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Abstract We analyze the dynamics and steady state of a linear ion array when some
of the ions are continuously laser cooled. We calculate the ions’ local temperature
measured by its position fluctuation under various trapping and cooling configurations,
taking into account background heating due to the noisy environment. For a large
system, we demonstrate that by arranging the cooling ions evenly in the array, one can
suppress the overall heating considerably. We also investigate the effect of different
cooling rates and find that the optimal cooling efficiency is achieved by an intermediate
cooling rate. We discuss the relaxation time for the ions to approach the steady state,
and show that with periodic arrangement of the cooling ions, the cooling efficiency
does not scale down with the system size.

Keywords Sympathetic laser cooling · Paul trap · Quantum gate error · Large-scale
quantum computing

1 Introduction

Trapped ions constitute one of the leading systems for implementation of quantum
computation. Numerous advances have been achieved in this system, including real-
ization of faithful quantum gates [1–7], preparation of many-body quantum states
[8–15], and quantum teleportation [16,17]. There are also developments to scale up
this system, based on either ion shuttling [18–20] or quantum networks [21–26]).
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In a typical ion trap, the ions are first Doppler cooled and form a crystal. Most of the
quantum computation experiments use a one-dimensional ion crystal. The ionsmay be
subjected to further sub-Doppler cooling, such as sideband cooling. However, the diffi-
culty of sideband cooling scales up with the number of phonon modes, which increase
with the number of ions [27–29]. It has been shown that in principle high-fidelity quan-
tum computation can be achieved even at the Doppler temperature by employing the
ions’ transverse phonon modes [29,30]. In a real experimental setup, the ions are sub-
ject to substantial background heating. For long-time quantum computation, to have
the ions constantly remain at a certain temperature, it requires sympathetic cooling
[31,32], in which case a subset of ions (cooling ions) are continuously laser cooled,
bringing down the temperature of other ions (the computational ions) through the
heat propagation enabled by the Coulomb interaction in the ion crystal. Sympathetic
cooling has been studied for small systems with a few ions [33–35].

In this paper, we study the effectiveness of sympathetic cooling in a large one-
dimensional ion crystal. Although in general temperature is not well defined for this
system as it does not reach a thermal equilibrium state, as a relevant indicator for
quantum computation, we measure the local “temperature” of the ions through their

average position fluctuation (PF) δxξ
i ≡

√
〈xξ2

i 〉 (for the i th ion) with ξ = x, y for
the transverse phonon modes and ξ = z for the axial modes. This position thermal
fluctuation is an important indicator for fidelity of quantum gates. We discuss two
different arrangements of the cooling ions: edge cooling and periodic-node cooling.
In the former case, the ions at the two edges of an ion array are continuously laser
cooled. In the latter case, the cooling ions are distributed evenly and periodically in the
ion chain.We show that the periodic-node cooling ismuchmore effective than the edge
cooling. For a large crystal, the edge cooling becomes very inefficient.We then discuss
the non-trivial dependence of the local temperature of the computational ions on the
cooling rate of the cooling ions. A large cooling rate does not necessarily lead to more
efficient cooling of the computational ions. Instead, there is an intermediate optical
cooling rate, in agreement with our previous observation [36]. We finally investigate
the timescale for the system to reach the steady state, which in general differs from
the thermal equilibrium state [36].

This paper is organized as follows. In Sect. 2, we present the Heisenberg-Langevin
equations to describe the driven dynamics of amany-ion array and provide their formal
exact solutions. In Sect. 3, we discuss themotional steady states of the ions under back-
ground heating and continuous sympathetic cooling on the cooling ions. In Sect. 4,
we study different cooling configurations and discuss the corresponding cooling effi-
ciency. In Sect. 5, we investigate how the cooling performance of the sympathetic
cooling depends on the laser cooling rate. In Sect. 6, we study the relaxation dynamics
of the cooling process and discuss the timescale of relaxation as well as its scaling
with the system size. Finally, we summarize the major findings in Sect. 7.

2 Formalism

Consider an ion string confined in an RF trap with an effective static potential
V(r) = 1

2mω2
x (x

2 + y2) + V (z). For a small crystal, the axial confinement is usually
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approximated by V (z) = 1
2mω2

z z
2 with ωz � ωx so that the one-dimensional align-

ment is stabilized. For a large crystal, the axial potential might take an anharmonic
form [29]. Trapped ions have collective motion around their classical equilibrium
positions. Assuming that each ion is coupled to its respective thermal bath (corre-
sponding to either cooling or background heating), we describe the driven ion array
by the following Heisenberg-Langevin equations:

⎧
⎨
⎩

ẋξ
i = pξ

i

ṗξ
i = −∑

j A
ξ
i j x

ξ
j − γ

ξ
i pξ

i +
√
2γ ξ

i ζ
ξ
i (t)

, (1)

where i, j = 1, ..., N are ion indices, ξ = x, y,z stands for the mode direc-
tions, and Aξ

i i = β
ξ
i − ∑

j ( �=i)
Cξ∣∣∣z0j−z0i

∣∣∣
3 , Aξ

i j = Cξ∣∣∣z0j−z0i

∣∣∣
3 (i �= j) with β

x,y
i =

ω2
x , βz

i = ∂2V/∂z2i , Cx,y = 1, Cz = −2, and z0i denotes the i th ion’s axial
equilibrium position. We take the ion spacing d0 as the length unit1, e2/d0 as

the energy unit, and ω0 ≡
√
e2/(md30 ) as the frequency unit so that the quan-

tities in Eq. (1) are dimensionless. For the convenience of discussion, we drop
the superscript ξ . Since the transverse and axial modes are decoupled, the deriva-
tion simply applies to any direction. A random kick ζi (t) associated with the

driving rate γi can be expressed as ζi = −i
∑

k

√
ωk
2 Gik(bk − b†k ) (in units

of
√
h̄mω0), where G is the canonical transformation matrix which diagonalizes

A, i.e., G�AG = AD is diagonalized, and bk is the bosonic field operator of
the kth motional mode with frequency ωk . For a Markovian bath, bk(t) satis-
fies

〈
b†k (t1)bk′(t2)

〉 = nB
k (T )δkk′δ(t1 − t2) with nB

k (T ) ≡ [
exp(ωk/T ) − 1

]−1

the phonon number of the kth mode for a given temperature T (in units of
h̄ω0/kB). It is then straightforward to show that the correlation of the driving
force is given by

〈
ζi (t)ζ j (t ′)

〉 = δi jδ(t − t ′)
∑

k ωkG2
ik

(
nB
k (T ) + 1

2

)
. In our cur-

rent case, where each ion couples to an independent reservoir Ti , it is reasonable
to assume that the ion i feels a local bath with

〈
ζi (t)ζ j (t ′)

〉 = δi jδ(t − t ′)Θi (Ti )
and Θi (Ti ) ≡ ∑

k ωkG2
ik

(
nB
k (Ti ) + 1

2

)
. The solution to Eq. (1) is given by q(t) =

e−Ωtq(0) + ∫ t
0 dτeΩ(τ−t)η(τ ), where q ≡ (x1, x2, ...; p1, p2, ...)� =

[ {xi }
{pi }

]
,

η(t) ≡
[ {0}{√

2γiζi
}
]
, and Ω ≡

[
0 −I[
Ai j

] [
γiδi j

]
]
is a 2N × 2N matrix which can

be diagonalized as
[
U−1ΩU

]
αβ

= λαδαβ . We then obtain the variation of operators
xi and pi :

1 Here, the choice of d0 is somewhat arbitrary as long as it characterizes the length scale of the inter-ion
spacing. In this article, we define d0 differently in various situations. For instance, in a small harmonic trap
(N = 20), we choose d0 to be the smallest spacing in the middle of the chain. In a large non-uniform ion
crystal (N = 121), we choose d0 = 1

100
∑110

i=11(z
0
i+1 − z0i )/100, a mean value of all ion spacings except

that 10 large ones on the edges are excluded.
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〈
q2μ

〉 =
N∑

s=1

2N∑

α,β=1

UμαUμβ

(
e−(λα+λβ)t

[〈
x2s (0)

〉
U−1

βs U
−1
αs

+〈
p2s (0)

〉
U−1

β,s+NU
−1
α,s+N

]
(2)

+
(
1 − e−(λα+λβ)t

) 2γsΘs

λα + λβ

U−1
β,s+NU

−1
α,s+N

)
,

where μ = 1, 2, ..., N correspond to x-operators, μ = N + 1, N + 2, ..., 2N corre-
spond to p-operators.

For trapped ion quantum computing, the computational fidelity is determined by

the ion PF δxξ
i ≡

√〈
xξ2
i

〉
(denoted by δxi and δzi for transverse and axial motion,

respectively). When the quantum gate is operated by means of the transverse modes,
the estimated infidelity is δFx

i ∼ π2η4i /4 [3,29,30], where the Lamb Dicke parameter
ηi ∼ |Δk| δxi with Δk ‖ x̂ the wavevector difference in the two Raman beams.
Another possible source of error comes from the spatial non-uniformity of the laser
intensity when a single beam addresses a specific ion; the ion’s axial motion results in
variation in the actual Rabi frequency. This error is estimated by δFz

i ∼ π2(δzi/w)4/2
given that the laser beam’s Rabi frequency is approximated by a Gaussian profile
Ω(z) ∝ e−((z−z0i )/w)2 with width w [29]. Both of the gate errors are determined by
the position thermal fluctuation δxi or δzi of the ions. So, in the following discussion,
we focus on the distribution of the ion position fluctuation δxi or δzi in the array.

3 Steady-state distribution

3.1 Thermal equilibrium

We first look at the thermal equilibrium distribution of the ion chain when the
whole system is driven by a thermal field with a well-defined temperature. From

xi = α
∑

k Gik

√
1

2ωk
(a†k + ak) where α ≡ √

h̄/(mω0)/d0 is the length conver-

sion factor and ak (a†k ) is the annihilation (creation) operator of mode k, we obtain
〈
x2i

〉 = α2 ∑
k
G2
ik

ωk

(
nB
k (T )+ 1

2

) = α2 ∑
k
G2
ik

2ωk
coth

(
ωk
2T

)
. In Fig. 1, we show the distri-

bution of δxi and δzi in a harmonic trap for both the axial and transverse motions at the
Doppler temperature TD , and their contribution to the corresponding gate infidelities
[29]. In this case, the axial fluctuation δzi varies in space, suggesting that the longi-
tudinal motion of the whole ion chain is “more collective” and relies on the global
geometry. Supposing that a single ion is subjected to a different temperature, its longi-
tudinal movement does not directly reveal information of the temperature associated
with the local bath because neighboring ions subjected to their own bathsmay interfere
through collectivemodes.On the contrary, its transversemovement directly reflects the
local temperature.This is because the axial and transversemodes are decoupled, and for
each ion, the energy scale set by the transverse confinement h̄ωx is dominant over other
scales. Note that the diagonal terms of Ax are more significant than the off-diagonal
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Fig. 1 a, b Thermal equilibrium distributions of the averaged ion PF in units of d0 and c, d the associ-
ated computational infidelity corresponding to the axial and transverse motion at the Doppler temperature
kBTD/h̄ = 2π ×9.9MHz for 20 171Yb+ ions. Other parameters:ωx = 2π ×5.1MHz,ωz = 2π ×34kHz,
|Δk|d0 = 157 with d0 = 10µm, the minimal ion spacing in the middle of the chain

ones, meaning that the “local modes” defined by xi and pxi can be discussed separately
from those at different sites, with only small corrections due to inter-ion coupling. This
is where the concept of a “local temperature” for a single ion starts tomake sense. Such
consideration has also motivated our investigation about the validity of classical ther-
mal transportation for the trapped ion system [36]. Each ion can then be approximated
as an harmonic oscillator weakly coupled to others, whose “local” phonon occupation
number is given by ni = α−2

2 (ωx 〈x2i 〉+ω−1
x 〈px2i 〉−1) ≈ α−2ωx 〈x2i 〉− 1

2 . In the case
shown in Fig. 1, PF= 10−3d0 corresponds to ni = 8.5 with α = 2.0 × 10−3.2

3.2 Steady-state profile under sympathetic cooling

If different parts of the system make contact with reservoirs at different temperatures,
as relevant for sympathetic cooling, the local temperature of the ions in the steady
state will in general have a non-uniform spatial profile. In this section, we investigate
this steady-state profile.

We first examine an example where the two edge portions of the ion chain are
continuously laser cooled (we assume Doppler cooling, although the formalism also
applies to other kinds of sympathetic cooling). The rest of the ion chain is driven
by a hot bath corresponding to the background heating. According to Eq. (2), in the

2 Throughout this article, we choose ytterbium 171 ions spaced by d0 = 10µm as examples, so ω0 =
9.0MHz and α = 2.0 × 10−3.
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Fig. 2 (Color online) Steady-state distributions of the ion PF in a harmonic trap under different background
temperature for a given constant heating rate. As a comparison, the ideal (no background heating, γbg = 0)
curves are shown in red dotted lines

long-time limit, a steady state should be reached, providing a time-invariant profile of
the position fluctuation δxi or δzi over all the ions.

To model the effect of background heating, we assume a small value for the back-
ground driving rate γbg with respect to the associated environment temperature Tbg .
The value of Tbg is hard to quantify; the actual experimentally accessible parameter is
the creation rate of phonons for a given motional mode k, that is, γbgnB

k ∼ γbgTbg/ωk .
To simplify our discussion, we treat the generated phonon numbers approximately the
same around the range of all transverse (axial) modes. In other words, the background
heating is now only characterized by κ ≡ γbgTbg . Nevertheless, for a given value of
κ , we still have the freedom to vary Tbg (and hence γbg) while keeping κ a constant
parameter. As an example, we here consider an N = 20 chain with 5 ions on both ends
as cooling ancillas. By denoting the set of the cooling ancillary ions by C and rest of
the chain by H , we take Ti = Tbg , γi = κ/Tbg for i ∈ H and Ti = TD , γi = 0.1 for
i ∈ C . We then compare the resultant steady-state profile of δxi and δzi under various
Tbg in Fig. 2 with constant κ = 10−4, which amounts to a heating rate of about 60
phonons per second per ion for the lowest axial mode of 2π × 34kHz. Note that in a
real ion trap, a typical heating rate is about 100–1000 photons per second. As expected,
the PF of the ancillary ions coincides with their supposed thermal equilibrium values
at the Doppler temperature TD while δxi and δzi show a hump in the middle part of
the distribution due to the background heating. For Tbg set to larger values, the hump
grows but asymptotically converges to a fixed profile, providing an upper bound of the
profile. This corresponds to the “worst” case with the largest contribution to the gate
infidelity. In the following, we only show such upper bounds for all the circumstances
and investigate the discrepancy between these bounds and the fluctuation profile at the
Doppler temperature (corresponding to the perfectly cooled case).

4 Comparison of different cooling configurations

In this section, we compare the efficiency of sympathetic cooling under two cooling
configurations: edge cooling and periodic-node cooling. For each case, we show the
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results under both harmonic and anharmonic axial traps. For a large ion crystal, the
inhomogeneous ion spacing under a harmonic trap complicates the gate design and
reduces its fidelity for quantum computation. To overcome this problem, as suggested
in [29], it is better to use anharmonic traps which can give equal or almost equal
spacing for the ions in the chain. We consider two kinds of anharmonic trap: the one
(called the uniform trap for simplicity of terminology) which gives perfect uniform
spacing for the ions and the quartic trap with potential V (z) = 1

2α2z2 + 1
4α4z4 which

gives approximate uniform ion spacings. The parameters α2 and α4 in V (z) are chosen
to minimize the variation in the distribution of the ion spacings in the chain [29].

4.1 Edge cooling

First, we show the result with the edge segments of the ions are Doppler cooled.
Figure 3 shows the final distributions of δxi and δzi under three different traps. As

Fig. 3 (Color online) Distributions of the axial and transverse PF (in units of d0) for various trap geometries
under the edge cooling: a, b a uniform array, c, d a harmonic trap, e, f a quartic trap. (N − Nh)/2 ions on
each end of the ion chain are Doppler cooled with a driven rate γ = 0.1. For the uniform array, the spacing
is d0 = 10μm; for the harmonic case,ωz = 2π ×8.4kHz andωx = 2π ×5.1MHz, and for the quartic case
ω2 ≡ √|α2|/m = 2π × 5kHz and |α2/e2|2/3(α2/α4) = −6.2 such that

∑110
i=11(z

0
i+1 − z0i )/100 = d0.

The background heating rate κ = 10−4 amounts to, for instance, generating 240 phonons per second for
the lowest harmonic mode ωz . Other parameters are the same as used in Fig. 1
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a comparison, the corresponding thermal equilibrium profiles at T = TD are shown
as red dotted curves. To consider how many ions can be cooled effectively through
sympathetic cooling, we show the curves under different number Nh ≡ n(H) of the
computational ions which are subject to the background heating. The axial distribution
is shown in Fig. 3a, c, and e. In the uniform case, the curves almost coincide with
the ideal thermal equilibrium one under the Doppler temperature, indicating that the
system is almost perfectly cooled by sympathetic cooling. In our example with the
system size N = 121, the edge cooling for a uniform ion chain can afford Nh up to
100 ions, with the maximal δzi (occurring at the middle ion with i = 61) increased
by about 4% compared with the ideal case. In the harmonic trap, the affordable Nh

is significantly reduced; the ion PF δzi grows very fast near the chain center as Nh

exceeds a certain value (∼25). A considerable improvement can be found in the
quartic case, which supports up to Nh ∼ 85 ions with negligible discrepancy in the
distribution. With even larger Nh , humps start to form on two sides instead of being
at the chain center. As for the transverse motion, as shown in Fig. 3b, d, and f, the
cooling efficiency is in general more vulnerable than that of the axial motion. Because
the transverse motion is typically more localized, the ancillary ions have vanishing
influences on the ions of increasing distance. It can be observed that although δxi for
the edge ions are fixed by theDoppler temperature, the ions away from the laser-cooled
ions soon get large δxi . Therefore, we expect that it is inefficient to cool the transverse
modes with the edge cooling.

The dependence of the cooling efficiency on the number of computational ions Nh

is plotted in Fig. 4. To quantify the cooling efficiency, here we look at the maximal
axial (transverse) position fluctuation δz> (δx>) among all the ions belonging to H
normalized by the middle one’s fluctuation δz0m (δx0m) at the Doppler temperature
TD (m = 61 for the system size N = 121). With this definition, the normalized
characteristic fluctuation approaches the unity when the system reaches the Doppler
temperature. With this setup, the sympathetic cooling works better for the axial modes
than the transverse ones in terms of the gate infidelities δFz and δFx , which are
proportional to

(
δz>

δz061

)4 and
(

δx>

δx061

)4, respectively. For instance, the infidelity δFz is

roughly increased by 16% for δz>

δz061
∼ 1.04, but δFx is increased by 16 times for

δx>

δx061
∼ 2. It is interesting to observe that for both the axial and transverse directions,

Fig. 4 (Color online) Cooling efficiency (in terms of the normalized PF) as a function of the number of
heat-driven ions for a the axial and b the transverse motion

123



Sympathetic cooling in a large ion crystal

the curves for the quartic trap rise more slowly than those for the uniform trap before
they suddenly jump up around Nh ∼ 85.

4.2 Periodic-node cooling

As discussed above for the edge cooling, if we impose an efficiency threshold, there
must be a limit on Nh beyond which the system cannot be effectively cooled. For
long ion chains, therefore, a different spatial arrangement of the cooling ions must be
considered. Here, we discuss an improved configuration where the ancillary cooling
ions are distributed periodically and evenly in the ion chain. We investigate how the
period (the number of computational ions between two adjacent cooling ions/nodes)
influences the performance of sympathetic cooling. We still take the ion number N =
121 as an example and only Doppler cool the 1st, (1+ P)th, (1+2P)th, . . ., N th ions
with a period P that factorizes 120. In Fig. 5, we show the resultant distribution of
δxi and δzi under three different trapping potentials. Unlike the edge cooling case, a
uniformchain has no good performance under the periodic-node cooling.As the reason

Fig. 5 (Color online) Distributions of the axial and transverse PF (in units of d0) under the periodic cooling
for a, b a uniform array, c, d a harmonic trap, e, f a quartic trap. The total number of ions N = 121. All
parameters are the same as in Fig. 3 except for the ancilla arrangement. The curve legend for all six panels
is the same and is given in (e)

123



G.-D. Lin, L.-M. Duan

Fig. 6 (Color online) Efficiency of the periodic cooling with different periods of ancilla arrangement for
a the axial and b the transverse motion

will be revealed later in Sect. 5, this is because the cooling rateγ = 0.1 is not an optimal
choice. As for the axial motion in the harmonic and quartic cases shown in Fig. 5c,
e, the curves are almost identical to the ideal ones even with a large period P = 24
(about 5% of the ions are used for sympathetic cooling in this case). For the transverse
direction shown in Fig. 5b, d, and f, δxi is significantly suppressed compared to those
under the edge cooling configuration. Although the detailed distribution depends on
the trapping potential, the maximum δxi is no more than two (1.25) times of δxi for
the ideal case under a large period P = 24 (P = 10).

We plot the cooling efficiency against the period P in Fig. 6. Here, the efficiency

is characterized by δzi
δz0i

≡ 1
n(H)

∑
i∈H

δzi
δz0i

(similarly for δxi
δx0i

). Note that in the uniform

case, the efficiency becomes worse due to the improper choice of γ = 0.1. For the
axial modes shown in Fig. 6a, the efficiency in the harmonic case is as good as that
in the quartic case except at P = 20, where the ion PF suddenly jumps out of the
good range in the harmonic case. For the transverse modes (Fig. 6a), the three trap
potentials do not show dramatic differences for P < 15, but in general the quartic
curve still shows the slowest increase in the ion PF as P gets larger. The exception
with a sudden jump of the PF at P = 20 is somewhat related to a particular phonon
eigenmode structure for the harmonic trap. Such a eigenmode happens to have a few
nodal points coincident with the sites of cooling ions. Therefore, this mode cannot be
cooled effectively. This can be circumvented by arranging cooling ions asymmetrically
with respect to the trap center. On the other hand, if some of the ions happen to be
of large PF in one normal mode, cooling these ions effectively cools this mode. So it
might be ideal to choose to cool those ions whose amplitudes are large in most of the
eigenmodes.

5 Influence of cooling rates

In this section, we discuss the significance of the driving rate γ of the Doppler cooled
ions. Intuitively, we would expect that the system can be cooled more efficiently when
the driving rate γ gets larger. Our calculation shows that this is however not the case.
We study the efficiency with varied γ under the same background heating rate κ .
The efficiency characterized by the corresponding (normalized) position fluctuation
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Fig. 7 (Color online) Cooling efficiency for a the axial modes and b the transverse modes under edge
cooling; c the axial modes and d the transverse modes under periodic-node cooling. The system size
N = 121. In a and b, these curves correspond to Nh = 41. In c and d, the curves correspond to P = 10.
Other parameters are the same as previously discussed

is plotted in Fig. 7 as a function of γ . Surprisingly, for all the circumstances we
consider, the ion position fluctuation first decreases as the driving rate rises in the
small γ regime, approaching to a minimum when γ is moderate, and then increases
again when γ becomes strong. This suggests that the driving rate has an optimal
window for cooling. The fact that the efficiency does not go better with strong cooling
rates seems counterintuitive in the first place. But this finding is consistent with our
previous work [36]. The reason is that when the driving rate is larger than the inverse
of the timescale needed for propagation, the ion is kicked from random directions so
frequently that the effects of succeeding kicks cancel out before the first kick is about
to “transfer” to its neighbors. If the rate matches the propagation timescale in order of
magnitude, the cooling efficiency gets optimal.

Furthermore, these curves do not reach the minima at the same γ ; the optimized
cooling rate depends on the trapping potentials, cooling configurations, and which
direction of the motion is considered. For the edge cooling (Fig. 7a, b), the most
efficient window of γ for cooling axial modes lies in the range from 0.1 to 1, both for
the uniform and the quartic potentials. With the same rate, the (normalized) transverse
PF becomes significantly larger than unity for these two geometries. For the periodic-
node cooling (Fig. 7c, d), both the curves for the harmonic and the quartic potentials
are nearly identical, with the optimal window lies in the range from γ ∼ 0.1 to 10
for the axial direction and from γ ∼ 0.02 to 0.05 for the transverse direction. By
compromising the optimal windows for both the directions, γ � 0.1 sounds a suitable
choice.

6 Relaxation dynamics to the steady state

So far, we have only discussed the steady-state solution to Eq. (2). In this section, we
discuss the relaxation timescale toward the steady state, which is also an important
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Fig. 8 (Color online) a, b Temporal profiles of the ion PF for the 6th (blue curves) and 10th (green curves)
ions without considering background heating. In a, two solid lines represent coarse-grained values since
the actual profiles contain fast oscillations as seen in the two insets at t = 104t0 (left) and t = 105t0
(right), respectively. The coarse-graining interval is Δt/t0 = 20. Note that in both insets the time span is
Δt ′/t0 = 10, and the wavy (green) behavior belongs to the 10th ion while the PF of the 6th ion stays nearly
a constant (blue). To show the effect of background heating, the PF profile of the 10th ion is also plotted for
comparison (with κ = 10−4). That of the 6th ion is not explicitly shown because it is almost identical to
the blue solid (no-heating) curve. In b, the fast oscillation amplitude is in the order of 10−9d0 so the dotted
curves appear to be on top of the solid ones. A thick and a thin (magenta) dotted lines representing the 10
and 6th ions, respectively, with background heating are also shown for comparison. c, d The snapshots of
the time-averaged distributions and the relevant parameters are the same as Fig. 2

factor concerning the feasibility of employing the sympathetic cooling in experiments.
To illustrate the general feature, we first calculate the dynamics of an N = 20 ion chain
in a harmonic trap under the edge cooling. We assume Doppler cooling is applied to 5
ions on each end of the chain, and the whole chain is initially in thermal equilibrium
with temperature T = 2TD . We then plot the curves of δxi and δzi with i = 6 (right
next to the cooling ions) and i = 10 (the middle ion) as indicators in Fig. 8a, b. Note
that for the axial motion, the two solid lines have been coarse-grained by a small
time interval. This is because the actual profiles have very fast oscillations (see the
insets of Fig. 8a). We also show the upper and lower envelopes of such oscillations by
the dotted lines. The coarse-grained curves asymptotically approach constant values
as time increases, along with the fast oscillations dying away gradually. We define a
relaxation time τR , beyond which the upper envelope falls within 1% of the coarse-
grained value. So we find τR/t0 ∼ 105 for the system to approach the steady state,
where t0 ≡ 2π/ω0 (∼ 7μs for most of the cases discussed here). For the transverse
direction, the amplitude of the fast oscillation is small, but it takes τR/t0 ∼ 106 to
reach the steady state.

Now, we consider the case with background heating at a rate κ = γbgTbg = 10−4.
Different curves corresponding to this case are plotted in dashed lines. Different γbg
changes the final distribution of δxi and δzi , but do not lead to significant variation
in the relaxation timescale. Figure 8c, d shows the snapshots of the distribution of
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Fig. 9 (Color online) Relaxation time τR as a function of a the period P in the periodic-node cooling for
N = 121, and b the total length N of the ion chain for a given P = 10. The solid curves correspond to
no background heating cases, and the dotted lines correspond to background heating cases with κ = 10−4.
For a the relevant parameters are the same as Fig. 5. For chains of different sizes in b the quartic trap is
determined by minimizing

∑N−16
i=16 (z0i+1− z0i )

2/(N −31) and setting
∑N−16

i=16 (z0i+1− z0i )/(N −31) = d0

δxi and δzi (coarse-graining also applied to the axial mode) at different times. The
cooling ions immediately reach their steady states (in a short timescale γ −1 which is
not visible from the curve). The cooling then starts to propagate to the inner part of
the ion chain.

Previous discussion has shown that the relaxation time of edge cooling is still quite
long (0.1 to 1 second). We then turn to the more efficient periodic-node cooling for a
large ion chain.We here consider a quartic trap and examine the relaxation time τR as a
function of the period P . As expected, Fig. 9a shows that τR is in general an increasing
function with P . For an N = 121 chain, we find the timescale can be controlled within
τR/t0 ∼ 104 (tens of milliseconds) while the axial relaxation takes roughly 10 times
shorter than the transverse one. These results show a timescale comparable to usual
Doppler cooling (of order of a fewmilliseconds). If the background heating is included,
the transverse curve drops slightly, but the axial curve is hardly affected. As more ions
are added into the system, it is important to make sure that the relaxation time does not
scale up too fast with N . We show in Fig. 9b the scaling curves of τR with increasing
N by fixing P = 10. The axial relaxation time tends to decrease as the system size
increases and meets a lower bound in the large N limit. On the contrary, the transverse
relaxation time appears to be independent of N . This is because the transverse motion
tends to involve only nearby ions. So a longer chain is nothing but a simple repetition
of segments of a size P .

7 Conclusion

To conclude, we have presented a detailed investigation on the sympathetic cooling
in a large ion chain. Many findings discovered in this paper are instructional for
experimental implementation. First, a steady state can be reached for a system subject
to constant background heating under continuous sympathetic cooling. By arranging
cooling ancillary ions in different ways, the cooling performance can be improved and
optimized. In our calculation, although the transverse motion is relatively harder to
be cooled than the axial one, by inserting ancillary ions evenly over the chain, it can
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be cooled down to a satisfactory level. We have studied the effect of cooling rates and
found the optimal window of the cooling rates. We have also discussed the relaxation
dynamics and showed that the required timescale is within the reach of experiments.
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