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Production and verification of multipartite quantum state are an essential step in quantum information
processing. In this work, we propose an efficient method to decompose symmetric multipartite observables,
which are invariant under permutations between parties, with only (N + 1)(N + 2)/2 local measurement
settings, where N is the number of qubits. We apply the decomposition technique to evaluate the fidelity between
an unknown prepared state and any target permutation invariant state. In addition, for some typical permutation
invariant states, such as the Dicke state with a constant number of excitations, m, we derive a tight linear bound on
the number of local measurement settings, m(2m + 3)N + 1. Meanwhile, for the Greenberger-Horne-Zeilinger
state, the W state, and the Dicke state, we prove a linear lower bound, �(N ). Hence, for these particular states,
our decomposition technique is optimal.
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I. INTRODUCTION

Quantum states with genuine multipartite entanglement,
such as the GHZ state [1], the Dicke state (including the W
state) [2,3], and the general graph (stabilizer) state [4,5], are
essential ingredients for many quantum information process-
ing tasks, such as multipartite quantum key distribution [6],
quantum secret sharing [7,8], quantum error correction [5,9],
measurement-based quantum computing [10], and quantum
metrology [11,12]. In practice, due to the noise caused by the
uncontrolled interaction between the system and the environ-
ment, the prepared state unavoidably deviates from the target
one. Hence, it is necessary to quantify such deviation, which
acts as a calibration for the experimental system and provides
the basis of further information processing.

A straightforward method to benchmark the system is
quantum state tomography [13,14]. In reality, due to the
tensor product structure of the Hilbert space, the required
resources scale exponentially with the number of system
parties (say, qubits) in tomography. In the last decade, the
qubit number under manipulation increases significantly in
various experiment systems, such as those based on ion-trap
[15], superconducting [16], and linear optics [17]. Thus, it is
impractical to directly conduct tomography for state-of-the-
art multipartite quantum systems. Fortunately, the required
resources can be dramatically reduced if one possesses some
preknowledge about the prepared state and takes advantage
of symmetries. In this spirit, several efficient tomography
methods were put forward for various types of quantum states,
such as the low-rank state [18,19], the matrix product state
[20–22], and the permutation invariant (PI) state [23,24]. The
insight underlying this simplification is that one only needs
the parameters of the ansatz states there, such as the tensor
network state and the PI state, whose number only increases
polynomially with the number of qubits N .
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In practical quantum information tasks, instead of gaining
all the information about the density matrix, one only needs
to guarantee that the prepared state holds sufficiently high
fidelity with the target state. If focusing on fidelity evalu-
ation instead of a full tomography, one can further reduce
the measurement efforts. Sometimes, one only needs to de-
tect or witness entanglement for multipartite systems. Since
quantum states with high symmetries are widely used in
information processing, these tasks generally involve sym-
metric observables, which are invariant under permutations
of parties. In addition, multipartite measurement is normally
very challenging in practice. Instead, it is often broken down
to local measurements [25,26]. Take an N-qubit system, for
example, to measure the fidelity between a prepared state ρ

and the GHZ state, Tr(ρ|GHZ〉〈GHZ|); one cannot measure it
directly with |GHZ〉〈GHZ|. Instead, 〈|GHZ〉〈GHZ|〉 is broken
down to a set of local measurements {A⊗N }, whose number
determines the complexity of fidelity evaluation. Note that
from a local measurement setting (LMS) A⊗N , not only the
expectation value 〈A⊗N 〉, but also the full statistics can be
obtained. For instance, one can get the probability of any
specific measurement result, say an N-bit string, from the
Pauli Z measurement, σ⊗N

Z .
In this work, we focus on estimating the fidelity with PI

states. The PI state set SPI contains all the states which are
invariant under any subsystem permutation,

ρPI = P(π )ρPIP(π ), ∀π, (1)

where P(π ) is the permutation operation of the element π in
the symmetry group SN . It is worth mentioning another related
state set, the symmetric state set SS , which contains all the
pure states satisfying

|ψs〉 = P(π )|ψs〉, ∀π (2)

and their convex combination. It is not hard to see that SS ⊂
SPI [27].

By decomposing a symmetric observable, we construct
a set of (N + 1)(N + 2)/2 LMSs to evaluate the fidelity
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between a prepared state and any target PI state. To do this,
we first give a general theorem which constructs a set of
product-state basis for the symmetric subspace of the N-qudit
Hilbert space. Then, based on this theorem, one can find
a set of product operators as the basis for the symmetric
subspace of the N-partite operator space, which contains
all PI states. Thus, any PI state can be decomposed as the
linear combination of these basis operators. As a result, by
measuring all the basis operators with local measurements,
one can finally evaluate the fidelity with respect to any target
PI state by only postprocessing the measurement results. By
observing that several product operators can be measured with
the same LMS, we finally reduce the number of LMSs to
(N + 1)(N + 2)/2.

Moreover, based on this general decomposition, we can
further reduce the number of LMSs for some typical PI states,
such as the GHZ state, the W state, and the Dicke state,
with a constant number of excitations. Define measurement
complexity as the minimal number of LMSs to decompose
a state and we systemically study their measurement com-
plexities. To give an upper bound of the measurement com-
plexity, we show an explicit decomposition of the state by
finding a smaller subspace of the symmetric subspace which
contains the state and constructing the basis of it with fewer
LMSs. To give a lower bound, we find some subspace where
the projection of the target state shows some specific form
and prove that one needs enough LMSs to reestablish the
same form. Combing the upper and the lower bounds, we
finally show that their measurement complexities all scale
as �(N ).

The paper is organized as follows. In Sec. II, we construct
a set of product-state bases for the symmetric subspace. In
Sec. III, we propose a method based on the previous theo-
rem, with (N + 1)(N + 2)/2 LMSs, to evaluate the fidelity
between an unknown state and any target PI state. In Sec. V,
we further reduce the number of LMSs in fidelity evaluation
for some special PI states, GHZ, W , and Dicke. We finally
conclude in Sec. VI with further discussions.

II. PRODUCT-STATE BASIS FOR SYMMETRIC SUBSPACE

In this section, we construct a set of linearly independent
vectors (states) in the product form, which can span the
symmetric subspace. This construction will help us to find
LMSs for decomposition of symmetric operators and fidelity
evaluation of the PI state in the following sections.

First, let us briefly review the symmetric subspace of an
N-qudit Hilbert space H⊗N

d , denoted SymN (Hd ). Given an
element π in the symmetric group SN with N letters, the
corresponding permutation operator defined on H⊗N

d is

Pd (π ) =
∑

i1,...,iN ∈[d]

|iπ−1(1), . . . , iπ−1(N )〉〈i1, . . . , iN |, (3)

where {|0〉, |1〉, . . . , |d − 1〉} is the local basis for each qu-
dit and [d] = {0, 1, . . . , d − 1}. The symmetric subspace
SymN (Hd ) ⊆ H⊗N

d contains all the pure states which are
invariant under permutation,

SymN (Hd ) = {|�〉 ∈ H⊗N
d : Pd (π )|�〉 = |�〉, ∀π ∈ SN

}
.

(4)
In the qubit case with d = 2, we denote the permutation
operator P(π ) for simplicity.

It is known that the dimension of SymN (Hd ) is given
by [28]

DS =
(

N + d − 1

N

)
= (N + d − 1)!

N!(d − 1)!
, (5)

and there is a set of orthogonal (unnormalized) bases of
SymN (Hd ),

{
|�	i〉 =

∑
π

|0〉⊗i0 |1〉⊗i1 . . . |d − 1〉⊗id−1

∣∣∣∣ik ∈ Z+,

d−1∑
k=0

ik=N

}
,

(6)

where Z+ denotes the nonnegative integer set and 	i =
(i0, i1, . . . , id−1) is a d-dimensional vector. Here,

∑
π repre-

sents the summation over all permutations of N qudits that
yield different expressions. We keep this notation throughout
the paper.

Meanwhile, the symmetric subspace SymN (Hd ) can be
spanned by the symmetric product states,

SymN (Hd ) = span{|φ〉⊗N : |φ〉 ∈ Hd}. (7)

For a finite N , it is not hard to see that the symmetric product
states, |φ〉⊗N , are linearly dependent. In the following, we
construct a product-state basis for the symmetric subspace
SymN (Hd ), by selecting (N + d − 1

N ) linearly independent prod-
uct states, as shown in Theorem II.

Define a d × (N + 1) matrix with complex elements ak, j

satisfying

a0, j = 1,

ak, j 
= ak, j′ , ∀1 � k � d − 1,
(8)

for all 0 � j 
= j′ � N . That is, all the elements in the zeroth
row are 1; and for the other rows, the elements are different
for different columns.

Theorem 1. The following state set B contains (N + d − 1
N )

linearly independent vectors which are (unnormalized) sym-
metric product states, and they can span the symmetric sub-
space SymN (Hd ),

B =
{

|		j〉 = (a0, j0 |0〉 + a1, j1 |1〉 + . . . + ad−1, jd−1 |d − 1〉)⊗N | jk ∈ Z+,

d−1∑
k=0

jk = N

}
, (9)
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where the coefficients ak, jk are selected from any matrix
satisfying Eq. (8).

In the following, we call the vectors in B a set of bases of
SymN (Hd ), even though they might not be orthogonal with
each other. The complete proof of Theorem 1 is shown in
Appendix A, which is based on induction. Here, we present
the qubit case of Theorem 1 in Corollary 1 and provide a
simple proof.

Corollary 1. The following state set B contains N + 1 lin-
early independent vectors which are (unnormalized) symmet-
ric product states, and they can span the symmetric subspace
SymN (H2),

B = {|	 j〉 = (|0〉 + a j |1〉)⊗N |0 � j � N}, (10)

where ai are complex numbers and a j 
= a j′ for j 
= j′.
Proof. The state set B only contains symmetric prod-

uct states in SymN (H2). From Eq. (5), the dimension of
SymN (C2) is N + 1, which equals the cardinality of B. There-
fore, we only need to prove that the states in B are linearly
independent.

In this qubit case, the orthogonal basis, given in Eq. (6),{
|�i〉 =

∑
π

|0〉⊗N−i|1〉⊗i, 0 � i � N

}
, (11)

contains all the Dicke states. If one expands |	 j〉 of Eq. (10)
in this {|�i〉} basis, the coefficients are (1, aj, a2

j , . . . , aN
j )T .

The matrix formed by the coefficients (|	0〉, |	1〉, . . . , |	N 〉)
is a Vandermonde matrix which is nonsingular. Consequently,
|	k〉 are linearly independent and form a basis of SymN (H2).

III. SYMMETRIC OBSERVABLE DECOMPOSITION
AND FIDELITY EVALUATION

In this section, we propose a method to decompose a
symmetric observable and apply it to evaluate the fidelity
between a prepared state ρ and any target PI state using
(N + 1)(N + 2)/2 LMSs. Here, we only focus on the N-qubit
scenario, but the method can be generalized to the N-qudit
case. As shown in Eq. (1), a PI state is defined on the density
matrix level. That is, ρPI is invariant under any permutation
operation among qubits. Due to this permutation invariant
property, we only need to consider the case where the local
operators in LMS are the same for all qubits [23], that is,
in the form of A⊗N , where A is a qubit Hermitian operator.
Generally, one needs a set of LMSs {A⊗N

i } to evaluate the
fidelity. Also, the target state is normally pure. We have the
following theorem.

Theorem 2. For any N-qubit target PI state |�PI〉, the
fidelity between a prepared state ρ and |�PI〉,

F = 〈�PI|ρ|�PI〉, (12)

can be evaluated with (N + 1)(N + 2)/2 LMSs.
Denote the projector formed by the PI state, |�PI〉〈�PI|,

to be �PI. In order to measure the fidelity F in Eq. (12), one
should decompose the projector �PI into local measurements.
In the following, we introduce the symmetric subspace of
N-qubit Hermitian operators where �PI is located. Then, by
constructing a set of tensor-product bases of this symmetric
subspace, we can accordingly decompose �PI.

Proof. Let us first define the symmetric subspace of N-
qubit Hermitian operators. Denote the N-qubit Pauli group
GN , whose element, called the N-qubit Pauli operator, is a
tensor product of single-qubit Pauli operators and identity
G1 = {I, σX , σY , σZ}. An N-qubit Hermitian operator M can
be written as the linear combination of the Pauli operators
in GN . Since the operators we consider here are Hermitian,
their coefficients must be real. Thus, the operator space FGN

is isomorphic to (R4)⊗N , with R denoting the real domain.
Then the corresponding symmetric subspace, SymN (G1), is
defined as

SymN (G1) = {M ∈ FGN : P(π )MP(π ) = M,∀π ∈ SN }.
(13)

By the definition in Eq. (1), any PI state ρPI ∈ SymN (G1).
Since SymN (G1) is isomorphic to SymN (R4), the dimen-

sion of SymN (G1) is (N + 3
3 ) according to Eq. (5). Meanwhile,

the results shown in Sec. II can be directly applied to the
operator space here.

(1) Similarly to the orthogonal basis shown in Eq. (6), the
following Hermitian operators form an orthogonal basis (in
the sense of the Hilbert-Schmidt inner product) of SymN (G1),

Mi, j,k =
∑
π

I⊗i ⊗ σ
⊗ j
X ⊗ σ⊗k

Y ⊗ σ
⊗(N−i− j−k)
Z , (14)

where σ
⊗ j
X denotes that there are totally j qubits with σX on

them, similar to I⊗i, σ⊗k
Y , σ

⊗(N−i− j−k)
Z .

(2) Similarly to Eq. (7), product operators can also span
the symmetric subspace,

SymN (G1) = span{A⊗N : A = aI + bσX + cσY + dσZ},
(15)

where a, b, c, d ∈ R.
(3) Similarly to the proof of Theorem 1, with the previous

two steps, we only need to select (N + 3
3 ) linearly indepen-

dent operators {A⊗N } to act as the product-form basis of
SymN (G1). According to Theorem 1, we can construct a basis
set for SymN (G1) with product operators, where the local
bases are {I, σX , σY , σZ}. To be specific,

Bo =
{

(a1, j1I+a2, j2σX +a3, j3σY +a0, j0σZ )⊗N |
3∑

k=0

jk = N

}
,

(16)

where the subscript “o” denotes an operator set, and the
coefficients ak, jk with 0 � k � 3 and 0 � jk � N are real
numbers satisfying Eq. (8).

After step 3, we further reduce the number (N + 3
3 ) down to

(N + 2
2 ) due to the fact that some of the product operators can

be measured by the same LMS. Since a0, j0 = 1 for any j0, the
operator set in Eq. (16) can also be written as

Bo = {(aiI + b jσX + ckσY + σZ )⊗N |0
� i, j, k � N, i + j + k � N}, (17)

where, for simplicity of notation, let ai = a1,i, b j = a2, j , and
ck = a3,k .
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On account of Observation 1, below, product operators in
Bo with different ai but the same b j and ck can be obtained
via the same LMS (bjσX + ckσY + σZ )⊗N . Therefore, the total
number of LMSs required is the number of different parameter
sets (b j, ck ), which equals the number of solutions for j + k �
N , i.e., (N + 2

2 ) = (N + 1)(N + 2)/2.
Consequently, one can utilize (N + 1)(N + 2)/2 LMSs to

obtain the expectation values of all the basis operators in
Bo of symmetric subspace SymN (G1). Since any PI state
�PI ∈ SymN (G1), we can decompose any �PI in this basis
and finally obtain the fidelity in Eq. (12).

Observation 1. The expectation value of the product oper-
ator (aI + bσX + cσY + dσZ )⊗N can be obtained via the LMS
(bσX + cσY + dσZ )⊗N .

Proof.

(aI + bσX + cσY + dσZ )⊗N

=
N∑

i=0

ai
∑
π

I⊗i ⊗ (bσX + cσY + dσZ )⊗N−i. (18)

Note that each term in Eq. (18) can be directly obtained from
the LMS, (bσX + cσY + dσZ )⊗N .

Some remarks on and discussion of Theorem 2 are listed
as follows.

(1) We show how to efficiently decompose a general PI
state in a set of product-form basis in Appendix B, which is
useful in practical implementation. And we remark that this
decomposition is suitable for general symmetric operators,
which may be useful for other related problems. In fact, on
account of Theorem 1, it is possible to choose other sets of
product-form bases. Thus, we also discuss how to choose a
basis which is more robust to noise there.

(2) Theorem 2 can be directly extended to the qudit case,
by considering the generalized local Pauli basis for qudits.

(3) Our method can evaluate the fidelity between an un-
known prepared state and any PI state with the same (N + 2

2 )
LMSs, by postprocessing only the measurement results.

(4) The basis operators in Bo of Eq. (16) span the symmet-
ric subspace SymN (G1), which contains all the PI states, ρPI ∈
SymN (G1). From the proof of Theorem 2, the expectation

values of all these operators in Bo can be measured with (N + 2
2 )

LMSs. As a result, in addition to the fidelity evaluation in
Eq. (12), one can also gain more detailed information on a
generic PI state ρPI with these measurements. This is related to
permutation invariant tomography [23], where one can extract
the permutation invariant component of a state with (N + 2

2 )
LMSs. Note that our basis constructed in Eq. (16) is more
explicit and different, compared to the one shown in Ref. [23].

We show in the following that our decomposition method
can further help to reduce the number of LMSs for some
special PI states. To be specific, it is known that for the GHZ
state and the W state, one only needs N + 1 and 2N − 1
LMSs to decompose them, respectively [29], compared with
(N + 2

2 ) for a general PI state. In the following sections, we
define a quantity called the measurement complexity which
quantifies the minimal number of LMSs to decompose a state

TABLE I. Measurement complexity of some typical PI states.
For these states, the measurement complexity is linear, �(N ).

State Upper bound Lower bound

W 2N − 1 [29] N − 1
Dicke m(2m + 3)N + 1 N − 2m + 1
GHZ N + 1 [29] � N+1

2 

and systemically study the measurement complexities for the
GHZ state, the W state, and the Dicke state.

IV. COMPLEXITY UPPER BOUND OF THE DICKE STATE

In the previous section, we have obtained a method to
decompose any PI state, and in the following we focus on
reducing the number of LMSs for some specific PI states. Cer-
tain PI states are typical for quantum information processing
and have been extensively studied, including the GHZ state,
the W state, and the Dicke state. In this section and the next
section, the numbers of LMSs required for these states are
discussed.

First, let us give the definition of the measurement com-
plexity of PI states, strictly speaking, symmetric-measurement
complexity, since the LMSs utilized here are in the symmetric
form. For simplicity, we use the term measurement complex-
ity without confusion.

Definition 1. For an N-qubit PI state ρ, measurement
complexity CS (ρ) is the minimal number of LMSs to
decompose it,

CS (ρ) = min nA,
(19)

s.t ., ρ =
nA∑

i=1

N∑
j=1

αi j

∑
π

I⊗ jA⊗N− j
i ,

where Ai = biσX + ciσY + diσZ and αi j, bi, ci, di ∈ R.
Here we allow

∑
π I⊗ jA⊗N− j

i to appear in the summation
in Eq. (19), since its expectation value can be inferred from
the LMS A⊗N

i . Note that we do not need to introduce I
into Ai, like (aiI + biσX + ciσY + diσZ )⊗N , since any operator∑

π I⊗ j (aiI + Ai )⊗N− j can be written as a combination of∑
π I⊗ jA⊗N− j

i .
A summary of the results is reported in Table I.

It is noteworthy that the measurement complexities for these
states all increase linearly with the number of qubits, �(N ),
whereas the measurement complexity of a general PI state
grows quadratically with N , as stated in Theorem 2.

In this section, we focus on finding the upper bound of the
measurement complexity. To find the upper bound, one needs
to give a specific decomposition of the state. Note that one can
use N + 1 and 2N − 1 LMSs to decompose the GHZ and the
W state, respectively, which are listed as the upper bounds in
Table I.

In the following, we give an explicit decomposition of the
Dicke state |DN,m〉 of N qubits with m excitations [2],

|DN,m〉 = 1√(N
m

) ∑
π

|0〉⊗N−m|1〉⊗m, (20)
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using m(2m + 3)N + 1 LMSs. Note that as m = 1, it is the W
state [3],

|WN 〉 = 1√
N

(|10 . . . 01〉 + |01 . . . 0〉 + . . . + |00 . . . 1〉).

(21)

To do so, we characterize a subspace of the symmetric
subspace that contains the state, then construct a basis set for
that subspace with some LMSs. Consequently, one obtains an
upper bound of the measurement complexity of |DN,m〉, which
is summarized in the following theorem.

Theorem 3. The measurement complexity of the Dicke state
|DN,m〉 is upper bounded by

CS (DN,m) � m(2m + 3)N + 1. (22)

Proof. The density matrix of |DN,m〉 can be explicitly
written as

DN,m = 1(N
m

) m∑
t=0

�t ,

�t ≡
∑
π

(|1〉〈1|)⊗m−t ⊗ (|0〉〈1|)⊗t ⊗ (|1〉〈0|)⊗t

⊗ (|0〉〈0|)⊗N−m−t , (23)

where we denote each term in the summation �t , and �0 is
the diagonal term. It is clear that �0 can be obtained by the
Z-basis measurement σ⊗N

Z . Thus in the following we focus on
�t with 1 � t � m, which are the off-diagonal terms.

With the relations |1〉〈1| = (I − σZ )/2, |0〉〈0| = (I +
σZ )/2, |0〉〈1| = (σX + iσY )/2, and |1〉〈0| = (σX − iσY )/2, �t

can be written in the form

�t =
∑
π

(
I − σZ

2

)⊗m−t

⊗ χt ⊗
(
I + σZ

2

)⊗N−m−t

, (24)

where χt is given by

χt =
∑
π

(|0〉〈1|)⊗t ⊗ (|1〉〈0|)⊗t

=
∑
π

(
σX + iσY

2

)⊗t

⊗
(

σX − iσY

2

)⊗t

=
2t∑

l=0

∑
π

αt,lσ
⊗l
X σ

⊗(2t−l )
Y ,

(25)

where αt,l are the corresponding coefficients, whose values do
not affect the following analysis.

Based on the single-qubit operators appearing
in �t , we utilize a new orthogonal one-qubit basis
G′

1 = { I−σZ
2 , σX , σY , I+σZ

2 } to act as the local basis, and
clearly one has SymN (G′

1) = SymN (G1). Similarly to
Eq. (14), the corresponding new orthogonal basis of the
symmetric subspace is

M ′
i, j,k =

∑
π

(
I − σZ

2

)⊗i

⊗ σ
⊗ j
X ⊗ σ⊗k

Y

⊗
(
I + σZ

2

)⊗(N−i− j−k)

. (26)

As a result, �t lies in the subspace

Vt = span{M ′
i, j,k|i + j + k = m + t}. (27)

In fact, Vt is isomorphic to Sym(m+t )(R
3), in the sense that

∑
π

(
a

(
I − σZ

2

)
+bσX + cσY

)⊗(m+t )

⊗
(
I+σZ

2

)⊗(N−m−t )

=
∑

i+ j+k=m+t

aibjckM ′
i, j,k . (28)

Thus, according to Theorem 1, for any two real number
sets {b0, b1, . . . , bm+t } and {c0, c1, . . . , cm+t },{

A(t )
j,k =

∑
π

(
I − σZ

2
+ b jσX + ckσY

)⊗(m+t )

⊗
(
I + σZ

2

)⊗(N−m−t )∣∣∣∣ j + k � m + t

}
(29)

is a basis set of Vt .
Consequently, by constructing A(t )

j,k for all j, k, each �t in
the Vt subspace can be decomposed. Then after decomposing
all �t , the decomposition of DN,m can be obtained. In the
following, we show how to construct A(t )

j,k with LMSs.
Since 1 � t � m, the parameters b j , ck which determine

the basis operator A(t )
j,k of each subspace Vt in Eq. (29) are

extended to {b0, b1, . . . , b2m} and {c0, c1, . . . , c2m}. That is,
we construct A(t )

j,k of different t by using the same sets of b j

and ck , which can help us save the number of LMSs.
Denote Tj,k = I−σZ

2 + b jσX + ckσY for simplicity, and the
basis operator A(t )

j,k of the Vt space in Eq. (29) shows that

A(t )
j,k =

∑
π

T ⊗(m+t )
j,k

(
I + σZ

2

)⊗(N−m−t )

. (30)

A(t )
j,k is a symmetric operator, generated by the single-qubit

operators Tj,k and (I + σZ )/2. Thus, according to Theorem 1,
for specific j, k, one can construct A(t )

j,k by the following N + 1
product basis for any t ,{(

tan θkTi, j + I + σZ

2

)⊗N
}

, (31)

where 0 � k � N , 0 � θk < π , and θk 
= θk′ with k 
= k′. For
example, θk = kπ

N+1 . As a result, after constructing A(t )
j,k , we can

decompose �t , as well as DN,m.
Finally, let us count the total number of LMSs. For each

Tj,k , we need N + 1 LMSs. And there are (2m + 2
2 ) = (m +

1)(2m + 1) different Tj,k’s. Thus there is a total of (m +
1)(2m + 1)(N + 1) LMSs. In fact, one can reduce the number
of LMSs with more careful analysis. There is one setting,
( I+σZ

2 )⊗N , with θk = 0 shared by all Tj,k , which is equivalent
to the σ⊗N

Z setting. In addition, if we choose b0 = c0 = 0, T0,0

only needs the same setting σ⊗N
Z . As a result, the final number

of LMSs is

((m + 1)(2m + 1) − 1)N + 1 = m(2m + 3)N + 1. (32)

Some remarks are as follows. First, our construction is
general and suitable for any Dicke state |DN,m〉. We expect
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that the number of LMSs could be reduced further with more
elaborate analysis. Specifically, one may find a smaller sub-
space compared with Vt that contains �t . Second, as m = 1,
our upper bound is 5N + 1, which is larger than the previous
result, 2N − 1, for the W state. Thus, it is also expected that
for certain Dicke states, such as |DN,2〉, the number of LMSs
can also be reduced. And we leave them for further work.

V. LOWER BOUND ON THE MEASUREMENT
COMPLEXITY

In this section, we bound the measurement complexity of
the GHZ state, the W state, and the Dicke state from below.
The corresponding results are listed in the third column in
Table I.

Before formally discussing the lower bound of the mea-
surement complexity for a specific state, here we explain
the high-level idea of how to bound it from below. On the
one hand, we find a subspace in which the projection of the
state has a certain form; on the other hand, on account of
the product form of the LMS, we show that the projection
result can only be reconstructed with a high enough number
of LMSs.

First, let us study the measurement complexity of the N-
qubit GHZ state [1],

|GHZN 〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (33)

In Ref. [29], the authors decompose |GHZN 〉 into N + 1
LMSs. In the following theorem, we provide a lower bound
for the measurement complexity of the GHZ state which also
grows linearly. It means that one should make use of �(N )
LMSs to evaluate the fidelity with the GHZ state.

Theorem 4. The measurement complexity of the N-qubit
GHZ state |GHZN 〉 is lower-bounded by

CS (|GHZN 〉) �
⌈

N + 1

2

⌉
. (34)

Proof. The density matrix of the GHZ state can be written
in the form [29]

GHZN = 1

2

(
I + σZ

2

)⊗N

+ 1

2

(
I − σZ

2

)⊗N

+ 1

2N

N∑
even k=0

(−1)k/2
∑
π

σ⊗k
Y σ

⊗(N−k)
X , (35)

where the first two terms account for the diagonal elements,
and the last one for the off-diagonal elements.

Denote the set of LMSs used to decompose the GHZ
state as

A = {
A⊗N

i = (biσX + ciσY + diσZ )⊗N
∣∣i = 1, 2, . . . , nA

}
,

(36)

and the final operator constructed from A shown in Eq. (19)
as O,

O =
nA∑

i=1

N∑
j=1

αi j

∑
π

I⊗ jA⊗N− j
i . (37)

It is assumed that O = GHZN .

Then consider the projection onto the subspace,

span{M0,N−k,k|0 � k � N, even k}, (38)

where Mi, j,k is the orthogonal basis defined in (14). For the
GHZ state, we write the projection results on all the basis
operators M0,N−k,k in Eq. (38) in vector form as

vGHZ = 1

2N
(1,−1, 1, . . . , (−1)�N/2�). (39)

For O, it is not hard to see that only the following terms in
the summation of Eq. (37) have nonzero projection on this
subspace,

nA∑
i=1

αi0A⊗N
i , (40)

and the projection result shows

vO =
nA∑

i=1

αi0
(
bN

i , bN−2
i c2

i , . . . , bN−2�N/2�
i c2�N/2�

i

)
. (41)

Since O = GHZN , the projection results should also be
equal, i.e., vGHZ = vO. In the following, we show that if vG =
vO, the number of LMSs nA � �N+1

2 .
Here we focus on the case where bi 
= 0 and ci 
= 0 and

leave the proof of the general case to Appendix C. Define βi =
(ci/bi )2 and it is clear that βi > 0; then vO shows

vO =
nA∑

i=1

αi
(
1, βi . . . , β

�N/2�
i

)
, (42)

where αi = αi0bN
i .

We construct the function

g(x) =
nA∑

i=1

αiβ
x
i , (43)

which is the linear combination of nA exponential functions.
Since vO = vG, we have

g(0) = 1

2N
, g(1) = − 1

2N
, g(2) = 1

2N
, . . . , g(�N/2�)

= (−1)�N/2� 1

2N
, (44)

and it is clear that g(x) changes its sign with respect to
adjacent points. On account of the continuity of g(x), there
is at least one root of g(x) = 0 in each of the intervals
(0, 1), (1, 2), . . . , (�N/2� − 1, �N/2�). Totally, there are at
least �N/2� roots.

On the other hand, it is known that g(x) has nA − 1 roots
at most [30], as shown in Lemma 1 below. Consequently, one
has nA − 1 � �N/2�, i.e., nA � �N+1

2 .
Lemma 1. [30] For real numbers {αi}n

1 and {βi}n
1 with αi 
=

0, βi > 0, and βi 
= β j for i 
= j, the function

g(x) =
n∑

i=1

αiβ
x
i (45)

has at most n − 1 roots.
The proof of Lemma 1 can be found in [30].
Then we give the measurement complexity lower bounds

of the Dicke state as well as the W state.
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Theorem 5. The measurement complexity of the Dicke state
|DN,m〉 is lower-bounded by

CS (|DN,m〉) � N − 2m + 1. (46)

As a result of Theorem 5, we also have the lower bound for
the W state.

Corollary 1. The measurement complexity of the N-qubit
W state |WN 〉 is lower-bounded by

CS (|WN 〉) � N − 1. (47)

There is a known decomposition of |WN 〉 using 2N − 1
LMSs [29], which is consistent with our lower bound. This
means that one should make use of �(N ) LMSs to evaluate
the fidelity with the W state.

The proof of Theorem 5 is similar to that of
Theorem 4 for the GHZ state. We find a specific subspace
where the state DN,m has zero projection. On the other hand,
we show that there should be at least N − 2m + 1 LMSs in
the decomposition of DN,m, in order to make the projection
also be zero. The detailed proof is reported in Appendix D.

VI. CONCLUSION AND OUTLOOK

In this paper, by introducing a set of product bases for the
symmetric subspace, we show that with (N + 1)(N + 2)/2
LMSs, one can decompose a symmetric observable and evalu-
ate the fidelity between an unknown prepared state and any PI
state. For some typical PI states, such as the GHZ state, the W
state, and the Dicke state with constant number excitations,
we can further reduce the measurement complexity down to
the linear regime.

There are a few prospective problems that can be explored
in the future. First, it is interesting to show whether the mea-
surement complexity of Dicke states with �(N ) excitations,
such as |DN, N

2
〉, is still �(N ). Second, besides the GHZ state,

the W state, and the Dicke state, one might also reduce the
measurement complexity for other PI states using similar de-
composition techniques. Third, our decomposition technique
focuses on the party permutation symmetry but it might also
be extended to other types of symmetry, such as the permu-
tation symmetry of eigenstates in high-dimensional systems.
In addition, the observable decomposition method can be
directly applied to entanglement detection, by constructing the
corresponding fidelity-based entanglement witnesses [25,31],
where further reduction of the measurement complexity is
expected [29,32]. In fact, we find that this kind of construction
can yield better witness operators considering entanglement
detection under coherent noises [33].
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APPENDIX A: PROOF OF THEOREM 1

Here we give the proof of Theorem 1, which constructs
a set of product-state bases for the symmetric subspace
SymN (Hd ), that is,

B = {|		j〉=(a0, j0 |0〉+a1, j1 |1〉+ . . . + ad−1, jd−1 |d−1〉)⊗N },
(A1)

where
∑d−1

k=0 jk = N and the coefficients ak, jk are selected
from any matrix denoted Ad,N satisfying Eq. (8). Since a0, j0 =
1 for any j0, the basis set in Eq. (A1) becomes

B = {|		j〉 = (|0〉 + a1, j1 |1〉 + . . . + ad−1, jd−1 |d − 1〉)⊗N },
(A2)

and the constraint of jk can be replaced with
∑d−1

k=1 jk � N .
On the other hand, as shown in Eq. (6), there is an-

other set of orthogonal (unnormalized) bases of SymN (Hd )
showing [28]{

|�	i〉 =
∑
π

|0〉⊗i0 |1〉⊗i1 . . . |d − 1〉⊗id−1

}
, (A3)

where	i = (i0, i1, . . . , id−1), a d-dimensional vector, with ik ∈
N and

∑d−1
k=0 ik = N . It is the generalization of Eq. (11) from

the qubit to the qudit case.
The number of vectors in B is DS = (N + d − 1

d − 1 ) = (N+d−1)!
N!(d−1)! ,

the dimension of SymN (Hd ). Thus one only needs to show
that the vectors in B are linearly independent. Here, we write
|		j〉 in the {|�	i〉} basis, and the result shows

|		j〉 =
∑

	i

d−1∏
k=1

aik
k, jk

|�	i〉. (A4)

The corresponding coefficient matrix of all {|		j〉} shows

MAd,n

	i,	j = 〈�	i|		j〉 =
d−1∏
k=1

aik
k, jk

, (A5)

where each column vector is the coefficient of |		j〉. We say
Ad,N generating MAd,N .

In the following we show that the determinant of MAd,N

is nonzero, by utilizing the induction method on both d (the
local dimension) and N (the qudit number). First, when d = 1
or N = 1, it is not hard to check that {|		j〉} are linearly
independent and form a basis set.

For general d and N , we do the following row transfor-
mation on MAd,N : for the row index 	i satisfying i1 = 0, keep
these rows unchanged; for the other ones with 1 � i1 � N ,
we find the corresponding row with index 	i′ = (i0 + 1, i1 −
1, i2, i3, . . . , id−1) and subtract a1,0 multiplying this row 	i′.
Note that we do this transformation in order from i1 = N to
i1 = 1, and the resulting matrix shows

M ′
	i,	j =

⎧⎪⎪⎨
⎪⎪⎩

∏d−1
k=1 aik

k, jk
, i1 = 0,∏d−1

k=1 aik
k, jk

− a1,0
∏d−1

k=1 aik−δ(k−1)
k, jk

= (a1, j1 − a1,0)
∏d−1

k=1 aik−δ(k−1)
k, jk

, 1 � i1 � N,

(A6)
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where the function δ(k − 1) = 1 as k = 1, and otherwise it
equals zero.

From Eq. (A6), one can see that for the matrix elements
M	i,	j satisfying 1 � i1 � N and j1 = 0 equal to zero. That is,
M ′

	i,	j is an upper triangular block matrix, i.e.,

M ′
	i,	j =

(
M1

	i,	j M�
0 M2

	i,	j

)
, (A7)

where M1
	i,	j (M2

	i,	j) is a square matrix which is located in the
rows i1 = (>)0 and columns j1 = (>)0, and M� is the off-
diagonal part. In the following, we show that the determinants
of M1

	i,	j and M2
	i,	j are both nonzero by induction.

Since i1 = j1 = 0, M1
	i,	j is generated by the matrix

A1
d−1,N = {

a1
k, j = ak+1, j

∣∣k ∈ {1, . . . , d − 2},
j ∈ {0, 1, . . . , N}}. (A8)

Actually, the matrix A1
d−1,N is related to a d − 1 local dimen-

sion and N-fold tensor. By induction principle, we can get that
det(M1

	i,	j ) 
= 0.

For the other submatrix M2
	i,	j with i1, j1 � 1 shown in

Eq. (A6), the precoefficient (a1, j1 − a1,0) 
= 0, and it remains
the same in the same column. Since we only care about
the nonzero property of det(M2

	i,	j ), we can eliminate these
unimportant precoefficients and check the determinant of the
remaining matrix,

M3
	i,	j =

d−1∏
k=1

aik−δ(k−1)
k, jk

. (A9)

Denoting a new i′1 = i1 − 1 and i′k = ik for k 
= 1, then one has∑
k i′k = N − 1. In this way, it is not hard to see that M3

	i,	j can
be generated by the matrix

A3
d,N−1 = {

a3
k, j

∣∣k ∈ {1, . . . , d − 1}, j ∈ {0, 1, . . . , N − 1}},
(A10)

where

a3
k, j =

{
ak, j+1, k = 1,

ak, j, k = 2, . . . , d − 1.
(A11)

In fact, A3
d,N−1 is related to a d local dimension and (N −

1)–fold tensor. Again by induction principle, we have that
det(M3

	i,	j ) 
= 0, and thus det(M2
	i,	j ) 
= 0.

Consequently, det(MAd,n ) = det(M1
	i,	j ) det(M2

	i,	j ) 
= 0, and
{|		j〉} is a basis set of the symmetric subspace SymN (Hd ).

APPENDIX B: DECOMPOSITION OF THE PI STATE IN
THE PRODUCT-FORM BASIS

In this section, we show explicitly how to efficiently de-
compose a general PI state in the product-form basis. The
product operators in Bo in Eq. (17) form a basis of the operator
symmetric subspace SymN (G1),

Bo = {O	α = (aiI + b jσX + ckσY + σZ )⊗N |0
� i, j, k � N, i + j + k � N}, (B1)

where we denote the product operator O	α = (aiI + b jσX +
ckσY + σZ )⊗N , with 	α = {i, j, k} being a three-dimensional
vector as the index. In general, these linearly independent
operators O	α may be not orthogonal. Meanwhile, there is
another orthogonal basis of SymN (G1) shown in Eq. (16),

M	β
.= Mi, j,k =

∑
π

I⊗i ⊗ σ
⊗ j
X ⊗ σ⊗k

Y ⊗ σ
⊗(N−i− j−k)
Z , (B2)

where 	β = {i, j, k} also denotes a three-dimensional vector as
the index of Mi, j,k .

We show in the following how to express a general PI state
�PI in the product-form basis {O	α}, i.e.,

�PI =
∑

	α
γ	αO	α, (B3)

where γ	α are real coefficients that we need to figure out.
Our strategy is as follows. First, decompose the PI state on

the orthogonal basis {M	β} as

�PI =
∑

	β
γ ′

	βM	β. (B4)

Since the basis operators M	β are orthogonal, the coefficient
can be efficiently obtained,

γ ′
	β = c	βTr(M	β�PI ), (B5)

where c	β = i! j!k!(N−i− j−k)!
2N N! is the normalization constant.

Second, do the basis transformation between M	β and O	α .
The elements of the basis transformation matrix can be ob-
tained by expressing O	α on M	β , that is,

�	β,	α = c	βTr(M	βO	α ). (B6)

As a result,

�PI =
∑

	α
γ	αO	α

=
∑
	α,	β

γ	α�	β,	αM	β

=
∑

	β
γ ′

	βM	β. (B7)

Thus, one has γ ′
	β = ∑

	α �	β,	αγ	α and γ	α = �−1γ ′
	β . Note that

the inverse of the matrix � can be evaluated efficiently by the
numerical method, since the dimension of the matrix is (N + 2

2 ).
As a result, by measuring the expectation values of product
operators 〈O	α〉, one can get the fidelity 〈�PI〉 = ∑

	α γ	α〈O	α〉
with respect to any PI state �PI, by postprocessing only the
measurement results.

Moreover, as shown in Eq. (16), one can choose other
possible product-form bases by changing the parameters of
the local operators that satisfy Eq. (8). Different product-
form bases may show different noise tolerances in practical
application. For instance, there is some basis choice where
two product operators are too “close” (even though they
are linearly independent), such that they return almost the
same result under some measurement imperfection. Thus,
we suggest the following selection method, which makes the
basis operators be distributed as “evenly” as possible. One
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chooses the coefficients in Eq. (B1) as follows: ai = tan θi

with θi = iπ
N+1 , b j = tan θ j with θ j = jπ

N+1 , and ck = tan θk

with θk = kπ
N+1 .

Finally, we would like to remark that the method shown
above can also be applied to decompose general symmet-
ric operators directly, which may be useful in other related
problems.

APPENDIX C: PROOF OF THEOREM 4 WHEN bi = 0 or
ci = 0 IN EQ. (41)

Here we give the proof of Theorem 4 in the case where
bi = 0 or ci = 0 in Eq. (41). Remember that in the text, we
project the operator GHZN and O in a specific subspace in
Eq. (38), and the projection results are, respectively,

vGHZ = 1

2N
(1,−1, 1, . . . , (−1)�N/2�), (C1)

vO =
nA∑

i=1

αi0
(
bN

i , bN−2
i c2

i , . . . , bN−2�N/2�
i c2�N/2�

i

)
. (C2)

Then we define a function g(x) in Eq. (43) which is a summa-
tion of several exponential functions and use the root property
of it to bound the number of LMSs.

Here we consider the general case where bi = 0 or ci = 0.
Let S denote the set of i with both bi and ci not equal to 0,
and define βi = (ci/bi )2 only on S. Let Sb denote the set of i
with ci = 0, bi 
= 0, and let Sc denote the set of i with bi = 0,
ci 
= 0. Then vO can be written as

vO =
∑
i∈S

αi
(
1, βi . . . , β

�N/2�
i

) + (αb, 0, . . . , 0)

+ (0, . . . , 0, αc), (C3)

where αi = αi0bN
i , αb = ∑

i∈Sb
αi0bN

i , and αc = ∑
i∈Sc

αi0bN−2�N/2�
i c2�N/2�

i . It is clear that

nA � |S| + |Sb| + |Sc|. (C4)

And we define g(x) of the set S as

g(x) =
∑
i∈S

αiβ
x
i . (C5)

Since vO = vG, g(0) = 1 − αb, g(1) = −1, . . .

, g(�N/2�) = (−1)�N/2� − αc. Because the continuity of
g(x), there is at least one root of g(x) in each of the intervals
(1, 2), (2, 3), . . . , (�N/2� − 2, �N/2� − 1), which means
�N/2� − 2 roots in total. If αb = 0, there is at least another
root in (0, 1). Similarly, if αc = 0, there is at least another
root in (�N/2� − 1, �N/2�).

Therefore, the number of roots of g(x) is at least

�N/2� − 2 + I (αb = 0) + I (αc = 0)

= �N/2� − I (αb 
= 0) − I (αc 
= 0)

� �N/2� − |Sb| − |Sc|,
(C6)

where I (x) denote that function that I (x) = 0 or 1 when x is
true or false.

Then apply Lemma 1 to g(x); we get |S| − 1 � �N/2� −
|Sb| − |Sc|. Combining this with (C4), one has nA � �N+1

2 .

APPENDIX D: PROOF OF THEOREM 5

Here we give the proof of Theorem 5. As mentioned in the
text, we find a subspace where DN,m has zero projection and,
at the same time, show that one needs at least N − 2m + 1
LMSs to make the projection also be zero.

As in the GHZ-state case, suppose the optimal LMSs are

A = {
A⊗N

i = (biσX + ciσY + diσZ )⊗N
∣∣i = 1, 2, . . . , nA

}
.

(D1)

The final operator constructed from A is denoted O,

O =
nA∑

i=1

N∑
j=1

αi j

∑
π

I⊗ jA⊗N− j
i , (D2)

and it is assumed that O = DN,m.
As shown in Eqs. (23), (24), and (25), DN,m can be decom-

posed as

DN,m = 1(N
m

) m∑
t=0

�t ,
(D3)

with

�t =
∑
π

(
I − σZ

2

)⊗m−t

⊗ χt ⊗
(
I + σZ

2

)⊗N−m−t

,

χt =
2t∑

l=0

∑
π

αt,lσ
⊗l
X σ

⊗(2t−l )
Y . (D4)

It is not hard to see that the total number of σX and σY

operators on N qubits is at most 2m, appearing in every
terms of the decomposition in Eq. (D3). Thus DN,m lies in
the subspace, span{Mi, j,k|0 � j + k � 2m}, where Mi, j,k are
defined in (14).

For the constructed operator O, there should be some oper-
ator Ai satisfying bi 
= 0 in the LMSs in Eq. (D1); otherwise
there will be no σX term in O. If all the operators Ai with
bi 
= 0 satisfy di = 0, O 
= DN,m, since there are terms like∑

π σ⊗2t
X σ⊗N−2t

Z in DN,m.
Now consider the subspace

V1 = span{M0, j,0|2m + 1 � j � N}. (D5)

Note that the projection of DN,m on V1 is zero. For O, only
the following terms could have nonzero projection in this
subspace,

nA∑
i=1

αi0A⊗N
i , (D6)

and we write the projection on M0, j,0 in Eq. (D5) in vector
form as

vO =
nA∑

i=1

αi0
(
b2m+1

i dN−2m−1
i , b2m+2

i dN−2m−2
i , . . . , bN

i

)
, (D7)

where we consider bi 
= 0; otherwise it contributes nothing
to the summation. On account of O = DN,m, this projection
result should also be zero, i.e., vO = 	0.
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First, we focus on the case where all di 
= 0; denote βi =
bi/di. And vO can be written as

vO =
∑

i

αi
(
1, βi, . . . , β

N−2m−1
i

)T = 	0, (D8)

where αi is the summation of all the corresponding coeffi-
cients sharing the same βi,

αi =
∑

i′:βi′=βi

αi′0b2m+1
i′ dN−2m−1

i′ . (D9)

In fact, there is at least one αi 
= 0. To illustrate this, let us
consider another subspace,

V2 = span{M0, j,0|1 � j � 2m}. (D10)

It is clear that the projection of DN,m on V2 is nonzero. For
example, the terms like

∑
π σ⊗2t

X σ⊗N−2t
Z are the basis of it. In

the meantime, the projection of O on V2 is

v′
O =

∑
i

αi
(
β−2m

i , β−2m+1
i , . . . , β−1

i

)T
. (D11)

Consequently, there is at least one αi 
= 0; otherwise v′
O = 	0,

which is in contradiction to O = DN,m.

Denote the number of different βi as nβ . Then Eq. (D8)
means that an (N − 2m) × nβ Vandermonde matrix multiplies
a nonzero vector {αi}. Due to the nonsingularity of the Vander-
monde matrix, the result can be 	0 only if nβ > N − 2m. As a
result, the number of measurement settings is lower-bounded
by nA � nβ > N − 2m.

For the case where there are LMSs with di = 0, denote the
set of these LMSs S; the projection in Eq. (D7) shows

∑
i∈S

αi0bN
j (0, 0, . . . , 1)T +

∑
i∈[nA]\S

αi0b2m+1
j dN−2m−1

i

× (1, βi, . . . , β
N−2m−1
i )T = 	0. (D12)

Denote
∑

i∈S αi0bN
j = α′. If α′ 
= 0, it is just adding one vector

in the linear combination compared with Eq. (D8),

α′(0, 0, . . . , 1)T +
∑

i

αi(1, βi, . . . , β
N−2m−1
i )T = 	0. (D13)

Similarly, based on the nonsingularity of the Vandermonde
matrix, nβ + 1 > N − 2m. Hence, nA � nβ + 1 > N − 2m.
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