
ar
X

iv
:2

00
7.

10
67

3v
1 

 [
qu

an
t-

ph
] 

 2
1 

Ju
l 2

02
0

Quantum and Classical Hybrid Generations for Classical Correlations

Xiaodie Lin1, Zhaohui Wei1, and Penghui Yao2
1Center for Quantum Information, Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing 100084, P. R. China
2State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing, Jiangsu Province 210023, P. R. China

We consider two-stage hybrid protocols that combine quantum resource and classical resource to
generate classical correlations shared by two separated players. Our motivation is twofold. First,
in the near future the scale of quantum information processing is quite limited, and when quantum
resource available is not sufficient for certain tasks, a possible way to strengthen the capability of
quantum schemes is introducing extra classical resource. We analyze the mathematical structures of
these hybrid protocols, and characterize the relation between the amount of quantum resource and
classical resource needed. Second, a fundamental open problem in communication complexity theory
is to describe the advantages of sharing prior quantum entanglement over sharing prior randomness,
which is still widely open. It turns out that our quantum and classical hybrid protocols provide new
insight into this important problem.

I. INTRODUCTION

Suppose two separated parties, Alice and Bob, aim to outputting random variables X and Y , such that
(X,Y ) is distributed exactly according to a target joint probability distribution P . That is to say, Alice
and Bob want to sample a shared randomness P , and sometimes we call it a classical correlation. Then an
important problem is, what is the minimum cost of generating an arbitrary classical correlation?

Actually this problem has been systematically studied [Zha12, JSWZ13, JWYZ17]. Generally, P is not
a product distribution, thus Alice and Bob can share a seed correlation (X ′, Y ′) and each applies a local
operation on the corresponding subsystem without communication. The minimum size of this seed distri-
bution, i.e., the half of the total number of bits, is defined to be the randomized correlation complexity of P ,
denoted R(P ). Alternatively, the two parties can also share a quantum state σ as a seed state, on which the
two parities apply local quantum operations without communication to generate (X,Y ). In this case, the
minimum size of the quantum seed state σ, i.e., the half of the total number of qubits, is called the quantum
correlation complexity, denoted Q(P ).

Instead of sharing seed states, Alice and Bob can also generate a correlation from scratch by communication
only. When communicating quantum information, the minimum number of qubits exchanged between Alice

and Bob, initially sharing nothing, to produce P at the end of the protocol is defined as the quantum commu-
nication complexity of P , denoted QComm(P ). Similarly, one can also define the randomized communication
complexity of P , denoted RComm(P ), as the minimum number of bits exchanged to produce P . It turns out
that for any P , the correlation complexity and the communication complexity are always the same, namely
QComm(P ) = Q(P ) and RComm(P ) = R(P ) [Zha12]. Therefore, we can simply use the notations Q and
R to denote the quantities in quantum and classical settings respectively. In this paper, when generating
classical correlations by quantum procedures, we will mainly focus on the setting with seed states.

In fact, the full characterizations for Q and R have been achieved [Zha12, JSWZ13], and for any classical
correlation P . That is for any classical correlation P

R(P ) = ⌈log2 rank+(P )⌉, (1)

and

Q(P ) = ⌈log2 rankpsd(P )⌉. (2)

http://arxiv.org/abs/2007.10673v1


2

Here for any nonnegative matrix P ∈ R
n×m
+ , rank+(P ) is the nonnegative rank, which is defined as the

minimum number r such that P can be decomposed as the summation of r nonnegative matrices of rank
1. And rankpsd(P ) is the positive semi-definite rank (PSD-rank), which is the minimum r such that there

are r× r positive semi-definite matrices Cx, Dy ∈ C
r×r, satisfying that P (x, y) = tr(CxDy), for all x and y

[FMP+12, FGP+15].

It can be shown that the gap between nonnegative ranks and PSD-ranks can be huge, and this therefore
reveals the remarkable advantages of quantum schemes in generating classical correlations. For example,

consider the following 2n × 2n matrix M ∈ R
2n×2n

+ with rows and columns indexed by n-bit strings a and
b, and real nonnegative entries Mab := (1 − a⊺b)2, where a⊺b is the mod 2 inner product between a and b.
Then we have the following conclusions.

Fact 1 ([FMP+12]). It holds that rank+(M) = 2Ω(n) and rankpsd(M) = O(n).

Though quantum advantages can be huge, and extraordinary progress has been achieved on physical im-
plementation of quantum computation, it is widely believed that the availability of large scale quantum
computers is still far [AAB+19, Pre18]. As a consequence, in the near future the scale of quantum infor-
mation processing, especially the scale of entanglement, is quite limited, say dozens or hundreds of qubits.
Therefore, for some realistic classical correlations P , it is possible that ⌈log2 rankpsd(P )⌉, the necessary size
of a shared seed quantum state that produces P according to [JSWZ13] exceeds the size that we can phys-
ically realize. In this situation, a natural question is, can we design a proper quantum and classical hybrid
protocol to generate P in such a way that, it not only fulfills the task completely, but also fully exploits the
potential of our quantum capability? In this manuscript, by looking into the rich mathematical structures
of quantum and classical hybrid protocols, we will give a positive answer to the above question.

Particularly, we first consider the case that the only restriction on our capability to manipulate quantum
states is the scale, which means we can require any quantum states whenever we want as long as their size is
within our means, which may depend on the classical messages exchanged. Then we prove that if a hybrid
protocol has to be utilized to generate a large classical correlation P , the protocol can be fully characterized
by a concept called k-block positive semi-definite ranks, which is essentially a generalization of the concept
of PSD-ranks, and reveals the relation between the amount of classic resource needed and the quantum scale
available. By looking into the rich mathematical structures of this new concept, we prove that the shortage
of one single qubit may require a huge amount of classical resource to compensate, thus providing new
evidences of quantum advantages in generating classical correlations. Furthermore, we also consider another
setting with more rigorous restrictions on our freedom of exploiting quantum resource, i.e., in addition to the
restricted quantum scale, only one quantum state is provided for the players and it is independent of classical
messages. Based on the idea of entanglement transformation, we show that the second model actually has
similar power with the first one.

In the meanwhile, our results are also related to a famous open problem in quantum communication com-
plexity theory. Quantum communication complexity was introduced by Yao in [Yao93], which investigates
the advantages and limit of the communication complexity models when the players are allowed to exchanges
quantum messages. Dozens of examples have been discovered that exhibit the advantages of quantumness
(see [Gav20] and references therein) as well as numerous methods proving the lower bounds on quantum
communication complexity have been established [LS09]. In the model introduced by Yao, the players may
share classical random strings independent of the input before exchanging messages. This is named as the
Yao’s model. Thanks to Newman’s theorem [New91], we know that the shared randomness can only save
at most O(log n) bits communication, where n is the length of the inputs. Cleve and Buhrman in [CB97]
introduced another model where the players are allowed to preshare arbitrary bipartite quantum states,
which is named as the Cleve-Buhrman model. Using quantum teleportation [BBC+93], we may assume that
the players in the Cleve-Buhrman model only exchange classical messages while the communication cost
increases by at most factor 2.

A fundamental problem in communication complexity is how much communication can be saved if the
players share entanglement. In other words, what is the largest separation between the Yao’s model and the
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Cleve-Buhrman model? The role of entanglement in quantum computing has always been a core topic in
the theory of quantum computation, which is studied in various models of computation. In particular, it has
been shown in a very recent breakthrough result [JNV+20] that multi-prover interactive proof systems with
sharing entanglement are able to decide the Halting problem, while the ones without sharing entanglement are
in NEXP [BFL91]. However, little is known about the power of entanglement in communication complexity.
Indeed, till now we do not have any nontrivial upper bound on the separation between the Yao’s model and
the Cleve-Burhman model. Meanwhile, we are not aware of any example that exhibiting a super-constant
separation between these two models as well. In this paper, our results provide more facts on the power
of entanglement in the context of generating classical correlation, which show that sharing entanglement
can save the classical communication significantly, and thus hopefully shed a new light on this widely open
problem.

II. THE HYBRID PROTOCOLS

Recall that for convenience we define the size of a bipartite distribution as the half of the total number of
bits. Similarly, the size of a bipartite quantum state is the half of the total number of qubits. We suppose
the largest bipartite quantum system we can manipulate has a size of s qubits, and for convenience we call
it quantum capability. We now consider a target classical correlation P ∈ R

n×m
+ with s < ⌈log2 rankpsd(P )⌉.

Clearly, we cannot generate P using a purely quantum scheme.

Therefore, we turn to analyze the possibility that combine quantum power and classical power together.
To make the hybrid protocol valuable, we hope the extra classical cost needed will be dramatically smaller
than that of a pure classical protocol. In the meantime, as we have different ways to combine quantum
subprotocols and classical ones for hybrid protocols in principle, we now analyze two main possibilities as
below.

A. The classical-quantum hybrid

Suppose the target classical correlation can be expressed as a linear combination of two other ones, i.e.,
P = 1

2P1 +
1
2P2, where P1 and P2 are nonnegative matrices. Then one can easily construct examples with

rankpsd(P1) < rankpsd(P ) and rankpsd(P2) < rankpsd(P ), which inspires us to design the following natural
hybrid protocol. Assume P =

∑

i∈I piPi, where {pi} is a probability distribution on i ∈ I, and for any i ∈ I,

Pi ∈ R
n×m
+ is a classical correlation with ⌈log2 rankpsd(Pi)⌉ ≤ s, then Alice and Bob can produce a sampling

of P as below. They first sample a shared output i ∈ I classically according to the probability distribution
{pi}, then one of them prepares a bipartite quantum state ρi that can serve as a seed state to produce Pi

and sends half of the qubits to the other party by quantum communication, which is within the quantum
capability. After that, they generate a classical correlation Pi by performing local measurements on ρi like
in a purely quantum protocol. Since

∑

i∈I piPi = P , overall the hybrid protocol generates exactly the target
classical correlation P .

Since in the first stage of the protocol Alice and Bob sample i ∈ I, we call this a classical-quantum hybrid
protocol. Here the classical cost is c = ⌈log2 |I|⌉ bits, and the quantum cost is q = maxi size(ρi) qubits. Since
it holds that q ≤ s, the current hybrid protocol can generate the target correlation P within the quantum
capability. Below is a simple example that demonstrates this idea.
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Let

P =
1

2k











P1

P2

. . .
P2k











, (3)

where 2k·P ∈ R
2kn×2km
+ is a block diagonal matrix, and for the convenience of later discussion, we denote it by

diag(P1, P2, ..., P2k). For each i ∈ [2k], suppose Pi ∈ R
n×m
+ is a classical correlation satisfying rankpsd(Pi) =

2s. Then it can be seen that P , as a classical correlation, cannot be produced using a purely quantum
protocol, as the current quantum capability s is smaller than ⌈log2 rankpsd(P )⌉ = k + s. However, we can
generate it using a hybrid protocol, where in the first stage it takes them classical communication of k bits
to sample i ∈ [2k], then they consume a shared quantum state of size s qubits to generate the corresponding
Pi. As long as they adjust the output labels properly, the overall output will be exactly a sample of P .

As pointed out before, examples of Pi exist such that rank+(Pi) ≫ 2s, i.e., when sampling Pi quantum
schemes enjoy remarkable advantages over classical ones. If this is the case, though we cannot produce P
using a purely quantum scheme directly, such a hybrid protocol may decrease the amount of classical resource
dramatically.

Due to the above example, we are tempted to consider the following realistic problem. Still assume our
quantum capability is known to be s, and the target classical correlation P satisfies s < ⌈log2 rankpsd(P )⌉.
Then if we choose to generate P using a classical-quantum hybrid protocol, what is the least amount of
extra classical resource needed? Or, to put it another way, given an arbitrary classical correlation P , what
is the minimum number m such that P can be expressed as the summation of m nonnegative matrices with
PSD-rank not larger than 2s? To answer this question, we first introduce the following definition, which is
a generalization of the concept of PSD-rank.

Definition 2. A k-block positive semi-definite factorization of a nonnegative matrix P ∈ R
n×m
+ is a collection

of positive semi-definite matrices Ci = diag(C1
i , ..., C

r
i ), Dj = diag(D1

j , ..., D
r
j ) ∈ C

kr×kr that satisfy

Pij = tr(CiDj) =

r
∑

l=1

tr(Cl
iD

l
j), i = 1, ..., n, j = 1...,m,

where Cl
i , D

l
j ∈ C

k×k for each i, j, and l. And the k-block positive semi-definite rank, denoted rank
(k)
psd(P ),

is defined as the smallest integer r for which such a k-block positive semi-definite factorization exists.

We now prove that the question asked above is perfectly answered by the concept of 2s-block semi-definite
ranks, where the corresponding classical-quantum hybrid protocol is exactly characterized by an optimal
2s-block positive semi-definite factorization.

Theorem 3. Suppose the quantum capability is s qubits. Then the minimum amount of classical communi-

cation needed in a classical-quantum hybrid protocol producing P is exactly ⌈log2 rank(2
s)

psd (P )⌉ bits.

Proof. Suppose the minimal classical cost is c bits. Then we have a factorization P (x, y) =
∑2c

i=1 piPi(x, y),
where {pi} is a probability distribution on i ∈ [2c], and each correlation Pi can be generated by quantum
communication of ⌈log2 rankpsd(Pi)⌉ ≤ s qubits with a purely quantum protocol. Suppose a positive semi-
definite factorization of Pi is Pi(x, y) = tr(Ci

xD
i
y), where without loss of generality Ci

x, D
i
y can be chosen

as positive semi-definite matrices of size 2s × 2s for any x ∈ [n], y ∈ [m]. Let Cx = diag(p1C
1
x, ..., p2cC

2c

x )
and Dy = diag(D1

y, ..., D
2c

y ). Then it can be seen that Cx and Dy are block diagonal positive semi-definite
matrices with each block of size 2s × 2s, and furthermore, P (x, y) = tr(CxDy) for any x ∈ [n], y ∈ [m].

Therefore, it holds that rank
(2s)
psd (P ) ≤ 2c, i.e., ⌈log2 rank(2

s)
psd (P )⌉ ≤ c.
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On the other hand, suppose r = rank
(2s)
psd (P ). Then one can find block diagonal positive semi-definite

matrices Cx and Dy of block size 2s × 2s such that P (x, y) = tr(CxDy) for any x ∈ [n], y ∈ [m]. That
is to say, we can suppose Cx = diag(C1

x, ..., C
r
x) and Dy = diag(D1

y, ..., D
r
y), where Ci

x and Di
y are positive

semi-definite matrices of size 2s × 2s for any i ∈ [r]. Define Pi to be the classical correlation Qi/‖Qi‖1,
where Qi ∈ R

n×m
+ and Qi(x, y) = tr(Ci

xD
i
y) for any x ∈ [n], y ∈ [m]. Note that this is well-defined: If we let

pi = ‖Qi‖1, then pi > 0 according to the definition of 2s-block diagonal positive semi-definite rank. Then it
is not hard to see that P =

∑r

i=1 piPi, and for each i ∈ [r], it holds that rankpsd(Pi) ≤ 2s. Therefore, one
can design a classical-quantum hybrid protocol to generate P corresponding to this factorization, where the

cost of classical communication is ⌈log2 r⌉, implying that c ≤ ⌈log2 rank(2
s)

psd (P )⌉.

In real-life implementations of sampling P ∈ R
n×m
+ , we often allow a small deviation of ǫ, which suggests us

define an approximate version of k-block positive semi-definite rank, that is,

rank
(k)
psd,ǫ(P ) ≡ min{rank(k)psd(Q) : Q ∈ R

n×m
+ is a probability distribution and ‖P −Q‖1 ≤ ǫ}, (4)

where ‖P −Q‖1 is the 1-norm of P −Q, i.e., the summation of the absolute values of all entries of P −Q.
Then it can be seen that when tolerating a small additive error ǫ, the cost of optimal classical-quantum
protocol that samples P approximately is characterized by the corresponding approximate k-block positive
semi-definite rank.

Therefore, we now know that given the quantum capability s qubits, suppose s < ⌈log2 rankpsd(P )⌉, then in

order to design a proper classical-quantum hybrid protocol generating P , estimating rank
(2s)
psd (P ) is crucial.

In the rest of the current section, we will focus on the characterization of rank
(2s)
psd (P ).

Firstly, according to the properties of ranks and PSD-ranks, we immediately have the following lower bounds

for rank
(2s)
psd (P ).

Fact 4. For any nonnegative matrix P ∈ R
n×m
+ and any integer k ≥ 1, it holds that

rank
(k)
psd(P ) ≥ rankpsd(P )

k
, rank

(k)
psd,ǫ(P ) ≥ rankpsd,ǫ(P )

k
, (5)

and

rank
(k)
psd(P ) ≥ rank(P )

k2
, rank

(k)
psd,ǫ(P ) ≥ rankǫ(P )

k2
, (6)

where rankpsd,ǫ(P ) and rankǫ(P ) are the approximate PSD-rank and the approximate rank of P , respectively,

i.e., rankpsd,ǫ(P ) ≡ min{rankpsd(Q) : Q ∈ R
n×m
+ is a probability distribution and ‖P − Q‖1 ≤ ǫ} and

rankǫ(P ) ≡ min{rank(Q) : Q ∈ R
n×m
+ is a probability distribution and ‖P −Q‖1 ≤ ǫ}.

The above two lower bounds on exact cases are tight. For example, let P be the classical correlation in

Eq.(3), then it holds that rankpsd(P ) = 2s+k and rank
(2s)
psd (P ) ≤ 2k, where the second fact comes from

that we can decompose P into the summation of 2k classical correlations with each corresponding to one

Pi. Hence rank
(2s)
psd (P ) ≤ rankpsd(P )/2s, and combined with Eq.(5) this means that actually rank

(2s)
psd (P ) =

rankpsd(P )/2s = 2k. Furthermore, if one chooses Pi such that rank(Pi) = rankpsd(Pi)
2 = 22s for any

i ∈ [2k], then we have rank(P ) = 22s+c, and rank
(2s)
psd (P ) = rank(P )/22s, implying that Eq.(6) can also be

tight. However, later we will see that in some cases these relations can be very loose.

We next turn to upper bounds for rank
(k)
psd(P ). It turns out that rank

(k)
psd(P ) can be upper bounded by

generalizing the idea in the example of Eq.(3), and the notion of combinatorial rectangle proposed by Yao
[Yao79], which plays a key role in communication complexity theory. Suppose X ⊆ [n] and Y ⊆ [m], then
X×Y pins down a submatrix of P , called a combinatorial rectangle. Then we define a partition of P to be a
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series of nonzero combinatorial rectangles, where there is no overlap between any two of them and the union
of all combinatorial rectangles contains all nonzero entries of P . If each combinatorial rectangle, regarded
as a classical correlation after normalization, can be produced quantumly within the quantum capability,
then P can be generated by a classical-quantum protocol as a probability mixture of these combinatorial
rectangles. Naturally, in this situation we are interested in the size of the optimal partition of P , which has
the minimum number of combinatorial rectangles with each within the quantum capability. For this, we
make the following definition.

Definition 5. Let P ∈ R
n×m
+ be a classical correlation. Define the k-partition number of P , denoted

Ck(P ), as the minimum size of a partition of P with the property that each combinatorial rectangle has
PSD-rank at most k. For convenience, we call these combinatorial rectangles a k-partition of P .

Then we have the following proposition.

Proposition 6. For any nonnegative matrix P ∈ R
n×m
+ and any integer k ≥ 1, it holds that

rank
(k)
psd(P ) ≤ Ck(p). (7)

Proof. Suppose t = Ck(P ), and {P1, P2, ..., Pt} is an optimal k-partition of P . Define the weight of the i-th

combinatorial rectangle is the summation of all its entries, denoted wi. Then
∑t

i=1 wi = 1, and {wi, i ∈ [t]}
is a valid probability distribution.

We expand the size of each Pi to be n×m by adding zero entries with the positions of all nonzero entries the
same as in P , which does not change its PSD-rank. For any i ∈ [t] suppose an optimal positive semi-definite
factorization of Pi is Pi(x, y) = tr(Ci

xD
i
y), where Ci

x, D
i
y are k × k positive semi-definite matrices for any

x ∈ [n], y ∈ [m]. Let Cx = diag(w1C
1
x, ..., wtC

t
x) and Dy = diag(D1

y, ..., D
t
y). Then it can be seen that

P (x, y) = tr(CxDy) for any x ∈ [n], y ∈ [m]. Therefore, it holds that rank
(k)
psd(P ) ≤ Ck(p).

We now consider a specific example of this upper bound. Again we go back to the one in Eq.(3), and we

already know that in this case rank
(2s)
psd (P ) ≤ 2k. Inspired by this example, the above upper bound naturally

gives the same result, which means the amount of classical resource needed to perform a classical-quantum
hybrid generating P is at most k bits. In the meantime, note that rankpsd(P ) = 2s+k, that is to say, a
purely quantum scheme producing P needs a shared quantum state of size s+ k qubits. Therefore, it can be
said that the k-bit classical resource involved in the classical-quantum protocol works quite efficiently, in the
sense that it fulfills completely the task of the extra k-qubit quantum resource in a purely quantum scheme.

However, this is not always the case: It is possible that the effect of quantum resource of one single qubit
needs a large amount of classical resource to compensate! Before exhibiting such an example, we would
like to remark that this can be regarded as another angle to reveal the remarkable advantages of quantum
resource over classical resource in generating correlations. Our example will be based on Euclidean distance
matrices that have been extensively studied [LC10, Hru12, Shi19].

Definition 7. (Euclidean Distance Matrix) Given n distinct real numbers c1, ..., cn, the corresponding
Euclidean distance matrix (EDM) is the n× n symmetric and nonnegative matrix Q(c1, ..., cn) whose (i, j)-
th entry qi,j is defined by

qij = (ci − cj)
2, i, j = 1, ..., n.

Fact 8. [Shi19] There exist n distinct real numbers c1, ..., cn such that rank(Q1) = 3, rankpsd(Q1) = 2 and
rank+(Q1) ≥ 2

√
n− 2, where Q1 = Q(c1, ..., cn).

We choose such a Q1 with qi,j > 0 for any i 6= j, and let Q̃1 = Q1/‖Q1‖1, then Q̃1 is a classical correlatio,n

with rank+(Q̃1) ≥ 2
√
n − 2. The above fact indicates that when generating Q̃1, a quantum scheme enjoys
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remarkable advantages over any classical ones, as the cost of the former can be only one single qubit, while
the latter needs at least classical resource of ⌈logn⌉ bits.

We now consider Q̃2 = Q̃1⊗ Q̃1, which is a classical correlation of size n2×n2, and similarly for any positive
integer k, we define Q̃k = Q̃⊗k

1 . Since rankpsd(A⊗B) ≤ rankpsd(A)·rankpsd(B) for any nonnegative matrices

A and , B, we have that rankpsd(Q̃2) ≤ 4 (actually it is not hard to see that rankpsd(Q̃2) = 4), thus a purely

quantum scheme only needs a quantum seed of size 2 qubits to generate Q̃2. To study classical-quantum
hybrid protocols generating Q̃2, we now assume that s = 1, i.e., our quantum capability is only one qubit,
thus we cannot generate Q̃2 using a purely quantum scheme directly. Then we turn to classical-quantum
hybrid protocols to produce Q̃2, and we are interested in the minimum classical resource needed. According

to Theorem 1, we have to estimate ⌈log2 rank(2)psd(Q̃2)⌉. We now prove the following conclusion.

Proposition 9. rank
(2)
psd(Q̃2) ≥ logn.

Proof. Denote the (i, j)-entry of Q̃1 by q̃i,j , i.e., q̃i,j = Q̃1(i, j). Then

Q̃2 = Q̃1 ⊗ Q̃1 =











0 q̃1,2Q̃1 . . . q̃1,nQ̃1

q̃2,1Q̃1 0 . . . q̃2,nQ̃1

...
...

. . .
...

q̃n,1Q̃1 q̃n,2Q̃1 . . . 0











. (8)

For the convenience of later discussion, we call q̃i,jQ̃1 the (i, j)-th block of Q̃2 when i 6= j, and apparently
for any i ∈ [n] the (i, i)-th block is a zero matrix. For any other matrix M with the same size n2 × n2, we
also use this term to address the corresponding submatrix of M with exactly the same position. Suppose
Q̃2 =

∑r

k=1 Pk, where Pk is a nonnegative matrix and rankpsd(Pk) ≤ 2 for any k ∈ [r]. Then we need to
prove that r ≥ logn.

Suppose r < logn. Then we claim that for any i 6= j, there must be an integer k0 ∈ [r] such that the
(i, j)-th block of Pk0

has rank 3 or 4. This can be proved as below. Suppose this is not the case, i.e., for
any k ∈ [r], the rank of the (i, j)-th block of Pk is 1 or 2, then according to the fact that for any rank-2
nonnegative matrix A it holds that rank+(A) = 2 [CR93], the summation of the (i, j)-th blocks of all Pk

has a nonnegative rank smaller than 2 logn. However, this summation is actually q̃i,jQ̃1, whose nonnegative
rank is at least 2

√
n− 2, much larger than 2 logn, which is a contradiction. Therefore, for any block, there

exists k ∈ [r] such that this block of Pk has rank 3 or 4.

We now fix an arbitrary k ∈ [r], and focus on the blocks of Pk which have rank 3 or 4. We claim that all
these blocks can be covered by a position rectangle, which will be explained later. Suppose the (i, j)-th and

the (i′, j′)-th blocks, denoted P
(i,j)
k and P

(i′,j′)
k , have rank 3 or 4, then they have PSD-rank 2, where we

use the fact that rankpsd(Pk) = 2 and the relation rankpsd(A) ≥
√

rank(A) for any nonnegative matrix A
[GPT13]. Note that it holds that

rankpsd

([

P
(i,j)
k ∗
0 P

(i′,j′)
k

])

= rankpsd

([

P
(i,j)
k 0

∗ P
(i′,j′)
k

])

= 4, (9)

where the star can be any n × n nonnegative matrix. Since rankpsd(Pk) = 2, this means that the loca-
tions of the blocks of Pk with rank 3 or 4 have to be well-organized, and the patterns in Eq.(9) cannot
exist. Let A = {i ∈ [n] : ∃j ∈ [n] such that the (i, j)-th block has rank 3 or 4}, and B = {j ∈ [n] :
∃i ∈ [n] such that the (i, j)-th block has rank 3 or 4}. Then the observation given by Eq.(9) implies that
A ∩ B = ∅. Therefore, if we can call the set A × B a position rectangle, then it covers all the positions of
the blocks of Pk with rank 3 or 4, and note also that the position rectangle does not contain any diagonal
blocks.
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We now consider the corresponding position rectangles for all Pk. It can be seen that these rectangles may
have overlap, but they need to cover all the off-diagonal blocks of Q̃2, because of the fact that for each
off-diagonal block there exists a k0 ∈ [r] such that the corresponding block of Pk0

has rank 3 or 4. Therefore,
r should be at least the minimum number of monochromatic-1 rectangles needed to cover all the 1s in the
communication matrix of the inequality function, which means r ≥ logn [KN97]. This is contradicted to the
assumption r < logn. This completes the proof.

Therefore, to compensate the single-qubit shortage of quantum resource in generating Q̃2, one has to consume
classical resource of log log n bits roughly, even with the quantum capability of one qubit. Note that here n
could be any positive integer, making a sharp difference from the example in Eq.(3).

In fact, using the similar technique, we can strengthen the conclusion in the following two different ways.
These facts on Q̃2 clearly reveals the rich mathematical structure of classical-quantum hybrid protocols and
k-block positive semi-definite rank. Indeed, the first corollary below shows that when n is large, even if the
quantum capability is qutrit, i.e., only one dimension smaller than 2 qubits, any classical-quantum hybrid
protocol that produces Q̃2 will need a large amount of classical resource.

Corollary 10. rank
(3)
psd(Q̃2) ≥ logn.

Proof. The proof is almost the same with the previous proposition, except that now the blocks P
(i,j)
k and

P
(i′,j′)
k introduced above can have PSD-rank 2 or 3, but the patterns in Eq.(9) still cannot exist. Therefore,

the proof still works.

At the same time, the following corollary implies that for any positive integer k, there always exist classical
correlations P such that the cost of a purely quantum scheme to sample P is k qubits, but if the quantum
capacity is k − 1 qubits, i.e., a shortage of one single qubit for a purely quantum scheme, then in any
classical-quantum hybrid protocol sampling P a large amount of classical resource has to be needed.

Corollary 11. For any positive integer k ≥ 2, rank
(2k−1)
psd (Q̃k) ≥ logn.

Proof. We prove it by induction. First, according to Proposition 9, we know that it is true when k = 2. We

suppose it holds when k = i0, i.e., rank
(2i0−1)
psd (Q̃i0) ≥ logn, and we now focus on rank

(2i0 )
psd (Q̃i0+1). Since

Q̃i0+1 can be expressed in a similar way as Eq.(8), for convenience we also use the term of the (i, j)-th block

to address the corresponding submatrix, except that now it is not q̃i,jQ̃1, but q̃i,jQ̃i0 . Again we suppose

Q̃i0+1 =
∑r

k=1 Pk, where Pk is a nonnegative matrix and rankpsd(Pk) ≤ 2i0 for any k ∈ [r]. And we need to
prove that r ≥ logn.

Suppose r < logn. Then for any i 6= j, there must be an integer k0 ∈ [r] such that the (i, j)-th block of

Pk0
, denoted P

(i,j)
k0

, has PSD-rank larger than 2i0−1. If this is not true, then
∑r

k=1 P
(i,j)
k , which is actually

q̃i,jQ̃i0 , can be a summation of r < logn nonnegative matrices with each having PSD-rank not larger than

2i0−1, contradicted with the assumption that rank
(2i0−1)
psd (Q̃i0) ≥ logn.

Then again we fix a k ∈ [r] and look at the blocks of Pk with PSD-rank larger than 2i0−1. By a similar
observation as Eq.(9), we know that these special blocks of Pk also appear in a similar pattern as the blocks

with rank 3 or 4 in the case of Q̃2, and their positions can also covered by a position rectangle. Therefore,
a similar argument proves that we must have r ≥ logn.
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B. The quantum-classical hybrid

In classical-quantum hybrid protocols, the major restriction on exploiting quantum power is the size of
available quantum states. Within the quantum capability, we have the freedom to control and manipulate
any quantum state. Particularly, when producing a classical correlation, with respect to the classical sampling
result i in the first stage, we are able to ask for any corresponding quantum state ρi. However, sometimes
this kind of freedom is still expensive to us. For this, we now consider a new hybrid protocol with more
rigorous restrictions, that is, only one quantum state independent of classical messages is available for the
players, and thus the classical-quantum hybrid protocols introduced above do not work any more. Since the
quantum state is fixed, we can choose its preparation as the first action, and hence call the new protocol a
quantum-classical hybrid one.

Given one single copy of shared quantum state, say ρ, one may think of utilizing it in the following natural
way: Based on the shared state, Alice and Bob produce a classical correlation P ′. After sampling x′ and y′

according to P ′, both of them make two proper local classical samplings accordingly, then give their outputs
x and y, hoping that the final output is exactly distributed corresponding to the target P . However, it can
be argued that, this is not possible in general. Indeed, since the second stage is a classical local sampling
for each party, each operation can be regarded as a special form of quantum operation. Then if the above
protocol is possible, each party can merge this special quantum operation into the local quantum operation
he/she performs when producing P ′, resulting in a valid composite quantum operation. Therefore, based on
the original seed quantum state of size s, Alice and Bob is able to generate P directly, which is a contradiction.

Due to this observation, one may wonder, with such a rigourous restriction on quantum resource available,
whether quantum can make essential contributions or not in this task? It turns out the answer to this
question is again affirmative. To explain why this is the case, we first recall two useful facts.

First, if we choose all bipartite quantum states ρi involved in a classical-quantum hybrid protocol to be
pure, we still have the same power in generating classical correlations, even if the quantum capability is
unchanged [SVW16]. Second, we also need the following well-known result by Nielsen.

Fact 12. [Nie99] |Ψ〉 and |Φ〉 are two d × d bipartite pure quantum states, and λΨ and λΦ are the vectors
of their Schmidt coefficients respectively. Then |Ψ〉 can be transformed to |Φ〉 using local operations and
classical communication (LOCC) if and only if λΨ is majorized by λΦ.

Suppose λΨ = (λΨ,1, ..., λΨ,d) and λΦ = (λΦ,1, ..., λΦ,d) are real d-dimensional vectors. We say λΨ is ma-
jorized by λΦ if for any k ∈ [d], i.e.,

k
∑

i=1

λ↓
Ψ,i ≤

k
∑

i=1

λ↓
Φ,i,

with equality holding when k = d, and here the ↓ indicates the descending order of the eigenvalues.

For example, if Alice and Bob share s Einstein-Podolsky-Rosen (EPR) pairs, i.e., a pair of qubits which are
in a maximally entangled state, then as a whole bipartite pure state the corresponding vector of Schmidt
coefficients is λs−EPR = (2−s, 2−s, ..., 2−s). Then, for any 2s× 2s pure quantum state |Φ〉, it is easy to check
that λs−EPR is majorized by λΦ.

With the above two facts, we can design a quantum-classical hybrid protocol to generate a target classical
correlation P as below. Suppose that an optimal classical-quantum hybrid protocol that generates P corre-
sponds to a decomposition P =

∑

i∈I piPi, and for any i ∈ I, Pi can be produced quantumly using a bipartite
quantum state ρi within quantum capability s. According to the above discussion, we can assume that all
ρi are pure. Then in a quantum-classical hybrid protocol, Alice and Bob first share s EPR pairs, which is
within quantum capability. Next they sample an integer i ∈ I classically with respect to the distribution
{pi}. After obtaining shared i, they transform the s EPR pairs into ρi using LOCC. According to Fact
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12, this can be fulfilled with certainty, though needs some classical communication. Then they are able to
sample Pi by performing local quantum operations on ρi. It is not hard to see that the overall output will
be exactly a sampling of P , as in a classical-quantum hybrid protocol.

It can be seen that the resource consumptions in a quantum-classical hybrid protocol are quite similar with
those in the corresponding classical-quantum hybrid protocol, except some extra classical communication is
needed in the part that transforms s EPR pairs into ρi, which turns out to be at most 2s − 1 bits [Nie99].
Therefore, we have the following conclusion.

Proposition 13. Suppose P is a classical correlation with rankpsd(P ) > 2s, where s is the quantum capabil-
ity. Then the classical communication needed in a quantum-classical hybrid protocol to sample P is at most

⌈log2 rank(2
s)

psd (P )⌉+ 2s − 1 bits.

Consider the facts that for state-of-the-art technology s is still quite small, and that classical communication
is relatively cheap, the performance of a quantum-classical hybrid protocol is comparable with that of the
corresponding classical-quantum protocol, though it suffers from more rigorous restriction to access quantum
resource.

III. THE ADVANTAGES OF SHARED ENTANGLEMENT OVER SHARED RANDOMNESS IN

COMMUNICATION COMPLEXITY

As mentioned before, in communication complexity theory a fundamental open problem is to exhibit and
prove the advantages of shared entanglement over shared randomness in computing boolean functions.
Though hybrid protocols for generating classical correlations deal with a different and simpler task, they
provide us an angle to look into the advantages of shared entanglement over shared randomness in commu-
nication protocols.

For this, we now consider and compare the following two specific settings. The mission is still sampling a
classical correlation P . In the two settings, Alice and Bob first share two different resources of a same size
respectively: one is entangled quantum state, and the other is public randomness. We set the amount of
shared resources in such a way that to fulfill the task, they may need more computational resource, which
we suppose to be quantum communication. Therefore, we can see that one of the two settings is actually a
purely quantum protocol, while the other is a classical-quantum hybrid protocol. We compare the amount
of quantum communication needed in the second stage. Clearly, this is a reasonable way to compare the
computational power of the shared entanglement and public randomness involved in the first stage.

More specifically, suppose P ∈ R
n×m
+ is the target classical correlation. And we let the common size of

the initial shared resources be ⌈log2 rankpsd(P )⌉ bits or qubits. Then in the purely quantum protocol, the
quantum communication needed in the second stage is zero, as the shared quantum state in the first stage is
already sufficient to sample P . As a result, to compare the two settings, the remaining problem is estimating
how much quantum communication is needed in classical-quantum hybrid protocols. For convenience, we
denote this quantity by t qubits.

We immediately have two trivial lower and upper bounds for t. First, if rankpsd(P ) < rank+(P ), which
is usually the case, then t > 0. Second, Alice and Bob can choose to throw away the shared randomness
and generate P from scratch in the second stage, and the corresponding cost is ⌈log2 rankpsd(P )⌉ qubits.
Therefore, it holds that

t ≤ ⌈log2 rankpsd(P )⌉. (10)

Actually, we can prove the following result, which provides a nontrivial lower bound for t.

Lemma 14. In a classical-quantum hybrid protocol that generates P ∈ R
n×m
+ , suppose the costs of the first
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and the second stages are c bits and s qubits respectively. Then it holds that

2s+ c ≥ ⌈log2 rank(P )⌉. (11)

Proof. According to the structures of classical-quantum hybrid protocols, we have P =
∑2c

i=1 Pi, and

rankpsd(Pi) ≤ 2s for any i ∈ [2c]. Then using the relation rankpsd(A) ≥
√

rank(A) for any nonnegative
matrix A, it holds that rank(Pi) ≤ 22s. In the meanwhile, we also have that

rank(P ) ≤
2c
∑

i=1

rank(Pi) ≤ 22s+c, (12)

which concludes the proof.

Recall that in our setting we set c to be ⌈log2 rankpsd(P )⌉, hence the above lemma implies the following fact.

Corollary 15.

t ≥ 1

2

(

⌈log2 rank(P )⌉ − ⌈log2 rankpsd(P )⌉
)

. (13)

Note that there exists nontrivial nonnegative matrices P such that rankpsd(P ) =
√

rank(P ) [LWdW17]. If
we choose such P as our target classical correlation, the result given by Corollary 15 is actually

t ≥ 1

2
⌈log2 rankpsd(P )⌉. (14)

This indicates that the trivial upper bound in Eq.(10) can be tight up to a factor 1/2.

IV. CONCLUSION

Motivated by the fact that the scale of near-term quantum computing is quite limited, in this paper we
proposal two kinds of hybrid protocols that combine classical power and quantum power to generate large-
scale classical correlations. By looking into the connections between these two models, we show that their
performances are close, thus we can choose to focus on the more flexible one of them, i.e., the model of
classical-quantum hybrid protocols. Particularly, we show that this kind of protocols can be fully character-
ized by the new concepts of k-block positive semi-definite rank and k-block positive semi-definite factorization
that we proposed. By specific examples, we show that hybrid protocols have rich mathematical structures,
which, from two different viewpoints, indicate the remarkable quantum advantages in generating classical
correlations. Indeed, we witness the cases where in order to compensate the shortage of single-qubit quan-
tum resource, a large amount of classical resource has to be consumed. In the meanwhile, by comparing two
specific settings with the same amount but different kinds of beforehand shared resources, we may gain a
better understanding of the different power of shared entanglement and public randomness in communication
complexity theory.
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