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Particle picking is a time-consuming step in single-particle analysis and often requires significant inter-
ventions from users, which has become a bottleneck for future automated electron cryo-microscopy
(cryo-EM). Here we report a deep learning framework, called DeepPicker, to address this problem and fill
the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule
training strategy to capture common features of particles from previously-analyzed micrographs, and
thus does not require any human intervention during particle picking. Tests on the recently-published
cryo-EM data of three complexes have demonstrated that our deep learning based scheme can success-
fully accomplish the human-level particle picking process and identify a sufficient number of particles
that are comparable to those picked manually by human experts. These results indicate that
DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent
in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination.
DeepPicker is released as an open-source program, which can be downloaded from https://github.com/
nejyeah/DeepPicker-python.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Recent advance of the single-particle electron cryo-microscopy
(cryo-EM) technique has been revolutionizing the structural biol-
ogy field (Bai et al., 2015; Cheng, 2015; Cheng et al., 2015), and
enabled protein complex structure determination at near-atomic
resolution (Liao et al., 2013; Yan et al., 2015; Zhao et al., 2015;
Wu et al., 2015). However, the high-resolution cryo-EM studies
of molecular complexes, especially those asymmetric ones, often
require the selection of a tremendous number of (e.g., hundreds
of thousands of) high-quality particles from micrographs. This par-
ticle picking step is a labor-intensive step in single-particle data
analysis and is a major obstacle for automated cryo-EM pipeline.
In the past, particles from cryo-EM micrographs are often selected
manually. Such a manual picking process is usually a laborious,
tedious and time-consuming task which inevitably requires a con-
siderable amount of human effort to obtain a sufficient number of
good-quality particles to ensure high-resolution 3D reconstruction.
In addition, manual particle selection is normally subjective and
can easily introduce bias and inconsistency due to change in
human judgement over time.

To relieve the bottleneck in single-particle data analysis,
numerous computational approaches have been proposed to facil-
itate the particle picking process (Nicholson and Glaeser, 2001;
Zhu et al., 2004; Ogura and Sato, 2001; Langlois et al., 2011;
Chen and Grigorieff, 2007; Hall and Patwardhan, 2004; Huang
and Penczek, 2004; Adiga et al., 2004; Voss et al., 2009; Sorzano
et al., 2009; Arbelez et al., 2011; Zhao et al., 2013; Norousi et al.,
2013). These methods can be basically divided into three cate-
gories, including generative (Chen and Grigorieff, 2007; Hall and
Patwardhan, 2004; Huang and Penczek, 2004), unsupervised
(Adiga et al., 2004; Voss et al., 2009) and discriminative approaches
(Langlois et al., 2011; Sorzano et al., 2009; Arbelez et al., 2011). The
generative approaches (Chen and Grigorieff, 2007; Hall and
Patwardhan, 2004; Huang and Penczek, 2004) usually measure
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the similarity to a reference to identify particle candidates from
micrographs. A typical generative method employs a template-
matching technique (Hall and Patwardhan, 2004; Huang and
Penczek, 2004) with a cross-correlation similarity measure to
accomplish particle selection. The unsupervised approaches distin-
guish the images of particle-like objects from background or noise
in micrographs via an unsupervised learning manner (i.e., without
any labeled training data) (Adiga et al., 2004; Voss et al., 2009). The
discriminative methods first train a classifier based on a labeled
dataset of positive and negative examples, and then apply this
trained classifier to detect and recognize particle images from
micrographs (Langlois et al., 2011; Sorzano et al., 2009; Arbelez
et al., 2011). Although these computational approaches have
greatly reduced time and effort spent on single-particle data anal-
ysis, there still remain gaps to achieve a fully automated pipeline
for efficient particle picking. For instance, most of the generative
methods require the user to prepare an initial set of high-quality
reference particles used as templates to search for similar particle
candidates from micrographs, while the discriminative approaches
usually demand the user to manually pick a number of positive and
negative samples to train the classifier. Thus, these approaches
generally depend upon a certain level of human intervention to
provide a portion of manually-picked particles to initialize the par-
ticle selection process. Although the unsupervised approaches do
not heavily rely on hand-labeled data, they rarely fully exploit
the intrinsic and unique characters of particles to facilitate auto-
mated particle picking. Therefore, the unsupervised approaches
are often combined with the template-matching or classification
based approaches to achieve decent picking results (Zhao et al.,
2013; Norousi et al., 2013).

In recent years, deep learning has become an increasing popular
tool in the machine learning field probably due to the availability
of large-scale training data, the advance of powerful computing
platforms and the development of efficient learning algorithms
(LeCun et al., 2015; Hinton et al., 2012; Sutskever et al., 2014).
Tests on several well-known benchmark datasets have demon-
strated that deep learning can achieve better performance espe-
cially in large-scale data analysis than traditional machine
learning approaches (LeCun et al., 2015; Hinton et al., 2012;
Krizhevsky et al., 2012; Goldberg, 2015). So far deep learning has
been successfully applied to a wide range of data science fields,
such as computer vision (Krizhevsky et al., 2012; Lawrence et al.,
1997; Farabet et al., 2013; Tompson et al., 2014), natural language
processing (Hinton et al., 2012; Mikolov et al., 2011; Xu et al.,
2015) and computational biology (Zhou and Troyanskaya, 2015;
Ma et al., 2015). More recently, the Google team has shown that
the deep learning framework is capable of achieving an impressive
and amazing level of artificial intelligence that can closely mimic
the problem solving skills of human experts (Silver et al., 2016;
Mnih et al., 2015). Despite these successful stories in a variety of
applications, it still remains unknown whether the deep learning
technique can also be effectively used to address the current prob-
lems in particle picking and achieve a fully automated particle
selection procedure in single-particle cryo-EM data analysis. Here,
we aim to answer this question and propose a deep learning frame-
work, called DeepPicker, to fill the aforementioned gaps in auto-
mated particle selection and liberate structural biologists from
the dreary manual picking process to focus on more interesting
work.

Although our deep learning model can be trained with a semi-
automated manner as in the conventional classification based
approaches, it can be equipped with a new training scheme, which
fully exploits the known particles of other molecular complexes
that are different from the target one and whose structures have
been previously determined by cryo-EM. This new training strat-
egy does not require any manual effort in particle picking for the
current target molecular complex and thus is considered fully auto-
mated. Our deep learning model with such a new cross-molecule
training scheme is innovative and can effectively capture the com-
mon abstract representation of latent features from the known
particles of the previously-determined molecular structures. It
can closely mimic human intelligence and effectively use the
extracted cross-molecule features to initialize the particle picking
process of the current target complex. To our knowledge, our
approach is the first successful attempt to fully exploit the cross-
molecule data to achieve full automation in particle picking with-
out any human interference.

We have implemented our deep learning method for particle
picking and tested it on the real cryo-EM data of three molecules
that have been published in the past three years, including TRPV1
(Liao et al., 2013) (from EMPIAR (https://www.ebi.ac.uk/pdbe/
emdb/empiar/)), human c-secretase (Sun et al., 2015) and yeast
spliceosome (Yan et al., 2015). Our tests have demonstrated that
the proposed deep learning framework with either semi-
automated or fully automated training scheme can accurately
detect and select a sufficient number of particles that are compara-
ble to those picked manually by human experts. Our new auto-
mated picking approach can significantly reduce time and labor
spent in single-particle data analysis and thus greatly relieve a bot-
tleneck in the automated cryo-EM structure determination
pipeline.
2. Methods

2.1. The fully automated particle picking pipeline

We have implemented a deep learning framework for auto-
mated particle picking in single-particle cryo-EM structure deter-
mination (Fig. 1). The automated particle picking pipeline
consists of two modules, i.e, model training and particle picking
(Fig. 1). In the model training module, a set of labeled positive
and negative samples is used to train a convolutional neural net-
work (CNN) model (see Sections 2.3 and 2.4), while in the particle
picking module, the trained CNN classifier is then used to select
particle images from input micrographs. The particle picking mod-
ule is further divided into five steps: scoring, cleaning, filtering,
sorting and iterating. In the scoring step, a sliding window (i.e., a
square box) of a fixed size is used to scan each micrograph from
the top left corner to the bottom right corner with a constant step
size. The box size of the sliding window is chosen to be slightly lar-
ger than the particle size, which can be easily estimated and
defined as a parameter. During the above scanning process, each
patch within the sliding window is extracted and fed to the trained
CNN classifier as input data. The prediction score between 0 and 1
output by the CNN model, which represents the probability of
being a particle at the current position, is then assigned to the cen-
ter of the corresponding window. After that, we obtain a ‘‘scored
map”, which describes the distribution of the likelihood scores of
particles over the whole micrograph. As ice can easily introduce
false positives during the picking process, we also employ a clean-
ing step to discard these false particles from the candidate list. In
this cleaning step, we first connect any two neighboring pixels if
their prediction scores are both above a threshold, and then exam-
ine the size of each connected domain (i.e., the portion of all con-
nected pixels). If the size of a connected domain is larger than a
cutoff value, it is regarded as a potential false positive probably
due to ice, and thus removed from the candidate list. In the filter-
ing step, we aim to refine the current set of particle candidates and
also identify the center coordinates of the final remaining particles
from the scored map. We first introduce a concept of peak window,
the size of which is related to the minimum distance between cen-
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Fig. 1. Schematic overview of our automated particle picking pipeline. The particle selection procedure consists of six steps: (1) training, (2) scoring, (3) cleaning, (4) filtering,
(5) sorting and (6) iteration. In our fully automated picking pipeline, the initial training data are obtained from the known particles of other molecular complexes whose
structures have been previously solved via cryo-EM.
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ters of two possible particles. Then the position with the maximum
prediction score in each peak window is chosen and output as the
center of a particle. We also remove bad particle candidates when
they are far away from the mean case of particle candidates in the
same micrograph. More specially, the following two steps are per-
formed to accomplish this task. First, for each particle candidate in
a micrograph, we count the number of extreme pixels, in which the
pixel value is three standard deviations away from the mean pixel
value of the whole micrograph. Next, we remove those bad particle
candidates, in which the number of extreme pixels is larger than
three standard deviations away from the mean number of extreme
pixels over all particle candidates over the whole micrograph. In
the sorting step, we sort the remaining particle candidates accord-
ing to their prediction scores. In the iterating step, we use the par-
ticles picked by the previous CNN classifier which was trained over
the known particles of other molecules to further refine the CNN
model. After a certain number of iterations, the algorithm outputs
the top list of the highest-rated particles. The detailed setting of
the parameters described for the above operations is provided in
Section 2.6.

In general, the particles of different molecular complexes dis-
play distinct sizes and shapes. Thus, how to effectively exploit
the cross-molecule features to pick particles from micrographs of
the current complex is a major challenge in our work. As described
above, this problem has been tackled in our framework mainly
using two strategies. First, the known particles frommultiple types
of other molecular complexes are combined together to train the
deep learning classifier and enable it to capture common features
of particles. Second, the particles of the target molecule identified
from the deep learning classifier trained by a cross-molecule man-
ner in the first iteration are further used to refine the model to bet-
ter describe the features of the current target complex. In our
automated particle picking scheme, the user is not required to
manually pick any particle from micrographs of the current target
molecule. Thus, it is considered a fully automated procedure with-
out requiring any manual intervention during the particle selection
process.

2.2. Datasets and data preprocessing

The data used in this paper were divided into two non-
overlapping parts: training and test datasets. The training data
consisted of 100, 400, 100, 84 and 400 micrographs of c-
secretase (Sun et al., 2015), spliceosome (Yan et al., 2015), TRPV1
(Liao et al., 2013), b-galactosidase (Bartesaghi et al., 2014) and N-
ethylmaleimide sensitive factor complex (Zhao et al., 2015),
respectively, while the test data contained a separate set of micro-
graphs from c-secretase, spliceosome and TRPV1, each having 100
micrographs. All the results described in the paper are referred to
those on the test datasets.
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The defocus value of each micrograph was calculated using
CTFFIND4 (Rohou and Grigorieff, 2015). For each micrograph, we
first used a Gaussian filter as a low pass filter to remove white
noise with high frequency components. Then the binning strategy
(Li et al., 2013) was used to convert each original micrograph to an
image ranging between 1000 and 2000 pixels. All the coordinates
of reference particles were identified manually by human experts
(see also Section 2.5) except for b-galactosidase, in which the coor-
dinates of reference particles were obtained from EMPIAR (entry
ID: EMPIAR-10017). In addition, all the coordinates of the reference
particles were further aligned using FREALIGN (Grigorieff, 2007).

Note that we did not test our particle picking method on the
classic KLH dataset (Zhu et al., 2004), which was collected in
2004. This is mainly because, as the technique of electron cryo-
microscopy detector has been significantly revolutionized since
2012 (Cheng, 2015), we believe that the micrographs collected
nowadays are quite different from the old datasets. Thus, we
mainly tested the new datasets that were published quite recently
(i.e., after 2012). In addition, we mainly focused on automated par-
ticle picking for small or mediummolecules, and excluded the par-
ticles of large complexes or virus from our training or test data.
This is mainly because automated particle selection of these large
complexes or virus is usually a relatively easier task. For example,
these large particles can be relatively easily detected using the
edge detection techniques (Canny, 1986) or other image processing
methods (Cheng et al., 2015).

The c-secretase and spliceosome datasets were obtained from
Dr. Yigong Shi’s lab at Tsinghua University, which were acquired
by an FEI Titan Krios electron microscope operating at 300 kV with
a magnification of 22,500�. These micrographs were first taken by
a Gatan K2 Summit using a super-resolution mode at 0.66 Å/pixel,
and then binned to a final pixel size of 1.32 Å. The TRPV1 dataset
was downloaded from EMPIAR (entry ID: EMPIAR-10005), in which
the micrographs were recorded by a Gatan K2 Summit equipped
with a FEI POLARA 300 operating at 300 kV in a super-resolution
counting mode, with a final calibrated super resolution pixel size
of 1.2156 Å. The b-galactosidase dataset was downloaded from
EMPIAR (entry ID: EMPIAR-10017), which was recorded by a FEI
Falcon-II camera. More detailed information of the b-
galactosidase data collection can be found in Bartesaghi et al.
(2014). The NSF (N-ethylmaleimide Sensitive Factor) fusion com-
plex (20S particle) dataset was kindly offered by Dr. Minglei Zhao
from Dr. Axel T. Brunger’s Lab, and more details about its data col-
lection can be found in the original paper (Zhao et al., 2015).

2.3. The convolutional neural network model

Our deep learning framework employs a convolutional neural
network (CNN) as the classifier to discriminate correct particles
(i.e., positive samples) from background random noise images
(i.e., negative samples). Here, we briefly describe the concept of a
CNN. The reader is referred to Cun et al. (1990), Lecun et al.
(1998), LeCun et al. (2015), Krizhevsky et al. (2012), Lawrence
et al. (1997) for more details of this deep learning model.

A convolutional neural network is a specific type of deep learn-
ing (Krizhevsky et al., 2012; Lecun et al., 1998; Zeiler and Fergus,
2013) with a multi-layer structure, which consists of an input
layer, an output layer and several hidden layers (between input
and output layers). Each layer is comprised of a number of units,
also called artificial neurons. In a CNN, the output layer is a soft-
max layer (Bishop, 2006) in which the number of artificial neurons
is equivalent to that of the classification classes, and the value of
each unit represents the chance of being the corresponding class.
In a softmax layer, the output of a CNN is ensured to be a probabil-
ity value between 0 and 1. More specifically, a softmax function is
defined as
PðYiÞ ¼ eWiXþbiP
je

Wjxþbj

where Yi represents the output, i and j stand for the indexes of the
artificial neurons in the last layer (which also represent the indexes
of the output classes), X represents the input to the softmax layer,
Wi represents the corresponding weight parameter, and bi stands
for the bias of the ith unit in the output layer.

The hidden layers mainly include convolutional, pooling and
fully-connected layers. The convolutional and fully-connected lay-
ers are also called the learning layers, since their weights are opti-
mized during the training procedure. The dimension of the weight
parameters in a convolutional layer is N �M � K � K , where N
stands for the number of kernels in the convolutional layer, M
stands for the number of square matrices in the kernel (e.g., a
grayscale image has one square matrix), and K represents the
dimension of a square matrix which is typically less than 10. The
convolutional layer takes the convolution operation between the
input X and the weights W and then feeds the output into a non-
linear function. In particular, the convolutional operation is defined
as

convolutionðXÞijn ¼ Fnonlinear

XM�1

m¼0

XK�1

k¼0

XK�1

l¼0

Wn
mklXm;kþi�1;lþj�1

 !

where i and j denote the location indexes of the output, n is the
index of the output kernel, m is the index of the input matrix, k
and l stand for the location indexes of the kernel, and Fnonlinear stands
for a nonlinear function, e.g., tanhðxÞ; sigmoidðxÞ ¼ 1

1þe�x and the rec-
tified linear function (ReLU) ReLUðxÞ ¼ maxð0; xÞ. The ReLU function
has been popularly used in a CNN architecture, as it can signifi-
cantly speed up the training process (Krizhevsky et al., 2012; Nair
and Hinton, 2010).

The pooling layer first divides the input image into non-
overlapping windows, and then takes a max or mean operation
over each window. The pooling operation can reduce the number
of parameters and thus the complexity of the learning model. In
addition, it can effectively relieve the over-fitting problem
(Jarrett et al., 2009; Scherer et al., 2010).

The architecture of our CNN model consists of four convolu-
tional layers, each of which uses an ReLU function and is followed
by a max pooling layer. Then these convolutional and max pooling
layers are stacked with two fully-connected layers. The input data
of our CNN framework is the image within sliding window (see
Section 2.1), and the results of the last fully-connected layer are
fed into a softmax layer with two units, which represent the posi-
tive and negative labels, respectively. The ‘‘dropout” technique
(Srivastava et al., 2014), in which the unit states in a layer are
set to zero with probability p, whose default value is set to 0.5, is
applied in the first fully-connected layer to address the overfitting
problem (Krizhevsky et al., 2012; Srivastava et al., 2014).

In our deep learning framework, the first convolutional layer fil-
ters the input image of size 1� 64� 64 with 8 kernels of size
1� 9� 9 with a stride of 1. The second convolutional layer has
16 kernels of size 8� 5� 5 with a stride of 1. The third convolu-
tional layer has 32 kernels of size 16� 3� 3 with a stride of 1.
The fourth convolutional layer has 64 kernels of size 32� 2� 2
with a stride of 1. The first fully-connected layer has 256 neurons
and the second (i.e., the last output layer) has two neurons.

2.4. Training

The stochastic gradient descent algorithm (Bottou, 2010) is
used to train our deep learning model. The training data to our
deep learning classifier include a set of positive samples and an
equivalent number of negative samples, which are selected from
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those regions at least 0.6 times the size of sliding window away
from positive samples. The positive samples are either from the
known particles of other molecules whose structures have been
previously determined via cryo-EM (i.e., in a fully automated man-
ner) or the manually picked particles of the target molecule (i.e., in
a semi-automated manner). As particles may have different sizes,
we normalize both positive and negative samples into images of
64 pixels � 64 pixels. This normalization scheme is particularly
useful when we use cross-molecule data to train our deep learning
model, as the particles of distinct molecular complexes generally
have different sizes. During the training process, we also use a sep-
arate validation dataset, which is independent from training data
and test data, to determine some super-parameters of our deep
learning model, e.g., the number of iterations to reach the conver-
gence. The size of such a validation dataset is chosen to be around
1/9 of the training dataset.

In our fully automated picking scheme, we first use a mixture of
10,000 known particles of other molecules as training data that
were different from the target complex, each contributing to a
roughly equivalent number of training examples. Then in the iter-
ating step (Fig. 1), the top 10,000 particles predicted by the previ-
ously trained deep learning classifier are used as new training data
to further refine the deep learning model. For all the test results
shown in the paper, we only ran one iteration of the training
process.
2.5. Performance evaluation

We evaluated the performance of our particle picking approach
mainly by comparing the automated picking results to the corre-
sponding reference particles picked manually by human experts.
These reference particles were first picked by one cryo-EM expert
and then further verified by two additional experts. The coordi-
nates of all manually-picked particles were further aligned using
FREALIGN (Grigorieff, 2007). An automatically-picked particle
was said to agree with a manually picked particle, if the distance
between their centers was less than a threshold, which was set
to 0.2 times the size of sliding window. We mainly used recall
and precision to evaluate the accuracy of the particles selected
by our automated approach. Let TP denote the number of particles
that were picked by our deep learning approach and also agreed
with reference particles picked by human experts. Let FP denote
the number of particles that were picked by our approach but
did not agree with any reference particle. Let FN denote the num-
ber of the reference particles that were picked by human experts
but not by our automated approach. Then recall and precision
are defined as recall ¼ TP=ðFN þ TPÞ, and precision ¼ TP=ðFP þ TPÞ,
respectively.

In addition to recall and precision, we also measured the devi-
ations of the centers of the particles picked by our automated
approach from those of the reference particles selected by human
experts. In particular, we assessed their average distances, normal-
ized by the size of sliding window.

We also compared the 2D clustering and class averaging results
of the particles picked by our approach to those from the manually
picked images in the reference set. The 2D clustering and class
averaging operations were performed using the corresponding
commands in RELION 1.3. Such a 2D analysis process was con-
ducted in 2–3 iterations. In each iteration, those obvious image
artifacts, invalid particles or empty objects from the 2D averaging
results were removed from the candidate list. The same data anal-
ysis procedure was done for both manually and automatically
picked particles. Here the 2D averaging results were mainly used
to examine whether the particles picked by DeepPicker were com-
parable to those picked by human experts. Note that the recall and
precision values were accessed before the 2D alignment filtering
operation.
2.6. Parameter setting

In this section, we explain the parameter setting of our deep
learning model for automated particle picking. In the data prepro-
cessing stage, the standard deviation of the Gaussian filter was set
to 0.1. The standard deviation we used here is in Fourier space, so it
is equivalent to a 10 Å low-pass filter. In the model training stage
(i.e., step 1 in Fig. 1), the learning rate was set to 0.01. In the scoring
step of the particle picking stage (i.e., step 2 in Fig. 1), the size of
sliding window was set to 180 pixels for TRPV1 and c-secretase,
and 320 pixels for spliceosome, and the step size was set to 4 pix-
els. In the cleaning step (i.e., step 3 in Fig. 1), two neighboring pix-
els in the scored map with prediction scores above 0.5 were
connected. In addition, we removed those connected domains
whose sizes were four times larger than the average size. In the fil-
tering step (i.e., step 4 in Fig. 1), the size of peak windowwas set to
0.8 times the size of sliding window, in other words, the minimum
distance between centers of two potential particles was set to 0.4
times the size of sliding window. In the iterating step (i.e., step 6
in Fig. 1), we chose 10,000 samples from the top sorted particles
picked by the previously-trained classifier to further refine the
CNN model.
2.7. Implementation

DeepPicker was originally implemented based on Torch7
(http://torch.ch), an open source deep learning library and the
Lua programming language. While the paper was under the
reviewer, we have reimplemented it in Python programming lan-
guage based on the TensorFlow library (Abadi et al., 2015). It can
be run either with or without graphic processing units (GPUs). In
our tests, a NVIDIA Quadro K4000 GPU was used for training the
model and picking the particles from micrographs. The time
required for training the model with 10,000 samples was less than
an hour, and picking the particles from a micrograph of size 3710
pixels � 3838 pixels took about 1.5 min, when the step size was
set to 4. In general, the picking time can vary with respect to differ-
ent parameter settings. In particular, the time requirement was
mainly related to the values of box size and step size, which prin-
cipally determined the time of inferring each particle candidates
and the number of particle candidates, respectively.
3. Results

3.1. Performance evaluation on fully automated particle picking

3.1.1. Accuracy of particle picking
We have tested and evaluated the performance of our fully

automated particle picking approach on the published datasets of
c-secretase, spliceosome and TRPV1 (see Section 2.2 for details of
data preprocessing), in which the known particles of the other
two molecules that were different from the target complex were
used as training data (Fig. 2). In addition, another two datasets,
including b-galactosidase (Bartesaghi et al., 2014) and NSF (N-
ethylmaleimide Sensitive Factor) fusion complex (20S particle)
(Zhao et al., 2015), were incorporated into training data. We com-
pared the fully automated picking results with the coordinates of
the reference particles identified manually by human experts and
measured both precision and recall scores (see Section 2.5). As in
the current single-particle analysis pipeline, the fraction of true
particles that have been picked is generally more important for

http://torch.ch
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Fig. 2. Results on fully automated particle picking. (a) An example of our fully automated particle picking results for spliceosome, using a mixture of 5000 TRPV1 and 5000 c-
secretase particles picked manually by human experts as training data. (b) The summary of recall scores for c-secretase, TRPV1 and spliceosome using different combinations
of training data. The recall scores were computed on those picked particles with prediction scores above 0.5. (c)–(e) The trends of precision and recall vs. the number of picked
particles for c-secretase, spliceosome and TRPV1, respectively. The horizontal axis represents the ratio of the number of the top sorted particles picked by our fully automated
method vs. the number of manually picked particles in the reference set. The blue, green, red and black curves represent the results of using 10,000 manually picked particles
as training data contributed roughly equally by one, two, three and four types of other molecules (which were different from the target molecule), respectively. The real and
dashed curves represent the recall and precision scores, respectively. More details about different combinations of known particles from different molecules in training data
can be found in Table 1.

Table 1
Different combinations of training data for the test results shown in Fig. 2.

For c-secretase:
1 type TRPV1
2 types TRPV1 and spliceosome
3 types TRPV1, spliceosome and NSF fusion complex
4 types TRPV1, spliceosome, NSF fusion complex and b-galactosidase

For spliceosome:
1 type c-Secretase
2 types c-Secretase and TRPV1
3 types c-Secretase, TRPV1 and NSF fusion complex
4 types c-Secretase, TRPV1, NSF fusion complex and b-galactosidase

For TRPV1:
1 type Spliceosome
2 types Spliceosome and c-secretase
3 types Spliceosome, c-secretase and NSF fusion complex
4 types Spliceosome, c-secretase, NSF fusion complex and b-galactosidase

330 F. Wang et al. / Journal of Structural Biology 195 (2016) 325–336
3D model reconstruction (Langlois et al., 2014), we focused more
on the recall metric.

A typical example of the fully automated picking results is
shown in Fig. 2(a), which has demonstrated that most of the parti-
cles picked by our fully automated approach from a micrograph
were reasonable. All different tests (Fig. 2(b)) show that our fully
automated picking method can achieve high recall scores (above
0.81), which implies that most of the reference particles manually
picked by human experts can also be identified by our deep learn-
ing framework with a cross-molecule training strategy. In addition,
when the number of the top scoring particles picked by our fully
automated approach was close to that of the reference particles,
both recall and precision scores were relatively high (Fig. 2(c)–
(e)). These results imply that a major fraction of the particles iden-
tified by our fully automated scheme were consistent with those
manually picked by human experts. The comparisons among
results by using different training datasets (see Section 2.4) show
that our CNN classifier trained by multiple datasets achieved more
robust performance than that using only a single dataset as train-
ing data (Fig. 2(c)–(e)). Such a result was expected, as the hidden
features derived from multiple datasets were supposed to be more
general. In practice, we can include as many known datasets as
possible into training data to boost the classification performance
of our deep learning model.

In the cross-molecule training strategy, we also tested different
combinations of the known particles from other molecules as
training data. In particular, we looked into the test results on the
deep learning classifier trained by the known particles of one,
two, three and four types of molecules. Here we only show the typ-
ical results of each case (Fig. 2). More details about different com-
binations of training data are provided in Table 1. The tests of other
combinations show similar results for individual cases.

All the above results indicate that, despite different contrast
levels of micrographs, different shapes and sizes of the known
particles from other molecules used as training data, our fully
automated approach can effectively identify accurate particles that
were comparable to the manual picking results and thus achieve a
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near human level of particle selection. Therefore, our fully
automated particle picking method can be practically useful for
cryo-EM structure determination. As it does not require any
human intervention, in practice, it can help the user save a huge
amount of time and effort in single-particle data analysis.

3.1.2. The 2D clustering and class averaging results
The 2D clustering and class averaging operations are commonly

used right after the particle picking step in the single-particle data
(a)

(c)

(e)

Fig. 3. The comparisons between the 2D clustering and class averaging results derived fr
deep learning framework. (a), (c) and (e) The 2D clustering and class averaging resu
spliceosome and TRPV1, respectively. (b), (d) and (f) The 2D clustering and class avera
secretase, spliceosome and TRPV1, respectively. A mixture of 10,000 known particles of
spliceosome and TRPV1, which were different from the target molecule, were used as tr
analysis pipeline to further remove false positives and refine the
list of the selected particles for 3D map reconstruction (Nogales
and Scheres, 2015; Scheres, 2012). Thus, an additional effective
method for evaluating the practicability of an automated particle
picking approach is to further examine the 2D clustering and class
averaging results of the identified particles. We have performed
such an investigation and refined the original list of the picked par-
ticles by filtering those obviously bad-quality particles (see Sec-
tion 2.5) during the 2D clustering and averaging operations as in
(b)

(d)

(f)

om the particles picked manually by human experts and fully automatically by our
lts of the reference particles picked manually by human experts for c-secretase,
ging results of the particles picked fully automatically by our CNN classifier for c-
the other two molecules (each contributing to 5000 particles) among c-secretase,
aining data. Top 9 classes are shown here.
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a standard single-particle data analysis pipeline. The comparison
results have demonstrated that the 2D clustering and class averag-
ing results of our fully automated picking method were compara-
ble to those of the reference particles manually selected by
human experts (Fig. 3). For example, the side-view particles of c-
secretase that were identified and used in the original paper (Sun
et al., 2015) to reconstruct the near-atomic resolution 3D map
were almost all present in our automated results (Fig. 3(a) and
(b)). This implies that the particles automatically picked by our
approach can represent a majority of good-quality 2D images that
were practically useful for downstream data analysis in cryo-EM
structure determination. Thus, our fully automated particle picking
approach can provide a good starting point for 3D map reconstruc-
tion in cryo-EM.
3.1.3. Identification of particle centers
Identifying the accurate centers of particles is crucial for down-

stream single-particle data analysis, such as 2D clustering and 3D
map reconstruction. In the previous 2D clustering and averaging
results, we have shown that most of the particles picked by our
fully automated approach were well centralized: almost all the
averaging particle images selected by our program were fully
(a) (b)

(d)

Fig. 4. Results on identifying the centers of particles. (a)–(c) The distance between our au
set, normalized by the box size of sliding window, for c-secretase, spliceosome and TRPV1
10,000 particles of the same molecule (such a scheme is also called semi-automated pick
the CNN classifier trained by a mixture of 10,000 known particles roughly equally contri
the target complex, respectively. (d) An example of the comparison between the spliceoso
classifier, which was trained by a mixture of 5000 c-secretase and 5000 TRPV1 particles. T
fully automated approach, respectively.
covered by the mask circle (Fig. 3). To further investigate the
accuracy of our fully automated approach in identifying the centers
of particles, we also measured the average distance with respect to
the box size of sliding window between the particles picked fully
automatically by our CNN classifier and manually by human
experts (Fig. 4). We observed that the particles picked by our fully
automated scheme deviated less than 10% of the box size from the
reference images. These results imply that our fully automated
approach can accurately detect the centers of particles that were
quite close to those manually identified by human experts.
3.2. Semi-automated particle picking with an alternative training
strategy

In our fully automated picking scheme, the known particles
from other molecular complexes that are different from the current
target molecule are used to train the deep learning classifier. An
alternative training scheme is to let the user manually select a
small number of particles as positive samples to train the CNN
model and initialize the particle selection process (Fig. 5(a)). Such
a scheme requires a certain level of human intervention and thus is
considered semi-automated. As in the previous evaluation of fully
(c)

tomatically picked particles and their manually picked counterparts in the reference
, respectively. The orange plots represent the results of the CNN classifier trained by
ing, see also Section 3.2). The blue, green, red and black plots represent the results of
buted by one, two, three and four types of other molecules that were different from
me particles picked manually by human experts and fully automatically by our CNN
he red and blue circles represent the particles selected by human experts and by our
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Fig. 5. Results on semi-automated particle picking of our deep learning framework with an alternative training scheme. (a) A simple illustration on the alternative choice
between fully automated and semi-automated training schemes. (b) The summary of recall scores with prediction scores above 0.5 for the semi-automated particle picking
scheme under our deep learning framework for three different datasets with various sizes of training data. (c)–(e) The trends of precision and recall vs. the number of the
picked particles for c-secretase, spliceosome and TRPV1, respectively. The horizontal axis represents the ratio between the number of the top sorted particles picked by both
semi-automated and fully automated schemes vs. the number of manually picked particles in the reference set. The red, blue and green lines represent the semi-automated
results of the CNN classifier trained by 400, 1000 and 10,000 particles (which were manually picked from micrographs of the target molecule), respectively. The black lines
represent the fully automated results in which a mixture of the manually picked particles of four other molecules that were different from the target molecule were used as
training data, each contributing to 2500 particles. The real and dashed lines represent the recall and precision scores, respectively.
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automated particle picking, we also performed the similar tests for
the semi-automated picking scheme on the same datasets of c-
secretase, spliceosome and TRPV1.

Overall, various tests on these three datasets have demon-
strated that the semi-automated picking method resulting from
the alternative training scheme can detect and identify a high per-
centage of correct particles that were consistent with the manual
picking results by human experts (Fig. 5(b)). These results were
similar to those in the previous tests of fully automated picking
(Fig. 2(b)). The semi-automated picking results with 10,000 parti-
cles as training data were only slightly better than the fully auto-
mated picking results (Fig. 5(c)–(e)). We also observed similar
trends of precision and recall curves with respect to the number
of picked particles for both fully automated and semi-automated
schemes (Fig. 5(b)–(e)). From the other perspective, our fully auto-
mated picking scheme can achieve performance close to that of
semi-automated picking, and both schemes can yield outcomes
that were comparable to those manual picking results by human
experts.

Another noticeable observation in the test results of
semi-automated particle picking is that, when the number of
manually picked particles used in training data varied from
400 to 10,000, the performance of our semi-automated picking
method did not significantly change (Fig. 5(b)–(e)). This result
indicates that in practice the user only needs to select a small
number (e.g., 400) of particles, which is sufficient enough to
train our deep learning model for accurately picking new
particles from the remaining micrographs. Thus, it can only
demand a minimum of human intervention and can also provide
a practically useful tool for the current cryo-EM structure
determination pipeline.
4. Discussion

The difficulty of picking particles from a micrograph is generally
associated with the contrast level of the image, which is generally
related to its defocus level. To examine the influence of the con-
trast levels on the automated particle selection results, we further
examined the recall scores of our fully automated scheme at differ-
ent defocus levels (Fig. 6). The tests on the micrographs of c-
secretase, spliceosome and TRPV1 with defocus ranging from
1 lm to 3.5 lm have shown that the performance of our fully auto-
mated particle picking method was relatively robust at different
defocus levels (Fig. 6(a)–(c)). This implies that our automated
method can identify a sufficient number of correct particles at var-
ious conditions of data collection and thus may have a wide range
of applications in single-particle cryo-EM data analysis.

Recently, it has been pointed out that picking particles from
background or random noise with extremely low thresholds might
lead to the overfitting problem and fall into a potentially danger-
ous pitfall (Henderson, 2013; van Heel, 2013; Subramaniam,
2013), termed ‘‘Einstein-from-noise” (Shatsky et al., 2009), in
which a photograph of Einstein was used as a template and pure
noise images were aligned to this reference to reconstruct the Ein-
stein image. It would be interesting to know whether our approach
also suffers from this overfitting problem, when using the cross-
molecule particles as training data and picking particles from
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Fig. 6. The results of fully automated particle picking from micrographs at different defocus levels and from background or random noise. (a)–(c) The recall results of
automated picking at different defocus levels for c-secretase, spliceosome and TRPV1, respectively. The CNN classifier was trained by a mixture of 10,000 particles of other
four molecules that were different from the target one, each contributing to 2500 particles. The inlet panels in each subfigure show typical image examples at the minimum
and maximum defocus levels, respectively. (d)–(f) The distributions of the prediction scores in our fully automated particle picking approach on pure noise (i.e., without
adding any sample), pure background (i.e., without adding any protein in the sample) and TRPV1 micrographs, respectively. (g) The 2D class averaging results of the TRPV1
particles picked by DeepPicker using the prediction scores ranging between 0.1 and 0.5 in (f). Top 9 classes are shown here.
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random noise. To investigate this issue, we tested our CNN model,
which was trained by a mixture of 5000 c-secretase and 5000
spliceosome particles, on pure background micrographs which
were collected using the normal specimen preparation but without
putting any protein on the glow-discharged holey carbon grids,
and pure noise micrographs, which were measured from an empty
cryo-EM instrument without putting any sample inside. In this
additional test on background and noise images, we found that it
was difficult to pick particles with the default threshold value
(0.5) as used in the previous tests of c-secretase, spliceosome or
TRPV1 (see Section 3). We then set the threshold to zero and inves-
tigated the distribution of the prediction scores of the selected par-
ticles. We found that for both noise micrographs and background
micrographs, almost all the picked particles were associated with
a low prediction score (less than 0.05) (Fig. 6(d) and (e)), which
were greatly different from our previous results, e.g., the test of
TRPV1 (Fig. 6(f)). This result indicates that our scoring function
was able to separate true particles from background or noise. Next,
we performed the 2D clustering and class averaging processed on
the particles picked by DeepPicker using the low prediction scores
ranging from 0.1 to 0.5 in Fig. 6(f)) and checked whether these
picked particles can result in the overfitted images. We found that
the class averaging results (Fig. 6(g)) were quite different from the
training data in our model, which indicates that very unlikely our
automated particle picking process with the cross-molecule train-
ing scheme would suffer from the previously-mentioned pitfall.

In addition to its own virtue in full automation, our deep learn-
ing framework with the cross-molecule training strategy has sev-
eral additional advantages. First, unlike the subjective manual
picking, the picking results of our deep learning classifier are objec-
tive and mainly determined by the in-house ‘‘computational”
experts learned from training data. Second, as we apply a cross-
molecule training method, in principle, we can incorporate as
many available known particles from previously-solved complex
structures as possible into training data, which will thus increase
the robustness of the training process and further improve the
automated picking results. Third, in our fully automated picking
scheme under the deep learning framework, the cross-molecule
training process can be finished before collecting micrograph data
of the current target molecule. Such an offline training manner is
much more efficient than the online training methods (i.e., the
classifiers are trained after data collection) in most of existing clas-
sification based frameworks. Moreover, the deep learning frame-
work can take full advantage of current available powerful
computing platforms, e.g., graphics processing unit (GPU), to speed
up the learning process. Thus, our fully automated picking
approach can be generally much more efficient and more robust
than previous semi-automated methods.

In summary, we have proposed a deep learning framework for
automated particle picking. The powerful deep learning model
can be applied to pick particles either in a semi-automated manner
or through a fully automated fashion. In the fully automated parti-
cle picking strategy, we innovatively use the known particles of the
previously solved structures to train the deep learning model,
which can accurately describe the common and cross-molecule
features of particles. Both our fully automated and semi-
automated particle picking schemes have been tested on the pub-
lished cryo-EM datasets of several molecules, including c-
secretase, spliceosome and TRPV1. The comparisons between the
particles picked by either our fully automated or semi-automated
method and those manually identified by human experts have
demonstrated that our deep learning framework can achieve near
human-level performance in particle picking. Thus, our fully auto-
mated or semi-automated particle picking approach can provide a
reliable and practically useful tool to liberate structural biologists
from the time-consuming and laborious task of manual particle
picking in cryo-EM data analysis. Our current version of Deep-
Picker is the first attempt to apply deep learning to address the
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automated particle picking problem in cryo-EM. Several future
directions may be pursued to improve the current particle picking
results. First, some specific deep learning models, such as auto-
encoder (Vincent et al., 2010), can be used for image denoising,
which may help detect the correct particle objects from back-
ground or noise. Second, the cross-molecule knowledge about the
common features of particles may be better exploited using a more
sophisticated deep learning model and can also be combined with
the 2D class averaging results to improve automated particle selec-
tion. Third, the current particle picking procedure may be com-
bined with the downstream 3D map reconstruction steps in a
fully automated and iterative manner to further improve the accu-
racy of particle selection.
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