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Abstract— We study the problem of constructing ε-coresets
for the (k, z)-clustering problem in a doubling metric M(X, d).
An ε-coreset is a weighted subset S ⊆ X with weight function
w : S → R≥0, such that for any k-subset C ∈ [X]k, it holds
that

∑
x∈S w(x) · dz(x,C) ∈ (1± ε) ·∑x∈X dz(x,C).

We present an efficient algorithm that constructs an ε-
coreset for the (k, z)-clustering problem in M(X, d), where
the size of the coreset only depends on the parameters k, z, ε
and the doubling dimension ddim(M). To the best of our
knowledge, this is the first efficient ε-coreset construction of size
independent of |X| for general clustering problems in doubling
metrics.

To this end, we establish the first relation between the
doubling dimension of M(X, d) and the shattering dimension
(or VC-dimension) of the range space induced by the distance
d. Such a relation is not known before, since one can easily
construct instances in which neither one can be bounded by
(some function of) the other. Surprisingly, we show that if
we allow a small (1 ± ε)-distortion of the distance function
d (the distorted distance is called the smoothed distance
function), the shattering dimension can be upper bounded by
O(ε−O(ddim(M))). For the purpose of coreset construction, the
above bound does not suffice as it only works for unweighted
spaces. Therefore, we introduce the notion of τ -error probabilis-
tic shattering dimension, and prove a (drastically better) upper
bound of O(ddim(M)·log(1/ε)+log log 1

τ
) for the probabilistic

shattering dimension for weighted doubling metrics. As it turns
out, an upper bound for the probabilistic shattering dimension
is enough for constructing a small coreset. We believe the
new relation between doubling and shattering dimensions is
of independent interest and may find other applications.

Furthermore, we study robust coresets for (k, z)-clustering
with outliers in a doubling metric. We show an improved
connection between α-approximation and robust coresets. This
also leads to improvement upon the previous best known bound
of the size of robust coreset for Euclidean space [Feldman and
Langberg, STOC 11]. The new bound entails a few new results
in clustering and property testing.

As another application, we show constant-sized (ε, k, z)-
centroid sets in doubling metrics can be constructed by ex-
tending our coreset construction. Prior to our result, constant-
sized centroid sets for general clustering problems were only
known for Euclidean spaces. We can apply our centroid set to
accelerate the local search algorithm (studied in [Friggstad et
al., FOCS 2016]) for the (k, z)-clustering problem in doubling
metrics.

Keywords-coreset, clustering, doubling dimension, centroid
set, outlier

I. INTRODUCTION

We study the (k, z)-clustering problem in a metric

space M(X, d). In the (k, z)-clustering problem, the ob-

jective is to find a k-subset C ∈ [X]k (which we

call the set of centers), such that the objective func-

tion Kz(X,C) :=
∑

x∈X dz(x,C) is minimized, where

d(x,C) := miny∈C d(x, y). The (k, z)-clustering problem is

a general and fundamental problem in many areas including

approximation algorithms, unsupervised learning and com-

putational geometry [2], [3], [4], [5]. In particular, (k, 1)-
clustering is the well known k-median problem, (k, 2)-
clustering the k-means problem, and (k,∞)-clustering the

k-center problem.

Coresets. A powerful technique for solving the (k, z)-
clustering problem is to construct coresets [6], [7], [8], [9].

A coreset is a weighted subset of the point set, such that for

any set of k centers, the objective function computed from

the coreset is approximately the same as that computed from

all points in X . Hence, a coreset can be used as proxy for

the full data set: one can apply the same algorithm on the

coreset, and the result on the coreset approximates that on

the full data set.

Definition I.1. An ε-coreset for the (k, z)-clustering prob-
lem in metric space M(X, d) is a weighted subset S of X
with weight w : S → R≥0

1, such that for any k-subset
C ∈ [X]k,∑

x∈S
w(x) · dz(x,C) ∈ (1± ε) · Kz(X,C).

Typically, we require that the size of the coreset depends

on 1/ε, k and z (independent of |X|). Apparently, a small

coreset is much cheaper to store and can be used to estimate

the objective function more efficiently. In fact, constructing

1 Some previous work needs negative weights, but we only need
nonnegative weights.
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coresets can be useful in designing more efficient approxi-

mation algorithms for many clustering problems, with vari-

ous constraints and outliers [8], [10], [9], [11], [12], [13].

Doubling Metrics. In this paper, we mainly consider met-

ric spaces with bounded doubling dimension [14], [15].

The doubling dimension of a metric space M , denoted as

ddim(M), is the smallest integer t such that any ball can be

covered by at most 2t balls of half the radius. A doubling

metric is a metric space of bounded doubling dimension. The

doubling dimension measures the intrinsic dimensionality

of a general metric space, and it generalizes the dimension

of normed vector spaces, where t-dimensional �p space has

doubling dimension O(t) [14].

Many problems have been studied in doubling metrics,

such as spanners [16], [17], [18], [19], [20], [21], [22], [23],

[24], metric embedding [15], [25], [26], nearest neighbor

search [27], [28], [29], and approximation algorithms [30],

[31], [32], [33], [34], [12]. Apart from the above work, some

machine learning problems have also been studied in the

context of doubling metrics [35], [36]. However, to the best

of our knowledge, no previous work has studied constructing

coresets in doubling metrics.

A. Our Results

Our main result is an efficient construction of ε-coresets

for the (k, z)-clustering problem in doubling metrics. The

size of our coreset does not depend on the number of input

points. Moreover, both the running time and the size of the

coreset depend polynomially on the doubling dimension and

k. The result is stated in the following theorem.

Theorem I.1. (informal version of Theorem VI.1) Consider
a metric space M(X, d) with n points. Let real numbers
0 < ε, τ < 1/100, z > 0, and integer k ≥ 1. There exists an
algorithm running in poly(n) time (assuming oracle access
to the distance function), that constructs an ε-coreset of
size Õ(2O(z log z) ·k3 ·ddim(M)/ε2) for the (k, z)-clustering
problem with probability at least 1− τ .

A first natural attempt is to embed the doubling space to

the Euclidean space and use the existing Euclidean construc-

tion. As shown in [15, Theorem 4.5], for a doubling metric

M(X, d), it is possible to embed d
1
2 to an O(ddim(M) ·

log ddim(M))-dimensional �2 space with O(ddim(M))-
distortion. Then an ε-coreset for (k, 2z)-clustering problem

in �2 would imply an O(ddim(M)z)-coreset for the (k, z)-
clustering problem in M . However, it is generally not

possible to embed (X, d
1
2 ) into �2 with (1 + ε)-distortion

for an arbitrarily small constant ε > 0 and doubling metric

M(X, d) (where an example can be found in the full

version). Hence, in order to construct an ε-coreset in a

doubling metric, we need new ideas.

A by now standard technique for constructing small

coresets for clustering problems is importance sampling,

developed in a series of work [37], [8], [38]. In particular,

by the framework in [8], [38], one can obtain an ε-coreset

by taking Õ(2O(z log z) · k3 · dim/ε2) samples. Here dim is

the (shattering) dimension of the range space induced by the

distance function. (i.e., the range space consists of all balls

of different radii 2 ). Hence, if one can show that dim is

bounded by some function of ddim(M), the construction of

an ε-coreset would be finished.

Doubling Dimension and Shattering Dimension. We dis-

cuss the relation between the doubling dimension ddim(M)
and the (shattering) dimension dim of the range space. While

the dimension dim measures the combinatorial complexity

of the metric space, doubling dimension ddim(M) is the

intrinsic geometric dimension of the metric space. They

both generalize the ordinary Euclidean dimension, but from

different perspectives. In particular, for R
d, both the (shat-

tering) dimension and the doubling dimension are O(d).
Although both dimensions are subjects of extensive research,

to the best of our knowledge, there is no nontrivial relation

known between the two. This may not be a surprise, as we

can easily construct a doubling metric, which has unbounded

shattering dimension on the corresponding induced range

space (see Theorem IV.2). The other direction cannot be

bounded neither 3. Hence, studying their relation may appear

to be hopeless. However, we observe that in the bad instance

in Theorem IV.2, if we allow a (1 ± ε)-distortion to the

distance function d, then the instance actually has a small

shattering dimension.

Inspired by this observation, we introduce the smoothed
distance function. A ε-smoothed distance function δ : X ×
X → R≥0 satisfies δ(x, y) ∈ (1 ± O(ε)) · d(x, y) for all

x, y ∈ X . Basically, it is a small perturbation of the original

distance function d. We show, somewhat surprisingly, that

if we use a certain smoothed distance function δ, defined

by a hierarchical net of the doubling metric, the shattering

dimension of the range space (induced by δ, instead of d)

can be upper bounded by some function of the doubling

dimension O(ddim(M)), as in the following theorem.

Theorem I.2. (informal, unweighted case) Suppose
M(X, d) is a metric space. Let 0 < ε ≤ 1

8 be a con-
stant. There is some ε-smoothed distance function such that
dim(F) ≤ O(1/ε)ddim(M), where F := {δ(x, ·) | x ∈ X} is
the set of ε-smoothed distance functions.

While the above theorem is encouraging, there are still

some drawbacks. First, the dimension bound is exponen-

tial in ddim(M) (in contrast to the linear dependency in

Euclidean case). It is a natural question whether one can

obtain a better bound in general. More importantly, the above

bound is not sufficient for the purpose of constructing small

2 In fact, we will deal with the range space in a certain function space.
See Section IV for the precise definition.

3Consider a star with n leaves. It is immediate that the metric induced
by the star has doubling dimension Ω(logn). However, the shattering
dimension of the range space induced by the star metric is O(1).
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coresets, for which we need a dimension bound for weighted

spaces. Unfortunately, it seems difficult to extend the proof

of Theorem IV.2 to the weighted case.

Weighted Space and Probabilistic Shattering Dimen-
sion. Recall that our goal is to construct ε-coresets for

the (k, z)-clustering problem. Following the framework [8],

we consider the set of weighted distance functions gx :
[X]k → R≥0 for each point x ∈ X , defined as gx(C) :=
w(x) · δz(x,C) for C ∈ [X]k, where w : X → R≥0 is

a weight function and δ is an O(ε/z)-smoothed distance

function. We consider the function set G := {gx | x ∈ X},
and show that there is a subset S ⊆ G such that S is an α-

approximation for the range space of G for a certain constant

α. Then we can apply [8, Theorem 4.1] to show that one

can efficiently find an ε(α)-coreset of size |S|.
In order to prove an α-approximation result, it suffices

to bound the shattering dimension of G. We recall that

G = {gx | x ∈ X} with gx(C) = w(x) · δz(x,C) for

C ∈ [X]k. Let F := {fx | x ∈ X} be a collection of

functions fx(y) := w(x) · δz(x, y) for y ∈ X . Note that

the difference between F and G is that, the ground set of

F consists of singletons and that of G contains k-subsets.

By a standard argument, one can show that roughly the

shattering dimension of G is at most k times of the shattering

dimension of F . Hence, the key is to bound the shattering

dimension of F (the set of weighted smoothed distance

function with ground set X). It turns out the proof for the

weighted case is much more involved than the unweighted

case. Instead of using a deterministic δ defined with respect

to d, we introduce a random smoothed distance function,

defined on top of a randomized hierarchical decomposition

introduced by [25] in the doubling metric. A key property

of the randomized hierarchical decomposition is that a

set with small diameter is cut by a large cluster in the

decomposition with very small probability. Intuitively, the

property enhances the smooth property, so that we can still

hang the balls centered at any x ∈ X to a net point of higher

layer in the weighted space.

Consider an arbitrary fixed H ⊆ X and FH := {fx ∈
F | x ∈ H}. Due to the randomness in the randomized

hierarchical decomposition, we can only show |ranges(FH)|
is bounded with constant (close to 1) probability. Hence, we

introduce the notion of probabilistic shattering dimension
for the range space induced by a family of random func-

tions (formally in Definition III.4): for any subset of (ran-

dom) functions FH , if the probability that |ranges(FH)| ≤
O(|FH |t) with probability 1− τ (note that |ranges(FH)| is

a random variable), we say that the probabilistic shattering

dimension pdimτ (F) of the range space is t. Our main

technical result is the following theorem.

Theorem I.3. (informal, weighted case) Suppose M(X, d)
is a metric space together with a gap-2 weight func-
tion (Definition V.1) w : X → R≥0. Let 0 < ε ≤

1/100z and 0 < τ < 1 be constants. There exists a
random ε-smoothed distance function δ and a collection
F := {fx = w(x) · δz(x, ·) | x ∈ X}, such that the follow-
ing holds: for any fixed H ⊆ X and FH := {fx : x ∈ H},
we have

Pr
δ

[
|ranges(FH)| ≤ O

(
εO(−ddim(M)) · log 1

τ
· poly(|H|)

)]
≥ 1− τ.

In other words, pdimτ (F) = O(ddim(M) · log(1/ε) +
log log 1/τ).

The above theorem drastically improves the di-

mension from O(1/ε)ddim(M) (in Theorem IV.2) to

Õ (ddim(M) · log(1/ε)) (albeit with a weaker probabilistic

guarantee). Note that one cannot afford to apply a union

bound over all different H’s to show that dim(F) is

bounded. Hence, the bound on the probabilistic shattering

dimension does not directly lead to an α-approximation by

the standard PAC learning theory. However, we prove in

Lemma III.1 a probabilistic analogue of the α-approximation

lemma, which only requires a bounded probabilistic shatter-

ing dimension.

Robust Coreset. We also consider robust coresets which

are coresets for (k, z)-clustering problems with outliers. The

notion of robust coreset was first introduced in [8]. In the

following, we give the definition of robust coreset for the

(k, z)-clustering problem.

Definition I.2 (robust coresets). Let M(X, d) be a metric
space. Let 0 < γ ≤ 1, 0 ≤ ε, α ≤ 1

4 , k ≥ 1 and z > 0. For
any H ⊆ X and C ∈ [X]k, let

K−γ
z (H,C) := min

H′⊆H:|H′|=�(1−γ)|H|�

∑
x∈H′

dz(x,C)

denote the sum of the smallest �(1−γ)|H|	 values dz(x,C)
over x ∈ H (i.e., we exclude the largest γ|H| values as
outliers). An (α, ε)-robust coreset for the (k, z)-clustering
problem with outliers is a subset S ⊆ X such that for any
k-subset C ∈ [X]k and any α < γ < 1− α,

(1− ε) · K
−(γ+α)
z (X,C)

|X| ≤ K−γ
z (S,C)

|S|

≤ (1 + ε) · K
−(γ−α)
z (X,C)

|X| .

Our result for robust coreset for (k, z)-clustering is pre-

sented in the following theorem, which generalizes and

improves the prior result in [8] for Euclidean space.

Theorem I.4 (informal, robust coreset). Let M(X, d) be a
doubling metric (a d-dimensional Euclidean space resp.).
Let S be a uniform sample of size Õ(k · ddim(M)/α2)
(Õ(kd/α2) resp.) from X . Then with constant probability,
S is an (α, ε)-robust coreset ((α, 0)-robust coreset resp.) for
the (k, z)-clustering problem with outliers.
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The definition of robust coreset in [8] is slightly different

from ours. 4 One can directly check that in Euclidean space,

an (γε/4, 0)-robust coreset in Definition I.2 is an (γ, ε)-
coreset in [8, Definition 8.1]. Thus the above theorem

improves the size of (γ, ε)-coreset in [8, Corollary 8.4] from

Õ(kdγ−2ε−4) to Õ(kdγ−2ε−2).
Furthermore, we demonstrate an application of robust

coresets in property testing (omitted, see the full version).

Our testing for (k, z)-clustering problem is similar to the

testing for k-center problem proposed in Alon et al. [39].

We design a simple testing algorithm for (k, z)-clustering.

Constructing robust coresets is also a useful subroutine in

several other problems, such as robust median and bi-criteria

approximation for projective clustering (see [8]). Hence, our

improvement may lead to certain improvements of these

problems as well. Since this is not the focus of the this

paper, we do not go into the details.

Centroid Set. We also consider a notion closely related to

coreset, called centroid set. Roughly speaking, a centroid

set can be viewed as a coreset that contains an (1 + ε)-
approximate solution (which is a k-subset) to the clustering

objective (see Definition VI.1). Applying our coreset result,

we show the existence of succinct centroid sets in doubling

metrics, which is presented in the following theorem. To the

best of our knowledge, this is the first result on centroid sets

beyond Euclidean spaces.

Theorem I.5 (informal, centroid set). Let M(X, d) be a
metric space of n discrete points. Let S be an ε

2 -coreset for
the (k, z)-clustering problem on X . There is an algorithm
running in poly(n) time, that finds a centroid set of size at
most ( zε )

O(ddim(M)) · |S|2.

Applying the above theorem, we can also accelerate the

local search algorithm [12] for (k, z)-clustering in doubling

metrics, from nO(ρ) to (2O(z log z) · k
ε )

O(ρ) running time

per iteration, where n = |X| is the number of points and

ρ := ρ(ε, ddim(M), z) is a large constant (depending only

on ε, ddim(M), z).

B. Overview of Our Techniques

The Feldman-Langberg Framework [8]. Our coreset con-

struction makes use of the the framework of [8], which we

briefly discuss below. Let [X]k be the ground set (the set of

k-tuples) and δ be an O(ε/z)-smoothed distance function.

For the (k, z)-clustering problem, assign a weighted distance

function gx : [X]k → R≥0 to each point x ∈ X , such

that gx(C) := w(x) · δz(x,C) for C ∈ [X]k, where

w : X → R≥0 is a weight function. Consider the function

set G := {gx | x ∈ X}. The range spaces of G is defined

as (G, ranges(G)), where ranges(G) := {range(G, C, r) |
4 In [8, Definition 8.1], S ⊂ X is called a (γ, ε)-coreset if for every

C ∈ [X]k , γ1 ≥ γ and ε1 ≥ ε, (1− ε1) · 1
|X|K

−(1−γ1+ε1γ1)
1 (X,C) ≤

1
|S|K

−(1−γ1)
1 (S,C) ≤ (1 + ε1) · 1

|X|K
−(1−γ1−ε1γ1)
1 (X,C).

C ∈ [X]k, r ≥ 0} and range(G, C, r) := {gx ∈ G |
gx(C) ≤ r}. To interpret the definition, one can think of

{gx ∈ G | gx(C) ≤ r} as a ball of functions in G that

is centered at C with radius r, and the distance from C
to gx ∈ G is measured as gx(C). In the unweighted case,

range(G, x, r) indeed corresponds to a ball in the metric

space. So |ranges(G)| counts the number of distinct balls

(of functions in G) that may be formed by any center in the

ground set and radii.

Recall that a subset S ⊆ G is an α-approximation for

the range space (G, ranges(G)) if for any R ∈ ranges(G),∣∣|R|/|G| − |R ∩ S|/|S|∣∣ ≤ α. In other words, S can be

used as a good estimator for the density of R relative

to G. It is shown in [8, Theorem 4.1] that, if there is a

subset S ⊆ G such that S is an α-approximation for the

range space of G, then we can efficiently construct an ε(α)-
coreset S ⊆ X of size |S| in M(X, δ). Since δ is a small

perturbation of the original distance function d, S is also an

ε(α)-coreset in M(X, d). Constructing an α-approximation

of small size is extensively studied in the PAC learning

theory. In particular, if a range space has bounded shattering

(or VC) dimension, then a small sample (whose size depends

on α and shattering dimension) from the set of functions

would be an α-approximation with constant probability (see

e.g., [40]). Hence, if G has bounded shattering dimension, we

can apply the existing α-approximation construction. This is

also the approach taken in [8].

α-Approximation. As one can imagine, in order to obtain

an α-approximation, we would like to apply Theorem I.3

(to bound the shattering dimension of (G, ranges(G))). More

precisely, for any H ⊆ X , we want to bound |ranges(GH)|
where GH := {gx ∈ G | x ∈ H}. However, the ground set

of GH is the set of k-subsets [X]k (with the distance

function in GH defined as gx(C) := w(x) · δz(x,C)),
but the ground set of FH in Theorem I.3 is the point set

X of the metric space M(X, d). This is easy to handle:

one can show that |ranges(GH)| ≤ |ranges(FH)|k. Hence,

we only need to bound |ranges(FH)|. Another problem is

that the bound for |ranges(FH)| only holds with constant

probability. As a result, we cannot directly use the standard

α-approximation result. In Lemma III.1, we introduce a

probabilistic analogue of the α-approximation lemma from

the PAC learning theory, which only requires a bounded

probabilistic shattering dimension.

Our proof borrows the classical double sampling idea

from the construction of α-nets in the PAC learning theory

(see for example [41]). An obvious challenge is that we

cannot afford to guarantee |ranges(FH)| is small for many

H simultaneously by the union bound, which is required in

the original proof. Note that our guarantee has an additional

randomness from δ, and it is important to take advantage

the additional randomness. We crucially use the fact that

F is actually indexed by X , that is, for each x ∈ X , a

function fx ∈ F is generated by applying a random map
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from x to w(x) · δ(x, ·). This enables us to separate the two

randomness, in a way that we view a sample from F , as

firstly sampling from X then applying a random map on

the sample. The randomness of sampling from X is used in

the similar way as in the original proof, but the randomness

of δ is used in another conditional probability argument to

avoid the overlarge union bound. The details can be found

in the full version.
Doubling Dimension and Shattering Dimension. Now, we

highlight some technical aspects of Theorems I.2 and I.3,

which are the key technical contributions of this paper. Our

smoothed distance function δ is defined over the hierarchical

net tree (see Section III-A for the definition) of the doubling

metric M(X, d), i.e., for any x, y ∈ X , we define δ(x, y) to

be the distance between their ancestors of a proper height

in the hierarchical net tree (see Definition IV-A). We also

define Bδ(x, r) := {y ∈ X | δ(x, y) ≤ r} to be the ball

of radius r centered at x ∈ X with respect to δ. We

can show the smoothed distance function δ satisfies several

useful properties. One is the smooth property (Lemma IV.3):

roughly speaking, for any radius r, Bδ(x, r) = Bδ(u, r) for

any point x ∈ X and a nearby net point u with higher

height (relative to r). This intuitively means we can “hang”

the center x to the net point u. Since the number of net

points with higher height is smaller, the smooth property

greatly reduces the number of possible balls we need to con-

sider. Another important property is the cross-free property

(Lemma IV.4), which implies that, if we let F be the range

space induced by δ, then for any fixed D ⊆ F , for any ball

range(F , x, r) in the range space, range(F , x, r) ∩ D can

be represented by a union of at most ε−O(ddim(M)) subsets,

and all these subsets are from a support of size O(|D|). This

implies that at most |D|ε−O(ddim(M))

possible subsets of D can

be formed by intersecting with balls of a fixed radius in the

metric, which is the main observation used in our proof for

Theorem I.2.
Unfortunately, it seems difficult to extend the above idea

to the weighted case, and our proof for Theorem I.3 is much

more involved. We restrict our attention to the weight func-

tion such that the set of distinct weights {w1, w2, . . . , wl}
satisfies w1 ≥ 2w2 ≥ 4w3 ≥ . . . ≥ 2l−1wl (this suffices

for the coreset construction). Fix a set H ⊆ X and let

Hi = {x ∈ H | w(x) = wi}. Essentially, we need to bound

the number of different ranges
⋃

i∈[l] B
δ(x, r/wi) ∩ Hi

(r > 0, x ∈ X). For this purpose, we divide [0,+∞) (the

range of r) into at most O(|H|4) critical intervals. Inside

each critical interval, we enforce some invariance properties.

For a critical interval [a, b) with b ≤ 2a, we simply apply the

packing property to bound the number of different ranges for

r ∈ [a, b). For a critical interval [a, b) with b� a, we need

to use the randomized hierarchical decomposition developed

in [25] to enhance the smooth property.
Robust Coreset. We prove an improved connection between

α-approximation and robust coreset, which improves the one

in [8, Theorem 8.3]. Our proof is much simpler. Combining

with the α-approximation result, we can construct an (α, ε)-
robust coreset in Euclidean space or doubling metrics. The

algorithm is extremely simple: to take a uniform sample of

size Õ(kd/α2) or Õ
(
k · ddim(M)/α2

)
.

II. RELATED WORK

In the seminal paper [42], Agarwal et al. proposed the no-

tion of coresets for the directional width problem (in which

a coreset is called an ε-kernel) and several other geometric

shape-fitting problems. Since then, coresets have become

increasingly more relevant in the era of big data as they can

reduce the size of a dataset with provable guarantee that the

answer on the coreset is a close approximation of the one on

the whole dataset. Many efficient algorithms for constructing

small coresets for clustering problems in Euclidean spaces

are known (see e.g., [43], [44], [7], [45], [37], [8], [9],

[11]). In particular, Feldman and Langberg [8] (see their

latest full version) showed a construction for ε-coresets of

size Õ(dk/ε2z) for general (k, z)-clustering problems with

arbitrary k and z, in Õ(nk) time. For the special case

that z = 2 which is the k-means clustering, Braverman

et al. [11] improved the size to Õ(kmin {k/ε, d} /ε2),
which is independent of the dimensionality d. For another

special case z =∞, which is the k-center clustering, an ε-

coreset of size O(k/εd) can be constructed in O(n+ k/εd)
time, for R

d [43], [44]. For general metrics, an ε-coreset

for the (k, z)-clustering problem of size O(k log n/ε2z)
can be constructed in time Õ(nk) [8], and for k-means

clustering, Braverman et al. [11] showed a construction of

size O(k log k log n/ε2). We also refer interested readers to

Phillips’s survey [46] for more construction algorithms as

well as the applications of coresets in many other areas.

Feldman and Langberg [8] first studied the notion of ro-

bust coreset to handle the clustering problems with outliers.

In R
d, they showed how to construct a (γ, ε)-coreset 5 of size

Õ(kdε−4γ−2) by uniform sampling. We improve the bound

to Õ(kdε−2γ−2). Later, Feldman et al. [10] developed

another notion called weighted coreset to handle outliers.

They used such coresets to design an (1+ ε)-approximation

algorithm for the k-median problem with outliers.

Constructing coresets for clustering problems in Euclidean

spaces has been also investigated in the streaming and

distributed settings in the literature e.g., [8], [9], [47], [11],

[48]). However, it is unclear how to define the streaming or

distributed model in a general doubling metric, since there

is no coordinate representation for each point and we need

all distances between the new coming point and the prior

5Note that their definition [8, Definition 8.1] is similar but slightly
different to ours. However, considering the (k, z)-clustering problem with
outliers, one can check that an (εγ/4, ε)-robust coreset in our Definition
I.2 is a (γ, ε)-coreset in [8, Definition 8.1]. In fact, our defintion is more
general. It is unclear whether their result applies to our definition.
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points. Hence, in this paper, we focus on the centralized

setting.

Besides unsupervised clustering problem, some super-

vised learning problems are also studied in the context of

doubling metrics, and the connections between doubling

dimension and VC dimension (and closely related notions)

have been investigated in a variety of settings. Bshouty, Li

and Long [35] provided a generalization bound in terms

of the maximum of the doubling dimension and the VC-

dimension of the hypothesis class F . They also showed

that the doubling dimension of metric (F, d), where the

distance d is defined as d(f, g) = Prx[f(x) �= g(x)] for

any two classifiers f and g, cannot be bounded by the

VC-dimension of F in general. Gottlieb et al. [36] studies

the classification problem of points in a metric space, and

obtained a generalization bound with respect to the doubling

dimension. Abraham et al. [35] introduced the concept of

highway dimension (which is closely related to doubling

dimension) in the context of designing efficient shortest path

algorithm, and they showed that VC dimension and learning

theory are also useful in this context.

Alon et al. [39] first considered the property testing

problem in the context of clustering. In particular, they

studied the testing algorithm for k-center clustering. In this

paper, we use robust coreset to develop a unified testing

algorithm for (k, z)-clustering (for constant k and z). As

pointed out in [39], the testing algorithms can be converted

into a sublinear time approximation algorithms for clustering

with outliers. One interesting benefit of such algorithms is

that they can answer the query “which cluster does a data

point belong to”, without actually having to partition all the

data points.

III. PRELIMINARIES

Let [m] := {1, 2, . . . ,m} for an integer m ≥ 1. For a

function f defined on some ground set U and S ⊆ U , let

f(S) := {f(x) | x ∈ S}. For a set S and integer k ≥ 1,

let [S]k := {P | P ⊆ S, |P | = k}. Consider a metric space

M(X, d). Define Bξ(x, r) := {y ∈ X | ξ(x, y) ≤ r} to be

the ball of radius r centered at x ∈ X , with respect to some

function ξ : X×X → R≥0. For S ⊆ X define the diameter

of S as diam(S) := maxx,y∈S {d(x, y)}. For S, T ⊆ X ,

define d(S, T ) := minx∈S,y∈T d(x, y).

A. Doubling Dimension and Hierarchical Nets

Definition III.1 (doubling dimension). A metric space has
doubling dimension at most t, if any ball can be covered by
at most 2t balls of half the radius. The doubling dimension
of a metric space M is denoted as ddim(M).

Covering, Packing and Net. Consider a subset of points

S ⊆ X . S is a ρ-covering, if for any x ∈ X , there exists

y ∈ S such that d(x, y) ≤ ρ. S is a ρ-packing, if for all

x, y ∈ S, it holds that d(x, y) ≥ ρ. S is a ρ-net, if S is both

a ρ-packing and a ρ-covering.

Fact III.1 (packing property. see. e.g., [15]). Given a
metric space M(X, d), if S ⊆ X is a ρ-packing then
|S| ≤ ( 2·diam(S)

ρ )ddim(M).

Hierarchical Nets and Net Trees. Now, we introduce some

useful concepts that are well known in the doubling metric

literature (see e.g. [30], [24]). Rescale the metric such that

the minimum intra-point distance is 1. Suppose the diameter

of the space is between [2L−1, 2L). Construct nets NL ⊆
NL−1 ⊆ . . . ⊆ N1 ⊆ N0 = N−1 = . . . = N−∞ = X ,

where Ni is a 2i-net of Ni−1. The set of nets {Ni | i ≤ L}
is called a hierarchical net.

We identify a point u ∈ Ni in the tree by u(i) for i ≤ L.

Note that the same point may belong to several Ni’s, but

they have different identities. A net tree is a rooted tree with

node set
{
u(i) | i ≤ L, u ∈ Ni

}
, and the root is defined as

the only node in NL (observing that |NL| = 1). For each

u ∈ Ni, u(i) has a unique parent node v(i+1) such that

v ∈ Ni+1, and we denote par(u(i)) = v(i+1).

For a net tree, define des(u(i)) ⊆ X to be the set of

points in the metric space corresponding to descendants of

u(i) ∈ Ni in the net tree. For a leaf node x ∈ X , define

par(i)(x) to be the ancestor of x in Ni.

Definition III.2 (c-covering net trees). A net tree is c-
covering (c ≥ 1), if for each height i and each u ∈ Ni,
it holds that d(u, par(u(i))) ≤ c · 2i+1.

The following fact is immediate from Definition III.2.

Fact III.2. In a c-covering net tree, for each x ∈ X it holds
that d(x, par(i)(x)) ≤ c · 2i+1.

B. Range Space, Shattering Dimension and α-
Approximation

We adopt the function representation used in [8, Definition

7.2], but specifically tailored to our own needs. In particular,

since we focus on the clustering problems in a doubling

metric M(X, d), the ground set is [X]k (the set of k-subsets)

throughout the paper. When k = 1, we use X to represent

[X]1 for simplicity.

Indexed Function Sets. As seen in Section I, we mainly

focus on range spaces induced by a metric space. Hence we

always consider indexed function sets. A set of functions F
is called indexed, if there exists an index set V such that

F = {fx | x ∈ V }. In most cases, we simply use V = X as

the index set. We will make necessary clarification when we

use other index set. For an indexed function set F , define

FH := {fx | x ∈ H} for a subset H ⊆ V of the index set.

There are technical reasons to consider the indexed function

set (rather than a general set of functions). See Remark III.1.

Range Space. Let F be an indexed function set.

Define range(F , C, r) := {fx ∈ F | fx(C) ≤ r}
for C ∈ [X]k, r ≥ 0. Define ranges(F) :={
range(F , C, r) | C ∈ [X]k, r ≥ 0

}
to be the collection of
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all the range sets. The range space of F is defined as the

pair (F , ranges(F)).
Now, We define the dimension of a range space, follow-

ing [8].

Definition III.3 ((shattering) dimension of a range space).
Suppose F is an indexed function set with ground set
[X]k. The (shattering) dimension of the range space
(F , ranges(F)), or simply the (shattering) dimension of F ,
denoted as dim(F), is the smallest integer t, such that for
any D ⊆ F with |D| ≥ 2, |ranges(D)| ≤ |D|t. We note that
in ranges(D), the same ground set [X]k is implicit.

However, as discussed in Section I, our guarantee of the

dimension for the weighted doubling distance functions only

holds in a probabilistic sense. We capture this formally in

the following.

Definition III.4 (probabilistic (shattering) dimension of a

range space). Suppose F is a random indexed function set
with a deterministic index set denoted as V . The τ -error
probabilistic (shattering) dimension of (F , ranges(F)), or
simply the τ -error probabilistic dimension of F , denoted as
pdimτ (F), is the smallest integer t such that for any fixed
H ⊆ V with |H| ≥ 2, |ranges(FH)| ≤ |H|t with probability
at least 1− τ .

We need a well studied notion in the PAC learning theory,

called α-approximation.

Definition III.5 (α-approximation of a range space). Given
a range space (F , ranges(F)) (with ground set [X]k), a set
S ⊆ F is an α-approximation of the range space, if for
every range(F , C, r) ∈ ranges(F) (C ∈ [X]k, r ≥ 0)∣∣∣∣ |range(F , C, r)||F| − |S ∩ range(F , C, r)|

|S|
∣∣∣∣ ≤ α.

In particular, it was shown that a small sized (depending

on α and the VC dimension6) independent sample from the

function set is an α-approximation with constant probability

(see for example [40]). However, the traditional results are

for range spaces with bounded VC dimension only, and

our probabilistic dimension is very different in nature. We

prove the following version of the sampling bound that only

requires a bounded probabilistic dimension. The proof can

be found in the full version.

Lemma III.1. Suppose F is a random indexed function set
with fixed index set V . In addition, suppose T : N × R≥0

satisfies for any H ⊆ V and 0 < γ < 1,

Pr[|ranges(FH)| ≤ T (|H|, γ)] ≥ 1− γ.

6Our definition of the dimension is the shattering dimension of a range
space, which tightly relates to the VC-dimension (see for example [41]).
In particular, if dim(F) is t, then the VC-dimension of F is bounded by
O(t log t).

Let S be a collection of m uniformly independent samples
from F . Then with probability at least 1 − τ , S is an α-
approximation of the range space (F , ranges(F)), where the
randomness is taken over S,F and

α :=

√
48

(
log(T (2m, τ

4 )) + log 8
τ

)
m

.

In this bound, we directly use the size |ranges(FH)|
(rather than pdim), which can provide a slightly more precise

bound. 7

Remark III.1. There are also technical reasons for con-
sidering indexed function sets. As discussed in Section I,
regarding the α-approximation, we crucially use the fact
that the function set is indexed (in particular the index set is
fixed), and we do not manage to prove the α-approximation
lemma (Lemma III.1) for more general function sets.

IV. WARMUP: UNWEIGHTED DOUBLING METRICS

Let M(X, d) be a doubling metric. Consider the function

set F := {fx(·) | x ∈ X} indexed by X with fx(y) :=
d(x, y) for y ∈ X . It is well known that a bounded

dimensional Euclidean space is a special case of doubling

metrics, and dim(F) ≤ O(t) if M is the t-dimensional

Euclidean space. However, for a general doubling metric

M , dim(F) may not be bounded, as stated in the following

theorem.

Theorem IV.1. For any integer n ≥ 1, there is a metric
space Mn(Xn, dn) with 2n+n unweighted points such that
ddim(Mn) ≤ 2 and dim(FMn) ≥ n/ log n, where FMn :=
{dn(x, ·) | x ∈ Xn}.

Proof: We start with the definition of Mn(Xn, dn).
Define Ln := {u1, u2, . . . , un}, Rn :=

{v0, v2, . . . , v2n−1}. Define the point set of Mn to

be Xn := Ln ∪ Rn. For 1 ≤ i ≤ j ≤ n, define

dn(ui, uj) := |j − i|. For 0 ≤ i ≤ j ≤ 2n − 1, define

dn(vi, vj) := |j − i|. For ui ∈ Ln and vj ∈ Rn, define

dn(vj , ui) := 2n+1 + 1 if the i-th digit in the binary

representation of j is 1, and dn(vj , ui) := 2n+1 if the i-th
digit in the binary representation of j is 0. This completes

the definition of Mn. It is immediate that Mn is a metric

space.

Doubling Dimension. Consider a ball with center x ∈ Xn

and radius r. We distinguish the following two cases.

1) If r < 2n+1, then either Bdn(x, r) ⊆ Ln or

Bdn(x, r) ⊆ Rn. Since the distance between points

in Ln is induced by a 1-dimensional line, each ball

Bdn(x, r) ⊆ Ln can be covered by at most 3 balls

7 In Corollary V.1, we can actually show |ranges(FH)| ≤
ε−O(ddim(M)) · log 1

τ
· poly(|H|) with probability 1 − τ , for a set

F of weighted doubling distance functions. Of course we can also say
pdimτ (F) ≤ O (ddim(M) · log(1/ε) + log log 1/τ), but this would
lead to a slightly looser bound.
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of radius r
2 . This argument also holds for each ball

Bdn(x, r) ⊆ Rn.

2) If r ≥ 2n+1, Bdn(x, r) is a union of a subset of Ln and

a subset of Rn. Then there exists u ∈ Ln ∩ Bdn(x, r)
and v ∈ Rn ∩ Bdn(x, r). Note that Ln is covered by

Bdn(u, 2n) and Rn is covered by Bdn(v, 2n). Hence,

each ball Bdn(x, r) ⊆ Rn can be covered by at most

2 balls Bdn(u, r
2 ) and Bdn(v, r

2 ).

Therefore, ddim(Mn) ≤ 2.

Dimension of the Range Space. Let D be the sub-

set of functions {dn(ui, ·) | i ∈ [n]} ⊆ FMn . Con-

sider balls Bdn(vj , 2
n+1) for vj ∈ Rn. By definition,

|{Ln ∩Bdn(vj , 2
n+1) | vj ∈ Rn

} | = 2n. Note that

{fui ∈ D | ui ∈ Ln ∩Bdn(vj , 2
n+1)}

= {fui ∈ D | fui(vj) = dn(ui, vj) ≤ 2n+1} ∈ ranges(D).

Hence, we have |ranges(D)| ≥ 2n ≥ |D|n/ logn. Therefore,

dim(FMn) is at least n/ log n.

In light of Theorem IV.1, it is impossible to bound the di-

mension of F for doubling metric M . However, we observe

that, from the hard instance in the proof of Theorem IV.1, if

we allow a small distortion to the distance functions (i.e., to

modify all distances 2n+1+1 to 2n+1), the dimension of the

range space becomes bounded. Inspired by this observation,

we introduce the notion of smoothed distance functions for

doubling metrics in the next subsection. Then we prove that

the range space induced by the smoothed distance functions

indeed has bounded dimension in a doubling metric (see

Theorem IV.2), which is the main result of this section.

A. Smoothed Distance Functions

The smoothed distance function is defined with respect

to a metric space M(X, d) and a net tree T of the space

(definition in Section III-A). The proofs in this section can

be found in the full version.

Definition IV.1 (ε-smoothed distance function). Given a net
tree T of a metric space M(X, d), for 0 < ε < 1, define
δε : X × X → R≥0 as the ε-smoothed distance function
induced by T as follows. For any x, y ∈ X , let hε(x, y) be
the largest integer j such that d(par(j)(x), par(j)(y)) ≥ 2j

ε . 8

Define j = hε(x, y) and δε(x, y) := d(par(j)(x), par(j)(y)).

We assume that there is an underlying net tree T , and

we drop the subscript in δ and h whenever the context is

clear. Note that δ may not be a distance function since it

may not satisfy the triangle inequality. But it satisfies the

non-negativity and symmetry properties. Nonetheless, it is a

close approximation of the original distance function d(·, ·),
as in the following lemma.

8Such j must exist, because j = −∞ always satisfies the condition.

(a) smooth property (b) cross-free property

Figure 1. Illustration for the smooth property and the cross-free property

Lemma IV.1 (small distortion). If T is c-covering, then for
any x, y ∈ X and any ε > 0,

(1− 4c · ε) · δ(x, y) ≤ d(x, y) ≤ (1 + 4c · ε) · δ(x, y).

Next, we show that the ε-smoothed distance function has

several useful properties, which we will use extensively.

The first is the descendant property, which says that if the

smoothed distance of x and y is defined by two nodes u (an

ancester of x) and v (an ancester of y) in layer j, then any

descendant of u(j) has the same smoothed distance to any

descendant of v(j).

Lemma IV.2 (descendant property). For any x, y ∈ X ,
assume that j = h(x, y), u = par(j)(x) and v = par(j)(y).
Then for any x′ ∈ des(u(j)) and y′ ∈ des(v(j)), we have
δ(x, y) = δ(x′, y′) = d(u, v).

The second is the smooth property which says that at a

certain distance scale r, if we move the center of the ball

(of radius r) from x to x′ (x′ is a nearby point in a small

subtree), the ball does not change, when the ball is defined

w.r.t. δ.

Lemma IV.3 (smooth property, illustrated in Figure 1a).
Suppose {Ni | i ≤ L} is a hierarchical net and T
is a c-covering net tree with respect to {Ni}i. Consider
0 < ε ≤ 1

8c and r > 0. Let λ := ε·(1−5cε)
20(1+4cε) . Define j to be the

integer satisfying that 2j−1 ≤ λ · r. Then for any x, x′ ∈ X ,
if par(j)(x) = par(j)(x′), we have Bδ(x, r) = Bδ(x′, r).

The third is the cross-free property. Consider a ball

Bδ(x, r). The next lemma says that any small subtree (with

distance scale less than εr) is either completely contained in

the ball, or does not intersect the ball at all. A consequence

useful later is that each ball can be viewed as the union of

some small subtrees.

Lemma IV.4 (cross-free property, illustrated in Figure 1b).
Suppose {Ni | i ≤ L} is a hierarchical net and T is a c-
covering net tree with respect to {Ni}i. Consider 0 < ε ≤
1
8c and r > 0. Let λ := ε·(1−5cε)

20(1+4cε) . Suppose j is an integer
such that 2j−1 ≤ λ · r. Then for any x ∈ X and v ∈ Nj ,
either des(v(j)) ⊆ Bδ(x, r) or des(v(j)) ∩Bδ(x, r) = ∅.
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B. Bounded Dimension for Smoothed Doubling Distance
Functions

In this section, we showcase the use of the smoothed

distance function. In particular, we show in Theorem IV.2

that the range space induced by smoothed doubling distance

functions has bounded dimension. The ε-smoothed distance

function in this section is defined with respect to the simple
net tree, which is the following natural net tree built on a

hierarchical net.

Definition IV.2 (simple net trees). In a simple net tree, for
each u ∈ Ni, par(u(i)) is defined to be the nearest point
v ∈ Ni+1 to u (ties are broken arbitrarily).

The following fact follows immediately from the defini-

tion of simple net trees.

Fact IV.1. A simple net tree is 1-covering.

Theorem IV.2. Suppose M(X, d) is a metric space and
T is a simple net tree on X . Let 0 < ε ≤ 1

8 be a
constant. Let δ be the ε-smoothed distance function in-
duced by T . Let F := {δ(x, ·) | x ∈ X} be the function
set induced by the ε-smoothed distance functions. Then
dim(F) ≤ O( 1ε )

O(ddim(M)).

Proof: Consider any subset H ⊆ X of size |H| = m ≥
2. It suffices to show∣∣{H ∩Bδ(x, r) | x ∈ X, r ≥ 0

}∣∣ ≤ mO(ε)−O(ddim(M))

.

Let λ := ε·(1−5cε)
20(1+4cε) as defined in Lemma IV.4. Let us first

fix some r ≥ 0 and x ∈ X . Define j to be the integer such

that 2j−1 ≤ λ · r < 2j . By Lemma IV.4, Bδ(x, r) is the

union of some des(v)’s for v in a subset of Nj . Next, we

show the number of such des(v)’s is a constant (depending

on ddim(M) and ε).

Let P be the set of v ∈ Nj satisfying that des(v) ⊆
Bδ(x, r), i.e., Bδ(x, r) =

⋃
v∈P des(v). Since P ⊆ Nj

is a 2j-packing, the distance between any two points in

P is at least 2j . On the other hand, since P ⊆ Bδ(x, r),
we have diam(P ) ≤ 2(1 + 4ε) · r < 2j+2/λ. Then by

packing property (Fact III.1), |P | ≤ O( 1λ )
ddim(M). Define

H(j) :=
{
par(j)(x) | x ∈ H

}
. We have H ∩ Bδ(x, r) =⋃

v∈P (H∩des(v)) =
⋃

v∈P∩H(j)(H∩des(v)). This implies

every ball Bδ(x, r) is formed by first choosing at most

Λ := O( 1λ )
ddim(M) points v ∈ H(j), and then letting

Bδ(x, r) be the union of these des(v)’s.

Now we turn to general x and r. For r ≥ 0, define

Qr :=

{⋃
x∈S

(
H ∩ des(par(j)(x))

)
| S ⊆ H, |S| ≤ Λ

}
,

where 2j−1 ≤ λ · r < 2j . By the above argument,

we know that H ∩ Bδ(x, r) ∈ Qr for any x ∈ X .

Hence,
{
H ∩Bδ(x, r) | x ∈ X, r ≥ 0

} ⊆ ⋃
r≥0 Qr. Then

to bound
∣∣{H ∩Bδ(x, r) | x ∈ X, r ≥ 0

}∣∣, it suffices to

bound |⋃r≥0 Qr|. Note that for any fixed r ≥ 0, |Qr| ≤
O(mΛ). We claim that there are at most m + 1 different

collections Qr for all r ≥ 0. If the claim is true, we can

bound |⋃r≥0 Qr| by O((m + 1) · mΛ) = O(mΛ+2), and

this would conclude the theorem.

It remains to prove the claim that there are at most m+
1 different collections Qr for all r ≥ 0. Observe that the

cardinality of H(j) is non-increasing as j increases. Assume

that |H(i)| = |H(j)| for some i ≤ j. Then for any x, y ∈ H ,

we have par(i)(x) = par(i)(y) if and only if par(j)(x) =
par(j)(y).

Now fix some x ∈ X . Let u := par(i)(x) ∈ Nj and v :=
par(j)(x) ∈ Nj . If |H(i)| = |H(j)|, we have for any y ∈ H ,

y ∈ des(par(i)(x)) ⇔ par(i)(y) = u ⇔ par(j)(y) = v ⇔
y ∈ des(par(j)(x)), which implies that H∩des(par(i)(x)) =
H ∩ des(par(j)(x)). Hence, for any r′, r, define i to be the

integer such that 2i−1 ≤ λ · r′ < 2i and j to be the integer

such that 2j−1 ≤ λ · r < 2j . If |H(i)| = |H(j)|, then Qr =
Qr′ . Since there are at most m+1 possible cardinalities for

|H(j)|, there are at most m+ 1 different Qr’s. This proves

the claim and thus concludes the theorem.

V. WEIGHTED DOUBLING METRICS

In the last section, we provide a bound of the shattering di-

mension by the doubling dimension. Note that the dimension

bound in Theorem IV.2 is quite large in that it is exponential

in ddim(M). However, considering the Euclidean case,

the dependency is only linear. Moreover, Theorem IV.2 is

not sufficient for the purpose of constructing coresets, for

which we need a dimension bound for weighted spaces. In

this section, we provide a new proof that can reduce the

exponential dependency to a polynomial dependency, in a

certain probabilistic sense. Moreover, the proof also works

for weighted doubling metrics, where each point x ∈ X is

associated with a weight w(x). In particular, we consider

the following type of weight functions, which suffices for

coreset construction.

Definition V.1. We say w : X → R≥0 is a gap-c weight
function if for any x, y ∈ X , we have either w(x) = w(y)

or max
{

w(x)
w(y) ,

w(y)
w(x)

}
≥ c.

To achieve the polynomial dependence in ddim(M), we

construct a random ε-smoothed distance function δ. Let

F := {w(x) · δ(x, ·) | x ∈ X} be the function set induced

by the random ε-smoothed distance function δ. We show

that pdimτ (F) ≤ O (ddim(M) · log(1/ε) + log log 1/τ) in

Theorem V.19. The proofs can be found in the full version.

Theorem V.1. Suppose M(X, d) is a metric space to-
gether with a gap-2 weight function w : X → R≥0.
Let 0 < ε ≤ 1

100 and 0 < τ < 1 be constant. There
exists a random ε-smoothed distance function δ (defined

9Actually, Theorem V.1 provides a better bound than the one with respect
to pdim.
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with respect to some random net tree), such that for F :=
{w(x) · δ(x, ·) | x ∈ X}, and any H ⊆ X ,

Pr
δ

[
|ranges(FH)| ≤ O

(
1

ε

)O(ddim(M))

· log |H|
τ
· |H|6

]

≥ 1− τ.

In other words, pdimτ (F) = O(ddim(M) · log(1/ε) +
log log 1/τ).

Using a similar argument, we can generalize the above

result to the case where the distance is taken to the power

of z, as in the following corollary.

Corollary V.1. Suppose M(X, d) is a metric space with
a gap-2 weight function w : X → R≥0. Let z > 0,
0 < ε ≤ 1

100z and 0 < τ < 1 be constant. There
exists a random ε-smoothed distance function δ (defined
with respect to some random net tree), such that for F :=
{w(x) · δz(x, ·) | x ∈ X} (F is defined with respect to the
z-th power of the random smoothed distance function δ),
and any H ⊆ X ,

Pr
δ

[
|ranges(FH)| ≤ O

(
1

ε

)O(ddim(M))

· log |H|
τ
· |H|6

]

≥ 1− τ,

In addition, for x, y ∈ X , it holds that (1 − O(ε · z)) ·
δz(x, y) ≤ dz(x, y) ≤ (1 + O(ε · z)) · δz(x, y). In other
words, pdimτ (F) ≤ O (ddim(M) · log(1/ε) + log log 1/τ).

VI. APPLICATIONS

In this section, we provide three applications of our main

result. Due to the page limit, we skip all details and they

can be found in the full version. The major application is

an efficient ε-coreset construction algorithm for the (k, z)-
clustering problem in doubling metrics (Section VI-A).

The overall approach is to apply the Feldman-Langberg

framework. As noted in Section I, one important building

block is an α-approximation for the weighted range space

induced by the metric space. This is done by combining

the probabilistic dimension upper bound of the weighted

range space (Corollary V.1), and the α-approximation lemma

for the bounded probabilistic dimension (Lemma III.1).

Although the construction of the smoothed distance func-

tion in Corollary V.1 is quite involved, we only use it in

the analysis. The algorithm is almost as simple as in the

Euclidean case. In particular, the core of the algorithm is a

weighted sampling of the points in the original metric. In

the analysis, we consider an auxiliary range space resulted

from Corollary V.1, and we relate the sample on the original

point set to a sample on the auxiliary range space. We show

that the sample is a good approximation for the auxiliary

space with high probability, and we translate it into a good

coreset in the original space.

In Section VI-B, we discuss the robust coreset. The con-

struction of the robust coreset is simply a uniform sample of

points from the metric space. The key proof for the correct-

ness is a new lemma that presents a simple (yet previously

unknown) relationship between α-approximation and robust

coreset. Having this lemma, we can then follow a similar

argument as in the coreset construction (Section VI-A) to

get a robust coreset in doubling metrics.

Another application is the construction of the centroid set

and its application to accelerate the local search algorithms

for the (k, z)-clustering problem in doubling metrics. The

centroid set is essentially an extension of a coreset, such that

a (1 + ε)-approximate solution to the clustering objective

is included in the centroid set. The centroid set was first

considered by [49] and was applied to a constant approx-

imation for the geometric k-means clustering problem in

Euclidean space. In a high level, our construction of the

centroid set is similar with that in [49], but our construction

does not rely on the specific properties in Euclidean spaces

and the k-means objective. We obtain a small sized centroid

set for the (k, z)-clustering problem with arbitrary k and z,

and for any doubling metric. Recently, Friggstad et al. [12]

showed that the local search algorithm actually gives a

PTAS for the (k, z)-clustering problem in doubling metrics.

For the special case of k-means in Euclidean spaces, they

used the centroid set in [49] to improve the running time.

However, a centroid set for doubling metrics was not known

and hence the running time was not improved for more

general doubling metrics. Using our new result, we obtain

a similar speedup comparable to theirs in Euclidean spaces.

The construction of the centroid set as well as its application

is discussed in Section VI-C.

A. Coreset Construction in Doubling Metrics

Theorem VI.1 is the formal statement of Theorem I.1.

Theorem VI.1. We are given a doubling metric M(X, d)
with X being a set of n discrete points. Let real numbers
0 < ε, τ < 1/100, z > 0, and integer k ≥ 1. There exists
an algorithm running in poly(n) time, that constructs a
weighted subset S ⊆ X of size

Γ :=O

(
2O(z log z)k2 log(1/τ)

ε2

)
+ (ddim(M) · log(z/ε)

+ log k + log log(1/τ)) ·
(
2O(z log z)k3

ε2

)
,

such that S is an ε-coreset for the (k, z)-clustering problem
with probability at least 1− τ .

B. Robust Coreset

We generalize and improve the prior result [8] for Eu-

clidean space, and prove the existence of robust coresets

with smaller size in doubling metrics.
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Theorem VI.2. Let M(X, d) be a doubling metric space
(a d-dimensional Euclidean space resp.). Suppose S is a
uniform independent sample of Γ (Γ′ resp.) points from X ,
where

Γ := O

(
log(1/τ)

α2

)

+O

(
k

α2
(ddim(M) · log(z/ε) + log k + log log(1/τ))

)
and

Γ′ := O

(
1

α2
(kd log k + log(1/τ))

)
.

Then with probability at least 1 − τ , S is an (α, ε)-robust
coreset ((α, 0)-robust coreset resp.) for the (k, z)-clustering
problem with outliers.

C. Centroid Set and Fast Local Search Algorithm
Definition VI.1 (centroid set). Let k ≥ 1 be an integer and
ε, z > 0. Let M(X, d) be a metric space. Given a weighted
point set S ⊆ X with weight function w : S → R≥0, an
(ε, k, z)-centroid set is a subset H of points such that

1) S ⊆ H ⊆ X .
2) there exists a k-point set C ⊆ H such

that,
∑

x∈S w(x) · dz(x,C) ≤ (1 + ε) ·
minC′∈[X]k

∑
x∈S w(x) · dz(x,C ′).

In other words, H extends S in the sense that a (1 + ε)-
approximate solution to the weighted (k, z)-clustering in-

stance S is contained in H . Then if S is an ε-coreset of

X , we have a natural corollary that the centroid set H
must contain a (1+2ε)-approximate solution for the (k, z)-
clustering problem on X .

Theorem VI.3 (centroid set). Let k ≥ 1 be an integer, z > 0
and 0 < ε < 1

z . Given a ground set X and a weighted point
set S ⊆ X with weight function w : S → R≥0, there is an
algorithm running in poly(|X|) time, that finds an (O(z ·
ε), k, z)-centroid set of size at most O( 1ε )

O(ddim(M)) · |S|2.

Recently, Friggstad et al. [12] analyzed the local search

algorithm for the (k, z)-clustering problem in doubling met-

rics. They improved the running time for the special of

bounded dimensional Euclidean spaces using centroid sets.

With the help of Theorem VI.3, it is possible to improve the

running time for doubling metrics as well.

Corollary VI.1. Let M(X, d) be a (finite) metric space,
and consider the (k, z)-clustering problem in M . The lo-
cal search algorithm for the (k, z)-clustering problem that
swaps ρ := ddim(M)O(ddim(M)) · ( 2zε )O(2z)·ddim(M)·ε−1

centers (as defined in [12]) in each iteration, gives a (1+ε)-
approximate solution after polynomial (in the input size)
number of iterations. Furthermore, with a poly(|X|)-time
preprocessing procedure that succeeds with probability at
least 1− τ , the local search algorithm runs in (2O(z log z) ·
k
ε · log 1

τ )
O(ρ) time per iteration.
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