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a b s t r a c t

In this paper, we consider a restricted variant of the scheduling problem, where
the machines are the strategic players. For this multi-parameter mechanism design
problem, the only known truthful mechanisms use task independent allocation algorithms
and only have approximation ratio O(m) [N. Nisan, A. Ronen. Algorithmic mechanism
design (extended abstract), in: STOC’99: Proceedings of the thirty-first annual ACM
symposium on Theory of computing, ACM, New York, NY, USA, 1999. pp. 129–140;
A. Mu’alem, M. Schapira, Setting lower bounds on truthfulness: Extended abstract, in:
SODA’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007,
pp. 1143–1152; P. Lu, C. Yu, An improved randomized truthful mechanism for scheduling
unrelatedmachines, in: 25th International Symposiumon Theoretical Aspects of Computer
Science, STACS, 2008, pp. 527–538; P. Lu, C. Yu, Randomized truthful mechanisms for
scheduling unrelated machines, in: C.H. Papadimitriou, S. Zhang (Eds.), Proceedings of
WINE, in: Lecture Notes in Computer Science, vol. 5385, Springer, 2008, pp. 402–413].
Lavi and Swamy first use the cycle monotone condition and design a 3-approximation
truthful mechanism for a two value variant in [R. Lavi, C. Swamy, Truthful mechanism
design for multi-dimensional scheduling via cycle monotonicity, in: EC’07: Proceedings
of the 8th ACM conference on Electronic commerce, ACM, New York, NY, USA, 2007, pp.
252–261], where the processing time of task j on machine i, say tij, can only be either a
lower value Lj or a higher value Hj. We consider a generalized variant, where tij lies in
[Lj, Lj(1+ε)]

⋃
[Hj,Hj(1+ε)] and ε is a parameter satisfying some condition.We consider

two special cases, case A when Hj/Lj > 2,∀j and case B when Hj/Lj ≤ 2,∀j, and give
randomized truthful mechanisms with approximation ratio 4(1+ ε) for both cases. Based
on these two cases’ results, we are also able to deal with the general case of our two-range-
values scheduling problem.Weuse a combination of twomechanisms,which is also a novel
method in mechanism design for scheduling problems, and finally we give a randomized
truthful mechanism with approximation ratio 7(1+ ε).
Although the generalization seems a little incremental, we actually use a very novel

technique in the key step of proving truthfulness for case A, as well as a new mechanism
scheme for case B. Besides, the results in this paper are the first truthful mechanisms
with constant approximation ratios when a machine (player) can report infinitely possible
values, which is quite different from the two value variant, in which only finite values
are available. Furthermore, together with Lavi and Swamy’s work, our results suggest that
such a task-dependent approach can really do much better for the scheduling unrelated
machines problem.
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1. Introduction

Mechanism design, as an important area both in game theory and computer science, has received extensive study in the
past few years. A mechanism consists of several algorithms, which can acquire information from some players and achieve
certain global objectives. However, the players are rational and selfish, so they may misreport their information to the
mechanism on their own behalves. To overcome this difficulty, the most commonway is to require the ‘‘truthfulness" of the
mechanism, which implies that for any player, reporting his/her values truthfully to the mechanism will always maximize
his/her own utility, no matter how other players act. The most celebrated result in mechanism design is the VCG family
mechanisms [31,11,14], which applies when the global objective is to optimize the total sum of all the agents’ utilities.
The study of the algorithmic aspects of mechanism design was initiated by Nisan and Ronen in [28]. They focused on the

problem of scheduling unrelated machines, where there are n tasks to be allocated tommachines. The machines are selfish
players andmachine i privately knows tij,∀j, which is the processing time of task j onmachine i. The objective of this problem
is to find an allocation so that the maximal completion time (named makespan) is minimized. In [28], they mainly consider
how to design truthful mechanisms which can approximate the optimal makespan well. They gave an m-approximation
truthful mechanism, and proved no truthful mechanism can have approximation ratio less than 2. This lower bound 2 has
been improved to 2.41 form ≥ 3 recently in [10], then to 2.61 for sufficiently largem in [16].
Fractional and randomized versions are also studied, however still O(m)-approximation mechanisms can be obtained

[9,24,25]. They design mechanisms based on a so-call task independent approach, which assigns tasks, one by one,
independently. This method already achieves its limit, since almost tight lower bounds are also shown in both cases [9,25].
Archer and Tardos first studied the variant of scheduling related machines in [5]. In such a variant, machine i’s private

information is simply a single parameter si, which specifies the speed of machine i. This variant falls into the one-
parameter domain, and becomes easier. There is even a truthful mechanism which can always output an optimal allocation
if exponential running time is allowed. For polynomial time approximation mechanisms, a lot of positive results are also
obtained. The reason is that in one-parameter domain, truthfulness has an equivalent characterization, value monotone
condition, which is easy to apply in the design of mechanism. However, the generalization of value monotonicity in multi-
parameter domain, which is called cycle monotonicity, is really difficult to use.
Lavi and Swamy first use this cycle monotonicity in mechanism design for multi-parameter domain. They considered a

restricted variant of scheduling unrelated machines, in which tij is either Lj or Hj, and gave a 3-approximation randomized
truthful mechanism [22]. They used an LP rounding idea based on [21]. For the special case when Lj = L, Hj = H ,∀j, they
gave a deterministic truthful mechanism with approximation ratio 2.

1.1. Our results

In this paper, we generalize Lavi and Swamy’s two-value variant such that tij is in either a relatively lower values range
[Lj, Lj(1+ ε)] or a relatively higher values range [Hj,Hj(1+ ε)], where Hj > Lj, and ε is some positive parameter satisfying
ε ≤ 1

16mn . The information of Lj, Hj and ε are all publicly known to the mechanism and the agents.
This general case is difficult, and we consider two special cases corresponding to Hj/Lj > 2,∀j and Hj/Lj ≤ 2,∀j, which

we called case A and case B respectively. We present 4(1 + ε)-approximation randomized truthful mechanisms for both
special cases, and combine them into an 7(1+ ε)-approximation randomized truthful mechanism for the general case.
For case A, following the idea in [22], we first round the reported values into a two-value case. Then we obtain a

(fractional) solution x̃ output by some algorithm with good conditions, and use a spreading algorithm to convert it into
another fractional solution x. This converting process will make the allocation x satisfy some separation bound, which is
important in our proof for cycle monotonicity. Finally, we use a rounding algorithm to obtain a random integer solution X .
In Lavi and Swamy’s work, each machine can only have finite choices of values, and they prove the cycle monotonicity

holds even for every task. In our variant, there are infinitely many possible values, and their method does not work. The
idea we use here is to estimate the cycle’s sum globally, instead of just considering one task. We first reduce the cycle to a
simple case where adjacent nodes are different in some sense. Then we divide the terms into two classes, the gain and the
loss term. Finally, we estimate the gain and the loss to the cycle’s sum separately, which leads to non-negativeness of the
cycle’s sum, i.e., the cycle monotonicity condition.
For case B, we first design a fractional truthful mechanism directly, then use rounding. In the fractional truthful

mechanism, we assign each task to machines proportionally to the inverse of their bids.
We emphasize that this is the first work with constant approximation ratio in designing truthful mechanisms when

each task has infinitely many possible values. Our mechanisms are certainly task-dependent and use LP rounding, which
demonstrates the use of fractional variant and the potential of task-dependent mechanisms.

1.2. Related work

As a computational problem, scheduling unrelatedmachines problem is an NP-hard optimization problem, and there are
several polynomial time algorithms achieving the best known approximation ratio 2. In the negative side, unless P = NP , it
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is impossible to approximate the optimumwithin a factor less than 1.5 in polynomial time [23]. If the number of machines
is bounded by some constant, Angel, Bampis and Kononov gave an FPTAS [2].
From the mechanism design setting, beyond Nisan and Ronen’s work we mentioned above, Christodoulou, Koutsoupias

and Kovács gave a fractional truthful mechanism with approximation ratio of (m + 1)/2, and a lower bound of 2 − 1/m
for any fractional truthful mechanisms. They also defined a broad class of allocation algorithms named task-independent
algorithm, inwhich tasks are allocated one by one, independently. For the task-independent truthful fractionalmechanisms,
they proved a tight lower bound of (m+ 1)/2 [9].
Randomized algorithms are usually more powerful, and this is also true for this scheduling problem. Nisan and Ronen

provided a randomized truthful mechanism with approximation ratio of 1.75 for two machines [28]. Recently Mu’alem
and Schapira gave a lower bound of 2− 1/m for the randomized truthful mechanisms [26]. They also generalized the 1.75
approximation mechanism for two machines to a 0.875m-approximation mechanism for m machines. In [24,25], we first
improved the upper bound 1.75 to 1.67, then to 1.59 for two machines case, and improved 0.875m to (m + 5)/2. We also
show almost tight lower bounds, 1.57 and (m+ 1)/2 respectively, for task independent mechanisms.
For scheduling related machines problem, Archer and Tardos gave a 3-approximation randomized truthful mechanism,

and the ratio was later improved to 2 by Archer [3]. Andelman et al. [1] gave the first deterministic polynomial mechanism
with an approximation ratio of 5, and the ratio was improved to 3, then to 2.8 both by Kovacs [17,18].
Another important line of work in mechanism design is combinatorial auctions and a lot of work is done (see [27,4,8,

6,12,13]). In the study of truthfulness in the general domain, Saks and Yu [30] recently proved that for convex domain the
Monotonicity Property characterizes the class of truthful mechanisms, generalizing results of [20,15,7].

2. Preliminary

2.1. Scheduling mechanisms

We first give somedefinitions and notations used in this paper. Throughout our paper, for a given genericmatrix a = (aij),
we will use ai to denote the i-th row of matrix a and a−i to denote the matrix obtained from deleting i-th row in a. We also
use (v, a−i) to denote the matrix, where the i-th row of matrix a is replaced by the row vector v.

• We use [n] to denote the set of tasks, and [m] to denote the set of machines (players). We use a matrix t = (tij) to denote
an instance, where tij is the processing time of task j on machine i.
• ti: the i-th row of the matrix t, which is privately known to machine i, and is called i’s type value.
• b = (bij): the reported values of tij, called bid matrix. The i-th row bi is reported by machine i.
• M = (X, P): a mechanism. X(b) = (Xij(b)) specifies the allocation, and P(b) = (Pi(b)) specifies the payments to each
agent, where both of them are functions of the bid b.
• Ti(X): machine i’s load under allocation X . Ti(X) =

∑
j Xijtij.

• T (X): the makespan of allocation X, which is the maximal load under allocation X. T (X) = maxi∈[m] Ti(X).
• ui(ti; b): the utility (profit) of machine iwhen its type value is ti and the bid matrix is b. ui(ti; b) = Pi(b)− Ti(X(b)).

In this paper, we consider the following variant.
Two-range-values scheduling: For each task j, tij is either in a relatively lower values’ range [Lj, Lj(1+ε)] or in a relatively

higher values’ range [Hj,Hj(1+ ε)]. Hj, Lj and ε are publicly known and satisfy Hj > Lj, ε ≤ 1
16mn . Without loss of generality,

we also assume that ε, Lj > 0, andm, n ≥ 2. The objective of scheduling is to minimize the makespan.
Now we specify two special cases, depending on the ratios of Hj/Lj, j ∈ [n].

• case A: Hj/Lj > 2, ∀j ∈ [n].
• case B: Hj/Lj ≤ 2, ∀j ∈ [n].

2.2. Truthfulness and characterizations

In such a mechanism design problem, the mechanism’s objective is to minimize the makespan. However, each player
only wants to maximize his/her utility and may not report the true type values to the mechanism. Therefore in this paper,
we are interested in truthful mechanisms, in which telling the true values will maximize utility for each player.

Definition 2.1. A deterministic mechanism M = (X, P) is truthful if, for each player i, to report the type values truthfully
will maximize his/her utility, no matter how other players act. Formally, the mechanismM = (X, P) is truthful if and only
if, given any instance t = (tij), for any i, any fixed b−i, any bid bi, we have:

Pi((ti, b−i))−
∑
j

Xij((ti, b−i))tij ≥ Pi((bi, b−i))−
∑
j

Xij((bi, b−i))tij. (1)
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When randomness is involved, there are two versions of truthfulness: in the stronger version (i.e. universally truthfulness)
the mechanism remains truthful even if the random bits are fixed; in the weaker version (i.e. truthfulness in expectation) an
agent maximizes his/her expected utility when reporting values truthfully.
As we mentioned before, our problem falls into the multi-parameter domain, in which truthfulness has an equivalent

characterization, i.e., the cycle monotone condition. This was first observed by Rochets [29] in 1987, and has been usedwidely
in designing truthful mechanisms. But most applications are in one parameter domains, in which this cycle monotone
condition boils down to certain value monotone condition and becomes more applicable. For our need and simplicity, we
only include the following restatement of cycle monotonicity and the characterization of truthfulness.

Definition 2.2 (Cycle Monotonicity [29,22]). An allocation algorithm X satisfies cycle monotonicity if for any agent i, any
fixed b−i, and i’s bids b1i , . . . , b

K
i , let X

k
= X(bki , b−i), 1 ≤ k ≤ K , and X

K+1
= X1, bK+1i = b1i . Then we have:

K∑
k=1

n∑
j=1

Xk+1ij (bkij − b
k+1
ij ) ≥ 0. (2)

Theorem 2.1 ([29,15]). There is a payment algorithm P, such that the mechanism M = (X, P) is truthful if and only if the
allocation algorithm X satisfies the cycle monotonicity.

For the one-parameter domain, cycle monotonicity boils down to value monotonicity .

Theorem 2.2 ([27,5]). In a one-parameter domain (only one task in scheduling problem), an allocation algorithm X admits a
payment algorithm P to make the mechanism M = (X, P) truthful if and only if X is monotone decreasing, which means that for
any i, b−i and bi ≥ b′i , we have Xi((bi, b−i)) ≤ Xi((b

′

i, b−i)).

The cycle monotonicity enables us to design the truthful mechanisms without considering the payment issue any more.
So in this paper, we only give the allocation algorithms when specifying the mechanisms, and prove that they satisfy the
cycle monotonicity.

3. Mechanism for case A

In this section, we consider case A:Hj/Lj > 2,∀j.We generalize the black-box fashion technique in [22].We give a general
method to convert any c-approximation algorithm into a 4c-approximation, truthful-in-expectation mechanism. To be self
contained, we introduce Lavi and Swamy’s ideas in [22] as follows.
First, we use cycle monotonicity to prove the truthfulness of themechanism. This enables us to throw away the payment

issue, and only focus on the allocation algorithm. Second, we obtain the randomized mechanism by rounding a fractional
mechanism. This is built on the following lemma.

Lemma 3.1 ([22]). Let M = (x, P) be a fractional truthful mechanism. LetR be a randomized rounding algorithm that, given a
fractional allocationx, outputs a random integer allocationX such that E[Xij] = xij for all i, j. Then there exists a payment algorithm
P ′ such that the mechanism M ′ = (X, P ′) is truthful in expectation, where the allocation algorithm X is the combination of two
algorithmsR and x, i.e. X = R ◦ x.

In this paper, we use the same rounding algorithm as in [22]. It is a randomized rounding algorithm provided by Kumar,
Marathe, Parthasarathy, Srinivasan [19].

Lemma 3.2 (Kumar et al. [19]). Given a fractional assignment x and a matrix t specifying the running times, there exists a
randomized rounding algorithm R that yields a randomized integer assignment X such that, for any i, j, E[Xij] = xij, and with
probability 1,∑

j

Xijtij <
∑
j

xijtij + max
j:xij∈(0,1)

tij.

Now all we need is a fractional truthful mechanism. We first give the allocation algorithmAC as follows, then we prove
that it satisfies cycle monotonicity, hence there exists some payment algorithm P such that (AC, P) is a fractional truthful
mechanism.

Input: The reported bid matrix b = (bij).
Output: a fractional allocation x = (xij).
Allocation algorithm AC :
(1) Round each bij down to b̃ij. If bij ∈ [Lj, Lj(1+ ε)],

b̃ij = Lj; otherwise b̃ij = Hj. Let b̃ = (b̃ij).
(2) Feed the input b̃ into any c-approximation algorithm C that

satisfies a load bounding condition, and get an allocation x̃.
(3) Use a ‘‘Spreading Algorithm" S, and convert x̃ into x.
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We explain each step in detail as follows.
(1) By the assumptionHj/Lj > 2, ε < 1

16mn , two intervals [Lj, Lj(1+ε)], [Hj,Hj(1+ε)] do not intersect, hence the rounded
result is unique.

(2)We can use any c-approximation algorithmC satisfying the following load bounding condition: for input b̃ and output
x̃, if x̃ij > 0, then b̃ij ≤ T (x̃). Besides, we do not require that x̃ to be an integral solution, however the approximation ratio is
regarding the integral optimal makespan.

(3) Spreading Algorithm S: for each j, let ILj = {i : b̃ij = Lj}, IHj = [m] \ ILj , lj = |ILj |, hj = |IHj |. For each i,

• if b̃ij = Lj, let

xij = x̃ij +
∑

i′∈ILj ,i
′ 6=i

2(x̃i′j − x̃ij)
hj + 2lj

+

∑
i′∈IHj

2x̃i′j
hj + 2lj

.

• if b̃ij = Hj, let

xij =
∑
i′∈IHj

x̃i′j
hj + 2lj

.

To prove that this allocation algorithm satisfies cycle monotonicity, we need the following lemma. The separation bound
produced in the spreading algorithm S plays an essential role in the proof of the cycle monotonicity.

Lemma 3.3. The spreading algorithm S has the following properties:

• For any x̃, x produced by S is a feasible allocation.
• If b̃ij = Lj, then xij ≥ 2/(hj + 2lj); if b̃ij = Hj, then xij ≤ 1/(hj + 2lj).
• (Separation bound) For any i and b−i, if i changes bi to b′i , and b̃ij 6= b̃

′

ij, then we have:

|xij − x′ij| ≥
1
4m
. (3)

Proof. • To show that x is a feasible solution, we only need to show that, for each j, we have:∑
i

xij = 1.

In fact,∑
i

xij =
∑
i∈ILj

xij +
∑
i∈IHj

xij

=

∑
i∈ILj

(
x̃ij +

∑
i′∈ILj ,i

′ 6=i

2(x̃i′j − x̃ij)
hj + 2lj

+

∑
i′∈IHj

2x̃i′j
hj + 2lj

)
+

∑
i∈IHj

∑
i′∈IHj

x̃i′j
hj + 2lj

=

∑
i∈ILj

x̃ij +
∑
i,i′∈ILj

2(x̃i′j − x̃ij)
hj + 2lj

+ lj
2

hj + 2lj

∑
i′∈IHj

x̃i′j +
hj

hj + 2lj

∑
i′∈IHj

x̃i′j

=

∑
i∈ILj

x̃ij +
∑
i′∈IHj

x̃i′j

= 1.

• If b̃ij = Lj, then

xij = x̃ij +
∑

i′∈ILj ,i
′ 6=i

2(x̃i′j − x̃ij)
hj + 2lj

+

∑
i′∈IHj

2x̃i′j
hj + 2lj

=
hj + 2
hj + 2lj

x̃ij +
∑
i′ 6=i

2
hj + 2lj

x̃i′j

≥

∑
i′

2
hj + 2lj

x̃i′j

=
2

hj + 2lj
.
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If b̃ij = Hj, then

xij =
∑
i′∈IHj

1
hj + 2lj

x̃i′j

≤
1

hj + 2lj
.

• Assuming that b̃ij = Hj, b̃′ij = Lj, then h
′

j = hj − 1, l
′

j = lj + 1. Noticingm = hj + lj, we have:

x′ij − xij ≥
2

hj − 1+ 2(lj + 1)
−

1
hj + 2lj

=
m+ lj − 1

(m+ lj + 1)(m+ lj)

≥
1
4m
. �

Now we formally give the following theorem and proof.

Theorem 3.1. The allocation algorithmAC satisfies cycle monotonicity.

Proof. First, we recall the cycle monotonicity. We need to prove that for any fixed player i, b−i and any b1i , . . . , b
K
i , we have

K∑
k=1

n∑
j=1

xk+1ij (bkij − b
k+1
ij ) ≥ 0.

To prove this, we first reduce the cycle to a simple case, then separately estimate the positive terms and negative terms,
which we call the gain and loss of this cycle, respectively. We label the cycle’s nodes by 1, . . . , K , and associate the term
xkij(b

k−1
ij − b

k
ij)with node k. Sometimes we also label the cycle’s nodes with b̃

k
i , 1 ≤ k ≤ K .

Now we will show the cycle monotonicity. Notice that we only need to consider the case when there is no k such that
b̃ki = b̃k+1i . This is because if some such k0 exists, then x̃k0 = x̃k0+1, hence xk0 = xk0+1, and we have:

K∑
k=1

n∑
j=1

xk+1ij (bkij − b
k+1
ij ) = · · · +

n∑
j=1

xk0ij (b
k0−1
ij − bk0ij )+

n∑
j=1

xk0+1ij (bk0ij − b
k0+1
ij )+ · · ·

= · · · +

n∑
j=1

xk0+1ij (bk0−1ij − bk0ij + b
k0
ij − b

k0+1
ij )+ · · ·

= · · · +

n∑
j=1

xk0+1ij (bk0−1ij − bk0+1ij )+ · · · .

So we eliminate the node k0 from the cycle, and keep the cycle’s sum unchanged. We can do this until there is no k, such
that b̃ki = b̃k+1i .
Starting from node 1, we walk along this cycle clockwise, then for any j, if we see some node k′ such that b̃k

′
−1
ij = Hj and

b̃k
′

ij = Lj, then there must be another node k
′′ such that b̃k

′′
−1

ij = Lj and b̃k
′′

ij = Hj. We select the first k
′′ we see after k′, and

pair (k′, k′′) together. The summation of this pair’s terms equals

xk
′

ij

(
bk
′
−1
ij − bk

′

ij

)
+ xk

′′

ij

(
bk
′′
−1

ij − bk
′′

ij

)
≥ xk

′

ij

(
Hj − Lj (1+ ε)

)
− xk

′′

ij

(
Hj (1+ ε)− Lj

)
=

(
xk
′

ij − αx
k′′
ij

) (
Hj − Lj (1+ ε)

)
.

Here α = Hj(1+ε)−Lj
Hj−Lj(1+ε)

, and one can easily verify that α ≤ 1+ 1
4mn holds under the assumption on ε and Hj/Lj. So we have

xk
′

ij − αx
k′′
ij ≥ x

k′
ij − x

k′′
ij −

1
4mn

xk
′′

ij

≥
1
4m
−

1
4mn
·
1
m

(use separation bound)

≥
3
16m

(we assumem, n ≥ 2).
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Then we estimate the gain of this pair by at least 3
16m ((Hj − Lj(1+ ε)))which we denote by 2∆. So we can imagine that

each node in this pair has a positive term, which contributes at least∆ to the gain of the cycle’s sum.
Since any two nodes k, k + 1 in the cycle satisfy b̃ki 6= b̃k+1i , there is at least one j such that b̃kij 6= b̃

k+1
ij . So node k + 1

contributes a gain at least∆ to the cycle’s sum. So the whole cycle has a gain at least K∆.
For the loss of the cycle, it is somewhat easier. Walking from k to k+ 1, there are at most n− 1 tasks with the same value

in b̃ki and b̃
k+1
i . If i’s rounded values on task j are both Hj, then xk+1ij (bkij − b

k+1
ij ) ≥ − 1mεHj because x

k+1
ij ≤

1
hj+2lj

≤
1
m . If i’s

rounded values on task j are both Lj, then xk+1ij (bkij − b
k+1
ij ) ≥ −εLj. So the total loss associated to node k+ 1 is no more than

n ·max{ 1mεHj, εLj}, hence the total loss of the cycle is no more than Kn ·max{
1
mεHj, εLj}.

To sum up, if we consider the cycle’s sum globally, we will see that the gain is more than the loss, because ∆ ≥
3
32m ((Hj − Lj(1+ ε))) ≥ n ·max{

1
mεHj, εLj}. So the allocation algorithmAC satisfies the cycle monotonicity. �

Theorem 3.1 combined with Lemmas 3.1 and 3.2, gives the following theorem.
Theorem 3.2. Given any c-approximation algorithm C satisfying the load bounding condition, there exists a 4c(1 + ε)-
approximation, truthful-in-expectation mechanism M ′C .
Proof. The cyclemonotonicity ofAC indicates that there exists a payment algorithm P such thatMC = (AC, P) is a fractional
truthful mechanism by Theorem 2.1. Then by Lemmas 3.1 and 3.2, there exists P ′ such that the mechanismM ′C = (X, P

′) is
truthful in expectation, where the allocation algorithm X is the combination of the rounding algorithm R in Lemma 3.2 and
AC . So we only need to show the approximation ratio.
Since we already proved that the mechanism is truthful in expectation, we can treat the bid b as the true type values t,

and we use t in the following analysis. We will first show that if we use a c-approximation algorithm C satisfying the load
bounding condition in the mechanism M ′C , then M

′
C ’s approximation ratio will be 4c(1 + ε). Let OPT and ÕPT denote the

optimum, and x∗, x̃∗ be the optimal allocation for the instance b and b̃ respectively, X beM ′C ’s allocation.
For each i, we have∑

j

Xijtij ≤
∑
j

Xij(1+ ε)t̃ij ≤ (1+ ε)·
(∑

j

xij t̃ij + max
j:xij>0

t̃ij

)
where the latter inequality is due to Lemma 3.2.
For

∑
j xij t̃ij, since for each task j, any machine i gets at most 2/m fraction of j frommachine r with t̃rj ≥ t̃ij (see spreading

algorithm S for detail). So we have:

∑
j

xij t̃ij ≤
∑
j

x̃ij t̃ij +
2
m

∑
r,r 6=i

∑
j

x̃rj t̃ij

≤ 3max
i

∑
j

x̃ij t̃ij

≤ 3cÕPT .

Since the approximation algorithm C satisfies the load bounding condition, we have
max
j:x̃ij>0

t̃ij ≤ T (x̃) ≤ cÕPT .

In our spreading algorithm, the allocation can only be spread in a value non increasing direction. Formally, for any task
j, machine i can get some fraction of task j from machine r if and only if t̃rj ≥ t̃ij. So if xij > 0, then either x̃ij > 0 or there is
some r , such that t̃rj ≥ t̃ij, and x̃rj > 0. We have

max
j:xij>0

t̃ij ≤ max
j:x̃ij>0

t̃ij ≤ cÕPT .

So we have:∑
j

Xijtij ≤ 4c(1+ ε)ÕPT

= 4c(1+ ε)max
i

∑
j

x̃∗ij t̃ij

≤ 4c(1+ ε)max
i

∑
j

x∗ij t̃ij

≤ 4c(1+ ε)max
i

∑
j

x∗ijtij

= 4c(1+ ε)OPT .

The second inequality is because x∗ is a feasible solution for the instance t̃. �
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To see the use of Theorem 3.2, we use the following algorithm C1 as in [22].

Input: bid matrix b̃ = (b̃ij).
Output: a fractional allocation x̃ = (x̃ij).
Algorithm C1:
(1) Compute in polynomial time the smallest T
for which the following LP has a feasible
solution. Denote it by T ∗.∑
j x̃ijb̃ij ≤ T ∀i∑

i x̃ij = 1 ∀j
x̃ij ≥ 0 ∀i, j
x̃ij = 0 if b̃ij > T

(2) Output any feasible solution x̃ of this LP with T = T ∗.
This LP has null objective function and the last constraint is used to satisfy the load bounding condition. T ∗ can be

computed by binary search. We can see that T ∗ ≤ ÕPT , where ÕPT is the optimum for the two value instance b̃, since
the optimal solution is a feasible solution to the above LP with T = ÕPT . So this algorithm AC1 can be viewed as a 1-
approximation algorithm, and we have the following corollary:
Corollary 3.1. There exists a 4(1+ ε)-approximation truthful-in-expectation mechanism for case A: Hj/Lj > 2,∀j.

4. Mechanism for case B

In this section, we give a mechanism for case B when Hj/Lj ≤ 2, ∀j. We first design a truthful fractional mechanism
directly, and then round it as in case A, using the rounding algorithm in Lemma 3.2.
As before, we only specify the allocation algorithm.

Input: The reported bid matrix b = (bij).
Output: a fractional allocation x = (xij).
Allocation algorithm A2:

For each task j, set xij =
1
bij∑
s
1
bsj

.

Lemma 4.1. There exists a payment algorithm P such that the fractional mechanism M2 = (A2, P) is truthful.
Proof. We obtain the algorithm P by specifying a payment algorithm P j for each task j. For each task j, the allocation
algorithm of task j is monotone decreasing. By Theorem 2.2, there exists a payment algorithm P j for task j, such that the
submechanism for task j is truthful. Since an agent’s utility equals the sum of utilities gained from each task, and telling the
true bids will maximize his/her utilities from each task, the whole mechanism is also truthful. �

By Lemmas 3.1 and 3.2 again, we have the following theorem.
Theorem 4.1. There exists a payment algorithm P ′ such that the mechanism M ′2 = (X, P

′) is truthful in expectation, and has an
approximation ratio of 4(1+ ε). Here the allocation algorithm X is the combination of the rounding algorithm in Lemma 3.2 and
A2.
Proof. Since the truthfulness is already proven, we use tij and t instead of bij and b in the analysis of the approximation ratio.
Let OPT be the optimal solution (or the optimum) and Ti be the tasks allocated on machine i in OPT , then

∑
j∈Ti
tij ≤ OPT , ∀i.

For task j, let ILj , IHj , lj, hj be defined as before. Then for any i, r , we have:

xijtij
trj
=

1
trj∑

s∈ILj

1
tsj
+

∑
s∈IHj

1
tsj

≤

1
Lj

lj
Lj(1+ε)

+
hj

Hj(1+ε)

≤

1
Lj

lj
Lj(1+ε)

+
hj

2Lj(1+ε)

=
2(1+ ε)
2lj + hj

≤
2(1+ ε)
m

.
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So for each i, we have:∑
j

xijtij =
m∑
r=1

∑
j∈Tr

xijtij

≤

m∑
r=1

∑
j∈Tr

2(1+ ε)
m

trj

≤ 2(1+ ε)OPT .

By Lemma 3.2, we have:∑
j

Xijtij ≤
∑
j

xijtij +max
xij>0

tij.

Since tij ≤ Hj(1+ ε) ≤ 2(1+ ε)Lj ≤ 2(1+ ε)OPT , ∀i, j,∑
j

Xijtij ≤ 2(1+ ε)OPT + 2(1+ ε)OPT = 4(1+ ε)OPT . �

5. Mechanism for the general case

For the general case, there are some tasks with Hj/Lj > 2, and some tasks with Hj/Lj ≤ 2. We denote them by JA and JB
respectively. W.l.o.g., JA, JB 6= ∅.
Firstwe give the fractional allocationA3, thenweprove that it satisfies the cyclemonotonicity. By rounding this fractional

allocation as before, we obtain a truthful in expectation mechanism.

Input: the reported bid matrix b = (bij).
Output: a fractional allocation x = (xij).
Allocation algorithm A3:
divide the tasks into two sets, JA and JB,
applyAC1 on JA,A2 on JB and obtain allocations
xA, xB, output x = (xA, xB).

Lemma 5.1. There exists a payment algorithm P such that the fractional mechanism M3 = (A3, P) is truthful.

Proof. we notice that any cycle’s sum equals the summation of the cycle’s sum on task sets JA and JB. Since the cycle’s sum on
both task sets JA and JB are non-negative, the cycle’s sum on all tasks is non-negative. So the allocation algorithmA3 satisfies
cyclemonotonicity, whichmeans that there exists a payment algorithm P such that the fractional mechanismM3 = (A3, P)
is truthful. �

By Lemmas 3.1 and 3.2 again, we have the following theorem.

Theorem 5.1. There exists a payment algorithm P ′ such that the mechanism M ′3 = (X, P ′) is truthful in expectation, and has
an approximation ratio of 7(1+ ε). Here the allocation algorithm X is the combination of the rounding algorithm in Lemma 3.2
andA3.

Proof. Since the truthfulness is already proven, we use tij and t instead of bij and b in the analysis of the approximation ratio.
Let OPT be the optimum, x∗ be the optimal allocation, and x∗A, x

∗

B be the restriction of x
∗ on task sets JA, JB. Let XA, XB be the

restriction of X on task sets JA, JB. For each machine i, let TA∗i , TB
∗

i , TAi, TBi denote the load on machine i under x
∗

A, x
∗

B , XA, XB
respectively. We also denote the optimal makespans on task sets JA and JB as OPTA, OPTB.
By Lemma 3.2, we have:∑

j

Xijtij ≤
∑
j

xijtij +max
xij>0

tij

∑
j

Xijtij ≤
∑
j

xijtij +max
xij>0

tij

=

∑
j∈JA

xijtij +
∑
j∈JB

xijtij +max{ max
j∈JA,xij>0

tij, max
j∈JB,xij>0

tij}

≤ 3(1+ ε)OPTA + 2(1+ ε)OPTB +max{(1+ ε)OPTA, 2(1+ ε)OPTB}.

Since x∗A is also a feasible allocation of task set A, we have:

OPTA ≤ max
i
TA∗i ≤ maxi

{TA∗i + TB
∗

i } = OPT .
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Similarly, we have OPTB ≤ OPT .∑
j

Xijtij ≤ (1+ ε)
(
3OPTA + 2OPTB +max{OPTA, 2OPTB}

)
≤ 7(1+ ε)OPT . �

6. Conclusion and open problems

In this paper, we study the two-range-values variant of the scheduling unrelatedmachines problem from themechanism
design setting. For one special case,we use cyclemonotonicity to obtain a general technique converting any c-approximation
algorithm into a 4c(1+ ε)-approximation mechanism. We prove the cycle monotonicity via a novel idea, which may be of
independent interest. For another special case, we first design a fractional truthful mechanism directly, then use rounding.
For both cases, we obtain truthful-in-expectation mechanisms with approximation ratio 4(1 + ε). Finally, for the general
case, we combine two mechanisms into a mechanism which is still truthful in expectation and has approximation ratio
7(1+ ε). This idea of combination may also be useful for further research.
However, the two-range-values variant is still somewhat restricted. We are interested in a more general variant, such

that each task has values in k ranges (k > 2) or even a big interval. Of course, the biggest challenge in general scheduling
unrelated machines problem is to close the gap between the lower bound 2.61 and the upper bound m of deterministic
truthful mechanisms.
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