optical networks. In:
SPAA, pp. 154–162 (2009); IEEE/ACM Transactions on Networking

11. Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T.,
Zaks, S.: Minimizing total busy time in parallel scheduling with application to
optical networks. Theor. Comput. Sci. 411(40-42), 3553–3562 (2010)

12. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating
the Traffic Grooming Problem with Respect to ADMs and OADMs. In: Luque,
E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 920–929.
Springer, Heidelberg (2008)

13. Khandekar, R., Schieber, B., Shachnai, H., Tamir, T.: Minimizing busy time in
multiple machine real-time scheduling. In: FSTTCS, pp. 169–180 (2010)

14. Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval schedul-
ing: A survey. Naval Research Logistics (NRL) 54(5), 530–543 (2007)

15. Kovalyov, M.Y., Ng, C.T., Cheng, T.C.E.: Fixed interval scheduling: Models, ap-
plications, computational complexity and algorithms. European Journal of Oper-
ational Research 178(2), 331–342 (2007)

16. Krumke, S.O., Thielen, C., Westphal, S.: Interval scheduling on related machines.
Computers and Operations Research 38(12), 1836–1844 (2011)

460 M. Shalom et al.

17. Lawler, E.L., Lenstra, J.K., Kan, A.H.R., Shmoys, D.B.: Sequencing and schedul-
ing: Algorithms and complexity. Handbooks in Operations Research and Manage-
ment Science 4, 445–522 (1993)

18. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: SODA, pp. 302–311
(1994)

19. Ludwig, W.T.: Algorithms for scheduling malleable and nonmalleable parallel
tasks. PhD thesis (1995)

20. Mertzios, G.B., Shalom, M., Wong, P.W.H., Zaks, S.: Online Regenerator Place-
ment. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS,
vol. 7109, pp. 4–17. Springer, Heidelberg (2011)

21. Mertzios, G.B., Shalom, M., Voloshin, A., Wong, P.W.H., Zaks, S.: Optimizing
busy time on parallel machines. In: IPDPS (to appear, 2012)

22. Oprescu, A., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In:
CloudCom, pp. 351–359 (2010)

23. Phillips, C.A., Uma, R.N., Wein, J.: Off-line admission control for general schedul-
ing problems. In: SODA, pp. 879–888 (2000)

24. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models and Performance Analysis, pp. 15-1–15-41. CRC
Press (2004)

25. Schwarz, U.M.: Tightness Results for Malleable Task Scheduling Algorithms. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1059–1067. Springer, Heidelberg (2008)

26. Shalom, M., Voloshin, A., Wong, P.W., Yung, F.C., Zaks, S.: Online optimization
of switching cost in optical networks with traffic grooming. Technical Report CS-
2012-02, Department of Computer Science, Technion, Haifa, Israel (March 2012)

27. Shi, W., Hong, B.: Resource allocation with a budget constraint for computing
independent tasks in the cloud. In: CloudCom, pp. 327–334 (2010)

28. Vasić, N., Barisits, M., Salzgeber, V., Kostic, D.: Making cluster applications
energy-aware. In: ACDC, pp. 37–42 (2009)

29. Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph
coloring. In: SODA, pp. 830–831 (2003)

Bisection (Band)Width of Product Networks
with Application to Data Centers�

Jordi Arjona Aroca1,2 and Antonio Fernández Anta1

1 Institute IMDEA Networks, Madrid, Spain
2 Universidad Carlos III de Madrid, Madrid, Spain

Abstract. The bisection width of interconnection networks has always been im-
portant in parallel computing, since it bounds the amount of information that can
be moved from one side of a network to another, i.e., the bisection bandwidth.
The problem of finding the exact bisection width of the multidimensional torus
was posed by Leighton and has remained open for 20 years. In this paper we
provide the exact value of the bisection width of the torus, as well as of several d-
dimensional classical parallel topologies that can be obtained by the application
of the Cartesian product of graphs. To do so, we first provide two general results
that allow to obtain upper and lower bounds on the bisection width of a product
graph as a function of some properties of its factor graphs. We also apply these
results to obtain bounds for the bisection bandwidth of a d-dimensional BCube
network, a recently proposed topology for data centers.

Keywords: Bisection bandwidth, bisection width, torus, BCube, product graphs,
complete binary trees, extended trees, mesh-connected trees.

1 Introduction

The bisection width and the bisection bandwidth of interconnection networks have al-
ways been two important parameters of a network. The first one reflects the smallest
number of links which have to be removed to split the network in two equal parts, while
the second one bounds the amount of data that can be moved between these parts. In
general, both values are derivable one from the other, which is the reason why most
previous work has been devoted to only one of then (in particular, the bisection width).

The bisection width has been a typical goodness parameter to evaluate and com-
pare interconnection networks for parallel architectures [14,7,5]. This interest has been
transferred to the Network-On-Chip topologies, as the natural successors of the parallel
architectures of the 90’s [13,15,22,19]. The bisection (band)width is also nowadays be-
ing used as a reference parameter on the analysis of the latest topologies that are being
deployed in data centers. This can be seen in recent papers which propose new topolo-
gies, like BCube [11] or DCell [12]. The bisection (band)width is used to compare these
new topologies with classical topologies, like grids, tori, and hypercubes, or with other
datacenter topologies, like trees and fat trees.

� This research was supported in part by the Comunidad de Madrid grant S2009TIC-1692,
Spanish MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation
of China grant 61020106002.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 461–472, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

462 J. Arjona Aroca and A. Fernández Anta

Finding the exact value of the bisection width is hard in general. Computing it has
proven to be challenging even for very simple families of graphs. For instance, the prob-
lem of finding the exact bisection width of the multidimensional torus was posed by
Leighton [14, Problem 1.281] and has remained open for 20 years. One general family
of interconnection networks, of which the torus is a subfamily, is the family of product
networks. The topology of these networks is obtained by combining factor graphs with
the Cartesian product operator. This technique allows to build large networks from the
smaller factor networks. Many popular interconnection networks are instances of pro-
duct networks, like the grid and the hypercube. In this paper we derive techniques to
bound the bisection width of product networks, and apply these techniques to obtain the
bisection width of some product network families.

Related Work. To our knowledge, Youssef [20,21] was among the first to explore
the properties of product networks as a family. He presented the idea of working with
product networks as a divide-and-conquer problem, obtaining important properties of a
product network in terms of the properties of its factor graphs.

The bisection width of arrays and tori was explored by Dally [6] and Leighton [14]
in the early 90s, presenting exact results for these networks when the number of nodes
per dimension was even. The case when there are odd number of nodes per dimension
was left open. Rolim et al. [18] gave the exact values for the bisection width of 2 and 3-
dimensional grids and tori, but left open the question for longer number of dimensions.

For the special case in which all the factors are isomorphic, Efe and Fernández [9]
provided a lower bound on the bisection width of a product graph as a function of a
new parameter of a factor network they defined, the maximal congestion. Nakano [16]
presented the exact value of the bisection width for the Cartesian product of isomorphic
paths and cliques (i.e., square grids and Hamming graphs). If the factor graphs have k
nodes, he proved that the d-dimensional square grid has bisection width kd−1 when k

is even, and (kd−1)
(k−1) when k is odd. Similarly, the square Hamming graph has bisection

width kd+1 when k is even, and (k+1) (k
d−1)
4 when k is odd. The exact bisection width

of the d-dimensional square grid was found independently by Efe and Feng [8].
For the present paper it is very relevant the work of Azizoglu and Egecioglu. In [2]

and [4] they studied the relationship between the isoperimetric number and the bisection
width of different product networks. In the former paper, they find the exact value of the
bisection width of the cylinders (products of paths and rings) with even number of nodes
in its largest dimension. In the latter reference they found the exact bisection width of
the grid A

(d)
k1,k2,...,kd

, with ki nodes along dimension i, and where k1 ≥ k2 ≥ . . . ≥ kd.

The value of this bisection width is BW (A
(d)
k1,k2,...,kd

) =
∑α

i=1 Ci, where α is the

smallest index for which ki is even (α = d if no index is even), and Ci =
∏d

j=i+1 kj .
Since this value will appear frequently, we will use the following notation throughout
the rest of the paper, Ψ(α) =

∑α
i=1 Ci =

∑α
i=1

∏d
j=i+1 kj .

Contributions. In this paper we present two theorems that allow to derive lower and
upper bounds on the bisection width of a product network as a function of some simple
parameters of its factor graphs. Then, we apply these results to obtain the exact value
of the bisection width for several families of product networks. The families presented

Bisection (Band)Width of Product Networks with Application to Data Centers 463

are of interest because they have been proposed as interconnection networks for parallel
architectures, but their bisection width has never been derived exactly.

One of the most interesting contribution of this paper is the exact value of the bi-
section width of the torus, since, as mentioned before, this problem has been open
for almost 20 years. We find here that the exact value of the bisection width of a d-
dimensional torus T

(d)
k1,k2,...,kd

, that has ki nodes along dimension i, and where k1 ≥
k2 ≥ . . . ≥ kd, is exactly twice the bisection width of the grid of similar dimensions
A

(d)
k1,k2,...,kd

. I.e., BW (T
(d)
k1,k2,...,kd

) = 2Ψ(α) = 2
∑α

i=1 Ci, where α is the smallest

index for which ki is even (α = d if no index is even), and Ci =
∏d

j=i+1 kj . In ad-
dition to the result for the torus, we provide the exact value for the bisection width
of products of complete binary trees (CBT) of any size (mesh-connected trees [10]),
products of extended CBT (which are CBT with the leaves connected with a path [10]),
products of CBT and paths, and products of extended CBT and rings. To obtain the
bisection bandwidth of these networks, we assume that every edge removed by the
bisection width is in fact a duplex link with bandwidth of T in each direction. This di-
rectly implies that for any of these networks G, the bisection bandwidth is computed as
BBW (G) = 2T · BW (G).

The general upper and lower bound results are also used to derive bounds on the
bisection bandwidth of a topology proposed for datacenters, the BCube. A BCube is
the Cartesian product of factors networks formed by k nodes connected via a k-port
switch (where the switch is not considered to be a node). An essential difference of this
topology from the previous one is that edges do not connect nodes directly, and the di-
rect relation between bisection width and bisection bandwidth does not hold anymore.
In networks with switches like this one, the switching capacity s of the switch comes
into play as well. Since the bisection bandwidth is the parameter of interest in datacen-
ters, we derive bounds on its value for two cases: when the bottleneck for the bisection
bandwidth is at the links (Model A), and when it is at the switches (Model B).

Table 1 summarizes the results derived for the bisection bandwidth obtained for the
different parallel topologies and for BCube. As can be seen, for the former the values
obtained are exact, while for the latter the upper and lower bounds found do no match
exactly. However, they differ by less than a factor of two.

The rest of the paper is organized as follows. Section 2 presents some basic defini-
tions used in the rest of sections. In Section 3 we provide the general results to derive

Table 1. Bisection bandwidth of different product networks

Product graph Factor graphs β(G) CC(G) Bisection bandwidth
Torus Ring 1/8 2 4T · Ψ(α)

Product of extended CBT XTs 1/8 2 4T · Ψ(α)
Product of extended CBT & rings Rings & XTs 1/8 2 4T · Ψ(α)

Mesh connected trees CBT 1/4 1 2T · Ψ(α)
Product of CBT and paths Paths & CBTs 1/4 1 2T · Ψ(α)

BCube
Model A

even k−1
k2

k
2

2T kd+1

4(k−1)
≤ BBW (BCA

(d)
k) ≤ 2T kd

2

odd 1
k+1

k−1
2

2T k+1
4

kd−1
k−1

≤ BBW (BCA
(d)
k) ≤ 2T kd−1

2

Model B
even k−1

2k
1 s kd

2(k−1)
≤ BBW (BCB

(d)
k) ≤ s kd−1

k−1

odd k
2(k+1)

1 s k+1
2k

kd−1
k−1

≤ BBW (BCB
(d)
k) ≤ s kd−1

k−1

464 J. Arjona Aroca and A. Fernández Anta

bounds on the bisection bandwidth of product networks. Section 4 and Section 5 present
our results for the bisection bandwidth of some classical parallel topologies. Bounds on
the bisection bandwidth of the BCube network are presented in Section 6.

Due to space limitations, some proofs have been omitted. They can be found in [1].

2 Definitions

Graphs and Bisections. Given a graph1 G, we denote its sets of vertices and edges as
V (G) and E(G), respectively. In some cases, when it is clear from the context, only V
or E will be used, omitting the graph G. Unless otherwise stated, the graphs considered
are undirected.

Given a graph G with n nodes, we use S(G) to denote a subset of V (G) such that
|S(G)| ≤ n

2 . We also use ∂GS(G) to denote the set of edges connecting S(G) and
V (G) \S(G). Formally, ∂GS(G) = {(u, v) ∈ E(G) : u ∈ S(G), v ∈ G \S(G)}. The
graph G may be omitted from this notation when it is clear from the context.

The main object of this work is to calculate the bisection width and bisection band-
width of different product networks. The bisection width of an n-node graph G, denoted
by BW (G), is the smallest number of edges that have to be removed fromG to partition
it in two halves. Formally, BW (G) = minS:|S|=�n

2 � |∂GS|. The bisection bandwidth
of a network G, denoted by BBW (G), is the minimal amount of traffic which can be
transferred between any two halves of the network when its links are transmitting at
full speed. As mentioned above, unless otherwise stated we assume that all the links in
a network G are duplex and have the same capacity T in each direction. Then, we can
generally assume that the relation between the bisection bandwidth and the bisection
width is BBW (G) = 2T ·BW (G).

Factor and Product Graphs. We define first the Cartesian product of graphs.

Definition 1. The d-dimensional Cartesian product of graphs G1, G2, ..., Gd, denoted
by G1 ×G2 × · · · ×Gd, is the graph with vertex set V (G1)× V (G2)× · · · × V (Gd),
in which vertices (u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are adjacent if and only if
(ui, vi) ∈ E(Gi) and uj = vj for all j �= i.

The graphs G1, G2, ..., Gd are called the factors of G1 ×G2 × · · · ×Gd. Observe that
G1×G2×· · ·×Gd contains

∏
j 	=i |V (Gj)| disjoint copies of Gi, which form dimension

i.
We define now some of the basic factor graphs that will be considered. The path of

k vertices, denoted by Pk, is a graph such that V (Pk) = {0, 1, . . . , k − 1} and where
E(Pk) = {(i, i + 1) : i ∈ [0, k − 2]} . The complete graph (a.k.a. the clique) of k
vertices, denoted by Kk, is a graph such that V (Kk) = {0, 1, . . . , k − 1} and where
E(Kk) = {(i, j) : (j �= i) ∧ (i, j ∈ V (Kk))}. The r-complete graph of k vertices
denoted by rKk, is a graph such that V (rKk) = {0, 1, . . . , k − 1} and where E(rKk)
is a multiset such that each pair of vertices i, j ∈ V (rKk) is connected with r parallel
edges. (i.e., each e ∈ E(rKk) has multiplicity r).

Using these and other graphs as factors, we will define, across the text, different d-
dimensional Cartesian product graphs. For convenience, for these graphs we will use

1 Unless otherwise stated we will use the terms graph and network indistinctly.

Bisection (Band)Width of Product Networks with Application to Data Centers 465

the general notation G
(d)
k1,...,kd

, where G is the name of the graph, the superscript (d)
means that it is a d-dimensional graph, and k1, . . . kd are the number of vertices in each
dimension. (Superscript and subscripts may be omitted when clear from the context.)
It will always hold that k1 ≥ k2 ≥ . . . ≥ kd, i.e., the factor graphs are sorted by
decreasing number of vertices. We will often use n to denote the number of nodes a the
graph G

(d)
k1,...,kd

, i.e., n = k1k2 · · · kd, and we will always use α to denote the index of
the lowest dimension with an even number of vertices (if there is no such dimension,
α = d, where d is the index of the lowest dimension).

According to this notation we will present different d-dimensional product graphs
as follows. The d-dimensional array, denoted by A

(d)
k1,...,kd

, is the Cartesian product of

d paths of k1, . . . , kd vertices, respectively. I.e., A(d)
k1,...,kd

= Pk1 × Pk2 × · · · × Pkd
.

The d-dimensional r-Hamming graph, denoted by rH
(d)
k1,...,kd

, is the Cartesian product

of d r-complete graphs of k1, . . . , kd nodes, respectively. I.e., rH(d)
k1,...,kd

= rKk1 ×
rKk2 × · · · × rKkd

. Observe that the Hamming graph [3] is the particular case of the

r-Hamming graph, with r = 1. For brevity, we use H
(d)
k1,...,kd

instead of 1H(d)
k1,...,kd

, to
denote the Hamming graph.

Boundaries and Partitions. We define now the dimension-normalized boundary [4].
Let G(d)

k1,...,kd
be a d-dimensional product graph and S(G) a subset of V (G). Then, the

dimension-normalized boundary of S(G), denoted by BG(S), is defined as BG(S) =
|∂G

1 S|
σ1

+
|∂G

2 S|
σ2

+ . . . +
|∂G

d S|
σd

, where, for each i ∈ [1, d], ∂G
i is ∂G applied to the

dimension i of G and σi = k2i − (ki mod 2). Observe that for rH(d)
k1,...,kd

, any subset
S of nodes, and any dimension i, it holds that |∂rH

i S| = r · |∂H
i S|. Hence, BrH(S) =

|∂rH
1 S|
σ1

+ · · ·+ |∂rH
d S|
σd

= r(
|∂H

1 S|
σ1

+ · · · + |∂H
d S|
σd

) = r · BH(S).

Let us define now the lexicographic-order. Consider graph H
(d)
k1,...,kd

, we say that
vertex x = (x1, x2, . . . , xd) precedes vertex y = (y1, y2, . . . , yd) in lexicographic-
order if there exists an index i ∈ [1, d] such that xi < yi and xj = yj for all j < i.
Azizoğlu and Eğecioğlu [3] proved the following result.

Theorem 1 ([3]). Let S be any subset of V (H) and S̄ the set of first |S| vertices of H
in lexicographic-order2, then BH(S̄) ≤ BH(S).

3 Bounds on the Bisection Width of Product Graphs

In this section we present general bounds on the bisection width of product graphs as
well as presenting two important parameters, the normalized congestion and the central
cut, which are used to obtain them. These bounds will be used in the upcoming sections
to find the bisection width of several instances of product graphs.

Lower Bound. We start by defining the normalized congestion of a graph. Let G
be a graph with n nodes. Then, an embedding of graph rKn onto G is a mapping

2 Observe that we have reversed the ordering of dimensions with respect to the original theorem
from Azizoğlu and Eğecioğlu.

466 J. Arjona Aroca and A. Fernández Anta

of the edges of rKn into paths in G. We define the congestion of G with multiplic-
ity r, denoted by mr(G), as the minimum (over all such embeddings) of the max-
imum number of embedded paths that contain an edge from G. To formally define
this concept, we first define the congestion of an edge e ∈ E(G) under the embed-
ding Mr of rKn onto G, denoted by cMr (e), as cMr (e) = |{e′ ∈ E(rKn) : e ∈
Mr(e

′)}|. (Observe that Mr(e
′) ⊆ E(G) is a path in G.) Then, the congestion mr(G)

is mr(G) = minMr∈E maxe∈E(G){cMr(e)}, where E is the set of all possible embed-
dings of rKn onto G. Then, we define the normalized congestion with multiplicity r of
G as βr(G) = mr(G)

σn
. We proceed to extend Theorem 1 to r-Hamming graphs.

Theorem 2. Consider a d-dimensional r-Hamming graph rH(d). Let S be any vertex
subset of V (rH(d)) and S̄ the set of first |S| vertices of rH(d) in lexicographic order,
then BrH(S̄) ≤ BrH(S).

Proof. We prove the theorem by contradiction. Assume that there is a set of vertices
X �= S̄ such that |X | = |S̄| and BrH(S̄) > BrH(X). Then, applying the fact that

|∂rH
i S| = r · |∂H

i S| to both X and S̄, we obtain that BH(S̄) = BrH(S̄)
r > BrH (X)

r =
BH(X), which contradicts Theorem 1 and proves the theorem.

Then, from the definition of BH(S̄), we obtain the following.

Theorem 3. Let G = G1 × . . . × Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd.
Let βr(Gi) be the normalized congestion with multiplicity r of Gi (for any r), for all
i ∈ [1, d]. Consider any subset S ⊂ V (G) and the subset S̄ which contains the first |S|
vertices of G, in lexicographic order. Then, BrH(S̄) ≤

∑d
i=1 βr(Gi)|∂G

i S|

Corollary 1. Let G and βr(Gi) be defined as in Theorem 3. Consider any subset S ⊂
V (G) such that |S| =
 |V (G)|

2 �. Then r
4Ψ(α) ≤

∑d
i=1 βr(Gi)|∂G

i S|. When βr(Gi) =
β for all i ∈ [1, d], this implies r

4βΨ(α) ≤ BW (G).

Upper Bound. Having proved the lower bound on the bisection width, we follow
with the upper bound. We define first the central cut of a graph G. Consider a graph
G with n nodes, and a partition of V (G) into three sets S−, S+, and S, such that
|S−| = |S+| =
n

2 � (observe that if n is even then S = ∅, otherwise |S| = 1). Then,
the central cut of G, denoted by CC(G), is

min
{S−,S+,S}

max{|∂GS−|, |∂GS+|}.

Observe that, for even n, the central cut is the bisection width. Now, we use the defini-
tion of central cut in the following theorem.

Theorem 4. Let G = G1 × . . .×Gd. Then, BW (G) ≤ maxi {CC(Gi)} · Ψ(α).

4 Bisection Width of Products of Paths and CBT
In this section we will obtain the bisection bandwidth of product graphs which result
from the Cartesian product of paths and Complete Binary Trees (CBT). We will present,

Bisection (Band)Width of Product Networks with Application to Data Centers 467

(a) The 4-vertex path and
clique

(b) The 5-vertex path and clique

Fig. 1. Paths and their possible cuts

Fig. 2. The 7-vertex complete binary tree and the 7-vertex clique, with their possible cuts

first, the different factor graphs we are using and the product graphs we are bisecting,
then, we will compute the congestion and central cut of these factor graphs and, finally,
calculate the bisection width of these product graphs.

Factor and Product Graphs. Paths were defined in Section 2. The complete binary
tree of k vertices, denoted by CBTk , is a graph such that V (CBTk) = {1, 2, . . . , k},
with k = 2j − 1 (j is the number of levels of the tree), and where E(CBTk) = {(i, j) :
((j = 2i) ∨ (j = 2i + 1)) ∧ (i ∈ [1, 2j−1 − 1])}. Combining these factor graphs
through the Cartesian product, we obtain the product networks that we define below.
A d-dimensional mesh-connected trees and paths, denoted by MCTP

(d)
k1,k2,...,kd

, is the
Cartesian product of d graphs of k1, k2, . . . , kd vertices, respectively, where each factor
graph is a complete binary tree or a path. I.e., MCTP

(d)
k1,k2,...,kd

= Gk1 ×Gk2 × · · · ×
Gkd

, where either Gki = CBTki or Gki = Pki . We also define the d-dimensional

mesh-connected trees [10], denoted by MCT
(d)
k1,k2,...,kd

as the graph MCTP
(d)
k1,k2,...,kd

in which all the factor graphs are complete binary trees. (Observe that the array is also
the special case of MCTP

(d)
k1,k2,...,kd

in which all the factor graphs are paths.)

Congestion and Central Cut of Paths and CBT. The bisection widths of the afore-
mentioned product graphs can be calculated using the bounds defined in Section 3. To
do so, we need to compute first the values of the normalized congestion and central cut
of their factor graphs, that is, of a path and of a CBT.

The value of the congestion of a CBT is exactly the same as the congestion of a path
with an odd number of nodes. CBT share withe paths the property of having only one
possible routing between two nodes. As can be seen in Figures 1 and 2, the possible
cuts are similar. We can show that the normalized congestion of both paths or CBTs is
exactly βr(Pk) = βr(CBT k) =

r
4 .

The value of the central cut of both the path and CBT can also be easily deduced
from Figures 1 and 2, being CC(Pk) = CC(CBT k) = 1.

Bounds on the Bisection Width of Products of CBTs and Paths. We can compute
now the bisection width of a product of CBTs and paths from the congestion and the
central cut of the possible factor graphs, directly applying the results of Section 3.

468 J. Arjona Aroca and A. Fernández Anta

(a) The 4-vertex ring
and clique

(b) The 5-vertex ring and
clique

(c) Central cut on a extended complete
binary tree

Fig. 3. Rings and extended complete binary tree possible cuts

Theorem 5. The bisection width of a d-dimensional mesh-connected trees and paths
MCTP

(d)
k1,k2,...,kd

is Ψ(α). Hence, the bisection width of the d-dimensional

mesh-connected trees MCT
(d)
k1,k2,...,kd

is BW (MCT (d)) = Ψ(d).

5 Products of Rings and Extended Trees

In this section we will obtain a result for the bisection bandwidth of the product graphs
which result from the Cartesian product of rings and extended complete binary trees.

Factor and Product Graphs. The ring of k vertices, denoted by Rk, is a graph such
that V (Rk) = {0, 1, . . . , k − 1} and where E(Rk) = {(i, (i + 1) mod k) : i ∈
V (Rk)}. The extended complete binary tree (a.k.a. XT) of k vertices, denoted by Xk,
is a complete binary tree in which the leaves are connected as a path. More formally,
V (Xk) = V (CBTk) and E(Xk) = E(CBTk) ∪ {(i, i + 1) : i ∈ [2j−1, 2j − 2]}.
Combining these graphs as factor graphs in a Cartesian product, we can obtain the
three different kinds of product graphs. A d-dimensional mesh-connected extended
trees and rings, denoted by MCXR

(d)
k1,k2,...,kd

, is the Cartesian product of d graphs of
k1, k2, . . . , kd vertices, respectively, where each factor graph is an XT or a ring. I.e.,
MCXR

(d)
k1,k2,...,kd

= Gk1 ×Gk2 × · · · ×Gkd
, where either Gki = Xki or Gki = Rki .

The d-dimensional torus, denoted by T
(d)
k1,k2,...,kd

, is the Cartesian product of d rings of

k1, k2, . . . , kd vertices, respectively. I.e., T (d)
k1,k2,...,kd

= Rk1 ×Rk2 ×· · ·×Rkd
. And, as

happened in Section 4 with MCT (d), we also define the d-dimensional mesh-connected
extended trees, denoted byMCX

(d)
k1,k2,...,kd

, a special case ofMCXR
(d)
k1,k2,...,kd

in which

all factor graphs are XT. (The torus is the special case of MCXR
(d)
k1,k2,...,kd

in which all
factor graphs are rings.)

Congestion and Central Cut of Rings and XT. The congestion and central cut of
both a ring and an XT are needed to apply the bounds obtained in Section 3. Similarly
to what happened with paths and CBTs, the congestion of rings and XT is the same. The
extended complete binary tree Xk has a Hamiltonian cycle [10], so we can find a ring
Rk contained onto it. Consequently, the congestion of an XT and a ring with the same
number of nodes will be the same. It can be shown that both normalized congestions
with multiplicity r = 2 is β2(Rk) = β2(Xk) = 1/4. Due to these similarities, central
cuts of both graphs are also going to be the same, as can be easily observed from Figures
3(a), 3(b) and 3(c), CC(Rk) = CC(Xk) = 2.

Bisection (Band)Width of Product Networks with Application to Data Centers 469

Bounds on the Bisection Width of Products of XT and Rings. With the normalized
congestion and central cut of the different factor graphs, we can obtain the bisection
width of products of XT and rings.

Theorem 6. The bisection width of a d-dimensional mesh-connected extended trees
and rings MCXR

(d)
k1,k2,...,kd

is 2Ψ(α). Hence, the bisection width of the d-dimensional

torus T (d) is BW (T (d)) = 2Ψ(α) and the bisection width of the d-dimensional mesh-
connected extended trees MCX (d) is BW (MCX (d)) = 2Ψ(d).

6 BCube

We devote this section to obtain bounds on the bisection width of a d-dimensional
BCube [11]. BCube is different from the topologies considered in the previous sections
because it is obtained as the combination of basic networks formed by a collection
of k nodes (servers) connected by a switch. These factor networks are combined into
multidimensional networks in the same way product graphs are obtained from their
factor graphs. This allows us to study the BCube as an special instance of a product
network. The d-dimensional BCube can be obtained as the d dimensional product of
one-dimensional BCube networks, each one of k nodes.

Factor and Product Graphs. We first define a Switched Star network and how a
d-dimensional BCube network is built from it. A Switched Star network of k nodes,
denoted by SSk, is composed of k nodes connected to a k-ports switch. It can be seen
as a complete graph Kk where all the edges have been replaced by a switch. Combining
d copies of this network as factor networks of the Cartesian product, we obtain a d-
dimensional BCube. Hence, a d-dimensional BCube, denoted byBC (d)

k , is the Cartesian
product of d SSk (the switches are not considered nodes for the Cartesian product).
I.e., BC (d)

k = SSk × SSk × · · · × SSk. BC (d)
k can also be seen as a d-dimensional

homogeneous array where all the edges in each path have been removed and replaced
by a switch where two nodes (u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are connected to
the same switch if and only if (ui �= vi) and uj = vj for all j �= i.

The main reason for obtaining the bisection width of a d-dimensional BCube is to
be able to bound its bisection bandwidth. However, as the d-dimensional BCube is
not a typical graph, the bisection width can have different forms depending on where
the communication bottleneck is located in a BCube network. We present two possible
models for SSk. The first one, Model A or star-like model, denoted by SSAk, consists of
k nodes connected one-to-one to a virtual node which represents the switch. The second
one, Model B or hyperlink model, denoted by SSBk, consists of k nodes connected by
a hyperlink3. While the two presented models are logically equivalent to a complete
graph, they have a different behavior from the traffic point of view. We show this with
two simple examples.

Let us consider that we have a SS3 where the links have a speed of 100 Mbps while
the switch can switch at 1 Gbps. Under these conditions, the links become the bottle-
neck of the network and, even when the switches would be able to provide a bisection

3 This model is quite similar to the one proposed by Pan in [17].

470 J. Arjona Aroca and A. Fernández Anta

(a) A 5-node star-like SS (b) Congestion of a 5-node
star-like SS

S- S+S

(c) Central cut of a 5-node
star-like SS

Fig. 4. Model A of a 5-node switched star SSA5 and its congestion and central cut

(a) A 5-node hyperlink SS (b) Congestion of a 5-node
hyperlink SS

S- S+S
(c) Central cut of a 5-node
hyperlink SS

Fig. 5. Model B of a 5-node switched star SSB5 and its congestion and central cut

bandwidth of 1 Gbps, the effective bisection bandwidth is only of 200 Mbps in both
directions. Consider the opposite situation now, where the BCube switch only supports
500Mbps of internal traffic, while the links transmit at 1 Gbps. In this case, the switches
are the bottleneck of the network and the bisection bandwidth is only 500 Mbps, al-
though the links would be able to support up to 2 Gbps.

The first example illustrates an scenario where we would bisect the network by re-
moving the links that connect the servers to the switches, which corresponds to Model A.
On the other hand, what we find in the second example is a typical scenario for Model B,
where we would do better by removing entire switches when bisecting the network. In
particular, being s the switching capacity of a switch, and T the traffic supported by a
link, we will choose Model A when s ≥
k

2 � · 2T and Model B when s ≤ 2T . (Note
that this does not cover the whole spectrum of possible values of s, T , and k.)

Congestion and Central Cut of BCube. We will compute now the congestion and
central cut of both models in order to be able to calculate the respective lower and upper
bounds. We start by the congestion and central cut of Model A. If we set r = 1, the
congestion of every link of the star is easily found4 to be mr(SSAk) = k − 1 as shown
in Figure 4(b). The central cut, which is also trivial, can be found in Figure 4(c). Both
will depend on whether the number of nodes k is even or odd.

Lemma 1. The normalized congestion of SSAk is βr(SSAk) =
k−1
k2−b , and the central

cut is CC(SSAk) =
k−b
2 , where b = k mod 2.

Having computed the congestion and the central cut for Model A, we will compute
them now for Model B. If we set r = 1 there will be only one edge to be removed,
the congestion of the graph will be total amount of edges of its equivalent Kk, i. e.,

4 Note that in the computation of the congestion, the switch is not considered a node of the
graph.

Bisection (Band)Width of Product Networks with Application to Data Centers 471

mr(SSBk) = k(k−1)
2 . The central cut is also easily computed, as there is only one

hyperlink. Both mr(SSBk) and CC(SSBk) are shown in Figure 5.

Lemma 2. The normalized congestion of SSBk is βr(SSBk) = k−1
2(k2−b) , where b =

k mod 2, and the central cut is CC(SSBk) = 1.

Bounds on the Bisection Width of BCube. Having computed the congestion and
central cut of both models, we can calculate the lower and upper bounds on the bisection
width of each one of them. We will start by the lower and upper bounds on the bisection
width of Model A and, then, we will calculate both bounds for Model B. We first present
the following lemma for the lower bound on the bisection width of a Model A BCube.

Lemma 3. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is lower

bounded by kd+1

4(k−1) if k is even, and by k+1
4

kd−1
k−1 if k is odd.

After presenting the lower bound on the bisection width of a Model A d-dimensional
BCube, we follow with the upper bound.

Lemma 4. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is upper

bounded by kd

2 if k is even, and by kd−1
2 if k is odd.

Now, from the combination of Lemma 3 and Lemma 4 we can state Theorem 7:

Theorem 7. The value of the bisection width of a Model A d-dimensional BCube,
BCA

(d)
k , is in the interval [kd+1

4(k−1) ,
kd

2] if k is even, and in the interval [k+1
4

kd−1
k−1 , kd−1

2]

if k is odd.

Corollary 2. The bisection bandwidth of a Model A d-dimensional BCube satisfies,

BBW (BCA
(d)
k) ∈

{
[2T kd+1

4(k−1) , 2T
kd

2] if k is even

[2T k+1
4

kd−1
k−1 , 2T kd−1

2] if k is odd.

Let us calculate now the bounds of a Model B d-dimensional BCube. As we did with
Model A, we present the following two lemmas for both the lower and upper bounds.

Lemma 5. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is lower

bounded by kd

2(k−1) if k is even, and by k+1
2k

kd−1
k−1 if k is odd.

Lemma 6. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is upper

bounded by kd−1
k−1 .

Combining the previous lemmas we can state the following theorem.

Theorem 8. The value of the bisection width of a Model B d-dimensional BCube,
BCB

(d)
k , is in the interval [kd

2(k−1) ,
1−kd

1−k] if k is even, and in the interval

[k+1
2k

kd−1
k−1 , kd−1

k−1] if k is odd.

Corollary 3. The bisection bandwidth of a Model B d-dimensional BCube satisfies,

BBW (BCB
(d)
k) ∈

{
[s kd

2(k−1) , s
1−kd

1−k] if k is even

[sk+1
2k

kd−1
k−1 , skd−1

k−1] if k is odd.

472 J. Arjona Aroca and A. Fernández Anta

References

1. Arjona Aroca, J., Fernández Anta, A.: Bisection (Band)Width of Product Networks with
Application to Data Centers. ArXiv e-prints, CoRR abs/1202.6291 (February 2012)

2. Azizoğlu, M.C., Eğecioğlu, Ö.: The isoperimetric number and the bisection width of gener-
alized cylinders. Electronic Notes in Discrete Mathematics 11, 53–62 (2002)

3. Azizoğlu, M.C., Eğecioğlu, Ö.: Extremal sets minimizing dimension-normalized boundary
in hamming graphs. SIAM J. Discrete Math. 17(2), 219–236 (2003)

4. Azizoğlu, M.C., Eğecioğlu, Ö.: The bisection width and the isoperimetric number of arrays.
Discrete Applied Mathematics 138(1-2), 3–12 (2004)

5. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan Kauf-
mann Publishers Inc., San Francisco (2003)

6. Dally, W.J.: Performance analysis of k-ary n-cube interconnection networks. IEEE Trans.
Computers 39(6), 775–785 (1990)

7. Duato, J., Yalamanchili, S., Lionel, N.: Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco (2002)

8. Efe, K., Feng, G.L.: A proof for bisection width of grids. World Academy of Science, Engi-
neering and Technology 27(31), 172–177 (2007)

9. Efe, K., Fernández, A.: Products of networks with logarithmic diameter and fixed degree.
IEEE Trans. Parallel Distrib. Syst. 6(9), 963–975 (1995)

10. Efe, K., Fernández, A.: Mesh-connected trees: A bridge between grids and meshes of trees.
IEEE Trans. Parallel Distrib. Syst. 7(12), 1281–1291 (1996)

11. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: Bcube: a high
performance, server-centric network architecture for modular data centers. In: SIGCOMM,
pp. 63–74. ACM (2009)

12. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant
network structure for data centers. In: SIGCOMM, pp. 75–86. ACM (2008)

13. Jayasimha, D.N., Zafar, B., Hoskote, Y.: On chip interconnection networks why they are
different and how to compare them. Intel (2006)

14. Leighton, F.T.: Introduction to parallel algorithms and architectures: array, trees, hypercubes.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

15. Mirza-Aghatabar, M., Koohi, S., Hessabi, S., Pedram, M.: An empirical investigation of mesh
and torus noc topologies under different routing algorithms and traffic models. In: 10th Eu-
romicro DSD, pp. 19–26. IEEE Computer Society, Washington, DC, USA (2007)

16. Nakano, K.: Linear layout of generalized hypercubes. Int. J. Found. Comput. Sci. 14(1),
137–156 (2003)

17. Pan, Y., Zheng, S.Q., Li, K., Shen, H.: An improved generalization of mesh-connected com-
puters with multiple buses. IEEE Trans. Parallel Distrib. Syst. 12, 293–305 (2001)

18. Rolim, J.D.P., Sýkora, O., Vrto, I.: Optimal Cutwidths and Bisection Widths of 2- and 3-
Dimensional Meshes. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 252–264. Springer,
Heidelberg (1995)

19. Salminen, E., Kulmala, A., H, T.D.: Survey of network-on-chip proposals. Simulation, 1–13
(March 2008)

20. Youssef, A.: Cartesian product networks. In: ICPP, vol. (1), pp. 684–685 (1991)
21. Youssef, A.: Design and analysis of product networks. In: Frontiers 1995, pp. 521–528. IEEE

Computer Society, Washington, DC, USA (1995)
22. Zydek, D., Selvaraj, H.: Fast and efficient processor allocation algorithm for torus-based chip

multiprocessors. Comput. Electr. Eng. 37, 91–105 (2011)

Implicit Computation of Maximum Bipartite

Matchings by Sublinear Functional Operations�

Beate Bollig1, Marc Gillé1, and Tobias Pröger2

1 TU Dortmund, LS2 Informatik, Germany
2 ETH Zürich, Institut für Theoretische Informatik, Switzerland

Abstract. The maximum bipartite matching problem, an important
problem in combinatorial optimization, has been studied for a long time.
In order to solve problems for very large structured graphs in reasonable
time and space, implicit algorithms have been investigated. Any object
to be manipulated is binary encoded and problems have to be solved
mainly by functional operations on the corresponding Boolean functions.
OBDDs are a popular data structure for Boolean functions, therefore,
OBDD-based algorithms have been used as an heuristic approach to
handle large input graphs. Here, two OBDD-based maximum bipartite
matching algorithms are presented, which are the first ones using only a
sublinear number of operations (with respect to the number of vertices of
the input graph) for a problem unknown to be in NC, the complexity class
that contains all problems computable in deterministic polylogarithmic
time with polynomially many processors. Furthermore, the algorithms
are experimentally evaluated.

1 Introduction

The computation of a maximum cardinality bipartite matching is an important
problem in combinatorial optimization, e.g., many resource-allocation problems
can be formulated as a maximummatching problem on a bipartite graph. In some
real-world applications of bipartite matching problems, e.g., in the partitioning
problem in VLSI-Design [21], the refinement of FEM nets [22], or online adver-
tising [11], massive graphs are processed such that the explicit representations,
like adjacency matrices or adjacency lists, may cause conflicts with memory lim-
itations and even polynomial time algorithms could not be fast enough. A way
out is dealing with sets of binary encoded vertices and edges represented by their
characteristic Boolean functions. OBDDs are well suited for the representation
and manipulation of Boolean functions [10], therefore, a research branch has
emerged which is concerned with the design and analysis of so-called implicit
or symbolic algorithms for classical graph problems on OBDD-represented in-
stances (see, e.g., [14,15], [18], [24]-[26], and [30]). Problems have to be solved
mainly by functional operations efficiently supported by the OBDD data struc-
ture where a functional operation is an elementary operation which works on

� The first two authors have been supported by DFG project BO 2755/1-1.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 473–486, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

474 B. Bollig, M. Gillé, and T. Pröger

Boolean functions. To take advantage of the presence of regular substructures
to compress the representation size is a natural idea but problems typically get
harder and for several graph problems an exponential blow-up from input to
output size has been proved in the implicit setting ([4]-[7] and [25]). Even the
problem to decide whether two vertices s and t are connected in a directed
graph G is PSPACE-complete on OBDD-represented graphs [13]. Nevertheless,
OBDD-based algorithms are successful in many applications and can be seen as
an heuristic approach to handle very large graphs, where the main goal is not
to beat explicit algorithms on graphs which can be represented explicitly but to
solve problems for very large structured graphs in reasonable time and space.

The number of functional operations is only a rough measure for the time-
complexity of an implicit algorithm. However, already in [3] it has been pointed
out that it is a measure of difficulty and that it is important to keep the number of
operations low. It is known that a problem can be solved with a polylogarithmic
number of functional operations on a logarithmic number of Boolean variables
iff the problem is in NC [26,27], the complexity class that contains all prob-
lems computable in deterministic polylogarithmic time with polynomially many
processors. As a consequence, we can conclude that there cannot exist implicit
algorithms with a polylogarithmic number of operations for so-called P-complete
problems assuming that P �= NC. Moreover, some methods in the implicit setting
are similar to those of parallel algorithms, e.g., the method of iterative squaring
is similar to the path-doubling strategy. Demonstrating this similarity, recently,
it has been shown that maximal matchings, i.e., matchings that are not a proper
subset of other matchings, can be computed with O(log4 |V |) functional oper-
ations in bipartite graphs [9]. The maximum flow problem in 0-1 networks has
been one of the first classical fundamental graph problems for which an implicit
algorithm has been presented [18]. Like for maximum bipartite matchings it is
open whether this problem is in the complexity class NC. Sawitzki has described
another algorithm for this problem that uses only O(|V | log2 |V |) operations [24].
It is well-known that the bipartite matching problem can be transformed into
a maximum flow problem in 0-1 networks by a simple transformation but Saw-
itzki’s algorithm [24] generates in worst case each augmenting path one by one
and therefore, cannot lead to a sublinear number of operations. Here, we design
and analyze implicit maximum bipartite matching algorithms with a sublinear
number of operations. To the best of our knowledge, these are the first ones for
a problem unknown to be in NC. More precisely, our first implicit maximum
bipartite matching algorithm uses O(|V |3/4 log5/2 |V |) operations. The core of
this algorithm is the computation of a maximal set of node-disjoint paths by
O(|V |1/2 log3 |V |) functional operations. Besides an implicit variant of a parallel
maximal node-disjoint paths algorithm [17], the construction of single augment-
ing paths [24] is one of the main ingredients but we have to add some ideas
to reduce the number of functional operations. A drawback of this augmenting-
path-based approach is that it is not clear how to use it to obtain an approx-
imation of a maximum bipartite matching with a polylogarithmic number of
operations, i.e., a matching M with |M | ≥ (1 − ε)|Mopt|, where 0 ≤ ε < 1 and

Implicit Computation of Maximum Bipartite Matchings 475

Mopt is a maximum matching in the input graph. Our second implicit maxi-
mum bipartite matching algorithm based on a push-relabel approach uses ideas
from [17] and [28] and needs only O(|V |2/3 log3.375 |V |) functional operations.
Moreover, it can be modified to compute efficiently an approximate solution.

The paper is organized as follows. In Section 2 we define some notation and
review some basics concerning OBDD-based graph algorithms and matchings.
We restate a result presented by Hopcroft and Karp [19] on the length of shortest
augmenting paths with respect to a given matching which allows us later on to
decrease the number of functional operations for the computation of maximum
bipartite matchings. Furthermore, we give an overview of some implicit algo-
rithms for simple graph problems which can be used as building blocks in more
complex graph algorithms. The implicit sublinear maximum bipartite matching
algorithms are presented in Section 3. Finally, we compare the practical per-
formance of the proposed implicit maximum bipartite matching algorithms and
evaluate the space impact of the involved functional operations by providing
some experimental results in order to show that the size of the intermediate
OBDDs is not too large.

2 Preliminaries

OBDDs and Functional Operations. OBDDs are a very popular dynamic
data structure in areas working with Boolean functions, like circuit verification
or model checking.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables. A π-OBDD on Xn is a directed acyclic graph
G = (V,E) whose sinks are labeled by the Boolean constants 0 and 1 and whose
non-sink (or decision) nodes are labeled by Boolean variables from Xn and have
two outgoing edges, one labeled by 0 and the other by 1. The edges between
decision nodes have to respect the variable ordering π, i.e., if an edge leads from
an xi-node to an xj-node, then π−1(i) < π−1(j). Each node v represents a
Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined in the following
way. A c-sink, c ∈ {0, 1}, represents the constant function c. If fv0 and fv1
are the functions represented at the 0- or 1-successor of v respectively and v is
labeled by xi, fv = xifv0 ∨xifv1 (Shannon’s decomposition rule). The size of a π-
OBDD G is equal to the number of its nodes and the π-OBDD size of a function
f , denoted by π-OBDD(f), is the size of the minimal π-OBDD representing f .
The OBDD size of f is the minimum of all π-OBDD(f).

In the following we describe a list of important operations on data structures
for Boolean functions (for a detailed discussion and the corresponding time and
space requirements for OBDDs see, e.g., Section 3.3 in [29]). Let f and g be
Boolean functions in Bn on the variable set Xn = {x1, . . . , xn} and let Gf and
Gg be representations for f and g, respectively.

476 B. Bollig, M. Gillé, and T. Pröger

– Negation: Given Gf , compute a representation for the function f ∈ Bn.
– Replacement by constant: Given Gf , an index i ∈ {1, . . . , n}, and a Boolean

constant ci ∈ {0, 1}, compute a representation for the subfunction f|xi=ci .
– Equality test: Given Gf and Gg, decide, whether f and g are equal.
– Satisfiability: Given Gf , decide, whether f is not the constant function 0.
– Satisfiability count: Given Gf , compute SatCount(f) = |f−1(1)|.
– Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, com-

pute a representation for the function h ∈ Bn defined as h := f ⊗ g.
– Quantification: Given Gf , an index i ∈ {1, . . . , n}, and a quantifier Q ∈

{∃, ∀}, compute a representation for the function h ∈ Bn defined as h :=
(Qxi)f , where (∃xi)f := f|xi=0 ∨ f|xi=1 and (∀xi)f := f|xi=0 ∧ f|xi=1.

In the rest of the paper quantifications over k Boolean variables (Qx1, . . . , xk)f
are denoted by (Qx)f , where x = (x1, . . . , xk). Altogether, the negation,
replacement by constant, equality test, satisfiability, satisfiability count, and
synthesis are functional operations. The quantification over k variables can be
realized by 3k functional operations. In order to reverse edges of a graph, ar-
gument reordering is another important operation that computes a function
g(x(1), . . . , x(k)) = f(x(ρ(1)), . . . , x(ρ(k))) where ρ is a permutation on {1, . . . , k}
and x(1), . . . , x(k) are Boolean vectors of length n. Argument reordering can be
done by 3(k − 1)n operations (see, e.g., [8]).

OBDD-Based Graph Representations and Matchings. Let G = (V,E)

be a graph with N vertices v0, . . . vN−1 and |z| :=
∑n−1

i=0 zi2
i, where z =

(zn−1, . . . , z0) ∈ {0, 1}n. Now, E can be represented by an OBDD for its char-
acteristic function, where x, y ∈ {0, 1}n, n = �logN�, and χE(x, y) = 1 ⇔
(|x|, |y| < N) and (v|x|, v|y|) ∈ E. Undirected edges are represented by sym-
metric directed ones. We do not distinguish between vertices of the graph and
their Boolean encoding if the meaning is clear from the context. Furthermore,
we assume that N is a power of 2 since it has no bearing on the essence of our
results. A graph G = (V,E) is bipartite if V can be partitioned into two disjoint
nonempty sets U and W , such that for all edges (u,w) ∈ E it holds u ∈ U and
w ∈ W or vice versa. A matching in an undirected graph G = (V,E) is a subset
M ⊆ E such that no two edges of M are adjacent. A matching M is a maxi-
mum matching if its cardinality is maximized over all matchings in G. A perfect
matching is a matching of cardinality |V |/2. Given a matching M a vertex v is
matched if (v, w) ∈ M for some w ∈ V and free otherwise. An M -augmenting
path is a simple path P = v0, v1, . . . , v� such that the endpoints v0 and v� are
free and an edge (vi, vi+1) is in M , i ∈ {0, . . . , � − 1}, iff i is odd. The length
of a path is the number of edges on the path. Given an M -augmenting path P
the matching M can be enlarged by deleting from M the edges on P that are
from M and adding the remaining edges on P . It is well-known and the basis for
all augmenting-path-based algorithms for the maximum matching problem that
the absence of an augmenting path implies optimality of the current matching
[2]. Furthermore, if a matching M has no augmenting path of length � or less,
then |M | ≥ (1− 1/(�+ 1))|Mopt|, where Mopt is a maximum matching. Finally,

Implicit Computation of Maximum Bipartite Matchings 477

we restate a result presented by Hopcroft and Karp [19] which allows us later
on to decrease the number of functional operations.
Proposition 1. Let 0 < c, c′ < 1 be constants, G = (V,E) an undirected graph
and Mopt a maximum matching in G, where |Mopt| ≥ e(1−c)/c′ , and M a match-

ing in G, where 0 ≤ |M | ≤
|Mopt| − |Mopt|c · logc
′
|Mopt|�. If P is a shortest

M -augmenting path in G, then |P | < 2(|V |/2)1−c log−c′(|V |/2).
In the implicit setting the maximum (maximal) bipartite matching problem is
the following one. Given an OBDD for the characteristic function of the edge set
of an undirected bipartite input graphG, the output is an OBDD that represents
the characteristic function of a maximum (maximal) matching in G.

Important Auxiliary Functions for Implicit Graph Algorithms. In the
implicit setting two priority functions have been introduced in order to break
ties by choosing the edge (vertex) with the highest rank in a given ordering
whenever there is more than one candidate for the choice of an edge (a vertex)
[18]. In general, Π≺(x, y, z) = 1 iff y ≺x z, where ≺x is a total order on the
vertex set V and x, y, z vertices in V . The first function is a very simple one
independent of the choice of x: Π1

≺(x, y, z) = 1 iff |y| < |z|. The second one is

defined as follows: Π2
≺(x, y, z) = 1 iff

∑n−1
i=0 (xi ⊕ yi)2

i <
∑n−1

i=0 (xi ⊕ zi)2
i.

For the implicit push-relabel-based computation of a maximum bipartite match-
ing we need the following auxiliary functions: COMP≥(x, y) = 1 iff |x| ≥ |y|,
COMP∗

=(x, y) = 1 iff |x| = |y|+ 1 and COMP≤k(x) is 1 iff |x| ≤ k where k is a
constant.

Implicit Algorithms for Simpler Graph Problems. The algorithm
calculateDistanceInformation (also used in [24]) computes with O(log2 |V |)
functional operations a natural number a such that for all vertices x and y
there is a path of length at most 2a in the input graph and a is minimal. The
input of the algorithm findSinglePath (similarly used in [24]) consists of a
natural number l, an implicitly given input graph G, and implicitly defined
vertex pairs (x, y) for which the length of a shortest path from x to y in G
is l. The output is a path of length l between the vertices of one vertex pair
and can be computed by O(log2 |V |) functional operations. Now, let S and T
be disjoint subsets of V . Using O(log2 |V |) functional operations the algorithm
findShortestPathEndpoints computes all pairs of vertices (s, t), s ∈ S and
t ∈ T , for which there exists a path of length �, where � is a shortest path be-
tween a vertex in S and a vertex in T . The length � is also part of the output.
The algorithm findShortestPathSuccessordetermines the edges of all shortest
paths from a subset S to another subset T with S, T ⊆ V and needs O(� log |V |)
functional operations, where � is the minimum length of a path from a vertex in
S to a vertex in T . The algorithm findMaximalBipartiteMatching presented
in [9] computes a maximal matching with O(log4 |V |) functional operations.

3 Implicit Algorithms for Maximum Bipartite Matchings

In the following we describe two maximum matching algorithms for bipartite
graphs G = (V,E) with V = U ∪̇ W . We start with the description of our first

478 B. Bollig, M. Gillé, and T. Pröger

algorithm which is augmenting-path-based. The algorithm findAugmenting

Paths computes a maximal set of shortest augmenting paths if the length of
such paths is not too large, otherwise only a single one is determined. A set of
node-disjoint paths P is said to be maximal if each path starts at a distinct
source and terminates at a distinct sink, and there is no path from a source
to a sink in the graph induced by the vertices which are not on a path in P .
The core of the algorithm findAugmentingPaths is the computation of a max-
imal set of node-disjoint paths from the free vertices in U to the free vertices
in W . A parallel algorithm for the computation of maximal node-disjoint paths
in a graph G = (V,E) from a set of sources to a set of sinks is known that
runs in time O(|V |1/2 log3 |V |) using O(|V |+ |E|) processors for undirected and
BFS(|V |, |E|) processors for directed graphs, where BFS(|V |, |E|) is the maxi-
mum of |V |+ |E| and the number of processors required to find a breadth-first
search tree in O(log2 |V |) time [17]. Two approaches are combined, the first one
finds node-disjoint paths as many as possible at the same time by maintaining
a current set of paths and by extending as many paths as possible in each itera-
tion. The other one finds paths one by one. The idea to obtain a sublinear time
algorithm is to balance these two approaches in an appropriate way. By improv-
ing the balance factor a logarithmic factor can be saved with the same number
of processors in the undirected case and by a factor of log1/2 |V | otherwise [20].
Using similar ideas we obtain the algorithm findMaximalNodeDisjointPaths

that uses O(|V |1/2 log3 |V |) functional operations. Furthermore, the algorithm
findAugmentingPathsmakes use of the construction of single augmenting paths
[24]. In order to keep the number of functional operations as small as possible
we apply Proposition 1 and choose 2(|V |/2)1/4/

√
log(|V |/2) as the maximum

length of shortest augmenting paths for balancing the two approaches. In the
following F (x) denotes the set of free vertices in V w.r.t. the current matching.

algorithm findAugmentingPaths(χU (x), χW (x), χE(x, y), F (x))

1: a← calculateDistanceInformation(χE (x, y))
2: S(x)← F (x) ∧ χU (x); T (x)← F (x) ∧ χW (x)
3: (SPE(x, y), l)← findShortestPathEndpoints(χE(x, y), S(x), T (x), a)
4: � If no M-augmenting path exists: STOP.

if SPE(x, y) = 0 then return 0

5: � If the length of a shortest M-augmenting path is at most

2(|V |/2)1/4/
√

log(|V |/2) a maximal set of shortest M-augmenting

paths is computed.

else if l ≤ 2(|V |/2)1/4/
√

log(|V |/2) then
6: S′(x)← (∃y)(SPE(x, y)); T ′(x)← (∃y)(SPE(y, x))
7: SPS(x, y)← findShortestPathSuccessor(χE(x, y), S

′(x), T ′(x))
8: return findMaximalNodeDisjointPaths(χV (x),SPS(x, y), S′(x), T ′(x))
9: � Otherwise a single shortest M-augmenting path is computed.

else return findSinglePath(χE (x, y),SPE(x, y), l)

If the length of a shortest augmenting path is below the threshold the algorithm
findAugmentingPaths needs O(|V |1/2 log3 |V |) functional operations because
findMaximalNodeDisjointPaths is dominating. Otherwise the algorithm

Implicit Computation of Maximum Bipartite Matchings 479

findSinglePath is executed by O(log2 |V |) operations and there are O(log2 |V |)
further operations in the other steps. It is well-known that the length of short-
est augmenting paths increases if a maximal set of shortest augmenting paths
is processed at once [19]. Therefore, our algorithm works in two phases. Stage

1 consists of O(|V |1/4 log−1/2 |V |) iterations using O(|V |1/2 log3 |V |) operations
each. If the length of a shortest augmenting path is at least as large as our thresh-
old, using Proposition 1 we can conclude that there are only O(|V |3/4 log1/2 |V |)
iterations in stage 2 using O(log2 |V |) operations each. Assuming the output
of findAugmentingPaths is valid, findMaximumBipartiteMatching computes
a maximum matching because of the correctness of the explicit algorithm.

algorithm findMaximumBipartiteMatching(χU (x), χW (x), χE(x, y))

1: � Initialize.

M(x, y)← 0; χE′(x, y)← χE(x, y) ∧ χU (x); F (x)← 1
2: repeat
3: � Compute shortest M-augmenting paths.

P (x, y)← findAugmentingPaths(χU (x), χW (x), χE′(x, y), F (x))
4: � Extend the current matching by the M-augmenting paths.

χE′(x, y)← (χE′(x, y) ∧ P (x, y)) ∨ P (y, x)
M(x, y)← (M(x, y) ∧ P (x, y)) ∨ (P (y, x) ∧ χU (y))

5: � Determine the new free vertices.

F (x)← (∃y)(M(x, y) ∨M(y, x))
6: until P (x, y) = 0
7: return M(x, y) ∨M(y, x)

Theorem 1. The algorithm findMaximumBipartiteMatching computes a max-
imum matching in an implicitly defined bipartite graph G = (V,E) using

O(|V |3/4 log5/2 |V |) functional operations.
Due to the lack of space, we assume some familiarity with push-relabel-related
algorithms (see, e.g., [1] for more details). Our implicit push-relabel-based algo-
rithm computes an approximation of the maximum matching and then deter-
mines augmenting paths one at a time to find a maximum matching. Using ideas
from the parallel setting [17,28] ApproximateBipartiteMatching computes a
matching that has nearly maximum cardinality. In this algorithm at each time
for every vertex x in V , there exists exactly one input d(x) := d, 0 ≤ |d| < |V |,
for which D(x, d) �= 0. As an invariant, in each iteration the value d(x) is a lower
bound on the length of the shortest alternating path to a free vertex in W w.r.t.
the current matching. Intuitively, after the last iteration there exists at most l
free vertices x with d(x) ≤ k for some parameters k and l. Therefore, there are at
most l augmenting paths of length at most k and at most |Mopt|/k augmenting
paths of length at least k concluding that we compute a matching with size at
least |Mopt| − l − |Mopt|/k.
Lemma 1. ApproximateBipartiteMatching computes a matching of size at
least |Mopt|− |Mopt|/(�(k−1)/2�)− � with O((|Mopt|k/�+k) log4 |V |) functional
operations, where Mopt is a maximum bipartite matching in the input graph
G = (V,E), k the distance and � the activity parameter of the algorithm.

480 B. Bollig, M. Gillé, and T. Pröger

algorithm ApproximateBipartiteMatching(χU (x), χW (x), χE(x, y), k, �)

1: M(x, y)← 0; D(x, d)← ((χW (x) ∧ |d| = 0) ∨ (χU (x) ∧ |d| = 1)); new ← 0
2: repeat
3: � Compute the free vertices in U w.r.t. the current matching M.

U ′(x)← χU (x) ∧ (∀y)(M(x, y))
4: � Compute the set of admissible edges (u, v) where u ∈ U is free.

χE′(x, y)← χE(x, y) ∧ U ′(x) ∧ (∃d, d′)(D(x, d) ∧D(y, d′)∧ COMP∗=(d, d
′))

5: � Determine the vertices for which the label is at most k.
D≤k(x, d)← D(x, d)∧ COMP≤k(d)

6: � Compute a maximal matching M ′ in the admissible graph.

M ′(x, y)← findMaximalBipartiteMatching(χE′ (x, y))
7: � Delete all edges in M incident to a vertex matched in

M ′ and add the edges in M ′ to the current matching.

M(x, y)← (M(x, y) ∧ (∀z)(M ′(x, z) ∧M ′(z, y))) ∨M ′(x, y)
M(x, y)← M(x, y) ∨M(y, x)

8: � If (u,w) ∈M and w ∈ W, d(w) is changed to d(u) + 1.
D′(x, d)← χW (x) ∧ (∃y, d′)(M(x, y) ∧D(y, d′)∧COMP∗=(d, d′)
D(x, d)← D′(x, d) ∨ (D(x, d) ∧ (∀d′)(D′(x, d′))

9: � For each u ∈ U ′ the label is changed to

min{d(w) + 1|(u, w) ∈ E and (u, w) /∈M}.
H(x, y, d)← U ′(x) ∧ χE(x, y) ∧M(x, y) ∧D(y, d)
D(x, d)← (D(x, d) ∧ χW (x)) ∨ (∃y, d′)(H(x, y, d′)∧COMP∗=(d, d′) ∧

(∀y′, d′′)(H(x, y′, d′′)∨ COMP≥(d′′, d′)))
10: � Compute the number of vertices with a label of at most k at the

beginning of the iteration for which the label has been changed.

new← SatCount(D≤k(x, d) ∧D(x, d))
11: until new < �
12: return M(x, y)

algorithm MaximumBipartiteMatching(χU (x), χW (x), χE(x, y))

1: � Compute a bound on the size of a maximum matching and initialize

the distance and the activity parameter.

M ′(x, y)← findMaximalBipartiteMatching(χE (x, y))
m← (1/2)· SatCount(M ′(x, y)); k ← m1/3 log−0.675 |V |; �← m2/3 log−1.375 |V |

2: M(x, y)← ApproximateBipartiteMatching(χU (x), χW (x), χE(x, y), k, �)
3: � The edges are oriented according to the current matching M.

M(x, y)← M(x, y) ∧ χW (x)
χE′(x, y)← (χE(x, y) ∧ χU (x) ∧M(y, x)) ∨ (χE(x, y) ∧M(x, y))

4: repeat
5: � Determine the new free vertices.

F (x)← (∀y)(M(x, y) ∨M(y, x))
6: � Extend the current matching by M-augmenting paths one by one.

a← calculateDistanceInformation(χE′ (x, y))
S(x)← F (x) ∧ χU (x); T (x)← F (x) ∧ χW (x)
(SPE(x, y), l)← findShortestPathEndpoints(χE′(x, y), S(x), T (x), a)
P (x, y)← findSinglePath(χE′ (x, y), SPE(x, y), l)
χE′(x, y)← (χE′(x, y) ∧ P (x, y)) ∨ P (y, x)
M(x, y)← (M(x, y) ∧ P (x, y)) ∨ (P (y, x) ∧ χU (y))

7: until P (x, y) = 0
8: return M(x, y) ∨M(y, x)

Implicit Computation of Maximum Bipartite Matchings 481

Similarly as described in [28], an approximation of a maximum bipartite match-
ing Mopt of size |Mopt| − |Mopt|/a can be computed by the algorithm
ApproximateBipartiteMatchingusingO(a2 log4 |V |) functional operations, i.e.,
the number is polylogarithmic in |V | if a = O(logk |V |) for some constant k. By
computing a maximal bipartite matching a lower bound m on the cardinality
of a maximum bipartite matching has been achieved. Choosing the distance
parameter k = 4a+ 1 and the activity parameter � = m/(2a) we are done.

Theorem 2. The algorithm MaximumBipartiteMatching computes a maximum
bipartite matching with O(|Mopt|2/3 log3.375 |V |) functional operations, where
Mopt is a maximum bipartite matching in G = (V,E).

Experimental Evaluation. Since the number of functional operations is only
a rough measure of the running time, we investigate empirically the practical
performance of the implicit augmenting-path-based (AP) and the implicit push-
relabel based (PR) algorithm. Furthermore, we compare them empirically with
an explicit implementation of the well-known Hopcroft-Karp algorithm [19], in
the following HK for short. Due to the missing structure, the OBDD size of a
random function is with high probability exponential in the number of variables
(see, e.g., [29]). Consequently, the implicit algorithms are unlikely to have a
good performance on randomly generated bipartite input graphs. Therefore, we
focused on more structured input graphs: grid graphs, rope graphs, and a range
of real-world instances. Initial experiments showed that the running time of both
implicit algorithms using the second priority function Π2

≺ is significantly faster
than the running time of the algorithms with the function Π1

≺. One reason could
be that the function Π2

≺ leads to a better spreading of neighboring vertices and
is in some sense nearer to a random choice which produce better results. As a
consequence, we only present the results w.r.t. the priority function Π2

≺.

Experimental setup. We implemented all algorithms in C++ using the OBDD
package CUDD 2.4.2 by Somenzi1 for AP and PR and LEDA2 6.3 graph libraries
for HK. The experiments were performed on a computer with a 3 GHz Intel
Core Duo processor and 2 GB main memory running Ubuntu 11.04. The sources
were compiled with g++ 4.5.2 and optimization flag O3. The running time was
measured by used processor time in seconds. In order to be independent of the
used computer system the space usage of AP and PR is given by the maximum
OBDD size which came up during the computation. For our results we took the
mean value over 50 experiments on graphs with the same number of vertices.
Only the graphs belonging to the rope class were generated randomly. Due to
the small variance of these values, we only show the mean value in the diagrams.

Input graphs. A grid graph consists of N2 vertices where each vertex represents
one possible point on the grid {0, . . . , N−1}×{0, . . . , N−1} and two vertices are
connected iff the distance of the corresponding points is 1. The graph class rope
was introduced by Cherkassky et al. [12]. Vertices are partitioned into a sequence
of blocks with a fixed size d and the blocks are connected alternately by a perfect

1 CUDD is available at http://vlsi.colorado.edu/
2 LEDA is available at http://www.algorithmic-solutions.com/

http://vlsi.colorado.edu/
http://www.algorithmic-solutions.com/

482 B. Bollig, M. Gillé, and T. Pröger

matching and a random bipartite graph with average degree d−1 beginning and
ending with a perfect matching. In order to study maximum flow algorithms
empirically on unbalanced bipartite graphs Negruseri et al. investigated real-
world instances which came up from an advertisement application within Google
[23]. Our aim was to analyze the running time of the implicit algorithms on very
structured graphs as grid graphs, which were already used in the investigation
of maximum flow algorithms in 0-1 networks and of topological sorting [24,30],

 0

 1

 2

 3

 4

 5

 6

 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

S
ec

on
ds

Number of vertices (logscaled)

AP
PR
HK

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

M
ax

im
um

 O
B

D
D

 s
iz

e

Number of vertices (logscaled)

AP
PR

Fig. 1. Experimental results of the implicit augmenting-path-based matching algorithm
(AP), the implicit push-relabel-based algorithm (PR), and HK on grid graphs

Implicit Computation of Maximum Bipartite Matchings 483

on structured but partially random graphs as rope graphs, and on graphs which
originate from a real application.

Results. The experiments show that both implicit algorithms perform nearly
identically and are very fast and space efficient on grid graphs (see Fig. 1). They
outperform HK w.r.t. the running time with more than one million vertices. The
space requirement of the implicit algorithms is significantly smaller on every grid
graph. The memory limit of 2 GB is exceeded by HK on graphs with more than
eight million vertices while AP and PR use only few megabytes memory even
on grid graphs with more than a billion vertices. Grid graphs demonstrate the
potential of implicit matching algorithms but are very simple graphs. On graphs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000 10000 100000 1e+006 1e+007

S
ec

on
ds

Number of vertices (logscaled)

AP
PR
HK

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 1.6e+007

 1.8e+007

 10 100 1000 10000 100000 1e+006 1e+007

M
ax

im
um

 O
B

D
D

 s
iz

e

Number of vertices (logscaled)

AP
PR

Fig. 2. Experimental results of the implicit augmenting-path-based matching algorithm
(AP), the implicit push-relabel-based algorithm (PR), and HK on rope graphs

484 B. Bollig, M. Gillé, and T. Pröger

from the class rope AP outperform both PR and HK (see Fig. 2). The space
requirement of AP and PR correspond to the running time of each algorithm. The
fast algorithm deals with small OBDDs and in the case of the slower algorithm
the size of the OBDDs is large. Our experiments on real-world graphs indicate
that PR can not be used for practical instances. Even on small input graphs
we were not able to execute PR because of our memory limitation. HK yields
better running times but the running times of AP are competitive (see Fig. 3)
and we were able to observe that the real space usage is slightly better than
in the explicit case. Summarizing, our implicit augmenting-path-based matching
algorithm performs very well on more complex but sufficiently structured graphs.

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
ec

on
ds

 (
lo

gs
ca

le
d)

Graph Number

AP
HK

 10000

 100000

 1e+006

 1e+007

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
ax

im
um

 O
B

D
D

 s
iz

e
(lo

gs
ca

le
d)

Graph Number

AP

Fig. 3. Experimental results of the implicit augmenting-path-based matching algorithm
(AP) and HK on real-world instances

Implicit Computation of Maximum Bipartite Matchings 485

Currently we have no way of telling whether our real-world instances are specially
structured or not. Though HK computes faster than AP on real world instances,
the gap between both algorithms is not so large as to rule out the possibility of
using the latter algorithm for sufficiently structured practical problems.

Concluding Remarks

Our experiments indicate that especially the augmenting-path-based approach
performs much better than in the worst case on practical problem instances and
could be helpful to handle very large structured graphs in reasonable time and
space. Many practical implementations usually start with a heuristic compu-
tation of a matching and continue by improving the current solution as long
as possible, one direction of future work is to investigate whether our implicit
algorithms could benefit from initialization heuristics. The maximal number of
Boolean variables on which a function depends dominates the worst case bounds
for the running time and the space usage. The maximal matching algorithm used
in our experiments uses only a polylogarithmic number of functional operations
but works on 6n Boolean variables [9]. It may be worthwhile to investigate the
influence of the implicit maximal matching algorithm on the running time of our
maximum bipartite matching algorithms by choosing alternative heuristics.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

2. Berge, C.: Two theorems in graph theory. Proc. of National Academy of Science
of the USA 43(9), 842–844 (1957)

3. Bloem, R., Gabow, H.N., Somenzi, F.: An Algorithm for Strongly Connected Com-
ponent Analysis in n log n Symbolic Steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.)
FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

4. Bollig, B.: Exponential space complexity for OBDD-based reachability analysis.
Information Processing Letters 110, 924–927 (2010)

5. Bollig, B.: Exponential Space Complexity for Symbolic Maximum Flow Algorithms
in 0-1 Networks. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 186–197. Springer, Heidelberg (2010)

6. Bollig, B.: On Symbolic OBDD-Based Algorithms for the Minimum Spanning Tree
Problem. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509,
pp. 16–30. Springer, Heidelberg (2010)

7. Bollig, B.: On Symbolic Representations of Maximum Matchings and (Un)directed
Graphs. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp.
286–300. Springer, Heidelberg (2010)

8. Bollig, B., Löbbing, M., Wegener, I.: On the effect of local changes in the variable
ordering of ordered decision diagrams. Information Processing Letters 59, 233–239
(1996)

9. Bollig, B., Pröger, T.: An Efficient Implicit OBDD-Based Algorithm for Maximal
Matchings. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183,
pp. 143–154. Springer, Heidelberg (2012)

486 B. Bollig, M. Gillé, and T. Pröger

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Computers 35, 677–691 (1986)

11. Charles, D.X., Chickering, M., Devanur, N.R., Jain, K., Sanghi, M.: Fast algorithms
for finding matchings in lopsided bipartite graphs with applications to display ads.
In: Proc. of ACM Conference on Electronic Commerce 2010, pp. 121–128 (2010)

12. Cherkassky, B.V., Goldberg, A.V., Martin, P., Setubal, J.C., Stolfi, J.: Augment
or push: a computational study of bipartite matching and unit-capacity flow algo-
rithms. ACM Journal of Experimental Algorithmics 3, 8 (1998)

13. Feigenbaum, J., Kannan, S., Vardi, M.V., Viswanathan, M.: Complexity of Prob-
lems on Graphs Represented as OBDDs. In: Meinel, C., Morvan, M. (eds.) STACS
1998. LNCS, vol. 1373, pp. 216–226. Springer, Heidelberg (1998)

14. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proc. of SODA, pp. 573–582. ACM Press
(2003)

15. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connec-
tivity related problems. Algorithmica 50, 120–158 (2008)

16. Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, E.: Using interior-point
methods for fast parallel algorithms for bipartite matching and related problems.
SIAM Journal on Computing 21(1), 140–150 (1992)

17. Goldberg, A.V., Plotkin, S.K., Vaidya, P.M.: Sublinear time parallel algorithms for
matching and related problems. Journal of Algorithms 14(2), 180–213 (1993)

18. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0-1 net-
works. Formal Methods in System Design 10, 207–219 (1997)

19. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

20. Iwano, K.: An improvement of Goldberg, Plotkin, and Vaidya’s maximal node-
disjoint paths algorithm. Information Processing Letters 32, 25–27 (1989)

21. Monien, B., Preis, R., Diekmann, R.: Quality matching and local improvement for
multilevel graph-partitioning. Parallel Computing 26, 1609–1634 (2000)

22. Möhring, R.H., Müller-Hannemann, M.: Complexity and modeling aspects of mesh
refinement into quadrilaterals. Algorithmica 26, 148–172 (2000)

23. Negruseri, C.S., Pasoi, M.B., Stanley, B., Stein, C., Strat, C.G.: Solving maximum
flow problems on real world bipartite graphs. In: Proc. of ALENEX, pp. 14–28.
SIAM (2009)

24. Sawitzki, D.: Implicit Flow Maximization by Iterative Squaring. In: Van Emde
Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS,
vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

25. Sawitzki, D.: Exponential Lower Bounds on the Space Complexity of OBDD-Based
Graph Algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

26. Sawitzki, D.: The Complexity of Problems on Implicitly Represented Inputs. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)

27. Sawitzki, D.: Implicit simulation of FNC algorithms. ECCC Report TR07-028
(2007)

28. Spencer, T.H.: Parallel Approximate Matching. Parallel Algorithms and Applica-
tions 2(1-2), 115–121 (1994)

29. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and
Applications. SIAMMonographs on Discrete Mathematics and Applications (2000)

30. Woelfel, P.: Symbolic topological sorting with OBDDs. Journal of Discrete Algo-
rithms 4(1), 51–71 (2006)

A Game-Theoretic Approach for Balancing the

Tradeoffs between Data Availability and Query
Delay in Multi-hop Cellular Networks

Jin Li1,2,3, Weiyi Liu1, and Kun Yue1

1 School of Information Science, Yunnan University, Kunming, China
2 School of Software, Yunnan University, Kunming, China

3 Key Laboratory in Software Engineering of Yunnan Province, Kunming, China
ljatynu@gmail.com

Abstract. In this paper, the selfish caching problem in multi-hop cel-
lular networks (MCNs) is formulated as a non-cooperative game: data
caching game. Towards balancing the tradeoffs between data availability
and query delay in MCNs, an incentive mechanism based upon a pay-
ment model is set up for data caching game. The data caching game is
proved to be a potential game. Thus, for the game, pure Nash equilibra
can be obtained and the best response dynamics converge to a pure Nash
equilibrium. Moreover, by properly setting the payoff distribution rule,
caching proxies have incentive to or not to cache the same data to some
extent. Thereby, the performance of data availability and query delay
can be tuned in an adjustable-way, which results in a desirable service
performance that service provider intends to achieve.

Keywords: multi-hop cellular networks, data availability, query delay,
potential game, pure Nash equilibria.

1 Introduction

In recent years, multi-hop cellular networks (MCNs) which unified cellular and
Ad-Hoc Network for providing higher performance service have received increas-
ing attention [1][2]. Generally, a MCN is composed of two components: (1) the
infrastructure component: the part that direct link between the BS and mobile
node, (2) the ad hoc component: the part that delivers the data from the proxies
to the query node. Since the 3G radio resources are limited, it is more economical
that some proxies are provided incentives to cache the data items while query
nodes access these items from proxies via the ad hoc link. Thereby, the load of
cellular network can be reduced while improving the wireless data access latency.

Up to now, Several architectures of MCNs that unified the cellular and Ad-Hoc
Network have been proposed. Caching techniques have been widely used in these
architectures to provide higher data rate service, enlarging network coverage and
balancing traffic load [3][4]. Most of these approaches address the issue that how
to design effective scheme of replica allocation or caching placement to minimize
total data cost and improve data availability in ad hoc network. Zhang et al.[8]

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 487–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

488 J. Li, W. Liu, and K. Yue

firstly proposed the problem of balancing the tradeoffs between data availability
and query delay in MANETs. Several schemes were proposed to balance the
tradeoffs between data availability and query delay under different system set-
tings and requirements. However, these approaches assume nodes cooperate with
each other. Sharing and coordination of cached data among multiple nodes can
be allowed to improve the system performance. Thus, they cannot be applied
to the MCNs scenario where each node is selfish and cooperation among nodes
cannot be taken for granted.

The problem of how to stimulate cooperation among selfish nodes in a multi-
hop cellular networks has received significant attention recently. In [6], distributed
data replication in networks of selfish nodes was modeled as a non-cooperative
game. The price of anarchy (POA) in different underlying network topologies was
investigated. However, this work does not consider storage capacity limits on the
nodes. In [5] Goemans et al. proposed market sharing games to analyze content
distribution on ad hoc wireless network. They studied the performance of Nash
equilibrium in terms of a social optimum and proved that the POA of market
sharing games can be upper bounded by a factor of 2. In [8], the authors studied
the caching problem in ad hoc network under a flash-crowd scenario. The caching
problem was casted as an anti-coordination game and efficient caching strategies
for nodes were derived.

Although the existing research work achieved some success on analyzing and
enhancing the performance of data services of cooperative or noncooperative en-
vironments, some basic questions still remain unanswered. There are two impor-
tant measure metrics with respect to the performance of data services in MCNs:
data availability (DA) and query delay (QD) [8]. The DA measures how much
query rates can be satisfied by a part of ad hoc network in MCNs. Meanwhile,
QD is defined as the minimized number of hops from a query node i to proxy
source j. Obviously, it is desired for service provider to provide high rate of DA
and reduce the QD as well. Generally speaking, caching can be used to achieve
this goal. However, the situation that caching can be used to both improving DA
and reducing QD bases on an assumption that there are plenty of storage space
in proxy nodes. Unfortunately, proxy nodes are also mobile nodes and only have
limited storage space, bandwidth and power, and hence it is impossible for one
proxy node caches all requests. Therefore, Therefore, it is necessary to balance
the tradeoffs between DA and QD.

Moreover, since mobile nodes typically do not belong to the same authority
and may not pursue common goals, consequently, fully cooperative behaviors,
such as unconditionally caching and forwarding of data, cannot be guaranteed.
The selfishness of nodes increases the complexity of the problem. Thus, how
to design an incentive mechanism of caching for selfish proxy nodes so that
the tradeoffs between DA and QD can be well balanced? This is an important
problem need to be addressed for successfully deploying MCNs.

Motivated by the preceding, in this paper, the selfish caching problem in
MCNs is formulated as a non-cooperative game, namely, data caching game
(DCG). Towards the problem of balancing the tradeoffs between DA and QD

A Game-Theoretic Approach for Balancing the Tradeoffs 489

in MCNs, an incentive mechanism based upon a payment model is carefully set
up. By constructing a global potential function, DCG built upon the payments
model is proved to be a class of potential game [9]. Thus, DCG possesses some
particularly desirable properties. For example, a pure-strategy Nash equilibrium
(NE) always exists and the best response dynamics converge to a pure NE.
Furthermore, a tuning factor was incorporated into the caching payment model.
By adjusting the factor, proxy nodes have incentive to or not to cache the same
data to some extent. Thereby, the performance of DA and QD can be tuned
based on the factor in a dynamical way, which finally results in a desirable
performance of data service that service provider intends to achieve.

The rest of our paper is organized as follows. In section 2, we formulate the
problem of selfish caching in MCNs as a noncooperative game. In section 3,
towards balancing the tradeoffs between data availability and query delay, a
payment model with an incentive factor of sharing caching is carefully set up.
In section 4, we prove that DCG is a class of potential game. In section 5, we
evaluate the proposed schemes through simulations. Finally, we conclude the
paper in Section 6.

2 Problem Formulations

In MCN-type networks, such as UCAN [2], a mobile node has both 3G cellular
link and IEEE802.11-based ad hoc links. The 3G base station forwards data for
destination nodes with poor channel quality to proxy nodes with better chan-
nel quality. The proxy nodes then forward the data to appropriate destinations
through ad hoc network, thereby the data throughout are improved. In addition,
since the 3G radio resources are limited, it is ineffective to repeatedly transmit
large quantities of data from base station to query nodes. It is more economical
that some mobile nodes (proxies) are provided payoff incentives to cache the
popular data items while other nodes access these data items from proxies via
the ad hoc network. Thereby, the load of cellular network can be reduced while
improving the wireless data access latency.

We assume that there is a total set of data items D = {d1, d2, ..., dn}, |D| = n.
Each data item dk occupies ck size of storage space. The data access pattern of
nodes is based on Zipf distribution. In the Zipf distribution, the access probabil-
ity of the kth(1 ≤ k ≤ n) data item is satisfied as: qk = 1/kθ where (0 ≤ θ ≤ 1).

All nodes are categorized into two groups: proxy nodes and query nodes. Query
nodes, denoted by QN = {qn1, qn2, ..., qnm}, |QN | = m, issue requests to access
data items. The proxy nodes, denoted by PN = {pn1, pn2, ..., pnl}, |PN | = l,
are given incentive to cache requesting data items and get rewards from service
provider when they satisfied the queries of query nodes. Each proxy node pni

allocates Bi size of storage space for caching data items. Since the caching space
of a proxy node is limited, a feasible caching data set of proxy node pni is a set
CDi ⊆ D which satisfies

∑
dk∈CDi

ck ≤ Bi.
There are two performance metrics wanted to be optimized: (1) data availabil-

ity (DA), (2) query delay (QD). For service providers, it is desirable to provide
high rate of DA and reduce the QD as well. Generally speaking, data caching

490 J. Li, W. Liu, and K. Yue

can be used to achieve this goal. To be specific, by caching data at mobile nodes
in ad hoc networks, DA can be improved since there are multiple replicas of data
items cached in ad hoc networks and the probability for a query node receiving a
copy of data is high. At the same time, caching also reduce QD because a query
node possibly get the request from nearby caching nodes.

However, the situation that caching can be used to both improving DA and
reducing QD bases on an assumption that there are plenty of storage space in
proxy nodes. Unfortunately, proxy nodes are also mobile nodes and only have
limited storage space, and hence it is impossible for one proxy node caches all
requests. Therefore, it is necessary to balance the tradeoffs between DA and QD.
Specifically, caching most data locally can reduce the QD, but it will also reduce
DA since many proxy nodes may cache the same data locally, while some data
are not cached by anyone. To increase the DA, proxy nodes should not cache
the same data that other proxy nodes already cache. However, this may increase
the QD since some nodes may not be able to be satisfied its request locally.

Moreover, in a real application scenario, since the proxy nodes often belong
to different authorities, they have no incentive to cooperate with each other and
may act selfishly to maximize their own caching payoff. Therefore, game theory
[11] is a proper and flexible tool to analyze the interactions among selfish users
is an excellent tool to model the selfish caching scenario in MCNs and can be
used in designing efficient caching control schemes.

In this paper, the selfish caching scenario is formulated as the data caching
game (DCG). A DCG is a tuple 〈PN, (Ai)pni∈PN , (ui)pni∈PN 〉 where (1)(player
set) PN = {pn1, ..., pnl} is a finite set of players. Each player is a selfish proxy
node. (2)(strategies space) in a DCG, a feasible caching data set CDi is defined
as a pure strategy (action) ai ∈ Ai of pni. Ai is a finite set of caching strategies
(actions) of player i. Each vector a = (a1, ..., al) ∈ A1 × ...×Al is called a pure-
strategy caching profile. A pure-strategy profile is often denoted by a = (ai,a−i),
where ai is a strategy of player i and a−i is the strategy vector of other l − 1
players. (3)(payoff function) ui(a) : a �→ - is a payoff function for pni which
measures the revenues that pni receives from service provider at a profile a.

The main objective of service provider is to be provided with a caching pay-
ment schemes. Thereby, the DA and QD performance can be tuned in an ad-
justable way according to the requirements of different non-cooperative settings.
To this end, in this paper, an system-wide solution to selfish caching problem is
implemented by using a game-based approach.

3 The Design of Caching Payment Mechanism

In a DCG with selfish proxy nodes, each proxy only aims to maximize his own
payoff by choosing an optimal strategy. Therefore, by carefully setting up the
caching payment mechanism of the DCG, each proxy has an incentive to behave
as the system designer intends, which results in a desired outcome.

Generally, the problem of selfish data caching can be considered as the follow-
ing resource allocation problems: there exists a set of proxies PN and a finite set
of data items D that are to be shared by the proxies. Each proxy pni is assigned

A Game-Theoretic Approach for Balancing the Tradeoffs 491

an action set ai ∈ 2D under the constraint of its storage space Bi. Therefore,
a proxy may have the option of selecting multiple data items. The payoff each
proxy received is defined as some fraction of the payoff garnered at each data
item the proxy is caching. The payoff garnered at a particular item depends
both on the number of proxy nodes which cache the same data item and the
query rate of the item. More formally, let a = (a1, ..., al) be a caching profile,
the payoff function of pni for the caching set ai is a separable payoff functions
and defined as follows:

ui(ai,a−i) =
∑

dk∈ai

ϕk

(
qk, n

k
a

)
(1)

where qk is the query rate for dk ∈ ai and the number of proxy nodes which cache
the item dk is denoted by nk

a. ϕk

(
qk, n

k
a

)
is referred to as the payoff distribution

rule at item dk.
In general, the payoff distribution rule should satisfies the properties: (1)(Non-

negative). ∀dk ∈ D, ϕk

(
qk, n

k
a

)
≥ 0 for any proxy pni. (2)(Increasing with query

rate). ∀dk, dk′ ∈ D, (qk′ ≥ qk) ∧ (nk′
a = nk

a) ⇒ ϕk′
(
qk′ , nk′

a

)
≥ ϕk

(
qk, n

k
a

)
.

For any proxy pni, pni receives more payoff for caching a data item with higher
query rate than a data item with lower query rate. (3)(Decreasing with sharing

caching). ∀dk, dk′ ∈ D, (qk′ = qk) ∧ (nk′
a ≥ nk

a) ⇒ ϕk′
(
qk′ , nk′

a

)
≤ ϕk

(
qk, n

k
a

)
.

For any proxy pni, if n
k′
a ≥ nk

a, pni receives more payoff for caching a data item
with nk

a than a data item with nk′
a .

Intuitively, if all nodes cache the similar data set, overall QD can be reduced,
since the query node can get its requests from nearby proxy node. However, due
to the limited storage space, it also lead to reduce the DA, since some data are
cached by proxy nodes, while some data are not cached by any nodes. On the
other hand, to increase the DA, proxy nodes should not cache the same data
that other proxy nodes have already cached. Obviously, this leads to increase
the QD since query nodes may not be able to access data locally.

In this paper, in order to control caching behavior of proxy nodes so as to
balance the tradeoffs between DA and QD, a tuning factor λ, which is called the
incentive factor of cache sharing, was incorporated into the payoff distribution
rule. By adjusting the factor, proxy nodes have incentive to or not to cache the
same data items to some extent. Thereby, the performance of DA and QD can be
tuned based on the tuning factor in a dynamical way, which result in a desirable
data service performance that service provider intends. Specifically, the payoff
function is defined as follows:

ui (a, λ) =

{
0, nk

a = 0∑
dk∈ai

ϕk

(
qk, n

k
a, λ
)
, nk

a > 0
(2)

where ϕk

(
qk, n

k
a, λ
)
is payoff distribution rule for data item dk and defined as

follows:

ϕk

(
qk, n

k
a, λ
)
= qk

(
nk
a

nk
a + λ

− nk
a − 1

(nk
a − 1) + λ

)
(3)

492 J. Li, W. Liu, and K. Yue

We note that two facts about the above payoff function: first, it is easy to verify
that the payoff function satisfies the basic properties for a caching payments
mechanism, thus, it is a feasible payoff function. Second, service provider can
adjust λ factor to balance the tradeoff between DA and QD. The fact is based
on the observations to the function : ϕ(n, λ) = n

n+λ − n−1
(n−1)+λ , (n = 0, 1, 2...).

As we can see from figure 1, when λ is set as a small number, such as 1, as n
increases, the function decreases fast. This means if a data is cached by more
than one nodes, each node then get less from the data item. Thereby, proxy
nodes have incentive to cache the data items that not cached by other nodes. In
contrast, service provider set the λ as a larger number, such as 10, it incentive
nodes to cache same data items with high rate.

(
,

)
n

Fig. 1. Payoff distribution function with the incentive factor of sharing caching

4 Data Caching Game

Classical game theory provides predictions of the behavior of selfish players in
the form of a Nash equilibrium. A Nash equilibrium, as a core solution to a
game, is a strategic profile where no node can increase its payoff by deviating
the profile unilaterally. If such a profile does exist, no caching node will move
from the profile by making a change on its caching data items. This will lead to
a stable profile and this profile is a reasonable output of a DCG. In the follows,
a pure-strategy Nash equilibrium is defined based on so called best response of
players.

Definition 1. A best response for player i to the pure-strategy profile a−i is
a pure strategy a∗i ∈ Ai such that ui(a

∗
i ,a−i) ≥ ui(ai,a−i) for all strategies

ai ∈ Ai.

Definition 2. A pure-strategy profile a = (a1, ..., al) is a pure-strategy Nash
equilibrium if, ∀pni ∈ PN , ai is a best response to a−i

With respect to the existence of Nash equilibria, Nash [10] proved that every
game with a countable number of players and strategy set has a mixed strategy

A Game-Theoretic Approach for Balancing the Tradeoffs 493

Nash equilibrium. However, in general, mixed Nash equilibrium only imply stable
probability distributions over profiles, not the fixed play of a particular joint
action profile. This type of uncertainty is unacceptable in many applications,
such as our selfish caching scenario. Instead, we focus on the game with pure
Nash equilibria. However, pure Nash equilibria does not exists in every game.

Moreover, in a real application scenario, a proxy node receives some payoff for
satisfying the requests from query nodes. Generally, the payoff of each data item
for each proxy node is a function of the number of cache requests it services. This
in turn depends on the number of proxy nodes which cache the same data item.
Hence, starting with a random caching strategy profile, each proxy node then
updates caching data items in response to the items cached by others. In every
step, if a node is not best-responding, it will switch its caching strategy to a
better response. This leads to a so called best-response dynamics. The dynamics
terminate when a Nash equilibrium is achieved. Thus, we need to answer another
question: whether the caching dynamics converges to a Nash equilibrium in a
DCG?

Potential games are a subclass of noncooperative games. They are charac-
terized as those games that admit a potential function, which is a real-valued
function on the action profile space. In a potential game, the change in a uni-
laterally deviating player’s utility is matched by the change in the potential
function. Since the potential game possesses many desirable properties, such as
the existence of pure Nash equilibria and the convergence of the best response
dynamics to a pure Nash equilibrium, recently, potential game has been used to
address many engineering problem [12][13].

In the follows, by constructing a global potential function, the data caching
game with payoff function given by (2) is proved to be a class of potential games.

Theorem 1 (DCG is a class of Potential Game). The data caching games
with payoff function given by (2) is a potential game.

Proof. To prove DCG is a potential game, we firstly define a potential function

given by follows. Below we define f
(
nk
a

)
:=

nk
a

nk
a+λ

Φ(a) =
∑
dk∈D

qk
(
f
(
nk
a

))
(4)

Let a = (ai,a−i) and a′ = (a′i,a−i) be the two pure-strategy profiles with only
difference of pni’s strategy. Note that at the profile a′, ∀dk ∈ a′i\ai, nk

a′ = nk
a+1

and ∀dk ∈ a′i ∩ ai, n
k
a′ = nk

a. Then we have

ui(a) =
∑

dk∈ai\a′
i

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
+

∑
dk∈a′

i∩ai

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
(5)

and

ui(a
′) =
∑

dk∈a′
i\ai

qk
(
f
(
nk
a + 1

)
− f

(
nk
a

))
+

∑
dk∈a′

i∩ai

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
(6)

494 J. Li, W. Liu, and K. Yue

respectively. We use Δu to denote the difference of the payoff of pni at the profile
a′ and a. By (5),(6), we have

Δu = ui(a
′)− ui(a)

=
∑

dk∈a′
i\ai

qk
(
f
(
nk
a + 1

)
− f

(
nk
a

))
+

∑
dk∈a′

i∩ai

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
−∑

dk∈ai\a′
i

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
+

∑
dk∈a′

i∩ai

qk
(
f
(
nk
a

)
− f

(
nk
a − 1

))
=

∑
dk∈a′

i\ai

qk
(
f
(
nk
a′ + 1

)
− f

(
nk
a′
))

−
∑

dk∈ai\a′
i

qk
(
f
(
nk
a′
)
− f

(
nk
a′ − 1

))
=

∑
dk∈a′

i\ai

qk
(
f
(
nk
a + 1

))
−

∑
dk∈a′

i\ai

qk
(
f
(
nk
a

))
+

∑
dk∈ai\a′

i

qk
(
f
(
nk
a − 1

))
−

∑
dk∈ai\a′

i

qk
(
f
(
nk
a

))
(7)

We use ΔΦ to denote the difference of the potential function value under the
profile a′ and a. Based on definition of potential function given by (4), we have
at the profile a′, ∀dk ∈ a′i\ai, nk

a′ = nk
a + 1, ∀dk ∈ ai\a′i, nk

a′ = nk
a − 1 and

∀dk ∈ a′i ∩ ai, n
k
a′ = nk

a.

ΔΦ = Φ(a′)− Φ(a)
=
∑

dk∈D

qk
(
f
(
nk
a′
))

−
∑

dk∈D

qk
(
f
(
nk
a

))
=

{ ∑
dk∈a′

i\ai

qk
(
f
(
nk
a′ + 1

))
+
∑

dk∈a′
i∩ai

qk
(
f
(
nk
a′
))

+
∑

dk∈ai\a′
i

qk
(
f
(
nk
a′ − 1

))}
−{ ∑

dk∈a′
i\ai

qk
(
f
(
nk
a′
))

+
∑

dk∈a′
i∩ai

qk
(
f
(
nk
a′
))

+
∑

dk∈ai\a′
i

qk
(
f
(
nk
a′
))}

=
∑

dk∈a′
i\ai

qk
(
f
(
nk
a′ + 1

))
−

∑
dk∈a′

i\ai

qk
(
f
(
nk
a′
))

+
∑

dk∈ai\a′
i

qk
(
f
(
nk
a′ − 1

))
−

∑
dk∈ai\a′

i

qk
(
f
(
nk
a′
))

= Δu
(8)

The equation (8) means that the function given by (4) is a potential function of
DCG. Hence, we conclude that DCG is a potential game.

Since DCGs are proved to be a class of potential games, DCGs obtain pure Nash
equilibra. Moreover, in DCGs the best response dynamics of proxies converges
to a pure Nash equilibrium.

5 Simulation Experiments

In this section, we investigate the effectiveness and efficiency of DCG-based
caching schema in a simulated scenario. We are interested in the convergence
of the best response dynamics of DCG to an approximate pure NE. We also
demonstrate that the tradeoffs between DA and QD in a MCN can be effectively
balanced in a adjustable way by adjusting the cache sharing incentive factor λ.

A Game-Theoretic Approach for Balancing the Tradeoffs 495

5.1 The Simulation Model and System Parameters

In the simulations, l proxy nodes and m query nodes are placed randomly in
a 10 × 10 square region. The radio range is set to be r. If two nodes i and
j are within the radio range, i.e. the distance between them is less than r,
they can communicate with each other. Each proxy node pni has a storage
space of bi. bi ∼ U(bmin, bmax) is an integer and follows the uniform distribution
between bmin and bmax. The data access pattern for query nodes follows the
Zipf distribution and different query nodes may have different hot data. The
actual query probability for the node pni accessing the data dk is given by:
qik = 1

((k+n−ηi)%n+1)θ
∑

n
j=1

1

jθ

where 0 < θ ≤ 1 and ηi ∼ [1, n − 1] is the offset

value of the most frequently query data index which means the most hot data
for pni is dηi , the second frequently accessed data is dηi+1, and so on. The
query rate qk for data item dk is then defined as qk =

∑m
i=1 qik i.e. the sum of

query probabilities for all query nodes accessing the dk. Each data item has a
size ck ∼ N(μ, σ2). The performance metrics evaluated in simulations are: Data
availability (DA) and Query Delay (QD). To be specific, total caching data which

service provider offloads onto the part of ad hoc network is the set
⋃l

i=1 CDi.
Meanwhile, the query rates satisfied by ad hoc networks are

∑
dk∈

⋃l
i=1 CDi

qk.

DA is then defined as
(∑

dk∈
⋃

l
i=1 CDi

qk

)/(∑
dk∈D qk

)
. When a query node

qni received a data item dk from a source proxy node, the minimized hops
for qni to get dk is denoted by mh(i, k) . The total QD is then defined as
QD =

∑m
i=1

∑
dk∈

⋃
l
i=1 CDi

mh(i, k) · qk.

5.2 Simulation Results

The Convergence to a Pure Nash Equilibrium. Figure 2 shows the average
number of steps required of each proxy to converge to a pure strategy Nash
equilibrium. Note that, by a step, we mean that the proxy changes to a different
set of items to cache in response to the action taken by other proxies. As we
can see, since the caching payoff of a proxy depends more heavily on the caching
strategies of other proxies when λ is set to be a smaller value than a larger one,
smaller λ results in the larger number of steps for a given number of proxies.

The Balancing of Tradeoffs between DA and QD. In figure 3, we evaluate
the effects of the factor λ to balancing the tradeoffs between DA and QD. As we
can see that as long as λ increases, the data availability is decreasing. The reason
is that when λ is set to be a larger value, all proxy nodes have incentive to cache
the data items with high query rate. Since the storage space of proxy nodes is
limited, some hot items are cached by proxy nodes and some items not cached
by any proxies. This finally results in a lower DA. At the same time, all proxy
nodes cache the similar data set, overall QD can be reduced, since the query node
can get its requests from nearby proxy node. In contrast, when λ is set to be a
small value, proxies have incentive to cache the different data items. Therefore,

496 J. Li, W. Liu, and K. Yue

Fig. 2. Average Steps of Convergence to a Nash equilibrium

(a) Data availability (DA) (b) Query Delay (QD)

Fig. 3. Balancing the tradeoffs between DA and QD

DA is increasing while overall QD is high because many accesses have to be
satisfied by querying far away proxies. Generally, according to the requirement
of application, by setting a proper λ, the tradeoffs between DA and QD can be
well balanced.

6 Conclusion

In this paper, the problem of selfish caching in MCNs is formulated as a game:
data caching game. Towards balancing the tradeoffs between data availability
and query delay in MCNs, an incentive mechanism based upon a payment model
is set up for data caching game. We prove that the data caching game is a class
of potential game. Thus, data caching game obtains pure Nash equilibria and
the best response dynamics converge to a pure Nash equilibrium. Simulation
results have demonstrated the convergence and performance of the proposed
approaches.

A Game-Theoretic Approach for Balancing the Tradeoffs 497

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (No.61063009,61163003), the Natural Science Foundation of
Yunnan Province (No. 2011FB020), the Research Foundation of the Educational
Department of Yunnan Province (No.2010Y251), the Key Discipline Foundation
of Software School of Yunnan University (2010KS01).

References

1. Li, X.J., Seet, B.-C., Chong, P.H.J.: Multihop cellular networks: Technology and
economics. Computer Networks 52(9), 1825–1837 (2008)

2. Luo, H., Meng, X., Ramjee, R., Sinha, P., Li, L.: The Design and Evaluation of
Unified Cellular and Ad Hoc Networks. IEEE Trans. Mob. Comput. 6(9), 1060–
1074 (2007)

3. Zhao, J., Zhang, P., Cao, G., Das, C.R.: Cooperative Caching in Wireless P2P
Networks: Design, Implementation, and Evaluation. IEEE Transactions on Parallel
and Distributed Systems 21(2) (2010)

4. Tang, B., Gupta, H., Das, S.R.: Benefit-Based Data Caching in Ad Hoc Networks.
IEEE Trans. Mob. Comput. 7(3), 289–304 (2008)

5. Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied
to content distribution in ad hoc networks. IEEE Journal on Selected Areas in
Communications 24(5), 1020–1033 (2006)

6. Chun, B.-G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubi-
atowicz, J.: Selfish caching in distributed systems: a game-theoretic analysis. In:
PODC 2004, pp. 21–30 (2004)

7. Michiardi, P., Chiasserini, C.-F., Casetti, C., La, C.-A., Fiore, M.: On a selfish
caching game. In: PODC 2009, pp. 284–285 (2009)

8. Zhang, Y., Yin, L., Zhao, J., Cao, G.: Balancing the Trade-Offs between Query
Delay and Data Availability in MANETs. IEEE Trans. Parallel Distrib. Syst. 23(4),
643–650 (2012)

9. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14,
124–143 (1996)

10. Nash, J.F.: Equilibrium points in n-person games. Proc. of National Academy of
Sciences 36, 48–49 (1950)

11. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)
12. Candogan, O., Menache, I., Ozdaglar, A.E., Parrilo, P.A.: Near-Optimal Power

Control in Wireless Networks: A Potential Game Approach. In: INFOCOM 2010,
pp. 1954–1962 (2010)

13. Marden, J.R., Arslan, G., Shamma, J.S.: Cooperative Control and Potential
Games. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39(6), 1393–
1407 (2009)

Proving Liveness Property under Strengthened

Compassion Requirements�

Teng Long1,2 and Wenhui Zhang1

1 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 School of Information Science and Engineering
Graduate University of China Academy of Sciences, Beijing, China

{longteng,zwh}@ios.ac.cn

Abstract. Deductive rules are useful for proving properties with fairness
constraints and there have been many studies on such rules with justice
and compassion constraints. This paper focuses on system specifications
with strengthened compassion that impose constraints on transitions in-
volving states and their successors. A deductive rule for proving liveness
properties under strengthened compassion is presented, and proofs of the
soundness and the relative completeness of the rule are also presented.

1 Introduction

Liveness properties are requirements that something good must eventually hap-
pen. A counterexample to such a property is typically a loop during which the
good thing never occurs. For avoiding acceptance of unrealistic loops in which
some process or action is infinitely ignored, fairness is needed for imposing re-
strictions on accepted runs on such models.

There are several different notions of fairness for dealing with different situ-
ations. Justice is a simple kind of fairness that may be represented by a set of
state formulas {ϕ1, ..., ϕn} and this fairness condition requires that each ϕi must
be true infinitely often along every path. In 1981, Lehmann, Pnueli and Stavi de-
fined justice requirements in [1], to describe the situation that some states must
be visited infinitely often. Compassion is a kind of generalizations of justice,
suggested by Pnueli and Sa’ar in [2], and may be represented by a set of pairs
of state formulas {〈ψ1, ϕ1〉, ..., 〈ψn, ϕn〉}. This fairness condition requires that
along every path, for each pair 〈ψ, ϕ〉, either the first part is true only finitely
many times or the second one is true infinitely often.

Justice and Compassion are regarded as weak and strong fairness in [3], both
of them constrain the fairness of actions. They can only deal with actions fairly

� Supported by the National Natural Science Foundation of China under Grant Nos.
60721061, 60833001, and the CAS Innovation Program.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 498–508, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Proving Liveness Property under Strengthened Compassion Requirements 499

in one context situation. On the other hand, the correctness of many population
protocols rely on stronger fairness constraints that may constrain actions in all
contexts situation, e.g., self-stabilizing leader election in ring networks [4] and
token circulation in rings [5]. Self-stabilizing algorithms [6], such as the former
one, can guarantee the robustness and fault-tolerance of distributed systems.

We study a kind of fairness based on compassion with additional constraints.
An important character of this kind of fairness is the constraint of transition
(involving states and their successors) which can deal with actions fairly in all
contexts situations. The fairness is referred to as strengthened compassion rep-
resented by a set of pairs of state formulas: {〈ψi, {ϕi1, ..., ϕimi}〉 | 1 ≤ i ≤ n}.
This specification requires that along every path, either ψi is true only finitely
many times or for all j, j ∈ [1..mi], ϕij (with 1 ≤ j ≤ mi) is true infinitely often
immediately after the state at which ψi holds.

For proving liveness properties, deduction rules have been presented in [7,2] for
systems with justice and compassion. In this paper, we also develop a deductive
rule SC RESPONSE for the strengthened compassion.

The rest of this paper is organized as follows. In Section 2, we present the
computation model with strengthened compassion requirements and compare it
with models under compassion. In Section 3, the deduction rule SC RESPONSE
is presented and its soundness and relative completeness are proved. Finally,
concluding remarks are presented in Section 4.

Related Works. There has been a lot of research work on fairness. In [8], a process
analysis toolkit for system analysis with different kinds of fairness was presented.
In [9], a method for finding auxiliary constructs as the effective premises of de-
ductive proof of liveness property was proposed. In [10], a method based on
analysis of maximal strongly connected components was presented. It involves
compassion requirements introduced by ranking abstraction. [11] extended the
method to native1 compassion. In [12], an automatic method to derive a deduc-
tive proof of liveness properties from symbolic model checking under compassion
was presented. Strengthened compassion is closely related to extreme fairness
[13] which restrict transitions by adding predicates. The difference between ex-
treme fairness and strengthened compassion (to be formally defined later) is that
strengthened compassion is defined with one-step pair of state formulas instead
of the directions in extreme fairness.

2 Computational Model

We present a computational model with strengthened compassion. We first
present a transition system without fairness constraints, and then add strength-
ened compassion constraints to the model.

1 The compassion requirements without the additional variable dec that comes from
ranking abstraction.

500 T. Long and W. Zhang

2.1 Discrete Transition Systems

A transition system is triple T = 〈V,Θ, ρ〉 where the components are as follows.

– V : A finite set of typed system variables - containing data and control
variables. A set of states (interpretation) over V is denoted by Σ. For a state
s and a system variable v ∈ V , we denote by s[v] the value assigned to v by
the state s.

– Θ : The initial condition - an assertion (state formula) characterizing the
initial states.

– ρ : The transition relation - an assertion ρ(V, V ′), relating the values V of
the variables in state s ∈ Σ to the values V ′ in a T -successor state s′ ∈ Σ.
If ϕ is a formula representing a set of states, then ϕ′ is the formula with each
v replaced by v′.

Computation. A computation of T is an infinite sequence of state σ : s0, s1, . . .,
satisfying the following requirements: (1) s0 |= Θ. (2) For each j = 0, 1, . . . , the
state sj+1 is in a T -successor of the state sj . For each v ∈ V , we interpret v as
sj [v] and v′ as sj+1[v], such that 〈sj , sj+1〉 |= ρ(V, V ′).

2.2 Fair Discrete Systems

A strengthened compassion constraint is specified as a pair 〈r, U〉 where r is an
assertion and U is a set of state assertions.

Strengthened Compassion. A computation σ of a discrete transition system T
is fair with respect to the strengthened compassion (abbreviated to scp) with
respect to a set of fairness constraints (state assertions) F = {〈ri, Ui〉|i = 1, ..., n}
with Ui = {ui,1, ..., ui,mi}, if for each i ∈ {1, ..., n}, σ contains only finitely many
ri-states, or σ contains infinitely many pairs of states, such that for all j ∈ [1..mi]:
(sk, sk+1), sk |= ri and sk+1 |= ui,j .

Discrete Systems with Strengthened Compassion Requirements. A discrete sys-
tem with strengthened compassion requirements (SCDS) D = (T, F) is a pair
of a discrete transition system and a set of strengthened compassion constraints
such that a fair computation of D is a scp computation of T with respect to F .

2.3 A Discussion on Different Kinds of Fairness

We explain the differences between compassion and strengthened compassion by
considering the transitions in Fig. 1.

– Compassion requirements constrains that infinitely enabled actions must
eventually be taken.

The compassion requirement: 〈x = 1 ∧ y = 0, x = 0〉 constrains that if
“x = 1 ∧ y = 0” is satisfied infinitely many times, then “x=0” must be
satisfied infinitely many times.

Proving Liveness Property under Strengthened Compassion Requirements 501

Fig. 1. Case 1

The infinite loop (S1S2S3S2)
ω satisfy this constraint. In such a loop, the

action “x=x-1” is enabled infinitely many times, and this action is taken
infinitely times.

The action “x=x-1” in the figure is enabled in both S1 and S2, however, the
compassion requirement does not distinguish the two different transitions.

– Strengthened compassion requirements constrains that transitions with an
infinitely enabled action must eventually be taken.

The strengthened compassion requirement 〈x = 1 ∧ y = 0, {x = 0}〉
constrains that if “x = 1 ∧ y = 0” is satisfied infinitely many times, then
“x=0” must be satisfied infinitely many times right after “x = 1 ∧ y = 0”.

The infinite loop (S1S2S3S2)
ω does not satisfy this requirement. In such a

loop, the action “x=x-1” is enabled infinitely many times at S1 and S2, but
the action “x=x-1” is never taken from S1 (which satisfies x = 1∧ y = 0) in

the loop (i.e., the transition S1
x=x−1−−−−−→ S4 is not taken).

3 Proving Properties

The liveness properties considered in this paper are response properties. Re-
sponse properties are an important and widely studied type of liveness proper-
ties [2,14]. A response property is of the form p ⇒ .q where p and q are state
assertions. A SCDS D satisfies the response property p ⇒ .q whenever a reach-
able state of D satisfies p at which every fair computation starts, it will reach a
q state at some point (including the starting point).

3.1 Proof Rule

In Fig. 2, we present proof rule SC RESPONSE that establishes the response
property p ⇒ .q for a SCDS D. The use of the rule requires a well-founded
domain A, and for each requirement 〈ri, Ui〉, a helpful assertion ϕi and a ranking
function Δi : Σ �→ W mapping states of D to elements of A.

R1 requires that any p-state is either a goal state (i.e., a q-state), or a (ri∧ϕi)-
state for some i ∈ {1, . . . , n}. R2 requires that any step from a (ri ∧ ϕi)-state
moves either directly to a q-state, or to another (rj∧ϕj)-state, or stays at a state

502 T. Long and W. Zhang

Let p, q be assertions.
Let A = (W,") be a well-founded domain.
Let {Fi = 〈ri, {ui,1, .., ui,mi}〉 | i ∈ {1, ..., n}} be a set of scp requirements.
Let {ϕi | i ∈ {1, ..., n}} be a set of assertions.
Let {Δi : Σ →W | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨
∨n

j=1(rj ∧ ϕj)

∀i ≤ n:
R2 ri ∧ ϕi ∧ ρ ⇒ q′ ∨

∨n
j=1(r

′
j ∧ ϕ′

j)

R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′
i ∧Δi = Δ′

i) ∨
∨n

j=1(r
′
j ∧ ϕ′

j ∧Δi " Δ′
j)

R4 ϕi ∧ ri ∧ ρ ∧ ϕ′
i ⇒ ¬u′

i,k for some 1 ≤ k ≤ mi

p ⇒ ♦q

Fig. 2. Proof Rule: SC RESPONSE

of the same level (i.e., a (ri∧ϕi)-state). R3 requires that any step from a ϕi-state
moves either directly to a q-state, or to another (rj ∧ ϕj)-state with decreasing
rank (Δi / Δj), or stays at a state with the same rank. R4 ensures that there
exists at least one ui,k such that these ui,k-states as the successors of (ϕi ∧ ri)-
states are not in ϕi. In other words, during the transitions among the states
inside of ϕi, there are no ri to ui,k transitions. R2−4 together with the definition
of strengthened compassion requirements guarantee that if an execution enters
a loop (consisting of states of some ϕi) without leaving it, then it violates the
strengthened compassion requirements, such that it must get out of all the unfair
loops and finally reach q-state (the goal state).

3.2 Soundness of the Rule

The soundness is established as follows. Suppose that the premises of the rule
are valid and the conclusion is not. We prove that this is a contradiction.

The conclusion is not valid means that there exists a computation σ =
s0, s1 . . . and a position j ≥ 0 such that sj |= p and no state sk, for k ≥ j
satisfies q. Without loss of generality, we take j = 0. According to premises of
R1 and R2 and the assumptions that no states satisfy q, then any state sw satis-
fies ri ∧ϕi for some i ∈ {1, ..., n}. Since there are only finitely many different i’s,
there exists a cutoff index h ≥ 0 such that for every i and w ≥ h, sw |= ri ∧ ϕi

if and only if σ contains infinitely many (ri ∧ ϕi)-positions.
Consider position w1 = h. Choose i1 to be the index such that sw1 |= ri1∧ϕi1.

According to R3 and the assumption that σ contains no q-positions, then either
ϕi1 holds at all positions w ≥ w1, or there exists a position w2 ≥ w1 and index
i2 such that sw2 |= ri2∧ϕi2 and Δi1(sw1) / Δi2(sw2). We argue that the former
case is not possible and then the latter leads to an infinite sequence of decreasing
values of Δ.

– If ϕi1 holds continuously beyond w1, then due to premise of R4, ri1 ∧ ϕi1

holding at w1 ≥ h implies that ri1∧ϕi1 (and therefore ri1) holds at infinitely
many positions without succeed infinitely many ui1,k-states. This violates the
requirement 〈ri1, {Ui1}〉.

Proving Liveness Property under Strengthened Compassion Requirements 503

– If there exists a position w2 ≥ w1 and index i2 such that sw2 |= ri2 ∧
ϕi2 and Δi1(sw1) / Δi2(sw2), we can continuously find i3, i4, . . . , such
that Δi1 (sw1) / Δi2(sw2) / Δi3 (sw3) / According to the definition of
well-founded domain, it is impossible to find infinite positions to satisfy the
decrease sequence.

Therefore there cannot exist a computation σ violating the response property
p ⇒ .q if the premises of rule are all valid.

3.3 Relative Completeness of the Rule

Completeness means that, whenever a response property p ⇒ .q is valid over a
SCDS D, there exists a well-founded domain and auxiliary constructs such that
the premises of the rule can be proved. The auxiliary constructs consist of a list
of helpful assertions ϕ1, . . . , ϕn and a list of ranking functions Δ1, . . . , Δn. We
only consider relative completeness, in the sense that the followings are assumed:
the premises of the rule can be proved when they are valid, and the language
for expressing the assertions is sufficient to express information (including the
expressions E(p S q) and E(p U q) defined below) that are necessary for proving
the validity of the premises.

Operators

1. For assertions p and q , the formula E(p S q) captures the set of states that
are reachable from a q-state by a p-path all of whose states, except possibly
the first, satisfy p. In this expression we use the since temporal operator S.

2. The formula E(p U q) captures the set of states that originate a path leading
to any q-state, such that all the states in the path, except possibly the last,
satisfy p. In this expression we use the until temporal operator U .

3. The formula EX(p) captures the set of states that are the immediate pre-
decessors of p-states.

Considering a SCDS D and a response property p ⇒ .q, we present an algorithm
which extracts a deductive proof according to the rule of a response property p ⇒
.q. It defines the values δ1, . . . , δm of the respective ranking functionsΔ1, . . . , Δm

on different sets of states, and identify an associated requirement 〈ri, Ui〉, and a
helpful assertion ϕi for each i ∈ {1, ..,m}. The algorithm Auxiliary constructs
is presented as Algorithm 1.

The expression accessibleD captures the set of all accessible states withD. The
expression of pend describes all states which are reachable from any accessible
p-state by a finite q-free path. prefix is a list that is supposed to be a prefix of
some δ. The list operation ∗ denotes the concatenation of two lists. ψ is the set of
Y-states without r-states which are the predecessors of uj-states. ϕ is the set of
ψ-states which can be reached by r, i.e. ϕ-states are those that form a strongly
connected subgraph of ψ. rem is the set of ϕ-states that are not r-states. The
new Y is the set of remaining states.

For each i, ϕi, fi, δi where Δi(s) = δi for s ∈ ϕi, are the auxiliary constructs
discovered at the respective stages of the execution of the algorithm. For each

504 T. Long and W. Zhang

Algorithm 1. Auxiliary constructs
1: m := 0
2: accessibleD := E(trueSΘ)
3: pend := accessibleD ∧E(¬qS(p ∧ ¬q))
4: rank SC(pend, [])

where the procedure rank SC is defined as follows.
procedure rank SC(subpart ,prefix)
d:integer
Y:assertion

5: Let d := 0
6: Let Y := subpart
7: FIX (Y)
8: Forall (〈r, {u1, u2, . . . , uk}〉 ∈ F) do
9: Let ψ = Y ∧ ¬(Y ∧ r ∧EX(Y ∧ uj))
10: if ψ ∧ r �= ∅ then
11: Let ϕ = E(ψS(ψ ∧ r))
12: if ϕ ∧ ¬E(ϕU(ϕ ∧ r)) = ∅ then
13: Let m=m+1
14: Let d=d+1
15: Let ϕm := ϕ
16: Let fm:= 〈r, {u1, u2, . . . , uk}〉
17: Let δm := prefix ∗ [d]
18: Let Y := Y ∧ ¬ϕ
19: Let rem := ϕ ∧ ¬r
20: if (rem �= ∅) then
21: rank SC(rem, prefix ∗ [d])
22: end if
23: end if
24: end if
25: end for
26: if (Y �= ∅) then
27: report “fail”
28: end if
29: end-Fix

strengthened compassion fi: 〈r, {u1, ..., uk}〉, we construct ϕi (the set of states
that formed an unfair loop that contains r-states which are not the predecessor
of uj-states for some j) with its own δi to measure the distance between the loop
to the goal states. The construction is as follows:

– S1: To start with, we deal with the pend states (line 4), i.e. Y0 = pend. By
the definition of pend, we know that there are no goal states in pend. The
first unfair loop we can find, is the one nearest to goal states (under the
strengthened compassion for the transition to goal states).

– S2: For each m, after removing an unfair loop ϕm, the new set of states we
will be dealing with is Y ′ = Y − ϕm (line 18). In Y ′, by calling rank SC
(line 21) recursively, we construct ϕm+1 and δm+1 (line 15,17).

Proving Liveness Property under Strengthened Compassion Requirements 505

– S3: According to the definition of strengthened compassion, the reason of
unfairness is the “bad”states: the r-states in the loop (line 12). Therefore we
remove r-sates from each ϕi (line 19), and then we deal with the remaining
part of ϕi recursively (line 20,21). The ranks of states in ϕi are with the
same prefix δi.

– S4: If all the pend states consist of unfair loops which can be constrained by
strengthened compassion to leave the pend states, then the liveness property
can be guaranteed. Otherwise, the liveness property fails (line 26,27).

Additional explanation of the algorithm is as follows.

– Line 7: FIX Y terminates when Y does not change after the specified com-
putation. After termination, it is at line 26 which prepares the final result
for S4.

– Line 9: Constructing ψ by removing the r states that enable the transition
r → uj from Y . Then there are no transitions of the form r → uj in ψi.
Then if r is part of a loop in ψ, then this loop must be unfair violating the
fairness requirement under consideration.

– Line 10: Checking whether there may exist such unfair loop by checking
whether there exist r-states in ψi.

– Line 11: Constructing assertion ϕ which consists of all of the reachable states
from r-states in ψi.

– Line 12: Checking whether ϕ is a loop by checking whether all of the ϕ-states
can reach r-states in ϕ.
If there is at least one state in ϕ that cannot reach the r-states in ϕ, it means
that ϕ is not a loop. Such that the distance of the unfair part of ϕ might not
be the right one or the constraint is not specific enough. Then we go back
to line 8 and consider another strengthened compassion requirement.
If it is a loop, then it is the unfair one that is to be denoted ϕm and to be
assigned the value of rank δm in the subsequent actions.

– Line 13-17: Constructing the helpful assertion ϕm, the strengthened com-
passion constraint fm and the distance measure δm, respectively.

– Line 18-22: Constructing the new Y for the use by S2, and preparing the
recursive call for S3.

Validity of the Algorithm. For every Y at different levels of the recursive
calls of the algorithm, if there exist a fairness constraint 〈r, {u1, u2, . . . , uk}〉 and
some j, such that there exists at least one r-state which is not the predecessor
of uj-states, then this fairness constraint is sufficient to guarantee that it is not
possible to stay at ϕ-states (the reachable states from r-states) infinitely often.

Otherwise, if during all fairness constraints, there is no such j exist, the ex-
ecution of the model are not required to leave these r-states2, and hence the
response property is not valid.

2 Following the tradition of [10], every state is assumed to have a loop to itself, and
every state must be constrained by some fairness requirement in order to force the
progress of computations of such a system model.

506 T. Long and W. Zhang

Proof of the Completeness. The above arguments implies that if the response
property is valid, the algorithm will terminate properly without reporting “fail”,
i.e. Y is decreased to the empty set at each levels of the algorithm in the recursive
computation of ϕi, fi and Δi. We consider in turn each of the premises and show
that it holds for the extracted constructs ϕi, fi and Δi with i ≤ m. Clearly, we
have {f1, ..., fm} ⊆ F . If Fl ∈ F is not in {f1, ..., fm}, we may add fm+1 = Fl

to the set and let ϕm+1 be false and Δm+1 be the empty list. If fl1 , ..., flk are
the same as Fl for some l, for technical reason, we make k copies of Fl such that
each corresponds to one element of {fl1 , ..., flk}. Replacing Fl with k-copies does
not change the contents of the system description. Then we may assume that
m = n (the number of fairness requirements).

1. Premise of R1 claims that every p-state s satisfies q or rj ∧ ϕj , for some
j ∈ [1..n]. Indeed, if s does not satisfy q, it belongs to the pending graph
(i.e., the initial Y , denoted hereafter by Y0), and since all Y0-states are
divided and removed after the algorithm, s must be a part of the removed
ones, it means that s belongs to some rj ∧ ϕj .

2. Premise of R2 requires that every immediate successor of s that satisfies
ri ∧ ϕi must satisfy q or rj ∧ ϕj for some j ∈ [1..n]. As mentioned before,
s belongs to Y0, and its successor sb must satisfy q or belong to Y0. Similar
to the situation in premise of R1, we can get that sb must belong to some
rj ∧ ϕj .

3. Premise of R3 considers a state sa that satisfies ϕi. Consider a successor
sb. It requires that sb satisfies q, or ϕi and has the same value as Δi(sa),
or satisfies rj ∧ ϕj for some j and has Δj(sb) ≺ Δi(sa). According to the
construction, every ϕi-state s has a rank Δi(s) and ϕi-state can be reached
from a ri-state by a finite ϕi-path π.

– If sb is a q-state, then it is acceptable.
– If sb is in Y , by the definition of Y = ϕi + Y ′ (Y ′ is not reachable from

states in ϕi) and the construction of ϕi, we know that sb is in ϕi.
– If sb is in Y0 - Y , such that sb must have been removed from Y0 in some

earlier stage, satisfy rj ∧ ϕj with Δj(sb) ≺ Δi(sa) for some j < i.

4. Premise of R4 requires that at least one type of transitions from ri to ui,k

cannot be taken from ri-states in ϕi. By the definition of strengthened com-
passion , it satisfies this condition.

The above arguments proves the completeness, i.e., whenever a response property
is valid, there exist auxiliary constructs for proving the property.

3.4 Dealing with Systems with Infinite Number of States

For dealing with infinite state systems, in addition to the above algorithm for
constructing helpful assertions and ranks, we have to apply abstraction and
concretization. The basic steps for proving the property is as follows

Proving Liveness Property under Strengthened Compassion Requirements 507

– Abstracting the program to a finite state one
– Constructing the helpful assertions and ranks
– Concretizing the constructs
– Proving the property by using the proof rule

The main focus of this paper is the second and the fourth issues. An example
with non-deterministic choice [15] to demonstrate the use of all of the above
steps can be found in [16].

4 Concluding Remarks

Strengthened compassion requirements have been studied. This kind of require-
ments has been compared with compassion requirements, which shows the differ-
ence between the expressive powers of these two kinds of fairness requirements.
A deductive rule SC RESPONSE for proving response properties with such re-
quirements has been presented, together with proofs of the soundness and the
relative completeness of the rule.

References

1. Lehmann, D.J., Pnueli, A., Stavi, J.: Impartiality, Justice and Fairness: The Ethics
of Concurrent Termination. In: ICALP 1981, vol. 115, pp. 264–277. Springer, Hei-
delberg (1981)

2. Pnueli, A., Sa’ar, Y.: All You Need Is Compassion. In: Logozzo, F., Peled, D.A.,
Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 233–247. Springer, Heidelberg
(2008)

3. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977)

4. Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-
State Anonymous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing Population Pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

7. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput.
Sci. 83(1), 91–130 (1991)

8. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under
Fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

9. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Inf. Com-
put. 163(1), 203–243 (2000)

10. Balaban, I., Pnueli, A., Zuck, L.D.: Modular ranking abstraction. Int. J. Found.
Comput. Sci. 18(1), 5–44 (2007)

11. Long, T., Zhang, W.: Auxiliary Constructs for Proving Liveness in Compassion Dis-
crete Systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 276–290. Springer, Heidelberg (2010)

508 T. Long and W. Zhang

12. Balaban, I., Pnueli, A., Zuck, L.D.: Proving the Refuted: Symbolic Model Checkers
as Proof Generators. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency,
Compositionality, and Correctness. LNCS, vol. 5930, pp. 221–236. Springer, Hei-
delberg (2010)

13. Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: STOC,
pp. 278–290 (1983)

14. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Response. In:
Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 279–361.
Springer, Heidelberg (2010)

15. Main, M.G.: Complete proof rules for strong fairness and strong extreme fairness.
Theor. Comput. Sci. 111(1&2), 125–143 (1993)

16. Long, T., Zhang, W.: Proving liveness property under strengthened compassion re-
quirements. Technical Report, ISCAS–SKLCS–12–01, Institute of Sofware, Chinese
Academy of Sciences (2012), http://lcs.ios.ac.cn/~zwh/tr/

http://lcs.ios.ac.cn/~zwh/tr/

Realizing Monads in Interaction Nets

via Generic Typed Rules

Eugen Jiresch and Bernhard Gramlich

Institute for Computer Languages
Vienna University of Technology

Abstract. Interaction net systems are a model of computation based
on graph rewriting. We extend interaction rules with generic rules, thus
adding a form of higher-order functions. In addition, we propose a simple
type system in order to appropriately restrict the matching of generic
rules. Finally, we show how the combination of these features, i.e., generic
typed rules, can be used to model impure functions in interaction nets
via monads in an intuitive and simple manner.

1 Introduction

Interaction nets are a programming paradigm based on graph rewriting. Pro-
grams are graphs (nets), and their execution is modeled by rewriting the graph
based on node (agent) replacement rules. This simple system is able to model
both high- and low-level aspects of computation: its visual notation can even
show properties of programs that are hard to obtain from a textual represen-
tation [24]. Moreover, interaction nets enjoy several useful properties such as
uniform confluence and locality of reduction: these ensure that single computa-
tional steps in a net do not interfere with each other, and thus may be executed in
parallel. Another important aspect is that interaction nets share computations:
reducible expressions cannot be duplicated, which is beneficial for efficiency in
computations.

Interaction nets can be considered a pure, side effect free language. Our goal is
to provide an extensible framework for interaction nets that handles various side
effects such as I/O, exception handling or state manipulation. In [23], Mackie
suggests the adaptation of monads to interaction nets to solve this problem1.
However, monads are based on higher-order functions and abstract datatypes,
which are not supported by interaction nets. The restricted form of interaction
rules does not allow for a sufficiently general definition of the monadic operators.

In this paper, we attempt to remove this deficiency by introducing generic
agents and rules. Essentially, a generic rule pattern is a pair of one concrete
agent and one generic agent that represents an arbitrary agent (similar to a
function variable in the definition of a higher-order function). Such rules have

� The author was supported by the Austrian Academy of Sciences (ÖAW) under grant
no. 22932 and by the Vienna PhD School of Informatics.

1 A different approach to side effects, in particular I/O, can be found in [10].

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 509–524, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

510 E. Jiresch and B. Gramlich

already appeared in previous papers on interaction nets. However, we are not
aware of any result on the preservation of uniform confluence in the presence of
generic rules. Our contributions can be summarized as follows:

– A formal definition of generic rules, introducing a form of higher-order func-
tions and partial evaluation (currying) to interaction nets.

– Appropriate constraints on the usage of generic rules in order to preserve
uniform confluence.

– A simple type system to suitably restrict rule matching in the new setting.
– Examples of modeling monads in interaction nets with the above extensions.

In Section 2, we give a short introduction to interaction nets and discuss side
effects and monads to motivate generic rules. Section 3 defines generic rules
and constraints. In Section 4, we define rule types and show how they can be
used to restrict matching. We then discuss the application of these extensions in
Section 5. Finally, we conclude and discuss related work in Section 6. Additional
examples can be found in the Appendix.

2 Preliminaries

2.1 Interaction Nets

Interaction nets (INs) have been introduced in [18]. A net is a graph consisting
of agents (nodes) and connections or wires (edges) between them. Every agent
has a label and an arity, denoting the number of wires that may be connected
to it. An agent A of arity n has n+ 1 ports, consisting of exactly one principal
port (denoted by the arrow) and n auxiliary ports :

A

x1 . . . xn

(agents) x1 y1

... A B ...

xn ym

(rules)

&' ⇒

x1 y1

... N

xn ym

...

Computation is modeled by rewriting the graph, which is based on interaction
rules. These rules replace two nodes of an IN which are connected via their
principal ports by some net N . We refer to two such nodes as active pair or
redex. The two nodes of an active pair are also called active agents. We call the
free (i.e., unconnected) ports of a net its interface. Interaction rules preserve this
interface: no (free) ports are added or removed during rule application.

We will represent interaction rules textually as A &' B ⇒ N , where A &' B
represents the active pair on the left-hand side (LHS), andN the net on the right-
hand side (RHS). If the RHS is not of importance for an argument, we may just
write A &' B. We write A ∼ B to denote a specific active pair/redex (which is
part of some net).2 A net containing A ∼ B as a subnet can be rewritten by a
rule A &' B.

2 Note that both notations A �� B and A ∼ B are interpreted modulo commutativity.

Realizing Monads in Interaction Nets via Generic Typed Rules 511

An interaction net system (INS) is a set of rules R that are built from a
signature Σ of agents such that there is at most one rule for any given active
pair. We denote the reduction relation induced by a set of rules R by ⇒R.

Proposition 2.11 (uniform confluence, Lafont [18]). Let N be an interac-
tion net. If N ⇒ P and N ⇒ Q where P �= Q, then there exists a net R such
that P ⇒ R ⇐ Q.

Three properties of interaction nets are sufficient for uniform confluence [19]:

1) Linearity: Ports cannot be erased or duplicated via interaction rules.
2) Binary interaction: Agents can only be rewritten if they form an active

pair, i.e., if they are connected via their principal ports.
3) No ambiguity: For each active pair S ∼ T there is at most one rule that

can rewrite S ∼ T . If S and T are the same agent, then rewriting S ∼ T
must yield the same net as rewriting T ∼ S.3

Uniform confluence ensures that the order of performing multiple computational
steps does not affect the final result of the computation. As there is no interfer-
ence between reductions, rules may even be applied in parallel.

2.2 Side Effects, Monads and Generic Rules

INSs can be considered a pure, side effect free programming paradigm. As soon as
interaction rules incorporate functions with side effects such as I/O or exception
handling, uniform confluence (and, hence, parallel evaluation) is generally lost.

Therefore, we decided to adapt an existing solution for our purposes: Monads
have been used in the functional language Haskell with great success to model all
kinds of impure functions. Originally being a notion from category theory, mon-
ads were adapted to handle side effects in functional programs, cf. e.g. [26,16,27].
A monad is a triple of an abstract datatype M a and two (higher-order) functions
operating on this type:

return :: a -> M a

>>= (bind) :: M a -> (a -> M b) -> M b

M adds a sort of wrapper to some value x of type a, potentially containing ad-
ditional data or functions. return x wraps a value x without any additional
computations. bind handles sequentialization of function applications and their
potential side effects. A monad needs to satisfy the following laws:

(1) return a >>= f = f a

(2) m >>= return = m

(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g))

3 A detailed explanation of the idea behind this “symmetry” condition can be found
in [19].

512 E. Jiresch and B. Gramlich

Example 2.21. The Maybe monad is used in Haskell to model exception han-
dling. It is defined as follows:

data Maybe a = Just a | Nothing

(1) return x = Just x

(2) (Just x) >>= f = f x

(3) Nothing >>= f = Nothing

Values of the Maybe data type are either a plain value (Just a) or the error value
Nothing denoting an exception. Plain values are simply forwarded to a function
f by >>=, whereas Nothing is returned by >>= without using f.

Two aspects of this example cannot be modeled with regular interaction rules.
First, the symbol f is a variable that represents an arbitrary function. Interaction
rules consist of concrete agents only. Second, Maybe is a parametrized type with
a type variable a.

In [14], we gave an ad-hoc solution for example monads in interaction nets,
which was specific for the concrete data structures involved. In this paper, we
give a more general (parametrized), natural and adequate definition of monads.
In the following sections, we introduce generic rules and a type system to solve
the aforementioned issues. We define the notion of a monad in INs as follows:

Definition 2.22 (Interaction Net Monad). An interaction net monad is an
INS whose signature contains two unary agents >>= and ret. The rules of the
INS need to satisfy the following equalities:

(1) ret >>= α =� � α

(2) >>= ret =�

The agent α corresponds to an arbitrary agent, similar to the arbitrary function f in
the textual definition (1). Equality is interpreted as observational equivalence [8]: If
arbitrary nets are connected to the free ports of both nets of an equation (enabling
reduction), then they can be reduced to a common successor.

The equalities (1) and (2) correspond to the first two monad laws. Equivalence
can be shown by giving reduction sequences of nets that yield the aforementioned
common successors.

While >>= may be modeled differently (e.g., with more auxiliary ports), our
approach captures the essence of monadic side effect handling in a natural and
intuitive way. In addition, the third monad law automatically holds due to this
representation (see [15] for a proof).

3 Generic Rules and Imposed Constraints

An ordinary interaction rule matches one specific pair of (distinct) agents only.
However, several papers ([5,6,21]) on interaction nets feature agents that interact
with any (arbitrary) agent. Informally, these variable or generic agents assume

Realizing Monads in Interaction Nets via Generic Typed Rules 513

the role of functional variables. We will refer to such rules as generic rules.
Typical examples are the agents δ and ε, which duplicate and erase, respectively,
any other agent (including agents without any auxiliary ports):

(δ) d1 d2 d1 d2

δ ⇒ α

. . .

α

. . .

α δ . . . δ

x1 . . . xn x1 . . . xn

&'

(ε)

ε

α ε . . . ε

x1 . . . xn x . . . xn

⇒&'

In a system with generic rules, a given active pair may be matched by more
than one rule. In fact, this is the case for any system that contains the δ and ε
rules: the active pair (δ ∼ ε) can be reduced using either rule. This violates the
no ambiguity property mentioned in Section 2.1 and generally destroys uniform
confluence (although in this case, it does not: both rules yield the same net).
Therefore, it is important to give a formal definition of how generic rules in INS
are interpreted and restricted in a way that uniform confluence is preserved.

Generic agents can be classified into two kinds. They may either have a fixed
arity or have a non-fixed, arbitrary number of auxiliary ports (such as δ or ε).
We call the latter variadic or arbitrary-arity agents. Note that generic agents
may only appear in interaction rules, not in concrete instances of nets.

3.1 Generic Rules

We use upper-case letters (A,B,..) to denote specific (i.e., arbitrary, but fixed)
agents, and lower case Greek letters (α, β, φ, ψ, . . .) to denote generic agents. A
generic interaction rule is an interaction rule α &' B ⇒ N whose LHS consists
of one generic agent α and one ordinary agent B. The RHS N may contain one
or more occurrences of α. We use INSG for INS with generic rules.

An ordinary rule A &' B is applicable to (or matches) an active pair if the
latter is of the shape A ∼ B. A generic rule α &' B is applicable to (or matches)
an active pair if the latter is of shape A ∼ B (with A �= B) and if α and A have
the same number of ports. In this case, we also say that α matches A.

Restriction of Self-interaction. Note that generic rules do not match active
pairs where both agents are the same (e.g., B ∼ B for the rule α &' B). The
reason for this is that some generic rules inherently do not satisfy the “symmetry”
condition of Lafont’s no ambiguity property (see Section 2.1). However, we can
instead add an additional ordinary rule for B &' B to our set of rules, particularly
under the constraints defined in the remainder of this section, provided it satisfies
the aforementioned symmetry constraint for self-overlaps (cf. Subsection 2.1, 3).

We define overlaps as the matching of more than one rule on a single active
pair:

514 E. Jiresch and B. Gramlich

Definition 3.11 (overlaps). Two (distinct) rules in an INSG overlap if there
exists a single active pair (w.r.t. some INS) which is matched by both rules and
can also be rewritten by them.4

Let (Σ,R) be an INSG. Let O(R) ⊆ R be the ordinary rules of R and G(R) ⊆
R be the generic rules of R. We say that two rules A &' B and α &' B in an INSG
form an ordinary-generic-overlap (OG-overlap for short) if both match an
active pair A ∼ B. Two generic rules α &' B and A &' β form a generic-
generic-overlap (GG-overlap for short) if α matches A and β matches B,
i.e., both rules match the active pair A ∼ B.

We now define our constraints for generic rules, first for agents with fixed arity.
Afterwards, we extend these constraints to generic agents with arbitrary arity
(e.g., δ and ε).

We can prevent OG-overlaps by giving priority to ordinary rules. If for an
active pair an INSG has no matching ordinary rule, only then may a generic rule
be applied.

Definition 3.11 (default priority constraint (DPC)). Let R = (Σ,R) be
an INSG. Then R satisfies the Default Priority Constraint (DPC) if the induced
reduction relation is restricted as follows: A generic rule α &' B ∈ R is only
applicable to an active pair A ∼ B if A &' B is not the LHS of any rule in R.
In this case we write ⇒RDPC for the restricted reduction relation.

The DPC ensures that “exceptions” to generic rules assume priority. One can
easily see that this completely prevents OG-overlaps. Adding a generic rule α &'
B ⇒ N ∈ R to an INS (Σ,R) is equivalent to adding an ordinary version
A &' B ⇒ N [α/A] of the rule for each symbol A in Σ (distinct from B). From
now on we assume that Σ is finite.

As the DPC prevents OG-overlaps, we now focus on preventing GG-overlaps,
i.e., overlaps between multiple generic rules. Our approach is straightforward:
We disallow overlapping generic rules or enforce a higher-priority ordinary rule.

Definition 3.11 (generic rule constraint (GRC)). Let R = (Σ,R) be an
INSG. R satisfies the Generic Rule Constraint (GRC) if for all α &' B ⇒ N ,
A &' β ⇒ M ∈ G(R), α does not match A or β does not match B or there exists
an ordinary rule A &' B ∈ O(R).

While DPC restricts the reduction relation, GRC is a constraint on the set of
interaction rules. The combination of GRC and DPC prevents any rule overlaps.

Proposition 3.12 (uniform confluence). Let I = (Σ,R) be an INSG that
satisfies GRC. Then ⇒RDPC has the uniform confluence property.

Proof (idea). It is sufficient to show that the no ambiguity property of Section 2.1
is preserved by the constraints.

4 This requirement ensures that reducing subnets in different ways by overlapping
rules is indeed possible. Later on we will prevent such overlaps by restricting the
reduction relation.

Realizing Monads in Interaction Nets via Generic Typed Rules 515

3.2 Generic Rules with Variadic Agents

We now extend our results to generic rules with arbitrary arity, or variadic
agents. For example, we again refer to the δ and ε rules. These rules match any
active pair that consists of δ/ε and an agent of arity between 0 and n (where n
is considered the maximum arity of all agents in the signature).

Definition 3.21 (variadic rule matching). Let r = α &' B be a generic
rule, where α is of arbitrary arity (denoted by the dot-notation “. . . ”). Then, r
matches an active pair A ∼ B.

Note that this definition of rule matching with a generic rule includes the de-
generate case of 0 auxiliary ports.

Variadic Rule Application. As indicated by the δ/ε rules on page 513, rules
with variadic agents may have an arbitrary number of identical agents (or sub-
nets) in their RHS (denoted by “. . . ”). Such a rule α &' B ⇒ N is applied to
an active pair A ∼ B as follows: let n = arity(A). A ∼ B is replaced by a net
N ′, such that N ′ contains n copies of all agents, wires and ports in N that are
marked with the dot-notation and one copy of the remaining parts of N (which
are not marked with the dot-notation). For example, consider the δ-rule on page
513: the δ agents, the ports xi and all wires between δ and α agents are copied
n times. Both α agents and the ports d1, d2 only appear once in N ′.

The constraints and properties of fixed-arity generic rules can be extended to
the arbitrary arity case. For this, we define the notion of arity unfolding.

Definition 3.22 (arity unfolding). Let I = (Σ,R) be an INS. Let O(R) be
the set of ordinary rules, G(R) the set of fixed-arity generic rules and AG(R)
the set of arbitrary-arity generic rules of R. Let Ar(Σ) be the set of arities of all
agents of Σ. We define the arity unfolding AU(R) as follows: AU(R) = O(R)∪
G(R) ∪ {A &' αi ⇒ N [α/αi] | (A &' α ⇒ N) ∈ AG(R), arity(αi) ∈ Ar(Σ)}.

Informally, the arity unfolding adds a single fixed-arity generic rule for all possi-
ble arities of the generic agent (i.e., all arities of agents in Σ) in an arbitrary-arity
generic rule. If Σ is finite, then AU(R) has finitely many rules. Note that N [α/αi]
is a RHS that contains arity(αi) identical subnets (as mentioned above).

Theorem 3.23. Let I = (Σ,R) be an INSG, where R contains at least one
generic rule with a variadic agent. If AU(R) satisfies GRC, then ⇒RDPC satisfies
the no ambiguity property.

Proof. If AU(R) satisfies GRC, then it has no GG-overlaps, except those that
are prevented by DPC. Since N ⇒R M if and only if N ⇒AU(R) M , R has no
additional GG-overlaps either. Hence, ⇒RDPC has no overlaps.

Non-uniform Port Handling. In the RHS of a variadic rule, all (arbitrarily
many) ports of the generic agent are handled in the same, uniform way. However,
we can define generic rules where a few selected ports of a generic agent receive

516 E. Jiresch and B. Gramlich

a different, non-uniform treatment and the remaining, arbitrarily many ports
are handled uniformly. Such rules can be used to support curried functions or
partial applications (e.g., (1+) in Haskell).

Rule matching for the non-uniform case works almost identically to
Definition 3.21. However, the respective agent of the active pair needs to have
at least the number of non-uniformly handled auxiliary ports. In addition, the
results on the preservation of uniform confluence for the variadic case are easily
extended.

4 A Simple Typing Approach

Clearly, a type system is not required to perform higher-order computations
(for example, the untyped λ-calculus allows higher-order functions). However,
types can help us to restrict matching and rule out obviously incorrect programs
(or here, nets): even if we satisfy the constraints of the previous section, the
matching capabilities of generic rules are too powerful, matching any agent with
the arity of the generic agent. Naturally, this problem is solved by a type system
for interaction nets that is suitable for expressing monadic rules. We base our
system on previous type systems for interaction nets [18,7] that assign types and
polarities (denoting input/output types) to ports.

4.1 Our Typing Approach

We decided to keep the system as simple as possible. However, our system still
has to be expressive enough to model types of the monadic operators.

This means that a suitable type system needs to feature type variables, and a
form of arrow (i.e., functional) types. While the intersection type system of [7]
offers arrow types for ports, we feel that this system is overly complex for our
needs. Therefore, we take the following approach: We restrict types for ports to
base types and type variables. Base types may either be type constants (like int)
or have type parameters (e.g., list(int)). More complex types are only defined
implicitly via the set of all port types of an agent, also referred to as its environ-
ment. When matching a rule with an active pair, we compare the environment
of the active agents with the rule LHS.

Definition 4.11 (port types). Let S be a set of base types (or sorts). Let
each sort have an arity, denoting the number of type parameters. Let V be a set
of type variables and P = {+,−} be the set of polarities. The set of port types
PT is defined as:

– vp ∈ PT , where v ∈ V, p ∈ P
– sp ∈ PT , where s ∈ S, p ∈ P , and arity(s) = 0
– s(t1, . . . , tn)

p ∈ PT , where s ∈ S, p ∈ P, ti ∈ PT (1 ≤ i ≤ n), arity(s) = n

All types of an agent’s ports form its environment. This notion was already
introduced in [7]. However, we define it in a slightly different way, ordering the
types by their port positions, starting counter-clockwise from the principal port.

Realizing Monads in Interaction Nets via Generic Typed Rules 517

Definition 4.12 (environment). Let A be an agent of arity n. The environ-
ment ε(A) is defined as {tp, t1, . . . , tn}, where tp is the type of the principal port,
and ti is the type of the ith auxiliary port (viewed counter-clockwise from the
principal port).

We say that a net is well-typed if all connected ports are of opposite polarity and
for all pairs of types of connected ports (t1, r1), . . . , (tn, rn), there is a solution
to the unification problem {t1 ≈ r1, . . . , tn ≈ rn}. Well-typed nets can be seen
as the equivalent of well-typed programs.

Based on the environment, we define a rule type that will be used for matching.
In addition, we need to formalise whether specific port type variables of the
agents of a rule LHS correspond to each other. For this, we will use substitutions
from type variables to types, referred to as type substitutions.

Definition 4.13 (rule type). Let r = (A &' B ⇒ N) be an interaction rule.
Let the type variables of the ports of A and B be disjoint. The rule type RT (r)
is a triple (ε(A), ε(B), S), where S is a type substitution {τ1 �→ t1, . . . , τn �→ tn}
consisting of types of either ε(A) or ε(B).

A rule is well-typed if both nets of the LHS and RHS are well-typed. The idea
behind S is to ensure that specific interface ports of both agents share the same
type. Think of a rule LHS where one auxiliary port of each active agent needs
to have the same variable type as the other. Since the scope of the variable is
the environment of a single agent, we need additional information to declare two
port type variables of different agents as equal. An example can be found in
Section 5.

We now define matching of generic typed rules and active pairs, which is the
main purpose of our type system. Informally, we match the environment of the
generic agent and the corresponding agent of the active pair.

Definition 4.14 (typed rule matching). Let r = α &' B be a well-typed
interaction rule where α is a generic agent. Let N be a well-typed net containing
an active pair A ∼ B. We say that r matches A ∼ B if r’s LHS matches A ∼ B
and there exists a type substitution σ s.t. σ(S(ε(α))) = ε(A), where S is the
substitution of RT (r).

4.2 Typing for the Variadic Agent Case

To model the environment of generic agents with arbitrary arity, we introduce
a special symbol ∗ that may match any number of port types. When matching
a rule with an active pair, we add fresh type variables for all auxiliary ports
covered by the type ∗:

Definition 4.21 (typed rule matching with variadic agents). Let r be
a rule α &' B, where α is a variadic agent. Let ε(α) = (tp, ∗, t1q1 , . . . , tmqm),
where ti are the types of the non-uniformly handled ports (and qi the respective
polarities). α &' B matches an active pair A ∼ B if the following holds:

518 E. Jiresch and B. Gramlich

– Let α′ be a fixed-arity generic agent s.t.
ε(α′) = (tp, x1

p1 , . . . , xn
pn , t1

q1 , . . . , tm
qm), where n = arity(B) −m (m is

the number of non-uniformly handled ports), xi are fresh variables and the
polarities pi are the polarities of B’s auxiliary ports.

– α′ &' B matches A ∼ B w.r.t. Definition 4.14.

The simplicity of the type system makes it quite easy to handle. For example,
well-typedness of nets is decidable in linear time.

5 Application: Monads in Interaction Nets

We now present an interaction nets version of the Maybe monad from
Example 2.21. A second example that describes the State Transformer monad
can be found in the appendix. Both of these INSs are monads in the sense of
Definition 2.22. This can be shown by a reduction of nets, such that both sides
of each equation have a common reduct (similar as in [15]). A short proof for the
Maybe IN monad is given in Appendix C.

Using generic rules, we can express the interaction rules of the Maybe monad
in a way that closely models Haskell’s definition. The INSGT Maybe is defined
as ({Jst1, No1, ret1, bind1, aux1},M) where M consists of the following rules:

x1 x1

(1) ...
α ret ⇒ ...

α Jst

xn xn

&' &

(2a) Jst >>= ⇒ >> J

&'

(2b) >> J φ r ⇒

an ... a1

&' φ

an ... a1

(3a) No >>= ⇒ >> N

&'

(3b) >> N φ r ⇒

an ... a1

&' ε ... ε No r

an ... a1

(GRC1) >> N ret r ⇒&' No r

(GRC2) s >> J ret r ⇒&' s ret r

The rule labels correspond to the lines of the definition in Example 2.21. Lines
(2) and (3) are split into two rules each, for two reasons. First, this is due to the
restriction of two agents per interaction rule LHS (this can be overcome by using
nested patterns [12,11]). Second, the auxiliary agents >> J and >> N interact
with the generic agent φ and thus ensure its correct type. To ensure that the set
of rules satisfies the GRC, we add the auxiliary rules (GRC1) and (GRC2).

Realizing Monads in Interaction Nets via Generic Typed Rules 519

Proposition 5.01. ⇒MDPC satisfies the uniform confluence property.

We assign the following environments to the agents of the Maybe monad, where
maybe is a sort of arity 1 and τ, ρ are type variables. The rule types are given
in the right column.

ε(Jst) = {maybe(τ)+, τ−}
ε(No) = {maybe(τ)+}

ε(ret) = {τ−,maybe(τ)+}
ε(>>=) = {maybe(τ)−, (τ)+}

ε(>> J) = {τ+, τ−}
ε(>> N) = { τ+}, ε(α) = {τ+, ∗}

ε(φ) = {τ−, ∗,maybe(ρ)+}

RT (1) = {ε(α), ε(ret), {}}
RT (2a) = {ε(Jst), ε(>>=), {τ1 �→ τ2}
RT (2b) = {ε(>> J), ε(φ), {τ1 �→ τ2}}

RT (3a) = {ε(No), ε(>>=), {}}
RT (3b) = {ε(aux), ε(φ), {}}

RT (GRC1) = {ε(>> N), ε(ret), {}}
RT (GRC2) = {ε(>> J), ε(ret), {}}

Recall that the scope of port type variables is the agent’s environment. We
add subscripts to the variables in the rule types to denote which agent they
belong to: τ1 belongs to the first agent of the rule LHS and τ2 to the second
one. Note that in rule type RT (2), the type substitution S requires that both
auxiliary ports of the active agents have the same type.

We see that the rule set of the Maybe monad is just as expressive as its textual
definition in Haskell: it allows any agent as a basic value of the corresponding
monad type. Thanks to non-uniform port handling of generic rules, any agent
with matching port types can be used as second argument of bind.

6 Conclusion and Related Work

In this paper, we presented generic rules for interaction nets. These rules are
substantially more powerful than ordinary interaction rules and allow for more
general pattern matching. This adds a higher-order character to interaction rules,
including a way to model partially evaluated functions. This extension is con-
servative: using appropriate constraints, we ensure that the reduction relation
satisfies uniform confluence. Our theoretical results are a substantial step to-
wards promoting interaction nets to a practically usable programming language.
Our rule type system ensures that the matching of generic rules is consistent
with the type restrictions of the monadic operators. While being sufficient for
this task, the system is fairly simple and can of course be refined. This will be
subject to future work.

Generic rules allow for elegant and concise rule definitions that are very sim-
ilar to corresponding functional programs. In particular, there is no need for
encodings of the lambda calculus and explicit function application [22] or exter-
nally defined programs [9]. However, the former may of course be combined with
our approach, as in the example in Appendix B.

While we have shown that individual monads can be defined using generic
rules, a unified, extensible interface for interaction net monads has yet to be

520 E. Jiresch and B. Gramlich

defined. This will also be addressed in future research. One possible direction is
the adaptation of interaction rule archetypes [25]. Moreover, we plan to thor-
oughly investigate other approaches to higher-order functions in interaction nets.

Our notion of IN monads is based on their application to functional pro-
gramming [27,16,26]. However, it might be interesting to try a more categorial
approach to monads in interaction nets. In [4], the author uses notions from
category theory to explicitly define interaction rule application and rewriting
of nets. Besides in functional programming, monads have been used in several
other domains. A recent application can be found in [17], where monads serve
for structuring mechanisms in interactive theorem provers.

Of course, monads are not the only approach to side effects. In particular,
approaches based on linear logic [18,1] could be employed to handle impure
functions in interaction nets: there is a strong relation between both formalisms.

In addition to theoretical investigations, we are involved in the development of
inets, a prototype programming language based on interaction nets [13]. To this
date, inets supports generic rules with fixed-arity agents. The implementation
of variadic agents and non-uniform port handling is currently work in progress.
Besides inets, there are several other implementations of interaction nets [2,20,3].
For example, PORGY [3] allows for the specification and visualization of INSs,
and tracing reductions under different strategies. To the best of our knowledge,
none of these systems support generic rules.

Acknowledgements. We would like to thank the anonymous reviewers for
their constructive and helpful comments.

References

1. Achten, P., Plasmeijer, R.: The ins and outs of clean I/O. Journal of Functional
Programming 5(1), 81–110 (1995)

2. Almeida, J.B., Pinto, J.S., Vilaca, M.: A tool for programming with interaction
nets. Electronic Notes in Theoretical Computer Science 219, 83–96 (2008)

3. Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O., Pinaud, B.:
Porgy: Strategy-driven interactive transformation of graphs. In: Echahed, R. (ed.)
TERMGRAPH. EPTCS, vol. 48, pp. 54–68 (2011)

4. de Falco, M.: An explicit framework for interaction nets. CoRR, abs/1010.1066
(2010)

5. Fernández, M.: Type assignment and termination of interaction nets. Mathematical
Structures in Computer Science 8(6), 593–636 (1998)

6. Fernández, M., Mackie, I.: From Term Rewriting Systems to Generalized Interac-
tion Nets. In: Kuchen, H., Swierstra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp.
319–333. Springer, Heidelberg (1996)

7. Fernández, M., Mackie, I.: Interaction nets and term rewriting systems. Theoretical
Computer Science (1997)

8. Fernández, M., Mackie, I.: Operational equivalence for interaction nets. Theoretical
Computer Science 197 (2003)

Realizing Monads in Interaction Nets via Generic Typed Rules 521

9. Fernández, M., Mackie, I., Pinto, J.S.: Combining interaction nets with exter-
nally defined programs. In: Proc. Joint Conference on Declarative Programming
(APPIA-GULP-PRODE 2001), Évora (2001)

10. Gay, S.J.: Interaction Nets. Master’s thesis, University of Cambridge Computer
Laboratory (1991)

11. Hassan, A., Jiresch, E., Sato, S.: An implementation of nested pattern match-
ing in interaction nets. Electronic Proceedings in Theoretical Computer Science
(EPTCS) 21, 13–25 (2010)

12. Hassan, A., Sato, S.: Interaction nets with nested pattern matching. Electr. Notes
Theor. Comput. Sci. (ENTCS) 203(1), 79–92 (2008)

13. The inets project site, http://gna.org/projects/inets (accessed February 27,
2012)

14. Jiresch, E.: Realizing Impure Functions in Interaction Nets. In: Ehrig, H., Rensink,
A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 394–396.
Springer, Heidelberg (2010)

15. Jiresch, E.: Realizing impure functions in interaction nets. In: ECEASST, vol. 38
(2011)

16. Jones, S.P., Wadler, P.: Imperative functional programming. In: ACM Symposium
on Principles of Programming Languages (POPL 2002) (October 1992)

17. Kircher, F., Munoz, C.: The proof monad. Journal of Logic and Algebraic Pro-
gramming 79, 264–277 (2010)

18. Lafont, Y.: Interaction nets. In: Proceedings of 17th ACM Symposium on Principles
of Programming Languages (POPL 1990), pp. 95–108 (1990)

19. Lafont, Y.: Interaction combinators. Information and Computation 137(1), 69–101
(1997)

20. Lippi, S.: in: A Graphical Interpreter for Interaction Nets. In: Tison, S. (ed.) RTA
2002. LNCS, vol. 2378, pp. 380–386. Springer, Heidelberg (2002)

21. Mackie, I.: YALE: yet another lambda evaluator based on interaction nets. In:
International Conference on Functional Programming (ICFP 1998), pp. 117–128
(1998)

22. Mackie, I.: Efficient λ-Evaluation with Interaction Nets. In: van Oostrom, V. (ed.)
RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)

23. Mackie, I.: Towards a programming language for interaction nets. Electr. Notes
Theor. Comput. Sci. (ENTCS) 127(5), 133–151 (2005)

24. Mackie, I.: A Visual Model of Computation. In: Kratochv́ıl, J., Li, A., Fiala, J.,
Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 350–360. Springer, Heidelberg
(2010)

25. Mackie, I., Pinto, J.S., Vilaça, M.: Visual programming with recursion patterns in
interaction nets. In: ECEASST, vol. 6 (2007)

26. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1191)

27. Wadler, P.: How to declare an imperative. ACM Comp. Surveys 29(3), 240–263
(1997)

http://gna.org/projects/inets

522 E. Jiresch and B. Gramlich

A An Example Reduction with the Maybe Monad

Consider the following interaction rules that model the head and tail operators
on lists. Both agents return an exception value when interacting with an empty
list.5

x

Cons head r ⇒

xs

(1)

&'

x

ε Jst r

xs

x

Cons tail r ⇒

xs

(2)

&'

x

ε Jst r

xs

Nil head r ⇒(3) &' No r Nil tail r ⇒(4) &' No r

Using the rules of the Maybe monad from Section 5, we can evaluate the term
tail Cons(0,Nil) >>= head as follows:

0

Nil Cons tail >>= head r ⇒&'

&

& & &

0 ε

Nil Jst >>= head r

&'

& &' &

⇒ Nil Jst >>= head r ⇒& &' &

Nil >> J head r& &'

⇒ Nil head r ⇒&'

No r

B The State Transformer Monad

The State Transformer monad is another well-known monad in Haskell. It mod-
els the application of a program w.r.t. a mutable state. It is defined as follows:

data State s a = s -> (a,s)

(1) return x = \s -> (x,s)

(2) m >>= f = \r -> (\let (x,s) = m r in (f x) s)

A state transformer is a function that takes a state s as input and returns a
pair of a return value t and a possibly changed state. In (1), return x is the
function that returns a value x and the unchanged input state. In (1), m >>= f

first applies the state transformer m to the input state and then f to the value
and state of the resulting pair.

5 We are aware of the fact that in Haskell head and tail do not return a Maybe value,
but terminate with a (fatal) error when being called with an empty list. For the sake
of simplicity we chose to make these functions “exception safe” here.

Realizing Monads in Interaction Nets via Generic Typed Rules 523

When realizing this monad as an INS, the main difference to theMaybe monad
lies in the monadic datatype State a s, which is a function itself. To account for
this, we use agents for lambda terms and function application to “encapsulate”
the state transformer function. Such agents have already been used in several
papers (e.g., [25,21]). Here, the λ agent acts as a constructor for State function
objects. The application agent @ takes a role similar to Haskell’s runState

function. The drawback of this approach is that the INS is complicated with
additional agents and rules6. The State Transformer INS, including rules for
explicit function application and handling of pairs, is defined as follows:

x1

(1) r ret α ...
⇒

xn

&'

x1

r λ p α ...
xn

'

&

in

(2a) λ >>= r ⇒
out

&'

in

aux r

out

&

y1 . . . yn
in

(2b) aux φ r ⇒
out

&'

y1 . . . yn

in λ r

out ext φ @' &

in

(GRC) aux ret r ⇒
out

&'

in

λ r

out

&

s r1

(ext) p ext ⇒
x r2

&'

s r1

x r2

in r

(λ-abs) λ @ ⇒
out x

&'

in r

out x

Like the INS for the Maybe monad, it is straightforward to show that the set of
rules satisfies uniform confluence.

We type the State Transformer monad with the following environment. We
use the sorts state2 and pair2 and the type variables τ, ρ. The corresponding
rule types are shown on the right. Again, we use subscripts to distinguish the
type variables of both agents.

6 We conjecture that the rule archetypes of [25] can be used to improve this - cf.
Section 6.

524 E. Jiresch and B. Gramlich

ε(λ) = {state(τ, ρ)+, τ+, pair(ρ, τ)−}
ε(ret) = {τ−, state(ρ, τ)+}

ε(>>=) = {state(τ, ρ)−, τ+}
ε(aux) = {τ+, τ+, pair(τ, ρ)−}
ε(ext) = {pair(τ, ρ)−, τ+, ρ+}
ε(p) = {pair(τ, ρ)+, τ−, ρ−}

ε(@) = {state(τ, ρ)−, τ−, pair(ρ, τ)+}
ε(α) = {τ+, ∗}

ε(φ) = {τ−, state(τ, ρ)+, ∗}

RT (1) = {ε(ret), ε(α), {}}
RT (2a) = {ε(state), ε(>>=),

{τ1 �→ τ2}}
RT (2b) = {ε(aux), ε(φ),

{ρ1 �→ ρ2}}
RT (GRC) = {ε(aux), ε(ret),

{ρ1 �→ ρ2}}
RT (ext) = {ε(p), ε(ext),

{τ1 �→ τ2, ρ1 �→ ρ2}}
RT (λ− abs) = {ε(λ), ε(@),

{τ1 �→ τ2, ρ1 �→ ρ2}}

Due to the restriction on interaction rule LHSs, both monad rulesets feature
auxiliary agents and rules. This can be improved by using rules with nested
patterns : nested patterns are a conservative extension of interaction nets. They
allow for more complex rule patterns while preserving uniform confluence. For
more information, we refer to [12,11].

C Correctness of the Maybe Monad

We now show that the rules for the Maybe IN monad of Section 5 satisfy the
equalities in Definition 2.22. The following reduction sequence shows equality
(1), where N is an arbitrary net such that reduction is possible (i.e., there is an
active pair connection between N and ret):

N ret >>= α ⇒ N Jst >>= α

⇒ N >> J α ⇒ N α

&' & & & &' &

& &' &'

Equality (2) is proved by the following sequence:

N Jst >>= ret ⇒2 N >> J ret ⇒

N ret ⇒ N Jst

& &' & & &'

&' &

Towards an Axiomatization

of Simple Analog Algorithms

Olivier Bournez1, Nachum Dershowitz2, and Evgenia Falkovich2

1 LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Olivier.Bournez@lix.polytechnique.fr

2 School of Computer Science, Tel Aviv University, Ramat Aviv, 69978 Israel
nachum.dershowitz@cs.tau.ac.il, jenny.falkovich@gmail.com

Abstract. We propose a formalization of analog algorithms, extending
the framework of abstract state machines to continuous-time models of
computation.

The states of ‘continuous’ machinery . . . form a continuous manifold,
and the behaviour of the machine is described by a curve on this manifold.

All machinery can be regarded as continuous, but when it is possible to regard
it as discrete it is usually best to do so.

The property of being ‘discrete’ is only an advantage for the theoretical
investigator, and serves no evolutionary purpose, so we could not expect

Nature to assist us by producing truly ‘discrete’ brains.

Alan M. Turing, Intelligent Machinery, 1948

1 Introduction

We seek to gain an understanding of the fundamentals of analog systems, that
is, systems that operate in continuous (real) time and with real values. Several
different approaches have been taken in the pursuit of continuous-time models
of computation. One is inspired by continuous-time analog machines, and has its
roots in models of natural or artificial analog machinery. An alternate approach,
one that can be referred to as inspired by continuous-time system theories, is
broader in scope, and derives from research in systems theory done from a com-
putational perspective. Hybrid systems and automata theory, for example, are
two such sources of inspiration. See the survey in [7].

At the outset, continuous-time computation theory was mainly concerned with
analog machines. Determining which systems should actually be considered to
be algorithmic in nature is an intriguing question and relates to philosophi-
cal discussions about what constitutes a programmable machine. All the same,
there are a number of early examples of actual analog devices that are generally
accepted to be programmable. These include Pascal’s 1642 Pascaline [10], Her-
mann’s 1814 Planimeter, Bush’s landmark 1931 Differential Analyzer [6], as well

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 525–536, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

526 O. Bournez, N. Dershowitz, and E. Falkovich

as Bill Phillips’ 1949 water-run Financephalograph [1]. Continuous-time compu-
tational models also include neural networks and systems that can be built using
electronic analog devices. Such systems begin in some initial state and evolve
over time in response to input signals. Results are read off from the evolving
state and/or from a terminal state.

Another line of development of continuous-time models was motivated by
hybrid systems, particularly by questions related to the hardness of their verifi-
cation and control. In this case, the models are not seen as models of necessarily
analog machines, but, rather, as abstractions of systems about which one would
like to establish some properties or derive verification algorithms.

Our goal is to capture all such models within one uniform notion of com-
putation and of algorithm. The most interesting case is the hybrid one, where
the system’s dynamics change in response to changing conditions, so there are
discrete transitions as well as continuous ones. To that end, we adopt some of
the ideas embodied in Gurevich’s abstract-state machine formalism for discrete
algorithms [14].

Abstract state machines (ASMs) constitute a most general model of sequen-
tial digital computation, one that can operate on any level of abstraction of data
structures and native operations. It has been shown [15] that any algorithm
that satisfies three “Sequential Postulates” can be step-by-step emulated by an
ASM. These postulates formalize the following intuitions: (I) one is dealing with
discrete, deterministic state-transition systems; (II) the information in states
suffices to determine future transitions and may be captured by logical struc-
tures that respect isomorphisms; and (III) transitions are governed by the values
of a finite and input-independent set of (variable-free) terms. All notions of al-
gorithms for classical discrete-time models of computation in computer science,
like Turing machines, random-access memory (RAM) machines, as well as clas-
sical extensions of them, including oracle Turing machines, alternating Turing
machines, and the like, fall under the purview of the Sequential Postulates. This
provides a basis for deriving computability theory, or even complexity theory,
upon these very basic axioms about what an algorithm really is. In particular,
adding a fourth axiom about initial states, yields a way to derive a proof of
the Church-Turing Thesis [4,12,5], as well as its extended version about relative
complexity [11].

Capturing the notion of algorithmic computation for analog systems is a first
step towards a better understanding of computability theory for continuous-time
systems. Even this first step is a non-trivial task. Some work in this direction
has been done for simple signals. See, for example, [8,9] for an approach within
the abstract-state machine framework. An interesting approach to specifying
some continuous-time evolutions, based on abstract state machines and using
infinitesimals, is [18]. However, a comprehensive framework, capturing general
analog systems seems to be wanting. See [7] for a discussion of the diverse analog
computability theories.

In this work, we adapt and extend ideas from work on ASMs to the analog
case, that is to say, from notions of algorithms for digital models to analogous

Towards an Axiomatization of Simple Analog Algorithms 527

notions for analog systems. We go beyond the easier issue of “continuous space”,
that is, discrete-time models or algorithms with real-valued operations, since
these have already been made to fit comfortably within the ASM framework,
for which, see [2]. Indeed, algorithms for discrete-time analog models, like algo-
rithms for the Blum-Shub-Smale model of computation [3], can be covered in
this setting. The geometric constructions in [17] are simple (loop-free) examples
of continuous-space algorithms.

In the next section, we introduce dynamical transition systems, defining sig-
nals and transition systems. In Sect. 3, we introduce abstract dynamical systems.
Next, in Sect. 4, we define what an algorithmic dynamical system is. Then, in
Sect. 5, we define analog programs and provide some examples, followed by a
brief conclusion.

2 Dynamical Transition Systems

Analog systems may be thought of as “states” that evolve over “time”. The sys-
tems we deal with receive inputs, called “signals”, but do not otherwise interact
with their environment.

2.1 Signals

Typically, a signal is a function from an interval of time to a “domain” value, or
to a tuple of atomic domain values. For simplicity, we will presume that signals
are indexed by real-valued time T = R, are defined only for a finite initial (open
or closed) segment of T, and take values in some domain D. Usually, the domain
is more complicated than simple real numbers; it could be something like a tuple
of infinitesimal signals. Every signal u : T ⇀ D has a length, denoted |u|, such
that u(j) is undefined beyond |u|. To be more precise, the length of signals that
are defined on any of the intervals (0, �), [0, �), (0, �], [0, �] is �. In particular, the
length of the (always undefined) empty signal, ε, is 0, as is the length of any
point signal, defined only at moment 0.

The concatenation of signals is denoted by juxtaposition, and is defined as
expected, except that concatenation of a right-closed signal with a left-closed
one is only defined if they agree on the signal value at those closed ends, and
concatenation is not defined if they are both open at the point of concatenation.
The empty signal ε is a neutral element of the concatenation operation.

Let U be the set of signals for some particular domain D. The prefix relation
on signals, u ≤ v, holds if there is a w ∈ U such that v = uw. As usual, we write
u < v for proper prefixes (u ≤ v but u �= v). It follows that ε ≤ u ≤ uw for all
signals u,w ∈ U . And, u ≤ v implies |u| ≤ |v|, for all u, v.

2.2 Transition Systems

Definition 1 (Transition System). A transition system 〈S,S0,U , T 〉 consists
of the following:

528 O. Bournez, N. Dershowitz, and E. Falkovich

– A nonempty set (or class) S of states with a nonempty subset (or subclass)
S0 ⊆ S of initial states.

– A set U of input signals over some domain D.
– A U-indexed family T = {τu}u∈U of state transformations τu : S → S.

Initial states might, for example, differ in the values of parameters, such as initial
values.

It will be convenient to abbreviate τu(X) as just Xu, the state of the system
after receiving the signal u, having started in state X . We will also use Xũ as
an abbreviation for the trajectory {Xv}v<u, describing the past evolution of the
state.

For simplicity, we are assuming that the system is deterministic. Note that the
classical ASM framework for digital algorithms, though initially defined for de-
terministic systems, has been extended to nondeterministic transitions in [16,13].

Should one want to model the possibility of terminal states, then the trans-
formations would be partial functions τu : S ⇀ S. We gloss over this distinction
in what follows.

Definition 2 (Dynamical System). A dynamical system 〈S,S0,U , T 〉 is a
transition system, where the transformations satisfy

τuv = τv ◦ τu,

for all u, v ∈ U , and where τε is the identity function on states.

This implies that Xuv = (Xu)v.
It follows from this definition that τ(uv)w = τu(vw), since composition is as-

sociative. It also follows that instantaneous transitions are idempotent. That is,
τa ◦ τa = τa, for point signal a, because then aa = a.

3 Abstract Dynamical Systems

3.1 Abstract States

A vocabulary V is a finite collection of fixed-arity function symbols, some of
which may be tagged relational. A term whose outermost function name is rela-
tional is termed Boolean.

Definition 3 (Abstract Transition System). An abstract transition system
is a dynamical transition system whose states S are (first-order) structures over
some finite vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X ∈ S is a state of the system,
then any structure Y isomorphic to X is also a state in S, and Y is an
initial state if X is.

(b) Input signals are closed under isomorphism, so if u ∈ U is a signal of the sys-
tem, then any signal v isomorphic to u (that is, maps to isomorphic values)
is also a signal in U .

Towards an Axiomatization of Simple Analog Algorithms 529

(c) Transformations preserve the domain (base set); that is, Dom Xu = Dom X
for every state X ∈ S and signal u ∈ U .

(d) Transformations respect isomorphisms, so, if X ∼=ζ Y is an isomorphism
of states X,Y ∈ S, and u ∼=ζ v is the corresponding isomorphism of input
signals u, v ∈ U , then Xu

∼=ζ Yv.

In particular, system evolution is causal (“retrospective”): a state at any given
moment is completely determined by past history and the current input signal.
This is analogous to the Abstract State Postulate for discrete algorithms, as
formulated in [15], except that subsequent states Xu depend on the whole signal
u, not just the prior state X and current input.

To keep matters simple, we are assuming (unrealistically) that all operations
are total. Instead, we simply model partiality by including some undefined ele-
ment ⊥ in domains. See, however, the development in [2].

Vocabularies. We will assume that the vocabularies of all states include the
Boolean truth constants, the standard Boolean operations, equality, and function
composition, and that these are always given their standard interpretations. We
treat predicates as truth-valued functions, so states may be viewed as algebras.

There are idealized models of computation with reals, such as the BSS model
[3], for which true equality of reals is available in all states. On the other hand,
there are also models of computable reals, for which “numbers” are functions
that approximate the idealized number to any desired degree of accuracy, and in
which only partial equality is available. See [2] for how to extend the abstract-
state-machine framework to deal faithfully with such cases.

3.2 Locations in States

Locations. Since a state X is a structure, it interprets function symbols in V ,
assigning a value b from Dom X to the location f(a1, . . . , ak) in X for every
k-ary symbol f ∈ V and values a1, . . . , ak taken from Dom X . In this way, state
X assigns a value �t�X ∈ Dom X to any ground term t over V . Similarly, a state
X assigns the appropriate function value �f�X to each symbol f ∈ V .

States. It is convenient to view each state as a collection of the graphs of
its operations, given in the form of a set of location-value pairs. We adopt the
convention of writing f(a1, . . . , ak) �→ b, where f(a1, . . . , ak) is a location in
state X , specified by the operation f ∈ V and elements a1, . . . , ak ∈ Dom X ,
and b ∈ Dom X is the value assigned by the state to that operation f at that
point (a1, . . . , ak). This convention allows us to apply set operations to states,
without ambiguity.

3.3 Updates of States

We need to capture the changes to a state that are engendered by a system. For
a given abstract transition system, define its update function Δ as follows:

Δ(X) = λu. Xu \X

530 O. Bournez, N. Dershowitz, and E. Falkovich

We write Δu(X) for Δ(X)(u). The trajectory of a system may be recovered from
its update function, as follows:

Xu = (X \ ∇u(X)) ∪Δu(X)

where

∇u(X) := {� �→ ���X : � �→ b ∈ Δu(X) for some b}

are the location-value pairs in X that are updated by Δu.

4 Algorithmic Dynamic Systems

We say that statesX and Y agree, with respect to a set of terms T , if �s�X = �s�Y
for all s ∈ T . This will be abbreviated X =T Y . We also say that states X and
Y are similar, with respect to a set of terms T , if or all terms s, t ∈ T , we have
�s�X = �t�X iff �s�Y = �t�Y . This will be abbreviated X ∼T Y .

4.1 Algorithmicity

The current state, “modulo” its critical terms, unambiguously determines future
states.

Definition 4 (Algorithmic Transitions). An abstract transition system with
states S over vocabulary V is algorithmic if there is a fixed finite set T of critical
terms over V, such that Δu(X) = Δu(Y) for any two of its states X,Y ∈ S and
signal u ∈ U , whenever X and Y agree on T . In symbols:

X =T Y ⇒ Δu(X) = Δu(Y) .

This implies

Xũ =T Yũ ⇒ Δu(X) = Δu(Y) .

Furthermore, similarity should be preserved:

Xũ ∼T Yṽ ⇒ Xua ∼T Yva ,

where a ∈ U is any point signal (|a| = 0).

Following the reasoning in [15, Lemma 6.2], every new value assigned by Δu(X)
to a location in state X is the value of some critical term. That is, if � �→ b ∈
Δu(X), then b = �t�X for some critical t ∈ T .

Proposition 1. Every new value assigned by Δu(X) to a location in state X
is the value of some critical term. That is, if � �→ b ∈ Δu(X), then b = �t�X for
some critical t ∈ T .

Towards an Axiomatization of Simple Analog Algorithms 531

Proof. By contradiction, assume that some b is not critical. Let Y be the struc-
ture isomorphic to X that is obtained fromX by replacing b with a fresh element
b′. By the abstract-state postulate, Y is a state. Check that �t�Y = �t�X for every
critical term t. By the choice of T , Δu(Y) equals Δu(X) and therefore contains
b in some update. But b does not occur in Y . By (the inalterable-base-set part
of) the abstract-state postulate, b does not occur in Yu either. Hence it cannot
occur in Δu(Y) = Yu \ Y . This gives the desired contradiction.

Agreeability of states is preserved by algorithmic transitions:

Lemma 1. For an algorithmic transition system with critical terms T , it is the
case that

X =T Y ⇒ Xu =T Yu

for any states X,Y ∈ S and input signal u ∈ U .

4.2 Flows and Jumps

A “jump” in a trajectory is a change in the dynamics of the system, in contrast
with “flows”, during which the dynamics are fixed. Formally, a jump corresponds
to a change in the equivalences between critical terms, whereas, when the tra-
jectory “flows”, equivalences between critical terms are kept invariant. Accord-
ingly, we will say that a trajectory Xũ flows if all intermediate states Xw and
Xv (ε < w < v < u) are similar. It jumps at its end if there is no prefix w < u
such that all intermediate Xv, w < v < u, are similar to Xu. It jumps at its
beginning if there is no prefix w ≤ u such that all intermediate Xv, ε < v < w,
are similar to X .

4.3 Analgorithms

Putting everything together, we have arrived at the following.

Definition 5 (Analog Algorithm). An analog algorithm (or “analgorithm”)
is an algorithmic (abstract) transition system, such that no trajectory has more
than a finite number of (prefixes that end in) jumps.

In other words, an analog algorithm is a signal-indexed deterministic state-
transition system (Definitions 1 and 2), whose states are algebras that respect
isomorphisms (Definition 3), whose transitions are governed by the values of a
fixed finite set of terms (Definition 4), and whose trajectories do not change
dynamics infinitely often (Definition 5).

4.4 Properties

System evolution is causal (“retrospective”): a state at any given moment is
completely determined by past history and the current input signal.

532 O. Bournez, N. Dershowitz, and E. Falkovich

Theorem 1. For any analog algorithm, the trajectory can be recovered from the
immediate past (or updates from the past). In other words, Xu, for right-closed
signal u, can be obtained (up to isomorphism) as a function of Xũ (that is, the
Xv, for v < u) plus the final input u∗.

In fact, Xu depends on arbitrarily small segments Xu(t,|u|), t < |u|, of past
history.

Proof. This is a direct consequence of Definition 3. ��

4.5 Further Considerations

It might also make sense to disallow the value given to a location � at some time
t to depend on infinitely many prior changes. For example, one would not want
the value of f(t) to be set at every moment t to 2f(t/2). Rather, the value of
every location � at moment t should be determined by values provided by the
signal at time t and by values of locations in the state that are “stable” at t. By
stable, we mean that there is a non-empty interval of time up to t in which its
value is constant. Furthermore, this temporal dependency of locations should be
well-founded.

It may happen that the system of equations that controls transitions has a
critical non-unique solution for the given initial conditions. For example, the
equation y′(x)2 = 4y(x), restricted to the initial condition y(0) = 0, has two
distinct solutions, namely, y ≡ 0 and y = x2. In this case, we would want to
add some continuity constraint. We would want to require that a choice of the
solution made in the initial state is not changed for the whole trajectory governed
by that equation.

5 Programs

5.1 Definition

Definition 6 (Analog Program). An analog program P over a vocabulary V
is a finite text, taking one of the following forms:

– A constraint statement v1, . . . , vn such that C, where C is a Boolean con-
dition over V and the vi are terms over V (usually subterms of C) whose
values may change in connection with execution of this statement.

– A parallel statement [P1 ‖ · · · ‖ Pn] (n ≥ 0), where each of the Pi is an
analog program over V. (If n = 0, this is “do nothing” or “skip”.)

– A conditional statement if C then P , where C is a Boolean condition over
V, and P is an ASM program over V.

We can use an assignment statement f(s1, . . . , sn) := t as an abbreviation for
f(s1, . . . , sn) such that f(s1, . . . , sn) = t. But bear in mind that the result is
instantaneous, so that x := 2x is tantamount to x := 0, regardless of the prior
value of x. Similarly, x := x + 1 is only possible if the domain includes an
“infinite” value ∞ for which ∞ = ∞+ 1.

Towards an Axiomatization of Simple Analog Algorithms 533

5.2 Semantics

In the simple case, where the changes in state at time t depend only on the
current signal u and state X , we can envision the following sequence of events:

(a) All non-stable locations in X (see Sect. 4.5) have undefined values.
(b) The signal sets the value of location ı, yielding X ′.
(c) Critical terms are evaluated in X ′. (Only relevant terms need be evaluated,

per [2].) This may involve looking up the values of pre-defined “static” op-
erations in the state, like multiplication or division.

(d) All conditionals are evaluated, yielding a set of enabled constraints.
(e) All enabled constraints are solved (deterministically, we are assuming). In

the explicit case, this means that all enabled assignments are “executed” in
parallel, yielding a resultant state X ′′.

5.3 Examples

To begin with, consider analog algorithms that are purely flow, that is to say
without any jumps. Flow programs invoke a time parameter, which we assume
is supplied by the input signal. In simple continuous-time systems, the state
evolves continually, governed by ordinary differential equations, say.

For example, the motion of an idealized simple pendulum is governed by the
second-order differential equation

θ′′ +
g

L
θ = 0 ,

where θ is angular displacement, g is gravitational acceleration, and L is the
length of the pendulum rod. Let the signal u ∈ U be just real time. States report
the current angle θ ∈ V . All states are endowed with the same (or isomorphic)
operations for real arithmetic, including sine and square root, interpreting stan-
dard symbols. Initial states contain values for g, L, and the initial angle θ0 when
the pendulum is released.

For small θ0, the flow trajectory τt(X) can be specified simply by

θ = θ0 · sin
(√

g

L
· ı
)

,

where ı is the input port and nothing but θ changes from state to state. The
update function is, accordingly,

Δt(X) =

{
θ �→ θ0 · sin

(√
g

L
· ı
)}

.

Hence, the critical term is θ0 · sin(
√

g/L · ı). It can be described by program[
θ such that θ = θ0 · sin

(√
g

L
· ı
)]

.

534 O. Bournez, N. Dershowitz, and E. Falkovich

∫ ∫ ∫
-1

�

�

t
z

y

x

Fig. 1. A GPAC for sine and cosine

One of the most famous models of analog computations is the General Purpose
Analog Computer (GPAC) of Claude Shannon [19]. Figure 1 depicts a (non-
mimimal) GPAC that generates sine and cosine: in this picture, the

∫
signs

denote some integrator, and the −1 denote some constant block. If initial con-
ditions are set up correctly, such a system will evolve according to the following
initial value problem: ⎧⎨⎩

x′ = z x(0) = 1
y′ = x y(0) = 0
z′ = −y′ z(0) = 0 .

It follows that x(t) = cos(t), y(t) = sin(t), z = − sin(t). In other words, this
simple GPAC that generates sine and cosine can be modeled by program

[x, y, z such that x = cos(ı) ∧ y = sin(ı) ∧ z = −y] .

This system could also be modeled implicitly as:

Solve ({x′ = z; y′ = x; z′ = y}, {x = 1; y = 0; z = 0}, t) ,

with states incorporating an operation Solve that takes a system of differential
equations, initial conditions, and a given time t, and returns the current values
of the dynamic variables (x, y, z, in this example).

Our proposed model can also adequately describe systems (like a bouncing
ball) in which the dynamics change periodically. The physics of a bouncing ball
are given by the explicit flow equations

v = v0 − g · t
x = v · t ,

where g is the gravitational constant, v0 is the velocity when last hitting the
table, and t is the time signal—except that upon impact, each time x = 0, the
velocity changes according to

v0 = −k · v ,

where k is the coefficient of impact. The critical Boolean term is x = 0. In any
finite time interval, this condition changes value only finitely many times.

Towards an Axiomatization of Simple Analog Algorithms 535

This system can be described by a program like

[if x �= 0 then x, v such that v = v0 − g · t, x = (v0 − g · t) · t
‖ if x = 0 then v0 := −k · v] ,

where x stands for its height, and v, its speed. Every time the ball bounces, its
speed is reduced by a factor k.

6 Discussion

We have formalized some aspects of analog algorithms, as they describe processes
that evolve in continuous time according to rules expressed in a program.

The proposals in this paper are just a start in our quest to formalize analog
computation. In Sect. 4.5, we mentioned some further considerations, including
the modeling of nondeterministic behavior. In future work, we need to consider
additional features, including signals that contain more than just time and the
incorporation of implicit behavioral specifications.

References

1. Wikipedia. MONIAC computer, http://en.wikipedia.org/wiki/MONIAC_

Computer (viewed March 1, 2012)
2. Blass, A., Dershowitz, N., Gurevich, Y.: Exact Exploration and Hanging Algo-

rithms. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 140–154.
Springer, Heidelberg (2010), http://nachum.org/papers/HangingAlgorithms.

pdf (viewed May 27, 2011)
3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over

the real numbers: NP completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. (NS) 21, 1–46 (1989)

4. Boker, U., Dershowitz, N.: The Church-Turing Thesis over Arbitrary Domains.
In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.
LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008), http://nachum.org/
papers/ArbitraryDomains.pdf (viewed January 10, 2012)

5. Boker, U., Dershowitz, N.: Three Paths to Effectiveness. In: Blass, A., Der-
showitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS,
vol. 6300, pp. 135–146. Springer, Heidelberg (2010), http://nachum.org/papers/
ThreePathsToEffectiveness.pdf (viewed January 10, 2012)

6. Bush, V.: The differential analyser. Journal of the Franklin Institute 212(4), 447–
488 (1931)

7. Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms Changing
Conceptions of What is Computable, pp. 383–423. Springer, New York (2008)

8. Cohen, J., Slissenko, A.: On implementations of instantaneous actions real-time
ASM by ASM with delays. In: Proc. of the 12th Intern. Workshop on Abstract
State Machines (ASM 2005), Paris, France, pp. 387–396 (2005)

9. Cohen, J., Slissenko, A.: Implementation of sturdy real-time abstract state ma-
chines by machines with delays. In: Proc. of the 6th Intern. Conf. on Computer
Science and Information Technology (CSIT 2007). Academy of Science of Armenia,
Yerevan (2007)

http://en.wikipedia.org/wiki/MONIAC_Computer
http://en.wikipedia.org/wiki/MONIAC_Computer
http://nachum.org/papers/HangingAlgorithms.pdf
http://nachum.org/papers/HangingAlgorithms.pdf
http://nachum.org/papers/ArbitraryDomains.pdf
http://nachum.org/papers/ArbitraryDomains.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf

536 O. Bournez, N. Dershowitz, and E. Falkovich

10. Coward, D.: Doug Coward’s Analog Computer Museum (2006), http://www.

cowardstereoview.com/analog/ (viewed January 10, 2012)
11. Dershowitz, N., Falkovich, E.: A formalization and proof of the Extended Church-

Turing Thesis (extended abstract). In: Studia Logica Conference on Trends in
Logic, IX: Church Thesis: Logic, Mind and Nature, Krakow, Poland (June 2011),
http://nachum.org/papers/ECTT.pdf (viewed January 10, 2012)

12. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. The Bulletin of Symbolic Logic 14(3), 299–350 (2009), http://
nachum.org/papers/Church.pdf (viewed April 15, 2009)

13. Glausch, A., Reisig, W.: A Semantic Characterization of Unbounded-
Nondeterministic Abstract State Machines. In: Mossakowski, T., Montanari, U.,
Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 242–256. Springer, Hei-
delberg (2007)

14. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press (1995), http://
research.microsoft.com/~gurevich/opera/103.pdf (viewed April 15, 2009)

15. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1, 77–111 (2000), http://research.
microsoft.com/~gurevich/opera/141.pdf (viewed April 15, 2009)

16. Gurevich, Y., Yavorskaya, T.: On bounded exploration and bounded nondetermin-
ism. Technical Report MSR-TR-2006-07, Microsoft Research, Redmond, WA (Jan-
uary 2006), http://research.microsoft.com/~gurevich/opera/177.pdf (viewed
January 10, 2012)

17. Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informat-
ica 39(5), 273–305 (2003)

18. Rust, H.: Hybrid abstract state machines: Using the hyperreals for describing
continuous changes in a discrete notation. In: Gurevich, Y., Kutter, P., Odersky,
M., Thiele, L. (eds.) International Workshop on Abstract State Machines (Monte
Verita, Switzerland), TIK-Report 87, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, pp. 341–356 (March 2000)

19. Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Math-
ematics and Physics 20, 337–354 (1941)

http://www.cowardstereoview.com/analog/
http://www.cowardstereoview.com/analog/
http://nachum.org/papers/ECTT.pdf
http://nachum.org/papers/Church.pdf
http://nachum.org/papers/Church.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf
http://research.microsoft.com/~gurevich/opera/141.pdf
http://research.microsoft.com/~gurevich/opera/141.pdf
http://research.microsoft.com/~gurevich/opera/177.pdf

Multiple Usage of Random Bits

in Finite Automata

Rūsiņš Freivalds

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, R̄ıga, Latvia�

Rusins.Freivalds@mii.lu.lv

Abstract. Finite automata with random bits written on a separate 2-
way readable tape can recognize languages not recognizable by probabilis-
tic finite automata. This shows that repeated reading of random bits by
finite automata can have big advantages over one-time reading of random
bits.

1 Introduction

What is a probabilistic finite automaton? The usual answer is a deterministic
finite automaton with an access to random bits. However, much depends on
precise terms how the random bits are allowed to use. The first models of the
probabilistic finite automata have shown to be not the most powerful ones.

Michael O. Rabin [22] proved that probabilistic finite automata with one-way
tape reading and isolated cut-point (bounded error) can recognize only regular
languages, i.e. the same languages as deterministic finite automata can recognize.
Freivalds [7] proved that two-way probabilistic finite automata with isolated cut-
point can recognize some non-regular languages. This result showed that proba-
bilistic automata differ from nondeterministic and alternating automata because
for the language recognition capabilities of one-way and two-way automata are
the same.

It was quite a surprise when it turned out that for some problems the com-
munication complexity using public coins can be lower than the communication
complexity using private coins [20]. Before that it was silently assumed that
there is only one possibility how to use randomization in constructing efficient
algorithms. Now it was shown that random bits may be a help in more than one
way. This was even more surprising because the papers [1,11,12] showed that
public and private coins had nearly the same power in interactive proof systems.

We discover in this paper another unusual property of randomization in finite
automata in this paper. We show that finite automata that can read the random
bits repeatedly have advantages over automata that can read these random bits
only once.

� The research was supported by Project 2009/0216/1DP/1.1.1.2.0/09/IPIA/VIA/044
from the European Social Fund.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 537–547, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

538 R. Freivalds

What is a random string of bits? Are we to demand a correct result for ar-
bitrary ”random” string, including a string consisting only of zeros? We are to
answer all these questions before we propose a formal definition.

In our case, the advice is supposed to be an arbitrary infinite Martin-Löf
random sequence but the finite automaton can use only a finite initial fragment
of this sequence. The length of the used fragment of the random sequence is up to
the finite automaton. We demand that the result is to be correct with arbitrary
Martin-Löf random sequence used. We demand also that no other restrictions
on the randomness are used. Moreover, after Theorem 1 we notice that this our
”naive” definition allows to simulate an additional counter, and it is well-known
that automata with one counter can recognize nonregular languages. To avoid
this additional possibility, we make our definition more complicated demanding
that our sequence of random bits is infinite to both ends. It has no beginning
and no end. One no more can simulate a counter but still our determnistic finite
automaton with random bits written on a separate tape can recognize languages
not recognizable by probabilistic finite automata.

Martin-Löf’s original definition of a random sequence was in terms of con-
structive null covers; he defined a sequence to be random if it is not contained in
any such cover. Leonid Levin and Claus-Peter Schnorr proved a characterization
in terms of Kolmogorov complexity: a sequence is random if there is a uniform
bound on the compressibility of its initial segments. An infinite sequence S is
Martin-Löf random if and only if there is a constant c such that all of S’s finite
prefixes are c-incompressible. Schnorr gave a third equivalent definition in terms
of martingales (a type of betting strategy). M.Li and P.Vitanyi’s book [19] is an
excellent introduction to these ideas.

However, the positive results in our paper use only one property of Martin-
Löf random sequences. Namely, it is well known that for arbitrary Martin-Löf
random sequence S and for arbitrary finite string w of zeros and ones it is true
that S contains infinitely many occurencies of w.

Hence we introduce a notion of primitive Martin-Löf random sequence which
suffices to prove all the positive results in our paper on usage of random binary
strings.

Definition 1. We say that an infinite sequence S of bits is a primitive Martin-
Löf random sequence if for arbitrary finite binary string w, it is true that S
contains infinitely many occurrences of the string w.

It is obvious that arbitrary Martin-Löf random sequence is a primitive Martin-
Löf random sequence.

This paper originated from re-considering the notion of ”automata that take
an advice”. This notion was introduced by R.Karp/R.Lipton [15] for Turing
machines, by T.Yamakami et al. [21,26,27] for finite automata and in a different
way by R.Freivalds [10].

In this paper we notice that a meaningful advice which complies with the
philosophy of the abovementioned papers can bring no information about the
input word (where information is understood in terms used by Claude Shannon

Multiple Usage of Random Bits in Finite Automata 539

[25]). This seems impossible but this is a simple corollary of the advantages of
multiple usage of random bits versus single-time usage of them.

2 Preliminary Results

Deterministic, nondeterministic and alternating 2-way finite automata recognize
only regular languages. On the other hand, it was proved in [7] (see also the
survey [8]) that 2-way probabilistic finite automata (shortly: 2pfa) with bounded
error can recognize nonregular languages.

C. Dwork and L. Stockmeyer proved in [4] a theorem on limitations of 2-way
probabilistic finite automata with bounded error. This theorem is useful for us:

Theorem A. [4] Let L ⊆ Σ∗. Suppose there is an infinite set I of positive inte-
gers and, for each m ∈ I, an integer N(m) and sets Wm = {w1, w2, · · · , wN(m)},
Um = {u1, u2, · · · , uN(m)} and Vm = {v1, v2, · · · , vN(m)} of words such that

1. | w |≤ m for all w ∈ Wm,

2. for every integer k there is an mk such that N(m) ≥ mk for all m ∈ I with
m ≥ mk, and

3. for all 1 ≤ i, j ≤ N(m), ujwivj ∈ L iff i = j.

Then L is not recognizable by 2-way probabilistic finite automata with bounded
error.
We use this result to prove our Theorem 1. We have not yet defined our model
of automaton but Theorem 1 already contains the essence of later constructions.
The rest of this Section contains easy constructions showing why the model must
be defined in a rather complicated way. We wish to show that multiple usage of
random bits gives us advantages over single-time usage of them. However, the
model is to be defined carefully to avoid many possible trivialities that can arise
from allowing seemingly harmless simplifications of the model.

Theorem 1. (1)The language L = {x2x | x ∈ {0, 1}∗} cannot be recognized
with a bounded error by a probabilistic 2-way finite automaton.
(2) The language L = {x2x | x ∈ {0, 1}∗} can be recognized by a deterministic
non-writing 2-tape finite automaton one tape of which contains the input word,
and the other tape contains a primitive Martin-Löf random sequence, the au-
tomaton is 2-way on every tape, and it stops producing a the correct result in a
finite number of steps for arbitrary input word.

Proof. (1) Let m be an arbitrary integer. For arbitrary
i ∈ {0, 1, 2, · · · , 2m − 1} we define the word xi(m) as the word number i in the
lexicographical ordering of all the binary words of the length m. We define the
words ui, wi, vi in our usage of Theorem A as {2, xi(m), 2xi(m)}.

(2) Let the input word be x(r)2z(s) where r and s are the lengths of the
corresponding words. At first, the 2-tape automaton finds a fragment 01111 · · ·

540 R. Freivalds

which has the length at least r and uses it as a counter to test whether r = s.
Then the automaton searches for another help-word. If the help-word turns out
to be y then the automaton tests whether x(r) = y and whether z(s) = y. �
The definition used in the second item of Theorem 1 is our first (but not final)
attempt to formalize the main idea of the notion of help from outside bringing
zero information about the problem to be solved. Unfortunately, this definition
allows something that was not intended to use. Such automata can easily sim-
ulate a counter, and 2-way automata with a counter, of course, can recognize
nonregular languages. Hence we try to present a more complicated definition of
help from outside bringing zero information to avoid the possibility to simulate
a counter.

Definition 2. A 2-infinite sequence of bits is a sequence {ai} where i ∈ (−∞,∞)
and all ai ∈ {0, 1}.

Definition 3. We say that a 2-infinite sequence of bits is primitive Martin-Löf
random if for arbitrary i ∈ (−∞,∞) the sequence {bn} where bn = ai+n for all
i ∈ N is primitive Martin-Löf random, and the sequence {cn} where cn = ai−n

for all i ∈ N is primitive Martin-Löf random.

Definition 4. A deterministic finite automaton with written random bits
(shortly: wrb) is a deterministic non-writing 2-tape finite automaton one tape of
which contains the input word , and the other tape contains a 2-infinite primitive
Martin-Löf random sequence, the automaton is 2-way on every tape, and it stops
producing a the correct result in a finite number of steps for arbitrary input word.
Additionally it is demanded that the head of the automaton never goes beyond
the markers showing the beginning and the end of the input word.

Nondeterministic, probabilistic, alternating, etc. automata with wrb differ from
deterministic ones only in the nature of the automata but not in usage of tapes
or Martin-Löf random sequences.

Definition 5. We say that a language L is recognizable by a deterministic finite
automaton A with wrb if A for arbitrary 2-infinite primitive Martin-Löf random
sequence accepts every input word x ∈ L and rejects every input word x /∈ L.

Definition 6. We say that a language L is enumerable by a deterministic finite
automaton A with wrb if A for arbitrary 2-infinite primitive Martin-Löf random
sequence accepts every input word x ∈ L and do not accept any input word x /∈ L.

Our Definition 4 contains an unexplained restriction forbidding the head on on
the input tape to go beyond markers. This restriction was introduced because
of undesired advantages of such machines considered in the following definition
and subsequent Theorem 2.

Definition 7. A deterministic finite automaton with wrb on unbounded input
is a deterministic read-only 2-tape finite automaton one tape of which contains
the input word , and the other tape contains a 2-infinite primitive Martin-Löf

Multiple Usage of Random Bits in Finite Automata 541

random sequence, the automaton is 2-way on every tape, and it stops producing
a the correct result in a finite number of steps for arbitrary input word. It is not
demanded that the head of the automaton always remains between the markers
showing the beginning and the end of the input word.

Recognition and enumeration of languages by deterministic finite automata with
wrb is not particularly interesting because of the following two theorems.

Theorem 2. A language L is enumerable by a deterministic finite automaton
with wrb on unbounded input if and only if it is recursively enumerable.

Proof. J.Bārzdiņš [2] proved that arbitrary one-tape deterministic Turing ma-
chine can be simulated by a 2-way finite deterministic automaton with 3 counters
directly and by a 2-way finite deterministic automaton with 2 counters using
a simple coding of the input word. (Later essentially the same result was re-
discovered by other authors.) Hence there exists a a 2-way finite deterministic
automaton with 3 counters accepting every word in L and only words in L.

Let x be an arbitrary word in L. To describe the processing of x by the 3-
couter automaton we denote the content of the counter i (i ∈ {1, 2, 3}) at the
moment t by d(i, t). The word

00000101d(1,0)0101d(2,0)0101d(3,0)000101d(1,1)0101d(2,1)0101d(3,1)00 · · ·

· · · 00101d(1,s)0101d(2,s)0101d(3,s)0000
where s is the halting moment, is a complete description of the processing of x
by the automaton.

Our automaton with wrb tries to find a fragment of the 2-infinite primitive
Martin-Löf random sequence on the help-tape such that:

1. it starts and ends by 0000,

2. the initial fragment

0101d(1,0)0101d(2,0)0101d(3,0)00

is exactly 0000010010010, (i.e., the all 3 counters are empty,

3. for arbitrary t the fragment

0101d(1,t)0101d(2,t)0101d(3,t)0101d(1,t+1)0101d(2,t+1)0101d(3,t+1)

coresponds to a legal instruction of the automaton with the counters.

Since the 2-infinite sequence is primitive Martin-Löf random, such a fragment
definitely exists in the sequence infinitely many times. The correctness of the
fragment can be tested using the 3 auxiliary constructions below.

Construction 1. Assume that wk ∈ {0, 1}∗ and wm ∈ {0, 1}∗ are two subwords
of the input word x such that:

542 R. Freivalds

1. they are immediately preceded and immediately followed by symbols other
than {0, 1},

2. a deterministic finite 1-tape 2-way automaton has no difficulty to move from
wk to wm and back, clearly identifying these subwords,

Then there is a deterministic finite automaton with wrb recognizing whether or
not wk = wm.

Proof. As in Theorem 1. �
Construction 2. Assume that 1k and 1m are two subwords of the help-word y
such that:

1. they are immediately preceded and immediately followed by symbols other
than {0, 1},

2. a deterministic finite 1-tape 2-way automaton has no difficulty to move from
wk to wm and back, clearly identifying these subwords,

3. both k and m are integers not exceeding the length of the input word.

Then there is a deterministic finite automaton with wrb recognizing whether or
not k = m.

Proof. Similar the proof of Construction 1.

Construction 3. Assume that 1k1 , 1k2 , · · · , 1ks and 1m1 , 1m2 , · · · , 1mt are sub-
words of the help-word y such that:

1. they are immediately preceded and immediately followed by symbols other
than 1,

2. a deterministic finite 1-tape 2-way automaton has no difficulty to move from
one subword to another and back, clearly identifying these subwords,

3. both k1 + k2 + · · ·+ ks and m1 +m2 + · · ·+mt are integers not exceeding
the length of the input word.

Then there is a deterministic finite automaton with wrb recognizing whether or
not k1 + k2 + · · ·+ ks = m1 +m2 + · · ·+mt.

Proof. Similar the proof of Construction 2. �
Corollary of Theorem 2. A language L is recognizable by a deterministic finite
automaton with wrb on unbounded input if and only if it is recursive.
Theorem 2 and its corollary show that the standard definition of the automaton
with wrb should avoid the possibility to use the input tape outside the markers.
However, even our standard definition allows recognition and enumeration of
nontrivial languages. The proof of Theorem 1 can be easily modified to prove

Theorem 3. 1. The language L = {x2x | x ∈ {0, 1}∗} cannot be recognized
with a bounded error by a probabilistic 2-way finite automaton,

Multiple Usage of Random Bits in Finite Automata 543

2. The language L = {x2x | x ∈ {0, 1}∗} can be recognized by a deterministic
finite automaton with wrb.

What happens if we allow to have two (or more) help-tapes containing 2-infinite
primitive Martin-Löf sequences? We will see below that again this help turns
out to be superfluous.

Definition 8. A deterministic finite automaton with wrb with 2 help tapes is
a deterministic non-writing 3-tape finite automaton one tape of which contains
the input word , and each of the two other tapes contains a 2-infinite primitive
Martin-Löf random sequence, the automaton is 2-way on every tape, and it stops
producing a the correct result in a finite number of steps for arbitrary input word.
It is not demanded that the head of the automaton always remains between the
markers showing the beginning and the end of the input word.

Theorem 4. A language L is enumerable by a deterministic finite automaton
with wrb with 2 help tapes if and only if it is recursively enumerable.

Theorem 5. A language L is recognizable by a deterministic finite automaton
with wrb with 2 help tapes if and only if it is recursive.

3 Main Results

Theorem 6. The unary language PERFECT SQUARES = {1n | (∃m)(n =
m2)} can be recognized by a deterministic finite automaton with wrb.

Proof. It is well-known that

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

The deterministic automaton with wrb searches for a help-word (being a frag-
ment of the given 2-infinite primitive Martin-Löf sequence) of a help-word

00101110111110 · · ·012n−100.

At first, the input word is used as a counter to test whether each substring of 1’s
is exactly 2 symbols longer than the preceding one. Then the help-word is used
to test whether the length of the input word coincides with the number of 1’s in
the help-word. �

Theorem 7. The unary language PERFECT CUBES = {1n | (∃m)(n = m3)}
can be recognized by a deterministic finite automaton with wrb.

Proof. In a similar manner the formula

1 + 3(n− 1) + 3(n− 1)2 = n3 − (n− 1)3

suggests a help-word

000[1]00[101110111]00[101111110111111111111]00 · · ·00[101n−101(n−1)2]000

544 R. Freivalds

where symbols [,] are invisible. At first, the input word is used as a counter
to test whether the help-word is correct but not whether its length is sufficient.
Then the help-word is used to test whether the length of the input word coincides
with the number of 1’s in the help-word. �

Theorem 8. The unary language PRIMES = {1n | n is prime} can be recog-
nized by a deterministic finite automaton with wrb.

We define a language UNARY 3-SAT as follows. The term term1 = xk is coded
as [term1] being 21k, the term term2 = ¬xk is coded as [term2] being 31k,
the subformula f being (term1 ∨ term2 ∨ term3) is coded as [f] being [term1]∨
[term2]∨[term3]. The CNF being f1∧f2∧· · ·∧fm is coded as [f1]∧[f2]∧· · ·∧[fm].

Theorem 9. Every L ∈ NP is reducible by a deterministic log-space bounded
Turing machine to a language L′ such that L′ is enumerable by a deterministic
finite automaton with wrb.

Proof. 3-SAT is NP -complete. Hence L is reducible by a deterministic log-
space bounded Turing machine to 3-SAT. The language 3-SAT is reducible
by a deterministic log-space bounded Turing machine to unary3 − SAT . The
language UNARY 3-SAT is enumerable by a deterministic finite automaton B
with wrb which can be constructed using Construction 1, Construction 2 and
Construction 3. �

Theorem 10. If a language L is enumerable by a nondeterministic finite au-
tomaton with wrb then L ∈ NP .

Idea of the proof. R.Fagin’s theorem [5] in descriptive complexity theory states
that the set of all properties expressible in existential second-order logic is pre-
cisely the complexity class NP. N.Immerman 1999 gave a detailed proof of the
theorem [13].

Our proof rather closely simulates Immerman’s proof. Essentially, we use
second-order existential quantifiers to choose existentially a help-word and a
computation tableau. For every timestep, we arbitrarily choose the finite state
control’s state, the contents of every tape cell, and which nondeterministic choice
we must make. Verifying that each timestep follows from each previous timestep
can then be done with a first-order formula. �
The paper [10] contains the following

Theorem 11. There exists a nonrecursive language L such that it can be non-
constructively recognized with nonconstructivity (logn)2.

In constrast, we have a result showing that if the nonconstructive help is a prim-
itive Martin-Löf sequence, then the language can be only recursive. Moreover,
we have

Theorem 12. If a language L is recognizable by a nondeterministic finite au-
tomaton with wrb then L ∈ NP ∩ co−NP .

Multiple Usage of Random Bits in Finite Automata 545

Unfortunately, we have no strengthening of Theorems 10,12 for deterministic
finite automata with wrb. Theorem 13 below shows that this open problem can
be difficult.

Theorem 13. Every language enumerable by a deterministic finite automaton
with wrb is also recognizable by a nondeterministic finite automaton with wrb if
and only if P = NP .

Proof. Immediately from Theorem 12 and Lemma 1 below. �

Lemma 1. If every language enumerable by a deterministic finite automaton
with wrb is also recognizable by a nondeterministic finite automaton with wrb
then P = NP .

Proof. Let L be an arbitrary language in NP . Then by Theorem 9 L is reducible
by a log-space DTM to a language L′ ∈ NP such that L′ is enumerable by a
deterministic finite automaton with wrb. The assumption of our theorem im-
plies that L′ recognizable by a nondeterministic finite automaton with wrb, and,
consequently, also the complement of L′ is recognizable by a nondeterministic
finite automaton with wrb. By Theorem 12 it follows that L′ ∈ co − NP , and
by Theorem 9 it follows that L ∈ co−NP . �

Theorem 14. If a language L is enumerable by a nondeterministic finite au-
tomaton with wrb then L is also enumerable by a deterministic finite automaton
with wrb.

Proof. The deterministic automaton with wrb searches for a help-word (being a
fragment of the given 2-infinite primitive Martin-Löf sequence) of a special kind
described below.

Let x ∈ L be an input word , a help-word w (we denote the length of w by
h) and let an computation path P by the nondeterministic automaton on (x,w)
be fixed such that the head on w never leaves w. At first, we describe a word y
containing enough information about the nondeterministic choices and later we
use this word y to construct a deterministic finite automaton with wrb to accept
the word (x, z) with an appropriate z. Let w be a unary word w1w2w3 · · ·wm.
Then

y = w12c(1,1)c(2,1) · · · c(h,1)2w22c(1,2)c(2,2) · · · c(h,2)2w3 · · · 2wm2c(1,m) · · · c(h,m)

where c(i,j) denotes:

– 2, if at the computation path P there is no occurrence when the head on
the help-tape is on the symbol wj and the head on the input tape at this
moment is on the i-th symbol of x;

– code of triple (p, s, i), if at the computation path P there is an occurrence
when the head on the help-tape is on the symbol wj and the head on the input
tape at this moment is on the i-th symbol of x, and at this moment the state

546 R. Freivalds

of the automaton is p , the instruction s is performed on the computation
path P , and the number i in a unary notation. (Please notice that p and s are
elements of finite sets with a cardinality bounded by a constant depending
only on the program of the nondeterministic automaton.)

Let z be an expression of y in binary notation by a symbol-to-symbol transla-
tion of the word y. The needed deterministic automaton working on arbitrary
2-infinite primitive Martin-Löf sequence searches for a fragment z of the given 2-
infinite sequence. This search involves a huge amount of comparisons (1) whether
or not the tested help-word is compatible with the instructions of the nondeter-
ministic finite automaton with wrb and (2) whether the tested help-word is
compatible with the computation path of the nondeterministic finite automaton
with wrb. For instance, let at some moment it appears that the current instruc-
tion of the nondeterministic automaton (contained in c(i,j))prescribes moving
the head on the help-tape one position to the right with the head on the input
tape staying at the same position. Then the head of the deterministic automa-
ton with wrb leaves its position and for a time being the input tape is used
only as a counter. The moves to the leftmost position and then the counter is
used to move the help-tape head to the position of c(i,j+1) simultaneously com-
paring whether c(i,j+1) contains an instruction compatible with the instruction
performed at the previous step. If at some moment it turns out that the help
word is not correct (i.e. it does not correspond either to the instructions of the
nondeterministic automaton, or it does not correspond to a legal path of com-
putation), the deterministic automaton searches for a new help-word. Since the
help tape contains a 2-infinite primitive Martin-Löf random sequence, if there is
an accepting path of the nondeterministic automaton there is also an accepting
path of the deterministic automaton. �
Corollary of Theorem 14. If a language L is recognizable by a nondetermin-
istic finite automaton with wrb then L is also recognizable by a deterministic
finite automaton with wrb.

References

1. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences 36(2),
254–276 (1988)

2. Barzdin, J.M.: On a Class of Turing Machines (Minsky Machines). Algebra i
Logika 3(1) (1963) (Russian); Review in the Journal of Symbolic Logic 32(4),
523–524 (1967)

3. Calude, C.S., Staiger, L.: Generalisations of disjunctive sequences. Mathematical
Logic Quarterly 51(2), 120–128 (2005)

4. Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. Journal
of the Association for Computing Machinery 39(4), 800–828 (1992)

5. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) SIAM-AMS Proceedings of the Complexity of Computation,
vol. 7, pp. 27–41 (1974)

Multiple Usage of Random Bits in Finite Automata 547

6. Freivalds, R.: Probabilistic machines can use less running time. In: Gilchrist, B.
(ed.) Information Processing 1977, Proceedings of IFIP Congress 1977, pp. 839–
842. North-Holland, Amsterdam (1977)

7. Freivalds, R.: Probabilistic Two-way Machines. In: Gruska, J., Chytil, M.P. (eds.)
MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)

8. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp.
565–613. Springer, Heidelberg (1991)

9. Freivalds, R.: Non-constructive methods for finite probabilistic automata. Interna-
tional Journal of Foundations of Computer Science 19(3), 565–580 (2008)

10. Freivalds, R.: Amount of nonconstructivity in finite automata. Theoretical Com-
puter Science 411(38-39), 3436–3443 (2010)

11. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge complexity of interactive
proof-systems. In: Proceedings of ACM STOC 1985, pp. 291–304 (1985)

12. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: Proceedings of ACM STOC 1986, pp. 58–68 (1986)

13. Immerman, N.: Descriptive Complexity, pp. 113–119. Springer, New York (1999)
14. Jürgensen, H., Thierrin, G.: On ω-Languages whose syntactic monoid is trivial.

International Journal of Parallel Programming 12(5), 359–365 (1983)
15. Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Math-

ematique 28, 191–209 (1982)
16. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.

Problems in Information Transmission 1, 1–7 (1965)
17. Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14,

1413–1416 (1973)
18. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6),

602–619 (1966)
19. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Ap-

plications, 2nd edn. Springer (1997)
20. Newman, I.: Private vs. common random bits in communication complexity. Infor-

mation Processing Letters 39, 67–71 (1991)
21. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice.

Information Processing Letters 90(4), 195–204 (2004)
22. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)
23. Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathe-

matical Systems Theory 5(3), 246–258 (1971)
24. Schnorr, C.-P.: Process complexity and effective random tests. Journal of Computer

and System Sciences 7(4), 376–388 (1973)
25. Shannon, C.: Communication theory of secrecy systems. Bell System Technical

Journal 28(4), 656–715 (1949)
26. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing

machines. Theoretical Computer Science 411(1), 22–43 (2010)
27. Yamakami, T.: The Roles of Advice to One-Tape Linear-time Turing machines and

finite automata. International Journal of Foundations of Computer Science 21(6),
941–962 (2010)

Minimum Certificate Dispersal

with Tree Structures

Taisuke Izumi1, Tomoko Izumi2, Hirotaka Ono3, and Koichi Wada1,

1 Graduate School of Engineering, Nagoya Institute of Technology,
Nagoya, 466-8555, Japan

{t-izumi,wada}@nitech.ac.jp
2 College of Information Science and Engineering, Ritsumeikan University,

Kusatsu, 525-8577 Japan
izumi-t@fc.ritsumei.ac.jp

3 Faculty of Economics, Kyushu University,
Fukuoka, 812-8581, Japan

hirotaka@en.kyushu-u.ac.jp

Abstract. Given an n-vertex graph G = (V,E) and a set R ⊆ {{x, y} |
x, y ∈ V } of requests, we consider to assign a set of edges to each vertex
in G so that for every request {u, v} in R the union of the edge sets as-
signed to u and v contains a path from u to v. The Minimum Certificate
Dispersal Problem (MCD) is defined as one to find an assignment that
minimizes the sum of the cardinality of the edge set assigned to each
vertex, which is originally motivated by the design of secure commu-
nications in distributed computing. This problem has been shown to be
LOGAPX-hard for general directed topologies of G and R. In this paper,
we consider the complexity of MCD for more practical topologies of G
and R, that is, when G or R forms an (undirected) tree; tree structures
are frequently adopted to construct efficient communication networks.
We first show that MCD is still APX-hard when R is a tree, even a star.
We then explore the problem from the viewpoint of the maximum de-
gree Δ of the tree: MCD for tree request set with constant Δ is solvable
in polynomial time, while that with Δ = Ω(n) is 2.78-approximable in
polynomial time but hard to approximate within 1.01 unless P=NP. As
for the structure of G itself, we show that if G is a tree, the problem can
be solved in O(n1+ε|R|), where ε is an arbitrarily small positive constant
number.

1 Introduction

Background and Motivation. Let G = (V,E) be a graph and R ⊆ {{x, y} |
x, y ∈ V } be a set of pairs of vertices, which represents requests about reacha-
bility between two vertices. For given G and R, we consider an assignment of a
set of edges to each vertex in G. The assignment satisfies a request {u, v} if the

� From April in 2012, Faculty of Science and Engineering, Hosei University, Koganei,
184-8584, Japan.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 548–559, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Minimum Certificate Dispersal with Tree Structures 549

union of the edge sets assigned to u and v contains a path between u and v. The
Minimum Certificate Dispersal Problem (MCD) is the one to find an assignment
satisfying all requests in R that minimizes the sum of the cardinality of the edge
set assigned to each vertex.

This problem is motivated by the design of security systems based on public-
key certificates, which is known as a major technique for supporting secure com-
munication in distributed systems [3,6,7,9,10,12,16,17]. A public-key certificate
contains the public key of a user v encrypted by the private key of another user
u. If a user u knows the public key of another user v, user u can issue a certificate
from u to v. Any user who knows the public key of u can use it to decrypt the
certificate from u to v for obtaining the public key of v. All certificates issued
by users in a network can be represented by a certificate graph: Each vertex
corresponds to a user and each directed edge corresponds to a certificate. When
a user w has the communication request to send messages to user v securely, w
needs to know the public key of v to encrypt the messages with it. To satisfy the
communication request from w to v, vertex w needs to get vertex v’s public-key.
To compute it, w uses a set of certificates stored in w and v in advance. That is,
if the union of the sets of certificates stored in w and v contains a path from w
to v, then the communication request from w to v is satisfied. In terms of cost to
maintain certificates, the total number of certificates stored in all vertices must
be minimized for satisfying all communication requests.

MCD in the most general setting, where G is a directed graph, has been shown
to be LOGAPX-hard, it polynomial time algorithm whose approximation factor
is better than 0.2266 log |V | unless P=NP [10]. In this paper, we consider the
computational complexity of MCD for more practical topologies of G and R,
that is, when G or R forms a tree; tree structures are frequently adopted to
construct efficient communication networks. In fact, many practical applications
such as DNS (Domain Name System) adopts bidirectional tree structures, and
also physical network structures reflect such tree structures; it is interpreted that
G forms an undirected tree. Furthermore, many applications on overlay networks
utilize tree structures (e.g., [15], also see [11]).

Another motivation to focus on tree structures is that a kind of observation
on trees might give some useful information for more general cases, since trees
are minimal connected structures. For example, even if G (resp., R) is not a tree,
by solving MCD for G′, a spanning tree of G (resp., for a spanning tree R′ of
R), we can obtain an upper bound on the optimal solution (resp., a lower bound
on the optimal solution) of the original MCD instance.

Related Work. The previous work mainly focuses on directed variants of MCD,
in which graph G is directed. Jung et al. discussed MCD with a restriction of
available paths in [12] and proved that the problem is NP-hard. In their work,
it is assumed that only restricted paths for each request, given as a part of
the problem instance, are allowed to be used. MCD without restriction about
available paths was first formulated in [17]. This variant is also proved to be
NP-hard even if the input graph is a strongly connected directed graph. On the
other hand, MCD for directed graphs with R forming a clique is polynomially

550 T. Izumi et al.

solvable for bidirectional trees and rings, and Cartesian products of graphs such
as meshes and hypercubes [17].

After the prior work above, the (in)approximability of MCD for directed graphs
has been studied from the viewpoint of the topological structure ofR (notG) [10].
the (in)approximability ofMCD for directed graphs is investigated for general case
and R forming a clique, as a typical community structure. As mentioned above,
it has been shown that the former case is O(log |V |)-approximable in polynomial
time but has no polynomial time algorithm whose approximation factor is bet-
ter than 0.2266 log |V | unless P=NP. The latter case is 2-approximable but has
no polynomial time algorithm whose approximation factor is better than 1.001,
unless P=NP. In [10], the undirected variant of MCD is also considered, and a
1.5-approximation algorithm for the case when R forms a clique is presented.

Our Contribution. We investigate the complexity of MCD with tree struc-
tures. Here, we say “with tree structures” in two senses. One is the case when
R forms a tree, and the other is the case when G itself is a tree.

For MCD with tree R, we show that the hardness and approximability depend
on the maximum degree Δ of tree R: MCD for tree R with constant degree is
solvable in polynomial time while that with Ω(n) degree is APX-hard. As for
MCD for tree G, we present a polynomial time algorithm. The followings are
the summary of our contributions:

– R is an arbitrary tree: First we consider MCD for the case when R is a star.
Even in this simplest setting, MCD is shown to be APX-hard: MCD for
undirected graph G with sparse R is still APX-hard. Moreover, the reduction
to the Steiner tree problem for unweighted graphs(STREE) leads to an upper
bound 1.39 on approximation ratio for MCD with star request sets. For
arbitrary tree R, it is shown that there is a 2.78-approximate algorithm for
MCD by utilizing the approximation algorithm for star R.

– R is a tree with Δ = O(log |V |): By using a similar analysis to arbitrary tree
R, the upper bound of approximation ratio for MCD can be reduced to 2. In
particular, if R is a star with Δ = O(log n) MCD is polynomially solvable.

– R is a tree with constant degree: This case is polynomially solvable. These
imply that the hardness of MCD for tree R heavily depends on its maximum
degree. A key idea is to define normal solutions. Our algorithm is based on
dynamic programming, which does not search the whole solution space but
the (much smaller) normal solution space.

– G is an arbitrary tree: In this case also, a positive result is shown. For any
request set R (not restricted to a tree), our algorithm outputs an optimal
solution in O(n1+ε|R|) time (ε > 0) while a naive algorithm takes O(n1.5|R|)
time. In the naive algorithm, a polynomial time algorithm for VERTEX-
COVER problem on bipartite graphs, which can be solved via the maximum
matching algorithm, is applied for each edge in G. Our algorithm realizes
the improvement of computation time by exploiting the reoptimization of
MATCHING problem for bipartite graphs.

The remainder of the paper is organized as follows. In Section 2, we formally
define the Minimum Certificate Dispersal Problem (MCD). Section 3 shows the

Minimum Certificate Dispersal with Tree Structures 551

hardness and approximability of MCD with star request sets, and Section 4
extends it to the approximability of MCD with tree request sets.In Section 5,
we present a polynomial time algorithm that optimally solves MCD for tree re-
quest with constant degree. Section 6 shows an optimal algorithm for MCD with
undirected tree graphs. Section 7 concludes the paper.

2 Minimum Certificate Dispersal Problem

While the Minimum Certificate Dispersal (MCD) Problem is originally defined
for directed graphs, we deal with its undirected variants, where the given graph is
undirected. The difference between them is the meaning of assignment an edge to
a vertex: In the standard MCD, an edge (u, v) means a certificate from u to v. In
the undirected variant of MCD, an edge {u, v} means a bidirectional certificate
from u to v and v to u which is not separable. Since we treat the undirected
variants of MCD throughout this paper, we simply refer those problems as MCD.
In the following, we give the formal definition of MCD problem treated in this
paper.

Let G = (V,E) be an undirected graph, where V and E are the sets of vertices
and edges in G, respectively. An edge in E connects two distinct vertices in V .
The edge between vertices u and v is denoted by {u, v}. The numbers of vertices
and edges in G are denoted by n and m, respectively (i.e., n = |V |,m = |E|).
A sequence of edges p(v0, vk) = {v0, v1}, {v1, v2}, . . . , {vk−1, vk} is called a path
between v0 and vk of length k. A path p(v0, vk) can be represented by a sequence
of vertices p(v0, vk) = (v0, v1, . . . , vk). For a path p(v0, vk), v0 and vk are called
the endpoints of the path. A shortest path between u and v is the one whose
length is the minimum of all paths between u and v, and the distance between
u and v is the length of the shortest path between u and v, denoted by d(u, v).

A dispersal D of an undirected graph G = (V,E) is a family of sets of edges
indexed by V , that is, D = {Dv ⊆ E | v ∈ V }. We call Dv a local dispersal of
v. A local dispersal Dv indicates the set of edges assigned to v. The cost of a
dispersalD, denoted by c(D), is the sum of the cardinalities of all local dispersals
in D (i.e., c(D) = Σv∈V |Dv|). A request is a reachable unordered pair of vertices
in G. For a request {u, v}, u and v are called the endpoints of the request. We
say a dispersal D of G satisfies a set R of requests if a path between u and v is
included in Du ∪Dv for any request {u, v} ∈ R. Given two dispersals D and D′

of G, the union of two dispersals {Dv ∪D′
v | v ∈ V } is denoted by D ∪D′.

The Minimum Certificate Dispersal Problem (MCD) is defined as follows:

Definition 1 (Minimum Certificate Dispersal Problem (MCD))
INPUT: An undirected graph G = (V,E) and a set R of requests.
OUTPUT: A dispersal D of G satisfying R with minimum cost.

The minimum among costs of dispersals of G that satisfy R is denoted by
cmin(G,R). Let DOpt be an optimal dispersal of G which satisfies R (i.e., DOpt

is one such that c(DOpt) = cmin(G,R)).
Since R is a set of unordered pairs of V , it naturally defines an undirected

graph HR = (VR, ER) where VR = {u, v | {u, v} ∈ R} and ER = R. The request

552 T. Izumi et al.

set R is called tree if HR is a tree, and is also called star if HR is a tree with
exactly one internal vertex. The maximum degree of HR is denoted by ΔR. The
problem of MCD restricting HR to tree or star with degree ΔR is called MCD-
tree(ΔR) and MCD-star(ΔR). We also denote the problem of MCD restricting
HR to tree (or star) with degree ΔR = O(f(n)) for some function f(n) as MCD-
tree(O(f(n))) (or MCD-star(O(f(n))). When we do not consider any constraint
to the maximum degree, the argument ΔR is omitted.

3 MCD for Star Request Sets

The NP-hardness and inapproximability of directed MCD for strongly-connected
graphs are shown in the previous work[17]. In this section, we prove that MCD
is APX-hard even if we assume that HR is a star. The proof is by the reduction
from/to the Steiner-tree problem.

Definition 2 (Steiner-tree Problem (STREE))
INPUT: An undirected connected graph G = (V,E) and a set T ⊆ V of termi-
nals.
OUTPUT: A minimum-cardinality subset of edges E′ ⊆ E that connects all
terminals in T .

We often use the notations STREE(t) and STREE(O(f(n))), which are the
Steiner-tree problems for a terminal set with cardinality at most t and t =
O(f(n)) respectively.

Theorem 1. There exists a polynomial time ρ-approximation algorithm for
MCD-star(Δ) if and only if there exists a polynomial time ρ-approximation
algorithm for STREE(Δ+ 1).

Proof. We only show the proof of the only-if part because if part can be proved
almost in the same way. Given an instance (G = (V,E), T) of STREE(t + 1),
we construct an instance (G′, R) of MCD-star(t) as G′ = G and R = {{vr, u} |
u ∈ T \ {vr}}, where vr is the internal vertex of HR arbitrary chosen from T . To
prove the theorem, it suffices to show that any feasible solution of (G′, R) (resp.
(G, T)) can be transformed to a feasible solution of (G, T) (resp. (G′, R)) with
no gain of their solution costs. Then (G′, R) and (G, T) have the same optimal
cost, and thus any ρ-approximated solution of (G′, R) induces an ρ-approximated
solution of (G, T).

From (G′, R) to (G, T): Given a feasible solution D = {Dv | v ∈ V } of (G′, R),
we can construct a set of edges S = ∪v∈V Dv of (G, T). Since S necessarily
includes a path between any pair in R (via vr), it induces a connected graph
containing all vertices in T = VR. Thus, S is a feasible solution of (G, T) and its
cost is at most

∑
v∈V |Di| = c(D).

From (G, T) to (G′, R): Given a feasible solution S of (G, T), we obtain the
dispersal of (G′, R) by assigning all edges in S(⊆ E) to the internal vertex vr

Minimum Certificate Dispersal with Tree Structures 553

of HR. Since Dvr connects all vertices in VR, any request in R is satisfied. Thus
D = {Dvr = S} ∪ {Dv = ∅ | v ∈ V, v �= vr} is a feasible solution of (G,R) and
its cost is equal to |S|.

The theorem is proved. ��

Since STREE is APX-hard [1] and its known upper and lower bounds for the
approximation factor are 1.39 and 1.01 respectively [2,4], we can obtain the
following corollary.

Corollary 1. MCD-star has a polynomial time 1.39-approximation algorithm,
and has no polynomial time algorithm with an approximation factor less than
1.01 unless P = NP , that is, MCD-star is APX-complete.

4 MCD for Tree Request Sets

4.1 Tree Structure with Arbitrary Degree

The general approximability of MCD-tree can be shown by the following
theorem:

Theorem 2. Given a ρ-approximation algorithm for MCD-star, there is a poly-
nomial time 2ρ-approximation algorithm for MCD-tree.

We first introduce a construction of the algorithm: Given an instance (G =
(V,E), R) of MCD-tree, we regard HR as a rooted tree by picking up an ar-
bitrary vertex as its root. Letting depth(v) (v ∈ VR) be the distance from the
root to v on HR, we partition the request set R into two disjoint subsets Ri

(i ∈ {0, 1}) as Ri = {{u, v} | depth(u) < depth(v) and depth(u) mod 2 = i}.
Note that both R1 and R0 respectively form two forests where each connected
component is a star. Thus, using any algorithm for MCD-star (denoted by A),
we can obtain two solutions of (G,R1) and (G,R0) by independently solving the
problems associated with each connected component. Letting Dj be the solution
of instance (G,Rj), the union D1 ∪D0 is the final solution of our algorithm.

It is easy to verify that D1 ∪ D0 is a feasible solution of (G,R). Let cmax

be the larger one of the optimal costs for instances (G,R1) and (G,R0). Then,
cmax is obviously the lower bound of the optimal cost for (G,R). Consequently,
the algorithm achieves approximation ratio 2ρ because of c(D1 ∪D0) ≤ c(D1)+
c(D0) ≤ ρ · 2cmax.

For lack of the space, we give the proof details in the appendix. The above
theorem and Corollary 1 lead the following corollary:

Corollary 2. MCD-tree has a polynomial time 2.78-approximation algorithm.

4.2 Tree Structure with O(logn) Degree

In the proof of Theorem 2, we have shown that an approximated solution for
instance (G,R) of MCD-tree can be constructed by solving several MCD-star

554 T. Izumi et al.

instances. Thus, if ΔR = O(log n), each decomposed star has O(log n) vertices
(that is, an instance of MCD-star(O(logn))). By Theorem 1, MCD-star(O(logn))
and STREE(O(logn)) have the same complexity and STREE(O(logn)) is op-
timally solved in polynomial time [5]. Therefore, Theorem 2 leads the following
corollary.

Corollary 3. There is a polynomial-time algorithm to solve MCD-star(O(log n))
optimally, and there is a polynomial-time 2-approximation algorithm for MCD-
tree(O(logn)).

We further present a corollary used in the next section, which is easily deduced
from Corollary 3 and the proof of Theorem 2.

Corollary 4. For any instance (G,R) of MCD-star(O(log n)), it is possible to
compute in polynomial time its optimal solution where only the internal vertex
of HR has a nonempty dispersal.

5 Tree Structures with Constant Degree

In this section, we provide a polynomial-time algorithm that returns the opti-
mal dispersal for any instance of MCD-tree(O(1)). Throughout this section, we
regard HR as a rooted tree by picking up an arbitrary vertex r in VR as its root.
Given a vertex u ∈ VR, let par (u) be the parent of u, and let CH (u) be the set
of u’s children.

A request {u, v} is well-satisfied by a feasible solutionD if there exists a vertex
αu,v such thatDu contains a path between u and αu,v andDv contains a path from
αu,v to v. Then, vertex αu,v is called the connecting point of request {u, v} inD.

We begin with the following fundamental property (the proof will be shown
in Appendix):

Lemma 1. For any instance (G,R) of MCD-tree, there is an optimal solution
that well-satisfies all requests in R.

By Lemma 1, we can reduce the search space to the one where each feasible
solution well-satisfies all requests. In the following argument, we assume that
every request has a connecting point in the optimal dispersal. The principle of
our algorithm is to determine the connecting points recursively from the leaf side
of HR via dynamic programming. Let TR(u) = (VR(u), ER(u)) be the subtree of
HR rooted by u, D∗(u, α) be the smallest-cost dispersal for instance (G,ER(u))
such that Du contains a path to from u to α. Note that D∗(r, r) is an optimal
solution of (G,R). We define γ(u) = |CH (u)| for short. The key recurrence of
our dynamic programming can be stated by the following lemma:

Lemma 2. Let u and α be vertices in V and let A = (α1, ..., αγ(u)) ∈ V γ(u),
where γ(u) = |CH (u)|. Then the following equality holds:

c (D∗(u, α)) = min
A∈V γ(u)

⎧⎨⎩c
(
DOpt (G,EA,{u,α}

)
+

∑
uk∈CH (u)

c (D∗(uk, αk))

⎫⎬⎭ ,

where EA,{u,α} = {{u, α1}, {u, α2}, · · · , {u, αγ(u)}, {u, α}}.

Minimum Certificate Dispersal with Tree Structures 555

This recurrence naturally induces a polynomial time algorithm for MCD-
tree(O(1)): The algorithm maintains a table D∗ whose rows and columns are
indexed by VR and V respectively. Each entry D∗[u][α] stores the solution
D∗(u, α). The core of the algorithm is to fill the table following the recur-
rence of Lemma 2: Assume an ordering σ = u1, u2, · · ·u|VR| of vertices in VR

where any vertex appears after all of its descendants have appeared. To com-
pute the solution to be stored in D∗[ui][α], the algorithm evaluates all possible
choices of connecting points to ui’s children. Let q1, q2, · · · qγ(u) be the children
of ui. Fixing a choice A = (α1, α2, · · ·αγ(ui)) of connecting points, the algo-
rithm determines the local dispersal to ui by computing the optimal solution for
(G,EA,{ui,α}). By Corollary 4, we can assume that the optimal solution (denoted
by D′) only consists of a local dispersal to ui. Thus, we can obtain a dispersal
D = D′ ∪ D∗[q1][α1] ∪ D∗[q2][α2] ∪ · · · ∪ D∗[qγ(ui)][αγ(ui)]. It is easy to verify
that D is a feasible solution of (G,ER(ui)): The local dispersal Dui has a path
to any connecting point αj in A. From the definition of D∗[qj][αj], Dqj has a
path between qj and αj . Thus Dui ∪Dqj necessarily has a path between ui and
qj . If D is better than the solution already computed (for other choice of A),
D∗[ui][α] is updated by D. After the computation for all possible choices of A,
D∗[ui][α] stores the optimal solution. Finally, after filling all entries of the table,
the algorithm returns D∗[u|VR|][u|VR|], which is the optimal solution for instance
(G,R).

Lemma 2 obviously derives the correctness of the algorithm explained above.
Since we assume that the maximum degree of tree HR is a constant, the number
of tuples of A is also a constant. Thus the number of possible choices about A is
bounded by a polynomial of n. It follows that the running time of the algorithm
is bounded by a polynomial of n. We have the following theorem:

Theorem 3. There is a polynomial time algorithm solving MCD-tree(O(1)).

6 MCD for Tree Graphs

While the previous sections focus on the structure of HR, in this section, we look
at the structure of graph G: We show that MCD is solvable in polynomial time if
G is a tree. In the algorithm, we compute for each edge e ∈ E which Du should
contain e; for each e ∈ E, we decide {u ∈ V | e ∈ Du}. For the decision about
e ∈ E, we utilize a bipartite graph to decide whether a request {u, v} should use
e in its unique path. We present a basic idea of polynomial time solvability in
Section 6.1, and then show a faster polynomial time algorithm in Section 6.2.

6.1 Basic Idea of Polynomial Time Solvability

Let T = (V,E) be an undirected tree and R be any request set. Now we consider
to decide {u ∈ V | e ∈ Du} for an edge e = {u, v} ∈ E. In tree T , e = {u, v}
defines a partition (Vu, Vv) of V ; by deleting e, two connected components T [Vu]

556 T. Izumi et al.

and T [Vv] are obtained, where T [Vu] (resp., T [Vv]) denotes a subgraph of T
induced by Vu (resp., Vv). Note that e = {u, v} is a unique cut edge between Vu

and Vv.
From these two sets Vu and Vv of vertices, we construct a bipartite graph

Buv = (Vu ∪ Vv, Euv), where Euv = {{a, b} ∈ R | a ∈ Vu, b ∈ Vv}. It should be
noted that {e} is an a-b cut for every {a, b} ∈ Euv, since T is a tree. Thus, this
bipartite graph represents that if an edge {a, b} ∈ Euv, at least one of a or b
should have e = {u, v} in its local dispersal, i.e., e ∈ Da ∪Db, otherwise D does
not satisfy request {a, b} due to cut {e}.

This condition is interpreted as a vertex cover of Buv. A vertex cover C of
a graph is a set of vertices such that each edge in its edge set is incident to at
least one vertex in C. Namely, a necessary condition of D satisfying R is that for
each e = {u, v}, Cuv = {w ∈ V | e ∈ Dw} is a vertex cover of Buv. We call this
vertex cover condition. It can be shown that the vertex cover condition is also
sufficient for D to satisfy R. Suppose that a dispersal D satisfies the vertex cover
condition. For a request {a0, ak} and its unique path p(a0, ak) = (a0, a1, . . . , ak)
on T , by the definition of Buv, every Baiai+1 contains edge {a0, ak}. By the
vertex cover condition, {ai, ai+1} ∈ Da0 ∪Dak

holds for i = 0, . . . , k − 1, which
implies Da0 ∪Dak

contains path p(a0, ak); D satisfies request {a0, ak}.
By these arguments, the vertex cover condition is equivalent to the feasibility

of D. Also it can be seen that choices of vertex cover of Buv and another Bu′v′

are independent to each other in terms of the feasibility of D. These imply that
the union of the minimum size of vertex cover for Buv is an optimal solution of
MCD for tree T .

From these arguments, we obtain the following algorithm: For every edge
{u, v} in T , the algorithm first computes a minimum vertex coverCuv of bipartite
graph Buv. Then, it returns Dw = {{u, v} ∈ E | w ∈ Cuv} as the solution. Since
the minimum vertex cover problem for bipartite graphs can be solved via the
maximum matching problem [13], whose time complexity is O(

√
nm) time, where

n and m are the numbers of vertices and edges, respectively [8]. Thus, MCD for
undirected tree T can be solved in O(n1.5|R|) time.

6.2 A Faster Computation

We present a faster polynomial time algorithm of MCD for undirected tree T .
This algorithm is also based on the usage of a bipartite matching algorithm. The
idea of speedup is to reuse the matching structures. Together with a detailed
analysis, we obtain an O(n1+ε|R|) (ε > 0) time algorithm. In the following, we
utilize the fact that the reoptimization of bipartite matching can be done in
O(

√
n′(m+m′)) time, where m is the number of edges in the original graph, n′

and m′ are the numbers of changed (deleted or newly added) vertices and edges,
respectively [14].

For the sake of convenience, we consider that T is rooted at some leaf r. The
algorithm sequentially computes bipartite matchings in the bottom-up man-
ner: Let e = {u, v} be an edge connecting a vertex v and its parent u, and
w1, w2, . . . , wd be children of v. These w1, w2, . . . , wd are sorted in descending

Minimum Certificate Dispersal with Tree Structures 557

order with respect to the size of subtree. Since our algorithm runs in the bottom-
up manner, we compute a bipartite matching of Buv after computing the bipar-
tite matchings of all Bvw1 , Bvw2 , . . . , Bvwd

. To compute a maximum matching of
Buv, we can reuse one of maximum matchings of Bvw1 , Bvw2 , . . . , Bvwd

. Assume
we compute a maximum matching of Buv from a maximum matching of Bvwi .
The difference of vertices of Buv and Bvwi is |V (Tv)|−|V (Twi)|−1, on which the
time to reoptimize maximum matching depends. Thus, the most efficient way is
to compute a maximum matching of Buv from a maximum matching of Bvw1 ,
which takes O(

√
nv − nw1 − 1|R|) time, where nv and nw1 respectively denote

|V (Tv)| and |V (Tw1)|. These are about the case that we can start from some
Bvw, but at the bottom level, we need to compute maximum matchings from
scratch. Since a maximum matching of bipartite graph G̃ = (Ũ , Ṽ , Ẽ) can be
computed in O(min{|Ũ |, |Ṽ |}|Ẽ|) time, maximum matchings at the bottom level
can be computed in O(|R|) time for each, and O(|V ||R|) time in total. Thus the
overall computation of bipartite matchings can be done in

O

⎛⎝ ∑
v∈V (T)

min
w∈C(v)

{
√
nv − nw − 1}|R|

⎞⎠ (1)

time, where C(v) denotes the set of child vertices of v in T . Now we show that∑
v∈V (T) minw∈C(v){

√
nv − nw − 1}-factor of (1) can be bounded by O(|V |1+ε),

where ε is an arbitrarily small positive number. Suppose that
∑

v∈V (Tu)

minw∈C(v){
√
nv − nw − 1} is bounded from above by a function f(nu − 1). We

can assume that f(x) is the function satisfying the following:

f(x) = max

{
√
x− x1 +

�∑
i=1

f(xi)
∣∣∣ (x1, x2, . . . , x�) ∈ P (x)

}
, (2)

where P (x) denotes the set of partitions of integer x and a member (x1, x2, . . . , x�)

is sorted in the descending order; x1 ≥ x2 ≥ · · · ≥ x� and
∑�

i=1 xi = x. Here,
a partition of x is a possible pattern of subtree sizes; for example, if a vertex
u in T satisfies nu = 10, it has 9 descendants. Such u may have three children
whose sizes are 4, 3 and 2, or it may have two children whose sizes are 5 and 4,
and so on. In (2),

√
x− x1 part represents the time to reoptimizing the match-

ing, and
∑�

i=1 f(xi) represents the whole time to compute matchings of Be for
e ∈ E(Tu)\{(u, v)}. The max over P (x) guarantees to bound the worst case from
above. By these, the term (1) can be bounded from above by O(f(|V | − 1)|R|).
Thus what we should do is to give a good upper bound on f(x). Although we
omit the details (interested readers can find a proof in Appendix), f(x) can be
bounded by O(x1+ε), which leads the following theorem.

Theorem 4. For an undirected tree graph G and any request R, MCD is solvable
in O(n1+ε|R|) time for arbitrary constant ε > 0.

558 T. Izumi et al.

7 Concluding Remarks

We have considered undirected variants of MCD problem with tree structures
and shown that for MCD with tree R, the hardness and approximability de-
pend on the maximum degree of tree R and MCD for any R can be solved in
polynomial time if G is a tree.

There are interesting open problems as follows:

– The hardness of MCD-tree(O(log n)): Even NP-hardness of that class is not
proved yet. Precisely, no hardness result is found for MCD-tree(ΔR) where
ΔR = o(n) and ΔR = ω(1).

– The graph class of G allowing any request set R to be tractable: The case
of trees (shown in this paper) is only the known class making the problem
solvable in polynomial time. We would like to know what sparse graph classes
(e.g., rings, series-parallel graphs, and planar graphs) can be solved for any
request R in polynomial time. In particular, for MCD of rings with any
request R we would like to decide whether it is NP-hard or P.

– Related to the question right above, we would like to extend the DP tech-
nique for MCD-tree(O(1)) presented in Section 5 to other wider classes of
HR. Some sparse and degree-bounded graphs might be its candidates. In
fact, the key of polynomial time running time of our algorithm for MCD-
tree(O(1)) is based only on the following two conditions: (1) There exists an
optimal solution that well-satisfies R, (2) There exists an ordering σ on VR

such that every cut ({σ(1), . . . , σ(i)}, {σ(i + 1), . . . , σ(|VR|)}) on HR has a
constant size.

– The complexity gap between undirected MCD and directed MCD: In general,
directed MCD is not easier than undirected MCD in the sense that the latter
is a special case of the former. However, it is unknown whether it is proper
or not. It is not quite trivial to transform any known complexity result for
MCD into directed MCD, and vice versa.

Acknowledgment. This work is supported in part by KAKENHI no. 22700010,
21500013, 21680001 and 22700017, and Foundation for the Fusion of Science and
Technology (FOST).

References

1. Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Informa-
tion Processing Letters 32(4), 171–176 (1989)

2. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based approxi-
mation for steiner tree. In: Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, pp. 583–592 (2010)

3. Capkun, S., Buttyan, L., Hubaux, J.-P.: Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 52–64
(2003)

Minimum Certificate Dispersal with Tree Structures 559

4. Chleb́ık, M., Chleb́ıková, J.: The steiner tree problem on graphs: Inapproximability
results. Theoretical Computer Science 406(3), 207–214 (2008)

5. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1, 195–207
(1972)

6. Gouda, M.G., Jung, E.: Certificate dispersal in ad-hoc networks. In: Proceeding
of the 24th International Conference on Distributed Computing Systems (ICDCS
2004), pp. 616–623 (March 2004)

7. Gouda, M.G., Jung, E.: Stabilizing Certificate Dispersal. In: Tixeuil, S., Herman,
T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 140–152. Springer, Heidelberg (2005)

8. Hopcroft, J.E., Karp, R.M.: An n2.5 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

9. Hubaux, J., Buttyan, L., Capkun, S.: The quest for security in mobile ad hoc
networks. In: Proceeding of the 2nd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (Mobihoc 2001), pp. 146–155 (October 2001)

10. Izumi, T., Izumi, T., Ono, H., Wada, K.: Approximability and inapproximabil-
ity of the minimum certificate dispersal problem. Theoretical Computer Science
411(31-33), 2773–2783 (2010)

11. Jagadish, H., Ooi, B., Vu, Q.: Baton: A balanced tree structure for peer-to-peer
networks. In: Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 661–672. VLDB Endowment (2005)

12. Jung, E., Elmallah, E.S., Gouda, M.G.: Optimal Dispersal of Certificate Chains. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 435–449. Springer, Heidelberg
(2004)

13. Kónig, D.: Graphs and matrices. Matematikai és Fizikai Lapok 38, 116–119 (1931)
(in Hungarian)

14. Ono, H.: Reoptimization of bipartite matching (in preparation)
15. Wang, S., Ooi, B., Tung, A., Xu, L.: Efficient skyline query processing on peer-

to-peer networks. In: IEEE 23rd International Conference on Data Engineering,
ICDE 2007, pp. 1126–1135. IEEE (2007)

16. Zheng, H., Omura, S., Uchida, J., Wada, K.: An optimal certificate dispersal algo-
rithm for mobile ad hoc networks. IEICE Transactions on Fundamentals E88-A(5),
1258–1266 (2005)

17. Zheng, H., Omura, S., Wada, K.: An approximation algorithm for minimum certifi-
cate dispersal problems. IEICE Transactions on Fundamentals E89-A(2), 551–558
(2006)

Improved FPT Algorithms

for Rectilinear k-Links Spanning Path�

Jianxin Wang1, Jinyi Yao1, Qilong Feng1, and Jianer Chen1,2

1 School of Information Science and Engineering,
Central South University,

Changsha 410083, P.R. China
2 Department of Computer Science and Engineering,

Texas A&M University,
College Station, Texas 77843-3112, USA

Abstract. Given n points in R
d and a positive integer k, the Rectilinear

k-Links Spanning Path problem is to find a piecewise linear path through
these n points having at most k line-segments (Links) where these line-
segments are axis-parallel. This problem is known to be NP-complete
when d ≥ 3, we first prove that it is also NP-complete in 2-dimensions.
Under the assumption that one line-segment in the spanning path cov-
ers all the points on the same line, we propose a new FPT algorithm
with running time O(dk+12kk2 + dkn), which greatly improves the pre-
vious best result and is the first FPT algorithm that runs in O∗(2O(k)).
When d = 2, we further improve this result to O(3.24kk2 + 1.62kn).
For the Rectilinear k-Bends TSP problem, the NP-completeness proof in
2-dimensions and FPT algorithms are also given.

1 Introduction

The Minimum Link Spanning Path problem is one of the fundamental problems
in computational geometry, which also has wide application in many fields such
as VLSI design and the movement of heavy machinery. Given a point set S in
Rd, if a path P covers all the points in S, P is called a spanning path of S. The
number of line-segments of a given path is called the link-length of the path. The
Minimum Link Spanning Path problem is to find a spanning path with minimum
link-length, which is equivalent to finding a path with minimum number of bends.
In VLSI design, the number of bends on a path has an important effect on the
resistance and the accuracy of expected timing and voltage in chips [1]; while in
the movement of heavy machinery, every turn on a path is considered very costly.
Thus, it becomes quite important to minimize the link-length of a spanning path.
Arkin et al. [2] and Bereg et al. [3] proved independently that Minimum Link
Spanning Path is NP-complete.

� This work is supported by the National Natural Science Foundation of China under
Grant (61103033, 61173051), the Doctoral Discipline Foundation of Higher Educa-
tion Institution of China under Grant (20090162110056).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 560–571, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 561

In many practical applications such as VLSI design, it is required that the
segments of the path should be axis-parallel. Based on above applications, the
Rectilinear k-Links Spanning Path problem was proposed. In this problem, all
the segments of the spanning path must be axis-parallel. The rectilinear version
of this problem has received considerable attention during 1990’s and recent
years [1,3,4,5,6,7]. The decision version of this problem is defined as follows:

Definition 1. (Rectilinear k-Links Spanning Path): Given a point set S in Rd

and a positive integer k, is there a rectilinear path consisting of at most k line-
segments that cover all the points in S?

The Rectilinear k-Links Spanning Path problem and the Minimum Line Cover
problem are quite relevant. The decision version of Minimum Line Cover is de-
fined as follows:

Definition 2. (Minimum Line Cover): Given a point set S in Rd and a positive
integer k, is there a set of at most k line-segments that cover all the points in
S?

The Minimum Line Cover problem is NP-complete. It is also APX-hard [11].
From parameterized complexity point of view, it is Fixed Parameter Tractable
(FPT). When d = 2, Grantson et al. [12] gave an FPT algorithm with running
time O∗(k2k/4.84k), which was reduced to O∗(kk/1.35k) by Wang et al. [13]
recently.

When each segment in the line cover is restricted to axis-parallel segment, this
problem becomes Rectilinear Minimum Line Cover, which is defined as follows:

Definition 3. (Rectilinear Minimum Line Cover): Given a point set S in Rd

and a positive integer k, is there a set of at most k line-segments that cover all
the points in S, and each line-segment is axis-parallel?

The requirement that each line-segment must be axis-parallel significantly de-
creases the hardness of this problem. In fact, when d = 2, this problem is equiv-
alent to vertex cover on bipartite graph, which is solvable in polynomial time by
maximum matching. Hassin and Megiddo [8] proved that Rectilinear Minimum
Line Cover is NP-complete when d ≥ 3. Estivill-Castro et al. [9] gave an FPT
algorithm with running time O(dkn).

As Rectilinear Minimum Line Cover is NP-complete when d ≥ 3, Bereg et
al. [3] conjectured that Rectilinear k-Links Spanning Path is also NP-complete,
and proposed it as an open problem. Estivill-Castro et al. [9] first proved that
when d ≥ 3, Rectilinear k-Links Spanning Path is NP-complete. However, the
complexity of this problem in 2-dimensions is still left open. Estivill-Castro et
al. [9] also proved that Rectilinear k-Links Spanning Path is FPT under the
assumption that one line-segment in the spanning path covers all the points
on the same line. They also proposed an FPT algorithm with running time
O((0.74dk)k(kd + n)

√
k). The main idea of the algorithm is to branch over all

possible sets of at most k line-segments that can cover all the points, and then
test whether one of the possible sets can be used to obtain a spanning path.

562 J. Wang et al.

In this paper, we prove that the Rectilinear k-Links Spanning Path problem
in 2-dimensions is still NP-complete by a reduction from Constrained Bipartite
Vertex Cover. By using the same method, we also prove that the k-Bends TSP
problem in 2-dimensions is NP-complete. Under the assumption that one line-
segment in the spanning path covers all the points on the same line, we propose
an improved algorithm with running time O(dk+12kk2 + dkn). When the prob-
lem is restricted in 2-dimensions (i.e., d = 2), an algorithm with running time
O(3.24kk2 + 1.62kn) is presented.

The rest of this paper is organized as follows. In section 2, we give the
NP-completeness proof of Rectilinear k-Links Spanning Path in 2-dimensions.
Section 3 presents the improved FPT algorithm for the constrained version of
Rectilinear k-Links Spanning Path. In section 4, the NP-completeness proof and
FPT algorithms for the Rectilinear k-Bends TSP problem is given. The conclu-
sion of this paper is given in section 5.

2 Rectilinear k-Links Spanning Path in 2-Dimensions Is
Hard

In this section, we prove that the Constrained Bipartite Vertex Cover problem
can be reduced to Rectilinear k-Links Spanning Path in 2-dimensions in polyno-
mial time. Since Constrained Bipartite Vertex Cover is known to be NP-complete
[10], Rectilinear k-Links Spanning Path is also NP-complete.

Definition 4. (Constrained Bipartite Vertex Cover): Given a bipartite graph
G(L,R,E) and two positive integers k1, k2, is there a vertex cover C of G with
|C ∩ L| ≤ k1, |C ∩R| ≤ k2?

In the following, we give the polynomial time reduction from Constrained Bi-
partite Vertex Cover to Rectilinear k-Links Spanning Path in 2-dimensions.

Theorem 1. The Rectilinear k-Links Spanning Path problem in 2-dimensions
is NP-complete.

Proof. Let (G = (L,R,E), k1, k2) be an instance of Constrained Bipartite Vertex
Cover. Without loss of generality, we assume that k1 ≤ k2. Each vertex in L is
arbitrarily assigned a unique value in (1, 2, ..., |L|). Similarly, Each vertex in R is
arbitrarily assigned a unique value in (1, 2, ..., |R|). Let value(x) be the value of
vertex x and letN(x) be the neighbors of x. A set S of points in 2-dimensions can
be constructed as follows: For each edge e = (x, y), a point p with coordinate
(value(x), value(y)) is added to S. Observe that for each vertex x ∈ L and
its neighbors N(x), there is a set A of points in S such that for each edge
between (x, y), y ∈ N(x), there is a corresponding vertex in A and |A| = |N(x)|.
Moreover, all the points in A can be covered with the same vertical line. Similarly,
for each vertex y ∈ R and its neighbors N(y), there is a set A of points in S such
that for each edge between (x, y), x ∈ N(y), there is a corresponding vertex in
A, and |A| = |N(y)|. Moreover, all the points in A can be covered with the same

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 563

horizontal line. Thus, solving the instance (G = (L,R,E), k1, k2) is equivalent
to finding a set of no more than k1 vertical lines and a set of no more than
k2 horizontal lines to cover all the points in S. As shown in Figure 1(a), the
black points are the points in S. Now we use two vertical and two horizontal
auxiliary lines to divide the plane into 9 regions, and let S strictly belong to the
central region. Some new groups of points need to be added to get an instance
of the Rectilinear k-Links Spanning Path problem, where each group is a set of
(6k2+1) distinct points either on the same vertical line or on the same horizontal
line (the white hollow points in Figure 1.). If the points in a group A are on the
same vertical line, A is called a vertical group. If the points in a group A are
on the same horizontal line, A is called a horizontal group. The groups of points
are added only in the top-left, bottom-right, and central region, as follows:

1. In the top-left region, k2 vertical groups and k2 horizontal groups are added.
The vertical groups must be on the lower left side of all horizontal groups, i.e.,
for a point p(x1, y1) in vertical group and a point q(x2, y2) in horizontal group,
x1 must be less than x2 and y1 must be less than y2.

2. In the bottom-right region, k2 vertical groups and k2 horizontal groups
are added. The vertical groups must be on the upper right side of all horizon-
tal groups, i.e., for a point p(x1, y1) in vertical group and a point q(x2, y2) in
horizontal group, x1 must be greater than x2 and y1 must be greater than y2.

3. In the central region, (k2 − k1) vertical groups are added. Make sure that
all the points in these groups and the points in S are distinct.

Let T be the set of all the points added in above process, including black
and white points. It is clear that |T | = |S| + (2k2 + 2k2 + k2 − k1)(6k2 + 1) =
|S|+(5k2−k1)(6k2+1). Let k = 6k2, then (T, k) is an instance of Rectilinear k-
Links Spanning Path. Now we prove that (G = (L,R,E), k1, k2) is a Yes-instance
if and only if (T, k) is a Yes-instance.

Assume that (G = (L,R,E), k1, k2) is a Yes-instance. Then the points in
S can be covered by k1 vertical line-segments and k2 horizontal line-segments.
Since there are k2 − k1 vertical groups in the central region, all the points in
the central region can be covered by k2 vertical line-segments and k2 horizontal
line-segments. All the groups in top-left region can be covered by k2 vertical
line-segments and k2 horizontal line-segments. All the groups in bottom-right
region can also be covered by k2 vertical line-segments and k2 horizontal line-
segments. Thus, the point set T can be covered by 3k2 vertical line-segments and
3k2 horizontal line-segments. It is easy to show that all these 6k2 line-segments
can be used to get a rectilinear spanning path with link-length 6k2. As shown
in Figure 1(b), such a spanning path can be constructed by connecting each
line-segment in the following way: top-left horizontal line, central vertical line,
bottom-right horizontal line, bottom-right vertical line, central horizontal line,
top-left vertical line and back to top-left horizontal line. Since this is a rectilinear
path covering T with link-length k = 6k2, (T, k) is a Yes-instance.

On the other hand, assume that (T, k) is a Yes-instance, then there is a rec-
tilinear path covering T with link-length 6k2. Since vertical line-segment and
horizontal line-segment appear alternately on a rectilinear path, the spanning

564 J. Wang et al.

Fig. 1. Example of reduction from Constrained Bipartite Vertex Cover to Rectilinear
k-Links Spanning Path

path consists of 3k2 vertical line-segments and 3k2 horizontal line-segments. Re-
call that in the construction of the instance (T, k), we have added 2k2 horizontal
groups and 3k2−k1 vertical groups. For each vertical group, at least one vertical
line-segment is used to cover some points in this group, and for each horizontal
group, at least one horizontal line-segment is used. Note that no point in S is cov-
ered by those line-segments. Therefore, the number of horizontal line-segments
covering S is at most 3k2 − 2k2 = k2, and the number of vertical line-segments
covering S is at most 3k2−(3k2−k1) = k1. Since S can be covered by k1 vertical
line-segments and k2 horizontal line-segments, instance (G = (L,R,E), k1, k2)
is a Yes-instance.

The construction of new instance can be done in polynomial time. Therefore,
Constrained Bipartite Vertex Cover can be reduced to Rectilinear k-Links Span-
ning Path in polynomial time. It is clear that Rectilinear k-Links Spanning Path
is in NP. Therefore, Rectilinear k-Links Spanning Path is NP-complete. ��

3 FPT Algorithms for Rectilinear k-Links Spanning Path

In this section, we propose FPT algorithms for the Rectilinear k-Links Span-
ning Path problem under the assumption that one line-segment in the spanning
path covers all the points on the same line. This variant is called Constrained
Rectilinear k-Links Spanning Path, defined as follows:

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 565

Definition 5. (Constrained Rectilinear k-Links Spanning Path): Given a point
set S in Rd and a positive integer k, is there a rectilinear path consisting of
at most k line-segments that covers all the points in S, and each line-segment
covers all the points on the same line?

Estivill-Castro et al. proved that this problem is FPT and gave an FPT algorithm
with running time O((0.74dk)k(kd+n)

√
k). In this section, we give an improved

algorithm with running time O(dk+12kk2 + dkn). Moreover, when d = 2, an
improved algorithm with running time O(3.24kk2 + 1.62kn) is given.

3.1 FPT Algorithm Based on Branching and Dynamic
Programming

For the Constrained Rectilinear k-Links Spanning Path problem, branching and
dynamic programming are efficiently used to get parameterized algorithms. The
main idea of the algorithm is as follows. Firstly, all possible sets of line-segments
are enumerated by bounded branch. Each possible set consists of no more than
k line-segments which cover all the points in S. Then, each possible set is tested
to see if it can be used to get a rectilinear spanning path with link-length no
more than k.

The detailed branching process is as follows: At each node of the search tree,
an uncovered point p is arbitrarily picked. Then we branch over all possible
line-segments that can cover p. The points on the same line-segment are marked
as covered. The branching process stops when all the points are covered or the
depth of the search tree is greater than k. The specific process of branching is
given in Figure 2. In algorithm BCS, let A be a set of collinear points, and let
Seg(A) be the line-segment obtained by connecting two extreme points in A.

Algorithm BCS(S, S′, k, C)
Input: a point set S in R

d, a positive integer k, S′, a copy of S,
and an auxiliary set C of line-segments

Output: a collection Q containing all possible sets of line-segments.

1. if S = ∅ then
1.1 Q = Q ∪ {C};
1.2 Return;
2. if k > 0 then
2.1 arbitrarily pick a point p in S;
2.2 for each axis-parallel line L that covers p do
2.2.1 A = S′ ∩ L;
2.2.2 BCS(S −A,S′, k − 1, C ∪ Seg(A));

Fig. 2. BCS algorithm

566 J. Wang et al.

Theorem 2. Algorithm BCS can enumerate all possible sets of line-segments
in O(dkn) time, and there are at most dk possible sets.

Proof. The possible sets of line-segments are obtained by calling BCS(S, S, k, ∅).
For a point p in Rd, an axis-parallel line-segment will be used to cover p, and there
are at most d possible line-segments to cover p. Therefore, to cover p, there exist
d branchings. If the given instance of Constrained Rectilinear k-Links Spanning
Path problem is a Yes-instance, at most k line-segments are used to cover all
the points in the instance. Then, the height of the search tree is bounded by k,
and there are at most O(dk) nodes in the search tree. In the branching process,
it takes O(n) time to process each node. Thus, the overall running time of the
whole process is O(dkn). Based on the size of the search tree, it is easy to get
that the number of possible sets of line-segments is bounded by O(dk). ��
Based on the branching process given in algorithm BCS, O(dk) possible sets of
line-segments are obtained. The next step is to check if there exists a possible
set of line-segments that can be used to get a solution to the Rectilinear k-Links
Spanning Path problem, which is equal to solve the following problem.

Definition 6. (Minimum Path Splicing): Given a set X of line-segments in
Rd, where |X | ≤ k, each line-segment is axis-parallel and no two line-segments
are collinear, find a rectilinear path that covers all line-segments in X by using
minimum additional line-segments.

Dynamic Programming technique can be used to solve the Minimum Path Splic-
ing problem. We first give some definitions and terminologies used in the algo-
rithm. In order to make the dynamic programming process more efficient, we
introduce the definition of orientation. The orientation of a line-segment is in-
troduced to denote which endpoint of the line-segment is used to make this
line-segment connected with other line-segments. Figure 3 shows some examples
of connecting two line-segments with orientation. Note that for different orien-
tations and different position relationships between two line-segments, the num-
ber of additional line-segments needed is different. Suppose u is a line-segment,
let Du denote the orientation of u. Let cost(v, u,Dv, Du) denote the number
of additional line-segments needed to connect the two line-segments v and u
with orientation Dv and Du. Let Y be a subset of X and Yi be a subset of
X where |Yi| = i. Finally, opt(Y, u,Du) denotes the minimum number of extra
line-segments needed to connect the line-segments in Y into a path, where the
last line-segment of the path is u with orientation Du.

In the dynamic programming process, an optimal path covering Yn with last
line-segment u must be obtained from an optimal path covering Yn\u. Assume
that the last line-segment in Yn\u is v and its orientation is Dv, then the extra
line-segments needed is cost(v, u,Dv, Du). Assume that all opt(Yn−1, v,Dv) have
been calculated, then opt(Yn, u,Du) can be obtained by taking the minimum
value among opt(Yn\u, v,Dv) + cost(v, u,Dv, Du) for all v ∈ Yn\u and for all
orientations of v, which results in the following recurrence relation.

opt(Y, u,Du) = min{opt(Y \u, v,Dv) + cost(v, u,Dv, Du)}, v ∈ Y \u (1)

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 567

Fig. 3. Examples of connecting two line-segments in 2-dimentions

The specific process using dynamic programming to solve Minimum Path Splic-
ing problem is given in Figure 4.

Algorithm MPS(X, d, k)
Input: a set X of at most k axis-parallel line-segments in R

d.
Output: the minimum number of extra line-segments needed to construct a

rectilinear spanning path based on X.

1. for each segment u in X and directions Du do
1.1 opt({u}, u,Du) = 0
2. for i=2 to |X| do
2.1 for each Y ⊆ X and |Y | = i do
2.1.1 for each u ∈ Y and direction Du do

opt(Y, u,Du) = min{opt(Y \u, v,Dv) + cost(v, u,Dv, Du)}
3. return min{opt(X,u,Du)}

Fig. 4. MPS algorithm

Theorem 3. Algorithm MPS can solve Minimum Path Splicing problem in
O(2kk2d) time.

Proof. Let Q(Yi) be the collection of all opt(Yi, u,Du) (i = 1, · · · , n), where
u ∈ Yi and let Du be possible orientation of u. Then, the minimum value in
Q(Y|X|) is the solution to this problem. We prove the correctness of the algorithm
by induction on i. For the initial case i = 1, each opt({u}, u,Du) is set to 0. Now,
suppose that all opt(Yi−1, v,Dv) have been calculated, an optimal path covering
Yi with last line-segment u must be transformed from an optimal path covering
Yi\u. Suppose that the last line-segment in Yi\u is v and its orientation is Dv,
then the number of extra line-segments needed is cost(v, u,Dv, Du). Since we
have calculated all opt(Yi−1, v,Dv), we can calculate opt(Yi, u,Du) by taking
the minimum value among opt(Yi\u, v,Dv) + cost(v, u,Dv, Du) for all v ∈ Yi\u.

Now we analyze the time complexity of algorithm MPS. Step 1 and step 3
of algorithm MPS can be done in O(k). The range of cost in Rd is [0, d + 1]

568 J. Wang et al.

and it can be calculated in O(d). Since |Y | ≤ k and each line-segment has 2
orientations, each for-loop in step 2.1.1 can be done in O(kd). Since S has no
more than 2k subsets, each subset has no more than k line-segments, and each
line-segment has exactly 2 possible orientations, the for-loop in step 2 can be
executed at most 2k(2k) times. Thus, the time complexity of step 2 is O(2kk2d).
In conclusion, the time complexity of algorithm MPS is O(2kk2d). ��

Combining the enumeration algorithm in Figure 2 and the dynamic programming
algorithm in Figure 4, the overall algorithm solving Rectilinear k-Links Spanning
Path problem is given in Figure 5.

Algorithm LRSP(S, d, k)
Input: a point set S in R

d and a positive integer k
Output: a rectilinear spanning path with link-length no more than k.

If such path does not exist, return NO

1. Q = BCS(S, S, k, ∅);
2. for each X ∈ Q do
2.1 m = MPS(X, d, k);
2.2 if |X|+m ≤ k then
2.2.1 return the path constructed by the dynamic programming table;
3. return NO.

Fig. 5. LRSP algorithm

Theorem 4. Algorithm LRSP can solve the Rectilinear k-Links Spanning Path
problem in O(dk+12kk2 + dkn) time.

Proof. By Theorem 2, the algorithmBCS can enumerate all possible sets of line-
segments. For each possible set, by Theorem 3, the algorithm MPS can be used
to get the minimum extra line-segments needed to connect line-segments into a
rectilinear path. If the instance is a Yes-instance, there must exist a setX of line-
segments such that the line-segments in X can be connected by using k links.
Therefore, algorithm LRSP can solve the Rectilinear k-Links Spanning Path
problem correctly. Now we analyze the time complexity of algorithm LRSP.
By Theorem 2, it takes O(dkn) time to enumerate O(dk) possible sets. For each
possible set, by Theorem 3, it takes O(2kk2d) time to test whether the set can
be used to construct a rectilinear spanning path with no more than k links. In
conclusion, the running time of algorithm LRSP is O(dk+12kk2 + dkn). ��

3.2 Improved Algorithm in 2-Dimensions

In this section, we present an improved algorithm solving Constrained Rectilinear
k-Links Spanning Path in 2-dimensions with running time O(3.24kk2 +1.62kn).

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 569

Suppose that there are t points on a horizontal line and t ≥ 2, then these
points are covered either by the horizontal line or by t vertical lines. A similar
result can also be obtained for points on the same vertical line. Let Nh(p) denote
the number of points that are on the same horizontal line with point p, and let
Nv(p) denote the number of points that are on the same vertical line with point
p. The degree of a point p is D(p) = max{Nh(p), Nv(p)}. The algorithm solving
the Constrained Rectilinear k-Links Spanning Path problem in 2-dimensions
uses the following branching strategy: At each node of the search tree, a point
p with D(p) > 1 is always chosen, until there is no such point or the height of
the search tree is greater than k. Let T (k) denote the size of the search tree. It
is easy to see that T (k) ≤ T (k − 1) + T (k − 2) + 1, that is, T (k) = O(1.62k).
For each leaf node of the search tree, a possible set is obtained. Each possible
set consists of a set X of line-segments and a set P of uncovered points. Note
that the degree of each point in P is 1.

|X | line-segments are needed to cover X , and |P | line-segments are needed
to cover P . These |X | + |P | line-segments are pairwise distinct. Therefore, if
|X | + |P | > k, this possible set cannot be used to get a spanning path with
link-length no more than k. For the case |X |+ |P | ≤ k, dynamic programming
algorithm is still workable. A line-segment has two possible orientations in the
spanning path, and a point can be seen as a special line-segment with length
0 and with four possible orientations in the spanning path. Therefore, in the
algorithm MPS, only the size of state space changes from 2k(2k) to 2k(4k).
Since it takesO(kd) time to calculate each state, the running time of the dynamic
programming algorithm is still O(2kk2d).

Theorem 5. The Constrained Rectilinear k-Links Spanning Path problem in
2-dimensions can be solved in O(3.24kk2 + 1.62kn) time.

Proof. There are at most O(1.62k) possible sets, which can be enumerated in
O(1.62kn) time. Since it takes O(2kk2d) time to test whether a possible set can
be used to get a rectilinear spanning path with link-length no more than k, the
total running time solving the Constrained Rectilinear k-Links Spanning Path
problem in 2-dimensions is O((2kk2)(1.62k))+O(1.62kn) = O(3.24kk2+1.62kn).

��

4 Rectilinear k-Bends TSP

Rectilinear k-Bends TSP and Rectilinear k-Links Spanning Path are quite sim-
ilar. The Rectilinear k-Bends TSP problem is defined as follows:

Definition 7. (Rectilinear k-Bends TSP) Given n points in Rd, is there a piece-
wise linear tour through the n points with at most k bends, where every line-
segment in the tour is axis-parallel.

TheonlydifferencebetweenRectilineark-BendsTSPandRectilineark-LinksSpan-
ning Path is that the former seeks a tour while the latter seeks a path. Rectilinear

570 J. Wang et al.

k-BendsTSP is alsoNP-complete in 2-dimensions, and the proof is almost the same
as the proof for Rectilinear k-Links Spanning Path in section 2 except that we con-
nect the last line-segment to the first line-segment in order to complete a tour.

Theorem 6. Rectilinear k-Bends TSP in 2-dimensions is NP-complete.

If one line-segment of the tour needs to cover all the points on on the same line,
the problem is called Constrained Rectilinear k-Bends TSP. The FPT algorithm
for Constrained Rectilinear k-Bends TSP is also similar to the algorithm LRSP.
The only difference is that: For the algorithm solving the Minimum Tour Splic-
ing(MTS) problem, an arbitrary segment and one of its endpoints is chosen as
the start point of the tour.

Theorem 7. Constrained Rectilinear k-Bends TSP can be solved in
O(dk+12kk2 + dkn) time.

5 Conclusion

In this paper, we prove that Rectilinear k-Links Spanning Path is NP-complete
in 2-dimensions. Under the assumption that one line-segment in the spanning
path covers all the points on the same line, an FPT algorithm with running
time O(dk+12kk2 + dkn) is presented, which improves the current best result
from O∗(kk) to O∗(2O(k)). When d = 2, a further improved algorithm with
running time O(3.24kk2 + 1.62kn) is given.

References

1. Lee, D.T., Yang, C.D., Wong, C.K.: Rectilinear Paths among Rectilinear Obstacles.
Discrete Applied Mathematics 70(3), 185–215 (1996)

2. Arkin, E.M., Mitchell, J., Piatko, C.D.: Minimum-link watchman tours. Inf. Pro-
cess. Lett. 86(4), 203–207 (2003)

3. Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P.: Traversing a Set of
Points with a Minimum Number of Turns. Discrete & Computational Geome-
try 41(4), 513–532 (2009)

4. Lee, D.T., Chen, T.H., Yang, C.: Shortest Rectilinear Paths among Weighted Ob-
stacles. In: Proc. Symposium on Computational Geometry, pp. 301–310 (1990)

5. Berg, M., Kreveld, M.J., Nilsson, B.J., Overmars, M.H.: Shortest path queries in
rectilinear worlds. Int. J. Comput. Geometry Appl. 2(3), 287–309 (1992)

6. Collins, M.J.: Covering a Set of Points with a Minimum Number of Turns. In:
Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 467–474.
Springer, Heidelberg (2003)

7. Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J., Sethia, S.:
Optimal Covering Tours with Turn Costs. SIAM J. Comput. 35(3), 531–566 (2005)

8. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics 30(1), 29–42 (1991)

9. Estivill-Castro, V., Heednacram, A., Suraweera, F.: NP-completeness and FPT
Results for Rectilinear Covering Problems. J. UCS 16(5), 622–652 (2010)

Improved FPT Algorithms for Rectilinear k-Links Spanning Path 571

10. Kuo, S., Fuchs, W.K.: Efficient spare allocation in reconfigurable arrays. In: DAC,
pp. 385–390 (1986)

11. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of Set Cover with Intersection 1.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 624–635. Springer, Heidelberg (2000)

12. Grantson, M., Levcopoulos, C.: Covering a Set of Points with a Minimum Number
of Lines. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS,
vol. 3998, pp. 6–17. Springer, Heidelberg (2006)

13. Wang, J., Li, W., Chen, J.: A parameterized algorithm for the hyperplane-cover
problem. Theor. Comput. Sci. 411(44-46), 4005–4009 (2010)

FPT Results for Signed Domination�

Ying Zheng1, Jianxin Wang1, Qilong Feng1, and Jianer Chen1,2

1 School of Information Science and Engineering
Central South University

Changsha 410083, P.R. China
2 Department of Computer Science and Engineering

Texas A&M University
College Station, Texas 77843-3112, USA

Abstract. A function f : v → {−1,+1} defined on the vertices of a
graph G is a signed dominating function if the sum of its function values
over any closed neighborhood is at least one. The weight of a signed
dominating function is f(V) =

∑
f(v), over all vertices v ∈ V . The

signed domination number of a graph G, denoted by γs(G), equals the
minimum weight of a signed dominating function of G. The decision
problem corresponding to the problem of computing γs is an important
NP-complete problem derived from social network. A signed dominating
set is a set of vertices assigned the value +1 under the function f in
the graph. In this paper, we give some fixed parameter tractable results
for signed dominating set problem, specifically the kernels for signed
dominating set problem on general and special graphs. These results
generalize the parameterized algorithm for this problem. Furthermore we
propose a parameterized algorithm for signed dominating set problem on
planar graphs.

1 Introduction

Signed domination is a variation of dominating set problem, there is a variety of
applications for this variation. By assigning the values −1 or +1 to the vertices
of a graph, which can be modeled as networks of positive and negative electri-
cal charges, networks of positive and negative spins of electrons, and networks of
people or organizations in which global decisions must be made(e.g. yes-no, agree-
disagree, like-dislike, etc.). In such a context, the signed domination number repre-
sents the minimum number of people whose positive votes can assure that all local
groups of voters(represented by closed neighborhoods in graphs) have more posi-
tive than negative voters, even though the entire network may have far more peo-
ple whose vote negative than positive. Hence this variation of domination studies
situations in which, in spite of the presence of negative vertices, the closed neigh-
borhoods of all vertices are required to maintain a positive sum.

� This work is supported by the National Natural Science Foundation of China under
Grant (61103033,61128006), the Doctoral Discipline Foundation of Higher Educa-
tion Institution of China under Grant (20090162110056).

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 572–583, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FPT Results for Signed Domination 573

Given a graph G = (V,E), for each vertex v ∈ V , let N(v) be all neighbors
of v, and N [v] = N(v) ∪ {v}, N(v) and N [v] are called the open and the closed
neighborhood of v. Similarly, for a set S of vertices, define the open neighborhood
N(S) = ∪N(v) over all v in S and the closed neighborhood N [S] = N(S) ∪ S.
A set S of vertices is a dominating set if N [S] = V . For an integer function
f : V → N , the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V , we define

f(S) =
∑

v∈S f(v), therefore, w(f) = f(V). For convenience, we use f(N [v]) to
denote

∑
u∈N [v] f(u).

A Dominating Set of a graph G = (V,E) is a vertex set D ⊆ V such that
each v ∈ V is contained in D or v is a neighbor of at least one vertex in D.
In other words, let f : V → {0, 1} be a function which assigns to each vertex
of a graph an element in the set {0, 1}. Then, f is called dominating function
if for every v ∈ V, f(N [v]) ≥ 1. The domination number, denoted by γ(G),
γ(G) =min{f(V) : f is a dominating function of G}.

Let f : V → {−1, 1} be a function which assigns each vertex of a graph
an element in the set {−1, 1}. Then, f is called signed dominating function
if for every v ∈ V, f(N [v]) ≥ 1. The signed domination number, denoted by
γs(G), of G is the minimum weight of the

∑
v∈V f(v) over all such functions,

γs(G) =min{f(V) : f is a signed dominating function of G}. We define P ⊆ V
the signed dominating set which is the set of vertices with value +1 assigned
by f .

Definition 1. (Parameterized Signed Dominating Set) Given a graph G = (V,E)
and a non-negative integer k, does there exist a signed dominating set P of size
at most k such that for each v ∈ V ,

∑
u∈N [v] f(u) > 0.

The concept of signed domination in graphs was introduced by Zelinka[4] and
studied in [1][3][5][7]. The decision problem corresponding to the problem of
computing γs is NP-complete, even when the graph restricted to chordal graph
or bipartite graph. For a fixed k, the problem of determining if a graph has a
signed dominating function of weight at most k is also NP-complete. A linear
time algorithm for finding a minimum signed dominating function in an arbitrary
tree was presented in [2]. The research dealing with signed domination has many
focused on computing better upper and lower bounds on the signed domination
number γs for graphs. Dunbar et. al[1] investigated the properties of signed
domination number and established upper and lower bounds for γs. For r-regular
n-vertex graphs, γs ≥ n

r+1 when r is even, Henning and Slater[11] pointed out

that γs ≥ 2n
r+1 when r is odd. The upper bounds are given by Henning[12] and

Favaron[8], when r is odd, γs ≤ (r+1)2

r2+4r−1 · n, and when r is even, γs ≤ r+1
r+3 · n.

Since the research dealing with signed domination has mainly focused on
improving better upper and lower bounds on the signed domination number
γs, therefore, in this paper, we study this problem from the point of algorithm
complexity and present a variety of fixed parameter tractable(FPT) results for
signed dominating set problem. We study signed dominating set problem in
general graphs, particularly show that signed dominating set problem is NP-
complete even restricted to bipartite or chordal graphs. We also present a linear

574 Y. Zheng et al.

Table 1. FPT results for signed dominating set in general graphs and special graphs

Graph Class Parameterized Complexity Kernel

general FPT O(k2)
planar FPT O(k)

bipartite FPT O(k2)
r-regular FPT O(k)
Δ ≤ 5 FPT O(k)

kernel O(k) and an efficient FPT algorithm of time O((6
√
k)O(

√
k)|V |) for signed

dominating set problem on planar graphs. Finally we give the kernels for signed
dominating set on the following graph classes: bipartite graphs, Δ ≤ 5 graphs
and r-regular graphs. FPT results for signed dominating set problem are given
in Table 1.

2 Preliminaries

A signed dominating function is a labeling of the vertices by values −1,+1 such
that the sum of labels in N [v] is positive, for each v. For convenience, we will
also say that each v is “dominated” if the sum of labels in N [v] is positive.

Let P and M be the sets of vertices with labels +1 and −1, also called positive
and negative vertices, respectively. Let Pi denote the set of those positive vertices
having exactly i negative neighbors. Similarly Mi is defined to be the set of
those negative vertices having exactly i positive neighbors. It is easy to see that
M0 = M1 = ∅. Let Di be the set of all vertices with degree i. Δ is the maximum
degree of the graph. The symbols |P |, |M |, |Pi|, |Mi| denote the cardinalities of
the sets P , M , Pi, Mi respectively. If X , Y are disjoint sets of vertices of graph
G, K|X|,|Y | denotes the bipartite subgraph of G consisting of the parts X and
Y .

Definition 2. [6] The pair (T,X) is a tree decomposition of a graph G if
1. T is a tree,
2. X = {Xi|Xi ⊆ V (G), i ∈ V (T)}, and

⋃
Xi∈X = V (G), (Xi is called a bag),

3. (Containment) ∀u, v, (u, v) ∈ E(G),∃i ∈ V (T) such that u, v ∈ Xi, and
4. (Connectivity) ∀i, j, k ∈ V (T), if k is on the path from i to j in tree T , then
Xi ∩Xj ⊆ Xk.
The width of (T,X) is defined as maxi∈V (T){|Xi|} − 1.

The treewidth of the graph G is the minimum width of all possible tree decom-
positions of the graph.

Definition 3. [9] A nice tree decomposition is a tree decomposition (T,X) in
which one node of T is considered to be the root, and each node i in T is of one
of the four following types.
-Leaf: node i is a leaf of T and |Xi| = 1.
-Join: node i has exactly two children, say j and k, and Xi = Xj = Xk.

FPT Results for Signed Domination 575

-Introduce: node i has exactly one child, say j, and there is a vertex v ∈ V (G)
with Xi = Xj ∪ {v}.
-Forget: node i has exactly one child, say j, and there is a vertex v ∈ V (G) with
Xi = Xj − {v}.

Every tree decomposition can be transformed into a nice tree decomposition[10].

Lemma 1. Given a tree decomposition of width k with O(n) nodes of a graph
G, where n is the number of vertices of G, one can find a nice tree decomposition
of G that has the same width k and O(n) nodes in linear time.

3 Signed Dominating Set in General Graph

The decision problem corresponding to the problem of computing γs is well-
known NP-complete [2]. We show that signed dominating set problem is NP-
complete even restricted to bipartite or chordal graphs.
Problem: Dominating Set
Instance: A graph G = (V,E) and a positive integer k.
Question: Does G have a dominating set of cardinality k or less.

Problem: Signed Dominating Set
Instance: A graph H = (V,E) and a positive integer j.
Question: Does H have a signed dominating set P of cardinality at most j.

Theorem 1. Signed dominating set problem is NP-complete, even restricted to
bipartite or chordal graphs.

Proof. It is obvious that signed dominating set problem is a member of NP
since we can in polynomial time verify that H has a signed dominating set of
size at most j for a function f : V → {−1,+1}. To show that signed dominating
set problem is NP-complete even restricted to bipartite or chordal graphs, we
establish a polynomial reduction from the NP-complete problem dominating set.
Let (G, k) be an instance of Dominating Set consisting of the dominating set of
size k. We construct an instance (H, j) of Signed Dominating Set as follows.

Given a graph G = (V,E) and a positive integer k, construct the graph H
by adding for each vertex v of G a set of degGv paths P2 on two vertices. Let
m = |E(G)| and n = |V (G)|. Then |V (H)| = n + 2

∑
v∈V degGv = n + 4m

and |E(H)| = m+ 2
∑

v∈V degGv = 5m. It is easy to see that graph H can be
constructed in polynomial time.

Next, we show the equivalence between the instances, that is, (G, k) is a
yes-instance of Dominating Set if and only if (H, j) is a yes-instance of Signed
Dominating Set.

Let D be a dominating set of graph G of size k. Let f : V (H) → {−1,+1}
be the function defined by f(v) = +1 if v ∈ (V (H)− V (G)) ∪D and f(v) = −1
if v ∈ V (G) − D. Then f is a signed dominating function of graph H , and
|P | ≤ j = |V (H)− V (G)|+ |D| = k + 4m.

576 Y. Zheng et al.

Let f be a signed dominating function of graph H . If x is a degree-1 vertex
and y is its neighbor, by the definition of the signed dominating function, then
f(x) = +1 and f(y) = +1. It follows that f(w) = +1 for everyw ∈ V (H)−V (G).
In other words, for the signed dominating function f , if f(v) = −1, then v ∈
V (G) ⊆ V (H). Furthermore, f : V (H) → {−1,+1}, v ∈ V (G), v has even
degree in graph H and f(N [v]) ≥ 1. Since exactly half the neighbors of v belong
to V (H)−V (G) and all those vertices are assigned the value +1, it follows that
at least one neighbor of v in G is assigned the value +1 under f . That is, if f is
a signed dominating function of H , then f(v) = +1 for v ∈ V (H) − V (G) and
the set of vertices D in graph G which are assigned the value +1 under f form a
dominating set in graph G. Since the signed dominating set P in graph H with
size at most j = k + 4m and |V (H)− V (G)| = 2

∑
v∈V degGv = 4m, therefore,

|D| ≤ k.
It is also easy to verify the reduction preserves the properties “bipartite”,

“chordal”. ��

Kernelization can be seen as the strategy of analyzing preprocessing or data
reduction heuristics from a parameterized complexity perspective. Given a graph
G = (V,E), we propose to develop data reduction rules as follows.

Rule: If there exists a vertex v of degree larger than 2k in graph G, then
remove vertex v from graph G.

Theorem 2. Signed dominating set problem in general graphs admits a O(k2)
kernel.

Proof. It is easy to verify the correctness of this rule. If there is a vertex of
degree larger than 2k, then at least half of its neighbors should be assigned the
value +1 under the signed dominating function, it contradicts with the signed
dominating set of size bounded by k.

The left graph has all vertices of degree smaller than 2k. Since each vertex
with value +1 has at most half neighbors assigned the value −1, now the graph
has at most k vertices with value +1, then the number of vertices with value −1
is less than k2. Then we can get |V | ≤ k(k+1), therefore, we can conclude that
|V | ≤ k2, the kernel is O(k2). ��

4 Signed Dominating Set on Planar Graph

4.1 Linear Kernel for Signed Dominating Set

It is observed that for a fixed parameter tractable problem on planar graphs, if
some kernelization rules can be developed to bound the size of “lower degree”
vertices, then we can get a kernel of this problem soon. Next, we will analyze
the kernel for signed dominating set on planar graphs.

Lemma 2. Let v be a degree-1 vertex in G with N(v) = {u}, then G has a
signed dominating set of size bounded by k if and only if G \ v has a signed
dominating set bounded by k that contains v and u.

FPT Results for Signed Domination 577

Lemma 3. Let v be a degree-2 vertex in G with N(v) = {u,w} and (u,w) ∈
E(G). Then G has a signed dominating set of size bounded by k if and only if
G \ v has a signed dominating set of size bounded by k that contains u and w.

Based on Lemma 2 and lemma 3, we can get the following reduction rules.
Rule 1. If a vertex v is a degree-1 vertex, then remove v and decrease the

parameter k by two.
Rule 2. If a vertex v has two neighbors u and w and (u,w) ∈ E(G), remove v

and decrease the parameter k by two.
It is easy to verify that any rule can be applied at most polynomial times.

Following is a useful property of planar graphs.

Lemma 4. For a planar graph G, let S be a subset of V with at least 2 vertices,
and let J = {v|v ∈ V (G) \ S, |N(v) ∩ S| ≥ 3}, then |J | ≤ 2|S| − 4.

Proof. It is not hard to see that this lemma is true for |S| = 2. Then we suppose
|S| ≥ 3. Let B = G[S ∪ J] \ (E(G[S]) ∪E(G[J])). Since there is no K3 in B, by
Euler’s formula, |E(B)| ≤ 2(|S| + |J | − 2). Then |E(B)| ≥ 3|J |. Thus, we have
|J | ≤ 2|S| − 4. ��

Lemma 5. [14] For a planar graph G = (V,E) with at least three vertices, then
|E| ≤ 3|V | − 6.

Lemma 6. Signed dominating set on planar graphs admit a 6k − 10 kernel.

Proof. For any instance (G, k) of signed domination set, we reduce the instance
by rule 1- rule 2. Let (G′, k′) is the reduced instance with k′ ≤ k. SupposeG′ has a
signed dominating set P of size k′. Let Ji = {v|v ∈ V (G′)\V (P), |N(v)∩V (P)| =
i}, where i = 0, 1, 2, and let J+

3 = {v|v ∈ V (G′) \ V (P), |N(v) ∩ V (P)| ≥ 3}.
It is clearly that |J0| = 0. Since G′ has already been reduced by rule 1- rule
2, there exists no degree-1 vertices and degree-2 vertices whose neighbors are
adjacent in V (G′) \ V (P). Otherwise, assume that there is a degree-2 vertex v
in V (G′) \ V (P) with N(v) = {u,w}. If (u,w) ∈ E(G′), then rule 2 can be
used, contradicting that (G′, k′) is reduced. Therefore, |J1| = 0. It is easy to see
that J2 induced an independent set. P is an induced graph of planar graph G′,
according to lemma 5 we obtain |E(P)| ≤ 3|V (P)| − 6. Each vertex in J2 has
exactly two neighbors in P and these two neighbors are not connected. Therefore,
|J2| ≤ 3|V (P)| − 6. Since G′ is a planar graph, by lemma 4, |J+

3 | ≤ 2|V (P)| − 4.
Thus |G′| = |V (P)|+ |J0|+ |J1|+ |J2|+ |J+

3 | ≤ 6|V (P)| − 10. Since |V (P)| ≤ k,
the size of the kernel is 6k − 10.

The procedure of reduction just takes the operation of deleting vertices and
edges, therefore, the kernelization takes polynomial times. ��

4.2 FPT Algorithm for Signed Dominating Set

In this section we will solve signed dominating set problem by dynamic program-
ming on the tree-decomposition. What we show is a FPT algorithm with respect
to the parameter treewidth.

578 Y. Zheng et al.

Given a graph G = (V,E) and V = {x1, ..., xn}, assume that the vertices
in the bags are given in increasing order when used as indices of the dynamic
programming tables, that is Xi = {xi1, ..., xini} with i1 ≤ ... ≤ ini, 1 ≤ i ≤
|V (T)|. We use eight different “colors” that will be assigned to the vertices in
bag.

– “blue”: represented by 1, meaning that the vertex xit satisfies f(N [xit]) > 1
at the current stage of the algorithm.

– “white”: represented by 1[, meaning that the vertex xit satisfies f(N [xit]) = 1
at the current stage of the algorithm.

– “grey”: represented by 1], meaning that the vertex xit satisfies f(N [xit]) = 0
at the current stage of the algorithm.

– “pink”: represented by 1∗, meaning that the vertex xit satisfies f(N [xit]) < 0
at the current stage of the algorithm.

– “black”: represented by -1, meaning that the vertex xit satisfies f(N [xit]) > 1
at the current stage of the algorithm.

– “red”: represented by −1[, meaning that the vertex xit satisfies f(N [xit]) = 1
at the current stage of the algorithm.

– “green”: represented by−1], meaning that the vertex xit satisfies f(N [xit]) =
0 at the current stage of the algorithm.

– “brown”: represented by−1∗, meaning that the vertex xit satisfies f(N [xit]) <
0 at the current stage of the algorithm.

It is worthy of note that there are |Xi| − 1 number of states for f(N [xit]) > 1,
those states f(N [xit]) = 2, ..., f(N [xit]) = |Xi| can be denoted by 12, ..., 1|Xi|
and −12, ...,−1|Xi| respectively. Moreover, there are |Xi| number of states for
f(N [xit]) < 0. Similarly we use 1−1, ..., 1−|Xi| and −1−1, ...,−1−|Xi| to denote
those states f(N [xit]) = −1, ..., f(N [xit]) = −|Xi| respectively. In order to ex-
press the dynamic programming algorithm easily, we still use 1, 1∗, −1 and −1∗
to denote those states. Therefore, mapping

Ci : {xi1, ..., xini} → {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}

is called a coloring for the bag Xi = {xi1, ..., xini}, and the color assigned to
vertex xit by Ci is given by Ci(xit). The colors in the bag can be represented as
(C(xi1), ..., C(xini)). For each bagXi with Xi = ni, the algorithm use a mapping

mi : {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni → N ∪+∞

For a coloring Ci, the value mi(Ci) stores how many vertices are needed for a
minimum signed dominating set of the graph visited up to the current stage of
the algorithm. A color is locally invalid if there is some vertex in the bag that
is colored −1 or −1[but this vertex is not dominated by the vertices within
the bag. Note that a locally invalid coloring may still be a correct coloring if
this vertex is not dominated within the bag but dominated by some vertices
from bags that have been considered earlier. For a coloring c = (c1, ..., cm) ∈
{1, 1[, 1], 1∗,−1,−1[,−1],−1∗}m and a color d ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗},
let

!d(c) = |{t ∈ {1, ...,m}|ct = d}|

FPT Results for Signed Domination 579

Theorem 3. Given a graph G = (V,E) with tree decomposition (T,X), a min-
imum signed dominating set problem can be computed in O((6tw)tw · |V |) time,
where tw is the treewidth of the tree decomposition.

Proof. In order to describe the algorithm clearly, assume the dynamic program-
ming algorithm is based on the nice tree decomposition computing the minimum
signed dominating set.
Step 1: Table initialization.

For all tables Xi and each coloring c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni let

mi(c) =

{
+∞ if c is locally invalid for Xi

!1,1[,1],1∗(c) otherwise

Since the check for local invalidity takesO(ni) time, this step take timeO((4ni)
ni ·

ni).
Step 2: Dynamic programming.

After the initialization, the algorithm visits the bags of the tree decomposition
from the leaves to the root, there are three kinds of nodes during the dynamic
programming procedure should be considered. We evaluate the corresponding
mappings in each node according to the following rules.
Forget Nodes : Assume i is a forget node with child j and Xi = {xi1, ..., xini},
Xj = {xi1, ..., xini , x}.

For all colorings c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni , let

mi(c) = min
d∈{1,1[,−1,−1[}

{mj(c× {d})}

Note that for Xj the vertex x is assigned color 1], −1], 1∗ and −1∗, that is,
x is not dominated by a graph vertex. But by the consistency property of tree
decompositions, the vertex x would never appear in a bag for the rest of the
algorithm, a coloring will not lead to a signed dominating set because x cannot
be dominated. That is why in the above equation x just takes colors 1, 1[,−1,−1[
only.
Introduce Nodes : Assume i is an introduce node with child node j, let Xj =
{xj1, ..., xjnj}, Xi = {xi1, ..., xini , x}. Suppose N(x) ∩ Xj = {xjp1 , ..., xjps} be
the neighbors of the vertex x which are contained in the bag Xi. Now define a
function on the set of colorings of Xj.

φ : {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj → {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj

For c = (c1, ..., cnj) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj , define φ(c) = (c′1, ..., c
′
nj
)

such that

c′t =

{
1](−1]) if t ∈ {p1, ..., ps} andct = 1[(−1[)

ct otherwise

Compute the mapping mi of Xi as follows: for all colorings c = (c1, ..., cnj) ∈
{1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj , if we assign color 1 to vertex x, then the ver-
tices in {xjp1 , ..., xjps} with colors 1] or −1] can be assigned colors 1[or −1[.

580 Y. Zheng et al.

The vertices in {xjp1 , ..., xjps} with colors 1∗ or −1∗ can be pushed to the “up-
per” colors, for example, 1−1 is changed into 1]. In the same way, if we assign
color −1 to vertex x, the vertices in {xjp1 , ..., xjps} with colors 1 or −1 can be
pulled to the “lower” colors, for example, 12 is changed into 1[.

mi(c× {−1],−1∗}) = mj(c)

mi(c× {−1,−1[}) = mj(c)if x has neighbors in Xj with colors 1, 1[

mi(c× {1, 1[, 1], 1∗}) = mj(φ(c)) + 1

Since it needs O(ni) time to check a coloring is locally invalid, the computation
of mi can be carried out in O((4ni)

ni · ni) time.
Join Nodes : Assume i is a join node with children j and k, let Xi = Xj = Xk =
{xi1, ..., xini}. Let c = (c1, ..., cni) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni be a color-
ing for Xi. c

′ = (c′1, ..., c
′
ni
), c′′ = (c′′1 , ..., c

′′
ni
) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni .

Since for a join node, we have to consider a child of colors 1, 1[combined with
colors 1], 1∗ of another child. Similar with −1,−1[combined with −1],−1∗. Then
ct = 1 ⇒ (c′t, c

′′
t ∈ {1, 1∗}) ∧ (c′t = 1 ∨ c′′t = 1)

ct = 1 ⇒ (c′t, c
′′
t ∈ {1, 1]}) ∧ (c′t = 1 ∨ c′′t = 1)

ct = 1[⇒ (c′t, c
′′
t ∈ {1[, 1∗}) ∧ (c′t = 1[∨ c′′t = 1[)

ct = 1[⇒ (c′t, c
′′
t ∈ {1[, 1]}) ∧ (c′t = 1[∨ c′′t = 1[)

ct = −1 ⇒ (c′t, c
′′
t ∈ {−1,−1∗}) ∧ (c′t = −1 ∨ c′′t = −1)

ct = −1 ⇒ (c′t, c
′′
t ∈ {−1,−1]}) ∧ (c′t = −1 ∨ c′′t = −1)

ct = −1[⇒ (c′t, c
′′
t ∈ {−1[,−1∗}) ∧ (c′t = −1[∨ c′′t = −1[)

ct = −1[⇒ (c′t, c
′′
t ∈ {−1[,−1]}) ∧ (c′t = −1[∨ c′′t = −1[)

Then, the computation of the mapping mi of Xi as follows: for all colorings
c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni , let

mi(c) = min{mj(c
′) +mk(c

′′)− !1,1[,1],1∗(c)}

Computing the valuemi, we should look up the corresponding values for coloring
c in mj and in mk, add the corresponding values and subtract the number of
color 1, 1[in c. If color c of node i assigns the color 1], 1∗, −1] or −1∗ to a vertex
x from Xi, then in color c′ of Xj and color c′′ of Xk, we should assign the same
color to x. However, if c assigns color 1, 1[, −1 or −1[to x, it is necessary to
justify this color by only one of the colorings c′ or c′′. Combine the states of c′

and c′′, therefore, computing mi can be done in O((6ni)
ni · ni) time.

Step 3 Let r be the root of T , the signed dominating set number is given by

min{mr(c)|c ∈ {1, 1[,−1,−1[}nr}

The minimum number of signed dominating set is taken only over colorings
containing colors 1, 1[,−1,−1[since the colors 1], 1∗, −1] and −1∗ mean that
the corresponding vertex still needs to be dominated.

Since |Xi| = ni, if the given graph has treewidth tw, then computing the
minimum signed dominating number can be done in O((6tw)tw · |V |) time. ��

FPT Results for Signed Domination 581

Theorem 4. [13] If a planar graph has a dominating set of size at most k, then
its treewidth is bounded by O(

√
k).

Lemma 7. Given a graph G = (V,E), if there exist a signed dominating set of
size at most k, then there must exist a dominating set of size at most k.

Proof. Assume there is a signed dominating set P with |P | ≤ k in graph G, then
for each v ∈ V , the signed dominating function makes each v satisfy f(N [v]) ≥ 1.
If we use 0 to replace all the −1 in the graph, it is easy to see that P is also a
dominating set of graph G. Each vertex with value −1 needs at least two vertices
with value +1 to dominate, but each vertex with value 0 just needs at least one
vertex with value +1 to dominate, therefore, a dominating set of graph G is of
size at most k. Conversely, it does not hold. ��

By Theorem 3, Theorem 4 and Lemma 7, it is easy to see that signed dominating
set problem on a planar graph has fixed parameter tractable algorithm.

Corollary 1. Signed dominating set on planar graphs is solved in O((6
√
k)O(

√
k)·

|V |) time.

5 Signed Dominating Set in Special Graph

5.1 Polynomial Kernel in Bipartite Graph

For p ≥ 1, q ≥ 1, letKp,q be a bipartite graph with vertices {x1, . . . , xi,y1, . . . , yj}
by connecting all edges of the type (xiyj), where 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Theorem 5. In a bipartite graph Kp,q, the kernel for signed dominating set is
O(k2).

Proof. Let the X+ and X− be two sets of vertices in X which are assigned
with +1 and −1, respectively. Similarly define the Y + and Y −. Then |P | =
|X+|+ |Y +|, |M | = |X−|+ |Y −|. Every vertex in X− has to be connected to at
least two vertices in Y +, according to the pigeonhole principle, at least one vertex
in Y + has to be adjacent to at least |X−|/|Y +| vertices in X−. Since the vertex
yi in Y + should satisfy f(N [yi]) ≥ 1, it follows that |X+|− |X−|/|Y +| ≥ 1, then
|X−| ≤ |Y +|(|X+| − 1). Every vertex in Y − has to be connected to at least two
vertices in X+, then at least one vertex in X+ has to be adjacent to at least
|Y −|/|X+| vertices in Y −, therefore |Y −| ≤ |X+|(|Y +| − 1).

For the whole graph, |V | = |X+| + |X−| + |Y +| + |Y −|, |V | ≤ |X+| +
|Y +|(|X+|−1)+|Y +|+|X+|(|Y +|−1) = 2|X+||Y +|, |X+||Y +| ≥ |V |

2 . |P |−|M | =
2(|X+| + |Y +|) − |V |, 2k − |V | ≥ 4

√
|X+| · |Y +| − |V |, k ≥

√
2|V |, therefore,

the kernel is O(k2). ��

582 Y. Zheng et al.

5.2 Linear Kernel in Δ ≤ d Graph

Lemma 8. Any signed dominating function in a Δ ≤ d graph satisfies

|P | − |M | = |P0|+ |P1|/2 + (
d

4
− 1

2
)|M d

2
+1|+ ...+ (

d

2
− 1)|Md| −

1

2
(|P3| − |M3|)

−...− (
d

4
− 1)(|P d

2
| − |M d

2
|)

where d is a constant.

Proof. If d is even, |P | = |P0| + |P1| + ... + |P d
2
|, and if d is odd, |P | = |P0| +

|P1|+ ...+ |P d−1
2
|. |M | = |M2|+ |M3|+ ...+ |Md|. For d even, the edge number

of K|P |,|M| is |P1|+ 2|P2|+ ...+ d
2 |P d

2
| = 2|M2|+ 3|M3|+ ...+ d|Md|. Then

|P1|+ 2(|P2| − |M2|) + ...+
d

2
(|P d

2
| − |M d

2
|) = (

d

2
+ 1)|M d

2+1|+ ...+ d|Md|

Then, in Δ ≤ d graph,

|P | − |M | = |P0|+ |P1|/2 + (
d

4
− 1

2
)|M d

2
+1|+ ...+ (

d

2
− 1)|Md| −

1

2
(|P3| − |M3|)

−...− (
d

4
− 1)(|P d

2
| − |M d

2
|)

The same with the case d is odd. ��

Theorem 6. In a Δ ≤ 5 graph, the kernel for signed dominating set is O(k).

Proof. In a Δ ≤ 5 graph, according to lemma 8, |P | − |M | = |P0| + |P1|/2 +
|M3|/2+|M4|+ 3

2 |M5|. From the edge number K|P1|,|M2|, we can see that 2|M2| ≤
|P1| and |P2| = |M2|+ 3

2 |M3|+2|M4|+ 5
2 |M5|− |P1|/2. Since |V | = |P0|+ |P1|+

|P2|+ |M2|+ |M3|+ |M4|+ |M5|, therefore, |V | = |P0|+ |P1|/2+2|M2|+ 5
2 |M3|+

3|M4|+ 7
2 |M5| ≤ 5(|P | − |M |). Since |P | ≤ k and |M | ≥ |V | − k, then we obtain

|V | ≤ 5
3k. ��

5.3 Linear Kernel in r-Regular Graph

Theorem 7. In a r-regular graph, the kernel for signed dominating set is O(k).

Proof. According to the lower bound of γs in [11], for every r-regular graph,
γs ≥ 1

r+1 |V | for r is even, and γs ≥ 2
r+1 |V | for r is odd. Then 2k − |V | ≥ γs ≥

1
r+1 |V |, we get the kernel O(k).

6 Conclusion

In this paper, we study signed dominating set problem from the parameterized
perspective. There are still some problems deserved for further research. Firstly

FPT Results for Signed Domination 583

can we improve the kernel of the signed dominating set problem in general
graphs, if it can do, the new fixed parameter tractable algorithm for this problem
also follows naturally. Since for a fixed k, the problem of determining whether
a graph has a signed dominating function of weight at most k is NP-complete,
if signed domination problem is parameterized with the weight of the signed
dominating function, is this problem still fixed parameter tractable?

References

1. Dunbar, J., Hedetniemi, S., Henning, M., Slater, P.: Signed domination in graphs.
Graph Theory, Combinatorics and Applications, 311–322 (1995)

2. Hattingh, J., Henning, M., Slater, P.: The algorithmic complexity of signed domi-
nation in graphs. Australasian Journal of Combinatorics 12, 101–112 (1995)

3. Hass, R., Wexler, T.: Signed domination numbers of a graph and its complement.
Discrete Math. 283, 87–92 (2004)

4. Zelinka, B.: Signed total domination number of a graph. Czechoslovak Math. 51,
225–229 (2001)

5. Matousek, J.: On the signed domination in graphs. Combinatorica 20, 103–108
(2000)

6. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposi-
tion. J. of Combinatorial Theory, Series B 52, 153–190 (1991)

7. Zhang, Z., Xu, B., Li, Y., Liu, L.: A note on the lower bounds of signed domination
number of a graph. Discrete Math. 195, 295–298 (1999)

8. Favaron, O.: Signed domination in regular graphs. Discrete Math. 158, 287–293
(1996)

9. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

10. Bodlaender, H.L.: Treewidth: Algorithmic Techniques and Results. In: Privara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg
(1997)

11. Henning, M.A., Slater, P.J.: Irregularities relating domination parameters in cubic
graphs. Discrete Mathematics 158, 87–98 (1996)

12. Henning, M.A.: Domination in regular graphs. Ars Combinatoria 43, 263–271
(1996)

13. Demaine, E.D., Fomin, F.V., Thilikos, D.M.: Bidimensional parameters and local
treewidth. SIAM J. Disc. Math. 18(3), 501–511 (2004)

14. Alber, J., Fellows, M., Niedermeier, R.: Polynomial time data reduction for domi-
nating set. J. ACM 51, 363–384 (2004)

Submodular Minimization via Pathwidth

Hiroshi Nagamochi

Graduate School of Informatics, Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. In this paper, we present a submodular minimization algo-
rithm based on a new relationship between minimizers of a submodular
set function and pathwidth defined on submodular set functions. Given
a submodular set function f on a finite set V with n ≥ 2 elements and
an ordered pair s, t ∈ V , let λs,t denote the minimum f(X) over all sets
X with s ∈ X ⊆ V − {t}. The pathwidth Λ(σ) of a sequence σ of all n
elements in V is defined to be the maximum f(V (σ′)) over all nonempty
and proper prefixes σ′ of σ, where V (σ′) denotes the set of elements
occurred in σ′. The pathwidth Λs,t of f from s to t is defined to be the
minimum pathwidth Λ(σ) over all sequences σ of V which start with
element s and end up with t. Given a real k ≥ f({s}), our algorithm
checks whether Λs,t ≤ k or not and computes λs,t (when Λs,t ≤ k) in
O(nΔ(k)+1) oracle-time, where Δ(k) is the number of distinct values of
f(X) with f(X) ≤ k overall sets X with s ∈ X ⊆ V − {t}.

1 Introduction

Let V denote a given finite set with n ≥ 2 elements. A set function f on V is
called submodular if f(X)+f(Y) ≥ f(X∩Y)+f(X∪Y) for every pair of subsets
s, t ⊆ V . There are numerous examples of submodular set functions such as cut
capacity function, matroid rank function, and entropy function (see [3,4,7,11,21]
for more examples and applications of submodular set functions). The problem
of finding a subset X that minimizes f(X) over a submodular set function f is
one of the most fundamental and important issues in optimization. Grotschel,
Lovasz, and Schrijver gave the first polynomial time [5] and strongly polynomial
time algorithms for minimizing a submodular set function [6]. Schrijver [20] and
Iwata, Fleischer, and Fujishige [8] independently developed strongly polynomial
time combinatorial algorithms for minimizing a submodular function. Currently
an O(n6 + n5θ) time algorithm is obtained by Orlin [15], where θ is the time
to evaluate f(X) of a specified subset X . For a special case of submodular
functions such as symmetric submodular functions and its extensions, much
simpler algorithms that run in O(n3θ) time are known [12,13,16]. The algorithms
are based on maximum adjacency orderings or minimum degree orderings, a
certain sequence of all elements in V which can be constructed in a greedy way
(see [14] for more details).

In graph theory, the notion of treewidth [18] of undirected graphs has been
successfully used as a key tool for the graph minor theory [19] and for designing

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 584–593, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Submodular Minimization via Pathwidth 585

efficient algorithm [1]. Several extensions of this notion have been studied ex-
tensively (see [9] for examples). The notion of pathwidth of undirected graphs is
introduced by Robertson and Seymour [17], and it is generalized into pathwidth
of digraphs (according to Barát [2] this is done by Reed, Thomas, and Seymour
around 1995). In the undirected case, the fact that for fixed k there is a polyno-
mial time algorithm that decides whether a given graph has pathwidth at most
k is an immediate consequence of the graph minor theorem due to Robertson
and Seymour [19]. However, the graph minor theorem does not work for the
directed case. The pathwidth of a digraph G is the minimum of the pathwidth
Λ(σ) of a sequence σ of the vertices in G, and Λ(σ) is known to be equivalent
to the maximum of d−(Vi), 1 ≤ i ≤ n (e.g., [10]), where Vi is the set of the first
i vertices in σ, and d−(X) is the number of vertices v which have arcs from v
to X . Whether there exists such an algorithm for pathwidth of digraphs or not
was open.

Recently Tamaki [22] gave a search tree algorithm for fixed k that decides
whether a given digraph has pathwidth at most k. The time complexity is
O(mnk+1) for a digraph with n vertices and m edges. The algorithm is based on
an enumerative approach, and the size of search tree is proven to be bounded by
O(nk+1) by an elegant analysis using the submodularity of the neighbor function
d− in digraphs. It is not difficult to see that his algorithm still works for finding
an extended notion of pathwidth to the general submodular set function. In this
paper, we show further useful properties on submodular set functions from a
view point of sequences of elements, and design a simple search tree algorithm
that minimizes f(X) with s ∈ X ⊆ V − {t} of a submodular set function f in
O(nΔ(k)+1) oracle-time for a value k ≥ Λs,t, where Λs,t is the pathwidth of f
from s to t and Δ(k) is the number of distinct values of f(X) with f(X) ≤ k
overall sets X with s ∈ X ⊆ V − {t}. Although the proposed algorithm is not
so efficient as the currently fast submodular minimization algorithms unless f is
an integer-valued function bounded by a small number, its computationally new
mechanism casts another light on the foundation of optimization algorithms.

2 Preliminaries

For two integers i ≤ j, the set of all integers h with i ≤ h ≤ j is denoted by
[i, j].

A sequence σ consisting of some elements in V is called non-duplicating if
each element of V occurs at most once in σ. We denote by Σi the set of all
non-duplicating sequences of exactly i elements in V , where Σ0 contains only
the empty sequence. We denote ∪0≤i≤nΣi by Σ. For each sequence σ ∈ Σ, we
denote by V (σ) the set of elements constituting σ and by |σ| = |V (σ)| the length
of σ.

For τ, σ ∈ Σ, we say that τ is a subsequence of σ if V (τ) ⊆ V (σ) and, for
every two elements u, v ∈ V (τ), u precedes v in τ if and only if u precedes v in
σ. In particular, τ is called a prefix of σ if τ consists of the first |τ | elements in
σ. A prefix τ of σ is called a proper prefix of σ if |τ | < |σ|. For a sequence σ ∈ Σ
and an integer i ∈ [0, |σ|], let σi denote the prefix of σ with length i.

586 H. Nagamochi

For each non-empty sequence σ ∈ Σ, we denote by π(σ) the prefix of σ with
length |σ| − 1. For two sequences τ, η ∈ Σ such that V (τ)∩V (η) = ∅, we denote
by τη the sequence σ ∈ Σ such that σ|τ | = τ . For the sequence σ = τη, we
call σ an extension of τ (or say that σ extends τ). In particular, σ is called a
proper extension of τ if |τ | < |σ|. For two distinct elements s, t ∈ V , a sequence
σ ∈ Σn is called an (s, t)-sequence if s and t are the first and last elements of σ,
respectively.

Let (V, f) be a submodular system, and s, t be two distinct elements in V . We
say that a subset X of elements separates s from t (or call X an (s, t)-separator)
if s ∈ X ⊆ V − {t}. Let λs,t = min{f(X) | x ∈ ∀X ⊆ V − {t}}. An (s, t)-
separator X is called minimum if f(X) = λs,t. Our goal is to find a minimum
(s, t)-separator for a given pair (s, t) in a submodular system. The cut-size λ(σ)
and pathwidth Λ(σ) of a sequence σ ∈ Σn in (V, f) are defined to be

λ(σ) = min{f(σi) | 1 ≤ i ≤ n− 1} and Λ(σ) = max{f(σi) | 1 ≤ i ≤ n− 1},

respectively. For two distinct elements s, t ∈ V , the pathwidth from s to t
in (V, f), denoted by Λs,t, is defined to be the minimum Λ(σ) over all (s, t)-
sequences σ ∈ Σn.

Given s, t ∈ V , we wish to find an (s, t)-sequence σ ∈ Σn with λ(σ) = λs,t. We
call such an (s, t)-sequence optimal. The next observation suggests that we only
need to search (s, t)-sequences with a small Λ(σ) to find an optimal sequence.

Lemma 1. Let τ be an (s, t)-sequence of V in a submodular system (V, f). Then
there exists an optimal (s, t)-sequence σ with Λ(σ) ≤ Λ(τ).

Proof. Choose a minimum (s, t)-separator A in (V, f), and let α and β be the
subsequences of τ such that V (α) = A and V (β) = V − A. Clearly σ = αβ is
optimal, since it holds λ(σ) ≤ f(σ|A|) = f(α) = f(A) = λs,t. To prove that
Λ(σ) ≤ Λ(τ), it suffices to show that for each prefix σi, i ∈ [1, n− 1], there is a
prefix τ ′ of τ such that f(σi) ≤ f(τ ′) (≤ Λ(τ)).

For i ∈ [1, |A|], let τ ′ be the minimal prefix of τ such that V (σi) = V (τ ′)∩A.
Since V (τ ′)∪A is an (s, t)-separator, we have f(V (τ ′)∪A) ≥ λs,t = f(A). Hence
by the submodularity of f , f(A) + f(τ ′) ≥ f(V (τ ′) ∩ A) + f(V (τ ′) ∪ A), from
which we have f(τ ′) ≥ f(V (τ ′) ∩A) = f(σi).

For i ∈ [|A| + 1, n − 1], let τ ′ be the minimal prefix of τ such that V (σi) =
V (τ ′) ∪ A. Since V (τ ′) ∩ A is an (s, t)-separator, we have f(V (τ ′) ∩ A) ≥
λs,t = f(A). Again by the submodularity of f , we have f(τ ′) ≥ f(V (τ ′)∪
A) = f(σi).

Let Δ(k) denote the number of distinct values of f(X) with f(X) ≤ k overall
sets X with s ∈ X ⊆ V − {t}.

Theorem 1. For two distinct elements s, t ∈ V in a submodular system (V, f),
let k ≥ f({s}). Then
(i) whether k ≥ Λs,t or not can be determined in O(nΔ(k)+1) oracle-time.
(ii) when Λs,t ≤ k, an (s, t)-sequence σ such that Λ(σ) ≤ k and λ(σ) = λs,t can

be constructed in O(nΔ(k)+1) oracle-time.

Submodular Minimization via Pathwidth 587

3 Pruning in Search Tree for Pathwidth

To generate an optimal (s, t)-sequence with a small pathwidth, we take an enu-
merative algorithm using a search tree, following Tamaki’s approach for deciding
whether Λs,t ≤ k or not [22]. Now we introduce a real number k as a parameter
to control a search space for generating a set of (s, t)-sequences which includes
an optimal one. Any sequence τ ∈ Σ is called k-feasible if

f(τi) ≤ k for all i ∈ [1,min{|τ |, n− 1}].

We construct a search tree such that (i) the root node represents the sequence
σ = s ∈ Σ1; (ii) each node at level i of the tree represents a k-feasible sequence
of length i; and (iii) the parent of a non-empty sequence σ is defined to be π(σ),
the prefix of σ with length |σ| − 1.

In what follows, we design a pruning operation that reduces the size of search
trees from O((n − 2)!) to O(nΔ(k)). We say that a sequence in Σ is strongly
k-feasible if it has a k-feasible optimal (s, t)-sequence as its extension. Note
that σ = s ∈ Σ1 is strongly k-feasible as long as Λs,t ≤ k. What extension of a
strongly k-feasible sequence σ remains k-feasible sequence? The following lemma
states that we may safely commit to any “shortest non-expanding” extension.
An extension τ of a sequence σ is called non-expanding if

τ is a proper extension of σ and f(σ) ≥ f(τ).

A shortest non-expanding k-feasible extension τ of σ means that there is no
shorter one, i.e., it further satisfies

f(σ) < f(ρ) for every k-feasible extension ρ of σ with |σ| < |ρ| < |τ |,

where ρ is not necessarily any prefix of τ .

Lemma 2. Let σ ∈ Σ be a strongly k-feasible sequence in a submodular system
(V, f). Then any shortest non-expanding k-feasible extension τ of σ such that
t �∈ V (τ) is also strongly k-feasible.

Lemma 2 is shown via the following two lemmas.

Lemma 3. For two distinct elements s, t ∈ V in a submodular system (V, f), let
σ ∈ Σ be a k-feasible sequence such that σ1 = s and t �∈ V (σ). For any shortest
non-expanding k-feasible extension τ of σ such that t /∈ V (τ), it holds that

f(X) > f(τ) for every X with V (σ) � X � V (τ). (1)

Proof. To derive a contradiction, we assume indirectly that there is a subset A
with V (σ) � A � V (τ) such that f(A) ≤ f(τ). We show that there is some
non-expanding k-feasible extension η of σ that is shorter than τ , which will
contradict the assumption on the shortestness of τ .

Let α be the subsequence of τ such that A = V (α). Hence f(α) = f(A) ≤
f(τ) ≤ f(σ) ≤ k. Note that α is a proper extension of σ since V (σ) � A. Let

588 H. Nagamochi

h ∈ [|σ| + 1, |A|] be the integer such that f(αh) is the largest (recall that αi

denotes the prefix of α of length i), and let τ ′ denote the minimal prefix of τ
such that V (αh) = V (τ ′) ∩ A, where h ≤ |τ ′|.

(i) If f(αh) ≤ k then α is k-feasible and we are done with η = α, which
satisfies f(σ) ≥ f(α) and |α| < |τ | (since V (α) = A is a proper subset of V (τ)).

(ii) Suppose f(αh) > k, where h < |A| holds since f(α|A|) = f(A) ≤ k <
f(αh). In this case, we choose η as the subsequence of τ such that V (η) =
A ∪ V (τ ′). For each integer j ∈ [1, |η|], we will prove f(ηj) ≤ k. Clearly f(ηj) =

f(τ ′j) ≤ k for all j ∈ [1, |τ ′|]. Fix an integer j ∈ [|τ ′| + 1, |η|], and let αij

be the minimal prefix of α such that f(ηj) = f(V (τ ′) ∪ V (αij)). Note that
V (τ ′) ∩ V (αij) = V (αh). By the submodularity of f , it holds

f(τ ′) + f(αij) ≥ f(αh) + f(ηj),

where k ≥ f(τ ′) since τ is k-feasible. Since f(αh) ≥ f(αij) by the choice of
h (resp., f(αh) > k by the assumption on f(αh)), we have k ≥ f(ηj) (resp.,
f(αij) ≥ f(ηj)). Since f(ηj) ≤ k holds for every j ∈ [|τ ′|+1, |η|], η is k-feasible.
In particular, for j = |η|, we have f(η) = f(ηj) < f(αij) = f(A) ≤ f(τ) ≤ f(σ).
Thus, η is a non-expanding extension of σ. Finally, the inclusion V (η) ⊆ V (τ)
and the strict inequality f(η) < f(τ) imply that η is shorter than τ .

Lemma 4. Let σ∗ be a k-feasible optimal (s, t)-sequence in a submodular system
(V, f), and let σ be a nonempty and proper prefix of σ∗. Then a k-feasible non-
expanding extension τ of σ with t /∈ V (τ) is strongly non-expanding if

f(X) > f(τ) for every X with V (σ) � X � V (τ). (2)

Proof. Let σ∗, σ and τ be as in the statement of the lemma, where |σ| < |τ | and
f(σ) ≥ f(τ) hold since τ is a non-expanding extension of σ. We extend τ into an
(s, t)-sequence τ∗ = τα with the subsequence α of σ∗ such that V (α) = V \V (τ).
It suffices to show that τ∗ is also a k-feasible optimal (s, t)-sequence.

For each integer j ∈ [|σ|+1, n− 1], the set X = V (τ)∩V (σ∗
j) always satisfies

V (σ) ⊆ X ⊆ V (τ) and thereby f(X) ≥ f(τ), since f(X) = f(σ) ≥ f(τ) holds
for X = V (σ) or (2) is applied to X . From this and the submodularity of f ,

f(τ) + f(σ∗
j) ≥ f(V (τ) ∩ V (σ∗

j)) + f(V (τ) ∪ V (σ∗
j)),

we have

k ≥ f(σ∗
j) ≥ f(V (τ) ∪ V (σ∗

j)) ≥ λs,t for any j ∈ [|σ|+ 1, n− 1]. (3)

In particular, for j ∈ [|σ| + 1, n− 1] such that V (σ) � V (τ) ∩ V (σ∗
j) � V (τ), it

holds f(σ∗
j) > f(V (τ) ∪ V (σ∗

j)) in (3), since instead f(X) > f(τ) holds by (2).
(i) We first claim that Λ(τ∗) ≤ k. Since the prefix τ of τ∗ is k-feasible, we

only need to show that f(ταi) ≤ k for all i ∈ [1, |α| − 1]. For each integer
i ∈ [1, |α|− 1], define ji to be the minimum integer such that the prefix σ∗

ji
of σ∗

satisfies V (ταi) = V (τ) ∪ V (σ∗
ji). By (3), we have f(ταi) = f(V (τ) ∪ V (σ∗

ji)) ≤
f(σ∗

ji) ≤ k, as claimed.

Submodular Minimization via Pathwidth 589

(ii) We next prove λ(τ∗) = λs,t. Since λ(σ∗) = λs,t, it suffices to show that
each prefix σ∗

j , j ∈ [1, n−1] satisfies f(σ∗
j) > λs,t or has some j′ ∈ [1, n−1] such

that f(σ∗
j) ≥ f(τ∗j′). Let σ

∗
a be the longest prefix of σ∗ such that V (σ∗

a)∩V (α) =
∅, and σ∗

b be the shortest prefix of σ∗ such that V (σ∗
b) ⊇ V (τ). Clearly, for each

j ∈ [1, a]∪ [b, n− 1], it holds f(σ∗
j) = f(τ∗j). For each i ∈ [1, |α| − 1], the integer

ji ∈ [|σ|+ 1, n− 1] defined in (i) satisfies f(σ∗
ji) ≥ f(ταi). Finally we show that

f(σ∗
j) > λs,t holds for the other integers j ∈ [a+ 1, b− 1], i.e., those j such that

the last element of σ∗
j is in V (τ). Hence V (σ) � V (τ) by V (τ) \ V (σ∗

j) �= ∅ and
V (σ∗

j) � V (τ) by j ≤ b− 1. For such j, we have f(σ∗
j) > f(V (τ)∪V (σ∗

j)) ≥ λs,t

from (3).

4 A Search Tree Algorithm

In the following sections, we assume a fixed total ordering < on V and use a
standard lexicographic ordering < on Σ based on this total ordering. Let σ and
τ be sequences of equal length in Σ. We say that σ is preferable to τ , if

either f(σ) < f(τ) or f(σ) = f(τ) and σ < τ .

Furthermore we say that σ suppresses τ , if

σ is preferable to τ ; and

σ is a shortest non-expanding k-feasible extension of a common prefix of σ
and τ .

Clearly, the preferable-to relation is a total ordering on Σi for each i ∈ [0, n].

Proposition 1. Let σ, τ , and η be k-feasible sequences of equal length. If σ
suppresses τ and τ suppresses η, then σ suppresses η.

Proof. Under the assumptions of the lemma, σ is preferable to η, since σ is
preferable to τ and τ is preferable to η. Therefore, it suffices to show that σ
and η has a common prefix α such that σ is a shortest non-expanding k-feasible
extension of α. Since σ suppresses τ , there is a common prefix β of σ and τ such
that σ is a shortest non-expanding k-feasible extension of β. Similarly, there is
a common prefix γ of τ and η such that τ is a shortest non-expanding k-feasible
extension of γ.

(i) If β is a prefix of γ, then we are done with α = β.
(ii) Suppose that γ is a prefix of β. Then γ is a common prefix of σ and η. Since

σ is preferable to τ , we have f(σ) ≤ f(τ). Since τ is a shortest non-expanding
k-feasible extension of γ, it holds that f(τ) ≤ f(γ) and f(γ) < f(ρ) for every k-
feasible proper extension ρ of γ with |ρ| < |τ | (= |σ|). Then f(γ) ≥ f(τ) ≥ f(σ)
holds and f(ρ) > f(γ) for every k-feasible proper extension ρ of γ with |ρ| < |σ|,
implying that σ is also a shortest non-expanding k-feasible extension of γ. This
implies that σ suppresses η.

590 H. Nagamochi

It should be intuitively clear that suppressed sequences are not necessary in
the search tree, as a consequence of the commitment lemma. To formalize this
intuition, we define the set Si of unsuppressed k-feasible sequences of length i,
for each i ∈ [1, n− 1], inductively as follows.

1. S1 consists of the single sequence x ∈ Σ1.
2. A k-feasible sequence σ of length i ≥ 2 is in Si if and only if (i) π(σ) ∈ Si−1

and t /∈ V (σ); and (ii) σ is not suppressed by any k-feasible sequence τ of
length i such that π(τ) ∈ Si−1 and t /∈ V (τ).

A non-expanding k-feasible extension τ of σ is called locally shortest, if no
nonempty and proper prefix of τ is a non-expanding extension of σ.

Lemma 5. Let σ ∈ Σi is a sequence of length i ≥ 2 with π(σ) ∈ Si−1. For each
nonempty and proper prefix τ of a sequence σ, σ is a shortest non-expanding
k-feasible extension of τ if and only if σ is a locally shortest non-expanding
k-feasible extension of τ .

Proof. The “only if” part is trivial. We prove the “if” part. Assume that there is
a shortest non-expanding k-feasible extension η of τ shorter than σ. Then η is not
a prefix of σ since σ is a locally shortest non-expanding k-feasible extension of τ .
Since σ is a locally shortest non-expanding extension of τ , it holds f(τ) < f(σ|η|).
Then η suppresses the prefix σ|η| of σ (since f(η) ≤ f(τ) < f(σ|η|) and η
is a shortest non-expanding k-feasible extension of the common prefix τ of η
and σ|η|). Hence σ|η| would not be in S|η| and π(σ) would not be in Si−1 as
|η| ≤ |σ|−1 = i−1. Therefore, σ is a shortest non-expanding k-feasible extension
of τ .

Lemma 6. Let σ ∈ Σi be a sequence of length i ≥ 2 with π(σ) ∈ Si−1. Then
σ is a shortest non-expanding k-feasible extension of some proper prefix of σ if
and only if f(π(σ)) ≥ f(σ).

Proof. Let σ be a shortest non-expanding k-feasible extension of a nonempty
and proper prefix τ of σ. Then f(τ) ≥ f(σ). If τ = π(σ) then f(π(σ)) ≥ f(σ).
Otherwise (τ �= π(σ)), it holds f(τ) < f(π(σ)), from which f(π(σ)) > f(τ) ≥
f(σ).

Conversely, let σ be a sequence σ ∈ Σi of length i ≥ 2 with π(σ) ∈ Si−1 such
that f(π(σ)) ≥ f(σ). Since f(π(σ)) ≥ f(σ), σ is a locally shortest non-expanding
k-feasible extension of π(σ). By Lemma 5, σ is a shortest non-expanding k-
feasible extension of π(σ).

Lemma 7. There is a k-feasible optimal (s, t)-sequence σ such that π(σ) ∈
Sn−1.

Proof. For each k-feasible optimal (s, t)-sequence σ, let iσ denote the largest
i ∈ [1, n−1], such that σi ∈ Si. If there is some k-feasible optimal (s, t)-sequence
σ with iσ = n− 1, then we are done. So, suppose otherwise and fix a k-feasible
optimal (s, t)-sequence σ so that iσ is the largest over all choices of σ. Let σ′

Submodular Minimization via Pathwidth 591

be the prefix of σ of length iσ + 1 (i.e., σ′ = σiσ+1). Then since σ′ �∈ Siσ+1 and
π(σ′) ∈ Siσ , σ

′ must be suppressed by some k-feasible sequence τ of length iσ+1
such that π(τ) ∈ Siσ . Choose τ so that it is the most preferable among all the
candidates. Then τ is not suppressed by any τ ′ with π(τ ′) ∈ Siσ , since otherwise
τ ′ suppresses σ′ by Proposition 1 and is preferable to τ , contradicting the choice
of τ . Therefore

τ ∈ Siσ+1.

Since τ suppresses σ′, τ is preferable to σ′; and τ is a shortest non-expanding
k-feasible extension of a common prefix σ′′ of τ and σ′, where σ′ is strongly k-
feasible because of its extension σ. Then τ is a shortest non-expanding k-feasible
extension of the strongly k-feasible sequence σ′′. By Lemma 2 with σ′′ and τ ,
τ is strongly k-feasible, and has a k-feasible optimal (s, t)- sequence η as its
extension. This contradicts the choice of σ, since τ ∈ Siσ+1 means iη ≥ iσ + 1.

Thus, in our pruned search, we need only to generate k-feasible sequences in
Si, for i ∈ [2, n− 1].

To analyze the size of each set Si, we assign a signature sgn(σ) ∈ Σ to each
k-feasible sequence σ ∈ Σ as follows.

1. If σ = s then sgn(σ) is empty.
2. If σ ∈ Σ with σ1 = s and t �∈ V (σ) is a locally shortest non-expanding k-

feasible extension of some nonempty and proper prefix τ of σ, then sgn(σ) =
sgn(τ) for the minimal such prefix τ .

3. Otherwise (σ is not a non-expanding extension of π(σ)), sgn(σ) = sgn(π(σ))v,
where v is the last element of σ (and hence σ = π(σ)v).

The following observation is straightforward.

Proposition 2. Let σ ∈ Si. Then v ∈ V (σ) does not appear in sgn(σ) if and
only if there are nonempty prefixes σ1 and σ2 of σ such that v �∈ V (σ1), v ∈
V (σ2), and σ2 is a locally shortest non-expanding k-feasible extension of σ1.

Let F be the set of distinct values of f(X) with f({s}) ≤ f(X) ≤ k overall
sets X with s ∈ X ⊆ V − {t}. We denote F by {f0, f1, . . . , fΔ(k)−1}, where
λs,t ≤ f({s}) = f0 < f1 < · · · < fΔ(k)−1. For each real a ∈ F , let I(a) denote
the integer i such that fi = a.

Proposition 3. For each nonempty k-feasible sequence σ ∈ Σ with σ1 = s and
t �∈ V (σ), we have |sgn(σ)| ≤ I(f(σ)) ≤ Δ(k)− 1.

Proof. The proof is by induction on the length of σ. The base case where
σ = s satisfies |sgn(σ)| = 0 = I(f({s})) = I(f(σ)), as required. Suppose
that rule 2 of the definition of signatures applies to σ: sgn(σ) = sgn(τ), where
τ is the minimal nonempty prefix of σ such that σ is a locally shortest non-
expanding k-feasible extension of τ . Then since τ is the minimal nonempty pre-
fix of the above property, either τ = s or f(π(τ)) < f(σ). In the first case,
we have |sgn(σ)| = |sgn(τ)| = 0 and we are done. In the second case, we have

592 H. Nagamochi

|sgn(τ)| ≤ |sgn(π(τ))| + 1 ≤ I(f(π(τ))) + 1 ≤ I(f(σ)) by the induction hypoth-
esis, and therefore |sgn(σ)| = |sgn(τ)| ≤ I(f(σ)). Finally suppose that rule 3 of
the definition of signatures applies to σ: sgn(σ) = sgn(π(σ))v, where v is the
last element of σ. Since σ is not a non-expanding extension of π(σ), we have
f(π(σ)) < f(σ) and therefore |sgn(σ)| = |π(σ)| + 1 ≤ I(f(π(σ))) + 1 ≤ I(f(σ))
follows from the induction hypothesis on π(σ).

Lemma 8. Let i be an interger with 1 ≤ i ≤ n. If σ and τ are distinct elements
of Si then neither sgn(σ) nor sgn(τ) is a prefix of the other.

Proof. Let σ, τ ∈ Si be distinct. Let j0 be the smallest integer such that σj0 �= τj0 .
Let u0 be the last element of σj0 and v0 the last element of τj0 . We claim that
there is no pair of integers j1 and j2 such that 0 ≤ j1 < j0 ≤ j2 ≤ i and σj2

is a locally shortest non-expanding extension of σj1 . To see this, suppose such a
pair of integers j1 and j2 exists. By Lemma 5, σj2 is a shortest non-expanding
k-feasible extension of σj1 .

Note that σj1 is a common prefix of σj2 and τj2 . If σj2 is preferable to τj2 ,
then σj2 suppresses τj2 . Consider the case where τj2 is preferable to σj2 . Then we
have f(σj1) ≥ f(σj2) ≥ f(τj2), and τj2 is a non-expanding k-feasible extension
of σj1 . Furthermore, τj2 is a shortest non-expanding k-feasible extension of σj1 ,
since we already have a shortest non-expanding k-feasible extension σj2 of σj1

and there cannot be one shorter than |σj2 | = |τj2 |. Hence τj2 suppresses σj2 .
Therefore, either σj2 or τj2 must be suppressed, a contradiction to the fact that
both σj2 and τj2 are in Sj2 . This verifies the claim that there is no such pair
(j1, j2).

It follows from this claim and Proposition 2 that (i) u0 appears in sgn(σ);
and (ii) each element in V (σj0−1) appears in sgn(σ) if and only if it appears
in sgn(σj0−1). Symmetrically, we have (i) v0 appears in sgn(τ); and (ii) each
element in V (τj0−1) appears in sgn(τ) if and only if it appears in sgn(τj0−1).
Thus, sgn(σ) and sgn(τ) have a common prefix sgn(σj0−1) = sgn(τj0−1), which
is followed by u0 in sgn(σ) and by v0 in sgn(τ). Since u0 �= v0, neither sgn(σ)
nor sgn(τ) is a prefix of the other.

Our desired bound on |Si| immediately follows from this lemma and
Proposition 3.

Corollary 1. |Si| ≤ nΔ(k)−1 holds for 1 ≤ i ≤ n.

Then Λs,t ≤ k if and only if Sn−1 �= ∅. For any k-feasible sequence σ ∈ Sn−1, its
unique extension σ∗ = σy is a k-feasible optimal (s, t)-sequence and λs,t is given
by min{f(σ∗

i) | i ∈ [1, n− 1]}.
From this corollary, we see that Sn−1 can be computed in O(nΔ(k)+O(1))

oracle-time.
We omit some implementation details for deriving the time complexity in

Theorem 1 due to the space limitation.

Acknowledgment. The author would like to thank Prof. Hisao Tamaki for
useful discussions.

Submodular Minimization via Pathwidth 593

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)

2. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics 22(2), 161–172 (2006)

3. Fleischer, L.K.: Recent progress in submodular function minimization. Optima,
1–11 (2000)

4. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. North-Holland,
Amsterdam (2005)

5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid algorithm and its conse-
quences in combinatorial optimization. Combinatorica 1, 499–513 (1981)

6. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

7. Iwata, S.: Submodular function minimization. Math. Program. 112, 45–64 (2008)
8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time

algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)
9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-

nal of Combinatorial Theory Series B 82(1), 138–154 (2001)
10. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.

Information Processing Letters 42, 345–350 (1992)
11. McCormick, S.T.: Submodular function minimization. In: Aardal, K., Nemhauser,

G., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Re-
search and Management Science, vol. 12. Elsevier, Amsterdam (2005)

12. Nagamochi, H.: Minimum degree orderings. Algorithmica 56, 17–34 (2010)
13. Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Proc.

Lett. 67, 239–244 (1998)
14. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cam-

bridge University Press, New York (2008)
15. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function

minimization. Math. Program., Ser. A 118, 237–251 (2009)
16. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82,

3–12 (1998)
17. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Com-

binatorial Theory, Series B 35(1), 39–61 (1983)
18. Robertson, N., Seymour, P.: Graph minors III: Planar tree-width. J. Combin. The-

ory Ser. B 36(1), 49–64 (1984)
19. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. J. Combin.

Theory Ser. B 92(2), 325–335 (2004)
20. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)
21. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,

Berlin (2003)
22. Tamaki, H.: A Polynomial Time Algorithm for Bounded Directed Pathwidth. In:

Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer,
Heidelberg (2011)

A Detailed Study of the Dominating Cliques

Phase Transition in Random Graphs

Martin Nehéz1, Daniel Olejár2, and Michal Demetrian3

1 Gratex International, a.s.
Galvaniho 17/C, Bratislava 821 04, Slovak Republic

nehez841@gmail.com
2 Department of Computer Science,

FMPI, Comenius University in Bratislava, Mlynská dolina,
842 48 Bratislava, Slovak Republic

3 Department of Mathematical and Numerical Analysis,
FMPI, Comenius University in Bratislava, Mlynská dolina M 105,

842 48 Bratislava, Slovak Republic
demetrian@fmph.uniba.sk

Abstract. A subset of nodes S ⊆ V of a graph G = (V,E) is a do-
minating clique if S is a dominating set and a clique of G. The phase
transition of dominating cliques in Erdös-Rényi random graph model
G(n, p) is investigated in this paper. Lower and upper bounds on the
edge probability p for the existence of an r-node dominating clique are
established in this paper. We prove therein that given an n-node random
graph G from G(n, p) for r = c log1/p n with 1 ≤ c ≤ 2 it holds: (1) if
p > 1/2 then an r-clique is dominating in G with a high probability and,
(2) if p ≤ (3−

√
5)/2 then an r-clique is not dominating in G with a high

probability. The remaining range of the probability p is discussed with
more attention. Within such a range, we provide intervals of r where
a dominating clique existence probability is zero, positive but less than
one, and one, respectively.

Keywords: Random graphs, dominating cliques, phase transition.

1 Introduction

The phase transition phenomenon is one of the most significant properties of
the theory of random graphs. Such a phenomenon was initially observed as a
physical effect and originally described by P. Erdös and A. Rényi in random
graphs [8]. The connectivity is a graph property which have been studied the
most frequently with relation to the phase transition in random graphs. (See [2]
and [9], Chapter 5 for the recent surveys.) This paper examines the emergence
of dominating cliques which is another key issue regarding random graphs. The
theory of dominating cliques in random graphs has a significant application in
the design of large-scale distributed systems. As it was claimed in [13], if a graph
G contains a nontrivial dominating clique then a space-efficient interval routing
scheme with the additive stretch at most 2 can be constructed in G.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 594–603, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Detailed Study of the Dominating Cliques Phase Transition 595

The existence problem ”Is there a dominating clique in a given graph G?” is
NP-complete [11]. It gives a serious reason for designing of efficient algorithms for
solving of such a problem. Exact algorithms for the dominating clique problem
with moderately exponential time were described in [4, 5, 11]. The best known
of them is presented in [4].

The phase transition of the dominating cliques problem in Erdös-Rényi ran-
dom graph model G(n, p) is investigated in this paper. We show that upper and
lower bounds on p of the corresponded problem are in a close relationship with
the clique number in random graphs.

Definitions. Given a simple undirected graph G = (V,E), a set D ⊆ V is said
to be a dominating set of G if each node v ∈ V is either in D or is adjacent
to a node in D. The domination number γ(G) is the minimum cardinality of a
dominating set of G. A set S ⊆ V of nodes is a clique in G if every pair of its
nodes is adjacent. A clique is maximal if it is not contained in any other clique.1

The clique number, denoted cl(G), is equal to the cardinality of the largest clique
of G. A subset of nodes S ⊆ V is a dominating clique if S is a dominating set
and a clique in G.

The Random Graphs Model. Let n be a positive integer and let p ∈ IR,
0 ≤ p ≤ 1, be a probability of an edge. The (probabilistic) model of random
graphs G(n, p) consists of all graphs with n-node set V = {1, . . . , n} such that
each graph has at most

(
n
2

)
edges being inserted independently with probability

p. Consequently, if G is a graph with node set V and it has |E(G)| edges, then
a probability measure Pr defined on G(n, p) is given by:

Pr[G] = p|E(G)|(1− p)(
n
2)−|E(G)| .

This model is called Erdös-Rényi random graph model [2, 9].
Let A be any set of graphs from G(n, p) with a property Q. We say that

almost all graphs have the property Q iff:

Pr[A] → 1 as n → ∞ .

The term ”almost surely” stands for ”with the probability approaching 1 as
n → ∞”.

Related Work. A well-known result of B. Bollobás, P. Erdös et al. states that
the clique number in random graphs G(n, p) is ranged within a tight interval
[2, 3, 10, 12, 16–18]. Let b = 1/p and let

r0 = logb n− 2 logb logb n+ logb 2 + logb logb e , (1)

r1 = 2 logb n− 2 logb logb n+ 2 logb e+ 1− 2 logb 2 . (2)

J. G. Kalbfleisch and D. W. Matula [10, 12] proved that a random graph from
G(n, p) does not contain maximal cliques of the order greater than �r1� and less

1 The maximality under an inclusion is considered.

596 M. Nehéz, D. Olejár, and M. Demetrian

or equal than
r0� almost surely. (See also [3, 16–18].) The domination number
of a random graph have been studied in [19].

The phase transition of dominating clique problem in random graphs was
examined independently by M. Nehéz and D. Olejár in [13, 14] and J. C. Cul-
berson, Y. Gao, C. Anton in [5]. It was shown in [5] that the property of hav-
ing a dominating clique has a phase transition with the threshold probability
p∗ = (3−

√
5)/2. The standard first and the second moment methods (based on

the Markov’s and the Chebyshev’s inequalities, respectively, see [1, 9]) were used
to prove this result. The preliminary result of M. Nehéz and D. Olejár [14] came
up that to complete the behavior of random graphs in all spectra of p needs a
more accurate analysis.

Our Results. We prove that the dominating cliques phase transition problem
is in a close relationship with the clique number in random graphs. Namely, two
threshold probabilities of this problem are strongly related to the bounds on the
order of the clique (1) and (2). Such a result is a significant improvement of the
previous ones from [5, 13, 14]. Let us formulate it as the following theorem.

Theorem 1. Let 0 < p < 1, b = 1/p and let G ∈ G(n, p) be a random graph.
Let ρ0, ρ1, 1 ≤ ρ0 ≤ ρ1 ≤ 2, be constants such that the order of the maximal
clique r in G is bounded by the inequality:

ρ0 logb n ≤ r ≤ ρ1 logb n . (3)

Let DC denote the property ”r-node clique is dominating in a given graph class”.
Let pU and pL be solutions of the equation

(1− p)ρ = p (4)

in the interval [0, 1] for ρ0 and ρ1, respectively. Then:

lim
n→∞

Pr[G(n, p) has property DC] =

{
0 if p ≤ pL,
1 if p > pU .

The numerical solution of Eq. (4) is shown in Fig. 1. It can be seen that p
decreases from 0.5 to 0.38 as ρ is ranged in [1, 2]. Such a way, the relationship
between the phase transition probability of the dominating cliques existence and
the order of cliques in random graphs is sown in Fig. 1. A substitution of bounds
(1), (2) into (4) and an accurate analysis in the interval pL < p ≤ pU lead to the
following result.

Theorem 2. Let 0 < p < 1 and let ILx denote log1/(1−p) x. Let r be order of
a maximal clique such that
r0� ≤ r ≤ �r1�. Let δ(n) : IN → IN be an arbitrary
slowly increasing function such that δ(n) = o(logn) and let G ∈ G(n, p) be a
random graph. Then:

1. If p > 1/2, then an r-node clique is dominating in G almost surely;
2. If p ≤ (3 −

√
5)/2 ≈ 0.382, then an r-node clique is not dominating in G

almost surely;

A Detailed Study of the Dominating Cliques Phase Transition 597

3. If (3−
√
5)/2 < p ≤ 1/2, then:

– an r-node clique is dominating in G almost surely if r ≥ ILn+ δ(n),
– an r-node clique is not dominating in G almost surely if r ≤ ILn− δ(n),
– an r-node clique is dominating in G with a finite probability f(p) for a

suitable function f : [0, 1] → [0, 1], if r = ILn+O(1).

1.0 1.2 1.4 1.6 1.8 2.0
0.38

0.40

0.42

0.44

0.46

0.48

0.50

Ρ

p

Fig. 1. The numerical solution of Eq. (4) for ρ ranging from 1 to 2

To prove Theorem 1, various probabilistic techniques are combined. The second
moment method is one of them. The leading part of our analysis follows from a
property of a function defined as a ratio of two random variables which count
dominating cliques and all cliques in random graphs, respectively.

Organization of the Paper. The rest of this paper proves Theorems 1 and 2.
Section 2 contains the preliminary results. An expected number of dominating
cliques in G(n, p) is estimated here. The main results are proved in sect. 3.
Possible extensions and open problems are discussed in the last section.

2 Preliminary Results

For r > 1, let S be an r-node subset of an n-node graph G. Let A denote the
event that ”S is a dominating clique of G ∈ G(n, p)”. Let inr be the associated 0-
1 (indicator) random variable on G(n, p) defined as follows: inr = 1 if G contains
a dominating clique S and inr = 0, otherwise. Let Xr be a random variable that
denotes the number of r-node dominating cliques. More precisely, Xr =

∑
inr

where the summation ranges over all sets S. The expectation of Xr is expressed
in the following lemma.

598 M. Nehéz, D. Olejár, and M. Demetrian

Lemma 1. [13] The expectation E(Xr) of the random variable Xr is given by:

E(Xr) =

(
n

r

)
p(

r
2)(1− pr − (1 − p)r)n−r . (5)

The following assertion is a consequence of the previous one.

Lemma 2. Let b = 1/p and

ru = 2 logb n− 2 logb logb n+ 2 logb e+ 1− 2 logb 2 . (6)

A random graph from G(n, p) does not contain dominating cliques of the order
greater than ru with probability approaching 1 as n → ∞.

Proof. It follows from the Markov’s inequality [9], p. 8 and estimation of
Equation (5). ��

The following properties are adopted from [16], pp. 501–502.

Claim 1. Let 0 < p < 1 and k ≤ (η − 1) lnn
ln p , η < 0 starting with some positive

integer n. Then:

(1− pk)n = exp(−npk)
(
1 +O(np2k)

)
= 1− npk +O

(
np2k

)
.

Claim 2. Let k = o(
√
n), then:

nk = n(n− 1) · · · (n− k + 1) = nk

(
1−
(
k

2

)
1

n
+O

(
k4

n2

))
.

An essential part of dominating cliques existence conditions expressing in ran-
dom graphs is an estimation of the variance V ar(Xr). The fact that the clique
number in random graphs is concentrated in a tight interval (recall the bounds
(1) and (2) from [10, 12]) can be used for this purpose. The estimation of V ar(Xr)
is claimed next. (Its proof can be found in Appendix.)

Lemma 3. Let p be fixed, 0 < p < 1 and
r0� ≤ r ≤ �r1�. Let

β = min{ 2/3, − 2 logb(1− p) } .

Then:

V ar(Xr) = E(Xr)
2 · O

(
(log n)3

nβ

)
. (7)

The number of the dominating cliques in random graphs is expressed in the
following assertion.

Lemma 4. Let p, r and β be as before, and

Xr =

(
n

r

)
p(

r
2)(1− pr − (1 − p)r)n−r ×

{
1 +O

(
(logn)3

nβ/2

)}
. (8)

A Detailed Study of the Dominating Cliques Phase Transition 599

The probability that a random graph from G(n, p) contains Xr dominating cliques
with r nodes is 1−O

(
(log n)−3

)
.

Proof. It follows directly from the Chebyshev’s inequality [9]: if V ar(X) exists,
then:

Pr[|X − E(X)| ≥ t] ≤ V ar(X) · t−2 , t > 0 .

Letting t = E(Xr) · (logn)3 · n−β/2 and using Lemma 3, the resulting assertion
is derived. ��

3 Proofs of Theorems

3.1 Proof of Theorem 1

For r > 1, let r denote the size of cliques occurred in G(n, p) with probability
approaching 1 as n → ∞. For the purpose of our proof, it is sufficient to consider
that r is bounded by Eqations (1), (2). Let Yr be the random variable on G(n, p)
which denotes the number of r-node cliques. According to [16],

Yr =

(
n

r

)
p(

r
2)(1− pr)n−r ×

{
1 +O

(
(logn)3√

n

)}
. (9)

with probability approaching 1 as n → ∞. The relative number of r-node do-
minating cliques to all r-cliques in G(n, p) is expressed by the ratio Xr/Yr. It
attains a value in the interval [0, 1]. The result of Theorem 1 is obtained by the
asymptotic analysis of Xr/Yr as n → ∞.

Let us define α : [0, 1] → IR by:

α(p) = − log1/p(1− p) .

The plot of its graph is shown in Fig. 2 and we will write α instead of α(p) for
the simplification. Note that

(1− p)r = prα . (10)

Let us examine the limit value of the ratio Xr/Yr as n → ∞:

Xr

Yr
=

(
1− pr − (1 − p)r

1− pr

)n−r

×

×
{
1 +O

(
(log n)3√

n

)}
×
{
1 +O

(
(logn)3

nβ/2

)}
. (11)

The last two terms of the expression (11) are omitted since they both tend to
1 as n → ∞. The most important term of (11) remains the first one. According
to Claim 1 and (10), it holds:

600 M. Nehéz, D. Olejár, and M. Demetrian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

0

0.5

1

1.5

2

2.5

3

Α
�
p
�

Fig. 2. The graph of the function α(p) = − log1/p(1− p)

Xr

Yr
=

(
1− pr − (1− p)r

1− pr

)n−r

=

(
1− prα

1− pr

)n−r

=

= exp

(
−nprα

1− pr

)
·
{
1 +O

(
np2rα

)
·
[
1 +O

(
(logn)2+α

n

)]}
=

= exp

(
−nprα

1 − pr

)
·
[
1 +O

(
np2rα

)]
.

Due to the fact that the second term of the last expression approaches to 1
as n → ∞, it will be omitted. Hence, the ratio Xr/Yr can be written in the
following form:

Xr

Yr
= exp

(
− nprα

1− pr

)
.

Recall the bounds on r (3) in the form: ρ0 logb n ≤ r ≤ ρ1 logb n. Letting

r = ρ logb n, (12)

where ρ0 ≤ ρ ≤ ρ1, it holds:

Xr

Yr
= exp

(
−n1−ρα

1− pr

)
. (13)

Let us examine a convergence (divergence) of Xr/Yr. To do so, it is necessary
to solve either the equation 1− ρα = 0, or its equivalent form:

(1− p)ρ = p . (14)

Two cases are to be named:
1. Let pU be the solution of (14) for ρ0. It follows that:

1− ρα < 0, ∀ ρ ∈ [ρ0, ρ1] ⇔ p > pU ,

A Detailed Study of the Dominating Cliques Phase Transition 601

and hence:

lim
n→∞

Xr

Yr
= 1 .

It means that an r-node clique is dominating in G almost surely.
2. Let pL be the solution of (14) for ρ1. It follows that:

1− ρα ≥ 0, ∀ ρ ∈ [ρ0, ρ1] ⇔ p ≤ pL ,

and hence:

lim
n→∞

Xr

Yr
= 0 .

It means that an r-node clique is not dominating in G almost surely. ��

3.2 Proof of Theorem 2

By bounds (1) and (2), the admissible number of nodes of a clique r depends on
n and the leading term is only considered. It follows that ρ0 = 1 and ρ1 = 2.

1. If ρ0 = 1 then there is only one solution of (14) in the interval [0, 1], namely
pU = 1/2. It yields that Xr/Yr → 1 as n → ∞ for all p > pU .

2. If ρ1 = 2 then there is only one solution of (14) in the same interval. It is
pL = (3−

√
5)/2 ≈ 0.382 and we have that Xr/Yr → 0 as n → ∞ for all p ≤ pL.

3. Let us consider p such that pL < p ≤ pU . In this case, the following property
is true:

1− ρα changes sign as ρ varies in [1, 2] ⇔ 3−
√
5

2
< p ≤ 1

2
.

It follows that there exists a value of ρ (for each p) in the interval [1, 2]

ρ̂ =
1

α(p)
,

for which we have:
r = ρ̂ logb n = log1/(1−p) n

and

lim
n→∞

Xr

Yr
= exp (−n(1− p)r) = e−1.

The ratio Xr/Yr approaches 1 (0) for ρ > ρ̂ (ρ < ρ̂). Due to corrections of order
less than Θ(log n) to the equation (12) taken with ρ = ρ̂ the value of e−1 to be
changed to another constant greater or equal than 0 and less or equal than 1.
The details are given next. Let δ(n) : IN → IN be an increasing function such
that δ(n) = o(logn).

If r = ρ̂ logb n+ δ(n), then Xr/Yr approaches 1 as exp
(
−(1− p)δ(n)

)
.

If r = ρ̂ logb n− δ(n), then Xr/Yr approaches 0 as exp
(
−(1− p)−δ(n)

)
.

And finally, if r differs from ρ̂ logb n by a constant λ, then the ratio Xr/Yr is
asymptotically equivalent to exp(−(1− p)λ).

An example of three different choices of ρ are shown in Fig. 3. ��

602 M. Nehéz, D. Olejár, and M. Demetrian

0 20 40 60 80
n

0

0.2

0.4

0.6

0.8

X
r
�
Y
r

Fig. 3. The plot of the fraction Xr/Yr versus n for three different choices of ρ in the

intermediate case when 3−
√

5
2

< p ≤ 1
2
. In all three cases p is set to be 0.45 and ρ varies

(from the top to the bottom) as: ρ = 1.9, ρ = 1/α(0.45), and finally ρ = 1.05.

4 Conclusions

We have claimed the dominating cliques existence conditions in Erdös-Rényi
random graph model G(n, p). The threshold probability of the corresponding
phase transition problem is closely related with the clique number in random
graphs. Our results are significant refinements of the previous ones from [5, 13,
14] since the threshold probability p∗ = (3−

√
5)/2 presented in [5] can be simply

derived by setting r0 = r1 = 2 log1/p n in Theorem 1 of this paper.
A future work could answer some questions from the following list:

– Does a random graph from G(n, p) contain at least one dominating clique of
the same order as its domination number?

– What is an asymptotic number of dominating cliques in random graphs
G(n, p)?

– It could be interesting to perform a computer simulation which could find a
distribution of a clique occurrence within the interval [r0, r1].

Acknowledgement. The authors thank anonymous referees for valuable
comments.

References

1. Alon, N., Spencer, J.: The probabilistic method, 2nd edn. John Wiley & Sons, New
York (2000)

2. Bollobás, B.: Random Graphs, 2nd edn. Cambridge Studies in Advanced Math-
matics, 73 (2001)

3. Bollobás, B., Erdös, P.: Cliques in random graphs. Math. Proc. Cam. Phil. Soc. 80,
419–427 (1976)

A Detailed Study of the Dominating Cliques Phase Transition 603

4. Bourgeois, N., Della Croce, F., Escoffier, B., Paschos, V.T.: Exact Algorithms for
Dominating Clique Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 4–13. Springer, Heidelberg (2009)

5. Culberson, J.C., Gao, Y., Anton, C.: Phase Transitions of Dominating Clique Prob-
lem and Their Implicátions to Heuristics in Satisfiability Search. In: Proc. 19th Int.
Joint Conf. on Artificial Intelligence, IJCAI 2005, pp. 78–83, 2205–2222 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

7. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press (2003)
8. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.

Acad. Sci. 5, 17–61 (1960)
9. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley & Sons, New

York (2000)
10. Kalbfleisch, J.G.: Complete subgraphs of random hypergraphs and bipartite

graphs. In: Proc. 3rd Southeastern Conf. of Combinatorics, Graph Theory and
Computing, pp. 297–304. Florida Atlantic University (1972)

11. Kratsch, D., Liedloff, M.: An exact algorithm for the minimum dominating clique
problem. Theoretical Computer Science 385, 226–240 (2007)

12. Matula, D.W.: The largest clique size in a random graph, Technical report CS
7608, Dept. of Comp. Sci. Southern Methodist University, Dallas (1976)

13. Nehéz, M., Olejár, D.: An Improved Interval Routing Scheme for Almost All Net-
works Based on Dominating Cliques. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005.
LNCS, vol. 3827, pp. 524–532. Springer, Heidelberg (2005)

14. Nehéz, M., Olejár, D.: On Dominating Cliques in Random Graphs, Research Re-
port, KAM-Dimatia Series 2005-750, Charles University, Prague (2005)

15. Nehéz, M., Olejár, D., Demetrian, M.: On Emergence of Dominating Cliques in
Random Graphs In: LUMS 2nd Int. Conference on Mathematics and its Applica-
tions in Inform. Technology, Lahore, Pakistan, p. 59. Book of Abstracts (2008)

16. Olejár, D., Toman, E.: On the Order and the Number of Cliques in a Random
Graph. Math. Slovaca 47(5), 499–510 (1997)

17. Palmer, E.M.: Graphical Evolution. John Wiley & Sons, Inc., New York (1985)
18. Ramras, D., Greenberg, S., Godbole, A.P.: Cliques and Independent Neighbor Sets

in Random Graphs. Congressus Numerantium 153, 113–128 (2001)
19. Wieland, B., Godbole, A.P.: On the Domination Number of a Random Graph.

Electronic Journal of Combinatorics 8(1), #R37(2001)

An Application of 1-Genericity

in the Π0
2 Enumeration Degrees

Liliana Badillo and Charles M. Harris

Department of Mathematics,
Leeds, UK

Abstract. Using results from the local structure of the enumeration
degrees we show the existence of prime ideals of Π0

2 enumeration de-
grees. We begin by showing that there exists a 1-generic enumeration
degree 0e < a < 0′

e which is noncuppable—and so properly downwards
Σ0

2—and low2. The notion of enumeration 1-genericity appropriate to
positive reducibilities is introduced and a set A is defined to be symmet-
ric enumeration 1-generic if both A and A are enumeration 1-generic.
We show that, if a set is 1-generic then it is symmetric enumeration 1-
generic, and we prove that for any Π0

2 enumeration 1-generic set B the
class {X | ≤e B } is uniform Π0

2 . Thus, picking 1-generic A ∈ a (from
above) and defining b = deg(A) it follows that every x ≤ b only contains
Π0

2 sets. Since a is properly Σ0
2 we deduce that b contains no Δ0

2 sets
and so is itself properly Π0

2 .

1 Introduction

If a is a Σ0
2 enumeration degree then a is downwards Σ0

2 closed in the sense
that {x | x ≤ a } ranges over Σ0

2 sets (only). Likewise a low enumeration
degree y is downwards Δ0

2 closed. Now 1-generic Δ0
2 sets are low in the context

of enumeration reducibility and so any enumeration degree c containing a Δ0
2

1-generic set is downwards Δ0
2 closed. On the other hand Copestake [CO88]

showed the existence of a properly Σ0
2 enumeration degree d containing a 1-

generic set. Moreover Soskova proved the existence of a 1-generic enumeration
degree that does not bound a minimal pair [Sos07] and so there in fact exists
a downwards properly 1-generic Σ0

2 degree1 (as every Δ0
2 enumeration degree

bounds a minimal pair [CLSY05]). We strengthen this result in Theorem 3.1
by showing the existence of a noncuppable (and hence downwards properly Σ0

2)
enumeration degree a containing a 1-generic set A. The construction here shows
that such a degree can be low2. (However we conjecture that all 1-generic Σ0

2

enumeration degrees have some such lowness property.) We also define the notion
of enumeration 1-genericity and symmetric enumeration 1-genericity by adapting
the underlying definition of 1-genericity to the context in which only positive
information can be used. Using this notion we are able to show that any 1-
generic Π0

2 degree d is downwards Π0
2 closed (in the above sense). Thus, setting

1 We would like to thank an anonymous referee for pointing this out.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 604–620, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 605

b = dege(A) where A is the set constructed in the proof of Theorem 3.1, we see
that b is both properly Π0

2 (contains no Δ0
2 sets) and is downwards Π0

2 closed.
We also derive several auxiliary properties of A and B relative to enumeration
and singleton reducibility.

2 Preliminaries

We assume {We}e∈ω to be a standard listing of c.e. sets with associated c.e.
approximations {We,s}s∈ω, and {Dn}n∈ω to be the computable listing of finite
sets where Dn denotes the finite set with canonical index n. We also assume
〈x, y〉 to be a standard computable pairing function over the integers. We use
X [e] to denote the set { 〈e, x〉 | 〈e, x〉 ∈ X } and χY to denote the characteristic
function of Y . We use α, β, σ, etc. to denote finite binary strings (i.e. members of
2<ω). |α| denotes the length of α, so that |α| = μx[x /∈ dom α]. α ⊆ β denotes
that α is an initial segment of β (similarly we use α ⊆ f if f ∈ 2ω).

A set A is defined to be enumeration reducible to a set B (A≤eB) if there
exists an effective procedure that, given any enumeration of B , enumerates A.
More formally [FR59], A≤e B iff there exists a c.e. set W such that, for all
x ∈ ω,

x ∈ A iff ∃n [〈x, n〉 ∈ W & Dn ⊆ B] . (2.1)

We define {Φe}e∈ω to be the effective listing of enumeration operators such that
for any set X ,

ΦX
e = { x | ∃n [〈x, n〉 ∈ We & Dn ⊆ X] } .

Also , for any e, we use the notation ΦX
e,s to define the finite approximation to

ΦX
e , derived from We,s. For simplicity we allow a certain amount of ambiguity in

our notation, by sometimes equating We with the operator Φe, and in the case
of finite sets, using the letter D or similar to denote both a finite set and its
index in the listing of finite sets specified above.

We use the notation x for the equivalence classes of ≤e or, in other words, the
enumeration degrees, whereas dege(X) is notation for the ≤e degree of X . 0e is
the degree of the c.e. sets, De denotes the structure of enumeration degrees, and
De(≤x) denotes the substructure of De over the class of degrees {y | y ≤ x }
(we say that such a class is a prime ideal of De). We remind the reader that De

and the substructures of the form De(≤x) are upper semilattices.
We assume the reader to be conversant with Turing (≤T) and other basic

reducibilities for which we use similar notation to the above. K denotes the
standard halting set for Turing machines whereas the enumeration semihalting
set relative to X is defined to be the set KX = { x | x ∈ ΦX

x } and the enumera-
tion jump of X is defined to be the set JX = KX⊕KX . The jump of enumeration

degree x is written x′. 0′
e denotes dege(J∅) and 0′′

e denotes dege(J
(2)
∅). x is said

to be high if x′ = 0′′
e . Using the notation specified above De(≤0′

e) denotes the
upper semilattice of enumeration degrees comprising precisely the class of Σ0

2

enumeration degrees.

606 L. Badillo and C.M. Harris

Definition 2.1 ([LS92, Har10]). A uniformly computable enumeration of fi-
nite sets {Xs}s∈ω is said to be a good approximation to the set X if:

(1) ∀s (∃t ≥ s)[Xt ⊆ X]

(2) ∀x [x ∈ X iff ∃t (∀s ≥ t)[Xs ⊆ X ⇒ x ∈ Xs]].

In this case we say that X is good approximable. Moreover, if (2) is replaced by
the condition ∀x [x ∈ X iff ∃t(∀s ≥ t)[x ∈ Xs] then {Xs}x∈ω is said to be a
good Σ0

2 approximation.

Lemma 2.1 ([Joc68]). X is Σ0
2 iff X has a good Σ0

2 approximation.

In other words the sets underlying De(≤0′
e) all have good Σ0

2 approximations.

Lemma 2.2 ([Gri03][Har10]). If B is good approximable then, for any set A,
A≤eJB iff there exists a set X≤eB such that A = { e | X [e] is finite }.
Lemma 2.3 ([Har10]). If B is good approximable then { e | ΦB

e is infinite } ≡e

J
(2)
B .

Definition 2.2. We define an enumeration degree a to be good if a contains a
good approximable set. Otherwise we say that a is bad.

Lemma 2.4. If a is a good enumeration degree then, for every A ∈ a, KA≤e

KA. In other words, JA ≡e KA.

Proof. Choose a good approximable set B ∈ a. Let A be any set in a. Then
KA ≡1 KB (since A ≡e B) so that also KA ≡1 KB. Also, by Proposition 4.1 of
[Har11] we know that KB≤eKB. Thus

KA ≤e A ≤e B ≤e KB ≤e KB ≤e KA .

Therefore JA ≡e KA.

Lemma 2.5 ([CM85]). Enumeration degree x is low iff x only contains Δ0
2

sets.

Definition 2.3. An enumeration degree x containing only Σ0
2 (Π0

2) sets is prop-
erly Σ0

2 (Π0
2) if it contains no Δ0

2 sets, and is downwards properly Σ0
2 if every

y ∈ {z | 0e < z ≤ x} is properly Σ0
2 . x < 0′

e is cuppable if there exists y < 0′
e

such that 0′
e = x ∪ y and is noncuppable otherwise.

Lemma 2.6 ([CSY96]). If 0e < x < 0′
e is Δ0

2 then x is cuppable.

Corollary 2.1 ([CSY96]). Every noncuppable 0e < x < 0′
e is downwards

properly Σ0
2 .

Given an arithmetical predicate Γ (e.g. Γ ∈ {Δ0
2, Π

0
2}) we sometimes use the

shorthand A ∈ Γ if A is a Γ set. Moreover we say that an enumeration degree
a is Γ if a contains a set A ∈ Γ .

Notation. Suppose that {Xs}s∈ω and {Φs}s∈ω are approximations to some setX
and enumeration operator Φ. We use the shorthand ΦX [s] =def Φ

Xs
s . For clarity

we also sometimes use the shorthand X [s] instead of Xs.

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 607

3 The Main Construction

Definition 3.1. A set A is said to be 1-generic if for any c.e. set W ⊆ 2<ω

there exists α ⊆ χA such that either α ∈ W or for all β such that α ⊆ β, β /∈ W .

Theorem 3.1. There exists a 1-generic enumeration degree 0e < a < 0′
e which

is noncuppable and low2 (i.e. a′′= 0′′
e).

Proof. We construct sets A and C c.e. in K such that (for all e ∈ ω) the following
requirements are satisfied:

Re : ∃α ⊆ χA [α ∈ We ∨ ∀β(α ⊆ β ⇒ β /∈ We)] . (3.1)

Le : ΦA
e is infinite ⇔ C [e] is finite, (3.2)

Pe : K = ΦBe⊕A
e ⇒ K≤eBe , (3.3)

where {We, Φe, Be}e∈ω is a computable listing of all c.e. sets, enumeration opera-
tors and Σ0

2 sets with associated finite c.e. approximations {We,s}s∈ω, {Φe,s}s∈ω

and c.e. in K approximations {Be,s}s∈ω for each e ∈ ω.

Supposing a to be the enumeration degree of A, satisfaction of Le for all e ∈ ω
ensures that a′′ = 0′′

e since it entails that { e | ΦA
e infinite } ≡e { e | C [e] finite }

and so, by Lemma 2.2, { e | ΦA
e infinite }≤e JK since C≤eK by construction.

Thus J
(2)
A ≤eJK ≡e J

(2)
∅ by Lemma 2.3.

Note that satisfaction of {Pe}e∈ω implies that a = dege(A) is noncuppable
whereas satisfaction of {Re}e∈ω entails that A is 1-generic.

Definitions and Notation. The construction will proceed by stages s, each
stage being computable in K. We use As to denote the finite set of numbers
enumerated into A by the end of stage s.

1) The Priority of Requirements

For S ∈ {R,L, P}, the requirements Se are ordered in terms of priority such
that Re < Le < Pe < Re+1 for all e ∈ ω.

2) Environment Parameters

We define a number of parameters used by the construction for the satisfaction
of individual requirements. Firstly, we use the string parameter αs ∈ 2<ω for
the stage s approximation (in the form of an initial segment) and the associated
parameters α+

s = {n | αs(n) = 1 } and α−
s = {n | αs(n) = 0 }. Also, for clarity

and notational convenience, we define the enumerating parameterW (s) ∈ F (the
class of finite sets) and the parameter I(e, s) which is a finite set of numbers
that the construction at stage s already knows to be in ΦA

e (i.e. I(e, s) ⊆ ΦA
e .

• Parameters for the Re requirements. The outcome function R(e, s) ∈ {0, 1, 2}
and the restraint parameter ε(e, s) ∈ F (the class of finite sets).

• Parameters for the Le requirements. The outcome parameter L(e, s) ∈ {0, 1},
the restraint parameter δ(e, s) ∈ F , the individual axiom parameter v(e, s) ∈
ω ∪ {−1} and the enumerating parameter V (s) ∈ F .

608 L. Badillo and C.M. Harris

• Parameters for the Pe requirements. The outcome parameter P (e, s) ∈ {1, 2},
and the avoidance parameter Ω(e, s) ∈ F . The definition of Ω(e, s+ 1) is:

Ω(e, s+ 1) =
⋃
i≤e

(ε(i, s) ∪ δ(i, s)) . (3.4)

Accordingly, Ω(e, s+ 1) records the finite set of elements that the construction
wants to keep out of A for the sake of higher priority R and L requirements, and
that it thus cannot enumerate into A at stage s+ 1 for the sake of Pe.

3) Requiring attention

Case Re . We say that Re requires attention at stage s+ 1 if R(e, s) = 0.

Case Le . We say that Le requires attention at stage s+1 if L(e, s) = 0 and for
all x ∈ ω and D ∈ F ,

x /∈ I(e, s) & 〈x,D〉 ∈ Φe ⇒ D ∩ α−
s �= ∅ . (3.5)

Case Pe . We say that Pe requires attention at stage s + 1 if P (e, s) = 1 and
there exists x ≤ s and a pair of finite sets (D,E) such that

x ∈ K & 〈x,D ⊕ E〉 ∈ Φe[s] & D ⊆ Be[s] & E ∩Ω(e, s+ 1) = ∅ (3.6)

where we note that Ω(e, s+ 1) is a finite set2.

4) Resetting

Resetting Re. When we say that the construction resets Re at stage s + 1 we
mean the following. If R(e, s) = 0 the construction does nothing (and in this
case ε(e, s + 1) = ε(e, s) = ∅ and R(e, s + 1) = R(e, s)). On the other hand, if
R(e, s) ∈ {1, 2} then we set ε(e, s) = ∅ and R(e, s) = 0.

Resetting Le. When we say that the construction resets Le at stage s + 1 we
mean the following. If L(e, s) = 0 we do nothing (and in this case δ(e, s+ 1) =
δ(e, s) = ∅ and L(e, s+1) = L(e, s) = 0). On the other hand, if L(e, s) = 1 then
we set δ(e, s+ 1) = ∅ and L(e, s) = 0.

5) Basic Idea of the Construction

We can think of the construction as comprising a module for each type of require-
ment. In anticipation of the formal proof a brief description of these modules
follows below.

The role of the R module working at index e is to find an initial segment
α ⊆ χA witnessing satisfaction of Re as stated in (3.1). As the construction uses
K as oracle, the R module is able to test at any even stage s+1 whether, for αs

(i.e. the current approximation to χA), there exists β ⊇ αs such that β ∈ We.
Accordingly it carries out this test at any stage s+ 1 > e+ 1 if Re still appears

2 Notice also that, since the construction uses oracle K the conditions in (3.6) could
be defined so that the search for an axiom 〈x,D ⊕E〉 is unbounded (i.e. in the whole
of Φe). However this is unnecessary as lims→∞Ω(e, s+ 1) exists.

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 609

not to be satisfied (in which case R(e, s) = 0) and if for all i < e, no requirement
Ri requires attention at stage s + 1. It will thus pick some α ⊇ αs such that α
satisfies (3.1)—where α = αs if there exists no β ⊇ αs such that β ∈ We, and
α = one such β otherwise. Moreover, for stages t ≥ s+1, the R module will try
to restrain α ⊆ αt and will follow that, if assumption (3.7) below is correct, then
α ⊆ χA and Re will be satisfied.

“No higher priority P requirement receives attention at a later stage.” (3.7)

The L module working at index e tries to make ΦA
e infinite. In doing this it

uses at stage s + 1 > e + 1 the finite set of numbers being restrained out of
A by R and other L requirements at the end of stage s. Accordingly at stage
s + 1 (provided that L(e, s) = 1, i.e. that Le does not appear to be already
satisfied) the L module will try to put some finite set3 D ⊆ As ∪ {z : z ≥ |αs|}
into As+1 ⊆ A to ensure that some x /∈ I(e, s) enters I(e, s + 1) ⊆ ΦA

e . This
is the role of V (s + 1) which is simply the union of all those sets that the L
module enumerates into As+1 for the sake of requirements Li such that i ≤ s.
Note that, due to the definition of αs, this action will cause no injury to any R
and (other) L requirements. This is important since, the L module may carry
out this action infinitely often for the sake of e in order to make ΦA

e infinite. If
the L module does succeed in putting some4 x ∈ ΦA

e − I(e, s) it enumerates no
numbers into C [e] at stage s+ 1. If on the other hand it cannot achieve this, it
knows that for every axiom 〈x,D〉 ∈ Φe such that x /∈ I(e, s), α−

s ∩ D �= ∅.
Accordingly it restrains δ(e, s + 1) = α−

s out of As+1. It also enumerates all of
ω[e] � s into Cs+1. Now, if assumption (3.7) is correct, this restraint will stay in
place forcing ΦA

e = I(e, s) and the module will enumerate all of ω[e] � t into C
at every subsequent stage t+ 1 > s+ 1 thus making C [e] = ω[e].

The P module working at index e tries to diagonalise K = ΦBe⊕A
e . Its strategy

is to search for x /∈ K such that x ∈ Φ
Be⊕(ω−Ω)
e for some finite set Ω ⊆ A. This

search starts from stage s+1 > e+ 1 onwards with Ω being the set of elements
restrained out of A by higher priority R and L requirements at stage s—i.e. the
set Ω(e, s+1) in the notation of the proof. If the module finds such an x it will at
some stage s+1 enumerate a requisite finite set E ⊆ ω−Ω(e, s+1)—i.e. where,
for some D ⊆ Be[s], 〈x,D⊕E〉 is an axiom in Φe[s]—into A thus ensuring that
x ∈ ΦBe⊕A

e −K. On the other hand if this search fails then, under the assumption
that Ω(e, s+1) converges in the limit (over stages s ∈ ω) to a finite set Ω(e) ⊆ A,

it will follow that K = ΦBe⊕A
e implies that K = Φ

Be⊕(ω−Ω(e))
e , i.e. that K≤eBe.

Note that the action of enumerating some finite set E (for the sake of Pe) into
A might injure lower priority R and L requirements. For example, suppose that
i > e is such that R(i, s) ∈ {1, 2}. Then this means that the R module working
at index i is trying to restrain the set ε(i, s) out of A. Hence if E ∩ ε(i, s) �= ∅,
and E is enumerated into A at stage s+ 1, then for t ≥ s+ 1 it is not the case
that ε(i, s) ⊆ A[t]. A similar observation holds if we replace R(i, s) by L(i, s)

3 Note that As = α+
s .

4 In which case I(e, s+ 1) = I(e, s) ∪ {x}.

610 L. Badillo and C.M. Harris

and ε(i, s) by δ(i, s). Accordingly, all requirements Ri and Li such that i > e
are reset. Now since each P requirement receives attention at most once and, for
any R or L requirement there are only finitely many P requirements of higher
priority, the latter can only be reset (i.e. injured) finitely often. Accordingly, for
any index e, at every stage s+ 1 > e+1 the R and L modules can safely be set
to work with index e under assumption (3.7) since, from some stage re onwards
this assumption will indeed be correct.

Before proceeding to the formal construction note the difference in roles of
V (s+1) andW (s+1) at stage s+1. The former as described above is enumerated
into As+1 for the sake of forcing ΦA

e − I(e, s) �= ∅ for each e ≤ s, where this
turns out to be possible respecting the above conditions. W (s+ 1) on the other
hand is a finite set (perhaps = ∅) to be enumerated into As+1 if a P requirement
receives attention at stage s+ 1.

The Construction. A and C are enumerated in stages such that, for X ∈
{A,C}, X =

⋃
s∈ω Xs and Xs is finite for all s.

Stage s = 0. Define α0 = λ, A0 = C0 = ∅ and, for all e ∈ ω, v(e, 0) = −1,
ε(e, 0) = δ(e, 0) = ∅, R(e, 0) = L(e, 0) = 0 and I(e, 0) = ∅. Note that accordingly
Ω(e, 0) = ∅ for all e ∈ ω by definition. Also define V (0) = W (0) = ∅.
Stage s+ 1. UsingK as Turing oracle proceed as follows according as to whether
s is even or odd.

Case I. s is even. Search for the least e ≤ s such that Re requires attention,
set es+1 = e and test whether there exists β ⊃ αs such that β ∈ Wes+1 .

• If there exists such a β, define αs+1 to be the (lexicographically) least such
string. Set R(es+1, s+ 1) = 2

• Otherwise define αs+1 = αs and set R(es+1, s+ 1) = 1.

In both of these subcases set ε(es+1, s + 1) = α−
s+1 and As+1 = α+

s+1. (Notice
that As ⊆ As+1.) In this case we say that Res+1 receives attention.

Remark. Note that for all t ≥ s+ 1 such that ε(es+1, s+ 1) is not destroyed by
the resetting activity of higher priority P requirements at any stage s+1 ≤ r ≤ t,
αs+1 ⊆ αt. Thus, if no higher P requirement receives attention after stage s+1,
αs+1 ⊆ χA.

Case II. s is odd. There are three steps in this case.

Step A. For all e ≤ s, define v(e, s + 1) as follows. If L(e, s) = 1 (i.e. Le is
satisfied for the moment) or L(e, s) = 0 and Le requires attention at stage s+1
then set v(e, s+ 1) = −1. Otherwise—i.e. if L(e, s) = 0 and Le does not require
attention at stage s+ 1—choose in a consistent manner5 some 〈x,D〉 such that

x /∈ I(e, s), 〈x,D〉 ∈ Φe & D ⊆ As ∪ {z : z ≥ |αs|}

5 I.e. via a uniformly computable search using the construction’s oracle K.

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 611

and set v(e, s+ 1) = 〈x,D〉. Now define the finite set

V (s+ 1) =
⋃

e≤s , x∈ω,
v(e,s+1)= 〈x,D〉

D ,

and, for all e ≤ s set

I(e, s+ 1) =

{
I(e, s) if v(e, s+ 1) = −1,

I(e, s) ∪ {(v(e, s+ 1))0} if6v(e, s+ 1) �= −1.

Step B. Look for the least e ≤ s such that S ∈ {Le, Pe} is the highest priority
requirement that requires attention. If there exists such an e then set es+1 = e
and proceed according to case (a) or case (b) below. Otherwise set es+1 = s,
W (s+ 1) = ∅ and go to Step C.

a) es+1 < s and S = Les+1 . In this case, for any axiom 〈x,D〉 such that
x /∈ I(e, s) and 〈x,D〉 ∈ Φe it holds that D ∩ α−

s �= ∅. Accordingly set
δ(es+1, s + 1) = α−

s and define L(es+1, s+ 1) = 1. Also set W (s + 1) = ∅.
We say that Les+1 receives attention in this case.

b) es+1 < s and S = Pes+1 . In this case choose the least axiom 〈x,D ⊕ E〉
satisfying (3.6). Set W (s + 1) = E and define P (e, s) = 2 (permanently
satisfied). Reset—as defined on page 608—all Ri and Li such that i > es+1.
We say that Pes+1 receives attention in this case.

Step C. Define

l = max ({|αs|} ∪ V (s+ 1) ∪W (s+ 1)) + 1 .

Set

As+1 = As ∪ V (s+ 1) ∪W (s+ 1) ,

and define define αs+1 to be the least string of length l such that αs+1(x) =
As+1(x) for all x < l.

To end stage s+ 1. After both case I and II, for all requirement parameters
γ(j, s) not mentioned during stage s+ 1 reset γ(j, s+ 1) = γ(j, s). Define

Cs+1 = Cs ∪ {〈e, z〉 : e ≤ s & z ≤ s & L(e, s+ 1) = 1} (3.8)

and Proceed to stage s+ 2.

Verification. Consider any e ∈ ω. As Induction Hypothesis we suppose that
every requirement S ∈ {Ri, Li, Pi | i < e } only receives attention at most
finitely often. (Notice that it is obvious by construction that each P requirement

6 I.e. if v(e, s+ 1) = 〈x,D〉 then I(e, s+ 1) = I(e, s) ∪ {x}.

612 L. Badillo and C.M. Harris

receives attention at most once.) Accordingly, let se ≥ e be the least (even)
stage such that every such requirement S does not receive attention at any stage
stage t > se. Note that this means that, for every i < e and γ ∈ {ε, δ, R, L, P},
γ(i, t) = γ(i, se) for all t ≥ se. We write this limiting value as γ(i). We now
check that Re, Le and Pe are satisfied, and that the Induction Hypothesis is
justified in each case. We proceed according to descending priority, noting that
Re < Le < Pe in the priority ordering.

Case Re. By definition of se, Re receives attention at stage se + 1 and is not
reset at any stage t ≥ se + 1. It follows that either αse+1 ∈ We, or else that, for
all β ⊇ αse+1, β /∈ We and, moreover that R(e, t) ∈ {1, 2} and αes+1 ⊆ αt for all
t ≥ se +1. Thus Re never again receives attention and R(e) = limt→∞ R(e, t) =
R(e, se+1) is the final outcome of Re, whereas ε(e) = limt→∞ ε(e, t) = ε(e, se+
1). (Note that the latter is precisely the set of numbers restrained out of A for
the sake of Re.)

Case Le. We firstly show that

ΦA
e infinite ⇔ C [e] finite. (3.9)

Set s̃e = se+1. (Thus s̃e is such that Re does not receive attention at any stage
t ≥ s̃e.)

⇒ Consider any t ≥ s̃e and suppose that L(e, t) = 1. Then there exists some
(odd) r < t such that Le received attention at stage r + 1 and Le has not been
reset since stage r + 1. But this means that δ(e, r+ 1) = α−

r and that, by (3.5),
for all 〈x,D〉,

x /∈ I(e, r) & 〈x,D〉 ∈ Φe ⇒ D ∩ δ(e, r + 1) �= ∅ .

Moreover, since by definiton of s̃e it is also the case that no requirement of higher
priority receives attention—and so as a result that Le cannot be reset at any
stage s ≥ t—it follows that δ(e, r + 1) = lims→∞δ(e, s) = δ(e). On the other
hand, for the same reasons, we know, by an easy induction over stages s, that
δ(e) ⊆ A. So we can see, by inspection of the construction, that ΦA

e = I(e, r).
In other words ΦA

e is finite contradicting the hypothesis. Therefore L(e, s) = 0
for all s ≥ s̃e and so C [e] ⊆ ω[e]�〈e, s̃e〉. I.e. C [e] is finite.

⇐ Now suppose that ΦA
e is finite, and note that by construction

I(e, t) ⊆ I(e, t+ 1) ⊆ ΦA
e

for all t ∈ ω. Also, as ΦA
e is finite there is a least (odd) stage r ≥ s̃ such that

I(e, r) = ΦA
e (this again follows by inspection of the construction). Hence

I(e, s) = I(e, r) for all s ≥ r . (3.10)

Then, if L(e, r) �= 1 it is clear that Le will require—and hence receive—attention
at stage r + 1 since otherwise the construction would ensure that I(e, r + 1)−
I(e, r) �= ∅, due to action taken during step A of stage r+1. Hence L(e, r+1) = 1.

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 613

Furthermore, as Le cannot be reset after this stage (by definition of s̃e), it follows
that L(e, t) = 1 for all t ≥ r + 1. So by construction (see (3.8)), C [e] = ω[e]. I.e.
C [e] is infinite.

Finally, notice that the above implies that Le only receives attention at most
once after stage s̃e and is satisfied. Moreover, letting stage r be as above,
L(e) = limt→∞ L(e, t) = L(e, r + 1) is the final outcome of Le, and δ(e) =
limt→∞ δ(e, t) = δ(e, r + 1). (The latter is preciseley the set of numbers re-
strained out of A for the sake of Le.)

Case Pe. Let ŝe ≥ s̃e+1 be a stage at or after which Le does not receive atten-
tion at any stage t > ŝe. Thus, by definition of ŝe, for all such t,Ω(e, t) = Ω(e, ŝe).
Accordingly we define Ω(e) to be this set.

Now suppose that K = ΦBe⊕A
e . We show that, in this case, K = Φ

Be⊕(ω−Ω(e))
e .

• If x ∈ K then, since Ω(e) ⊆ A—as is easily proved by a simple induction

over s—it is clear that x ∈ Φ
Be⊕(ω−Ω(e))
e follows from our supposition that

K = ΦBe⊕A
e .

• If x /∈ K and x ∈ Φ
Be⊕(ω−Ω(e))
e then we know that there exists (odd) s ≥ ŝe

and a least axiom 〈x,D ⊕ E〉 ∈ Φe[s], D ⊆ Be[s] and E ∩ Ω(e) = ∅. There
are 2 cases.

1) P (e, s) = 2. Then there exists (odd) t < s, z ≤ t and a pair of finite sets
(F,G) such that z /∈ K, 〈z, F ⊕G〉 ∈ Φe[t], F ⊆ Be[t], andG∩Ω(e, t+1) = ∅
and such that G was enumerated into A at stage t+1. But then z ∈ ΦBe⊕A

e

(since Be[t] ⊆ Be and At+1 ⊆ A) whereas z /∈ K. Contradiction.

2) Otherwise P (e, s) = 1. In this case the construction enumerates E
into A at stage s + 1, so obtaining x ∈ ΦBe⊕A

e and x /∈ K, once again a
contradiction.

This proves that if x /∈ K then x /∈ Φ
Be⊕(ω−Ω(e))
e .

We thus conclude that K = Φ
Be⊕(ω−Ω(e))
e , i.e. that K≤eBe, since Ω(e) is finite.

Notice that Pe only receives attention once and that there thus exists a stage
t̂e ≥ ŝe such that for all s ≥ t̂e P (e, s) = P (e, t̂e). I.e. P (e) = P (e, t̂e)

We see from the above that, assuming the Induction Hypothesis for e, the
requirements Re, Le and Pe are satisfied and that the Induction Hypothesis is
justified for e+ 1. This concludes the proof.

4 Enumeration 1-Genericity

Notation. As before we use F to denote the class of finite subsets of ω. Also for
any function f : ω → ω we use G(f) to denote the graph of f .

Definition 4.1. A set A is defined to be enumeration 1-generic if, for all c.e.
sets W ⊆ F , either there exists a finite set DA ⊆ A such that DA ∈ W or a
finite set EA ⊆ A such that, for every D ∈ W , D ∩ EA �= ∅.

614 L. Badillo and C.M. Harris

Lemma 4.1. A set A is enumeration 1-generic iff, for every e ∈ ω, either
e ∈ ΦA

e or, for some EA ⊆ A, e /∈ Φω−EA
e .

Proof. (⇒) Suppose that A is enumeration 1-generic. Consider the c.e. set
Wg(e) = {D | 〈e,D〉 ∈ Φe }. Then either, for some DA ∈ Wg(e), DA ⊆ A, in

which case e ∈ ΦA
e , or otherwise there exists EA ⊆ A such that D ∩ EA �= ∅ for

all D ∈ Wg(e). However in this case e /∈ Φω−EA
e .

(⇐) Consider the set We. Define Φf(e) = { 〈x,D〉 | x ∈ ω & D ∈ We } Consider

f(e) itself. Then either f(e) ∈ ΦA
f(e), i.e. there exists 〈f(e), DA〉 ∈ Φf(e)—so

that DA ∈ We by definition—such that DA ⊆ A or, otherwise by hypothesis,
f(e) /∈ Φω−EA

e for some finite EA ⊆ A. However this means that, for all D such
that 〈f(e), D〉 ∈ Φe, D ∩ EA �= ∅. In other words, for all D ∈ We, D ∩ EA �= ∅.

Lemma 4.2. If A is enumeration 1-generic and coinfinite, then A is immune.
Thus A is not Π0

1 .

Proof. Suppose that W is an infinite c.e. set such that W ⊆ A. Let Ŵ = { {n} |
n ∈ ω }. By enumeration 1-genericity there exists a finite set EA ⊆ A such that
W ⊆ EA. An obvious contradiction. Hence A is immune.

Proposition 4.1. Suppose that A = G(χC) for some set C. Then, if A is enu-
meration 1-generic, C is 1-generic.

Proof. Consider any c.e. set of strings W . For any σ ∈ 2<ω, define

D(σ) = { 〈x, i〉 | σ(x)↓ = i }

and set
Ŵ = {D(σ) | σ ∈ W } .

Then, by hypothesis, either there exists D ⊆ A such that D ∈ Ŵ or otherwise
there exists EA ⊆ A such that D ∩ EA �= ∅ for all D ∈ Ŵ . Now, if the former
case applies, then D(σ) ⊆ A for some σ ∈ W . But this means that σ ⊆ C by
definition of D(σ). Otherwise let

zEA = max { x | (∃i ≤ 1)[〈x, i〉 ∈ EA] }+ 1

and set σC = χC�zEA . Clearly σC �⊆ σ for all σ ∈ W .

Lemma 4.3. If A ∈ Δ0
2 is enumeration 1-generic then dege(A) is low2.

Proof. Let a = dege(A). By Lemma 2.3 we know that

IA = { e | ΦA
e is infinite } ∈ a′′ .

Thus to show that a is low2 it suffices to show that there exists a set C ≤e K such
that IA = { e | C [e] is finite } since this implies, by Lemma 2.2, that a′′ = 0′′

e .
We do this by enumerating C using a construction with K as oracle. Now, since
A is Δ0

2 we know that there is a function f ≤TK such that Ran (f) = A and

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 615

such that for all n, f(n) < f(n+ 1). Accordingly we let a0 < a1 < a2 . . . be the
resulting c.e. in K enumeration of A. At each stage s+ 1 of the construction as
is enumerated into A. Note that this means that the set

Us+1 =def { z | z < as & z /∈ As+1 } ⊆ A .

Stage 0. Set C0 = ∅.

Stage s+ 1. For each e > s do nothing (so that C
[e]
s+1 = ∅). For each e ≤ s on

the other hand, test whether, for all x > s,

〈x,D〉 ∈ Φe ⇒ D ∩ Us+1 �= ∅ .

• If so, then enumerate 〈e, s〉 into C.

• Otherwise do nothing for index e.

Having processed each e ≤ s proceed to stage s+2. This completes the descrip-
tion of the construction.

In order to verify the construction there are two cases to consider.

Case A. ΦA
e is infinite. Consider any stage s+1. If, for every x > s and finite set

D such that 〈x,D〉 ∈ Φe, it is the case that D ∩ Us+1 �= ∅ then ΦA
e ⊆ {0, . . . , s}

since Us+1 ⊆ A. A contradiction, hence C [e] = ∅.
Case B. ΦA

e is finite. Then, for some sA, for all x > sA, x /∈ ΦA
e . Let

W =def {D | 〈z,D〉 ∈ Φe & z > sA } ,

and note that W is c.e. Then, by enumeration 1-genericity of A (and since there
is no 〈z,D〉 ∈ Φe with z > sA such that D ⊆ A) we know that there exists a
finite set EA ⊆ A such that D ∩ EA �= ∅ for all D ∈ W . Let zA = maxEA + 1
and also let ta be a stage such that atA ≥ zA. Then, by construction, we can see
that C [e] ⊇ { 〈e, s〉 | s > tA }. In other words C [e] is cofinite (and so infinite).

Definition 4.2. A set A is singleton reducible to a set B (A≤sB) if A≤eB
via an operator Φ such that |D| ≤ 1 for every axiom 〈n,D〉 ∈ Φ. We adopt
similar notation to that of ≤e for ≤s using, for example degs(A) to denote the
singleton degree of A.

Definition 4.3. An enumeration or singleton operator Φ is said to be finite
branch if the set {D | 〈n,D〉 ∈ Φ } is finite for all n ∈ ω. A set A is said to
be finite branch for ≤s (≤e) if, for every X≤sA (X≤eA) there exists a finite
branch singleton (enumeration) operator that witnesses this relation. We say in
this case that degs(A) (dege(A)) is finite branch.

Remark. For r ∈ {e, s}, if degr(A) is low then degr(A) is finite branch.

Lemma 4.4. If A ∈ Σ0
2 is enumeration 1-generic then degs(A) is finite branch.

Proof. Note that this is obvious if A is c.e. So suppose otherwise. Consider any
set B such that B≤sA and for simplicity suppose that this is witnessed by a

616 L. Badillo and C.M. Harris

singleton operator Φ such that, for all 〈z,D〉 ∈ Φ, |D| = 1. (Indeed, suppose

that Φ̂ is any singleton operator witnessing B≤sA. Since A is not c.e. we know
that A is not empty. Accordingly pick some a ∈ A and define

Φ = { 〈z,D〉 | 〈z,D〉 ∈ Φ̂ & |D| = 1 } ∪ { 〈z, {a}〉 | 〈z, ∅〉 ∈ Φ̂ }.

Thus |D| = 1 for every 〈z,D〉 ∈ Φ.)
For all x ∈ ω apply the enumeration 1-genericity of A to the c.e. set Wf(x) =

{ {n} | 〈x, {n}〉 ∈ Φ } to see that

x /∈ B ⇔ (∃E ⊆ A)(∀n)[〈x, {n}〉 ∈ Φ ⇒ n ∈ E] . (4.1)

We can now construct a finite branch singleton operator Γ witnessing B≤sA
via the following computable construction. For each s ≥ 0 and for all z ∈ ω we
compute a finite set Vz,s at stage s. Suppose that {Φs}s∈ω is a c.e. approximation
to Φ and that {As}s∈ω is a good Σ0

2 approximation to A.

Stage 0. Set Vz,0 = ∅ for all z ∈ ω.

Stage s+ 1. For all z > s reset Vz,s+1 = Vz,s = ∅. For each z ≤ s proceed as
follows.

Case A. For some 〈z, {n}〉 ∈ Vz,s, n ∈ As+1 or there exists no m such that
〈z, {m}〉 ∈ Φs+1 − Vz,s and m ∈ As. In this case set Vz,s+1 = Vz,s.

Case B. Otherwise. In this case choose the least m such that 〈z, {m}〉 ∈ Φs+1 −
Vz,s and m ∈ As+1 and set Vz,s+1 = Vz,s ∪ {〈z, {m}〉}.
This completes the description of the construction at stage s+ 1. We define

Γ =
⋃

z,s∈ω

Vz,s .

We now verify that Γ is a finite branch singleton operator witnessing B≤sA.

• Suppose that z ∈ B. Let m be the least number such that 〈z, {m}〉 ∈ Φ and
m ∈ A. There are two possible cases (i) and (ii) as follows.

(i) There exists a stage sm such that 〈z, {m}〉 is enumerated into Vz,sm . But
then clearly Vz,r = Vz,tm for all r ≥ tm where tm is the least stage ≥ sm
such that m ∈ As for all s ≥ tm.

(ii) Otherwise. Let s∗+1 be a good stage of {As}s∈ω such that 〈z, {m}〉 ∈ Φs∗+1

andm ∈ As∗+1. Then, as 〈z, {m}〉 is not enumerated into Vz,s∗+1 there exists
〈z, {k}〉 ∈ Vz,s∗ (⊆ Φ) such that k ∈ As∗+1 ⊆ A. Then, replacing m by k in
the argument for case (i) above we see that there exists a stage tk such that
Vz,r = Vz,tk for all r ≥ tk.

Hence in both cases there exists some p ∈ A and stage tp such that 〈z, {p}〉 ∈
Vz,tp and

⋃
s∈ω Vz,s = Vz,tp . In other words z ∈ ΓA and

⋃
s∈ω Vz,s is finite.

• Now suppose that z /∈ B. Then, letting Uz = {n | 〈z, {n}〉 ∈ Φ }, we know
by (4.1) that for some finite E, Uz ⊆ E ⊆ A. Moreover, by construction⋃

s∈ω

Vz,s ⊆ { 〈z, {n}〉 | 〈z, {n}〉 ∈ Φ } .

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 617

Hence
⋃

s∈ω Vz,s is finite. Clearly also z /∈ ΓA as Uz ⊆ A.

We conclude therefore that Γ is branch finite and that B = ΓA.

Corollary 4.1. If A ∈ Δ0
2 is enumeration 1-generic then a = degs(A) only

contains Δ0
2 sets. In other words a is a low singleton degree.

Definition 4.4. A computable approximation of finite sets {Bs}s∈ω is said to
be a Π0

2 approximation to the set B if

B = {n | ∀t(∃s ≥ t)[n ∈ Bs] } . (4.2)

A computable approximation of finite sets {Be,s}e,s∈ω is said to be a Π0
2 approx-

imation to the class B ⊆ Π0
2 if, for all e ∈ ω, {Be,s}s∈ω is a Π0

2 approximation
and, letting Be = {n | ∀t(∃s ≥ t)[n ∈ Be,s] } for every index e, B = {Be}e∈ω.
In this case we say that B is uniform Π0

2 . We define a Σ0
2 approximation, and

a uniform Σ0
2 class etc. in a similar way, simply replacing (4.2) by

B = {n | ∃t(∀s ≥ t)[n ∈ Bs] } . (4.3)

Lemma 4.5. If B ∈ Π0
2 is enumeration 1-generic, then the class B =def {X |

X≤eB } is uniform Π0
2 .

Proof. Let {Bs}s∈ω be a Π0
2 approximation to B, and {Φe}e∈ω be the stan-

dard computable listing of enumeration operators specified on page 605 with
c.e. approximation {Φe,s}e,s∈ω.

We define a uniform Π0
2 class {Be}e∈ω with associated uniform Π0

2 approx-
imation {Be,s}e,s∈ω such that B = {Be}e∈ω. In order to do this we define the
parameters μ(z,D, e, s) and m(z, e, s) so that μ(z,D, e, 0) = ∅ and m(z, e, 0) = 0
for every z, e ∈ ω and D ∈ F (the class of finite sets), and such that for all s ≥ 0,

μ(z,D, e, s+ 1) =

⎧⎪⎨⎪⎩
μ(z,D, e, s) ∪ { y | y ∈ D & y ∈ Bs+1 }

if 〈z,D〉 ∈ Φe[s+ 1] and μ(z,D, e, s) �= D,

∅ otherwise,

(so that μ(z,D, e, s+ 1) is reset to ∅ if μ(z,D, e, s) = D) and

m(z, e, s+ 1) =

{
1 if μ(z,D, e, s) = D for some axiom 〈z,D〉 ∈ Φe[s],

0 otherwise.

Accordingly we now define, for all e, s ∈ ω.

Be,s =

{
∅ if e ≥ s,

{ z | m(z, e, s) = 1 } otherwise.
(4.4)

We now check that, for any given index e, ΦB
e = {n | ∀t(∃s ≥ t)[n ∈ Be,s] }.

Suppose firstly that z ∈ ΦB
e . Then for some axiom 〈z,D〉 ∈ Φe, we have that

618 L. Badillo and C.M. Harris

D ⊆ B. Since {Bs}s∈ω is a Π0
2 approximation to B, it is clear, by inspection of

the construction that the set Sz = { s | μ(z,D, e, s) = D and 〈z,D〉 ∈ Φe[s] } is
infinite. Moreover, by definition m(z, e, s+ 1) = 1 and so z ∈ Be,s+1 for every
s ∈ Sz. Now suppose that z /∈ ΦB

e . Then, as B is enumeration 1-generic, there
exists some finite set Ez ⊆ B such that z /∈ Φω−Ez

e . Since {Bs}s∈ω is a Π0
2

approximation to B, there exists a stage sz such that Ez ⊆ Bs for all s ≥ sz.
Notice that this means that m(z, e, t+ 1) = 0 and hence also z /∈ Be,t+1 for all
t ≥ sz.

We are thus able to conclude that B = {Be}e∈ω where the latter is derived
from the uniform Π0

2 approximation {Be,s}e,s∈ω defined in (4.4).

Remark. Consider any Σ0
2 set A such that A is enumeration 1-generic. Then,

by Lemma 4.5 we know that B =def {X | X ≤e A } is uniform Π0
2 . This of

course implies that, for any x ≤ b =def dege(A), x contains sets of arithmetical
complexity at most Π0

2 . Moreover, it follows from Proposition 5 of [CM85] that
A =def { Y | Y ≤eA } is uniform Σ0

2 , since the latter (Proposition) implies that
this property holds for any A ∈ Σ0

2 . Note also that obviously Lemma 4.5 holds
for B = A if A ∈ Σ0

2 is symmetric enumeration 1-generic, as defined below, and
so also, by Lemma 4.7 if A is 1-generic.

Definition 4.5. A set A is defined to be symmetric enumeration (s.e.) 1-generic
if both A and A are enumeration 1-generic.

Lemma 4.6. If A is s.e. 1-generic then A /∈ Σ0
1 ∪Π0

1 .

Proof. Either A or A is infinite. Suppose, without loss of generality that A is
infinite. Thus A is immune and so A is not Π0

1 . Thus A is infinite. But then A
is immune also and so A is not Σ0

1 . Hence A /∈ Σ0
1 ∪Π0

1 .

Remark. We remind the reader that (as is easily shown) a set A is 1-generic iff
A is 1-generic.

Lemma 4.7. If A is 1-generic then A is s.e. 1-generic.

Proof. We begin by showing that A is enumeration 1-generic. Consider any c.e.
set W ⊆ F . We must show that either there exists DA ⊆ A such that DA ∈ W
or otherwise that there exists EA ⊆ A such that, for all D ∈ W , D ∩ EA �= ∅.

Define

μ(D) = { σ | σ ∈ 2<ω & |σ| > maxD & (∀x ∈ D)[σ(x) = 1] }

and define
Ŵ =

⋃
D∈W

μ(D) .

Then, as Ŵ is c.e. and A is 1-generic, there are two possible cases.

1) There exists σA ⊆ χA such that σA ∈ Ŵ . In this case let DA ∈ W be the
finite set such that σA ∈ μ(DA). Then σA(x) = 1 for all x ∈ DA. In other
words DA ⊆ A.

An Application of 1-Genericity in the Π0
2 Enumeration Degrees 619

2) There exists some σA ⊆ χA such that for all σA ⊆ σ, σ /∈ Ŵ . In this case
let

EA = { x | x < |σA| & σA(x) = 0 } .

Then EA ⊆ A. Suppose that there exists D ∈ W such that D ∩ EA = ∅.
Define σ so that |σ| = max {maxD+1, |σA|} and such that, for all x < |σ|,

σ(x) =

{
1 if x < |σA| and σA(x) = 1, or x ∈ D,

0 otherwise.

Then σ ∈ μ(D), so that σ ∈ Ŵ , and σA ⊆ σ. Contradiction. Therefore we
know that, for all D ∈ W , D ∩EA �= ∅.

From this we conclude that A is enumeration 1-generic. By a symmetric argu-
ment, using the fact that 1-genericity of A implies 1-genericity of A, it follows
that A is also enumeration 1-generic. Thus A is s.e. 1-generic.

Lemma 4.8. For any A ∈ Σ0
2 , if A is s.e. 1-generic and dege(A) is good then

both A and A are low.

Proof. Since dege(A) is good we know, by Lemma 2.4 that KA ≡e JA. Let RA

be a computable predicate such that, for any E ∈ F , E ⊆ A iff ∃t∀sRA(E, t, s).
Now,

e ∈ KA ⇔ e /∈ ΦA
e

⇔ (∃E ⊆ A)[e /∈ Φω−E
e] , by enumeration 1-genericity of A,

⇔ ∃E∃t∀s∀r∀D[RA(E, t, s) &
(
〈e,D〉 ∈ Φe,r ⇒ D ∩ E �= ∅

)
] .

Thus KA is Σ0
2 . So A is low. But then, by the same reasoning applied to KA

this time using the fact that KA ≡e JA (since A is Σ0
2) and that A is Σ0

2 (since
A is low) we get that A is also low.

Proposition 4.2. There exists a bad Π0
2 enumeration degree b such that, for b

itself and some B ∈ b the following is true for b, A =def B and a = dege(A).

(1) a is 1-generic as witnessed by A.

(2) a is noncuppable and hence downwards properly Σ0
2 .

(3) a′′ = 0′′
e , i.e. a is low2.

(4) The class B =def {X | X≤eB } is uniformly Π0
2 so that, in particular, b

(and any x ≤ b) only contains Π0
2 sets.

(5) degs(A) is finite branch.

(6) b is properly Π0
2 .

(7) KB�eKB, i.e. JB�eKB.

(8) b′ ≤ 0′′
e .

620 L. Badillo and C.M. Harris

Proof. For parts (1)-(5) apply Theorem 3.1 in conjunction with Lemma 4.7,
Lemma 4.8, Lemma 4.5 and Lemma 4.4.

Part (6) follows from the fact that A is properly Σ0
2 . Indeed suppose that

X ∈ b is Δ0
2. Then A = B≤eX . So A is Δ0

2. Contradiction.
For part (7) notice that KB is Π0

2 (as KB≤eB). Hence KB is Σ0
2 . If KB≤e

KB then B ≤e KB so that B is Σ0
2 . Again contradicting the fact that A is

properly Σ0
2 .

Part (8) can be deduced from either part (3) or part (4). For example from
part (4), as we have just seen, KB is Π0

2 and KB is Σ0
2 . Thus JB is Σ0

3 and so

JB≤eJ
(2)
∅ .

Remark. The reader might like to compare the contrasting result for good enu-
meration a and good approximable A ∈ a in Lemma 2.4 and that for bad
enumeration degree b and the set B ∈ b in part (7) of Proposition 4.2.

References

[CO88] Copestake, C.S.: 1-generic enumeration degrees below 0′
e. Mathematical

logic. In: Proc. Summer Sch. Conf. Ded. 90th Anniv. Arend Heyting,
Chaika/Bulg, pp. 257–265 (1988, 1990)

[CM85] Cooper, S.B., McEvoy, K.: On minimal pairs of enumeration degrees. Jour-
nal of Symbolic Logic 50(4), 983–1001 (1985)

[CSY96] Cooper, S.B., Sorbi, A., Yi, X.: Cupping and noncupping in the enumer-
ation degrees of Σ0

2 sets. Annals of Pure and Applied Logic 82, 317–342
(1996)

[CLSY05] Cooper, S.B., Li, A., Sorbi, A., Yang, Y.: Bounding and nonbounding min-
imal pairs in the enumeration degrees. Journal of Symbolic Logic 70(3),
741–766 (2005)

[FR59] Friedberg, R.M., Rogers, H.: Reducibilities and completeness for sets of
integers. Zeit. Math. Log. Grund. Math. 5, 117–125 (1959)

[Gri03] Griffith, E.J.: Limit lemmas and jump inversion in the enumeration degrees.
Archive for Mathematical Logic 42, 553–562 (2003)

[Har10] Harris, C.M.: Goodness in the enumeration and singleton degrees. Archive
for Mathematical Logic 49(6), 673–691 (2010)

[Har11] Harris, C.M.: Noncuppable enumeration degrees via finite injury. Journal
of Logic and Computation (2011), doi:10.1093/logcom/exq044

[Joc68] Jockusch, C.G.: Semirecursive sets and positive reducibility. Trans. Amer.
Math. Soc. 131, 420–436 (1968)

[LS92] Lachlan, H., Shore, R.A.: The n-rea enumeration degrees are dense. Archive
for Mathematical Logic 31, 277–285 (1992)

[Sos07] Soskova, M.I.: Genericity and Nonbounding. Journal of Logic and Compu-
tation 17, 1235–1255 (2007)

Author Index

Aluru, Srinivas 319
Arjona Aroca, Jordi 461

Badillo, Liliana 604
Baumann, H. 330
Bi, Jingguo 143
Blin, Guillaume 319
Bollig, Beate 473
Bonato, A. 50
Bournez, Olivier 525

Cai, Jin-Yi 346
Černý, Michal 156
Chao, Kun-Mao 177
Chen, Enhong 412
Chen, Jianer 560, 572
Cheng, Qi 143
Chu, An-Chiang 177
Cooper, S. Barry 3

Datta, Samir 189
Demetrian, Michal 594
Dershowitz, Nachum 525
Duchier, Denys 435
Durand-Lose, Jérôme 435

Ellisman, Mark 109
Escoffier, Bruno 202

Falkovich, Evgenia 525
Feng, Qilong 560, 572
Feng, Xinyu 61
Fernández Anta, Antonio 307, 461
Fraigniaud, P. 330
Freivalds, Rūsiņš 537
Fu, Fang-Wei 284, 295
Fu, Ming 61
Fu, Zhiguo 346

Gandhi, Aniruddh 373
Gillé, Marc 473
Gramlich, Bernhard 509
Guelev, Dimitar 72

Hamel, Sylvie 319
Harris, Charles M. 604

Harutyunyan, H.A. 330
Hobbs, Nathaniel 385
Hopcroft, John 1
Hou, Chenying 307
Hua, Qiang-Sheng 385
Huang, He 412
Huang, Liwei 12

Ito, Hiro 131
Izumi, Taisuke 548
Izumi, Tomoko 548

Jain, Sanjay 423
Jansson, Jesper 177
Jiang, Shaoquan 248
Jiresch, Eugen 509

Kapur, Deepak 94
Karp, Richard M. 11
Khoussainov, Bakhadyr 373
Kiyoshima, Susumu 131
Kleinberg, Jon 29

Lampson, Butler 23
Lau, Francis C.M. 385
Lawrence, Albert F. 109
Lemence, Richard S. 177
Li, Deyi 12
Li, Jin 487
Li, Minming 412
Li, Wei 27
Li, Yong 61
Liu, Jiamou 373
Liu, Weiyi 487
Liu, Zhiyong 307
Long, Teng 498

Mancheron, Alban 177
Mitsche, D. 50

Nagamochi, Hiroshi 360, 584
Nakanishi, Masaki 400
Nakashima, Yasuhiko 400
Nehéz, Martin 594

Ojiaku, Jude-Thaddeus 260
Olderog, Ernst-Rüdiger 84

622 Author Index

Olejár, Daniel 594
Ono, Hirotaka 548

Pan, Yicheng 30
Paschos, Vangelis Th. 202
Peng, Pan 40
Phan, Séastien 109
Popa, Alexandru 164
Pra�lat, P. 50
Pratap, Rameshwar 189
Pröger, Tobias 473

Rada, Miroslav 156
Rizzi, Romeo 319

Senot, Maxime 435
Shalom, Mordechai 448
Shao, Zhong 61
Sikora, Florian 319
Stephan, Frank 423

Tourniaire, Emeric 202

Verclos, R. de 330
Villagra, Marcos 400
Voloshin, Ariella 448

Wada, Koichi 548
Wan, Daqing 214, 295
Wang, Jianxin 560, 572
Wang, Lin 307
Wang, Shuling 72

Wang, Yuexuan 385
Wong, Prudence W.H. 164, 260, 448
Wu, Weiwei 412

Xiao, Mingyu 360
Xu, Yinfeng 260

Yamashita, Shigeru 400
Yan, Jun 273
Yang, Xiao 319
Yao, Andrew C. 237
Yao, Andrew Chi-Chih 28
Yao, Jinyi 560
Ye, Deshi 225
Yoshida, Yuichi 131
Yu, Dongxiao 385
Yu, Sheng 260
Yue, Kun 487
Yung, Fencol C.C. 164, 448

Zaks, Shmuel 448
Zeugmann, Thomas 423
Zhan, Naijun 72
Zhang, Fa 307
Zhang, Guochuan 225
Zhang, Jun 284, 295
Zhang, Wenhui 498
Zhang, Zipeng 61
Zhao, Yunlei 237
Zheng, Ying 572
Zhu, Guizhen 214

	Title
	Preface
	Organization
	Table of Contents
	Turing Lectures 2012
	On the Impact of Turing Machines
	From Turing Machine to Morphogenesis: Forming and Informing Computation
	From Describing Information, to the Mathematics of Causality
	Universality, Turing Completeness and Programs as Information
	Journeys beyond the Computable
	Modelling the Brain
	The Return to Embodied Computation
	References

	Theory of Computation as an Enabling Tool for the Sciences
	Interaction and Collective Intelligence on the Internet
	Uncertainty on the Internet
	The Limitations of Turing Model and Interaction Machine Model beyond Turing Machines
	Topological Potential
	Collective Intelligence on the Internet
	References

	What Computers Do: Model, Connect, Engage
	R-Calculus: A Logical Inference System for Scientific Discovery
	Quantum Computing: A Great Science in the Making
	The Convergence of Social and Technological Networks

	Invited Lectures
	Principles of Network Computing
	Introduction
	Graph Property Test
	Homophily of Networks

	Homophily Law – The Source of Small Community Phenomenon
	Homophily Model and Homophily Theorem
	Proof Sketch of Homophily Theorem
	Applications in Information Extraction

	Conclusions
	References

	The Small Community Phenomenon in Networks: Models, Algorithms and Applications
	Introduction
	Basic Definitions and Algorithms
	Definition of Community
	The Small Community Phenomenon
	Community Detection Algorithm

	Results on Classical Network Models
	Two New Models
	Empirical Results
	Applications
	Classification of Networks
	Core Extraction of Networks

	References

	Vertex-Pursuit in Hierarchical Social Networks
	Introduction
	Definitions
	Random DAG Model

	Main Results
	Random Regular DAGs
	Random Power Law DAGs

	Proof of Theorem 1 (v)
	Conclusions and Future Work
	References

	A Structural Approach to Prophecy Variables
	Introduction
	The Language
	The Program Logic
	Reasoning about Future Blocks
	Auxiliary Code Erasure

	Example
	The RDCSS Algorithm
	Proofs

	References

	An Assume/Guarantee Based Compositional Calculus for Hybrid CSP
	Introduction
	Hybrid CSP
	History Formulas
	Specification and Inference Rules
	Discussions, Conclusion and Future Work
	References

	Automatic Verification of Real-Time Systems with Rich Data: An Overview
	Introduction
	Overview of the Project R1
	Explicit Durations
	Structural Optimization
	Automating Verification
	Complex Data
	Verification Tools
	Case Studies

	Conclusion
	References

	Program Analysis Using Quantifier-Elimination Heuristics
	Introduction
	Overview of Quantifier-Elimination Approach
	Octagonal Constraints
	A Geometric Heuristic for Quantifier-Elimination over Octagonal Constraints
	Local Reasoning

	Program Analysis Using Octagonal Invariants
	Generating Strongest Octagonal Invariants

	Towards Disjunctive Invariants: Max Plus Constraints
	Concluding Remarks and Future Work
	References

	Electron Tomography and Multiscale Biology
	Electron Tomography
	Steps in Electron Tomography
	Problems with Electron Tomography

	The Mathematics of Electron Tomography
	Classical Beam Model
	Integral Geometry and the Generalized Radon Transform
	Alignment
	The Reconstruction Process
	Inversion in TxBR
	Artifact Reduction for Improved Reconstruction

	The Computational Problems Associated with Structural and Systems Biology
	Serial Section and Montaging
	Processing Requirements
	Parallel Processing Approaches

	Conclusions: Toward Exascale Computing
	References

	Contributed Papers
	Constant-Time Approximation Algorithms for the Knapsack Problem
	Introduction
	Definitions
	A Constant-Time Algorithm for the Knapsack Problem
	Overview of the Algorithm
	The Construction of "0365X
	Relation between z(X) and z("0365X)
	The Algorithm and Its Analysis

	Proof of Lemma 3
	Lower Bounds
	References

	Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices
	Introduction
	Preliminaries
	Lattices
	Number of Integral Points in a Sphere
	Kolmogorov Complexity

	The Main Theorem
	The Lower Bounds of Shortest Vectors Lengths of NTRU Lattices
	Description of the NTRU Cryptosystem
	A Technical Lemma
	The Lower Bounds of Lengths of Shortest Vectors of NTRU Lattices

	Conclusion
	References

	Polynomial Time Construction of Ellipsoidal Approximations of Zonotopes Given by Generator Descriptions
	Introduction
	Basic Definitions and the Main Theorem
	Some Properties of Zonotopes
	Sketch of Goffin's Method
	The Version for Zonotopes Given by Generator Descriptions
	An Initial Ellipsoid
	A Lower Bound on Volume
	Parallel Cuts
	Testing Whether Z Contains a Ball
	The Separation Procedure
	The Algorithm

	Conclusion
	References

	Hardness and Approximation of the Asynchronous Border Minimization Problem
	Introduction
	Preliminaries
	P-BMP: Finding Embedding When Placement Is Given
	BMP: Finding Placement and Embedding
	1D-BMP: BMP on a 1D Array
	BMP on 2D Array

	A O(n14log2n) Approximation Algorithm for the BMP
	Concluding Remarks
	References

	Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics
	Introduction
	Motivation
	Related Work
	Main Results and Organization of the Paper

	Preliminaries
	The Asymptotic Behavior of Sn and S'n
	The Asymptotic Behavior of An
	Concluding Remarks
	References

	Computing Bits of Algebraic Numbers
	Introduction
	Versions of the Problem
	Previous Proof Techniques
	Our Proof Technique
	Related Work and Our Results
	Organization of the Paper

	Preliminaries
	Complexity Theoretic Preliminaries
	Mathematical Preliminaries
	From Approximation to Exact Computation

	Complexity of Composition
	Establishing Quadratic Convergence
	Putting It All Together
	Lower Bound

	Conclusion
	References

	Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms
	Introduction
	First Results
	Using a Better Parameterized Algorithm
	Splitting the Clauses

	Approximate Pruning of the Search Tree
	Splitting the Variables
	Discussion
	References

	Computing Error Distance of Reed-Solomon Codes
	Introduction
	RelatedWork
	Our Results

	Preliminaries
	Character Sums and theWeil Bound
	Li-Wan’s New Sieve

	Main Theorem and Its Proof
	Conclusions
	References

	Coordination Mechanisms for Selfish Parallel Jobs Scheduling
	Introduction
	The Model
	Our Contribution
	Related Works

	Preliminaries
	The Price of Anarchy of Bottom-Left Based Policies
	Upper Bounds for Greedy BLDW
	Homogeneous Unequal Clusters
	Lower Bounds on the Price of Anarchy

	The Price of Anarchy of Shelf-Packing Based Policies
	The Price of Anarchy for Clusters with Different Speeds
	BLDW Policy in a Heterogeneous Grid with Different Speeds
	FFDH Policy in a Heterogeneous Grid with Different Speeds

	Convergence of Pure Nash Equilibria
	References

	Computationally-Fair Group and Identity-Based Key-Exchange
	Introduction
	Preliminaries
	Non-malleably Independent Dominant-Operation Values, and Session-Key Computational Fairness

	Re-examination of the Burmester-Desmedet Group Key-Exchange Protocol
	Brief Review of the Burmester-Desmedet Group Key-Exchange Protocol
	An Attack against the BD-Protocol
	Computationally-Fair Group Key-Exchange

	Re-examination of the Chen-Kudla Identity-Based Key-Exchange Protocol
	Brief Review of the Chen-Kudla Identity-Based Key-Exchange Protocol
	An Attack on the CK-protocol for =
	Computational Fair Identity-Based Key-Exchange

	References

	Timed Encryption with Application to Deniable Key Exchange
	Introduction
	Definitions
	Timed Encryption
	Timed Commitment

	Timed Encryption in the Random Oracle Model
	Timed Encryption without a Random Oracle
	Application to Adaptive Deniable Key Exchange
	Construction
	Security

	References

	Online Makespan Scheduling of Linear Deteriorating Jobs on Parallel Machines
	Introduction
	Preliminaries
	Simple Linear Deterioration pj = bj sj
	Online-Time Model: Scheduling Jobs with Arbitrary Release Times
	Online-List Model: Two Machine Scheduling with Availability Constraint

	Online-List Model: Fixed Deteriorating Rate and Varying Normal Processing Time pj = aj + b sj
	Lower Bounds
	Upper Bounds

	Summary and Future Work
	References

	A Surprisingly Simple Way of Reversing Trace Distance via Entanglement
	Introduction
	Preliminaries
	Quantum Information and Relevant Linear Algebra

	Direct Proof
	A Retrospect of Our Construction
	References

	Constructions for Binary Codes Correcting Asymmetric Errors from Function Fields
	Introduction
	Construction
	Examples
	References

	Stopping Set Distributions of Algebraic Geometry Codes from Elliptic Curves
	Introduction
	Stopping Set Distributions of AG Codes from Elliptic Curves
	Conclusion
	References

	Energy-Efficient Network Routing with Discrete Cost Functions
	Introduction
	Related Work
	Our Results

	The Model
	Hardness
	Integer Program Formulation

	The Approximation Algorithm
	Transforming the Program
	Two-Step Rounding
	Performance Evaluation

	Model Extension: Bicriteria Network Routing
	Conclusion
	References

	An Algorithmic View on Multi-Related-Segments: A Unifying Model for Approximate Common Interval
	Introduction
	Gene Proximity: Properties and Models
	Key Properties of Gene Proximity
	Existing Models

	Multi-Related Segments Model
	Complexity Analysis of
	Identify a Given A
	Identify All When A Is Unknown

	References

	The Worst Case Behavior of Randomized Gossip
	Introduction
	Our Results
	Other Related Work

	Model and Preliminary Results
	The List-Based Model
	Exponential Gaps

	A Polynomial-Time Algorithm for the ``Skip None'' Variant
	Inapproximability Results
	The Case of Directed Graphs
	References

	Holographic Algorithms on Domain Size k > 2
	Introduction
	Background and Some Results about Domain Size 2
	Some Background
	Some Results on Signatures of Domain Size 2

	SRP of Signatures on Domain Size k
	Degenerate Recognizers
	Simultaneous Realizable Problem on Domain Size k
	An Algorithm for Simultaneous Realizability Problem on Domain Size k

	Some Examples
	References

	A Refined Exact Algorithm for Edge Dominating Set
	Introduction
	Enumeration-Based Algorithms
	Branching Rules and Some Structural Properties
	The Algorithm
	The Analysis
	Preliminaries
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Putting All Together

	References

	Finite Automata over Structures
	Introduction
	The Automata Model
	Simple Properties of S-Automata
	The Validation Problem
	The Emptiness Problem
	Discussion and Future Work
	References

	Deterministic Distributed Data Aggregation under the SINR Model
	Introduction
	Our Contribution and Techniques
	Related Previous Work

	Model and Related Terminologies
	Model
	Related Terminologies

	Data Aggregation Algorithm
	Algorithm Overview
	Algorithm

	Analysis
	Conclusions
	References

	Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication
	Introduction
	Preliminaries
	Tensors
	Strong Quantum Nondeterministic Multiparty Communication

	Proof of Theorem 1
	A Quantum-Classical Super-Polynomial Separation
	Concluding Remarks
	References

	Speed Scaling Problemswith Memory/Cache Consideration
	Introduction
	Formulation
	Non-cache Model
	With-Cache Model
	Aligned Jobs in Uniform With-Cache Model
	With-Cache Model: Approximation Algorithm for General Jobs with Resource Augmentation

	Conclusion
	References

	On the Amount of Nonconstructivity in Learning Formal Languages from Positive Data
	Introduction
	Preliminaries
	Results
	Nonconstructive Learning of Indexable Classes
	Nonconstructive Learning of Recursively Enumerable Classes

	Conclusions
	References

	Computing in the Fractal Cloud: Modular Generic Solvers for SAT and Q-SAT Variants
	Introduction
	Definitions
	Computing in the Fractal Cloud
	A Modular Q-SAT Solver
	Setting Up the Decision Tree
	Compiling the Formula
	Aggregating the Results

	Machines for SAT Variants
	Complexities
	Conclusion
	References

	Online Optimization of Busy Time on Parallel Machines
	Introduction
	Notations and Preliminaries
	Cost Minimization-MinBusy Problem
	General Instances
	One-Sided Clique Instances
	Clique Instances

	Throughput Maximization-MaxThroughput Problem
	Basic Results
	Lower Bounds for Feasible One-Sided Clique Instances
	Online Algorithm for Feasible One-Sided Clique Instances

	Summary and Future Work
	References

	Bisection (Band)Width of Product Networks with Application to Data Centers
	Introduction
	Definitions
	Bounds on the Bisection Width of Product Graphs
	Bisection Width of Products of Paths and CBT
	Products of Rings and Extended Trees
	BCube
	References

	Implicit Computation of Maximum Bipartite Matchings by Sublinear Functional Operations
	Introduction
	Preliminaries
	Implicit Algorithms for Maximum Bipartite Matchings
	References

	A Game-Theoretic Approach for Balancing the Tradeoffs between Data Availability and Query Delay in Multi-hop Cellular Networks
	Introduction
	Problem Formulations
	The Design of Caching Payment Mechanism
	Data Caching Game
	Simulation Experiments
	The Simulation Model and System Parameters
	Simulation Results

	Conclusion
	References

	Proving Liveness Property under Strengthened Compassion Requirements
	Introduction
	Computational Model
	Discrete Transition Systems
	Fair Discrete Systems
	A Discussion on Different Kinds of Fairness

	Proving Properties
	Proof Rule
	Soundness of the Rule
	Relative Completeness of the Rule
	Dealing with Systems with Infinite Number of States

	Concluding Remarks
	References

	Realizing Monads in Interaction Nets via Generic Typed Rules
	Introduction
	Preliminaries
	Interaction Nets
	Side Effects, Monads and Generic Rules

	Generic Rules and Imposed Constraints
	Generic Rules
	Generic Rules with Variadic Agents

	A Simple Typing Approach
	Our Typing Approach
	Typing for the Variadic Agent Case

	Application: Monads in Interaction Nets
	Conclusion and Related Work
	References

	Towards an Axiomatization of Simple Analog Algorithms
	Introduction
	Dynamical Transition Systems
	Signals
	Transition Systems

	Abstract Dynamical Systems
	Abstract States
	Locations in States
	Updates of States

	Algorithmic Dynamic Systems
	Algorithmicity
	Flows and Jumps
	Analgorithms
	Properties
	Further Considerations

	Programs
	Definition
	Semantics
	Examples

	Discussion
	References

	Multiple Usage of Random Bits in Finite Automata
	Introduction
	Preliminary Results
	Main Results
	References

	Minimum Certificate Dispersal with Tree Structures
	Introduction
	Minimum Certificate Dispersal Problem
	MCD for Star Request Sets
	MCD for Tree Request Sets
	Tree Structure with Arbitrary Degree
	Tree Structure with O(logn) Degree

	Tree Structures with Constant Degree
	MCD for Tree Graphs
	Basic Idea of Polynomial Time Solvability
	A Faster Computation

	Concluding Remarks
	References

	Improved FPT Algorithms for Rectilinear k-Links Spanning Path
	Introduction
	Rectilinear k-Links Spanning Path in 2-Dimensions Is Hard
	FPT Algorithms for Rectilinear k-Links Spanning Path
	FPT Algorithm Based on Branching and Dynamic Programming
	Improved Algorithm in 2-Dimensions

	Rectilinear k-Bends TSP
	Conclusion
	References

	FPT Results for Signed Domination
	Introduction
	Preliminaries
	Signed Dominating Set in General Graph
	Signed Dominating Set on Planar Graph
	Linear Kernel for Signed Dominating Set
	FPT Algorithm for Signed Dominating Set

	Signed Dominating Set in Special Graph
	Polynomial Kernel in Bipartite Graph
	Linear Kernel in d Graph
	Linear Kernel in r-Regular Graph

	Conclusion
	References

	Submodular Minimization via Pathwidth
	Introduction
	Preliminaries
	Pruning in Search Tree for Pathwidth
	A Search Tree Algorithm
	References

	A Detailed Study of the Dominating Cliques Phase Transition in Random Graphs
	Introduction
	Preliminary Results
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions
	References

	An Application of 1-Genericity in the Π02 Enumeration Degrees
	Introduction
	Preliminaries
	The Main Construction
	Enumeration 1-Genericity
	References

	Author Index

