
of mid-level visual concepts for the purpose of performing
general image understanding, which goes out of the scope
of classeme [29] as it is computationally prohibitive for [29]
to train on a large scale.

A recent approach [28] learns “discriminative patches”
in an unsupervised manner. However, [28] learns discrimi-
native patches while we focus on dictionary learning for the
mid-level representations; [28] uses an iterative procedure,
while our method adopts saliency detection, miSVM and K-
means in a novel way; in addition, our method significant-
ly outperforms [28] with a relative 37% improvement on
the MIT-Indoor scene dataset, on which both the approach-
es have been tested. In [15], high-level features are built
from large scale Internet images with nine layers of locally
connected sparse autoencoder; however, their autoencoder
approach is much more complex than the scheme proposed
in this paper. In [37], saliency detection is utilized to cre-
ate bags of image patches, but only one object is assumed
in each image for the task of object discovery. Although
multiple clusters are learned in [34], its goal is to identify a
few cancer patterns for medical image segmentation; in ad-
dition, the lack of explicit competition among clusters leads
to poor results in our problem. In terms of large-scale nat-
ural images, ImageNet [5] is shown to be a great resource.
Here, we find it convenient to directly crawl images from
the search engines using word-based queries.

3. Automatic Visual Concept Learning

Starting from a pool of words, we crawl a large number
of Internet images using the literal words as queries;patches
are then sampled and visual concepts are learned in a weak-
ly supervised manner. The flow chart of our scheme is il-
lustrated in Fig. 1. Following our path of harvesting visu-
al concepts from words, many algorithms can be used to
learn the visual concepts. In this paper, we adopt a sim-
ple scheme, using the max-margin formulation for multiple
instance learning in [1] to automatically find positive mid-
level patches; we then create visual concepts by perform-
ing K-means on the positive patches. The visual concept-
s learned in this way are the mid-level representations of
enormous Internet images with decent diversity, and can be
used to encode novel images and to categorize novel cate-
gories. In the following sections, we introduce the details
of our scheme.

3.1. Word Selection and Image Collection

The literal words are selected from ImageNet [5], which
is based on WordNet [19] and Classeme [29]. For the word-
s with similar meanings, e.g., “people”, “guest”, “worker”,
and “judge”, we keep the most generic one. In all, � = 716
words are selected. Most of the words are representative
ones of the popular categories in ImageNet such as “an-
imal”, “plants”, “scenes”, “activities”, “foods”, and “ma-

Figure 1. The flow chart of our scheme of creating visual concepts
from words.

terials”. For each word, we crawled the top 400 images
from google.com and the top 30 images from bing.com and
merged the images by removing the duplicates. For each
category (word), around 400 images are retained.

Fig. 2 shows the top ranked images for 26 words. From
Fig. 2, we can see that most of the retrieved images are gen-
erally of high relevance to the query word. Also, these im-
ages provide sufficient diversity stemming from the intra-
category variances. For example, for the word “table”, be-
sides the images of dinning tables, images of spreadsheet-
s appear as well. The retrieved images for words such as
“video” and “bird” are even more diverse. The diversity in
these crawled images makes it inappropriate to train only a
single classifier on the images, forcing us to investigate the
multiple cluster property. Further, the object of interest usu-
ally does not occupy the entire image, making the multiple
instance learning formulation a natural fit for this task.

3.2. Saliency Guided Bag Construction

The problem of visual concept learning is firstly unsu-
pervised because we did not manually label or annotate the
crawled images. However, if we view the query words as
the labels for the images, the problem can be formulated
in a weakly supervised setting, making our problem more
focused and easier to be tackled.

Firstly, we convert each image to a bag of image patches
with size greater than or equal to 64×64 that are more like-
ly to carry semantic meanings. Instead of having randomly
or densely sampled patches as th in [28], we adopt a salien-
cy detection technique to reduce the search space. Salien-
cy detection assumes that the object of interest is generally
salient in an image. Fig. 3 shows sample saliency detection
results (the top 5 saliency windows for each image) by [9],
a window based saliency detection method. From Fig. 3,
we observe that within the top 5 saliency windows, object-
s such as airplanes, birds, caterpillars, crosses, dogs, and
horses are covered by the saliency windows. In addition,
for the airplane and the caterpillar, the salient windows nat-
urally correspond to the parts. This illustrates the benefit of
the use of saliency detection: it helps to identify the regions
and parts with more significance naturally. In our experi-
ment, the top 50 salient windows are used as the instances
of a positive bag directly. For large salient windows with
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Figure 2. Sample images collected for 26 words. In the left column, the words from the top row to the bottom row are “abbey”, “airport”,
“armchair” “balloon”, “beach”, “bird”, “bride”, “building”, “eagle”, “gun”, “table”, “video”, and “wolf”, respectively; in the right column,
the words are “airplane”, “ambulance”, “balcony”, “bar”, “bicycle”, “bookshelf”, “bridge”, “computer monitor”, “ferry”, “horse”, “tiger”,
“window”, and “yard”, respectively.

sizes greater than 192 × 192, smaller patches within them
are sampled, resulting in possible parts of the relevant pat-
terns.

Although the saliency assumption is reasonable, not all
category images satisfy this assumption. For example, for
the images of “beach”, the salient windows only cover pat-
terns such as birds, trees, and clouds (see the salient win-
dows of the “beach” image in Fig. 3). Although these cov-
ered patterns are also related to “beach”, they cannot cap-
ture the scene as a whole because an image of “beach” is a
mixture of visual concepts including sea, sky, and sands. To
avoid missing non-salient regions for a word, besides using

the salient windows, we also randomly sample some image
patches from non-salient regions. As non-salient regions
are often relatively uniform with less variation in the ap-
pearance, a smaller number of patches are sampled from the
regions. After the patches are sampled, we perform overlap
checks between the image patches with similar scale is per-
formed. If two patches are of the similar scale and have high
overlap, one patch will be removed.

Each bag constructed in this way thus consists of patches
from both salient and non-salient regions. A portion of the
patches may be unrelated to the word of interest, e.g., the
patches corresponding to the sea in the image of “horse” in
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Fig. 3. Such patches are uncommon for the word “horse”,
and will be naturally filtered under the multiple instance
learning framework.

Thus, for a word with � (� ≈ 400) images, � bags
{� � � 1 ≤ � ≤ � } can be constructed, each bag � � =
{x�� � 1 ≤ � ≤ � }, where � is the number of patches sam-
pled for the image and is about 150 in our paper; x�� is the
descriptor of the patch.

Figure 3. Top five salient windows for images from 12 words. Ex-
cept for the words “sky”, “beach”, and “yard”, the patterns of inter-
est can be covered by a few top salient windows. For objects such
as “caterpillar”, “bicycle”, and “conductor”, parts can be captured
by the salient windows.

3.3. Our Formulation

To learn visual concepts from the bags constructed
above, there are two basic requirements: 1) the irrelevant
image patches should be filtered, and 2) the multiple clus-
ter property of these visual patches should be investigated.
Many methods meet these two requirements. In this paper,
we simply use the max-margin framework for multiple in-
stance learning (miSVM) in [1] to learn a linear SVM for
each word, and then perform clustering on the positive in-
stances labeled by the linear SVM. It is worth mentioning
that another formulation for learning the multiple instance
multi-classes problem can also be used, but it is not the main
focus of this paper.

In multiple instance learning, the labeling information is
significantly weakened as the labels are assigned only to the
bags with latent instance level lables. In [1], the relationship
between the bag level labels and the instance level labels is
formulated as a set of linear constraints. With these linear
constraints, soft-margin SVM is formulated into a mixed in-
teger programming problem, which can by solved heuristi-
cally by iterating two steps: 1) given the instance level label
	 for an instance x, solving the optimization discriminant
function 
 (x) = ⟨w� x⟩ + � via Quadratic programming,
where w is the weight vector, and � is the bias term and
2) given the discriminant function 
 , updating the instance
level labels 	 . For more details on miSVM, the readers can

refer to [1].

3.3.1 Visual Concept Learning via miSVM

Using miSVM and assigning the literal words as the label-
s for the Internet images, visual concept learning for each
word can be converted from an unsupervised learning prob-
lem into a weakly supervised learning problem. For a word
� , its bag � � is assigned with a label  � = 1. The in-
stance level label 	 �� for each instance x�� ∈ � � is unknown
and will be automatically discovered by miSVM. For nega-
tive bags, we create a large negative bag � − using a large
amount of instances (patches) from words other than the
word of interest. The number of instances in � − is gener-
ally 5 ∼ 10 times more than the number of all the instances
in the positive bags. The purpose of creating the large neg-
ative bag is to model the visual world, making the visual
concepts learned for a word discriminant enough from the
other words. For example, for words such as “horse” and
“cow”, using a large negative bag � −, the common back-
grounds such as the grassland and the sky can be filtered.

Based on {� � � 1 ≤ � ≤ � } and � −, a linear SVM 
 �

can be learned by miSVM for the � -th word. The positive
patches related to the word are also automatically found by
miSVM. Given a patch, the linear SVM 
 � can output a
confidence value indicating the relevance of the patch to
the word of interest. Therefore, the linear SVM 
 � itself
can be treated as a visual concept that models the patches
of a word as a whole. We call it a single-concept classifi-
er. Due to the embedded multi-cluster nature of diversity
in the image concepts, a single classifier is insufficient to
capture the diverse visual representations to a word con-
cept. Thus, we apply another step in our algorithm: the
positive instances (patches) automatically identified by the
single-concept classifier are clustered to form some codes
� � = {� �

1 � � �
2 � ���� � �

� }. We call these codes multi-cluster
visual concepts. Different from the single-concept classifi-
er, each multi-cluster visual concept corresponds to a com-
pact image concept.

Therefore, for each word � , we learn two types of vi-
sual concepts, the single-concept classifier and the multi-
cluster visual concepts � � . From Internet images of the
� words, we can learn � single-concept classifiers � =
{
 1� ���� 
 � }, and a set of multi-cluster visual concepts
� = {� � � 1 ≤ � ≤ � }. The single-concept classifiers
and the visual concepts can be applied to novel images as
the descriptors for categorization.

In Fig. 4, we illustrate the outputs of the single-concept
classifiers on the images, as well as the assignments of
patches to the multi-cluster visual concepts. For clarity, for
each word we cluster six multi-cluster visual concepts from
the positive patches and assign them different colors ran-
domly. For each image, we sample dense mid-level patches
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Figure 4. Illustration of the single-concept classifiers and the multi-cluster visual concepts for 6 words. (a) “building”, (b) “flower”, (c)
“balcony”, (d) “ferry”, (e) “tiger”, and (f) “horse”. For each word, the first row shows the original images; the second row shows the
assignment of the codes, and the third row shows the outputs of the single-concept classifier (the linear SVM for each word). See text for
details.

and apply the single-concept classifier to label the patch-
es. We then assign the patches labeled as positive to the
six multi-cluster visual concepts in a nearest neighborhood
manner and display the colors of the assigned visual con-
cepts in the centers of the patches.

The third row in Fig. 4 shows the outputs of the single-
concept classifiers. Though learned in a weakly supervised
manner, the single-concept classifiers can predict rather
well. However, it cannot capture the diverse patterns of the
patches, e.g., for the word “building”, the walls of the left
two images are different from the walls of the right three
images. On the contrary, the multi-cluster visual concept-
s can capture such differences. The walls in the left two
images of the word “building” have the same patten, and
they are assigned to the same multi-cluster visual concept
that has relatively sparse and rectangle windows (indicated
in green). The walls on the right three images have a differ-
ent pattern and they are assigned to another visual concept
that has square and denser windows (indicated in magen-
ta). For the word “balcony”, the columns are assigned to
a multi-cluster visual concept indicated in yellow. For the
other four “words”, the objects of interest are generally a
combination of several multi-cluster visual concepts. This
illustrates that the single-concept classifiers and the multi-
cluster visual concepts correspond to different aspects of

images and complement each other.

3.4. Application for Image Classification

As our visual concept representation has two compo-
nents, the single-concept classifiers � = {
 1� ���� 
 � } and
the multi-cluster visual concepts � = {� � � 1 ≤ � ≤ � },
we apply the two components separately on novel images.
Each novel image is divided into grids of a three-level s-
patial pyramid [14]. The single-concept classifier 
 � is ap-
plied to the densely sampled patches from the grids, and
the responses of the classifiers are pooled in a max-pooling
manner. For natural images, the objects are generally vary-
ing in different scales, and we run the classifiers on the nov-
el images on these scales. Since our method works on the
patch level and the visual concepts are learned with image
patches of different scales, two or three scales are enough
for testing images. The pooled responses across differen-
t scales are concatenated, leading to a feature vector with
dimension � × 21× number of scales.

We use the multi-cluster visual concepts � = {� � � 1 ≤
� ≤ � } in a simple way as a single codebook in a s-
patial pyramid matching manner (SPM) [14]: multi-scale
mid-level patches are assigned to the multi-cluster visual
concepts via hard assignment; a histogram is constructed
for each grid of the three-level spatial pyramid and the fea-
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ture is the concatenated version of the histograms of all the
multi-cluster visual concepts. In this way, for each novel
image, we obtain a feature vector of dimension � × � ×21,
where � is the number of multi-cluster visual concepts for
each word.

Definitely, there are several other options. One is to train
a linear classifier model for each visual concept, and apply
the classifiers to the novel images. In this paper, we simply
use the basic scheme to illustrate the effectiveness of the
visual concepts we learned.

Finally, the features corresponding to the single-concept
classifiers and the multi-cluster visual concepts are com-
bined like multiple kernel learning [2, 13]. The kernels
� � for the single-concept classifiers and � � for the multi-
cluster visual concepts are computed respectively and com-
bined linearly: � = �� � + (1 − � )� � . In our paper, as
there are only two kernels, instead of using advanced tech-
niques such as the SMO algorithm in [2], we can simply use
cross-validation to determine the best � ∗. � 2 kernel is used
in the experiments, and it can be computed efficiently using
the explicit feature map in [31, 30].

4. Experiments and Results

On the PASCAL VOC 2007 [6], scene-15 [14], MIT in-
door scene [27], UIUC-Sport [16] and Inria horse [10] im-
age sets, we evaluate the visual concepts learned from the
Internet images. On these image sets, the visual concepts
achieve the state-of-the-art performances, demonstrating its
good cross-dataset generalization capability. Also, as a type
of generic knowledge from Internet images, when used with
the specific models learned from specific image sets, the re-
sults can be further improved to a large extent.

4.1. Implementations

For each patch, we use HOG [4] (of 2048 dimensions),
LBP [36] (of 256 dimensions) and the L∗a∗b∗ histogram (of
96 dimensions) as the feature; these features are concatenat-
ed, leading to a feature vector of dimension 2400.

The toolbox of LIBLINEAR [7] is adopted for efficient
training; for each word, five iterations are used in miSVM.
To create the visual concepts, on the patches labeled as posi-
tive by miSVM, 20 clusters are found using K-means; Thus,
716× 20 = 14320 multi-cluster visual concepts are created
for the 716 words.

We have created another two codebooks of size 14320.
The first codebook is created by quantizing the densely sam-
pled multi-scale image patches from images of all the word-
s. The second codebook is created by finding 20 clusters
from the images for each word. In the following, we name
the first codebook KMS-ALL, and the second codebook
KMS-SUB. As the two codebooks are created without using
the saliency assumption and the multiple instance learning
framework, they serve as two good baselines.

4.2. Quantitative Results

PASCAL VOC 2007 Image Set This dataset contains
20 object classes and 9963 images. It is split into training,
validating and testing sets, and the mean average precision
(mAP) of the 20 categories on the testing set is reported.
The dataset is challenging, with large intra-class variances,
cluttered backgrounds, and scale changes. When applying
the visual concepts to the dataset, image patches of three
scales 64× 64, 128× 128 and 192× 192 are used.

In Table 1, we compare the mAPs. Firstly, we compare
the visual concepts with the two baselines KMS-ALL and
KMS-SUB. The multi-cluster visual concepts outperform
both KMS-ALL and KMS-SUB, indicating that, the multi-
cluster visual concepts learned are more effective. Though
there are only 716 single-concept classifiers, they perform
reasonably well, achieving an mAP 51%. By combining the
single-concept classifiers and the multi-cluster visual con-
cepts, the mAP is 57�5%, much higher than that of KMS-
ALL and KMS-SUB.

We also compare our visual concepts with the im-
proved Fisher-kernel (FK), locality-constrained linear cod-
ing (LLC)[32], and vector quantization (VQ). The fisher k-
ernel starts from a Gaussian Mixture-Model (GMM), and
concatenates the average first and second order differences
between the patch descriptors and the centers of the GMM,
leading to a feature vector of very high dimension. In [26],
the Fisher-kernel is improved by reducing the dimensional-
ity of the patch descriptors using PCA. LLC [32] projects
the patch descriptors to the local linear subspaces spanned
by some visual words closest to the patch descriptors, and
the feature vector is obtained by max-pooling the recon-
struction weights. The improved Fisher-Kernel and LLC
stand for the state-of-the-arts. For FK, LLC and VQ, the
results reported here are from the image classification tool-
box in [3]. In [3], multi-scale dense SIFT descriptors are
used as the local features and the � 2 kernel is used in SVM
when classifying the images. From Table 1, we can observe
that even though we do not use images from PASCAL VOC
2007 in the learning stage, the result of our visual concepts
approach is comparable to that of the states-of-the-arts.

We investigate the complementariness of our visual con-
cepts with the model learned from the images of the PAS-
CAL VOC 2007 image set with advanced Fisher-kernels.
The kernel matrices of the visual concepts and the im-
proved Fisher-Kernels are combined linearly. The combi-
nation weight is learned on the validating set. For the im-
proved Fisher-kernel, its result reported in [3] is 61�69%,
but when we run the toolbox with the suggested experimen-
tal settings, we get the mAP 59�6%. By combining the im-
proved Fisher-kernel and our visual concepts, the result is
boosted to 62�9%. This illustrates that our visual concepts
do add extra information useful to the models learned from
specific data sets.
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FK LLC-25k VQ-25K MCIL KMS-SUB
59.6% 57.66% 56.07% 43.3% 53.9%

KMS-ALL SCCs MVC VC FK+VC
53.3 51% 55.6% 57.5% 62.9%

Table 1. The mean average precisions on PASCAL VOC 2007
image set. FK: the improved Fisher-kernel with 256 compo-
nents; LLC-25k: LLC with 25, 000 codes; VQ-25k: vector quan-
tization with 25, 000 codes; MCIL: multiple clustered instance
learning[34]; KMS-SUB: the codebook created by clustering on
each word; KMS-ALL: the codebook created by clustering on the
image data from all the words; SCCs: the single-concept clas-
sifiers; MVC: the multi-cluster visual concepts; VC: the visual
concepts, combination of the single-concept classifiers and multi-
cluster visual concepts; FK+VC: combining the improved fisher
kernel with our visual concepts.

Multiple clustered instance learning (MCIL) [34] inves-
tigates the multiple cluster property at the instance level in
the MIL-Boost framework. We applied MCIL to learn a
mixture of 20 cluster classifiers for each word, and used the
outputs of the cluster classifiers as the features to encode the
novel images. The result of MCIL is much worse than that
of the visual concepts. The reason is that, in MCIL, as the
number of weak classifiers increases, the number of positive
instances decreases dramatically and the cluster classifiers
in MCIL learn little knowledge about the image set because
of the lack of positive instances. Also, there is no compe-
tition between the cluster classifiers in MCIL, making the
multiple cluster property of the image data not fully inves-
tigated.

Scene Classification We evaluate the visual concepts in
the task of scene classification on three scene image set-
s, Scene-15 [14], MIT indoor scene [27], and UIUC-Sport
event [17]. Scene-15 has 15 natural scene classes; 100 im-
ages from each class are randomly selected for training and
the remaining images are used for testing. UIUC-Sport has
8 complex event classes; 70 images from each class are ran-
domly sampled for training and 60 images are sampled for
testing. On both Scene-15 and UIUC-Sport, we run the ex-
periments for 10 rounds, and report the average classifica-
tion accuracy. MIT Indoor scene consists of 67 clustered
indoor scene categories and has fixed training/testing splits.

On the scene image sets, image patches of two scales
64× 64, 128× 128 are used. The results are reported in Ta-
ble 2. On the three datasets, our visual concepts approach
outperforms KMS-ALL and KMS-SUB significantly. Ob-
ject bank learns detection models for 200 objects from su-
pervised data. Even though our visual concepts are learned
in a weakly supervised manner, the visual concepts still out-
perform the detection models of object bank. The main rea-
son for the superiority of our visual concepts is that, while
object bank tries to capture an object using a single de-
tection model, our method can capture the multiple clus-
ter property with 14� 200 visual concepts and can model the
diversity of the Internet images. We also test vector quan-

Scene-15 UIUC-Sport MIT-Indoor
Object Bank [17] 80.9% 76.3% 37.6%
Yang et al. [35] 80.4% - -

Li et al. [16] - 73.4% -
Singh et al. [28] - - 38%

Pandey et al. [23] - - 43.1%
Quattoni et al. [27] - - 26%

Niu et al. [21] 78% 82.5% -
Wang et al. [33] 80.43% - 33.7%
Kwitt et al. [12] 82.3% 83.0% 44.0%

KMS-ALL 78.7% 81.5% 38.8%
KMS-SUB 80.4% 83.2% 41.9%

VQ 82.1% 85.6% 47.6%
VC 83.4% 84.8% 46.4%

VC+VQ 85.4% 88.4% 52.3%

Table 2. The classification accuracies on the scene datasets.

tization (VQ) with 10� 000 codes on the three image sets
using the toolbox [3]. With such a large amount of codes,
VQ performs surprisingly well on the UIUC-Sport and the
MIT Indoor scene sets. On all the three scene image set-
s, our visual concepts perform comparably to VQ though
we do not use the images from those image sets. By com-
bining the VQ with our visual concepts, the performance
can be boosted significantly. Relatively, the improvement is
about 3% on the Scene-15 and UIUC-Sport image sets, and
10% on the MIT indoor scene set. For VQ, with the number
of codes increased, the performance will saturate: we have
tested VQ with 24� 000 codes on the MIT indoor scene im-
age set, and the accuracy is 47�1%, even a slight decrease.
From Table 2, we can see that, our method also outperforms
recent methods such as [33], [21],[35], [28] and [12].

Inria Horse Image Set INRIA horse dataset contains
170 horse images and 170 background images taken from
the Internet. We randomly selected half of the images for
training and the remaining images for testing and run the
experiments for 10 rounds. On this image set, the accuracy
of our visual concepts is 92�47%, better than the accuracy
91�4% of VQ with 10� 000 codes and 85�3% in [20].

5. Conclusion

In this paper, we have introduced a scheme to auto-
matically exploit mid-level representations, called visual
concepts, from large-scale Internet images retrieved using
word-based queries. From more than a quarter of a mil-
lion images, over 14,000 visual concepts are automatically
learned. These learned visual concepts are generic and have
good cross-dataset generalization capability; when com-
bined with the models learned from specific dataset, our
algorithm improves the state-of-the-arts to a large exten-
t, demonstrating the complementariness between the visual
concepts and the image content in specific datasets.
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