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Heat generated as a result of the breakdown of an adiabatic process is one of the central concepts
of thermodynamics. In isolated systems, the heat can be defined as an energy increase due to
transitions between distinct energy levels. Across a second-order quantum phase transition (QPT),
the heat is predicted theoretically to exhibit a power-law scaling, but it is a significant challenge for
an experimental observation. In addition, it remains elusive whether a power-law scaling of heat
can exist for a first-order QPT. Here we experimentally observe a power-law scaling of heat in a
spinor condensate when a system is linearly driven from a polar phase to an antiferromagnetic phase
across a first-order QPT. We experimentally evaluate the heat generated during two non-equilibrium
processes by probing the atom number on a hyperfine energy level. The experimentally measured
scaling exponents agree well with our numerical simulation results. Our work therefore opens a
new avenue to experimentally and theoretically exploring the properties of heat in non-equilibrium
dynamics.

In quantum mechanics, at zero temperature, when we
drive an isolated system by tuning a system parameter,
if the driving rate is so slow such that the process is adi-
abatic, the transition between energy levels cannot oc-
cur, and heat cannot be created. Yet, when the system
undergoes a second-order QPT during the process, the
relaxation time diverges and thus adiabaticity cannot be
maintained. As a result, transition between energy lev-
els does occur, producing the heat [1, 2]. In fact, across
the transition point, the physics can be described by the
quantum Kibble-Zurek mechanism (KZM) and universal
scaling laws for various quantities, such as the temporal
onset of excitations, the density of defects and the heat,
are predicted [3, 4]. While important aspects of the quan-
tum KZM have been experimentally observed [5–10], the
experimental measurement of the heat still remains a sig-
nificant challenge.

Such non-equilibrium dynamics is of crucial impor-
tance ranging from cosmology to condensed matter [11–
15]. Yet the existence of scaling laws is not limited to
non-equilibrium dynamics across a second-order QPT. It
has been predicted that the scaling of some quantities
can also occur across a first-order QPT where multiple
phases coexist [16–20]. In particular, very recently, the
KZM has been generalized to account for a power-law
scaling of the temporal onset of spin excitations present
in a spinor condensate across the first-order QPT [10].
The generalized KZM (GKZM) has also been experimen-
tally observed in a spinor condensate [10]. Similar to a
second-order QPT, it is natural to ask whether the heat
can still exhibit a power-law scaling across the first-order
QPT.

A spinor Bose-Einstein condensate (BEC), described
by a vector order parameter, provides a controllable plat-
form to explore non-equilibrium dynamics, and various
interesting relevant phenomena have been experimentally
observed [21–28]. In some parameter regime for the con-
densate, the spin and spatial degrees of freedom are de-

coupled because all spin states have the same spatial wave
function under the single-mode approximation [29]. As
a consequence, the physics is significantly simplified so
that the spin degrees of freedom can be separately stud-
ied. For an antiferromagnetic (AFM) sodium conden-
sate, there is a first-order QPT between a polar phase
with atoms all occupying the mF = 0 level and an AFM
phase with atoms equally occupying the mF = ±1 lev-
els, where mF is the magnetic quantum number. The
system thus provides an ideal platform to study the non-
equilibrium physics across a first-order QPT.

Here we theoretically and experimentally demonstrate
the existence of a power-law scaling of the heat in a
sodium spinor condensate for two dynamical processes:
a one-way process where a system is driven from a po-
lar phase to an AFM phase and a cyclic process where
a system ends up at the initial polar phase. For the
one-way process, the power-law scaling is well character-
ized by the GKZM. In experiments, we prepare an ini-
tial condensate in the polar phase and then slowly vary
the quadratic Zeeman energy q by controlling magnetic
and microwave fields to realize the two non-equilibrium
processes. Since the energy gap vanishes at the transi-
tion point, adiabaticity cannot be maintained no matter
how the system is driven, leading to the appearance of
excitations as well as heat, which can be used as a mea-
sure of how strongly adiabaticity is broken. Based on
Refs. [1, 2], the heat density can be defined as an energy
increase per atom relative to the ground state at the final
quadratic Zeeman energy qf over the entire process. In
experiments, it can be evaluated by measuring the atom
number occupying the mF = 0 level owing to a simple
approximate relation between the heat density and the
particle number when |qf | is large.

We start by considering the following Hamiltonian de-
scribing a spin-1 BEC under single-mode approximation

ar
X

iv
:2

10
3.

11
29

0v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

1 
M

ar
 2

02
1



2

10-3 10-2 10-1

0.05

0.15

0.2

NS
GKZM
KZM

-20 -10 0
0.3

0.31

0.33

0.35

NS
GKZM
KZM

10-3 10-2 10-1

10-2

10-1

NS
GKZM
KZM

(d)

10-3 10-2 10-1

0.5

1

1.5

2 4 6 8 10

0.34

0.35
(f)

0
0

1

AFM

Polar

FIG. 1. Schematic illustration of the quench protocol and theoretical demonstration of the heat scaling with respect to the
quench rate. (a) The phase diagram depicted by 〈ρ0〉 versus the quadratic Zeeman energy q. Two linear quench protocols are
considered: a one-way protocol where q is varied from qi > 0 to qf < 0 and a cyclic protocol where q is changed from qi > 0 to
qm < 0 and then back to qf > 0. (b) The scaling of the heat density Qo(qf ) with the quench rate v for a one-way process with
qi = c2 and qf = −0.3c2. (c) The scaling exponents ηo of Qo(qf ) when qf is set to a range of different values. (d) The scaling
of the heat density Qo(qa) with the quench rate v for a one-way process with qi = c2. Here qa = −vta is the corresponding
quadratic Zeeman energy at the critical time ta (see the discussion in the text). In (b-d), the blue diamonds (purple crosses),
the red circles (green triangles) and the yellow squares (cyan asterisks) represent the theoretical results for Qo(qf ) [Qo(qa)]
obtained by the numerical simulation, the GKZM and the KZM, respectively. (e) The scaling of the heat density Qc(qf ) versus
the quench rate v for a cyclic process with qf = 6c2 and qm = −2.5c2, where blue circles and red diamonds correspond to
qi = 6c2 and qi = c2, respectively. (f) The scaling exponents of the heat density for different qf for a cyclic process with qi = c2
and qm = −2.5c2. Here N = 1.0× 104.

Ĥ = c2
L̂2

2N
+

1∑
mF=−1

(qm2
F − pmF )â†mF

âmF
, (1)

where â†mF
(âmF

) is the Boson creation (annihilation)
operator for an atom in the hyperfine level |F = 1,mF 〉,
L̂ is the total spin operator with L̂µ =

∑
i,j â

†
i (fµ)ij âj

(µ = x, y, z) and fµ being the spin-1 angular momen-
tum matrix, c2 is the spin-dependent interaction (c2 > 0
for sodium atoms) and N is the total number of atoms.
Here p and q describe linear and quadratic Zeeman en-
ergies, respectively. In our experiments, we initialize our
condensates in the polar phase so that the dynamics is
restricted to the eigenspace of Lz = 0, since the magneti-
zation along z is conserved, i.e., [L̂z, Ĥ] = 0. The linear
Zeeman term p thus becomes irrelevant in the dynamics
even though its value is not equal to zero in the exper-
iment. So the ground states of the spinor condensate
correspond to the polar and AFM phases when q > 0
and q < 0, respectively. The phase diagram is shown in

Fig. 1(a) where the mean value 〈ρ0〉 with ρ0 = â†0â0/N
taken as an order parameter drops to zero from one at
q = 0, indicating the occurrence of the first-order QPT.

We investigate the heat production in two types of
quench processes: a one-way process for linearly ramp-
ing q from qi (qi > 0) to qf (qf < 0) and a cyclic pro-
cess for linearly ramping q from qi to qm (qm < 0) and
then back to qf , forming a cyclic process when qf = qi
[see Fig. 1(a)]. In both scenarios, we calculate the en-
ergy increase at the end of the quench for different ramp
rates v. To numerically determine the energy of a spinor
condensate, we diagonalize the Hamiltonian under the
Fock state basis in the subspace of zero magnetization,
{|N/2, 0, N/2〉, |N/2−1, 2, N/2−1〉, ..., |0, N, 0〉}, yielding
instantaneous eigenstates |φn(q)〉 (n = 1, 2, ..., N/2 + 1)
of Ĥ(q) satisfying Ĥ(q)|φn(q)〉 = En(q)|φn(q)〉. We
also solve the Schrödinger equation i~∂|Ψ(t)〉/∂t =
Ĥ(t)|Ψ(t)〉 (we take h = 1 as a natural unit) to deter-
mine the evolving state of the spinor condensate. The
energy per atom at the end of the quench is given
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FIG. 2. A comparison between the scaling of the heat den-
sity and the quasi-heat density. (a) The relative difference of
the quasi-heat density Q̃o(qf ) compared to the heat density
Qo(qf ) when |qf | increases for a fixed quench rate v = 0.02c22.
A comparison between the scaling of the heat density Q(qf )

and the quasi-heat density Q̃(qf ) for (b) a one-way process
and (c-d) cyclic processes. In (b), qi = c2 and qf = −3c2,
in (c), qi = qf = 6c2 and qm = −2.5c2, and in (d), qi = c2,
qf = 6c2 and qm = −2.5c2. Here N = 1.0× 104.

by 〈Ψ(qf )|Ĥ(qf )|Ψ(qf )〉 = 〈HI〉/N + qf − qf 〈ρ0〉 with
HI = c2L̂

2/(2N) characterizing the interactions. Since
the corresponding ground state energy per atom in the
AFM phase is qf , the produced heat per atom over the
one-way process is given by Qo = 〈HI〉/N − qf 〈ρ0〉.
For the cyclic process, the produced heat per atom is
Qc = 〈HI〉/N + qf (1 − 〈ρ0〉) since the ground state en-
ergy of the polar phase is zero.

In Fig. 1(b), we plot our numerical simulation results
of the heat density Qo for a one-way process, remark-
ably showing the existence of a power-law scaling, i.e.,
Qo ∝ vη with η = 0.319. This power-law scaling persists
even when qf is far away from the transition point, but
the exponents change as a function of qf and increase
very slowly when |qf | is large [see Fig. 1(c)]. The expo-
nents are independent of qi given that two distinct q′is are
connected by an adiabatic process. For a cyclic process,
we also observe the power-law scaling of the heat density
Qc as shown in Fig. 1(e). While the scaling does not
depend on qi for the same reason, Fig. 1(f) shows that
the scaling exponents increase slightly with increasing qf
(but they are irrelevant of qm).

It is a well-known fact that the universal scaling laws
across a second-order QPT are accounted for by the

quantum KZM [13–15]. Its essential basis is the exis-
tence of impulse and adiabatic regions. Specifically, sup-
pose at t = 0, q = qc = 0 and the system is in the polar
phase. When we linearly drive the system into the AFM
phase, the system cannot respond (impulse region) un-
til the response time τ(ta) = 1/∆(ta) = ta, where ∆ is
the relevant energy gap. When t > ta, adiabaticity is re-
stored (adiabatic region). For a second-order QPT, the
relevant energy gap refers to the gap between the ground
state and the first excited state. Based on the KZM, the
heat induced by a slow quench across the critical point
is shown to exhibit a power-law dependence on the ramp
rate with the scaling exponent determined by the equi-
librium critical exponents [3, 4, 30].

For a first-order QPT, we have demonstrated the exis-
tence of impulse and adiabatic regions when a spinor con-
densate is linearly driven across the transition point [10].
Yet, in stark contrast to the KZM, the relevant energy
gap is the gap between the maximally occupied state (the
metastable state) and its corresponding first excited state
in the first-order case. For example, when q < 0, the
metastable state refers to the many-body metastable po-
lar phase [10]. We now apply the GKZM to determine
the heat scaling. To be more precise, we use the equa-
tion |1/∆(t)| = |∆(t)/∆̇(t)| to calculate the critical time
ta and the corresponding qa = −vta. Since the evolving
state is frozen to the initial state when t < ta, the heat
density can be evaluated by Qo(qf ) = [

∑
n PnEn(qf ) −

Eg(qf )]/N , where Pn = |〈φn(qa)|Ψ(qi)〉|2 is the proba-
bility that the initial state |Ψ(qi)〉 occupies the eigen-
state |φn(qa)〉 of Ĥ(qa) corresponding to the eigenenergy
En(qa).

In Fig. 1(b), we show the power-law scaling of the
heat density Qo(qf ) with respect to v calculated by the
GKZM, which agrees very well with the numerical sim-
ulation results. Figure 1(c) also displays their compar-
ison of scaling exponents versus qf , showing very good
agreement with less than 1.5% discrepancy. In compar-
ison, we further compute the heat scaling based on the
KZM, which exhibits conspicuous discrepancy especially
for large |qf | as shown in Fig. 1(c). For example, when
qf = −20c2, the scaling exponent obtained by the KZM
has about 8.6% difference from the numerical simulation
results, while the GKZM only exhibits about 1.0% dif-
ference. This indicates that the GKZM gives a better
account of the heat scaling law at a first-order QPT.

In fact, based on the GKZM, the heat per atom pro-
duced during a quench process ending at q = qa is given
by −qa, implying that the heat scaling is determined by
the scaling of qa. In Fig. 1(d), we display the scaling
obtained by the numerical simulation, the GKZM and
the KZM, demonstrating that the GKZM gives a closer
prediction of the power-law exponent to the numerical
simulation result than the KZM.

To experimentally probe the heat density is a
formidable task due to the complexity of the spin inter-
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FIG. 3. Experimentally observed power-law scaling of the quasi-heat density Q̃o with respect to the ramp rate v for a one-way
quench. In (a-c), we consider processes with qi ≈ 10Hz and qf = −21.60Hz, −24.47Hz and −28.36Hz, respectively (see
Appendix A for the discussion of the error arising from the calibration of q). for a spinor condensate with about 1100 atoms
corresponding to c2 = 8.1±0.9Hz (See Appendix B for details on how to experimentally evaluate the value of c2 and its error).
In (d), q is varied from qi = 14.33Hz to qf = −29.11Hz for a BEC with about 3000 atoms and c2 = 11.8± 0.8Hz. The log-log
plot of the experimental data are shown as black squares with error bars. The fitting of the data by a power-law function
(black dashed line) gives the exponents of 0.35 ± 0.04 in (a), 0.35 ± 0.03 in (b), 0.35 ± 0.06 in (c) and 0.33 ± 0.06 in (d) with
95% confidence interval. Each figure has an inset showing the theoretical results of the scaling of Q̃o obtained by the numerical
simulation (blue squares), the GKZM (red circles) and the KZM (green triangles). The GKZM with exponents of 0.330, 0.329,
0.330 and 0.331 gives a better account of the power-law scaling with exponents of 0.340, 0.340, 0.342 and 0.337 obtained by
the numerical simulation than the corresponding exponents of 0.305, 0.305, 0.306 and 0.309 obtained by the KZM.

actions, which is hard to measure. Fortunately, for the
one-way process, when |qf | is large, the heat density Qo
is dominated by the second part, Q̃o = −qf 〈ρ0〉, which
can be experimentally evaluated by measuring 〈ρ0〉 and
qf . We call Q̃o the quasi-heat density to distinguish it
from the heat density Qo. Similarly, for the cyclic pro-
cess, we define the corresponding quasi-heat density as
Q̃c = qf (1 − 〈ρ0〉). For both processes, the heat density
and the quasi-heat density are related by the following
equation

Qs = Q̃s + 〈HI〉/N (2)

with s = o, c referring to the one-way and cyclic pro-
cesses, respectively.

Figure 2(a) shows the decline of the relative differ-
ence between the heat density Qo and the quasi-heat
density Q̃o when |qf | is increased; the relative differ-
ence decreases to less than 20% when qf = −3c2 when
v = 0.02c22. In fact, the scalings determined by these
two energy increases agree much better than their en-
ergy differences even for not very large |qf |, which is ex-
perimentally achievable. For instance, when qf = −3c2,
while there exists 18% difference of Q̃o compared to Qo,
their scaling exponents are in excellent agreement with
only less than 3% discrepancy for the one-way process
[see Fig. 2(b)]. For the cyclic process when qf = 6c2, the
scaling exponent difference is also smaller than 3% [see
Fig. 2(c) and (d)]. This allows us to obtain the scaling
of the heat density by experimentally measuring 〈ρ0〉 for
relatively large |qf |.

In experiments, we produce a sodium BEC in an all-
optical trap by evaporation of atoms [27]. At the evapo-

ration cooling stage, we apply a strong magnetic field
gradient to remove the atoms on the hyperfine levels
|F = 1,mF = ±1〉 out of the trap, leaving all atoms
on the |F = 1,mF = 0〉 level. After that, a weak
and nearly resonant microwave pulse is applied to ex-
cite the atoms from |F = 1,mF = 0〉 to |F = 2,mF = 0〉
(the corresponding detuning is δ ' −6 kHz). Since the
atoms on the latter level suffer a significant loss due to
three body decay, this process kicks many atoms out of
the BEC cloud, resulting in less than 3000 atoms re-
maining in the trap. The reduction of the atom num-
ber allows us to avoid the unwanted relaxation to the
AFM ground state when q is tuned to negative values.
The atoms are then immersed in a uniform magnetic
field with qi ≈ 10Hz for 2 s to equilibrate to the polar
phase. Afterwards, we slowly decrease the magnetic field
strength so as to linearly vary q according to the relation
q ≈ B2 · 277Hz/G2. When q is changed to around 5Hz,
we immediately switch on a microwave field with a fre-
quency of 1.7701264GHz (the detuning is δ = −1.5MHz
relative to the transition from |F = 1,mF = 0〉 to
|F = 2,mF = 0〉) and then gradually raise its amplitude
so that q is linearly driven to the negative regime [31]
(Appendix A). During the process, the amplitude of the
microwave field is precisely controlled by a proportional-
integral-derivative (PID) feedback system according to a
careful calibration of q’s values. For each quench rate v,
ρ0 is measured by a standard Stern-Gerlach fluorescence
imaging at the end of the linear quench in each experi-
ment and 〈ρ0〉 is evaluated by averaging over 40 repeated
measurements (Appendix C).

In Fig. 3, we show the experimental results of the quasi-
heat density Q̃o with respect to the ramp rate v for the
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FIG. 4. Experimentally observed power-law scaling of the quasi-heat density Q̃c with respect to the quench rate for cyclic
processes. In (a-c), q is linearly changed from qi ≈ 15Hz to qm = −15.19Hz in (a) [qm = −22.00Hz in (b) and qm = −15.49Hz
in (c)] and then back to the final value qf = 60.10Hz [qf = 66.45Hz in (c)] for a condensate with about 1100 atoms corresponding
to c2 = 8.1 ± 0.9Hz. In (d), the atom number N = 3000 corresponding to c2 = 11.8 ± 0.8Hz, qi = 17.55Hz, qm = −18.10Hz
and qf = 66.73Hz. The experimental data are plotted in the logarithmic scale, which are fitted by power-law functions, giving
the exponents of 0.33± 0.04 in (a), 0.32± 0.03 in (b), 0.33± 0.06 in (c) and 0.34± 0.05 in (d) under 95% confidence interval.
The inset of each figure shows the numerical simulation results of Qc (blue circles) and Q̃c (red squares).

one-way quench with four different sets of quench pa-
rameters. In (a-c), we drive a BEC with about 1100
atoms and c2 = 8.1 ± 0.9Hz to three distinct qf . The
experimental data clearly demonstrate the existence of a
power-law scaling for these different conditions. We fit
the data by a power-law function, i.e., Q̃o ∝ vη̃, giving
the fitting exponents of η̃ = 0.35± 0.04, η̃ = 0.35± 0.03
and η̃ = 0.35± 0.06, respectively. The results agree well
with the numerical simulation results with the power-law
fitting exponents of 0.340, 0.340 and 0.342, respectively
[see the insets of Fig. 3]. Here the numerically calculated
exponents for Q̃o exhibit about 10% difference from the
exponents of Qo, which is larger than the result shown
in Fig. 2(b) due to larger ramp rates considered here to
reduce the relaxation to the ground states in experiments
(Appendix D). In Fig. 3(d), we further plot the experi-
mental results for a BEC with roughly 3000 atoms and
c2 = 11.8± 0.8Hz, showing the existence of a power-law
scaling with the fitting exponent of 0.33±0.06, which is in
good agreement with the numerically obtained exponent
of 0.337.

For a cyclic quench, similar to the one-way one, we
initially prepare the condensate in the polar phase with
the quadratic Zeeman energy qi (e.g., qi ≈ 15Hz) pro-
vided by a uniform magnetic field and then linearly de-
crease q to roughly 5Hz by decreasing the magnetic field
strength. After that, we shine a microwave field to the
BEC to linearly vary q from about 5Hz to qm (qm < 0,
e.g., qm = −22Hz) and then back to 5Hz by controlling
the field amplitude. We then turn off the microwave field
and raise the magnetic field strength until q slowly rises
to qf (e.g., qf = 60.1Hz). Since the results do not depend
on the value of qi when it is sufficiently large so that the
dynamics is adiabatic under the quench rate at q = qi [see
Fig. 1(e)], in experiments, we use qi and qf with qf > qi
for experimental convenience. The entire ramping pro-

cess is precisely controlled to be linear according to the
calibration of q. Similarly, at the end of each quench, the
quasi-heat density Q̃ is measured by probing 〈ρ0〉 through
the Stern-Gerlach fluorescence imaging.

For a cyclic quench, in Fig. 4, we show the experi-
mental measurement of the quasi-heat density Q̃c as a
function of the quench rate v under different quench pa-
rameters. For a BEC cloud with about 1100 atoms and
c2 = 8.1 ± 0.9Hz, the results shown in Fig. 4(a-c) ev-
idently illustrate a power-law scaling of the quasi-heat
density with fitting exponents of 0.33± 0.04, 0.32± 0.03
and 0.33 ± 0.06, respectively. The exponents agree well
with the exponents of 0.348, 0.352 and 0.352 numerically
obtained for Q̃c, which are larger than 0.330, 0.330 and
0.335 (numerically calculated scaling exponents for Qc)
by about 5.4%, 6.7% and 5.1%, respectively. This also
shows that our experimental measurements cannot dif-
ferentiate the slight difference between Q̃c and Qc. Ad-
ditionally, we raise the atom number to around 3000 cor-
responding to c2 = 11.8± 0.8Hz and perform the exper-
iments under the quench parameters of qi = 17.55Hz,
qm = −18.10Hz and qf = 66.73Hz. Figure 4(d) reveals
the existence of a power-law scaling with a fitting expo-
nent of 0.34±0.05, in good agreement with the numerical
result of 0.345.

Our work demonstrates the first experimental obser-
vation of a power-law scaling of heat with respect to a
ramp rate for non-equilibrium dynamics. Two types of
quench processes including one-way and cyclic processes
are studied across a first-order QPT in a spinor conden-
sate. The experimentally measured scaling exponents for
both non-equilibrium processes agree well with our nu-
merical simulation results.

We thank Yingmei Liu, Ceren Dag, and Anjun Chu
for helpful discussions. This work was supported by
the Beijing Academy of Quantum Information Sciences,



6

the National key Research and Development Program of
China (2016YFA0301902), Frontier Science Center for
Quantum Information of the Ministry of Education of
China, and Tsinghua University Initiative Scientific Re-

search Program. Y. Xu also acknowledges the support
from the start-up fund from Tsinghua University, the Na-
tional Natural Science Foundation of China (11974201)
and the National Thousand-Young-Talents Program.

APPENDIX A: CALIBRATION OF THE QUADRATIC ZEEMAN ENERGY q

In the experiment, the quadratic Zeeman energy q is contributed by both the magnetic and microwave fields so
that

q = qB + qM , (A1)

where qB and qM are generated by the magnetic and microwave field, respectively. Specifically, qB is determined by
the magnetic field strength B through qB ≈ B2 · 277 (Hz/G2). Based on the relation p ≈ B · 700 (KHz/G) with p
being the linear Zeeman energy, B can be measured by probing p through a Rabi oscillation between the Zeeman
energy level |F = 1,mF = 0〉 and |F = 2,mF = −1〉. A microwave field at large frequency detuning shifts the energy
of the Zeeman levels due to the AC Stark effect and contributes to the quadratic Zeeman energy as

qM =
∆EmF=+1 + ∆EmF=−1 − 2∆EmF=0

2
(A2)

with

∆EmF
=

1

4

∑
k=−1,0,+1

Ω2
mF ,mF+k

∆mF ,mF+k
, (A3)

where ΩmF ,mF+k is the Rabi frequency for the resonant transition from |F = 1,mF 〉 to |F = 2,mF +k〉 and ∆mF ,mF+k

is the microwave detuning relative to the transition between these energy levels.
In the experiment, the magnetic field strength is controlled by a voltage VB that determines the magnitude of the

current flowing through the Helmholtz coils. In Fig. A1(a), we show the measured qB as a function of the voltage VB ,
which is well fitted by a parabola function, thus allowing us to linearly change qB by controlling VB .

To determine the microwave quadratic Zeeman energy qM , we experimentally evaluate the Rabi frequencies Ω0,−1,
Ω0,1 and Ω−1,−1 by probing the Rabi oscillations for a resonant transition between the two corresponding energy
levels. Other Rabi frequencies can be calculated according to the following relations

Ω0,1 =
√

3Ω−1,0, Ω1,2 =
√

6Ω−1,0, (A4)

Ω1,1 = Ω−1,−1 =

√
3

2
Ω0,0, (A5)

Ω0,−1 =
√

3Ω1,0, Ω−1,−2 =
√

6Ω1,0. (A6)

We now fix the microwave’s frequency at 1.7701264GHz with a detuning ∆0,0 = −1500 kHz for the transition from
|F = 1,mF = 0〉 to |F = 2,mF = 0〉. qM is then calculated based on Eq. (A2). Since the magnetic field still exists
with qB ≈ 5.0Hz when the microwave pulse is applied, the total quadratic Zeeman energy q = qM + qB . Because
the Rabi frequencies depend on the microwave field amplitude, we can control the amplitude to vary qM and q. In
our experiment, we stabilize the amplitude of the microwave pulse by a PID system and calibrate the values of q at
several different microwave amplitudes controlled by the feedback voltage Vf . The measured q with respect to Vf is
displayed in Fig. A1(b) with a parabola fitting to the data allowing for a linear ramp of q by tuning Vf .

To estimate the error between the calibrated q and the true value of q, we apply a sudden quench method to
measure the transition point qc = 0. Specifically, we initialize the condensate in the polar phase with qi > 0 and
then suddenly change q to qf . After 500ms’ evolution, we probe the atom populations on the mF = 0 state. If
qf > 0, then all atoms should remain on the mF = 0 state; otherwise, if qf < 0, atoms will show up on the mF = ±1
level. In the experiment, the sudden quench of q is realized by switching on the microwave field with the frequency of
1.7701264GHz and a certain amplitude controlled by Vf . Since qf decreases as Vf increases [see Fig. A1(b)], we can
find a maximum V max

f so that all the atoms stay on the mF = 0 state and a minimum V min
f so that atoms begin to

show up on the mF = ±1 states. The calibrated value of the transition point qc is thus qcali = [q(V min
f ) + q(V max

f )]/2,
resulting in a calibration error of δq = qcali − qc = qcali for each set of data. We summarize the calibration error δq
for 21 days’ measurements in Table A1.
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FIG. A1. (Color online) Experimental calibration of the quadratic Zeeman energy q. (a) Experimentally measured qB (black
crosses) as a function of the voltage VB . (b) Experimentally measured q (black crosses) as a function of the feedback voltage
Vf of the PID system. The experimental data are fitted by the red dashed parabola curves.

q(V max
f )(Hz) q(V min

f )(Hz) qcali(Hz) δq(Hz)
-1.03 -1.11 -1.07
0.43 0.35 0.39
0.15 0.07 0.11
-0.62 -0.85 -0.74
-0.83 -1.06 -0.95
0.35 0.28 0.32
-1.16 -1.37 -1.27
0.13 0.06 0.10
-0.12 -0.17 -0.15
0.20 0.13 0.17
-1.43 -1.63 -1.53 −0.45± 0.70
-1.23 -1.44 -1.34
0.40 0.33 0.37
0.29 0.22 0.26
-1.04 -1.25 -1.15
0.31 0.20 0.26
-1.13 -1.34 -1.24
0.32 0.25 0.29
0.01 -0.27 -0.13
-1.32 -1.53 -1.43
-0.64 -0.84 -0.74

TABLE A1. Summary of the measured values of q(V max
f ) and q(V min

f ) obtained through sudden quench experiments performed
during 21 days. The calibrated value of q in each row is obtained by qcali = (q(V max

f ) + q(V min
f ))/2, giving the calibration error

δq = q̄cali + σ where q̄cali is the mean value of qcali and σ is the standard deviation.

APPENDIX B: MEASUREMENT OF c2

The spin-dependent interaction coefficient c2 can be measured by observing the spin oscillation, i.e., time evolution
of ρ0 when the condensate is initially prepared to the state |ρ1, ρ0, ρ−1〉 with ρ1 = ρ−1 and 0 < ρ0 < 1. According to the
mean-field theory, where the quantum fluctuations are neglected and the operators are replaced by their expectation
values, the spin-mixing dynamical equations for the spin-1 condensate are given by [32]

ρ̇0 =
2c2
~
ρ0
√

(1− ρ0)2 −m2 sinθ, (B1)

θ̇ = −2q

~
+

2c2
~

(1− 2ρ0) + (
2c2
~

)
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2
cosθ, (B2)



8

0 0.02 0.04 0.06 0.08
0.4

0.5

0.6

0.7
(a)

0 0.01 0.03 0.05

0.4

0.5

0.6

0.7

(b)

FIG. B1. (Color online) Spin oscillation measurements of c2 by fitting the experimentally observed time evolution of ρ0 (blue
squares) by theoretical simulations (red circles). In (a) [(b)], the initial state is prepared to |0.28, 0.46, 0.26〉 (|0.30, 0.44, 0.26〉)
for a system with about 1100 (3000) atoms and q = 14.31Hz (q = 14.22Hz).

q(Hz) θ(×π) c2(Hz) c̄2(Hz) N
14.31 0.99 8.0
17.15 0.97 7.4
24.09 1.01 9.8 8.1± 0.9Hz 1100
27.69 1.01 8.2
31.91 1.15 7.3
9.44 0.95 12.6
11.62 0.91 11.4
14.22 0.95 11.4 11.8± 0.8Hz 3000
17.17 0.97 10.8
20.45 1.05 12.9

TABLE B1. Summary of the datasets for c2’s measurements.

where m = ρ1−ρ−1 is the magnetization and θ = θ+ + θ−−2θ0 is the relative phase. By fixing the quadratic Zeeman
energy q and m ≈ 0, we simulate the time evolution of ρ0 to find the value of c2 that best fits the experimental results.
c2 is then obtained by averaging over 5 measurements for 5 distinct q. In Fig. B1(a) and (b), we show the experimental
and theoretical results of the time evolution of ρ0 with the initial state being |ρ1, ρ0, ρ−1〉 = |0.28, 0.46, 0.26〉 for
N = 1100 and |ρ1, ρ0, ρ−1〉 = |0.30, 0.44, 0.26〉 forN = 3000, respectively. In Table B1, we summarize the five measured
results for different atom numbers, giving the mean value of c2 of 8.1 ± 0.9Hz for N = 1100 and 11.8Hz± 0.8Hz for
N = 3000.

20 40 50

0.3

0.4

0.5

0.6

0.7

20 40 60 80

0.1

0.3

0.5
0.7
0.9

FIG. B2. (Color online) Log-log plots of the measured ρ0 (blue diagonal crosses) and their mean values (black squares). (a)
A one-way quench process with N ≈ 1100, qi = 9.96Hz and qf = −24.47Hz. (b) A cyclic quench process with N ≈ 1100,
qi = 15.04Hz, qm = −15.19Hz and qf = 60.1Hz. The red dashed lines denote the linear fits of 〈ρ0〉.
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FIG. D1. (Color online) Comparison of the theoretical results of Qo and Q̃o corresponding to Fig. 3 in the main text. The
quench parameters are the same as in Fig. 3. The results by numerical simulation, the KZM and the GKZM are plotted as blue
squares, green triangles and red circles, respectively. The inset shows the theoretical results of Q̃o as a comparison to those of
Qo.

v(c22) η η̃ |η − η̃|/η
0.001 ∼ 0.01 0.370 0.373 0.81%
0.011 ∼ 0.1 0.351 0.356 1.42%

0.1 ∼ 1 0.315 0.343 8.89%

TABLE D1. Finite quench rate effects on the scaling exponents for Qo and Q̃o in the one-way quench process with qi = c2,
qf = −3c2 and N = 1100. Different ranges of ramp rates v give different scaling exponents η, η̃ and their relative difference.

APPENDIX C: EXPERIMENTAL MEASUREMENT OF ρ0

In experiments, we measure ρ0 by the standard Stern-Gerlach fluorescence imaging for different ramp rates.
Fig. B2(a) shows the measured data (labelled by blue diagonal crosses) of ρ0 for a one-way process where q is
linearly varied from 9.96Hz to −24.47Hz. In this case, the atom number N is restricted to about 1100 corresponding
to a fluorescence count in the range of 2.5× 109 and 2.8× 109. 〈ρ0〉 at each ramp rate is calculated by averaging over
measurements repeated 40 times, which is plotted as black squares in the figure. The error bars of 〈ρ0〉 (the error in
the mean) originate from the quantum fluctuations and the measurement fluctuations and is evaluated as σ/

√
40 [33],

where σ is the standard deviation of the 40 samples. For the one-way quench process, Q̃o = −qf 〈ρ0〉 and thus the
error bar of Q̃o can be evaluated by

δQ̃o =
√

(〈ρ0〉var + 〈ρ0〉2)(qvarf + q2f )− (〈ρ0〉 qf )2, (C1)

where the superscript var denotes the variance of a quantity. Since there is an error of −0.45Hz for qf , we make
a correction of +0.45Hz to qf with the variance qvarf = 0.702 (Hz)2 = 0.49 (Hz)2 according to the calibration of q
in Table. A1. In Fig. B2(b), we also display the original data of 〈ρ0〉 for a cyclic process, where q is changed from
15.04Hz to −15.19Hz and then back to 60.1Hz at different ramp rates for a system with roughly 1100 atoms.

APPENDIX D: FINITE QUENCH RATE EFFECTS ON SCALING EXPONENTS

In Fig. D1, we provide the numerical simulation results of Qo, showing about 10% difference for Q̃o compared with
Qo. This discrepancy is larger than the result shown in Fig. 2(b) in the main text. We attribute this discrepancy to
the finite ramp rates. As shown in Table D1, the relative difference is larger for a range of quench rates with larger
values due to larger contribution of interactions to total energy for a fixed qf . In our experiments, both qf and quench
rate v that can be taken are limited by the applied microwave field which can induce the relaxation of the condensate
to the AFM ground state when its amplitude is strong or it is applied for a long time. To reduce the relaxation effect,
we take the minimum qf as −29.11Hz and the slowest ramp rate as 10Hz/s corresponding to about 3 s for an quench
process during which the microwave field is shined to vary the quadratic Zeeman energy.
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