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Quantum mechanics provides the means of generating genuine randomness that is impossible with
deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a
manner that is independent of implementation devices. Here, we present an experimental study of device-
independent quantum randomnumber generation based on a detection-loophole-free Bell test with entangled
photons. In the randomness analysis, without the independent identical distribution assumption, we consider
theworst case scenario that the adversary launches the most powerful attacks against the quantum adversary.
After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we
achieve a final random bit rate of 114 bits=s, with a failure probability less than 10−5. This marks a critical
step towards realistic applications in cryptography and fundamental physics tests.
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Introduction.—Random numbers are widely used in
applications ranging from numerical simulation and cryp-
tography to a lottery. While the foremost property of
random number generators (RNGs) in many applications
is the distribution uniformity of its outputs, secure infor-
mation processing applications such as cryptography
demand additionally that the devices to produce random-
ness must be secure against any adversaries, regardless of
classical or quantum mechanics. Classical RNGs have a
deterministic nature and hence are not random. Quantum
random number generators (QRNGs) rely on the unpre-
dictability in breaking quantum coherence and are theo-
retically unpredictable. However, the unpredictability may
be jeopardized in practice because the adversary may gain
information about the devices and even maliciously
manipulate the devices of QRNGs, which is often unde-
tected by a finite set of statistical tests. Device-independent
QRNGs (DIQRNGs) certify the randomness uncondi-
tionally based on the loophole-free violation of Bell’s
inequality, offering a reliable way of generating genuine
randomness and therefore holding great promise for future
applications. (See Refs. [1,2] for a review of QRNGs.)
Considering a loophole-free Bell test experiment. Alice

and Bob are honest parties at two remote sites, each receives

one of a pair of entangled photons andmeasures its quantum
state with a randomly selected measurement setting. Alice
and Bob may not trust the devices because the devices may
be prepared by the adversary. The experiment observes the
no-signaling theorem, i.e., even at the speed of light, no
information of measurement setting is conveyed to the
source prior to the emission of entangled photon pairs (to
close randomness loophole) and no information about
Alice’s (Bob’s) measurement setting and measurement
outcomes are conveyed to Bob (Alice) prior to his (her)
state measurement (to close locality loophole). The photon-
detection efficiency is sufficiently high for the experiment to
be free from the detection loophole. Local hidden variable
theories (based on classical determinism) set a bound to the
correlation measurement between Alice and Bob. Breaking
the bound exhibits quantum correlation, which cannot be
explained by classical deterministic mechanisms. This non-
local quantum correlation certifies that Alice and Bob’s
measurement outcomes possess genuine quantum random-
ness which is unaccessible to the adversary, irrelevant to the
implementation devices [3,4].
As we deepen the understanding of DIQRNGs [5–13],

the security analysis becomes more efficient in producing
randomness and more robust to noise. In particular, the
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entropy accumulation theorem formulated by Dupuis,
Fawzi, and Renner [12] converts a single-shot result to
the multiple-shot case. Exploiting the entropy accumula-
tion theorem, Arnon-Friedman, Renner, and Vidick pro-
posed a DIQRNG analysis method without the assumption
of independent identical distribution (i.i.d.), which never-
theless produces randomness with yield approaching the
value for the i.i.d. case [13]. The analysis is against the
quantum adversary. So far there have been two reported
experimental studies on DIQRNGs. One was based on a
detection loophole-free Bell test experiment with entangled
ions [14], which produced random bits at a rate of
1.5 × 10−5 bit s−1 without the assumption of i.i.d. The
analysis is against the classical adversary. The other one
was based on a detection loophole-free Bell test experiment
with entangled photons [15], which produced random bits
at a rate of 0.4 bit s−1, albeit with the assumption of i.i.d.
Very recently, several experiments demonstrated the

violation of Bell’s inequality with both locality and
detection loopholes closed simultaneously [16–19]. It
was also shown that the randomness loophole can be
progressively addressed with cosmic RNGs [20–22], which
take advantage of randomness at a remote celestial object to
set the time constraint of local hidden variable mechanisms
deep into cosmic history. These works pave the way to
construct a practical DIQRNG. Here we report an exper-
imental study of a DIQRNG based on a detection loophole-
free Bell test with entangled photon pairs, with randomness
extraction of 114 bits s−1 and uniformity within 10−5. The
randomness generation analysis is against the most power-
ful quantum adversary attacks and does not rely on the
independent identical distribution assumption. Our experi-
ment marks a critical step for generating DIQRNGs for
practical applications.
Proposal.—The DIQRNG protocol is based on the Bell

test experiment, namely, a Clauser-Horne-Shimony-
Holt (CHSH) game [23]. In each experimental trial,
Alice and Bob perform state measurements upon receiving
random inputs x and y and produce outputs a and b,
respectively. According to local hidden variable models,
the correlations described by probability distributions
pðabjxyÞ in the i.i.d. scenario are factorable with
pðabjxyÞ ¼ P

λpðλÞpðajx; λÞpðbjy; λÞ. The J value of
the CHSH game satisfies an inequality,

J ¼ 1

4

X

abxy

βabxypðabjxyÞ − 3=4 ≤ 0; ð1Þ

where the pay-off coefficient is given by

βabxy ¼
�
1; if a ⊕ b ¼ xy

0 if a ⊕ b ≠ xy
; ð2Þ

with⊕ standing for summodulo 2. Quantum theory allows
J > 0 as opposed to local hidden variable models.
In practice, all Bell test experiments have finite statistics.

Instead of approximating probability distributions based on

the i.i.d. assumption, we introduce the Bell value Ji in
experimental trial i,

Ji ¼
�
1; if ai ⊕ bi ¼ xiyi
0 otherwise

: ð3Þ

The CHSH game value is an average of Ji for all n
experimental trials,

J̄ ¼ 1

n

Xn

j¼1

Ji − 3=4: ð4Þ

Here, we consider the case that the average probability of
measurement setting choice is unbiased, pðxyÞ ¼ 1=4.
Violating the inequality in Eq. (1), J̄ > 0, indicates the
presence of genuine quantum randomness in the measure-
ment outcomes. The randomness can be quantified by the
smooth min-entropy Hεs

minðABjXYEÞ based on the CHSH
game value J̄ and the number of experiment trials [13],
which is bounded by

Hεs
minðABjXYEÞ ≥ nRoptðεs; εEA;ωexpÞ: ð5Þ

Here A (B) and X (Y) denote the input and output
sequences of Alice (Bob), respectively; E denotes side
information of a general quantum adversary; εs is the
smoothing parameter; ωexp is the expected CHSH game
value. εEA is the probability of aborting the protocol;
Hεs

minðABjXYEÞ describes the amount of unpredictable
randomness that can be extracted from the outputs AB
against the inputs XY and any adversary E; as a
conservative estimation, we take the lower bound
Roptðεs; εEA;ωexpÞ as the theoretical amount of randomness
on average for each trial. εcQRNG is the completeness error,
i.e., the probability for a protocol to abort for an honest
implementation is at most εcQRNG. The lower bound for the
smooth min-entropy Hεs

minðABjXYEÞ is smaller when the
average probability of measurement setting choice is biased
(see Supplemental Material [24] for detailed protocol
description, which includes Refs. [11–13,25,26]).
The DIQRNG may be implemented with the following

procedure in the experiment: (1) Bell test: (i) In exper-
imental trial i, Alice and Bob receive random inputs Xi and
Yi and produce outputs Ai and Bi, respectively. (ii) We
assign a CHSH game value Ji according to the pay-off in
Eq. (3) and calculate the average pay-off according to
Eq. (4). (iii) We abort the protocol if J̄ < ωexp − δest. Here
the completeness error is upper bounded by εcQRNG ≤
exp ð−2nδ2estÞ, where δest ∈ ð0; 1Þ is the width of the
statistical confidence interval for the Bell violation esti-
mation test. (2) Randomness estimation: Conditioned on
the violation of Bell’s inequality in the experiment, either
the protocol aborts with probability greater than 1 − εEA
or the experiment produces randomness given by Eq. (5).
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(3) Randomness extraction: For a given failure probability
of less than 2−te , we apply the Toeplitz-matrix hashing
extractor with a matrix of size n ×Hεs

minðABjXYEÞ − te to
extract Hεs

minðABjXYEÞ − te random bits that is εs close to
the uniform distribution. Here, we set te ¼ 100.
Experiment.—The experimental layout is shown in

Fig. 1. We enclose a periodically poled potassium titanyl
phosphate (PPKTP) crystal in a Sagnac loop. With the
injection of pump pulses at a wavelength of 780 nm
and pulse width of 10 ns at a repetition rate of 100 kHz,
the loop emits polarization-entangled photon pairs at the
degenerate wavelength of 1560 nm via a spontaneous
parametric down-conversion process. The two photons of
the pair travel in opposite directions. They are subject to
polarization state measurements by Alice and Bob and are
detected by superconducting nanowire single-photon
detectors (SNSPDs). In each experimental trial, the dicho-
tomic photon-detection results of the SNSPDs, 1 for “click”
and 0 for “no click,” are time tagged for correlation
analysis.
In our experiment, the overall single photon detection

efficiency is determined to be 78.6%� 1.5% for Alice and
80.2%� 1.5% for Bob [27]. The two-photon interference
visibility is measured to be 99.5%� 2% (97.8%� 1.5%)
in the horizontal (diagonal) basis. Using Eberhard’s
method [28], we generate nonmaximally entangled state,
cosð20.5°ÞjHVi þ sinð20.5°ÞjVHi and set angles of half-
wave plates in polarization state measurements to be A1 ¼
−84.0° or A2 ¼ −118.7° for Alice, B1 ¼ 6° or B2 ¼ −28.7°
for Bob, respectively, to have an optimum violation of

Bell’s inequality (see Supplemental Material [24] for the
detailed experimental setup, which includes Refs. [27–31]).
Previous Bell test experiments assigned measurement

settings (xy) randomly with inputs from locally generated
QRNGs [16–19]. For the current experiment, which targets
to demonstrate the feasibility of random number generation
via device-independent means against the quantum adver-
sary, the settings are preset manually with parameters given
by the Eberhard’s optimization procedure as described
above. So we require randomness and locality assumptions.
Both loopholes may be closed by employing RNGs [20–22]
and Pockels cells to randomly alternate the measurement
base settings. The total photon detection efficiencies are
high to close the detection loophole. We repeat the experi-
ment by an equal number of trials (N ¼ 1 × 1010) per
measurement setting choice xy and record the number
of correlated events Nabjxy (see Table I). According to
Eq. (4), the J value of the CHSH game is given by

JN ¼ JA1B1
þ JA1B2

þ JA2B1
þ JA2B2

− 3=4; ð6Þ

with theBell value J for settings x ¼ Ai, y ¼ Bj, and outputs
ab given by

JA1B1
¼ ðNab¼00jA1B1

þ Nab¼11jA1B1
Þ=N;

JA1B2
¼ ðNab¼00jA1B2

þ Nab¼11jA1B2
Þ=N;

JA2B1
¼ ðNab¼00jA2B1

þ Nab¼11jA2B1
Þ=N;

JA2B2
¼ ðNab¼01jA2B2

þ Nab¼10jA2B2
Þ=N: ð7Þ

FIG. 1. Schematics of the experiment. Light pulses of 10 ns, 100 kHz from a 1560 nm seed laser (LD) are amplified by an erbium-
doped fiber amplifier (EDFA), and up-converted to pulses at 780 nm via second-harmonic generation (SHG) in an in-line periodically
poled lithium niobate (PPLN) waveguide. The residual 1560 nm light is removed by a wavelength-division multiplexer (WDM) and
spectral filters. A half-wave plate (HWP) and a liquid crystal (LC) is used to adjust the pump polarization. The 780 nm light pulses are
focused into a periodically poled potassium titanyl phosphate (PPKTP) crystal in a Sagnac loop to generate polarization entangled
photon pairs. After removing the 780 nm pump pulses by dichroic mirrors (DMs) and a 1 mm thick silicon plate, the entangled photons
at 1560 nm are subject to polarization state measurements and then sent to superconducting nanowire single-photon detectors (SNSPDs)
via a 130 m optical fiber.
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For a total number of experimental trials n ¼ 4N ¼
4 × 1010, the obtained J value is 3.52 × 10−4, indicating
that our CHSH game rejects local hidden variable models.
In our analysis, we set the expected CHSH game value to
the one measured in the experiment, ωexp ¼ 3.52 × 10−4,

εs¼εEA¼1=
ffiffiffi
n

p ¼5×10−6 and δest¼
ffiffiffiffiffiffiffiffiffiffi
10=n

p ¼1.58×10−5.
Correspondingly, after applying an 80 Gb × 45.6 Mb
Toeplitz matrix hashing, the experiment produces
4.56 × 107 genuine random bits in total with uniformity
within εs þ εEA ¼ 10−5. The randomness generation speed
is 0.00114 bits per trial or 114 bits=s. With such a high
yield, the stream of random bits pass the NIST statistic test
suite for the first time of its kind (see Supplemental
Material [24] for randomness extraction and the result of
the NIST statistic test, which includes Refs. [38–40]).
A comparison of different experimental studies of DI and
semi-DI QRNGs are listed in Table II.

With the same parameter setting, we plot the amount of
randomness that can be produced by our experiment as a
function of the number of experimental trials, which
asymptotically approaches the optimal asymptotic value
for i.i.d. as shown in Fig. 2. The amount of randomness
obtained in the current experiment is about 60% of the
optimal asymptotic value.
One may expect to extract more randomness, even by

orders of magnitude, for larger violations in the CHSH
game with improved experimental parameters such as
higher photon-detection efficiency, higher two-photon
interference visibility, and optimized mean photon numbers
(see Supplemental Material [24]), as shown in Fig. 3.

TABLE I. Summary of device independent and semi-device-
independent QRNG demonstrations (based on the claim and data
reported in the references). Highest key rates are selected among
the MDI- and SI-QRNG demonstrations. DI: device independent,
Semi: semi device independent, MDI: measurement device
independent, SI: source independent. In the Analysis column,
i.i.d., classical, and general indicate that the theory analysis is
considered under the i.i.d. assumption, classical adversary, and
general adversary, respectively. In the assumption column,
independentþqubit indicates that the experiment considers the
independent qubit source and qubit measurement; measure
indicates that the measurement is trusted; source indicates that
the source is trusted; source fidelity indicates that the fidelity
between the prepared states is trusted; and efficiency, locality, and
randomness indicate the corresponding loopholes in Bell tests.

QRNG Type Analysis Assumption Key rate

[32] Semi i.i.d. independentþqubit 23 bps
[33,34] MDI i.i.d. source 5.7 Kbps
[35,36] SI general measure 1.7 Gbps
[37] Semi i.i.d. source fidelity 16.5 Mbps
[14] DI classical efficiency 1.5×10−5 bps
[15] DI i.i.d. locality 0.4 bps
This Letter DI general randomnessþlocality 114 bps

TABLE II. Number of correlated events for equal number of
trials (1010) per measurement base settings: A1B1, A1B2, A2B1,
and A2B2. a ¼ 0 or 1 indicates that Alice detects a photon or not,
the same for b for Bob. Mean photon number μ ¼ 0.15, violation
Jn ¼ 3.52 × 10−4.

Basis
settings ab ¼ 00 ab ¼ 10 ab ¼ 01 ab ¼ 11

A1B1 9 780 816 728 49 862 593 57 002 217 112 318 462
A1B2 9 574 958 251 41 366 122 263 425 568 120 250 059
A2B1 9 577 555 854 253 683 380 46 874 032 121 886 734
A2B2 9 255 451 323 361 101 111 365 181 363 18 266 203
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Conclusion and outlook.—We implement a DIQRNG
without the detection loophole, which does not need the
assumption of identical and independent distribution and is
against the quantum adversary. We report randomness
extraction at a rate of 114 bits=s with uniformity within
10−5, marking a critical step in generating DIQRNGs for
secure information processing applications and tests of
fundamental physics. In the future, actively switching
measurement settings, for example, based on cosmic
RNGs in a loophole-free CHSH game, can produce
genuinely quantum-certified random bits. One can further
speedup the randomness production by upgrading the
technology such as scaling up the operation repetition rate.
One may note that the analysis method in Ref. [13] is
efficient in producing quantum-certified randomness based
on a CHSH game. However, it remains an open question
what the actual maximum extractable randomness is in a
CHSH game, furthermore, what is the maximum extract-
able randomness for a general nonlocal game.
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