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Integrative Data Analysis of Multi-Platform
Cancer Data with a Multimodal Deep
Learning Approach

Muxuan Liang, Zhizhong Li, Ting Chen, and Jianyang Zeng

Abstract—Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and
advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection
of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples.
Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly
designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among
multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to
cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent
features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to
fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is
applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show
that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and
cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can
identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key
miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results
indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and

provide useful guidelines for personalized cancer therapy.

Index Terms—Multi-platform cancer data analysis, restricted Boltzmann machine, multimodal deep belief network, identification of cancer

subtypes, genomic data, clinical data

1 INTRODUCTION

ANCER tumors are often caused by different genetic

mutations and generally display considerable pheno-
typic heterogeneity in cancer cells. Identification of indi-
vidual cancer subtypes can reveal useful insights into
disease pathogenesis and facilitate personalized cancer
therapy. Clustering cancer patient data is an initial and
important step to achieve this goal. By clustering cancer
patients into different groups according to their genetic
profiles and clinical symptoms, we can have a better view
on the pathogenic mechanisms of cancer diseases, and
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thus find better anticancer treatment for individual dis-
ease subtypes.

The recent advent of high-throughput experimental tech-
nologies, especially next-generation DNA sequencing meth-
ods, has enabled us to rapidly collect multi-platform
genomic profiles of tumor samples, such as gene expression
(GE), miRNA expression (ME) and DNA methylation (DM).
In particular, The Cancer Genome Atlas (TCGA) pilot proj-
ect has made tremendous efforts and generated a large
amount of cross-platform genomic data for exploring the
complex landscapes of human cancers.

The cross-platform cancer data provide important oppor-
tunities to characterize different disease subtypes, gain
insights into disease pathogenesis, and advance personal-
ized cancer therapy. Unfortunately, analyzing such cross-
platform genomic data also poses new computational chal-
lenges [1], [2] for traditional data analysis approaches such
as K-means clustering methods [3] or principal component
analysis [4]. On the one hand, input data from different plat-
forms usually display distinct modalities, which typically
have different representations, intrinsic correlational struc-
tures and statistical properties. For example, gene expres-
sion data measure the abundance of transcripts, i.e.,
messenger RNAs (mRNAs), while miRNAs expression pro-
files reflect the levels of miRNAs involving in globally post-
transcriptional regulation of mRNAs. It is impossible to
identify meaningful cancer subtypes without exploiting the
intrinsic statistical features within these individual input
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modalities. On the other hand, cross-platform genomic
data for the same tumor sample are unlikely to be inde-
pendent. For example, high correlations are often
observed between gene expression and DNA methylation,
as DNA methylation generally controls gene expression
by affecting the interactions between DNAs and tran-
scription factors or chromatin proteins. In addition,
genetic information is typically highly correlated with
clinical data, such as survival time and time to recurrence,
for cancer patients. For instance, [5] has shown that breast
cancer patients with a good-prognosis genetic signature
can have longer survival time than those with a poor-
prognosis genetic profile. These statistical correlations
across multiple input modalities can also yield crucial fac-
tors in accurately differentiating distinct cancer subtypes.
Thus, in practice, to perform an effective integrative clus-
tering of cancer patients using multi-platform data, we
need to take into account both intrinsic statistical proper-
ties within a single input modality and cross-platform
correlations over different input modalities.

Although recently numerous integrative clustering
approaches have been proposed to identify cancer subtypes
from cross-platform genomic data [1], [2], [6], very few of
them are particularly designed to exploit both intra-modal-
ity statistical properties and cross-modality correlations
from multi-platform data. In this paper, we propose a gen-
erative model based on a multimodal deep belief network
(DBN) framework [7], [8], to capture both intra-modality
and cross-modality relationships and identify cancer sub-
types from multi-platform genomic and clinical data. In our
integrative data analysis framework, we first use a probabi-
listic graphical model, called restricted Boltzmann machine
(RBM) [9], to encode latent features defined by each input
modality. Then a joint representation of hidden variables is
used to fuse cross-platform modalities and capture the com-
mon features resulting from multi-platform input data. The
states of hidden variables representing the intra- and cross-
modality features of multi-platform data are learned using
a practical learning algorithm, called contrastive divergence
(CD), in an unsupervised manner. The final states of the
joint representation of latent features are then used to define
the cancer subtypes based on cross-platform input data.
Tests on two cancer datasets demonstrate that our integra-
tive clustering approach can identify meaningful cancer
subtypes from cross-platform genomic and clinical data,
and discover key genes and miRNAs that may play differ-
ent roles in the pathogenic mechanisms of these clustered
cancer subtypes. These results indicate that our integrative
cancer data analysis approach can provide a useful tool for
studying cancer pathogenesis and advancing personalized
cancer treatment.

The rest of this paper is organized as follows. In Sec-
tion 2.1, we describe a restricted Boltzmann machine model.
In Section 2.2, we present a multimodal deep belief network
framework to address our integrative clustering problem.
Section 2.3 describes a statistical inference approach to learn
our proposed multimodal DBN model. Section 3 describes
the test results of our integrative clustering approach on
two available cancer datasets. In Section 4, we discuss the
difference between our approach and other existing meth-
ods for integrative cancer data analysis.

Hidden
Variables

Visible
Variables

Fig. 1. A restricted Boltzmann machine in which connections only exist
between visible and hidden layers, and no connection is allowed
between any two variables within the same layer.

2 METHODS

2.1 Restricted Boltzmann Machines

In our cancer data analysis problem, for each patient, we
call the measured genomic data from each platform (e.g.,
gene expression, miRNA expression and DNA methylation)
the genomic profile. Let n be the total number of cancer
patients, and let m be the total number of genomic profiles
measured for each patient. A restricted Boltzmann machine is
an undirected graphical model which consists a layer of visi-
ble variables v;,i = 1,...,m, and a layer of hidden variables
hj,j=1,...,9, where m is the number of visible variables
and g is the number of hidden variables. Here, the number
of visible variables is equal to the number of genomic pro-
files per patient. In an RBM model, each visible variable is
connected to every hidden variable, but no connection is
allowed between any two variables within the same layer
(Fig. 1). Meanwhile, each connection between visible and
hidden layers is associated with a specific weight. Let
W = (Wj;),,», be an m x g matrix representing the parame-
ter setting of weights between two layers of variables, where
each element IV;; stands for the weight of the corresponding
connection between visible variable v; and hidden variable
h;. Leta= (ai,...,a,) and b = (by,...,b,) be the bias vec-
tors, where a; and b; stand for the biases of visible variables
v; and hidden variable h;, respectively. Let v = (vq,...,v,)
be a vector representing the configuration of all visible varia-
bles, and let h = (h4,...,h,) be a vector representing the
configuration of all hidden variables. Let (v,h) be a vector
representing the joint configuration of an RBM model. Given
its joint configuration (v, h), the energy function of an RBM
model can be defined as

E(v,h;0) = a’v +b’h + v Wh, 6))

where 0 = (a,b, W) stands for the parameter setting of the
model. Then the probability density function of a joint con-
figuration (v, h) can be defined as

1
f(V7 h70) :m exp (_E(V7 hvo))7 (2)
where Z(0) is called the normalizing constant.
Based on the structure of an RBM model, we can derive
the following conditional density distribution:

Pl = 1jh) = - e
1 + exp(— Zj:l VVijh]‘ — b7)
Py = 1]v) = ! @

1+exp(— 21" Wijvi —aj)
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Fig. 2. An example of a multimodal DBN model which consists of three
layers. The bottom two layers constitute three separate RBMs, which
take gene expression, DNA methylation and drug response respectively
as input data. The joint hidden variables in the top layer are connected
to all hidden variables in the middle layer simultaneously.

Conventional RBM models [10] typically use binary
observations as input visible data. In practice, we usually
need to normalize the real-valued genomic data in advance.
Hence, it is better to formulate genomic information (e.g.,
gene expression) as Gaussian distribution rather than binary
values. Thus, ordinary RBMs hardly satisfy our needs.
Instead, we use a Gaussian RBM model [9], in which visible
variables given hidden values follow a Gaussian distribu-
tion, to represent observed genomic data. In a Gaussian RBM
[9], the energy function in Eq. (1) can be now rewritten as

m q

E(v,h;o):i +ZZ leh +th,, (5)

i=1 i=1 j=

where § = (a,b, W, o) stands for the parameter setting of
the model, and vector o = (o1, ...,0,,) stands for the Gauss-
ian noise in input visible data. Also, the original conditional
density functions in Egs. (3) and (4) can be rewritten as

g
N<b, +O’LZWL/}LI7O'?>, (6)
j=1

1
L+exp(—=>20" Wijvi —aj)’

P(v;|h) =

P(h;j=1lv) = (1)

where N(u,0?) stands for a Gaussian distribution with
mean p and standard deviation o.

2.2 Multimodal Deep Belief Networks

We aim to integrate multi-platform genomic and clinical
data, which are generally in different forms (e.g., binary,
real-valued and categorical values) and have distinct statis-
tical properties, for cancer data analysis and identification
of disease subtypes. We apply a deep learning framework
[11], called multimodal deep belief network [7], [8], to achieve
this goal. A multimodal DBN is a network of stacked RBMs,
in which the separate RBMs at the bottom level take multi-
modal data as input, and the top-level RBMs contain hidden
variables that represent the common features across differ-
ent modalities from multi-platform data. To further illus-
trate a multimodal DBN framework, we use a specific
example (see Fig. 2) of cancer data analysis, in which input
data involve three modalities, including gene expression,
DNA methylation and drug response (DR). In this example,
gene expression and DNA methylation are both represented
as real-valued vectors, while drug response is represented
as a binary vector. As shown in Fig. 2, the multimodal DBN
model in this example consists of three layers of variables.
The bottom two layers constitute three separate stacked

RBMs, which take gene expression, DNA methylation and
drug response information respectively as input data. The
hidden variables in the top two layers are only connected to
the variables in the adjacent layers. The hidden variables in
the top layer are connected to the hidden variables in the
middle layer from three separate RBMs simultaneously. We
call the hidden variables in the middle layer the modality-
specific hidden variables, which encode the modality-depen-
dent features extracted from individual single-platform
input data. We call the hidden variables in the top layer the
common hidden wvariables, which encode the modality-
independent features across multi-platform input data. In
our multimodal DBN model, the modality-specific hidden
variables encode the intrinsic correlations within each input
modality, while the common hidden variables fuse these
intra-modality features and form a joint representation of
cross-platform features. The multimodal DBN model given
in Fig. 2 only contains a single layer of modality-specific
hidden variables and a single layer of common hidden vari-
ables. In practice, we can also add more layers for individ-
ual types of hidden variables.

As the hidden variables are binary, we can take each con-
figuration of all hidden variables in the top layer as a clus-
ter. For the cancer data analysis task, we use all possible
combinations of the common hidden variables in the top
layer to represent distinct subtypes of cancer learned from
multimodal input data. For example, suppose that there are
three hidden variables in the top layer. Then we have at
most 2° =8 groups of patients which represent different
subtypes of cancer.

2.3 Learning

The parameters of an RBM or multimodal DBN model can
be learned from data using a standard maximum likelihood
estimation approach. Given a dataset D = {v(V}]"_, Where n

is the total number of patients, each data point v(’) has a
probability distribution function defined based on the
energy function in Eq. (2):

0= [ 1
/ Z(6) exp (—E(v'”, h; 0))dh,

where 6 stands for the parameter setting of the model.
Assuming each data point is independent, we can derive
the average log-likelihood function by averaging all data
points v{?

i h|#)dh
(€))

9)

v h;0))dh — log Z(0).

In a standard maximum likelihood estimation approach, we
want to maximize /(). In general, it is impossible to derive
the analytical solution to maximize the likelihood function.
In practice, we can approximate the maximum likelihood
solution by calculating the gradient of the log-likelihood
function
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where f; means the measure defined by original observa-
tion data, f means the measure defined by the model, and
E)r[z] means the expectation of x under measure M. In prac-
tice, approximate learning approaches such as mean-field
inference and Markov Chain Monte Carlo (MCMC), are
often used to learn the parameters of an RBM model [12].
Alternatively, Hinton (2002) proposed an practically effi-
cient algorithm, called contrastive divergence, for learning the
parameters of an RBM or deep learning framework. The CD
algorithm approximates the result of maximizing the log
likelihood function of the data by minimizing the Kullback-
Leibler divergence [13], and has been proved practically
useful in many cases [14]:

al

0 1n

~ E,,[vh'] - B, [vh'],
where 1 is the measure defined by visible data in a Gauss-
ian RBM, and p,; indicates distribution after a number of
alternating Gibbs sampling steps. Basically, the Kullback-
Leibler divergence is computed over the empirical distribu-
tion function of the visible data and the model [13], [14].

We use the CD algorithm in a greedy layer-wise fashion
[11] to learn the parameters of our multimodal RBM model.
In principle, the up-down version of the greedy layer-wise
method [9], [11] can also be applied to learn our model.

2.4 Identification of Key Genes and miRNAs

In addition to clustering cancer patients into different
groups, we also want to identify key biomarkers, such as
crucial genes and miRNAs, that play distinct roles in the
pathogenesis of different cancer subtypes. We apply a two-
sample t test with pooled variance to find essential genes or
miRNAs that characterize individual disease subtypes.
Here we illustrate the test procedure using an example of
selecting key genes. Identification of key miRNAs can be
performed similarly. Suppose that data follow a Gaussian
distribution and we want to check whether gene X plays
significantly different roles in two distinct cancer subtypes
(say Subtypes 1 and 2). We consider the null hypothesis Hy:
gene X is not a key gene; and the alternative hypothesis H;:
gene X is a key gene. Suppose that the populations of cancer
patients in Subtypes 1 and 2 are n; and ny, respectively, and
the average expression values of gene X in Subtypes 1 and
2 are z; and zy, respectively. Suppose that the sample mean
of expression value of gene X is z with pooled variance esti-
mate S2. Under null hypothesis Hy, no significant difference
can be found between z; and 2. We then construct the fol-
lowing test statistic:

zl — 22
VS2(1/ny +1/ng)

Under null hypothesis H,, we have 1"~ t, ,,,—». We call
z1 — z the Z-score. If the p-value is smaller than a threshold
y = 10719 (FDR < 107°), we select gene X as a key gene (we
choose threshold FDR< 1072 for the selection of a key
miRNA).
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Fig. 3. Box plots of the correlations between original and reconstructed
values of the GE, ME and DM modalities for ovarian cancer data.

3 RESuLTS

3.1 Data Sources

We tested our integrative data analysis method on two
sets of cancer data, including an ovarian cancer dataset
and a breast cancer dataset. The ovarian cancer dataset
contained gene expression, DNA methylation and miRNA
expression data across 385 patients which were down-
loaded from The Cancer Genome Atlas. The same dataset
was also used in [2] to identify the common modules of
multi-dimensional cancer genomic data. In addition to
genomic information, we also downloaded available clini-
cal data, such as survival time and drug response data,
for ovarian cancer patients. The breast cancer dataset
included GE data and corresponding clinical information,
such as survival time and time to recurrence data, which
were collected by the Netherlands Cancer Institute [15].
The GE data in the breast cancer dataset were also used
in [15] to predict survival time of cancer patients.

3.2 Analysis of Ovarian Cancer Data

We first established a gradually shrinkage multimodal DBN
model which took GE (including approximate 16,000
genes), DM (including approximate 12,000 genes) and ME
(including approximate 800 miRNAs) as input data. For the
GE and DM dimensions, we set two hidden layers, which
included 400 and 40 modality-specific hidden variables
from bottom to top respectively. For the ME dimension, we
set a single hidden layer, which contained 40 modality-spe-
cific hidden variables above the visible layer. On the top of
modality-specific hidden variables, we set another two hid-
den layers, which contained 24 and 3 common hidden varia-
bles from bottom to top, respectively.

After the learning process of the multimodal DBN model,
the values of GE, DM and ME reconstructed by the CD algo-
rithm agreed well with experimental input data, with the
average correlations 0.91, 0.73 and 0.69, and standard devia-
tions 0.037, 0.147 and 0.081 for the GE, DM and ME dimen-
sions, respectively. The box plots of the correlations
between original and constructed data in three separate
modalities are shown in Fig. 3. The high correlations
between reconstructed and input observation data indicate
that the hidden variables in our multimodal DBN model
can accurately represent the intrinsic features across multi-
modal input data.
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TABLE 1
Populations of Different Groups over Ovarian Cancer
Data Clustered by Our Multimodal DBN Model

TABLE 2
Survival Time of Different Subtypes of Ovarian Cancer
Identified by Our Multimodal DBN Model

Group 1 Group 2 Group 3 Group 4 Group 1 Group 2
Population 164 9 12 21 Mean survival time (days) 1,255.02 (62.39) 1,839.33 (156.91)
900-day survival rate 72.2% (3.7%) 88.9% (10.5%)
: Group5  Group6 Group7 Group8 550 120 survival rate 31.1% (4.0%)  59.3% (25.2%)
Population 13 23 19 124 Group 3 Group 4
Mean survival time (days) 1,028.29 (150.28) 2,728.09 (551.93)
T T— 900-day survival rate 68.8% (15.7%) 80.4% (11.1%)
oL —mronert 2 1500-day survival rate 41.3% (17.8%) 60.3% (19.3%)
(I Component 4
-gcmgonems Group 5 Group 6
Mean survival time (days) 1,418.75(277.59) 1,575.91 (207.36)
“ 900-day survival rate 56.8% (16.5%) 69.7% (11.5%)
A 1500-day survival rate 56.8% (16.5%) 69.7% (11.5%)
. Group 7 Group 8
Mean survival time (days) 2,374.41 (277.90) 1,885.96 (151.74)
2f 900-day survival rate 86.3% (9.2%) 65.6% (5.5%)
] 1500-day survival rate 86.3% (9.2%) 54.2% (6.2%)
-6 GrolJpW Gvo:Jpz GrolApS GroLlpA Gvoljps erol;ps GroLlp7 GrolApB
1.0 | |
Fig. 4. The first five principal components of the mean ME values from &? e
the principle component analysis (PCA) for eight groups of ovarian can- ‘;;l — o3
cer patients clustered by our multimodal DBN model. - L\‘ gﬂﬁg
1 ~Group 6
: [y St
. . . . . = Group 1-censored
The ultimate output (i.e., the states of hidden variablesin & | | i oo
the top-most layer) of the multimodal DBN model revealed — § 8 . ]
that there were eight groups representing different disease 5 7 i A b
subtypes based on multi-platform ovarian cancer data. g o4 Group 8-censored
These eight groups clustered by our model had biased pop-  j
ulation distribution (Table 1). The principal component |
analysis (PCA) of the mean ME values indicates that these oz
eight groups displayed significantly different genomic sig-
natures in the ME dimension. In particular, for the first prin- i ‘L\_‘L
cipal component, Group 2 exhibited the largest value while ’ i i i i i i i
Group 3 had the smallest value (Fig. 4). ° A T B
Time (Days)

We also downloaded corresponding clinical data, includ-
ing survival time and drug record information, from TCGA
to investigate clinical discrepancy among the above identi-
fied subtypes of ovarian cancer. In total, the survival time
data of 372 patients were available. Table 2 summarizes sur-
vival time for eight subtypes of ovarian cancer identified by
our multimodal DBN model. On average, cancer patients in
Groups 2, 4, 7 and 8 lived 20 to 50 percent longer than those
in other four groups. In Groups 1, 2, 4 and 7, more than
70 percent of patients had survival time longer than 900
days. In Groups 2, 4, 5, 6, 7 and 8, more than 50 percent of
cancer patients lived more than 1,500 days, while the per-
centage was reduced to 31.1 percent in Group 1. In addition,
the Kaplan-Meier plots, which have been commonly used in
medical studies to estimate the survival function from sur-
vival time data, showed that distinct survival functions
existed among different cancer subtypes (Figs. 5 and 6). For
example, the Kaplan-Meier estimator showed that patients
in Group 8 tended to have higher probability to survive
than those in Group 1 (Fig. 5). This survival time analysis
implies the soundness of our clustering scheme. If we merge
Groups 1, 3 into one super group (say Super-group A)
and the remaining groups into another super group (say

Fig. 5. The Kaplan-Meier plots for all ovarian cancer patients in eight
different groups clustered by our multimodal DBN model.
Super-group B

1.0
\'- —+ Super-group A-censored

%, — Super-group B-censored

1 Super-group A

o

064 i

-M_ \\

0.2

> i
A

o

0.0

T T T T T
1000 1500 2000 2500 3000

Time (Days)

g

Fig. 6. The Kaplan-Meier plots for ovarian cancer patients in Super-
groups A and B, which merged Groups 1, 3 and Groups 2, 4, 5, 6, 7, 8,
respectively from the original clustering scheme produced by our multi-
modal DBN model.
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TABLE 3
Survival Time for Ovarian Cancer Patients in Super-Groups
AandB

Super-group A

1,251.68 (61.28)
31.2% (3.9%)
2.0% (1.4%)

Super-group B

2,109.63 (170.88)
60.8% (4.7%)
36.5% (8.1%)

Mean survival time (days)
1500-day survival rate
3000-day survival rate

Super-groups A and B merged Groups 1,3 and Groups 2,4,5,6, 7, 8, respectively
from the original clustering scheme produced by our multimodal DBN model.

Super-group B), the difference in survival time can be more
noticeable. Both 1,500-day and 3,000-day survival rates of
Super-group B were nearly as twice as those of Super-group
A (Fig. 6 and Table 3). These results indicate that our multi-
modal DBN model can distinguish clinical difference
among subtypes of ovarian cancer using multi-platform
genomic data.

We also checked drug use information for different
subtypes of ovarian cancer identified by our model. Over-
all, drug record data for 72 patients were collected with
36 in Group 1 and the remaining 36 in Group 8. We exam-
ined the difference in drug use rates for patients between
Groups 1 and 8. In particular, our analysis mainly
focused on seven drugs that were commonly used in can-
cer treatment, including carboplatin, cisplatin, doxil, gem-
citabine, taxol, taxotere and topotecan (Fig. 7). We noticed
a significantly wider use of all seven usual drugs in
Group 8 than in Group 1, which may be due to the possi-
ble poor diagnosis for patients in Group 8. The pheno-
types of Group 8 might be more complex, which induced
patients to use a wider range of drugs in cancer treat-
ment. The potentially worse disease severity in Group 8
corresponded to the fact that survival time of Group 8
was generally shorter than that of Group 1. The above
analysis indicates the possibility of personalized therapy
for different subtypes of cancer based on multi-platform
genomic information.

Using the two-sample t test procedure as described in
Section 2.4, only 41 genes in the GE dimension and 55
miRNAs in the ME dimension were identified with signif-
icant difference between Groups 1 and 8 (FDR is smaller
than 107° for 41 genes, and 1072 for 55 miRNAs). One of
the distinct key genes between Group 1 and Group 8 is
human Telomerase Reverse Transcriptase (WTERT) which
encodes the catalytic component of the enzyme telome-
rase. While normal tissues have low telomerase activity,
more than 90 percent of human cancers re-activate this
enzyme, suggesting that hTERT is crucial for cancer
immortality and progression. The gene hTERT can be
activated by various mechanisms, including stimulation
by oncogenes such as c-Myc or direct mutations in its
promoter region [16], [17]. The different expression levels
of hTERT between Groups 1 and 8 indicate that the telo-
merase activity may play distinct roles in the pathogene-
sis of different subtypes of ovarian cancer. In addition,
recently multiple inhibitors against hTERT have been in
clinical development [18]. As our integrative clustering
approach is able to distinguish the discrepancy of telome-
rase activity for different subtypes of ovarian cancer,
it may provide the power to predict the sensitivity
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Fig. 7. Drug use records for all available ovarian cancer patients in
Groups 1 and 8 clustered by our multimodal DBN model.

of anti-cancer drugs and have potential applications in
personalized therapy in cancer treatment. Among all miR-
NAs markers that can be used to distinguish Groups 1
and 8, miR-29a is particularly interesting because it is a
known tumor suppressor in multiple systems [19], [20].
Consistent with its role at different stages of tumor
growth, its expression level is highly correlated with sur-
vival time in mantle cell lymphoma (MCL) patients [21].
Combined with the survival analysis as summarized in
Table 2, we found that patients in Group 1 with low
expression in miR-29a (Z-score = —3.14) lived at least 50
percent longer than those in Group 8 with high expres-
sion in miR-29a (Z-score = 3.42). This observation agreed
with that in the analysis of MCL patients [21]. Our result
therefore established a potential factor to determine sur-
vival time of ovarian cancer patients [21].

3.3 Analysis of Breast Cancer Data

In our analysis of breast cancer data, we applied our multi-
modal DBN framework to cluster cancer patients by inte-
grating genetic information with clinical data, such as
survival time and time to recurrence. We established a grad-
ually shrinkage multimodal DBN which took both gene
expression and clinical data (e.g., survival time and time to
recurrence) as input data. In particular, for genetic informa-
tion, our multimodal DBN framework contained four hid-
den layers, which included 800, 80, 8 and 2 modality-
specific hidden variables from downwards to upwards,
respectively. For clinical data, our multimodal DBN frame-
work contained one hidden layer with a single hidden vari-
able. On the top of these two modalities which encoded
genetic and clinical data separately, we set another hidden
layer, which included two modality-independent hidden
variables.

This multimodal DBN model clustered all breast cancer
patients into four groups, which had a clear discrepancy in
survival time (Table 4 and Fig. 8). Note that in [15], the
breast cancer patients with the same data were clustered
into two groups based on a 70-gene prognosis profile,
namely poor-prognosis and good-prognosis groups. To
examine the difference between individual groups identi-
fied by our multimodal DBN framework, we also checked
the correlations of the gene expression of the 70-gene
prognosis signature established in [15] and the percentage
of ESR1 mutation (Table 4). The ESR1 mutation data was
obtained from the original dataset downloaded from the
Netherlands Cancer Institute.
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TABLE 4
Different Subtypes of Breast Cancer Identified by Our
Multimodal DBN Model Using Both Genetic and Clinical Data

Group A

17.21 (0.34)
95.2% (2.1%)
100.0% (0%)

Group B

5.52(0.42)
30.5% (6.6%)
48.7% (6.1%)

Mean survival time (years)
10-year survival rate
5-year survival rate

Mean correlation 0.34 0.00
Percentage of ESR1 mutation 80.82% 47.14%
Population 146 70
Group C Group D
Mean survival time (years) 7.37 (0.33) 3.57 (0.45)

0.0% (0.0%)
86.8% (4.1%)

0.0% (0.0%)
0.0% (0.0%)

10-year survival rate
5-year survival rate

Mean correlation 0.37 0.02
Percentage of ESR1 mutation 97.14% 77.78%
Population 70 9

“Mean correlation” means the mean of correlations with good-prognosis signa-
ture, which is the average correlation coefficient of the 70-gene prognosis pro-
file between patients in each group identified by our algorithm and those with
the good-prognosis signature established in [15]. “Percentage of ESR1 muta-
tion” is the fraction of patients with ESR1 mutation in individual groups.

We first calculated the correlation coefficients of the
70-gene prognosis profile between individual patients in each
group identified by our approach and those associated with a
good-prognosis signature established in [15]. The average cor-
relation coefficients over all patients in individual subtypes of
cancer were then reported to examine the clustering scheme.
As shown in Table 4, we can easily draw a line to separate sub-
types of breast cancer using the 70-gene prognosis signature.
In particular, Groups A and C had a better agreement with
the good-prognosis group defined in [15] based on the 70-
gene profile than the other two groups. This observation can
also be supported from clinical evidence, that is, patients in
Groups A and C had closer mean survival time and 5-year
survival rates than those in Groups B and D. Among these
four groups identified by our model discrepancy and connec-
tions can also be found both in genetic information and clini-
cal information. In particular, Groups A and C shared similar
genetic characteristic in the mean correlation with the 70-gene
prognosis signature, and so did Groups B and D (Table 4).
Groups A and C tended to have similar 5-year survival rates,
but with quite different 10-year survival rates.

Next, we examined the percentage of ESR1 mutation in
different subtypes of breast cancer identified by our model.
As shown in Table 4, Groups A and C had a higher ESR1
mutation frequency than other two groups (i.e., Groups B
and D). This gap was also consistent with evidence derived
from genetic (i.e., the 70-gene prognosis profile) and clinical
(i.e., survival time) data. The estrogen receptor (ER), includ-
ing both ESR1 and ESR?2, is a family of transcription factors
that are activated by hormone estrogen. It has been
observed that ER is aberrantly over-expressed in more than
70 percent of breast cancer patients, i.e., ER-positive breast
cancer patients [22]. ER protein immunohistochemistry
(IHC) has been used as a clinical diagnostic marker for
breast cancer [23] and our results suggest that ESR1 can also
be used as a key factor to distinguish different subtypes of
breast cancer. Compared to the results in [15], we combined
both genomic and clinical data in a different way, that is,

—Group A
T Group B
—Group C
—MGroup D
=+ Group A-censcred
= Group B-censored
=t Group C-censored
=+ Group D-censored

0.84

0.6

0.4

Estimated Survival Function

0.2

0.0

Time (Years)

Fig. 8. The Kaplan-Meier plots of different subtypes of breast cancer
identified by our multimodal DBN model using both genetic and clinical
data.

clinical information was used in our model to integrate with
genomic data to cluster cancer patients rather than being
used to validate the classification results in [15].

All these results show that, in our multimodal DBN
modal, hidden variables can effectively capture intrinsic
features within each input modality and cross-modality cor-
relations across multi-platform data. The states of the hid-
den variables in the final top layer can be used to determine
different subtypes of cancer, which are mainly defined
based on the intra- and cross-modality statistical properties
defined by multimodal input data.

4 DISCUSSION

With a large number of parameters, the deep learning
model could overfit the data. In practice, we apply several
empirical rules to avoid overfitting the data. Here, we use
the choice of the number of hidden variables as an example
to demonstrate how we choose the parameters in our deep
learning model in principle. We mainly use two principles
to determine the number of hidden variables, including that
in the top layer. First, according to the empirical studies in
the deep learning literature, the number of hidden variables
is usually around one tenth of that of visible variables [7],
[8]1,[9], [10], [11], [24], [25], [26]. Second, we choose the num-
ber of hidden variables by measuring how it influences the
mean squared error (MSE) between the original visible data
and corresponding reconstructed values. By configuring the
deep learning model with different numbers of hidden vari-
ables, we can observe how the MSE changes with respect to
the number of hidden variables. For example, in Fig. 9, we
can easily obtain a reasonable choice near the change point
for the number of hidden variables, which achieves a small
MSE value but with less overfitting (i.e., the MSE is not too
small). Before the change point, the MSE drops dramatically
as the number of hidden variables increases, which indi-
cates that the model is at lack of fitness. After the change
point, the MSE only achieves small improvement as the
number of hidden variables increases. This indicates that
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Fig. 9. A plot example of the number of hidden variables vs. the mean
squared error between the original visible data and corresponding recon-
structed values.

probably the model is overfitting the data. Thus, we are
inclined to choose such a change point or pick the number
of hidden variables near the change point (considering
other principles).

We have compared the clustering results of our method
with those of K-means on the same dataset for ovarian cancer
patients. The clustering results of K-means are shown in
Table 5 and Fig. 10. The comparison results show that our
multimodal DBN model had better clustering outcome than
the K-means approach. As shown in Table 5 and Fig. 10,
K-means had worse performance in separating the patients
into different groups than our approach. For example, the dif-
ference between the groups with the longest and shortest sur-
vival time was nearly 1,700 days in our clustering results
(Table 2 and Fig. 5), while the corresponding difference in the
K-means results was only about 1,000 days (Table 5 and
Fig. 10). In Fig. 10, curves of different groups were closer to
each other than those identified by our method. Among all
eight groups identified by K-means, four of them had a trend
of long-term survival with the probability below 40 percent
and were quite similar to each other. On the other hand, in the
subtypes identified by our method, only one of them showed
a trend of long-term survival with the probability below 40
percent and the highest probability of long-term survival was
above 60 percent. These results indicate that our method is
more capable of capturing the intrinsic relationship in differ-
ent modalities and has better clustering performance.

TABLE 5
Survival Time of Different Subtypes of Ovarian
Cancer Identified by K-Means

Group 1 Group 2

1,384.82 (199.94)
60.7% (9.2%)
46.4% (9.4%)

1,172.00 (0.00)
100.0% (0.0%)
0.0% (0.0%)

Mean survival time (days)
900-day survival rate
1500-day survival rate

Group 3 Group 4

1,078.10 (79.75)
72.1% (6.9%)
19.9% (6.3%)

2,097.45 (251.11)
69.1% (10.0%)
69.1% (10.0%)

Mean survival time (days)
900-day survival rate
1500-day survival rate

Group 5 Group 6

1,445.11 (120.34)
81.5% (6.3%)
36.5% (8.0%)

1,657.53 (193.02)
77.1% (5.3%)
43.2% (7.2%)

Mean survival time (days)
900-day survival rate
1500-day survival rate

Group 7 Group 8

1,791.66 (237.15)
57.3% (8.4%)
48.5% (9.2%)

1,807.58 (164.10)
68.4% (6.3%)
56.9% (7.4%)

Mean survival time (days)
900-day survival rate
1500-day survival rate
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Fig. 10. The Kaplan-Meier plots for all ovarian cancer patients in eight
different groups clustered by K-means.

Test results on two cancer datasets, as shown in Sections
3.2 and 3.3, demonstrate that our multimodal DBN frame-
work provides a promising tool for integrative cancer data
analysis. Our multimodal DBN model differs from tradi-
tional clustering approaches, such as K-means based meth-
ods [4] and Bayesian methods [1], in several aspects.

First, unlike the K-means based methods, which are nor-
mally sensitive to the choice of initial cluster centers, our
multimodal DBN model is a probabilistic framework which
remains stable under perturbation of initial states. Second,
Bayesian approaches, generally require a prior distribution
(e.g., normal distribution) about latent variables. In reality,
the assumption of normality on latent variables for cluster-
ing is often ungrounded. In our multimodal DBN model,
the distribution of hidden variables is generated automati-
cally from its conditional distribution on visible variables.
In practice, the states of hidden variables can be often inter-
preted based on our current knowledge about known bio-
logical processes or specific elements in the underlying
cellular pathways. In fact, a similar functional representa-
tion of hidden variables has been discovered in the voice
recognition application [26]. Third, most of the conventional
clustering approaches [1], [2], [4], [26] are not particularly
designed for dealing with cross-platform data, while our
multimodal DBN is specially developed to capture both
intrinsic statistical properties within each input modality
and cross-modality correlations from multimodal input
data. These advantages make our approach more suitable
for analyzing multi-platform cancer data and identifying
different subtypes of cancer, which will provide useful
guidelines for personalized cancer therapy.

The multimodal DBN framework can be easily imple-
mented and extended to address large-scale problems. In
conventional K-means based approaches [4], it can be diffi-
cult to calculate eigenvectors and eigenvalues for a large
amount of data. In addition, the underlying CD algorithm in
multimodal DBN model has been proved more efficient than
the Markov Chain Monte Carlo approaches [13], which have
been widely used to learn those Bayesian methods for clus-
tering. These facts indicate that multimodal DBN models can
offer a more practical tool to handle big data challenges.
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Fig. 11. The distribution of the weights that are more than 0.3 in absolute
value and associated with the connections to No. 51 and No. 366 hidden
variables in the bottom-most hidden layer.

In our analysis, the hidden variables in the top layer of
our multimodal DBN model represent different cancer sub-
types. Also, the hidden variables in other layers reveal cer-
tain biological information, such as the existence of aberrant
proteins. When generating those hidden variables, our
model constructed the linear combination of visible varia-
bles using weights as coefficients. The larger the absolute
value of the weight, the higher impact its corresponding vis-
ible variable has on the hidden variable. Fig. 11 shows that
in the GE modality of ovarian cancer data, the distributions
of the weights that are more than 0.3 in absolute value are
totally different between the connections to No. 51 and No.
366. A further genetic functional analysis [27], [28] has
shown that two functional annotation clusters have been
identified among those 22 genes which have large impacts
on No. 366 hidden variable. One is related to olfactory
reception and transduction (Enrichment Score: 2.77), and
the other is related to transmembrane proteins (Enrichment
Score: 0.89). These clusters demonstrate the functional anno-
tations of certain hidden variables. The difference in the
weight distributions reveals the distinction in functional
annotation of hidden variables.

In this paper, we have mainly applied a multimodal DBN
model to perform integrative clustering on multi-platform
cancer data. In principle, our model can also be used to pre-
dict missing values based on other variables of a cancer
patient after clustering the whole dataset. For example, our
model can be used to predict drug use for each patient based
on available genetic information. As our modal is a probabi-
listic framework, each new prediction can be associated with
a confidence score. A similar strategy has been used in [29],
[30] to predict missing drug-target interactions by exploiting
the intrinsic correlations of previously known interactions.

ACKNOWLEDGMENTS

Jianyang Zeng is the corresponding author. The authors
thank the anonymous reviewers for their helpful comments
and suggestions. The authors are grateful to Mr. Sai Zhang,
Mr. Xin Zhang and Dr. Chao Cheng for their helpful discus-
sions on our data analysis method. This work was supported
in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61033001, 61361136003
and 61472205, and China’s Youth 1000-Talent Program.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.12, NO.4, JULY/AUGUST 2015

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Shen, A. B. Olshen, and M. Ladanyi, “Integrative
clustering of multiple genomic data types using a joint latent
variable model with application to breast and lung cancer
subtype analysis,” Bioinformatics, vol. 25, no. 22, pp. 2906—
2912, 2009.

S. Zhang, C.-C. Liu, W. Li, H. Shen, P. W. Laird, and X. J. Zhou,
“Discovery of multi-dimensional modules by integrative analysis
of cancer genomic data,” Nucleic Acids Res., vol. 40, no. 19,
pp- 9379-9391, 2012.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” ]. Royal Statist. Soc. Ser. C (Appl. Statist.),
vol. 28, no. 1, pp. 100-108, 1979.

C. Ding and X. He, “K-means clustering via principal component
analysis,” in Proc. 21st Int. Conf. Mach. Learn., 2004, p. 29.

L.]. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart,
M. Mao, H. L. Peterse, K. van der Kooy, M. ]J. Marton, A. T.
Witteveen, G. ]J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S.
Linsley, R. Bernards, and S. H. Friend, “Gene expression profiling
predicts clinical outcome of breast cancer,” Nature, vol. 415,
no. 6871, pp. 530-536, 2002.

D. R. Rhodes, T. R. Barrette, M. A. Rubin, D. Ghosh, and A. M.
Chinnaiyan, “Meta-analysis of microarrays: Interstudy valida-
tion of gene expression profiles reveals pathway dysregulation
in prostate cancer,” Cancer Res., vol. 62, no. 15, pp. 4427-4433,
2002.

M. Kim, J. Nam, H. Lee, J. Ngiam, A. Khosla, and A. Y. Ng,
“Multimodal deep learning,” in Proc. 28th Int. Conf. Mach. Learn.,
2011, pp. 689-696.

N. Srivastava and R. Salakhutdinov, “Multimodal learning with
deep boltzmann machines,” J. Mach. Learn. Res., vol. 15, pp. 2949—
2980, 2014.

G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” Dept. of Computer Science, Univ. of Toronto,
Tech. Rep. UTML TR 2010-003, 2010.

R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in Proc. 24th Int. Conf. Mach.
Learn., 2007, pp. 791-798.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Comput., vol. 18, no. 7,
pp- 1527-1554, 2006.

M. Welling and G. Hinton, “A new learning algorithm for mean
field boltzmann machines,” in Proc. Int. Conf. Artificial Neural
Netw., 2002, pp. 351-357.

M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive diver-
gence learning,” in Proc. 10th Int. Workshop Artif. Intell. Statist.,
2005, pp. 59-66.

T. Tieleman, “Training restricted boltzmann machines using
approximations to the likelihood gradient,” in Proc. 25th Int. Conf.
Mach. Learn., 2008, pp. 1064-1071.

M. J. Van de Vijver, Y. D. He, L. J. van’t Veer, H. Dai, A. A. Hart,
D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J.
Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye,
T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H.
Friend, and R. Bernards, “A gene-expression signature as a pre-
dictor of survival in breast cancer,” New England ]. Med., vol. 347,
no. 25, pp. 1999-2009, 2002.

K.-J. Wu, C. Grandori, M. Amacker, N. Simon-Vermot, A.
Polack, J. Lingner, and R. Dalla-Favera, “Direct activation of
tert transcription by c-myc,” Nat. Genetics, vol. 21, no. 2,
pp- 220-224, 1999.

F. W. Huang, E. Hodis, M. J. Xu, G. V. Kryukov, L. Chin, and L. A.
Garraway, “Highly recurrent tert promoter mutations in human
melanoma,” Science, vol. 339, no. 6122, pp. 957-959, 2013.

A. Glukhov, L. Svinareva, S. Severin, and V. Shvets, “Telomerase
inhibitors as novel antitumor drugs,” Appl. Biochem. Microbiol.,
vol. 47, no. 7, pp. 655-660, 2011.

S.-Y. Park, J. H. Lee, M. Ha, J.-W. Nam, and V. N. Kim, “mir-29
mirnas activate p53 by targeting p85«¢ and cdc42,” Nat. Struct.
Molecular Biol., vol. 16, no. 1, pp. 23-29, 2008.

H.J. Bae, J. H. Noh, J. K. Kim, J]. W. Eun, K. H. Jung, M. G. Kim, Y.
G. Chang, Q. Shen, S.-J. Kim, W. S. Park, J. Y. Lee, and S. W. Nam,
“Microrna-29c functions as a tumor suppressor by direct targeting
oncogenic sirtl in hepatocellular carcinoma,” Oncogene, vol. 33,
no. 20, pp. 2557-2567, 2013.



LIANG ET AL.: INTEGRATIVE DATA ANALYSIS OF MULTI-PLATFORM CANCER DATA WITH A MULTIMODAL DEEP LEARNING... 937

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J.-J. Zhao, ]J. Lin, T. Lwin, H. Yang, J. Guo, W. Kong, S.
Dessureault, L. C. Moscinski, D. Rezania, W. S. Dalton, E. Soto-
mayor, J. Tao, and J. Q. Cheng, “Microrna expression profile and
identification of mir-29 as a prognostic marker and pathogenetic
factor by targeting cdké in mantle cell lymphoma,” Blood, vol. 115,
no. 13, pp. 2630-2639, 2010.

W. L. McGuire and C. K. Osborne, “The use of steroid hormone
receptors in the treatment of human breast cancer: A review,” Bull
Cancer, vol. 66, no. 3, pp. 203-209, 1979.

J. Underwood, “Oestrogen receptors in human breast cancer:
Review of histopathological correlations and critique of histo-
chemical methods,” Diagnostic Histopathol., vol. 6, no. 1, pp. 1-22,
1983.

R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,”
in Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 448-455.

A. Mohamed, T. Sainath, G. Dahl, B. Ramabhadran, G. Hinton,
and M. Picheny, “Deep belief networks using discriminative fea-
tures for phone recognition,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2011, pp. 5060-5063.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N.
Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, and T. N. Sainath,
“Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.

B. T. Sherman, D. W. Huang, and R. A. Lempicki, “Systematic and
integrative analysis of large gene lists using david bioinformatics
resources,” Nat. Protocols, vol. 4, no. 1, pp. 44-57, 2008.

W. Huang da, B. T. Sherman, and R. A. Lempicki, “Bioinformatics
enrichment tools: Paths toward the comprehensive functional
analysis of large gene lists,” Nucleic Acids Res., vol. 37, no. 1,
pp- 1-13, 2009.

N. Le Roux and Y. Bengio, “Representational power of restricted
boltzmann machines and deep belief networks,” Neural Comput.,
vol. 20, no. 6, pp. 1631-1649, 2008.

Y. Wang and J. Zeng, “Predicting drug-target interactions using
restricted boltzmann machines,” Bioinformatics, vol. 29, no. 13,
pp. 1126-i134, 2013.

Muxuan Liang received the BS degree in mathematics and applied
mathematics from Tsinghua University in 2014. He is currently a grad-
uate student in the Department of Statistics and a research assistant
in the Department of Biostatistics and Medical Informatics at the
University of Wisconsin-Madison. His research interests include high-
dimensional data analysis, statistical learning and machine learning,
bioinformatics and statistical genomics.

Zhizhong Li received the BS degree in biology from Tsinghua Univer-
sity and the PhD degree in pharmacology and cancer biology from
Duke University. He then finished the Presidential Postdoc fellowship
at the Novartis Institutes for Biomedical Research. He is currently a
principle investigator at the Genomics Institute of the Novartis Founda-
tion (GNF), focusing on cancer genetics and genomics studies, in
order to develop personalized cancer drugs. He has published multiple
high impact research papers on cancer and stem cell biology with a
total citation more than 2,500.

Ting Chen is a professor in computer science at Tsinghua University.
His research focus is on the algorithmic design and statistical learning
in bioinformatics. He received the Alfred Sloan Fellowship in 2004.

Jianyang Zeng received the PhD degree in computer science from
Duke University in 2011. He is a tenure-track assistant professor in
the Institute for Interdisciplinary Information Sciences (l1IS) at Tsing-
hua University. He was a postdoctoral associate in the Department of
Computer Science at Duke University and the Duke University School
of Medicine in 2011-2012. His research interests include computa-
tional biology, machine learning, and big data analysis. In 2012, he
was chosen as a finalist for a lane fellowship in computational biology
at Carnegie Mellon University (CMU). He received the Best Paper
Award in the Sixth International Conference on Parallel and Distrib-
uted Computing, Applications and Technologies (PDCAT) in 2005. He
received the China’s Youth 1000-Talent Program.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


