
Generalization of Two-layer Neural
Networks: An Asymptotic Viewpoint

Jimmy Ba1,2 Murat A. Erdogdu1,2 Taiji Suzuki3,4

Denny Wu1,2,4 Tianzong Zhang2,5

1University of Toronto 2Vector Institute for Artificial Intelligence
3University of Tokyo 4RIKEN AIP 5Tsinghua University

International Conference on Learning Representations 2020

1



Introduction: the Double Descent Phenomenon

Double Descent: second decrease in population risk beyond the "inter-
polation threshold", i.e. when the model interpolates training data.

Previous works provided precise characterization of this phenomenon for
the minimum-norm interpolant (linear and random features model).

• M. Belkin, D. Hsu, S. Ma, S. Mandal. Reconciling modern machine learning and the
bias-variance trade-off.

• T. Hastie, A. Montanari, S. Rosset, R. Tibshirani. Surprises in high-dimensional
ridgeless interpolation.
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Motivation: Double Descent in Two-layer Networks?

For linear models, the number of parameters is tied to input dimensions.

Motivation of This Work:
• Does this phenomenon generalizes to nonlinear models, in which the

model complexity can be controlled independent of the data?

Remark: the answer is affirmative for random features model [Mei and
Montanari 2019] and principal component regression [Ji and Hsu 2019].

Common mechanism: instability of the pseudo-inverse, i.e. the norm of
the parameters “blows up” at the interpolation threshold.

Motivation of This Work:
• Does the same mechanism explain the benefit of overparameterization

for neural networks (in the same proportional limit)?

Remark: “double descent” is empirically observed in neural net optimization.
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Motivation: Impact of Optimization and Initialization

Different optimization procedure:

• Optimizing the second layer corresponds to a random feature model.
• Optimizing the first layer is often non-convex due to the nonlinearity.

Different initialization:
• The scale of initialization

changes the obtained solution.

Similar analogy: comparison between
kernel and mean-field regime.

Motivation of This Work:
• How does the optimization procedure and the initialization scale

affect the generalization performance?

• Chizat, L., Oyallon, E. and Bach, F., 2019. On lazy training in differentiable
programming.
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Problem Setup and Assumptions

• Data: xi ∼ N (0, Id).

• Student: f (x) =
∑h

i=1 aiφ(〈x ,wi 〉).
• Teacher: yi = 〈xi ,θ∗〉+ ε. ‖θ∗‖2 = r ,
E[ε] = 0, Var(ε) = σ2.

• Objective: minimize (unregularized)
MSE: L(f ) = 1

2n

∑n
i=1(yi − f (xi ))

2.

• Proportional Asymptotics: n, d , h→∞, d/n = γ1, h/n = γ2 .

• Optimization: gradient flow on either the first or second layer.

• Goal: derive prediction risk R(f ) = Ex [(〈x ,θ∗〉 − f (x))2].

Remark: overparameterization corresponds to increasing γ2 = h/n.
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Warm Up: Linear Network

Two-layer linear network: f (x) = x>Wa; Optimize either W or a.
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• Main figure: when only the 2nd layer is
optimized (from zero init.), double descent
w.r.t. γ2 occurs when γ1 > 1 i.e. d > n.

• Subfigure: when only the 1st layer is
optimized (for fixed non-zero 2nd layer), risk
is independent to γ2 (overparameterization).

Note: darker color corresponds to larger γ1.

Observation: double descent observed when the 2nd layer is optimized,
but not when the 1st layer is optimized.

Question: is this phenomenon also present in nonlinear networks?
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Nonlinear Network: Trained Second Layer

Learning the 2nd layer from zero initialization yields the least squares
solution â = φ(XW )†y , i.e. RF model.

Bias-variance Decomposition:

Variance – quantitative characterization:
• Independent to γ1 = d/n when γ2 = h/n < 1.

• Peaks at γ2 → 1 and then decreases.

Remark: result largely follows from [Cheng and Singer

2013] and [Hastie et al. 2019].

Bias – qualitative characterization:
• Peaks at γ2→1 and bounded for γ2>1.

Remark: [Mei and Montanari 2019] provided a complete

characterization for both the bias and variance.
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(a) variance (ReLU).
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Observation: double descent observed in both the bias and variance.

7



Nonlinear Network: Trained First Layer

2nd Layer: ai ∼ {−1/
√
h, 1/
√
h} and fixed throughout optimization.

Challenge: stationary solution of gradient flow (under empirical risk) is
often difficult to characterize due to nonlinearity.

Solution: analyze specific initializations that allow the training dynamics
to be “ linearized” (e.g. 1st order Taylor expansion is accurate).

Vanishing initialization: ‖W (t)−W (0)‖F � ‖W (0)‖F .
• Satisfied by wi∼N (0, I/dh1+ε). Neurons stay close to one another.

• Training can be linearized around the origin.

Non-vanishing initialization: ‖W (t)−W (0)‖F � ‖W (0)‖F .
• Satisfied by wi∼N (0, I/d1−ε). Neurons stay close to initialization.

• Training can be linearized around the initialization.
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Vanishing and Non-vanishing Initialization

Vanishing Initialization

• Model is asymptotically equivalent to
that of a two-layer linear network.

Remark: smooth activation is required due to
1st order Taylor expansion.

Non-vanishing Initialization

• Model described by the neural tangent
kernel : f (x) ≈ (θt − θ0)

>∇θ0 f0(x).

Remark: “doubling trick” to ensure f0(x) = 0.

Asymptotic equivalent of NTK:
K ≈ b0XX> + b1In,

where b0, b1 are obtained from orthogonal de-
composition of the activation.
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(b) non-vanishing initialization.
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Exact Risk for Two Initializations
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(a) bias (sigmoid).
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Note: individual dotted lines are different γ2=h/n, which does not affect the risk.

• For both initializations, population risk is independent to γ2, i.e.
double descent does not occur as a result of overparameterization.

• Two initializations lead to models with contrasting properties: large
initialization results in higher bias but lower variance.
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Discussion and Conclusion

Conclusion: “double descent” in neural networks is more nuanced
compared to linear models (i.e. minimum norm interpolants).

• Optimizing different layers of the model results in different behaviors.

• Scale of initialization leads to different inductive bias.

• Proportional limit may not be the right regime to analyze double
descent in neural networks?

Future Directions:

• Relax assumptions (e.g. universality of random matrix results).

• Consider different initializations (e.g. the mean-field 1/h scaling).

• Characterize the impact of loss function and regularization (both
explicit and algorithmic).
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