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The randomness from a quantum random-number generator (QRNG) relies on the accurate characterization
of its devices. However, device imperfections and inaccurate characterizations can result in wrong entropy
estimation and bias in practice, which highly affects the genuine randomness generation and may even induce the
disappearance of quantum randomness in an extreme case. Here we experimentally demonstrate a measurement-
device-independent (MDI) QRNG based on time-bin encoding to achieve certified quantum randomness even
when the measurement devices are uncharacterized and untrusted. The MDI-QRNG is randomly switched
between the regular randomness generation mode and a test mode, in which four quantum states are randomly
prepared to perform measurement tomography in real time. With a clock rate of 25 MHz, the MDI-QRNG
generates a final random bit rate of 5.7 kbps. Such implementation with an all-fiber setup provides an approach
to construct a fully integrated MDI-QRNG with trusted but error-prone devices in practice.
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Random numbers are widely required in a diversity of
applications. Based on the fundamental laws of quantum
physics, quantum random-number generators (QRNGs) can
produce true random numbers, which are unpredictable,
irreproducible, and unbiased. So far, various QRNG schemes
have been demonstrated including the ones based on beam
splitters [1,2], photon arrival times [3–5], vacuum fluctu-
ations [6–10], laser phase fluctuations [11–16], and time-
frequency uncertainty [17]. For a review of the subject, one
can refer to [18], and references therein.

A typical QRNG consists of two parts: randomness source
and quantum measurement. For instance, in a simple prepare-
and-measure scheme, the particles are prepared in a fixed
quantum state, |+〉 = 1√

2
(|0〉 + |1〉), an eigenstate of the X

basis, and then they are measured in the Z basis, so that
the outcomes of “0” and “1” are produced with the equal
probability as raw output data. The central issue in QRNG is
entropy estimation, i.e., how much genuine quantum random-
ness can be extracted from the raw data. For each conventional
QRNG implementation, all the devices have to be precisely
characterized, and with properly modeling the min-entropy
estimation is normally used to quantify the randomness of the
output data [19]. After randomness extraction, final random
numbers can be obtained from the raw data.

In practice, the imperfections of realistic devices and
inaccurate characterizations can result in wrong entropy
estimation and bias to the output bits. Such bias problem
is very similar to the adversary scenario in quantum key
distribution (QKD), where the intervention of an eavesdropper
may introduce bias to the keys (from the adversary’s point of
view). Thus, in the data analysis of QRNG, one can introduce
an adversary to model the bias problem. A QRNG can be
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regarded as a local machine packaged in a closed box, and
the imperfections may depend on some variables within the
box, which the user is unaware of. The adversary may not
have access to control the variables directly. However, she
has side information about how the variables evolve, which
enables her to predict the working conditions of the devices
and the outcome random numbers to some extent. Though the
outcomes may still seem to be unbiased from the user’s point
of view, they are biased conditioned on the adversary’s system.
That is, the adversary might predict the outcomes partially. For
some QRNG applications, especially the ones in cryptography,
the drawback could cause security threats.

In order to effectively solve the problems of device im-
perfections and inaccurate characterizations, different QRNG
protocols have been recently proposed to obtain certified
genuine randomness even when devices are untrusted and
uncharacterized [17,20–24], including device-independent
QRNGs (DI-QRNGs) and semi-device-independent QRNGs.
Not surprisingly, these concepts and techniques are all
originated from QKD. The DI-QRNG protocol can produce
certified randomness based on the violation of Bell’s inequal-
ity [20] without trusting the quantum devices. However, the
DI-QRNG requires efficiency-loophole-free Bell tests, which
makes the experimental implementation rather challenging
and inefficient [20]. In practice, there is a trade-off between
system security and performance. By adding a few reasonable
assumptions to the quantum devices, the DI-QRNG becomes
much more practical [22–24], which is called semi-device-
independent QRNG scheme. For instance, Lunghi et al. have
demonstrated a self-testing QRNG experiment with general
device assumptions such as bounded dimensions without
relying on detailed characterizations [21]. Cao et al. have
proposed and experimentally realized a source-independent
QRNG based on entropic uncertainty relation of X and
Z basis measurement given trusted measurement devices
[24].
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FIG. 1. Measurement-device-independent QRNG scheme.

Similarly, one may ask an interesting question: Is it possible
to generate genuine quantum randomness when the measure-
ment devices are uncharacterized and untrusted? The answer
to this question leads to the emergence of measurement-
device-independent QRNG (MDI-QRNG) proposals [22,23].
Considering the duality of state preparation and measurement
and using the idea similar to source-independent QRNG
scheme [24], given an assumption of a trusted source part
the MDI-QRNG is randomly switched between regular ran-
domness generation mode and a test mode, in which different
input states are randomly prepared to test the reliability of the
measurement devices in real time [23]. In such a way, quantum
random numbers can be generated even with uncharacterized
and untrusted measurement devices.

MDI-QRNG protocol. The MDI-QRNG protocol is de-
scribed in Fig. 1. The quantum states emitted from the trusted
randomness source are measured by untrusted devices with a
binary output “0” or “1”. In the generation mode, a fixed state
|+〉 is sent. The user randomly chooses N0 out of total N turns
as test mode, in which the source randomly emits quantum
states |0〉, |1〉, |+〉, and |+i〉 [|+i〉 = 1√

2
(|0〉 + i|1〉)] as test

states to perform a measurement tomography. Here, |0〉, |1〉,
|+〉, and |+i〉 are the eigenstates of Pauli matrices σz, σz, σx ,
and σy , respectively. In order to choose both the test mode
and prepared test states, random number seeds are required.
Therefore, it it crucial to guarantee that the randomness
generation is larger than the randomness consumption.

The key idea of the scheme is self-testing, that is, it
can be tested out whether the output random numbers are
reliable according to the tomography results. We model the
measurement using a qubit positive operator-valued measure
(POVM) [25],

F0 = a0(I + �n0 · �σ ),
(1)

F1 = a1(I + �n1 · �σ ),

where F0 and F1 are the measurement outputs “0” and
“1”, respectively, �σ = (σx,σy,σz) is the Pauli matrix vector,
and �n0 = (nx,ny,nz) and �n1 are real number vectors. In the
experiment, given the four test states, the probability of output
“0” (“1”) and the POVM parameters a0, nx , ny , and nz, can be
evaluated, which are then used for randomness quantification
of the raw data. The details are shown in the Supplemental
Material [26].

In the model of MDI-QRNG, the adversary can let her
ancillary photons correlate with the photons emitted from
the source, and she can perform a measurement on her
ancillary photons to extract information about the output
random numbers. We can classify the adversary into a classical
one or a quantum one according to her ability. Compared
with a classical adversary who can only perform an individual
measurement on each ancillary photon, a quantum adversary
has the ability to perform joint measurement. That is, she can
store her ancillary photons in a quantum memory and then
a measurement is performed together [27], which enlarges
her side information compared with the classical scenario. In
this Rapid Communication, the randomness quantification is
evaluated against a classical adversary, while the randomness
quantification against a quantum adversary is different and
deserves future work for clarification.

Experimental setup. The time-bin encoding MDI-QRNG
setup is shown in Fig. 2. Phase-randomized narrow optical
pulses created from a 1550 nm laser diode (LD) with a clock
rate of 25 MHz are entered into an unbalanced interferometer
with a time delay of 9.6 ns to form two time-bin pulses.
The output port of the interferometer is connected with a
polarizing beam splitter (PBS) via a polarization controller
(PC). The PBS output is further modulated by two polarization-
maintaining components, i.e., an amplitude modulator (AM)
and a phase modulator (PM), which are controlled by a field-
programmable gate array (FPGA), to prepare four time-bin
quantum states of |0〉, |1〉, |+〉, and |+i〉.

For Z basis measurement as shown in Fig. 2(b), photons
emitted from the attenuator (ATT) output port (Port3) are
detected by a fully integrated 1.25 GHz InGaAs/InP single-
photon avalanche diode (SPAD) based on the technique of
sine wave gating [28], with a detection efficiency of ∼25%.
The gate signals of the SPAD are synchronized with the
laser pulses and the detection signals are further measured
by a time-to-digital converter (TDC). When X (Y ) basis
measurement is required, the configuration in the measurement
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TDC

TDCATT
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FIG. 2. Experimental setup of MDI-QRNG including the trusted source (a) and the Z basis measurement part (b). During the verification
process of prepared quantum states, the measurement part is reconfigured when X and Y basis measurements are performed (c). LD: laser
diode; FPGA: field-programmable gate array; BS: beam splitter; PC: polarization controller; PBS: polarizing beam splitter; AM: amplitude
modulator; PM: phase modulator; ATT: attenuator; SPAD: single-photon avalanche diode; TDC: time-to-digital converter.
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FIG. 3. Intensity traces of four prepared states of |0〉, |1〉, |+〉,
and |+i〉 observed in an oscilloscope (a). The measurement part is
configured as Fig. 2(b), while the attenuator is set as the minimal
value and a high-speed photodetector is used instead of the SPAD.
Early and late time-bin pulses at T 0 and T 1 correspond to the states
of |1〉 and |0〉, respectively. When both the early and late pulses are
attenuated by half and the phase of the early pulse is set as 0 ( π

2 )
by PM1, the state of |+〉 (|+i〉) is prepared. However, the intensity
traces in two cases are exactly the same. To further distinguish the
two states, the measurement part is configured as Fig. 2(c). When
the phase of PM2 is set as 0, |+〉 and |+i〉 produce constructive and
intermediate interferences, respectively (b).

part is changed as shown in Fig. 2(c). Port3 is connected
with Port2 via an additional PM (PM2), so that emitted
photons from the ATT reenter into the interferometer and
photons at Port1 are finally detected by the SPAD. Such
configuration greatly simplifies the experimental setup without
requiring additional unbalanced interferometer and auxiliary
phase stabilization.

Typical intensity traces of four time-bin states observed in
an oscilloscope are plotted in Fig. 3, in which a high-speed
photodetector is used instead of the SPAD and the attenuator
is set as the minimal value. Given that a laser pulse is entered
into the unbalanced interferometer, two time-bin pulses, i.e., an
early pulse and a late pulse, are created. When the early (late)
pulse is removed by the AM, the state of |0〉 (|1〉) is prepared
[see the upper (middle) trace in Fig. 3(a)]. When both of the
pulses are attenuated by half due to the AM and meanwhile the
relative phase of the early pulse is set as 0 (π

2 ) due to the PM1,
the state of |+〉 (|+i〉) is prepared. However, from the intensity
traces observed in the oscilloscope |+〉 and |+i〉 states cannot
be distinguished [see the lower trace in Fig. 3(a)]. To further
distinguish |+〉 and |+i〉, the measurement part is configured
as Fig. 2(c), and the phase of PM2 set as 0 (π

2 ) corresponds to
the X (Y ) basis measurement. Figure 3(b) shows the intensity
difference in two cases when the phase of PM2 is 0, where
the state of |+〉 (|+i〉) produces constructive (intermediate)
interference.

To further verify the prepared states, the intensities of
the time-bin pulses are attenuated to single-photon level via
the ATT and the optimal mean photon number is set as
∼0.06 according to the theoretical model of MDI-QRNG [23].
The time-bin states are then projected to X, Y , and Z

basis, respectively, and the measured results are shown in
Fig. 4, in which low error rates indicate the accuracy of the
prepared quantum states. These error rates include the minor
contributions due to the dark counts and afterpulses [29] of the
InGaAs/InP SPAD.

FIG. 4. The measured error rates of four prepared quantum states
in the three orthogonal basis.

In the implementation process of the MDI-QRNG protocol,
the source is operated either in generation mode or in test
mode, while the measurement part is fixed at Z basis. In
generation mode, the fixed |+〉 state is sent and after the Z

basis measurement random bit “0” or “1” is generated. In test
mode, four states are randomly sent with equal probability to
perform measurement tomography. A large amount of random
numbers are stored inside the FPGA in prior to determine
which mode and which state to prepare for each laser pulse.
In order to finally gain output randomness higher than input
randomness, the proportion of generation mode is much larger
than that of test mode.

In each round of the MDI-QRNG process, 234 quantum
states in total including 215 test states are sent. For each test
state, 34 random bits are used to determine its position in the
sequence and further 2 bits are used to determine the state
to be prepared. The detection information (no-click, “0” or
“1”) of each quantum state is recorded. Therefore, each round
consumes 1152 Kbits of random numbers and produces 16
Gbits of raw data. In the experiment, the MDI-QRNG process
is performed for 100 rounds in total, so that around 115 Mbits
of random numbers are consumed and 1600 Gbits of raw data
are produced. The amount of prepared test states is 3.3 × 106

and their measurement tomography results are listed in Table I.
Here we briefly introduce the randomness quantification

(see Supplemental Material for details). In the generation
mode, based on the tomography results the lower bound
of randomness against classical adversary is quantified with

TABLE I. Results of measurement tomography.

Test state Amount Counts of “1” Probability

|0〉 820318 121 1.48 × 10−4

|1〉 818254 13067 1.60 × 10−2

|+〉 819125 6431 7.85 × 10−3

|+i〉 819103 6403 7.82 × 10−3
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min-entropy [23]

R(F0,F1) � 2a0H∞

⎛
⎝1 +

√
1 − n2

y − n2
z

2

⎞
⎠, (2)

which is also suited for high-dimensional POVMs and the
scenario in which the adversary performs different POVMs
for different turns. A practical MDI-QRNG system suffers
two main problems: statistical fluctuation and imperfect qubit
source. Note that other experimental imperfections such as
transmission loss are also included in the form of POVM. We
simply follow Ref. [23] to address these two issues.

The number of total turns is finite and the statistical
fluctuations should be taken into consideration, i.e., the
measurement tomography may not be accurate due to the
finite data effect. Given the test state ρi (i = 1,2,3,4), i.e.,
ρ1 = |0〉〈0|, ρ2 = |1〉〈1|, ρ3 = |+〉〈+|, and ρ4 = |+i〉〈+i|, let
Ni be the number of test turns, N0 be the number of generation
turns, and pi (p′

i) be the probability of output “0” in test
(generation) turns. The key point of the statistical fluctuation
analysis is to use pi (measured value) to bound the parameter
p′

i . When the data size is large enough, p′
i ≈ pi . In the finite

data case, there is a deviation between pi and p′
i , denoted by θi .

Given the number of turns Ni (i = 0,1,2,3,4), θi is a function
of pi .

In the experiment, a weak coherent state source is used,
which is, however, an imperfect qubit source. Given a coherent
state source with an intensity of μ, after phase randomization,
it becomes a mixture of photon number states following a
Poisson distribution. Such imperfection would affect the final
randomness evaluation by [23]

R(F0,F1) � min
a0,ny ,nz

2a0(1 + μ)

eμ
H

⎛
⎝1 +

√
1 − n2

y − n2
z

2

⎞
⎠,

(3)

with constraints |nx |2 + |ny |2 + |nz|2 = 1, 0 � a0 � 1, and

(a0 + a0nz)(1 + μ)e−μ � p1 ± θ1 � (a0 + a0nz)(1 + μ)e−μ

+ 1 − eμ − μe−μ,

(a0 − a0nz)(1 + μ)e−μ � p2 ± θ2 � (a0 − a0nz)(1 + μ)e−μ

+ 1 − eμ − μe−μ,

(a0 + a0nx)(1 + μ)e−μ � p3 ± θ3 � (a0 + a0nx)(1 + μ)e−μ

+ 1 − eμ − μe−μ,

(a0 + a0ny)(1 + μ)e−μ � p4 ± θ4 � (a0 + a0ny)(1 + μ)e−μ

+ 1 − eμ − μe−μ. (4)

FIG. 5. The NIST test results of the final random data with a size
of 390 Mbits. Given an item, when the p value (column) and the
proportion (dot) are more than 0.01 and 0.98, respectively, it means
that the random data pass the item.

We make a worst-case assumption that the multiphoton compo-
nents can be fully manipulated by the untrusted measurement
devices and thus cannot generate output randomness. In such
a way, the source intensity μ can be optimized for the output
randomness from Eq. (3).

Employing the analysis method shown in Eqs. (3) and (4)
for the experimental results shown in Table I, the min-entropy
of the MDI-QRNG is lower bounded by 2.3 × 10−4 bits
per pulse. For randomness extraction, a Toeplitz-matrix hash
function is applied. The final random number generation rate
is 5.7 kbps. We finally obtain 390 Mbit random numbers,
which are 3.4 times larger than the amount of randomness
consumed as seeds. In order to verify the quality of the final
random bits, the standard NIST statistical tests are applied [30].
Clearly, the final random bits pass all the test items as shown in
Fig. 5.

In summary, we experimentally realize a practical
measurement-device-independent quantum random-number
generator using time-bin encoding. The output randomness
against classical adversary can be certified and quantified,
even when the measurement devices are uncharacterized and
untrusted. After randomness quantification, the min-entropy of
MDI-QRNG reaches 2.3 × 10−4 bits per pulse, corresponding
to a final random number generation rate of 5.7 kbps.
Moreover, the ratio of random number generation to random
number consumption is 3.4. This all-fiber experimental setup
exhibits the feasibility of constructing a fully integrated and
compact MDI-QRNG with trusted but error-prone devices in
practice.
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