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uble Descent Phenomenon
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Double Descent: second decrease in population risk beyond the "inter-
polation threshold", i.e. when the model interpolates training data.

Previous works provided precise characterization of this phenomenon for
the minimum-norm interpolant (linear and random features model).

e M. Belkin, D. Hsu, S. Ma, S. Mandal. Reconciling modern machine learning and the
bias-variance trade-off.

e T. Hastie, A. Montanari, S. Rosset, R. Tibshirani. Surprises in high-dimensional
ridgeless interpolation.



Motivation: Double Descent in Two-layer Networks?

For linear models, the number of parameters is tied to input dimensions.

Motivation of This Work:
e Does this phenomenon generalizes to nonlinear models, in which the

model complexity can be controlled independent of the data?

Remark: the answer is affirmative for random features model [Mei and

Montanari 2019] and principal component regression [Ji and Hsu 2019].

Common mechanism: instability of the pseudo-inverse, i.e. the norm of
the parameters “blows up” at the interpolation threshold.

Motivation of This Work:
e Does the same mechanism explain the benefit of overparameterization

for neural networks (in the same proportional limit)?

Remark: “double descent” is empirically observed in neural net optimization.



Motivation: Impact of Optimization and Initialization

Different optimization procedure:

e Optimizing the second layer corresponds to a random feature model.
e Optimizing the first layer is often non-convex due to the nonlinearity.

Different initialization:
e The scale of initialization
changes the obtained solution.

Similar analogy: comparison between

kernel and mean-field regime.

Motivation of This Work:
e How does the optimization procedure and the initialization scale

affect the generalization performance?

e Chizat, L., Oyallon, E. and Bach, F., 2019. On lazy training in differentiable
programming.



Problem Setup and Assumptions

e Data: x; ~ N(0, ).

e Student: f(x) = Ef’zl a;p({x, w;)).

e Teacher: y; = (x;,0,) +¢. [|60.,=r,
E[g] =0, Var(e) = o2.

e Objective: minimize (unregularized)
MSE: L(f) = 33 - (v — F(x))"

e Proportional Asymptotics: n,d, h—o0, d/n= 1, h/n= "y .
e Optimization: gradient flow on either the first or second layer.

e Goal: derive prediction risk R(f) = Ex[({x,8*) — f(x))?].

Remark: overparameterization corresponds to increasing v» = h/n.



Warm Up: Linear Network

Two-layer linear network: f(x) = x" Wa; Optimize either W or a.

e Main figure: when only the 2nd layer is
optimized (from zero init.), double descent
’ w.r.t. 7o occurs when v; > 1ie. d > n.

«  empirical

s e Subfigure: when only the 1st layer is
—— prediction SSSSSES . )
ol 1g ML optimized (for fixed non-zero 2nd layer), risk
is independent to , (overparameterization).

v =d/n> 1

Note: darker color corresponds to larger 1.

Observation: double descent observed when the 2nd layer is optimized,
but not when the Ist layer is optimized.

Question: is this phenomenon also present in nonlinear networks?



Nonlinear Network: Trained Second Layer

Learning the 2nd layer from zero initialization yields the least squares
solution & = ¢(XW)Ty, i.e. RF model. .
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Bias-variance Decomposition:

variance

Variance — quantitative characterization: .
e Independent to v1 = d/n when 72 = h/n < 1. 2
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(a) variance (ReLU).

e Peaks at 72 — 1 and then decreases.

Remark: result largely follows from [Cheng and Singer

2013] and [Hastie et al. 2019]. LR empirical

s — upper-bound

Bias — qualitative characterization: 3
e Peaks at 72— 1 and bounded for 72 > 1.

Remark: [Mei and Montanari 2019] provided a complete gt el

y2=hin

characterization for both the bias and variance. (b) es (ReLU).

[Observation: double descent observed in both the bias and variance. ]




Nonlinear Network: Trained First Layer

2nd Layer: a; ~ {—1/v/h,1/v/h} and fixed throughout optimization.

Challenge: stationary solution of gradient flow (under empirical risk) is
often difficult to characterize due to nonlinearity.

Solution: analyze specific initializations that allow the training dynamics
to be “linearized” (e.g. 1st order Taylor expansion is accurate).

Vanishing initialization: ||W(t) — W(0)|r > [|[W(0)||¢.
e Satisfied by w; ~N(0,1/dh'*€). Neurons stay close to one another.

e Training can be linearized around the origin.

Non-vanishing initialization: |W(t) — W(0)|r < [[W(0)||¢.
e Satisfied by w; ~N(0,1/d'~¢). Neurons stay close to initialization.

e Training can be linearized around the initialization.




Vanishing and Non-vanishing Initialization

Vanishing Initialization + intalization
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e Model is asymptotically equivalent to 0.002
that of a two-layer linear network.
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Remark: smooth activation is required due to oo

1st order Taylor expansion.
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Non-vanishing Initialization (a) vanishing initialization.
e Model described by the neural tangent
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composition of the activation. (b) non-vanishing initialization.



Exact Risk for Two Initializations
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(a) bias (sigmoid). (b) variance (sigmoid).

Note: individual dotted lines are different > =h/n, which does not affect the risk.

e For both initializations, population risk is independent to ~,, i.e.
double descent does not occur as a result of overparameterization.

e Two initializations lead to models with contrasting properties: large
initialization results in higher bias but lower variance.
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Discussion and Conclusion

Conclusion: “double descent” in neural networks is more nuanced
compared to linear models (i.e. minimum norm interpolants).

e Optimizing different layers of the model results in different behaviors.
e Scale of initialization leads to different inductive bias.

e Proportional limit may not be the right regime to analyze double
descent in neural networks?

Future Directions:

e Relax assumptions (e.g. universality of random matrix results).
e Consider different initializations (e.g. the mean-field 1/h scaling).

e Characterize the impact of loss function and regularization (both

explicit and algorithmic).
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