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Ascending sequences with neighboring elements
add up to perfect square numbers
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Abstract: We consider the problem of partitioning the numbers 1..n to ascending sequences
as few as possible, so that every neighboring pair of elements in each sequence add up to some
perfect square number. We prove that the minimum number of sequences is

⌈√
2(n + 1)

⌉
− 1.

We hope that this paper exhibits an interesting property of the perfect square numbers.
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1 Introduction

For a sequence of numbers, we call it a good sequence if its elements are sorted in ascending
order and each neighboring pair of elements add up to a perfect square number.

We can always partition the first n natural numbers to several good sequences. Take n = 11

for example. We can partition the numbers in {1, . . . , 11} to four good sequences:

(1, 8), (2, 7, 9), (3, 6, 10), (4, 5, 11).

However, it is impossible to partition the numbers in {1, . . . , 11} to three good sequences (see the
proof below). Thus, it raises the following questions.

Question 1: Given a positive integer n, what is the smallest number k, denoted by g(n), such
that 1 to n can be partitioned to k good sequences?
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Question 2: Given a positive integer k, what is the largest integer n, denoted by f(k), such that
1 to n can be partitioned to k good sequences?

In this paper, we prove the following formulas.

g(n) =
⌈√

2(n + 1)
⌉
− 1, (1)

f(k) =

⌊
1

2
(k + 1)2

⌋
− 1. (2)

From the definition of f(k) and g(n), we can see that g(n) is equal to the smallest number k
such that f(k) ≥ n. Therefore, (2) implies (1). Thus, we only need to prove (2).

2 The proof of (2)

For convenience, denote

ak =

⌊
1

2
(k + 1)2

⌋
, bk =

⌈
1

2
(k + 1)2

⌉
.

We first show that f(k) ≥ ak − 1.

Lemma 1. For any positive number k, we can partition {1, . . . , ak − 1} to k good sequences.

Proof. We shall instead prove the following enhanced statement: We can partition {1, . . . , ak−1}
to k good sequences so that the largest k numbers are all in distinct sequences.

To prove this statement, we give a simple method for constructing such partitions.
When k = 1, we have ak − 1 = 1, and the unique partition of {1} satisfies our requirement.

Now, assume that Πk is a partition of {1, . . . , ak − 1} to k good sequences in which the largest k
numbers are in distinct sequences. We construct a partition Πk+1 of {1, . . . , ak+1− 1} as follows.

1) Let Πk+1 = Πk.
2) For each sequence in Πk+1, append a new element (k+1)2−X to its end, where X denotes

the original tail of this sequence.
3) Add a new sequence to Πk+1, which equals

(1
2
(k + 1)2), when k is odd;
(ak, bk), when k is even.

For example,
Π1 = (1)

Π2 = (1, 3), (2)

Π3 = (1, 3, 6), (2, 7), (4, 5)

Π4 = (1, 3, 6, 10), (2, 7, 9), (4, 5, 11), (8)

We need to prove the following properties of Πk+1.
(i) It is a partition of {1, . . . , ak+1 − 1}.
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(ii) All of its k + 1 sequences are good.
(iii) The largest k + 1 numbers in {1, . . . , ak+1 − 1} are all in distinct sequences.
First of all, since Πk has the property that the largest k numbers are on the tails, the numbers

on the tails of Πk are
ak − k, . . . , ak − 1. (3)

Therefore, the number that are appended to the tails in Step 2) are

(k + 1)2 − ak + 1, . . . , (k + 1)2 − ak + k;

equivalently, they are
bk + 1, . . . , bk + k. (4)

Further, noticing that the new sequence added in Step 3) contains exactly ak, . . . , bk, and
noticing that the numbers in Πk are 1 . . . ak − 1, all the elements in the k + 1 sequences of Πk+1

are distinct, and they are precisely
1, . . . , bk + k.

By the definition of bk and ak+1, we get

bk+k =

⌈
(k + 1)2

2
+ k

⌉
=

⌈
(k + 2)2 − 3

2

⌉
=

⌈
(k + 2)2 − 1

2

⌉
−1 =

⌊
(k + 2)2

2

⌋
−1 = ak+1−1.

Therefore, we get (i).
Due to (4), the appended numbers are larger than the largest number in Πk. Thus, all the k+1

sequences of Πk+1 are ascending sequences. Further, according to the rule we construct Πk+1,
every neighboring pair of elements add up to a perfect square number. Therefore, we get (ii).

Notice that the largest k + 1 numbers in {1, . . . , ak+1 − 1} are precisely bk, . . . , bk + k, and
clearly all of them are on the tail of the k + 1 sequences of Πk+1, we get (iii).

Next, we show that f(k) ≤ ak − 1.

Lemma 2. The numbers from 1 to ak cannot be partitioned to k good sequences.

Proof. Suppose to the contrary that there is a partition Π∗ of {1, . . . , ak} to k good sequences.
Let us consider the largest k + 1 numbers in {1, . . . , ak}, which are ak − k, . . . , ak. Since these
k + 1 numbers are partitioned to k sequences, and the elements in each sequence of Π∗ are sorted
in ascending order, there exist two numbers among these numbers, e.g. x and y, such that they
are partitioned to the same sequence under Π∗ and that they are neighboring elements within the
sequence. This follows that the sum x + y is a perfect square number.

Since x, y are distinct numbers in {ak − k, . . . , ak}, we have

(ak − k) + (ak − k + 1) ≤ x + y ≤ (ak − 1) + (ak).

From the left inequality, we get

x + y ≥ 2

⌊
1

2
(k + 1)2

⌋
− 2k + 1 ≥ 2

(
1

2
(k + 1)2 − 1

2

)
− 2k + 1 = k2 + 1.

26



From the right inequality, we get

x + y ≤ 2

⌊
1

2
(k + 1)2

⌋
− 1 ≤ (k + 1)2 − 1.

Together, we have
k2 < x + y < (k + 1)2,

and this immediately implies that x + y is not a perfect square number, which is contradictory.
Therefore, there is no way to partition {1, . . . , ak} to k good sequences.

Combining the above two lemmas, we get f(k) = ak − 1, and hence prove (2).

Note that f(3) = 7 < 11. There is no way to partition the numbers in {1, . . . , 11} to three
good sequences, as mentioned at the beginning of this paper.

3 Concluding remarks

In this paper, we propose and solve a problem of partition the first n natural number, which to the
best of our knowledge has not been studied before. As a result, we find some cute formulas for
this problem, which exhibit an interesting property of the perfect square numbers.
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