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Abstract

Motivation: Residue–residue contacts are of great value for protein structure prediction, since con-

tact information, especially from those long-range residue pairs, can significantly reduce the com-

plexity of conformational sampling for protein structure prediction in practice. Despite progresses

in the past decade on protein targets with abundant homologous sequences, accurate contact pre-

diction for proteins with limited sequence information is still far from satisfaction. Methodologies

for these hard targets still need further improvement.

Results: We presented a computational program DeepConPred, which includes a pipeline of two

novel deep-learning-based methods (DeepCCon and DeepRCon) as well as a contact refinement

step, to improve the prediction of long-range residue contacts from primary sequences. When com-

pared with previous prediction approaches, our framework employed an effective scheme to identify

optimal and important features for contact prediction, and was only trained with coevolutionary in-

formation derived from a limited number of homologous sequences to ensure robustness and use-

fulness for hard targets. Independent tests showed that 59.33%/49.97%, 64.39%/54.01% and 70.00%/

59.81% of the top L/5, top L/10 and top 5 predictions were correct for CASP10/CASP11 proteins, re-

spectively. In general, our algorithm ranked as one of the best methods for CASP targets.

Availability and implementation: All source data and codes are available at http://166.111.152.91/

Downloads.html.

Contact: hgong@tsinghua.edu.cn or zengjy321@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Native residue–residue contacts provide essential information to fa-

cilitate the challenging task of protein structure prediction (Eickholt

and Cheng, 2012; Schneider and Brock, 2014; Tress and Valencia,

2010; Vassura et al., 2008). In practice, residue contact information

could be integrated into the scoring function to reduce the space of

conformational sampling (Li et al., 2011; Wu and Zhang, 2008) or

to improve the selection of template models (Eickholt and Cheng,

2012; Miller and Eisenberg, 2008). Recently, its application has

been expanded to rational drug design (Kliger et al., 2009).

Contemporary methods for protein residue contact prediction

can be categorized as template- and sequence-based (Eickholt and

Cheng, 2012; Li et al., 2011). The former makes prediction based

on homologous templates (Misura et al., 2006; Skolnick et al.,

2004; Wu and Zhang, 2008) and is thus limited in usefulness.

Conversely, the latter that only requires the amino acid sequence for

prediction has been investigated more enthusiastically.

The sequence-based methods were first developed by retrieving

statistical information from the structural database to train various

machine learning models, including artificial neural network (Jones
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et al., 2015; Kosciolek and Jones, 2015; Punta and Rost, 2005;

Tegge et al., 2009; Xue et al., 2009; Zhang and Huang, 2004), sup-

port vector machine (Cheng and Baldi, 2007; Wu and Zhang, 2008;

Zhao and Karypis, 2005), random forest (Li et al., 2011; Wang and

Xu, 2013), hidden Markov model (Björkholm et al., 2009; Shao and

Bystroff, 2003) and deep architectures (Di Lena et al., 2012;

Eickholt and Cheng, 2012). As one popular representative,

CMAPpro (Di Lena et al., 2012) was designed in a multi-stage strat-

egy, utilizing predicted coarse contacts between secondary structure

elements (SSEs) to further improve the accuracy of residue contact

prediction.

With the rapid expansion of sequence database, another kind of

sequence-based methods were proposed, under the assumption that

contacting residues should present correlated mutations in the mul-

tiple sequence alignment (MSA). Residue coevolution could be iden-

tified by metrics including mutual information (Dunn et al., 2008;

Lee and Kim, 2009; Little and Chen, 2009), direct coupling analysis

(Ekeberg et al., 2013, 2014; Morcos et al., 2011; Weigt et al., 2009)

and sparse inverse covariance (Jones et al., 2012). Despite the excep-

tional predictive power for targets with plenty of homologous se-

quences, performance of coevolution-based methods severely relies

on the availability and quality of MSA, which hinders their success

on protein targets of small families (Kamisetty et al., 2013).

In principle, the two kinds of sequence-based methods could be

combined to further improve prediction, because of the complemen-

tarity between information retrieved from structure and sequence

databases. In this respect, some preliminary trials have been made

(Jones et al., 2015; Kamisetty et al., 2013; Skwark et al., 2014;

Wang and Xu, 2013). As a famous example, GREMLIN simply

took the results of a machine-learning-based predictor as the input

of a coevolution-based statistical model (Kamisetty et al., 2013).

PconsC2 incorporated predicted coevolutionary information and a

few basic structural features into a deep learning model (Skwark

et al., 2014). Most recently, Yang et al. presented a novel method

R2C, which evaluates residue contacts using the linear combination

of scores from a machine-learning-based and a coevolution-based

predictors together with a 2D Gaussian noise filter (Yang et al.,

2016). Nevertheless, the two kinds of information were integrated

in crude manners in all previous explorations, which therefore still

await further refinement. Furthermore, most methods relying on

coevolutionary information require sufficient sequence abundance

to guarantee accuracy and thus fail on targets with limited sequence

information. Special care therefore should be taken for these hard

targets in model construction. In addition, after including coevolu-

tionary information, the effective combination of feature descriptors

for machine learning models should be further optimized.

In this work, we developed a package DeepConPred, which in-

cludes a pipeline of two deep-learning-based models (DeepCCon

and DeepRCon) as well as a refinement step, to effectively combine

statistical information retrieved from the structure database and

coevolutionary information extracted from the sequence database

for long-range residue–residue contact prediction. Using a hierarch-

ical approach similar to CMAPpro, the coarse contacts between

SSEs predicted by DeepCCon in the first stage can facilitate the pre-

diction of residue contacts by DeepRCon in the second stage. Deep

learning technologies have generally exhibited better predictive

power than conventional methods, especially in the present era of

massive data (Najafabadi et al., 2015). Previous applications of

deep architectures (Di Lena et al., 2012; Eickholt and Cheng, 2012;

Skwark et al., 2014), however, did not achieve the expected im-

provement on residue contact prediction in the latest Critical

Assessment of protein Structure Prediction (CASP) competitions

(Monastyrskyy et al., 2015), possibly due to the lack of extraction

of representative and predictive features. Here, for both DeepCCon

and DeepRCon, we proposed a number of novel features and incor-

porated them with good known features for more comprehensive

description of protein structural properties. Moreover, for the first

time to our knowledge, we employed feature selection to eliminate

feature redundancy in contact prediction. Specifically, DeepCCon

and DeepRCon were trained using coevolutionary information

derived from a reduced number of homologous sequences to ensure

robustness for small-family proteins, while the subsequent refine-

ment step was designed to integrate full coevolutionary information

to improve predictions of large-family proteins. Notably, these

unique protocols have not been adopted in previous successful pre-

dictors including MetaPSICOV (Jones et al., 2015), CoinDCA-NN

(Ma et al., 2015) and CONSIP2 (Kosciolek and Jones, 2015).

According to performance evaluation on CASP proteins, our method

reaches a high level of prediction accuracy in general and ranks as

one of the best methods on CASP targets.

2 Materials and methods

Our algorithm integrates two deep learning models (DeepCCon and

DeepRCon) in a hierarchical strategy (Fig. 1). In specific,

DeepCCon predicts the coarse contact information between two

SSEs in the first stage and this information is fed to DeepRCon to fa-

cilitate the prediction of residue contacts. For model training at each

stage, a complete feature set was first constructed, which was uti-

lized for the optimization of all tunable parameters. Feature selec-

tion was then conducted to find the optimal feature subset, which

could not only reduce computational complexity but also further

improve performance. Predicted residue contacts were finally

refined by a deep learning model, which combines the prediction

scores of DeepRCon and a coevolution-based predictor CCMpred

(Seemayer et al., 2014).

2.1 Datasets
The datasets in this study were derived from the database of

Structure Classification of Proteins—extended (SCOPe) (Fox et al.,

2014). In specific, we extracted the initial dataset from SCOPe re-

lease 2.05 and removed domains that had <50 residues, multiple

structures or missing backbone atoms. Redundancy was removed

using BLASTCLUST (Altschul et al., 1997), by clustering the do-

mains with a cutoff of 20% sequence identity and choosing one

Fig. 1. Flowchart overview of the pipeline of DeepConPred
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representative (the shortest one) from each acquired cluster.

Similarly, the dataset was further filtered to retain only one repre-

sentative per SCOPe family. The complete dataset contained 3443

protein domains.

For an objective performance evaluation, the complete dataset

was divided into two mutually exclusive parts: a training set for

model optimization/cross-validation and a testing set for independ-

ent benchmark test. Considering that an effective and robust method

should show good predicting power for the presently unknown and

undiscovered targets, 2898 domains released in SCOPe version 1.75

were assigned to the training dataset, while the remaining 545 do-

mains, namely the novel folds with respect to the training dataset,

were assigned to the testing dataset.

To compare with other state-of-the-art methods, we also eval-

uated the performance on all valid targets in the CASP10

(Monastyrskyy et al., 2014) and CASP11 (Monastyrskyy et al.,

2015) competition datasets, following the CASP definition and clas-

sification of residue contacts. In specific, a pair of residues is con-

sidered in contact if the distance between their Cb atoms (Ca in case

of glycine) is <8Å. Non-local residue contacts were classified into

three types according to sequence separation: long-range contacts

(separation � 24), medium-range contacts (12 � separation < 24)

and short-range contacts (6 � separation < 12). According to this

definition, with respect to the long-range contacts, our training data-

set includes 647718 contact and 47355205 non-contact residue

pairs, while our testing dataset includes 109189 contact and

6432869 non-contact residue pairs. In this study, we only focused

on the prediction of long-range contacts, which are generally con-

sidered as the most valuable and informative in structure modeling

and also the most difficult to predict (Di Lena et al., 2012; Schneider

and Brock, 2014; Yang et al., 2016).

2.2 Deep learning framework
We adopted the deep belief network (DBN) (Hinton et al., 2006;

Hinton and Salakhutdinov, 2006) to build our models (see

Supplementary Fig. S1 for the schematic architecture and

Supplementary Material for detailed introduction). The model archi-

tecture as well as all tunable hyper-parameters were optimized by

5-fold cross validation on the training dataset using the complete

feature set. According to the cross-validation results, our final mod-

els consist of one input layer, three hidden layers and one output

layer, with the overall architectures of d–700–200–700–2 for

DeepCCon and DeepRCon, and d–300–200–150–2 for the refine-

ment step, where d is the dimension of the feature vectors. In each

building block (called restricted Bolzmann machine) of our DBN

models, the learning rates of weights and biases were set to 0.01 and

0.1, respectively, with the weight cost of 0.0002. The momentum

was initially set to 0.5 and then increased to 0.9 after 5 epochs. The

number of training samples in mini-batches and epoch number were

both set to 100.

2.3 Feature selection
We used the group minimax concave penalty (MCP) (Huang et al.,

2012) to find the optimal feature subset within the complete feature

set of our models (see Supplementary Material for detailed introduc-

tion). The algorithm was implemented using the grMCP R package

(Breheny and Huang, 2009; Huang et al., 2012), with weight of

regularization parameters of the group and L2 penalties as well as

the maximum number of iterations optimized to 0.5 and 100 000,

respectively by 5-fold cross validation on the training dataset. Final

models were constructed using the optimal feature subsets.

2.4 Coarse contact prediction
We first built the training and testing datasets of SSE pairs from the

corresponding protein datasets respectively. In specific, all SSEs

were extracted by removing coil residues as well as short strands

(�3 residues) and short helices (�6 residues) following the DSSP

definition (Kabsch and Sander, 1983). Thus, the combination of all

SSE pairs within each protein jointly composed the dataset. The SSE

pairs separated by �1 residue were ignored to avoid ambiguity.

A pair of SSEs was defined as contacting if there were �2 inter-SSE

residue–residue contacts with the distal contacting points separated

by �1 residue in both SSEs, and as no-contact otherwise.

Contacting SSE pairs were subsequently categorized as parallel and

anti-parallel contacts if the scalar angle between their orientation

vectors was �90� or >90�, respectively, where the orientation vec-

tor of each SSE was computed from the centers of mass of Ca atoms

in the first and second halves.

We then constructed a deep learning model DeepCCon to predict

the probabilities of parallel contact, anti-parallel contact and no-

contact for a pair of SSEs denoted as Sm and Sn, based on their

amino acid sequences. Here, we designed several new features for an

SSE pair:

1. Coevolutionary information: The residue coevolutionary infor-

mation was first predicted by plmDCA (Ekeberg et al., 2013). In

order to minimize the reliance on sequence abundance, the num-

ber of effective homologous sequences was restricted to be

�0.7L (L denotes the chain length of target protein) in plmDCA

calculation. That is, if the number exceeded 0.7L, effective hom-

ologous sequences were grouped into 0.7L clusters using

BLASTCLUST and one representative sequence was chosen

from each group to compose the final sequence set. The choice

of 0.7L as the cutoff was made by statistical analysis over

SCOPe protein families (see Section 3.1 for details). Procedure

for plmDCA calculation is described in details in the

Supplementary Material. Given the plmDCA scores, each SSE

was evenly divided into five sub-regions and residues were as-

signed to these sub-regions based on percentiles of their sequence

orders within the SSE. The score for every pair of inter-SSE sub-

regions was then defined as the maximum plmDCA score among

all inter-SSE residue pairs within the sub-regions. This feature

vector contained 25 entries in total.

2. Contact propensity: Again, both SSEs were divided into five sub-

regions as aforementioned. Propensities of inter-SSE residue con-

tacts were first estimated from proteins in the training dataset by

differentiating sub-regions as well as parallel/anti-parallel SSE

contacts. In specific, the propensity score Pij for each residue

pair was derived as,

Pij ¼
Nconði; jÞ

Nconði; jÞ þNno�conði; jÞ
; (1)

where Ncon(i, j) and Nno-con(i, j) are the numbers of contact and

no-contact pairs, respectively. Thus, 50 contact-propensity

matrices were obtained in total, each of which had the size of

20 � 20 to enumerate all 20 amino acids. Scores in each pro-

pensity matrix were rescaled with the minimum and maximum

scores set to 0 and 1 respectively. The contact propensity for a

pair of sub-regions within two parallel/anti-parallel SSEs was

then represented by the maximum propensity score of all inter-

SSE residue pairs. This feature vector contained 50 entries in

total.

3. Natural vector of intervening sequence: Theoretically, each pro-

tein sequence could be equivalently represented by a 60D natural

Long-range residue–residue contact prediction 2677
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vector that describes the positional distribution of 20 amino

acids (Yu et al., 2013). Here, we presented the amino acid se-

quence between Sm and Sn using natural vectors.

4. Length of intervening sequence: This feature was represented as

a binary vector for states in eight intervals (2–5, 6–9, 10–12, 13–

15, 16–23, 24–27, 28–65 and �66).

5. Lengths of sequences connecting neighboring SSEs (for {Sk�1,

Sk} and {Sk, Skþ1}, where k ¼ m, n): Similarly, the length of

intervening sequence was represented by a vector of binary

states in seven categories (0, 1, 2–7, 8–22, 23–37, 38–52 and

�53, where 0 means Sk is the first or last one). This feature

contained 28 entries (two intervening sequences for each

SSE).

6. Number of intervening SSEs: Similarly, the number of SSEs be-

tween Sm and Sn was represented by a vector of binary states in

eight intervals (0, 1, 2–5, 6–13, 14–22, 23–31, 32–40, �41).

Features (1–3) are uniquely proposed by us, while features (4–6)

were adopted by CMAPpro but using original values curtly.

Notably, we made abundant designs on the boundary of intervals in

features (4–6) to allow roughly even distributions of corresponding

properties for proteins in the training dataset. Besides these features,

we also incorporated known features reported by CMAPpro, assum-

ing that a combination of good features can better reflect the

encoded information and thus improve the predictive power. These

features are listed in detail as below:

1. Amino acid compositions of the SSEs (for {Sk�1, Sk, Skþ1}, where

k ¼ m, n): The amino acid composition records the frequencies

of all 20 amino acids within each SSE. This feature thus con-

tained 120 entries (20 entries for each SSE).

2. Numbers of residues of the SSEs (for {Sk�1, Sk, Skþ1}, where k ¼
m, n): This feature was extracted as a 6D vector (one entry for

each SSE).

3. A vector of flags to identify the first, second, second-to-last and

last SSEs in the sequence: Only 6 flags were needed here, because

the SSE on the N-/C-terminal side within a pair is impossible to

be the last/first one in the sequence.

4. Amino acid compositions for even- and odd-numbered positions

of the SSEs: This feature was specially designed for strands that

have the periodicity of 2, and contained 80 entries (20 entries

for even-numbered and 20 entries for odd-numbered positions in

each SSE).

Combining all features, we constructed a 391D complete feature

vector for each SSE pair. Hyper-parameters of the DBN model (see

Section 2.2) were optimized using this complete feature set, by

5-fold cross validation on the training dataset. The complete feature

set was then optimized to the best feature subset by the group MCP

with tunable parameters optimized simultaneously (see Section 2.3).

The final model was built using the optimal feature subset. Notably,

although secondary structure information was extracted using DSSP

(Kabsch and Sander, 1983) in model construction, predicted second-

ary structure information by SSpro (Magnan and Baldi, 2014) was

used for feature extraction in the practical applications of

DeepCCon, e.g. providing the coarse contact information for the

subsequent residue–residue contact prediction.

The performance of models was evaluated using three measures,

including positive predictive value (PPV, or precision), true positive

rate (TPR, or recall) and F-measure:

PPV ¼ XX

AXþ PXþNX
; (2)

TPR ¼ XX

XAþXPþXN
; (3)

F �measure ¼ 2� PPV� TPR

PPVþ TPR
; (4)

where the labels of P, A and N refer to parallel contact, anti-parallel

contact and no-contact, respectively. The format of XY refers the

number of times when SSE pairs in class of X2{P,A,N} are predicted

to be in class of Y2{P,A,N}. As a comprehensive evaluator combin-

ing both PPV and TPR, F-measure was chosen as the primary evalu-

ation criterion for parameter optimization.

2.5 Residue–residue contact prediction
We developed a deep-learning-based model DeepRCon to predict

residue–residue contacts, by combining multiple features including

the coarse contact information provided by DeepCCon. The input

features could be categorized as those of residue pairs, of intervening

sequences and of entire protein. For the target residue pair, each

residue was represented by a window of odd size (w) centered at it

to consider the effect of local environment. For the intervening se-

quence, residue at the center as well as those located at the centers

of the first and second halves were chosen, and three windows of

identical odd sizes (cw) centered at these residues were employed to

reflect property of the sequence. DeepRCon was trained in a proto-

col similar to DeepCCon (Fig. 1). We designed the following new

features for DeepRCon:

1. Coarse contact information: If the target residues were located

in SSEs, this feature described the probabilities of the corres-

ponding SSE pair in various categories (parallel contact, anti-

parallel contact and no-contact), as predicted by DeepCCon.

2. Smoothed position specific scoring matrix (PSSM) (Cheng

et al., 2008) of residue pair and intervening sequence: The

PSSM was obtained using PSI-BLAST (Altschul et al., 1997)

search against the non-redundant protein sequence database at

NCBI (released until December 26, 2014), with the substitu-

tion matrix, round of iteration and E-value chosen as

BLOSUM62, 10 and 0.001, respectively. The smoothed PSSM

uses the sum of PSSM score within a window of odd size (sw)

to include local environmental effect in the description of evo-

lutionary conservation of the central residue. Here, we intro-

duced smoothed PSSM into residue contact prediction,

considering its superior performance over the traditional PSSM

in the prediction of RNA-binding residues of proteins (Cheng

et al., 2008; Xiong et al., 2015).

3. Natural vector of intervening sequence: The 60D natural vector

was extracted in the same way as Section 2.4.

4. Contact propensity of residue pair: Similar to Section 2.4, con-

tact propensity for each residue pair was calculated by Equation

(1), using proteins in the training dataset. In order to include the

influence of secondary structures, residues were differentiated by

both identities and secondary structure classification. Therefore,

a total of nine propensity matrices were constructed.

5. Coevolutionary information of residue pair: This information

was directly obtained from plmDCA scores that were extracted

from �0.7L homologous sequences (see Section 2.4).

In addition, we incorporated popular features from previous studies:

1. Secondary structure information of residue pair and intervening

sequence: obtained from prediction by SSpro (Magnan and

Baldi, 2014).
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2. Solvent accessibility of residue pair and intervening sequence:

obtained from prediction by ACCpro (Magnan and Baldi,

2014).

3. Amino acid groups of residue pair and intervening sequence:

based on the study of ProC_S3 (Li et al., 2011), the 20 amino

acids were divided into seven groups: (a) Arg and Lys; (b) Asp

and Glu; (c) Ala and Met; (d) Val, Ile and Leu; (e) Phe, Tyr and

Trp; (f) Cys; (g) Gly, Ser, Asn, His, Pro, Thr and Gln. A binary

vector was used to represent the state of each individual residue.

4. Length of intervening sequence: This feature was represented by

a vector to describe the binary states within eight intervals (24–

28, 29–33, 34–38, 39–43, 44–48, 49–58, 59–68, 69–78, 79–88

and �89). Again, the intervals were adjusted based on the distri-

bution of proteins in the training dataset.

5. Secondary structure composition of entire protein: calculated as

the percentage of each type in the predicted secondary structure

sequence.

6. Solvent accessibility composition of entire protein: calculated as

the percentage of each type (buried or exposed) in predicted pro-

file of solvent accessibility.

7. Amino acid composition of entire protein: calculated as the

occurring frequencies of all 20 amino acids.

8. Length of entire protein: Again, this feature was represented by

a vector of binary states in four intervals (�80, 81–160, 161–

240 and �241).

Combining all features, we eventually constructed a 1224D com-

plete feature vector to describe the property of each residue pair.

Here, besides the DBN parameters (see Section 2.2), values of three

window sizes (w, cw and sw) also need optimization. Their optimal

values were chosen as 13, 3 and 5, respectively (see Section 3.3 for

details). Subsequently, the complete feature set was optimized to a

758D optimal feature subset using the group MCP. The final model

of DeepRCon was built using the optimal feature subset.

In the performance evaluation, we adopted the conventional

measures in CASP competition: accuracy (Acc) and distance distri-

bution (Xd). Acc refers to the fraction of correct predictions within

all predicted contacts, and Xd quantifies the difference between the

distance distribution of predicted contacting residue pairs and that

of all residue pairs in native protein structure:

Acc ¼ TP

TPþ FP
; (5)

Xd ¼
X15

i¼1

Ppi � Pai

i
; (6)

where TP and FP refer to the correctly and incorrectly predicted

contacts, respectively. Ppi is the percentage of predicted contact

pairs within a distance interval of [4(i�1), 4i], and Pai is correspond-

ing metric for all residue pairs in the native structure. Large positive

Xd usually reflects good performance (a random prediction corres-

ponds to Xd ¼ 0). The measures were computed for the top L/5, top

L/10 and best five predicted contacts. As the most widely used

evaluator for residue contact prediction, Acc of the top L/5 pre-

dicted contacts was chosen as our primary evaluation criterion for

parameter optimization.

2.6 Refinement of contact map
As described earlier, both DeepCCon and DeepRCon were deliber-

ately constructed to reduce the reliance on sequence abundance.

Accordingly, the performance of DeepRCon is robust upon sequence

abundance (see Section 4 for details). In practical contact prediction,

however, sequence information should be maximally utilized, espe-

cially for protein targets of large-families. Therefore, we constructed

a DBN model to effectively combine the prediction results of

DeepRCon and a pure coevolution-based predictor CCMpred

(Seemayer et al., 2014). In specific, this refinement step predicts the

contact probability of a target residue pair (i, j) based on the number

of available homologous sequences in MSA as well as the rw � rw

matrices of output contact maps from both DeepRCon and

CCMpred that were centered at position (i, j). The window size rw

was optimized to 9. All parameters of this model were optimized

based on the training dataset.

3 Results

3.1 Database analysis on sequence abundance
Despite the success in the past years, methods that predict residue

contacts based on coevolutionary information invariantly require

the presence of abundant homologous sequences in MSA to effect-

ively remove the noises caused by information transitivity, and thus

may be useful only for the structure prediction of a small fraction of

proteins (Ekeberg et al., 2014; Jones et al., 2012; Kamisetty et al.,

2013). Here, we investigated the sequence abundance in our training

dataset that contained one representative domain from each SCOPe

family. The cumulative distribution function (CDF) indicates that

�60% protein families have < 1L homologous sequences

(Supplementary Fig. S2), a level at which coevolution-based meth-

ods become powerless (Kamisetty et al., 2013). In order to expand

the usefulness of our method, we elevated the noise level of coevolu-

tionary information in our model training, by artificially reducing

the number of homologous sequences in plmDCA calculation. In

specific, the number of effective sequences was strictly limited to

�0.7L in the extraction of coevolutionary-information-related fea-

tures of both training and testing datasets. The cutoff of 0.7L was

carefully chosen as the value at which CDF equals to 0.5 (i.e. the

median number of sequences among all protein families) to favor

proteins of small families.

3.2 Coarse contact prediction
In our datasets, the contacting SSE pairs (parallel and anti-parallel)

are greatly outnumbered by no-contact ones. Because the former

provides more useful information for the subsequent prediction of

residue contacts, we ignored the latter in the performance evaluation

of coarse contact prediction, in order to avoid the unwanted biases

in evaluation.

Using the complete feature set, DeepCCon achieves an F-measure

of 49.33%, a PPV of 55.88% and a TPR of 44.58% using 5-fold

cross validation on the training dataset, when comprehensively con-

sidering the parallel and anti-parallel SSE pairs (Supplementary Table

S1). In contrast, the models constructed with the same feature set but

using two popular conventional learning technologies (random forest

and back-propagation neural network as tested here) are less powerful

(Supplementary Table S1), thereby reinforcing the great advance

brought by deep learning technique. The complete feature set was de-

signed by introducing a number of new features into those adopted by

CCMAPpro (the coarse contact predictor of CMAPpro). To evaluate

the effect of new features, we re-trained the model using features from

CCMAPpro only for comparison. Results of 5-fold cross validation

(Supplementary Table S2) suggest that our newly proposed features

make a significant contribution in F-measure (by 4.50%).

Despite the improvement in performance, incorporation of new

features raises the feature dimension from 271 to 391. To reduce
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computational complexity, we carried out feature selection to find

the optimal feature subset, which effectively reduced the feature di-

mension (from 391 to 133) and mildly improved the model perform-

ance at the same time (Supplementary Table S2). In addition, three

out of the six features that were retained in the optimal feature set

are new features (Supplementary Table S3). The final DeepCCon

model was thus constructed using the optimal feature subset.

The performance was further evaluated on the independent test-

ing dataset. Considering both parallel and anti-parallel contacts,

DeepCCon achieves an F-measure of 51.75% with a PPV of

57.37% and a TPR of 47.14%. The steady performance of

DeepCCon on the training and testing datasets for all tested feature

sets excludes the presence of over-training (compare Table 1 and

Supplementary Table S2).

In the above model, secondary structure information was ob-

tained unambiguously from DSSP (Kabsch and Sander, 1983) calcu-

lation to simplify parameter optimization. In practice, this

information has to be predicted from primary sequence. To evaluate

this effect, DeepCCon was rebuilt using secondary structures pre-

dicted by SSpro (Magnan and Baldi, 2014) with all tunable param-

eters unchanged. The new model only shows slightly weakened

performance (�2% reduction in F-measure) on both training

(Supplementary Table S4) and testing datasets (Supplementary

Table S5), and therefore can still provide comparably useful infor-

mation for the subsequent residue contact prediction.

3.3 Residue–residue contact prediction
In the process of model training, since the non-contact pairs are consid-

erably more abundant than the contact pairs (positive case: �1.35%),

we randomly selected 3% of all samples, which included all positive

samples, to deal with the seriously unbalanced training set. With the

complete feature set, three window sizes (w, cw and sw) of DeepRCon

were first optimized from 1 to 19, 1 to 11 and 1 to 19, respectively, by

5-fold cross validation on the training dataset, with Acc of the top L/5

predicted contacts chosen as the main evaluator. Considering the high

computational complexity, optimization was carried out sequentially,

in the order of w, cw and sw, with the un-optimized parameters tem-

porarily set to 1. Finally, the optimal values of w, cw and sw were set

to 13, 3 and 5, respectively (Supplementary Fig. S3). The performance

of DeepRCon at the same tested combinations of parameter values

was also evaluated on the benchmark testing dataset (Supplementary

Fig. S4). The consistence between profiles of the training and testing

datasets indicate the robustness of our model. As shown in

Supplementary Table S6, after parameter optimization, DeepRCon

achieves an Acc of 35.32% and an Xd of 15.77% for the top L/5 pre-

dicted contacts using the complete feature set.

The complete feature set of DeepRCon has a feature dimension

of 1224, contributed by 17 features. Although high dimensionality

guarantees sufficient coverage on the encoded information, the noise

and redundancy among features may impair the predictive power

and raise computational complexity. Therefore, similar to the coarse

contact prediction, we conducted feature selection on DeepRCon to

obtain the optimal feature subset. As shown in Supplementary

Tables S7, 11 out of 17 features were retained after this process.

Not unexpectedly, 5 out of 6 newly proposed features, including the

coarse contact information, remained in the optimal feature subset,

which reinforces their strong discriminating power in the residue–

residue contact prediction. As shown in Supplementary Table S6,

feature selection successfully reduced the feature dimension from

1224 to 758, and more importantly, significantly improved the pre-

diction performance of DeepRCon in respect of all evaluators using

5-fold cross validation on the training dataset. Particularly, the Acc

and Xd of the top L/5 predicted contacts were enhanced to 38.65

and 17.07%, respectively. To quantify the contribution of coarse

contact information and coevolutionary information in the perform-

ance of DeepRCon, we removed each feature from the optimal fea-

ture subset respectively and reevaluated the model performance. The

results show that coarse contact information and coevolutionary in-

formation are both essential features, contributing to Acc of the top

L/5 predicted contacts by 2.42 and 3.93%, respectively

(Supplementary Table S6). We also evaluated the relative contribu-

tions of the other features using the same method, and the detailed

information is shown in Supplementary Table S8.

The performance of DeepRCon was further evaluated on the in-

dependent testing dataset (Table 2), with all tunable parameters

fixed at their optimal values. Again, the steady performance of

DeepRCon on the training and testing datasets supports robustness

of our model (compare Table 2 and Supplementary Table S6).

Specifically, the model built with the optimal feature subset achieves

an Acc of 39.12% and an Xd of 16.64% for the top L/5 predicted

contacts. On the testing dataset, the contributions of coarse contact

information (3D) and coevolutionary information (1D) to Acc of the

top L/5 predicted contacts were evaluated as 3.51 and 4.63%, re-

spectively, an amazing level considering the total 758 dimensions in

the optimal feature subset.

3.4 Refinement of contact prediction
The refinement step integrates more thoroughly derived coevolu-

tionary information from CCMpred as well as predicted contact in-

formation of nearby residue pairs. As shown in Table 3, due to the

inclusion of many large-family proteins in the test dataset,

CCMpred that made use of all available homologous sequences re-

markably outperforms DeepRCon that was trained using limited se-

quence information. After the refinement step, however, the final

Table 1. Performance of DeepCCon built with different feature sets

on the benchmark testing dataset

Feature set FD Parallel and Anti-parallel Parallel Anti-parallel

F-measure PPV TPR PPV TPR PPV TPR

CCMAPpro 217 46.01 58.66 37.85 44.77 18.22 62.58 48.41

Complete 391 50.09 54.98 46.00 41.64 29.75 60.67 54.74

Optimal 133 51.75 57.37 47.14 42.43 32.95 64.76 54.76

Note: ‘FD’ represents ‘Feature dimension’. The evaluating measures are

represented as percentages.

Table 2. Performance of DeepRCon built with different feature sets

on the benchmark testing dataset

Feature set FD Acc (%) Xd (%)

L/5 L/10 5 L/5 L/10 5

Complete 1224 36.16 40.73 45.37 15.80 17.16 18.36

Optimal 758 39.12 43.63 49.01 16.64 17.99 19.66

Optimal (-CCI) 755 35.61 39.61 45.44 15.33 16.47 18.18

Optimal (-CI) 757 34.49 38.47 41.50 15.38 16.38 17.28

Note: ‘FD’ represents ‘Feature dimension’. CCI and CI stand for coarse

contact information and coevolutionary information respectively. Here,

‘(-CCI)’ and ‘(-CI)’ mean that the corresponding features are removed from

the optimal feature subset.
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program DeepConPred shows significant improvement over both

DeepRCon and CCMpred, which thus indicates the effectiveness of

information integration by this step.

3.5 Evaluation on the CASP protein sets
The performance of our method was then evaluated on the latest

two CASP datasets (CASP10 and CASP11). To prevent the involve-

ment of information from homologous templates in model building,

we removed all proteins in the training dataset that had �20% se-

quence identity to any CASP targets tested here and reconstructed

the model using the updated training dataset. On the CASP10 set,

DeepConPred reaches an Acc of 59.33, 64.39 and 70.00% for the

top L/5, top L/10 and top 5 predictions, respectively (Table 4). On

the CASP11 set, the corresponding prediction accuracies drop to

49.97, 54.01 and 59.81%, respectively (Table 4). In comparison

with the top 20 predictors reported at the CASP website (http://pre

dictioncenter.org/) that were selected by the CASP official rank

based on the results of top L/5 long-range contact predictions,

DeepConPred exhibits significant improvement on both CASP10

and CASP11 sets, in respect of all evaluators (Supplementary Tables

S9 and S10). The conclusion generally holds for free modeling (FM)

targets (Supplementary Tables S11 and S12), despite the comparable

performance of DeepConPred and CONSIP2 in the CASP11 set.

Most recently, Yang et al. (2016) presented a novel method R2C

and claimed an overwhelming improvement in prediction perform-

ance. According to the published numbers, DeepConPred outper-

forms R2C by 14.53, 14.19 and 11.00% for the top L/5, top L/10

and top 5 predictions on CASP10 set, and 12.37, 12.01 and 10.91%

for the top L/5, top L/10 and top 5 predictions on CASP11 set,

respectively.

We also made an elaborate evaluation of DeepConPred (against

R2C) on two sets of hard CASP targets. The first set is composed of

all FM and template-based modeling-hard (TBM-hard) targets ac-

cording to the official definition of CASP, while the second set is col-

lected from the R2C paper, in the definition that the first models

predicted by the best half of participating servers should have an

average TM-score <0.5 for a hard CASP target. The performance of

R2C on the first set was evaluated through the R2C web server,

while the results on the second set were directly obtained from the

published paper.

On the first set of hard targets, DeepConPred outperforms R2C

in every evaluating category. In specific, as compared with R2C,

DeepConPred improves the Acc and Xd of the top L/5 predicted

contacts by 13.67 and 6.43% on CASP10 set, and by 7.58 and

5.01% on CASP11 set, respectively (Table 5). Similar results were

obtained on the second set of hard targets (Table 6), where

DeepConPred improves over R2C by 11.00, 13.37 and 9.74% for

the top L/5, top L/10 and top 5 predictions on CASP10 set, and

4.22, 5.36 and 6.67% for the top L/5, top L/10 and top 5 predic-

tions on CASP11 set. These results thus strongly demonstrate the

great advantage of DeepConPred in predicting the long-range resi-

due–residue contacts of hard targets.

4 Discussion

DeepCCon and DeepRCon were constructed using the �0.7L hom-

ologous sequences to ensure robustness for small-family proteins.

Here, we validated the model robustness upon sequence abundance

on the CASP10 and CASP11 sets, by feeding the models with coevo-

lutionary information calculated from all versus �0.7L homologous

sequences. As shown in Table 7, changes caused by the number of

effective homologous sequences are tiny and insignificant for each

evaluator, which thus confirms the robustness of DeepCCon and

DeepRCon. We speculate that the robustness may arise from the

small proportion of coevolutionary-information-related features in

the high dimensionality of the feature space (see CI and CCI in

Table 2). Notably, it is the model robustness of DeepCCon and

DeepRCon that lays foundation for the great improvement in the

subsequent refinement step, because sufficient information comple-

mentarity is present between the contact maps predicted by

DeepRCon and by the pure coevolution-based CCMpred. In this

Table 3. Comparison of the long-range residue–residue contact

prediction obtained through different modules of DeepConPred on

the benchmark testing dataset

Module Acc (%) Xd (%)

L/5 L/10 5 L/5 L/10 5

DeepRCon 39.12 43.63 49.01 16.64 17.99 19.66

CCMpred 61.81 66.13 69.42 22.02 23.42 24.72

DeepConPred 69.59 74.28 77.71 24.39 25.52 26.55

Table 4. Comparison of the long-range residue–residue contact

prediction on the 123 CASP10 and 105 CASP11 targets

Dataset Method Acc (%) Xd (%)

L/5 L/10 5 L/5 L/10 5

CASP10 R2C 44.8 50.2 59.0 NA NA NA

DeepConPred 59.33 64.39 70.00 22.47 23.39 24.94

CASP11 R2C 37.6 42.0 48.9 NA NA NA

DeepConPred 49.97 54.01 59.81 19.72 20.64 22.04

Note: The results of R2C are obtained from the R2C paper. ‘NA’ represents

the lack of data in the R2C paper.

Table 5. Comparison of the long-range residue–residue contact

prediction on the 23 CASP10 and 38 CASP11 hard targets as

defined by the composition of FM and TBM-hard targets in CASP

Dataset Method Acc (%) Xd (%)

L/5 L/10 5 L/5 L/10 5

CASP10 R2C 24.50 25.05 33.04 10.85 12.78 15.05

DeepConPred 38.17 41.49 46.09 17.28 18.30 19.83

CASP11 R2C 25.53 29.59 37.89 10.00 10.12 13.03

DeepConPred 33.11 36.69 42.11 15.01 15.62 16.88

Note: The results of R2C were obtained from the R2C online server.

Table 6. Comparison of the long-range residue–residue contact

prediction on the 35 CASP10 and 48 CASP11 hard targets defined

in R2C paper

Dataset Method Acc (%) Xd (%)

L/5 L/10 5 L/5 L/10 5

CASP10 R2C 29.2 30.4 39.4 NA NA NA

DeepConPred 40.20 43.77 49.14 16.48 17.58 19.09

CASP11 R2C 25.6 27.3 30.0 NA NA NA

DeepConPred 29.82 32.66 36.67 13.48 14.04 15.05

Note: The results of R2C are obtained from the R2C paper. ‘NA’ represents

the lack of data in the R2C paper.
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respect, the special model design and hierarchical architecture

allows our program DeepConPred to take into account proteins

from both small and large families.

During the peer review, 54 CASP12 targets were released with

full native contact information, which allows preliminary perform-

ance evaluation (Supplementary Table S13). On this subset of

CASP12 targets, DeepConPred achieves comparable performance to

the best models reported by CASP12 official website (Table 8 for

succinct results and Supplementary Table S14 for full details). In an

in-depth analysis, we compared our algorithm against

MetaPSICOV, one of the most successful and most famous contact

predictors in the past CASPs. Despite the similar levels of average

prediction accuracy, DeepConPred shows advantages on a number

of CASP12 targets, which are a or ab proteins with relatively short

chain lengths (�100 amino acids). Notably, these small-sized pro-

teins are hard targets in long-range contact prediction, due to their

limited numbers of native contacts. We found that DeepConPred

can outperform most of other methods on these proteins. For ex-

ample, for two hard targets, T0862-D1 and T0943-D1,

DeepConPred ranks as the best and second-to-the-best respectively

among all CASP12 participating groups in terms of the accuracy of

the top L/5 predicted long-range contacts. As shown by the side-by-

side comparisons of DeepConPred and MetaPSICOV on the native

long-range contact maps of these two proteins, DeepConPred in-

cludes more native contacts of the helical or strand regions within

the top L/5 predictions with fewer false positives (Supplementary

Fig. S5). Therefore, despite the comparable performance in general,

DeepConPred can provide contact information that cannot be cap-

tured by other state-of-the-art methods, especially for those small-

sized hard targets. Moreover, Zhang et al. demonstrated the positive

effects of predicted long-range contact information in practical pro-

tein structure prediction when the precision of contact prediction ex-

ceeded 22% (Zhang et al., 2003). Similarly, a number of previous

researches (e.g. CONFOLD (Adhikari et al., 2015), PconsFold

(Michel et al., 2014) and EVfold (Marks et al., 2011)) reported that

contact predictors with similar levels of prediction accuracy to

DeepConPred could facilitate the prediction of native protein con-

formation. Therefore, we believe that our contact prediction algo-

rithm DeepConPred will benefit the field of protein structure

prediction.

5 Conclusion

In this work, we proposed two novel models DeepCCon and

DeepRCon, which could be utilized in a pipeline to improve the pre-

diction of long-range residue–residue contacts in combination with

a refinement model. Besides the introduction of powerful deep learn-

ing technique, we improved the model performance by proposing

novel features and by identifying the optimal feature subset.

Moreover, the overall architecture was designed to consider protein

targets of both small and large families. Evaluation on CASP pro-

teins showed usefulness of our method in protein structure

prediction.
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