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Abstract: In a diamond, the mechanical vibration-induced strain can lead to interaction between
the mechanical mode and the nitrogen-vacancy (NV) centers. In this work, we propose to utilize
the strain-induced coupling for the quantum non-demolition (QND) single phonon measurement
and memory in a diamond. The single phonon in a diamond mechanical resonator can be perfectly
absorbed and emitted by the NV centers ensemble (NVE) with adiabatically tuning the microwave
driving. An optical laser drives the NVE to the excited states, which have much larger coupling
strength to the mechanical mode. By adiabatically eliminating the excited states under large
detuning limit, the effective coupling between the mechanical mode and the NVE can be used
for QND measurement of the single phonon state. Under realistic experimental conditions, we
numerically simulate the scheme. It is found that the fidelity of the absorbing and emitting process
can reach a much high value. The overlap between the input and the output phonon shapes can
reach 98.57%.
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

In quantum information processing, one of the key challenges is to realize the effective coupling,
or communication, between distant qubits. Usually, the photon is used as flying qubit for quantum
communications [1], or inducing the effective coupling between the distant qubits [2]. For example,
in superconducting quantum circuit systems, the microwave photon confined in transmission
lines resonator is used as a quantum bus [3]. Recently, with the advances in the fabrication and
manipulation of the mechanical systems [4–8], an alternative way of using phonon to couple
distant qubits was proposed [9]. The surface acoustic wave (SAW) has been successfully coupled
with superconducting qubits [10, 11]. The advantages of the phonon quantum bus compared
with the photon quantum bus are the high quality factor and small effective size [9, 10, 12]. The
speed of SAW is 5 orders of magnitude slower than the speed of light [11, 13]. Therefore, the
wavelength of SAW at GHz is also 5 orders of magnitude smaller than the microwave light.
In this way, the individual superconducting qubit addressing by SAW is possible. There are
many schemes concerning single phonons, for example, the phonon states preparation [14–16],
detection [14–21], and the phonon mediated interface [22].

As we know, in quantum optics experiments, the single photon detectors are widely used. For
microwave photons, the quantum non-demolition (QND) measurement for photon number states
have been realized in both cavity QED and superconducting circuit QED systems [23]. The QND
measurement in circuit QED systems can be used for quantum error corrections. In order to
further develop the phonon based quantum information processing, the efficient single phonon
detector is needed. The ultimate goal is to realize QND measurement on single phonon state.
Inspired by the QND measurement for photon number states, we use the strain induced phonon
and the NVE coupling in the diamond to get the strong nonlinearity for the QND measurement
of the single phonon state. The geometry of the mechanical crystal structure contains a diamond
crystal with rectangular holes arranged periodically which can precisely manipulate mechanical
vibrations [24].

The nitrogen-vacancy (NV) center, which consists a substitutional nitrogen atom and adjacent
vacancy in diamond, is one of the most promising system for solid-state quantum information
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processing. NV centers can be controlled by microwave with long coherence time even at room
temperature [25]. The diamond lattice vibration, or phonon, can couple with the NV centers
ensemble (NVE) [26, 27] and be cooled by the NVE [28]. There are two different kind of
mechanism for coupling the NV center and the phonons. The first one is magnetic field induced
coupling [29–35], and the second one is the strain induced coupling [36–38]. Here we focus on
the second method. The strain induced coupling between NV centers electron spins in the ground
state and the phonons is usually quite small, e.g. several kHz [36]. Recently, the excited-state
electron-phonon coupling has been reported in experiments [38]. It is about 6 orders of magnitude
stronger than the ground-state electron-phonon coupling [39, 40]. By taking the advantage of
strong coupling, the quantum control of the internal states of a NV center has been realized by
using optomechanical sideband transition [38]. We can use this strong coupling mechanism to
induce the strong effective nonlinear coupling between the phonon and the NVE, and realized
QND phonon number measurement.

In this work, the strain-induced spin-phonon coupling is employed in designing the scheme for
the single phonon absorption, emission and QND measurement. We consider the NVE situated a
few µm below the diamond surface which is shown in Fig. 1(a). The coupling strength between
the NVE and the single phonon can be enhanced by a factor

√
N through the collective excitation,

which can reach the strong coupling regime. The resonant frequency of the phonons propagating
in the diamond can be controlled by the rectangular holes shown in the upper diagram of Fig.
1(a), which are periodically arranged on the diamond chip. We may assume that, the resonant
frequency of the diamond chip is ωm. Then, our proposed scheme can be implemented by four
steps. The first step is initialization. In this step, all of the NV centers are prepared to state | − 1〉.
In the second step, the single phonon with the resonant frequency ωm can be absorbed by the
NVE, and the absorption will induce the resonant frequency shift which can be revealed in
the phonon absorption spectrum. In step three, we can detect the single phonon state through
probing the resonance frequency shift of the phonons in the diamond. The final step is the inverse
process of the single phonon detection. In this step, the absorbed single phonon is emitted. The
emitted phonon shape can be controlled by regulating the driving pulse acting on the NVE. The
similarity between the emitted and the absorbed single phonon reaches 98.57% if we inverse
the driving pulse when emitting compared with the absorbing process. If the single phonon
state is in quantum state before absorbing, the size and shape of the phonon will not be changed
when emitting, this process is a quantum non-demolition (QND) measurement process, which
realizes an ideal projective measurement that leaves the system in an eigenstate of the phonon
number [23, 41–43].

2. Model

As schematically shown in Fig. 1(a), we consider a diamond chip with periodically arranged
rectangle holes to adjust the refractive index for the surface acoustic wave (SAW). The NVE are
located near the diamond surface coupling to the laser, microwave and SAW.

With a zero magnetic field, the spin-triplet ground state of the NV center splits into two energy
levels, Ms = 0 and the nearly degenerate sublevels Ms = ±1 [44]. We apply an external magnetic
field −→B ext along the crystalline direction [100] of the NV center [45] to split the degenerate
sublevels Ms = ±1, which results in a three-level system denoted by |0〉 = |3 A, Ms = 0〉,
| − 1〉 = |3 A, Ms = −1〉, | + 1〉 = |3 A, Ms = +1〉, respectively. The frequency splitting between
the levels | − 1〉 and | + 1〉 is denoted as ωe. |E〉 is an excited state with an energy gap of about
1.189eV to the ground state [46]. The schematic diagram of the NV center energy structure is
shown in Fig. 1(b).

The NV centers exist in a diamond crystal and they can sense the lattice vibrations. If there is a
phonon produced in the lattice, the NV center can absorb it when the mechanical frequency and
the energy splitting of the NV centers are matched [36,47]. For this system, the phonon mode
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Fig. 1. (a) A schematic diagram of the phononic crystal. The NVE located near the surface
coupling to a single phonon and a laser field. (b) The electronic structure of the NV center.
Ω is the Rabi frequency between the energy levers |0〉 and | + 1〉 induced by the microwave
drive. ωm is the phonon mode. ωo is the optical driving frequency between the energy levels
|0〉 and |E〉 inducing the Rabi frequency of Ωo.

am with the frequency ωm couples to the NV centers with transition of | − 1〉 to | + 1〉. We can
adjust the external magnetic field −→B ext to make the frequency ωe equal to ωm and the phonon
modes propagating in the free space in diamond with the frequency ω are denoted by e(ω) which
can couple to the phonon mode am. A classical microwave field ε (t) = ε̃ (t) e−iω01t drives the
transition | + 1〉 to |0〉 with a Rabi oscillation frequency Ω(t) (ω01 is the frequency splitting
between the levels |0〉 and | + 1〉). The Rabi frequency Ω(t) can be written as Ω(t) = Ω0α (t).
Within a good approximation, we assume that ε̃ (t) increase gradually from zero with ε̃ (0) ' 0 to
a finite strength. Because α(t) is proportional to ε̃(t) (α(t) ∝ ε̃(t)), then we can getΩ (t) = Ω′0ε̃ (t),
which describes that the shape of the amplitude of the classical driving microwave field totally
decides the Rabi frequency.

Neglecting the dissipation of the NVE system, the Hamiltonian of the NVE system including
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the coupling between the mode am and the output can be written as (setting ~ = 1) [48, 49]

H =
N∑
i=1

Gm(| + 1〉i 〈−1|am + | − 1〉i 〈+1|a†m)

+
Ω(t)

2

N∑
i=1
(|0〉i 〈+1| + | + 1〉i 〈0|)

+i
√
κ/2π

∫ +∆ωe

+∆ωe

dω[a†me(ω) − ame†(ω)]

+

∫ +∆ωe

+∆ωe

dω[ωe†(ω)e(ω)]. (1)

where Gm is the coupling rate between single NV center and the phonon, which is typically small.
We need to consider the free propagating modes within a finite bandwidth [ωe − ∆ωe, ωe + ∆ωe]
that couple to the NV mode with the carrier frequency ωe. Within this bandwidth, the coupling
between e(ω) and the NV is a constant approximately which is denoted by

√
κ/2π for convenience.

κ is the effective decay rate.
To obtain the relationship between the driving pulse shape and the output phonon pulse shape,

a simple picture by neglecting the dissipation of the NVE system and the coupling of the mode
am to the output is studied. Initially, the NVE are cooled to the ground state |0〉, and a π pulse is
driven between the state |0〉 and | − 1〉, and then the NVE is in | − 1〉⊗N . To increase the accuracy
of the initialization in experiment, we can also realize it using an adiabatic process from state
|0〉 to | − 1〉, this adiabatic process is similar with the phonon emission process, which will be
described detailedly in section 3 and 5. In the rotating frame, the Hamiltonian of the NVE system
is

H ′ =
N∑
i=1

Gm(| + 1〉i 〈−1|am + | − 1〉i 〈+1|a†m)

+
Ω(t)

2

N∑
i=1
(|0〉〈+1| + | + 1〉〈0|). (2)

We map the operator |+1〉i 〈−1| to the bosonic operators.
√

Na† =
∑N

i=1 |+1〉i 〈−1|, a†a|n〉+1 =
n|n〉+1 means there are n NVs that are in the state | + 1〉. d† = |0〉i 〈+1| and d = | + 1〉i 〈0| are
the creation and annihilation operators for the ith NV center, and then the Hamiltonian can be
written as follow, where gm =

√
NGm.

H ′ = gm(a†am + aa†m) +
Ω(t)

2
(d† + d). (3)

In the bases of |N〉−1 |0〉+1 |0〉0 |1〉m, |N − 1〉−1 |1〉+1 |0〉0 |0〉m, |N − 1〉−1 |0〉+1 |1〉0 |0〉m, where
the state |p〉−1 |q〉+1 |r〉0 |s〉m represents that the numbers of the NVs which are in the states | − 1〉,
| + 1〉, and |0〉 are p, q and r respectively, and the number of phonons in the diamond is s. The
Hamiltonian can be written as a matrix as follow in the three bases,

H ′ =


0 gm 0
gm 0 Ω(t)

2
0 Ω(t)

2 0

 . (4)

This Hamiltonian has the well-known dark state |D〉 with the form |D〉 =
−Ω(t)/2√

g2
m+[Ω(t)/2]2

|N〉−1 |0〉+1 |0〉0 |1〉m + gm√
g2
m+[Ω(t)/2]2

|N − 1〉−1 |0〉+1 |1〉0 |0〉m. The dark state means,
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the state will remain on the state |D〉, if the driving pulse Ω(t) and the coupling strength satisfy
the relationship cos θ = Ω(t)/2√

g2
m+[Ω(t)/2]2

and sin θ = gm√
g2
m+[Ω(t)/2]2

.

The effects of non-zero dissipation will be analyzed in section 5, where the phonon detecting
efficiency is calculated as well as the overlap of the absorbing and emitting a single phonon with
the real lossy system.

3. Pulse shape

To obtain the relationship of the pulse shape between the driving and the phonon, we first
consider the emitting process from state |N − 1〉−1 |0〉+1 |1〉0 |0〉m to |N〉−1 |0〉+1 |0〉0 |1〉m under
ideal conditions. The Hamiltonian of the system can be written as

H = gm

(
a†am + aa†m

)
+
Ω (t)

2
(d† + d)

+i
√
κ/2π

∫ +∆ωe

−∆ωe

dω
[
a†me (ω) − ame† (ω)

]
+

∫ +∆ωe

−∆ωe

dω
[
ωe† (ω) e (ω)

]
. (5)

Assume that, at the time t = 0, the Rabi frequency Ω (t) = 0, the NVE system are in the state
|N − 1〉−1 |0〉+1 |1〉0 |0〉m, after applying a classical driving pulse ε (t), the Rabi frequency, which
is proportional to the intensity of the driving pulse, changes slowly and is within the adiabatic
approximation. Then we can expend the state |Ψ〉 of the whole system into the following form [48]

|Ψ〉 = cd |D〉 ⊗ |φ0〉 + |N〉−1 |0〉+1 |0〉0 |0〉m ⊗ |φ1〉, (6)

where |φ0〉 denotes the vacuum state of mode e (ω) in the diamond, and

|φ1〉 =
∫ +∆ωe

−∆ωe

dωcωe† (ω) |φ0〉, (7)

represents the single phonon output state. Initially, cd = 1, cω = 0 and Ω (0) = 0. Within the
adiabatic approximation, we would like to calculate the time evolution of the whole NVE system
state |Ψ〉 by substituting it into the schr Üodinger equation i∂t |Ψ〉 = H |Ψ〉. The coefficients cd and
cω can be got, which satisfy the following evolution equations:

Ûcd =
(
−
√
κ/2π cos θ

) ∫ +∆ωe

−∆ωe

cωdω, (8)

Ûcω = −iωcω +
√
κ/2πcd cos θ. (9)

We can get the solution of cω as follow

cω (t) =
√
κ/2π

∫ t

0
e−iω(t−τ)cd (τ) cos θ (τ) dτ, (10)

substituting the solution into the equation of cd , leads to

Ûcd = −
κ cos θ
π

∫ t

0

sin [δω (t − τ)]
(t − τ) cd (τ) cos θ (τ) dτ. (11)

The bandwidth δω satisfies δωT � 1, where the operation time T characterizes the time scale
for a significant change of cd and sin θ, so the above function satisfies a δ function

δ (x) = lim
k→∞

1
π

sin k x
x

, (12)
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then we can obtain

Ûcd = −
κ

2
cd (t) cos2 θ. (13)

The solutions of cd and cω are

cd = e−
κ
2
∫ t

0 cos2 θ(τ)dτ, (14)

cω (t) =
√
κ/2π

∫ t

0
e−iω(t−τ)e−

κ
2
∫ t

0 cos2 θ(τ)dτ

·cosθ (τ) dτ. (15)

The single-phonon pulse shape f (t) can be obtained by the Fourier transformation

f (t) = 1
√

2π

∫ +∆ωe

−∆ωe

dωcω (T) e−iω(t−T ) (16)

=
√
κ cos θ (t) e− κ2

∫ t

0 cos2 θ(τ)dτ . (17)

If the Rabi frequency Ω (t), which is proportional to the strength of the driving pulse, satisfies
the function as Ω (t) = 2gm exp

[
κ
(
t − T

2
)
/2

]
, the output phonon shape will be symmetric. The

output phonon shape function can be figured out as

f (t) =
√
κ
√

1 + exp
(
− κT2

)
exp

[
−κ

(
t − T

2
)
/2

]
+ exp

[
κ
(
t − T

2
)
/2

] , (18)

the results is shown in Fig. 2 for κ/2π = 1.6 × 105, T = 20
κ . We assume that, in the absorption

process, we know the phonon shape in advance, such as the shape in Fig. 2. As the absorption
process is the time reversal of the emission process, and the phonon shape is symmetrical in the
time domain, if we reverse the temporal driving pulse shape on NV centers in the absorbing
process, the phonon can be completely absorbed by the NVE [50]. If the phonon shape is not
symmetrical in the time domain, it can also be completely absorbed as long as it is reversed
simultaneously with the driving pulse.

4. QND measurement

As schematically shown in Fig. 1(b), we consider the energy levels |0〉 and |E〉. After the
absorption process, we stop the microwave driving pulse Ω between the state |0〉 and | + 1〉
and change the external magnetic field intensity to regulate the frequency splitting ωe to be far
detuning, therefore, the ground state spin-phonon interaction can be neglected. At the same time,
we start the driving pulse Ωo between the state |0〉 and |E〉 to detect the single phonon state.

The Hamiltonian of the detecting system is

H = ωma†mam + ω0E |E〉〈E |

+
Ωo

2

(
eiωo t |0〉〈E | + e−iωo t |E〉〈0|

)
+g

(
a†m + am

)
|E〉〈E |. (19)

Applying the Schrieffer-Wolff transformation

U = exp[ g
ωm

(
a†m − am

)
|E〉〈E |]

                                                                                          Vol. 25, No. 24 | 27 Nov 2017 | OPTICS EXPRESS 30156 



Fig. 2. The situation of the symmetric output phonon shape. The red line is the driving
pulse shape applying to the NVE, and the black line represents the pulse shape of the output
phonon.

to the Hamiltonian gives

H̃ = UHU†

= ωma†mam −
g2

ωm
|E〉〈E | + ω0E |E〉〈E |

+
Ωo

2
[eiωo t− g

ωm
(a†m−am) |0〉〈E | + H.c.]. (20)

Apply the RWA, and set H0 = ωma†mam + (ω0E − g2

ωm
− δ)|E〉〈E |, the Hamiltonian becomes

H̃r = δ |E〉〈E | + gΩo

2ωm
a†m |E〉〈0| +

gΩo

2ωm
am |0〉〈E |, (21)

where ω0E = δ + ωm +
g2

ωm
+ ωo.

Then we apply another RWA, and set H ′0 = δ |E〉〈E |, the Hamiltonian is calculated as

H̃
′
r =

gΩo

2ωm
eiδta†m |E〉〈0| +

gΩo

2ωm
e−iδtam |0〉〈E |. (22)

When the interaction strength of Ωo

2 is far small compared with the detuning δ, the time-average
effective Hamiltonian is obtained as [51]

H̃
′

e f f =
g2Ω2

o

4ω2
mδ

a†mam(|E〉〈E | − |0〉〈0|)

− g
2Ω2

o

4ω2
mδ
|0〉〈0|. (23)

From the Hamiltonian we can see that the resonant frequency of the phonon crystal will be
affected by the state of NVE, which means the resonant frequency shift is proportional to the
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excitation number in state |0〉. When there is one NV center absorbing a single phonon, the
frequency shift of the phonon crystal is

∆ fs =
g2Ω2

o

2ω2
mδ

. (24)

Fig. 3. The schematic diagram of the phonon resonance spectrum with waist width of γe.
The vertical coordinate represents the probability of a single phonon being absorbed. Nph

represents the number of the absorbed phonon. The red line shows that, when there is one
single phonon absorbed, the resonance frequency will shift distinctively compared with the
non-phonon-absorbed situation.

The effective dissipation of the excited state |E〉 is γe = ( gδ )2γE , where g =
gΩo

2ωm
is the

equivalent coupling strength, γE is the decay rate of the energy level |E〉 with the population of 1.
If we set g = 2π×5MHz,Ωo = 2π×290MHz,ωm = 2π×900MHz [38], γE = 2π×3MHz [52],
and δ = 2π × 30MHz, the effective dissipation and the frequency shift can be calculated as
γe = 2π× 2.16kHz and ∆ fs = 2π× 43.26kHz respectively, which implies that the single phonon
absorption induced frequency shift can be detected distinctively. Without loss of generality, we
assume that, the detected phonon absorption spectrum satisfies the Gaussian distribution, the
schematic diagram of the detected phonon absorption spectrum is shown in Fig. 3. In fact, as
long as we have δ � γE , the demand for the resolution can be satisfied, and the scheme can be
realized under the realistic experimental conditions.

5. Dissipation effects

In the above sections, the dynamical evolution has been analysed in ideal condition and the
relationship between the driving pulse shape and the emitting phonon shape has been obtained,
however, there are various losses in the real systems. If we consider the dynamical evolution of
the NVE system with the conditional Hamiltonian which include the possible losses, the whole
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conditional Hamiltonian has the following form:

Hc = −i
γ1
2
|N − 1〉−1 |1〉+1 |0〉0 |0〉m

−i
γ0
2
|N − 1〉−1 |0〉+1 |1〉0 |0〉m − i

γm
2

a†mam

+gm(a†am + aa†m) +
Ω(t)

2
(d† + d)

+i
√
κ/2π

∫ +∆ωe

−∆ωe

dω[a†me(ω) − ame†(ω)]

+

∫ +∆ωe

−∆ωe

dω[ωe†(ω)e(ω)]. (25)

where γ0 is the dephasing rate in state |0〉, γ1 denotes the spontaneous emission of state | + 1〉,
and γm denotes the phonon dissipation in the single NV evolution.
For numerical simulations, we need to discretize the field e(ω) by introducing a finite but

small frequency interval δω between two adjacent mode frequencies. Then the number of the
total modes we have is n = 2∆ωe

δω + 1, the frequency of the jth mode ωj which is denoted by e j is
given by ωj =

(
j − n+1

2

)
δω. The Hamiltonian can be transformed to the form:

Hc = −i
γ1
2
|N − 1〉−1 |1〉+1 |0〉0 |0〉m

−i
γ0
2
|N − 1〉−1 |0〉+1 |1〉0 |0〉m − i

γm
2

a†mam

+gm(a†am + aa†m) +
Ω(t)

2
(d† + d)

+iκe
n∑
j=1

√
δω[a†me j − ame†j ]

+

n∑
j=1
(ωjδωe†j e j), (26)

where κe =
√
κδω/2π. Similarly, the state |Ψ〉 of the NVE system can be expanded by the

discretized phonon pulse state with the form |φ1〉 =
∑n

j=1 δωbje
†
j |vac〉, which is

|Ψ > = (c1 |N〉−1 |0〉+1 |0〉0 |1〉m + c2 |N − 1〉−1 |1〉+1 |0〉0 |0〉m
+c3 |N − 1〉−1 |0〉+1 |1〉0 |0〉m) ⊗ |φ0〉
+|N〉−1 |0〉+1 |0〉0 |0〉m ⊗ |φ1〉. (27)

Substituting |Ψ〉 into the schr Üodinger equation i∂t |Ψ〉 = H |Ψ〉, we can get

Ûc1 = −
γm
2

c1 − igmc2 + κe

n∑
j=1

b̃j, (28)

Ûc2 = −
γ1
2

c2 − igmc1 − i
Ω (t)

2
c3, (29)

Ûc3 = −
γ0
2

c3 − i
Ω (t)

2
c2, (30)
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Ûbj = −κec1 − ib̃jωj, (31)

where b̃j =
√
δωbj . We assume that, initially, there is a single phonon state in the diamond,

which shape is shown as Fig. 2, and all of the NV centers are in the state | − 1〉, which means
c1 = c2 = c3 = 0,

∑ ��bj

��2 , 0. If we would like to absorb the phonon effectively, the driving
pulse Ω′ (t) should be the time reversal of Ω (t) in Fig. 2, that is Ω′ (t) = gm exp

[
κ
(
−t + T

2
)
/2

]
,

where T = 20/κ. The shape control of the driving microwave pulse can be easily achieved
by modulating an arbitrary wave generator. We set γ0/2π = 0.16kHz, γ1/2π = 0.16kHz
[53], γm/2π = 0.16kHz [26, 54], Gm = 4.8kHz, N = 4 × 104, gm/2π = 0.96MHz, and
κ/2π = 0.32MHz. The numerical simulation results of absorbing process are shown in Fig. 4(a)
with the black lines. Under the condition of strong coupling between the NVE and the phonon,
the process is quasi-adiabatic, the value of c2 is distinctly smaller than c1 and c3. The first half is
the process that the free single phonon entering the strong coupling area with the NVE plays a
leading role, and the latter half is predominantly the absorbing process. at time t = T , the fidelity
between the actual state and the ideal state is 99.38%. As the dissipations increase, the fidelity
decreases obviously which is also shown in Fig. 4(a) with the blue lines. The red lines in Fig. 4(a)
implies that, it will also reduce the fidelity of the state if the coupling strength and the effective
decay rate κ do not satisfy the adiabatic condition.

Fig. 4. The numerical simulation results. (a) is the absorbing process. The black lines represent
the process with γ0/2π = 0.16kHz, γ1/2π = 0.16kHz, γm/2π = 0.16kHz, gm/2π =
0.96MHz, and κ/2π = 0.32MHz. The blue lines show the process with γ0/2π = 1.6kHz,
γ1/2π = 1.6kHz, γm/2π = 1.6kHz, gm/2π = 0.96MHz, and κ/2π = 0.32MHz. The red
ones denote the process with γ0/2π = 0.16kHz, γ1/2π = 0.16kHz, γm/2π = 0.16kHz,
gm/2π = 1.92MHz, and κ/2π = 0.64MHz. (b) is the emitting process, where the black
line represents the input phonon shape, and the red, blue and green lines represent the
output phonon shapes when the coupling strength are at gm/2π = 0.96MHz, 0.64MHz and
0.32MHz respectively with the same value of κ = 0.32MHz. The overlap between the input
pulse and the output pulse are 98.57%, 98.32% and 94.38% for the red, blue and green lines
respectively.

After absorbing and detecting the single phonon, we can apply a driving pulseΩ(t) on the NVE,
the phonon we have just absorbed will then be emitted. The comparison of the input and output
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phonon pulse shape is shown in Fig. 4(b) with the κ = 0.32MHz. The black line is the input
phonon shape, the red, blue and green ones are the output phonon shape with gm/2π = 0.96MHz,
0.64MHz and 0.32MHz respectively. we can see that, the stronger the coupling is, the larger
overlap it has between the input and output single phonon shape. When the coupling strength
gm/2π = 0.96MHz, the overlap can reach 98.57%. In the first step, the NVE absorbs one phonon
from the diamond or not. And then, we can detect whether the single phonon state was absorbed
through the frequency shift of the phononic crystal. Finally, the NVE can emit the phonon with
nearly the same shape compared with the absorbed one. In this process, the single phonon state
has been measured without changing the phonon shape, which is a true QND measurement. The
process of emitting can act as a single phonon source, it can also be used in the initialization
process of the NVE from state |0〉⊗N to state | − 1〉⊗N . The whole courses including absorbing,
detecting and emitting a single phonon can also serve as a single phonon memory.

6. Conclusion

We have proposed a scheme to realize the QND single phonon state detecting and emitting
based on the strain mediated interaction between the NVE and the single phonon. By analyze
the dynamical evolution of the real system, we are able to calculate the fidelity of the absorbing
process and the overlap between the input and output phonon number state, both of which can
reach a very high value. The emitting process can act as a single phonon source and the whole
courses including absorbing, detecting and emitting a single phonon can also serve as a single
phonon memory. In future, the similar method may also be used to realize the QND measurement
for arbitrary Fock states of phonons.
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