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Abstract—Indoor localization using Time-of-Arrival (TOA)
of ultrasound is accurate, but remarkable errors may occur
occasionally due to effects by indoor environment issues, such as
when ultrasound propagates in Non-Line-Of-Sight (NLOS) paths,
or synchronization signal is interfered by background signals.
This paper presents an algorithmic and systematic approach
to address these issues to improve robustness of ultrasound
TOA positioning. We firstly show from an optimization point
of view that NLOS detection problem is NP-hard. We propose
a novel clustering and filtering (COFFEE) algorithm to conduct
density-based clustering iteratively on a bipartite graph model,
which enables accurate, robust positioning and efficient NLOS
outlier detection. Then, we develop a systematic method to
address the robust time synchronization problem, which is called
first-falling-edge time synchronization. It guarantees robust time
synchronization even in severe interference environments. Both
the COFFEE algorithm and the robust synchronization scheme
are developed and implemented in a ultrasound positioning pro-
totype called Dragon. Extensively simulations and experiments
in Dragon show that the proposed methodologies outperform
the robustness performances of the state-of-the-art methods,
which demonstrate great improvements in various interference
scenarios.

I. INTRODUCTION

Fine-grained location-based services (LBS) has leaded to

various designs and implementations of accurate indoor lo-

calization systems. Different kinds of signals and techniques

have been explored in literatures, including infrared, radio

frequency (RF), ultrasound (US), UWB, audible sound, and

techniques such as Time-of-Arrival (TOA), Angle-of-Arrival

(AOA), Time Difference Of Arrival (TDOA), which are thor-

oughly surveyed in [5] [11]. When comparing to other signals

and techniques, ranging by TOA of ultrasound is a very

competitive technique due to its high accuracy, low cost, safety

and user-imperceptibility. Since the positioning accuracy of

ultrasound TOA positioning can be generally in centimeter

level even in 3D space, it is very fascinating in may indoor

positioning systems, such as Bat [14], Cricket [12], LOSNUS

[13] etc.

By measuring TOA of ultrasound to locate an active target

(sender) by a set of receivers (reference points), three steps

are generally required: 1) The sender broadcast RF and

Ultrasound signals simultaneously; 2) the receivers measure

Time-of-Arrival of ultrasound to estimate their distances to the

sender; 3) the position of the sender is inferred by positioning

algorithm such as Least Square estimation (LSQ), or Multilit-

eration [5]. Although this process generally provides accurate

localization to the target, the steps of time synchronization

and TOA measurement are highly sensitive to indoor envi-

ronments issues, which may cause serious positioning errors

occasionally:

1) In indoor environments, same band radio signals are

hard to prevent, such as radio from micro-wave oven or

WiFi. They may collide the synchronization RF signal,

causing errors of TOA measurements;

2) Indoor objects such as furnitures, doors or people may

block the direct paths from sender to receivers, which

cause ultrasound propagate in the none-line-of-sight

(NLOS) paths (reflection or refraction paths), resulting

in large errors of TOA measurement because the re-

ceivers cannot justify the NLOS paths.

These inevitable impacts cause serious positioning error, but

are hard to deal with. Previous studies mainly addressed the

NLOS detection problem by geometric filters [15] [8] and sta-

tistical methods [1] [9]. But geometric NLOS filters are coarse-

grained when noises of line-of-sight distances are considered;

statistical methods need high computation costs and are not

robust to the number of NLOS outliers. This paper presents a

systematic approach to address not only the NLOS detection

problem but also the robust synchronization problem. Different

to existing approaches, it treats the NLOS outlier detection

problem as an optimization problem. The objective is to find

a set of normal (line-of-sight) distances, which minimizes

the residue error of the estimated position. We prove this

optimization problem is NP-hard and develop an efficient

clustering and filtering algorithm (COFFEE), which conducts

clustering and filtering iteratively on a bipartite graph model

of this problem, until convergence of position estimation. We

show COFFEE is efficient, locates target accurately, converges

quickly, can successfully identify NLOS outliers, and is robust

to the number of NLOS outliers. It outperforms the state-of-

the-art algorithms.

In addition to COFFEE, robust time synchronization is

addressed by a systematic method. A first-falling-edge time

synchronization technique is developed by connecting re-

ceivers using sync-line, so that only if one receiver detects the

Sync signal, all receivers will be synchronized. Above design

methodologies leads to a robust positioning system, called

Dragon, which implements COFFEE and robust time synchro-

nization techniques. Dragon demonstrates great improvements

of robustness than existing systems. Extensive simulations and
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experiments validate not only the sole properties of COFFEE

but also the overall performances of Dragon system.

The rest part of the paper is organized as follows. In

section 2, we investigate the hardness of robust ultrasound

positioning. In Section 3, we introduce COFFEE algorithm.

Section 4 introduces First-Falling-Edge-Synchronization and

the design of Dragon system. Experiments and performance

evaluation results are presented in Section 5. Related works

are introduced in Section 6, and the paper is concluded in

Section 7.

II. CHALLENGES OF ROBUST ULTRASOUND TOA-BASED

POSITIONING

We consider a snapshot of locating a target by a distance

set measured from N receivers. Suppose m < N/2 outliers

are hiding in the distance set, which maybe caused by NLOS

effects of ultrasound or synchronization failures. An outlier

distance has obvious large ranging error. Let’s suppose the

other N − m measurements are normal (normal) distances,

whose ranging errors are small. We denote the whole distance

set by D = {di, i = 1, ..., N}, and denote the coordinates of

the reference points by X={�x1, �x2, · · · , �xN}.
Consider a generic localization function F , which calculates

target position by θ = F (Ds, Xs). Ds is a subset of distances

selected from D, and Xs is the coordinates of the selected

reference points. The generic function F can be arbitrary, such

as least square estimation (LSQ) or multilateration algorithms.

The problem of robust positioning with outlier detection is to

select Ds appropriately so that all the outliers are excluded

from Ds to avoid generating big positioning error.

A. Hardness of Robust Positioning with Outlier Detection

It is nontrivial to exactly select the normal distances. Exist-

ing methods generally apply geometrical filters onto distance

set to identify outliers before position calculation, which

include triangle inequality filter [15] and graph embeddability

filter [8]. But these geometric filters are rough when the rang-

ing noises of the normal distances are considered. As shown

in Fig.1, d3 is an outlier distance. But d3 satisfies the triangle

inequality conditions whether in triangle X1X3θ, X2X3θ or

in X3X4θ, which cannot be detected by triangle inequality

filter. Using rigid graph embeddability method, since d3 is

embeddable in a rigid graph component {X3X4X2θ}, it will

not be detected as an outlier. Therefore, geometric methods

provide coarse-grained outlier detection. Some outliers may

escape the filters due to non-rigidity caused by the ranging

noises of normal distances.
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Fig. 1. Impacts of outlier in positioning algorithms

Other approaches detect outliers by checking the residue

error of positioning result [9]. The residue error evaluates the

difference between the selected distances and their correspond-

ing posterior distances inferred by the estimated position of

target.

R (θ) =
1

|Ds|
|Ds|∑

i=1

(Ds(i)− ‖θ −Xs(i)‖)2 (1)

|Ds| is the size of set Ds. The function ‖θ −Xs(i)‖ returns

the distance from the estimated position θ to the position of

reference point Xs(i). If Ds contains outlier distances, the

residue error will generally be large. Therefore, residue error

is used as a metric to evaluate whether the selected set of

distances contain outliers. The optimal positioning result is

the position estimation which has the minimal residue error:

θ∗ = argmin
θ

R(θ) (2)

But the residue error function only tell which selected distance

set may contain outliers, without the capability to directly

identify outliers. To vote the distance set with the minimum

residual error, enumeration over all distance combinations is

needed, causing high computation cost when N is large.

Theorem 1 (Problem Hardness). In d dimensional space with
one target and N distance measurements, it is NP-hard to
enumerate all combinations of distance measurements to find
the set of distances which has the minimum residue error.

Proof: In d-demential space, a position can be calculated

by using at least d + 1 non-collinear measurements. Each

position estimation is called a potential position. Therefore,

N distance measurements can generate at most
N∑

i=d+1

Ci
N

potential positions by enumerating all combinations of the

measurements. Since
N∑

i=d+1

Ci
N is in the magnitude of O(2N ),

we cannot find a polynomial time algorithm to find the position

point with the minimum residue error. Therefore, finding the

position with the minimum residue error is NP-hard.

B. Feasibility of Efficient Approach

Can we design efficient algorithms to address the optimal

positioning problem while detecting the outliers? An efficient

algorithm is proposed by reducing the size of the potential po-

sition set while keeping satisfactory positioning performances.

Let’s generate potential positions by selecting exactly d+1 (d
is the dimension of space) measurements. Then N distances

will generate at most Cd+1
N potential position points. We

denote this set by {θd+1} and denote:

• {θnd+1}: normal potential positions, calculated by only

normal distances;

• {θod+1}: potential positions affected by distance outliers.

We show that the optimal position θ∗ must be within the

bounding region that covers {θnd+1}. We present the theorem

in 2-D space, i.e., d = 2, which can be easily generalized into

3D space where d = 3.
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Theorem 2. let A be the bounding region covering the points
in {θnd+1}, then θ∗ which is the optimal positioning result that
has the minimum residue error must also be covered by A.

Proof: Without losing of generality, let’s suppose the

ranging errors of normal distances are upper bounded by r,

where r is determined by the accuracy of ranging techniques,

and so that the distance from the ground truth position to a

reference point i is bounded by [di − r, di + r], which means

that the target must locate in a circular ring centered at the

reference point i, with inner radius di − r and outer radius

di + r. Since θ∗ has the minimum residue error, it must be

calculated by a set, i.e., n ≥ d+1 normal distances, therefore

θ∗ must be in the intersected area of n ≥ d + 1 circular

rings. We denote such an intersected region of n circular rings

by A∗. Because normal positions are calculated by normal

distances, each point i in {θnd+1} must be in the intersected

region of d + 1 circular rings, which are denoted by regions

Ai. Since n ≥ d + 1, if the n distance selected to calculate

θ∗ contains the d + 1 distances selected for calculating point

i, A∗ must be within the region Ai. Therefore, let A =
⋃
Ai

be the bounding region covering {θnd+1}; then A∗ must be

within A.

III. COFFEE: CLUSTERING AND FILTERING FOR

OUTLIER DETECTION

Theorem 2 indicates that we can give a rather accurate

estimation to θ∗ if we can distinguish the point set {θnd+1}
from {θd+1}. Since the number of normal distances is much

more than the number of outliers, the normal positions, i.e.,

{θnd+1} tend to form a dense cluster and the potential positions

affected by outliers tend to be apart from the core cluster.

Using such an idea, we present an efficient clustering and

filtering algorithm (COFFEE) to distinguish the core cluster

of {θnd+1} from the potential positions, so as to accurately

locate the target while identifying the outliers.

Inputs to COFFEE algorithm are: i) the distance set D;

ii) the coordinates of the reference points X. Its outputs

are i) the position estimation of target i.e., θ; ii) the set of

detected distance outliers. The COFFEE algorithm contains

an initializing phase and an online phase. In initialization

phase, the potential positions {θd+1} are generated to form a

Bipartite graph model to link the distance set to the potential

positions. The online phase contains iterations of clustering,

voting and outlier filtering.

A. Bipartite Graph Construction

In initialization phase, if feasible, each d + 1 distances

are used to calculated a potential position. The relationship

between the distances and potential positions is modeled by a

bipartite graph G = {D,P,E}. D represents the distance set;

P is the potential position set; and E denote the edges. ei,j = 1
if the ith distance is used in calculating the jth potential

position, otherwise ei,j = 0. So that each potential position

is linked to exactly d + 1 distances. The potential position

generation process can be further optimized by selecting

better geometries of d+ 1 reference points, such as selecting

reference points with good geometric dilution of precision

(GDOP) [16]. But we show by experiments that COFFEE is

robust to the generation of potential positions. Even if the

reference points with bad GDOP are selected to generate the

potential positions, such potential positions will be filtered out

during iterations of COFFEE and only pose little effect to the

final positioning result.

B. Iterative Clustering, Voting and Filtering

The online phase of COFFEE conducts clustering, voting

and filtering iteratively on the Bipartite graph.

Algorithm 1 COFFEE Algorithm

Require: G = (D,P,L), X0={�x1, �x2, · · · , �xN};
Ensure: Valid distance set Dv , Robust Position Estimation

θ = F (Dv,Xv)
1: ————Clustering and Weighting ————–

2: Dv = D
3: while (sizeof(Dv) > Nmin) do
4: [Pin,Pout]=DBSCAN(P,MinPts,Eps);
5: for (j = 1; j ≤ sizeof(Pout); j ++) do
6: y = the index of Pout[j] in P;

7: for (k = 1; k ≤ N ; k ++) do
8: if (L(k, y)) == 1) then
9: W(dk) =W(dk)+ω; //add doubting weight to dk.

10: end if
11: end for
12: end for
13: —————-Filtering ————–

14: imax=argmax {W(i), i ⊂ [1, N ]};
15: if (W[imax] > Threshold) then
16: Dv = Dv \ dimax , Xv = Xv \ �ximax ;

17: for (j = 1; j ≤ sizeof(P); j ++) do
18: if (L(imax, j)==1) then
19: P = P \ P[j] ;

20: end if
21: end for
22: else
23: break; //The loop stops to output Dv and p.

24: end if
25: end while
26: —————Output Results——————–

27: Output Dv;

28: Output θ = F (Dv,Xv);

1) Density-based clustering by DBSCAN
Initially all the distances and potential positions are labeled

valid. Then in each iteration, COFFEE clusters the potential

positions by a density-based clustering algorithm DBSCAN

[4] with two user defined parameters: Eps and MinPts. Eps
is a radius that delimitate the neighbourhood area of a point

(Eps-neighbourhood). MinPts is the minimum number of

points required to be in the Eps-neighborhood to delimitate
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the density requirement for clustering. By DBSCAN, poten-

tial positions with neighborhood density satisfying Eps and

MinPts will be classified into one cluster. The largest cluster

is called core cluster and is denoted by Pin. The points outside

the core cluster are denoted by Pout which are called position

outliers.

2) Voting by Doubting Weights
After DBSCAN, COFFEE traverses all the points in Pout.

For each point in Pout, COFFEE assigned doubting weights

to the distance linked to this point in the bipartite graph. If a

distance has links to k position outliers, its doubting weight

will be assigned k.

3) Filtering Distance and Position Outliers
After doubting weight assignment in each iteration, the dis-

tance with the maximum doubting weight will be detected as

distance outlier and is removed from the valid distance set Dv .

The potential positions which are linked to the distance outlier

in the bipartite graph are also removed from the valid position

set. Note that although only 1 distance is removed in each

iteration, all the potential positions connected to this outlier

distance will be removed. The number of potential positions

removed in one iteration can be up to Cd
N−1, which guarantees

the fast convergence of the algorithm.

4) End Condition and Output
The iteration ends if all remained valid distances have doubting

weight smaller than a Threshold. Then, the valid distance set

Dv will be output to calculate the position of the target by

applying F to the valid distance set θ = F (Dv,Xv) . The

pseudocode of COFFEE is shown in Algorithm 1.

C. Parameter Setting and Algorithm Properties

In COFFEE, Eps, MinPts and Threshold are key

parameters, which affect the algorithm performances. MinPts
can be set to C(N/2, d + 1), which is the minimum number

of valid positions, because the number of distance outliers are

generally much smaller than N/2. Eps is set by learning the

statistical variance of the ranging errors, so that it guaranteed

that the normal positions form a core cluster w.r.t MinPts and

Eps. Another parameter Threshold indicates the tolerance

to the doubting weights, which is set to 1 in COFFEE to

restrictedly exclude the effects of all the position outliers.

Using above parameter settings, COFFEE is guaranteed to

converge in m iterations only if the normal potential positions

can form the largest core cluster. This is generally true because

the number of outliers is smaller than the number of normal

distances. In each iteration, the computing complexity of

COFFEE is O(N4logN), because DBSCAN is the most com-

putational intensive step in an iteration of COFFEE. DBSCAN

has complexity O(nlog(n)) [4], where n = C(N, 4) in our

problem. Therefore DBSCAN has complexity O(N4)log(N)
in COFFEE. After DBSCAN, each position outlier will be

checked to assign doubting weights to the linked distances,

which needs at most 4∗C(N, 4) computations. Therefore, the

overall complexity of COFFEE algorithm is O(N4)log(N)
in each iteration, which has polynomial time complexity.

COFFEE is also robust to the number of outliers, which will

Receiver

OC OC

Sync-in Sync-out

Sync-line

Fig. 2. Design of the Sync-line and receiver

be introduced in the evaluation section.

IV. ROBUST SYNCHRONIZATION AND DRAGON SYSTEM

Except the NLOS outliers, failure of time synchronization is

another reason which may affect the positioning robustness. If

the RF signal from sender is not received by some receivers,

the receivers will not be correctly synchronized and cannot

provide correct TOA measurements. Interferences are the

main reason of synchronization failures. In some location

systems, such as in Cricket [12] and AUITS [15] systems,

the RF channel is used not only for time synchronization

but also for transmitting data, the synchronization signal may

collide with these data traffic signals. Interferences by same-

band background signals are also inevitable, such as WiFi,

microwave oven.

A. First-Falling-Edge Time Synchronization

Since the interference are generally inevitable, we propose

to use sync-line to connect the US receivers to enable a robust,

first-falling edge time synchronization technique as shown in

Fig.2.

1) Sync-line and synchronizing logic: In each receiver, two

IO ports of MCU are connected to the sync-line. The output

port for setting electric level of sync-line is called “sync-out”,

while the input port for capturing falling edge is called “sync-

in”. Between MCU and sync-line, optocouplers for electric

isolation are set as in Fig.2.

Assuming I is the state of sync-in port and Oi is the state

of sync-out port of the ith receiver, the logical relationship for

first falling edge time synchronization is in (3).

I = O1 ∩O2 ∩O3 ∩ · · · ∩ON (3)

where N is the number of receivers. The states of sync-in pins

of all receivers are always same and the states of sync-out pins

of receivers are independent. When a receiver hears the sync

packet from a tag, it sets its sync-out to 0 immediately and

resume it to 1 after a fixed interval. As a result, the sync-in

port of all the receivers is set to 0 when the first receiver hears

sync packet.

B. Development of Dragon System

Based on above methodologies, a ultrasound TOA-based

locating system called Dragon is developed which is composed

by following components.

• Tag: each Tag is an active transmitter attaching on the

mobile devices. It is composed of MCU, ultrasound drive

circuit, wireless communication chip and battery.
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• Receivers have ultrasound detection circuit, sync-line

driving & detecting module and RF module. They are

connected together with a cable to form a chain structure,

therefore, we call the system “Dragon”. Each receiver

can also work in independent mode by plugging off the

syncline. In independent mode, it is synchronized and

communicate using own RF, which is used as counterpart

for performance comparison in our study.

• Host contains powerful processor and Ethernet inter-

face, which carries out time-slot scheduling for tracking

multiple tag and runs COFFEE algorithm for position

calculation. Fig.3 shows the pictures of the prototype of

Dragon components.

C. Collision Avoidance for Multiple Target Localization

In Dragon, collision avoidance is a critical requirement for

localizing multiple targets because single frequency ultrasound

is used. Within the communication range of ultrasound, only

one tag is allowed to send ultrasound for successful TOA

measurement. We developed a time-slot scheduling scheme

in Dragon for tracking multiple targets which is carried out

by the host. The host broadcasts slot allocation by a mask

packet of N bits, where N is the maximum number of Tags.

The mask packet is denoted as Bmap. Each bit in it stands for

a Tag. If the mth bit is “1”, tag m is allowed to send RF+US

in time-slot sm, where

sm =

m∑

i=1

(Bmap >> (i− 1)) & 1 (4)

For example, Bmap 10001101 means that Tag1 sends at at slot

1; Tag3 sends at slot 2; Tag4 sends at slot 3; and Tag8 sends

at slot 4. The other tags have to keep silent in this cycle.

Therefore, Tags transmit RF+US in successive slots, which

not only avoids collision of ultrasound, but also improves the

position updating rate than simple TDMA scheme [15].

D. Dragon Prototype

Based on above methodologies, we developed a prototype

of Dragon, which is composed by a number of Tags and fifteen

receivers. Each receiver can work independently without sync-

line or connected by a sync-line. In sync-line connected

mode, receivers will be synchronized by first-falling-edge-

synchronization technique. In independent mode, receivers are

synchronized and transmit data by RF module on the node. A

host component using an ARM9 core at 400MHz is developed

to collect TOA measurement from receivers. It calculate target

positions by COFFEE algorithms. The specification of the

Dragon prototype is shown in Table I. The photos of the

prototypes are shown in Fig. 3.

V. NUMERICAL EVALUATIONS

Extensive evaluations were carried out to evaluate COFFEE

algorithms and the positioning performance of the Dragon

prototype. We firstly evaluate COFFEE by simulation. Then

report the experimental results in a Dragon prototype.

TABLE I
SPECIFICATION OF DRAGON PROTOTYPE

MCU Communication Unit Sensor

Tag Atmel Mega 128 CC1000 as RF unit. Ultrasound transmitter at

40Khz

Receiver Atmel Mega 128 CC1000 as RF unit.

MCP2515 as CanBus unit.

40Khz Ultrasound trans-

ducer. Digital thermal sen-

sor.

Host Samsung S3C3440 with

ARM9 core running at

400Mhz

MCP2515 as CanBus unit.

802.11 a/b WiFi unit.

NULL.

Fig. 3. Prototype of Dragon Components

A. Simulation-based Evaluations of COFFEE

1) Simulation Settings: In simulation, we assume N re-

ceivers are randomly distributed on the roof of a room of

height 600cm, and size 1000cm × 1000cm. At each po-

sitioning instance, a mobile tag appears at a random place

inside this room. We assume N distance measurements are

generated, among which, m of them are distance outliers.

We assume the distance outliers have large ranging errors

which are uniformly distributed in [30cm, 200cm]. The other

N−m normal distances have smaller ranging errors, which are

uniformly distributed in [−10cm, 10cm]. The positioning error

is evaluated by the Euclidean distance from the positioning

result to the real position of the target.

2) Convergence Properties of COFFEE: We firstly evaluate

the convergence property of COFFEE to verify how the

positioning outliers are filtered in each iteration. An example

is visually shown in Fig.4, which shows the outlier detection

and rejection process of COFFEE when N = 15 and m = 3.

The three NLOS outlier distances are detected and removed

successfully in three iterations. In the figures, points indicate

potential positions; circles indicate position outliers. The sub-
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Fig. 4. Outlier distances detection and rejection process in COFFEE
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titles of the figures show the number of valid distances and

the number of potential positions in each iteration.

In all simulations, we found COFFEE converge quickly,

which needs m iterations to output the robust position es-

timation. In comparison, if the position outliers are only

filtered by DBSCAN, the convergence speed will be slow and

cannot be guaranteed. In DBSCAN, although a core cluster

can be found in the first iteration, it is hard for DBSCAN to

further refine the core cluster in the next iteration. COFFEE

uses voting scheme to remove the most doubted distance

and correspondingpotential positions in each iteration, which

makes the algorithm converge very quickly.

3) Positioning Accuracy and Robustness Performances:
The positioning accuracy and robustness performances are

evaluated and are compared with three existing positioning

and outlier filtering algorithms:

1) LSQ, No Filter, which calculates the target position by

Least Sqare Estimation without filtering outliers.

2) Triangle Inequality filter [15], which iteratively applies

triangle inequality conditions to filter outliers. The target

position is calculated by LSQ using the valid distances.

3) Least Trimmed Squares (LTS) [9], which finds N − m
distances that minimizes the sum of the square residuals.

The cumulative distributions of the 3D positioning errors

of different positioning algorithms are shown in Fig. 5. In the

simulations, we set N = 15 and set the number of distance

outliers m = 3. 100 identical experiments were run for each

algorithm and the CDFs of the 3D positioning errors of these

algorithms are compared. The results show that LSQ-based

positioning without outlier filtering has large positioning errors

in case of distance outliers. Triangle Inequality based outlier

filtering performs much better than No Filter, but is not as

good as the other two filtering algorithms. COFFEE and LTS
both improve the positioning accuracy remarkably. Under the

simulation settings, their positioning errors all have almost

100% probabilities to be less than 10cm. Among these three

algorithms, COFFEE performs the best, which is a little better

than LTS. Since COFFEE need less computation costs than

LTS, it outperforms the state-of-the-art in terms of positioning

accuracy, robustness and efficiency.

4) Robustness to the Number of outliers: Another important

issue is the sensitivity of positioning accuracy to the number

(portion) of outliers. We conduct simulations to evaluate how

the positing accuracies are affected by the number of the

distance outliers. For N = 15, we increase the number

of distance outliers, i.e., m from 1 to 11. The positioning

accuracy performances of No Filter, LTS, and COFFEE are

simulated and compared in Fig. 6. In the figure, every point

is calculated by the average positioning errors of 100 random

experiments. From the simulation results, we find the robust

feature of the COFFEE algorithms.

• In COFFEE, the positioning error keeps small when

m < N/2. Since the number of distance outliers is gen-

erally much smaller than the number of normal distances,

the result indicates COFFEE is robust to the number of

outliers in most application scenarios.

• For Triangle Inequality and LTS based outlier filtering al-

gorithms, the positioning error increases with the number

of distance outliers, which is not robust but sensitive to

the number of outliers.

B. Practical Experiments using Dragon Prototype

Above simulation results have shown the good accuracy

and robustness of the proposed Densest-Ball algorithms. We

have also conducted hardware experiments in a prototype of

Dragon system to test the real positioning performances in real

environments.

1) Deployment of Dragon Prototype: A prototype of

Dragon system is deployed in an indoor environment to

evaluate the proposed COFFEE and Dentiest-ball algorithms

and the robust time synchronization scheme. The deployed

Dragon prototype contains 15 RF+US receivers which are

connected by cables and are arranged in the roof of a room.

The photos of the deployment scenario is shown in Fig.11.

The positions of 15 receivers are manually calibrated and their

positions on the room ceiling are shown in Fig.7, which forms

a receiver array.

The room where the Dragon prototype is deployed is

a meeting room of our laboratory , whose dimension is

600cm× 400cm× 260cm. During experiments, 100 positions

in the room are chosen as test points. The positions of these
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Fig. 11. Deployment of Dragon prototype on the ceiling of a meeting room

points and 15 receivers are measured with EDMD (Electronic

Distance Measuring Device) as ground truth. These test points

are shown in Fig.8.

2) Performances of First-Falling-Edge Synchronization:
We firstly conducted experiments to evaluate the performance

of first-falling-edge synchronization. In the first setting, the

cable between the receivers are plugged off. Receivers become

independent. In the second setting, the receivers are connected

by sync-line to be synchronized by first-falling-edge scheme.

In these experiments, a Tag is localized for 30 times at each

test point. In each time, if less than 4 distances are measured,

a localization failure is counted. For each test point, its

failure probability is evaluated by dividing its failure count by

times of experiments (30). The positioning failure possibilities

with and without sync-line are shown in Fig.9, Fig.10. The

diameter of the circle is proportional to the failure probability.

The results show that the First-Falling-Edge synchronization

efficiently reduces the positioning failure probability.

3) Positioning accuracy in real-experiments: Experiments

were carried out to evaluate the positioning accuracy perfor-

mances using the Dragon prototype. In the experiments, a

student puts a Tag at each point to wait about 10 seconds. Since

the host allocates 100 ms time slot for each positioning routine,

the Dragon system gives around 100 position estimations to

each test point. During experiments, the student intentionally

blocked the direct paths from Tag to receivers to to manually

generate some NLOS outliers. The positioning error of each

test point is evaluated by comparing the averaging position

result to the ground truth.

The localization errors in 2D and 3D space are plotted

in Fig.8 and Fig. 12 respectively. It can be seen that the

positioning error in x and y dimension is smaller than that

of z dimension. The reason is that the receivers are deployed

in a x-y plane, so the positioning resolution in z dimension

is lower than that of x and y dimensions. We also find the

location accuracy is better in the center of the room than in

the corners. This is mainly because the sender-receiver angle

effects to the ranging errors, which will be discussed in the

last subsection. The CDF(Cumulative distribution function) of

positioning error is plotted in Fig.13. COFFEE outperform

the no filtration case without uprising. Using COFFEE, the

positioning error of Dragon system is < 10 cm with more

than 80% probabilities.

4) Analyzing to positioning errors in real-experiments:
When comparing to the simulation-based evaluations, we
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Fig. 14. Test the relative angle effects to ranging errors

found that the positioning accuracy in real-experiments were

much worse than the simulation results. We investigated

the reason and found that the positioning errors in real-

experiments were mainly caused by the ranging errors affected

by the relative angle between the sender and the receivers.

We conducted a separated experiment to investigate how

the ranging errors are sensitive to the relative angles. The

settings of the experiments are shown in Fig.14 a). A receiver

is controlled to move along a circle around a sender while

keeping constance distance to change the relative angles. Three

settings were tested, in which the sender-receiver distances are

2m, 4m and 6m respectively. Ranging errors were measured

50 times at each point. The average ranging errors versus

the relative angles θ at different sender-receiver distances are

shown in Fig14 b). The results show that in real-experiments,

the ranging errors are sensitive to the relative angles, which

can be as large as 14cm when the relative angles are large.

This experiment verified that that test points at room corners

that have large positioning errors are mainly affected by the

angle effects .

VI. RELATED WORK

Various methods are proposed to improve the robustness

of TOA-based position, which can be classified into geomet-

ric methods, statistical methods and systematic methods. 1)
Geometric methods: Some researchers studied to filter out

the outliers by exploiting the geometry conditions among the

measured distances. In [15], Triangle Inequality conditions

are utilized to filter distance outliers. If a distance triple

{dS,Ra
, dS,Rb

, dRa,Rb
} cannot satisfy the triangle inequality

conditions, the longer distance between dS,Ra
and dS,Rb

is

judged as an outlier. In the distance triple, S is a sender to

be located and Ra and Rb are two arbitrary receivers. The

algorithm repeats until all the remained distances pass the
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conditions. This filter uses the heuristic that the NLOS paths

are mainly caused by reflections, which are generally longer

than the direct path. In [8], graph embeddability and rigidity

are utilized to carry out the geometry based outlier detection.

Only the edges (measured distances) that form embeddable

redundantly rigid graphs are marked normal and the other

edges are marked as outliers. But when ranging noises are

considered, these geometric filters provide only loose restric-

tions. Some outliers may still pass these geometric filters.

In [10], a bilateration based robust positioning algorithm is

proposed. Using bilateration, two candidate positions can

be estimated from two distance measurements in 2D space.

After calculating all candidate positions via enumerating all

bilateration pairs, the position of the densest candidate points

is calculated as the target position. Although bilateration is

robust, it is hard to be calculated in 3D space, because the

intersections of balls are difficult to describe and store.

2) Statistical methods: Univariate statistical methods [1] are

widely used methods for general outlier detection problems by

assuming normal data obey some underlying distributions. But

such methods are not suitable for detecting distance outliers,

because the distance measurements are dynamic and don’t

obey a common distribution. Therefore, statistical methods

for outlier detection should be applied on the position set

instead of the distance set. Using this idea, Least Trimmed

Squares (LTS) estimator is proposed in [9] to find m NLOS

outliers from N distances by seeking N − m Line-of-Sight

distances that minimizes the sum of the square residuals.

The lower bounds for NLOS positioning and more related

works for least square and maximum likelihood based NLOS

mitigation methods are surveyed in [5]. Different from these

statistical methods, we present an efficient unsupervised learn-

ing approach, which improves both positioning accuracy and

calculation efficiency.

3) Systematic methods: Other solutions improved robustness

of TOA-based localization via system-type approaches. Be-

cause of the positioning variances will reduce when more TOA

measurements are used in multilateration [2], [14] [7]proposed

receiver array to obtain more TOA measurements for robust

position calculation. In ATLINTIDA [3], cross correlation

technique is used to detect TOA robustly by transmitting

pseudorandom sequences of pulses and use wide-baud US

signal. A robust wide-baud ultrasound positioning system was

developed in [6]. In this paper, we focus on robust positioning

by widely-used, low-cost, single frequency ultrasound.

VII. CONCLUSION

This paper studied robustness algorithm and system for

ultrasound TOA-based indoor localization. By a bipartite

graph model which maps the distance set to the potential

positions, COFFEE algorithms is developed, which conduct

unsupervised classification on the position set to eliminate the

NLOS distances. The fast convergence and accuracy of these

algorithms have been verified and analyzed, showing it out-

performs the state-of-the-art algorithms. COFFEE also shows

robustness to the number of distance outliers, which implies

its robust performances in various positioning scenarios. In

system aspect, a first-falling-edge synchronization technique

for robust time synchronization is developed, based on which

we have developed a ultrasound positioning system, called

Dragon. The positioning performances of Dragon prototype

were verified in deliberately interfering environments. The re-

sults showed remarkable positioning robustness improvements

by using the proposed methodologies. The angle effects to the

positioning error have also been investigated. In future work,

we will generalize the outlier detection algorithms to other

positioning algorithms, such as radio-map based positioning

methods.
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