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Abstract
Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off
between the precision towhich these quantities are approximated, and thememory required to store
them. The statistical accuracy of the simulation is thus generally limited by the internalmemory
available to the simulator. Here, using tools from computationalmechanics, we show that quantum
processors with a fixedfinitememory can simulate stochastic processes of real variables to arbitrarily
high precision. This demonstrates a provable, unboundedmemory advantage that a quantum
simulator can exhibit over its best possible classical counterpart.

Manymacroscopic processes wewish to simulate involve the dynamics of real numbers. The dynamical
properties wewish to track (e.g. the position of an object) can take on almost any number, seemingly without
noticeable quantisation until one goes down to the Planck scale. The simulation of such processes necessitates
compromise between the resources allocated and the precisionwithwhichwe track such properties. Clever
implementations to this problem, such as the floating point format [1], form the heart ofmodern computing
technology—but all subscribe to the same trade-off: treating a quantity with higher precision requires the
allocation ofmorememory. To perfectly replicate the future statistics of a continuous variable dynamical system
exactly would inevitably require unboundedmemory.

The advent of quantum technology, however, opens new possibilities. Not only has this technology shown
great potential in solving problemsmany consider classically intractable [2–6], it has demonstrated the
capability to greatly reduce the amount of information one needs to send in certain tasks requiring
communication between distributed parties [7–9]. Could thememory required by a quantummachine that
simulates dynamical processes likewise scalemuchmore favourably with precision?

Here, we consider the simulation of a class of stochastic systems involving the dynamics of parameters that
take on real numbers. Classical simulation of such processes digitally involves ‘coarse-graining’: the parameter at
each point in time is approximated to n bits of precision at somememory cost that scales linearly with n.We
construct quantum simulators the exhibit unbounded advantage. The quantum simulator can exactly replicate
the statistics of a n bit classical simulator for arbitrarily large n using a bounded amount ofmemory. Thus,
quantum simulators can side-step the precision-memory trade-off—finite quantummemory can simulate such
processes to arbitrary fixed precision.

This unbounded divergence has practical and foundational consequences. Practically, it suggests that
quantumprocessorsmay be increasingly advantageous aswewish to simulate evermorememory-intensive
systems, such as those arising frombig data sets. Foundationally, theminimalmemory required to simulate a
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process is a well-establishedmeasure of structure, known as statistical complexity [10–20]. Ourwork suggests
that there are certain processes which growunboundedly in statistical complexity, but yet remain simple to an
observer with quantum capabilities.

Cyclic randomwalks

Consider a small bead located on a circular ring of circumference 1 (as per figure 1). Its position can always be
described by some real number y 0, 1Î [ ). At each discrete time t Î , the beadʼs position is stochastically
perturbed. This perturbation is described by a real randomvariableX that is governed by a continuous
probability density function P X( ), such that

Y Y Xfrac , 1t t1 = ++ [ ] ( )

where Y t represents the randomvariable that governs the location of the bead at time t, and
y y yfrac 0, 1= - Î[ ] ⌊ ⌋ [ ) denotes the fractional part of y, such that positions differing only bywhole rotations

around the ring are equivalent.We refer to P X( ) as the shift function, and assume the process is stationary, in the
sense that P X( ) has no explicit dependence on t, and rotationally symmetric such thatXhas no dependence on
the current value ofY t. This same formalismdescribes a diverse range of systems undergoing cyclic random
walks, such as the azimuthalmotion of gasmolecules diffusing in an annular tube, or the position of a single
electron travelling through an electric circuit with constant resistance.

We capture the dynamics ofY formally using the framework for describing stochastic processes. In general, a
stochastic process  is characterised by a bi-infinite sequence of random variables Y t

t{ } , that governs its value at
each discrete time t Î . For convenience, we often segregate past and future values, such that Y Y Y1 0¬

= ¼ -

and Y Y Y1 2= ¼


respectively govern the values in the past and futurewith respect to time t=0. The cyclic

randomwalk above is then entirely captured by the joint probability distribution P Y Y,
¬ ( ) such that for any

instance of the process with past values y¬, future values ywill be observedwith

probability P Y y Y y


= ¬
=¬( ∣ ).

Here, we consider the simulations of the above process to ever increasing precision.We adopt a natural
technique of discretizing a continuous process, by introducing a family of stochastic processes n{ } that describe
discrete approximations of this process, where in each the position of bead is represented to n bits of precision by
a n-digit binary number. This is done by limiting y to a discrete set of N 2n= equally spaced values, y j Nj =
(for j=0 to N 1- ). At each time-step, the probability that a bead in discrete location yj transitions to yk, is
given by the probability pjk that a bead initially at yjwill transition to any value of ywhose n bit binary
representation is yk. That is

p P Y y Y y , 2kj
t

k
t

j
1 = = Î =+( ∣ ) ( )

where y y y:k k N

1

2
 = - <{ }∣ ∣ represents the interval on the ring that is ‘rounded to’ yk. This results in a

Markovian stochastic process that emits a symbol from the finite alphabet yk{ } at each time-step, whose
dynamics are governed by the stochasticmatrix with elements pjk. As n  ¥, the statistics of n approach that
of ; at the potential cost of trackingmore information8.

Classical simulation costs scale with precision

Wecan formally describe simulators using the tools of computationalmechanics [10–13]. A simulator of a
process is a device whose future output behaviour conditioned on any particular past should be statistically
indistinguishable to the process itself. Specifically, let the state of the simulator at each time be st , such that in the

Figure 1.Cyclic randomwalk. At each time step, the system stochastically hops from state y 0, 1t Î [ ) to y y xfract t1 = ++ [ ]. As x is
chosen according to the real randomvariableX, the current value of the system is itself described by a sequence of real random
variables Y t

t Î{ } that satisfy Y Y Xfract t1 = ++ [ ].

8
An alternative discretization is to calculate the transition probabilities by assuming the initial value of yt is uniformly distributed in j .

This yields asymptotically identical statistics as N  ¥, and does not change the results of this article.
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subsequent time-step it can output yt 1+ and transition to state st 1+ . For this device to be a statistically faithful

simulator of a process P Y Y,
¬ ( ), we require that:

1. For each specific past y¬ at each time t, we can deterministically configure the device using a function f into

some state s f y= ¬( ), such that it will produce future outputs ywith probability Y y Y yP


= ¬
=¬( ∣ ).

2. If a simulator is in state s f yt = ¬( ) at time t, and outputs y t in the subsequent time-step, its internal state
must then transition to s f y yt t1 = ¬+ ( ).

Thefirst condition ensures the simulator can be initialised to simulate desired conditional future statistics;
the second that a correctly initialised simulator continues to exhibit statistically correct statistics at every time-
step. Thememory cost of the simulator corresponds to the storage requirements of this internal state. This cost is
bounded frombelowby the information entropy of the randomvariable S f Y: = ( ). In the asymptotic limit of
many independent identically distributed copies of the simulator, this bound is tight as the ensemble of states
may be compressed (such as by Shannonʼs noiseless encoding theorem [21], or Schumacher compression
[22, 23]). Physically a simulator can be viewed as a communication channel in time: it represents the exact object
Alicemust give to Bob at each time-step that captures sufficient past information for Bob to replicate the
processes conditional future behaviour. f is known as the encoding function, which describes how the past is
encodedwithin the channel.

Thismemory cost of the provably optimal classical simulator—known as the statistical complexity Cμ—is
extensively studied in complexity science [10]. This value captures the absoluteminimummemory any classical
simulator of a processmust store, and thus is a prominent quantifier of a processʼs structure and complexity9

(e.g. [13–20]). Such an optimal simulator can be explicitly constructed, and corresponds to the simulator that
stores in its internalmemory the causal states of the process [10, 11]: defined by an encoding function f such that

f y f y¬ = ¢
¬

( ) ( ) if and only if Y Y y P Y Y yP
 ¬

=¬ =
 ¬

= ¢
¬

( ∣ ) ( ∣ ) (i.e. the conditional futures of y¬ and y¢
¬

coincide).
In our cyclic randomwalks, each n is a first-orderMarkov process: the statistics of future outcomes depend

only on themost recent value ofY t.When this example is discretized, the causal states are thus typically in one-
to-one correspondencewith the 2n discrete values thatY can take10. That is, n has 2n causal states, labelled
sj j 0

2 1n

=
-{ } , where sj corresponds to the set of pasts ending in Y yj

0 = .When the simulator has been running for a

sufficiently long time, the probability distribution over the internalmemory converges on P S si N

1= =( ) for

each i—its steady state, inwhich all causal states occurwith equiprobability. Thus, the classical statistical
complexity

C n, 3=m ( )

scales linearly with the precision.

Quantum simulators arememory–efficient

It has recently been shown that quantumprocessors have the capability to simulate stochastic processes with less
memory than is classically possible [25–29]. Here, we construct an explicit quantum simulator for the cyclic
randomwalk. Instead of storing each causal state si directly, our quantum simulator stores a corresponding
quantum state

S p k , 4j
k

N

kj
0

1

åñ = ñ
=

-

∣ ∣ ( )

where kñ{∣ } forms an orthonormal basis.

The stationary state of the quantum simulator is then given by the quantum ensemble state S S
N j j j
1r = å ñá∣ ∣

(as all quantum states occurwith equiprobability). Thus thememory required to store these states is given by the
vonNeumann entropy given H Tr log logQ k k kr r l l- = -å≔ ( ) , where kl are the eigenvalues of ρ. The key
improvement here is that Sjñ{∣ }are not in generalmutually orthogonal, and thusHQ is generally less thanCμ.

9
The statistical complexity is distinct from algorithmic information (Kolmogorov–Chaitin complexity). Statistical complexity is, as the

namewould imply, intrinsically statistical—concernedwith the replication of the statistical behaviour of a process; whereas algorithmic
information relates to the compressibility of an exact string [24].
10

There are exceptions, such aswhen P x 1=( ) for x 0, 1Î [ ), and the system jumps to a completely randompoint at each time-step; here
there is only one causal state for allN, because the current position no longer affects the future outcomes at all.
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Nevertheless a quantum circuit (outlined infigure 2—with details in the appendix) acting on these quantum
states will produce statistically identical outputs to the classical simulator.

The vonNeumann entropy of a quantum state is equal to the Shannon entropy of the outcome statistics of a
projectivemeasurement on that state,minimised over all choices of projectivemeasurement. Thisminimisation
corresponds to ameasurement in the basis inwhich the stateʼs densitymatrix is diagonal. A classical probability
distributionmaps onto amixed quantum state, diagonal in afixed basis. As such, the stationary state of the
classical simulator can be assigned a quantum state, whose vonNeumann entropy is exactly that distributionʼs
Shannon entropy. This allows us to compare the entropic cost of the classical and quantummachines’memories
on an equal footing.

Unbounded advantage of quantummemory

Wenow come to themain claim of our paper: there are stochastic processes that can be simulated to infinite
precision using afinite amount of quantummemory.

Explicitly, we show that for certain cyclic processes, the quantum ensemble stateʼs eigenvalues k k N0 1l = ¼ -{ }
satisfy lim logN k

N
k k0

1 l lå - = W¥ =
- for some finite valueΩ. Our result relies onfirst observing that the

eigenvalues kl can be directly related to transition probabilities pjk{ }via the relation

N
p p

1
, 5k j N j0 0 l = -[ ] [ ] ( )( )

where  denotes the discrete Fourier transform (DFT), x x jkexpj j
N

j N0
1 2 i = å p

=
- -( )( ) . (The proof relies on

invoking the cyclic symmetry of the process—and hence of the transition probabilities—and is explicitly derived
in the appendix.)The spread pj0 (as a function of j) is an indicator of how quickly a particle diffuses in the
randomwalk. Thus, the Fourier-like relation between pj0 and kl indicates an inverse relationship between the
amount of diffusion in the cyclic process and the spread of eigenvalues. The greater the variance ofX, themore
quickly a particle diffuses, and the smaller the spread of kl —resulting in a reduced quantummemory
requirement.We now show that for some natural examples, this reduction is sufficiently large thatHq remains
bounded for all n (as illustrated infigure 3).

Example 1 (Gaussian noise).A cyclic process rotating at a constant rate subject toGaussian noise has a shift

function given by aGaussian distribution G x exp x
,

1

2 2

2

2= -m s s p
m

s
-( )( ) ( )

aboutmeanμwith standard deviation

σ. Here,μ characterises the average velocity (in terms of the variableʼsmean displacement per time-step), andσ
the size of the fluctuations.When 0m = , this process corresponds toGaussian diffusion. For our analysis, we
take 1s  and thus ignorefluctuationswhere the particle travelsmore than a complete loop around the ring in
a single time-step (a value of 0.1s = ensures that such events are less likely than one part in amillion).

As can be seen infigures 3(a) and (c), as the desired precision increases, thememory cost of simulating this
process quickly converges onto a constant determined by the fluctuation strengthσ; ultimately, infinite-precision
simulation is possible using only a finite quantummemory. This behaviourmay be understood analytically by
seeing that for largeN, the eigenvalues associatedwith the quantum simulatorʼs internalmemory are also given
by samples from aGaussian distribution: G kk 0, 1

4
l =

ps
( ) for k , 1N N

2 2
= - ¼ - , where for convenience we have

cyclicly offset the label of the eigenvalues’ indices byN (proof in appendix). This demonstrates that increasingσ
tightens the spread of eigenvalues, and thus reduces thememory requirement for the quantum simulator.

Figure 2.Circuit formemory-efficient quantum simulator. The above circuit samples P Y y
 ¬( ∣ )when suppliedwith the appropriate

quantum state Stñ∣ that encodes the past. At t=0, an ancillary system, initialised in state S0ñ∣ , is fed into the simulator. A controlled
unitary is then enacted such thatU j S j S: j0ñ ñ  ñ ñ∣ ∣ ∣ ∣ for each j. The state of the ancillary system andmemory are then coherently

swapped, and the ancillary system is then emitted as output.Measurement of the ancillary system then correct samples Y
1
. Iteration

of this procedure then generates output behaviour statistical identical to that of the original process.

4

New J. Phys. 19 (2017) 103009 A J PGarner et al



In the appendix, we prove that as the precision n Nlog= increases, the sum lim logN k k k
1

N

N

2

2 l lå¥ =-
-

converges on afinite value, bounded (in bits) by

H
1

2 ln 2
1 4 2 log 2 2 . 6Q 2 ps ps- +( ) ( )

Thus, for anyfixed 0 1s<  , theGaussian randomwalkmay be simulated to arbitrarily high precision using a
quantum simulator of bounded entropy.Moreover, this also implies an unbounded divergence between the
classical and the quantum statistical complexity [26, 30]CQ, which is upper bounded byHQ.

Example 2 (Uniformwhite noise). In the second example, we consider a particle that is perturbed by uniformly
distributed noise. At each time-step, the particle canmove anywhere in the range of m  D from its current

positionwith uniformprobability, where 1

2
D < . Again,μ characterises the average velocity, and hereΔ the size

of the fluctuations. The associated shift function is a top-hat function, that has a uniform value of 1

2D
in the range

x ,m mÎ - D + D[ ]and 0 everywhere else.

The entropy of the quantum simulator,Hq is plotted for various precision infigures 3(b) and (d).We see that
for anyfixed 0D > , the quantummemory required by our simulator converges to a bounded value. As in the
Gaussian scenario, the quantum simulator can replicate a classical simulation to any given precision usingwith
finite entropy. In the appendix, we prove this analytically.We show that as N  ¥, the entropy remainsfinite,
and is bounded above by H 3.067Q

1.894 +
D

. In particular, for largeN, the eigenvalues of the relevant

ensemble state obey k2 sinc 2k
2l = D D( ) for k , 1N N

2 2
= - ¼ - , where xsinc( ) is the normalised sinc function,

x xsinc sin
x

1 p
p

( ) ≔ ( ). Larger valuesΔwill result in a smaller spread of eigenvalues, and result is smallerHq. For

any given 0D > the entropy isfinite in the limit N  ¥. This establishes a second natural example where the

Figure 3.Bounded quantummemory costs for unbounded precision. Thememory required to simulate a cyclic randomwalk is
plotted against the precisionN for theGaussian and top-hat shift functions. In both examples, the quantum simulator has an
unboundedmemory advantage—the classical cost scales as Nlog whilst the quantum cost converges upon a constant value. Themore
rapidly the shift function diffusesX, the lower the limiting quantummemory requirement.
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quantum simulator can demonstrate an unboundedmemory advantage over its best possible classical
counterpart.

The origin of quantumadvantage

The source of classical inefficiency can be understood by considering dynamics on causal states. Consider two
instances of n , onewhere Y yj

0 = , and the otherwhere Y yj
0

1= + . As their conditional future statistics differ

(that is, P X Y y P X Y yj j
0 0

1


= ¹


= +( ∣ ) ( ∣ )), a classical simulatormust be configured differently for each

instance (corresponding to being initialised in one of two different causal states, sj or sj 1+ ). Nevertheless, there is
finite probability that at the next time-step, both instances of the process emit the same output (up to precision
n). Should this happen, wewould not be able to use the current state of themachine to determine the causal state
it was in at the previous time. That is, there is some probability that the distinction between sj and sj 1+ will never
be reflected in the future statistics of the process—a phenomenon known as crypticity [27, 31]. As n increases,
this occurs with greater likelihood (tending to unit probability as n  ¥), and thus proportionallymore
information is wasted. Ultimately, in the limit of high precision, a vanishingly small proportion of the
information stored in the classicalmemory is pertinent to the statistical behaviour of the processʼs future.

Quantum simulators compensate for this waste bymapping these causal states to non-orthogonal quantum
states. The quantum state (equation (4)) associatedwith neighbouring causal states ( Sjñ∣ and Sj 1ñ+∣ ) also become
increasingly similar with increasing n—resulting in progressively greater savings. Consider theGaussian
scenario, whereHq is bounded by equation (6). For smallσ, thememory cost scales as log2s- , such that halving
the variance offluctuations at each time-step adds one bit to thememory cost of the quantum simulator. The
standard deviation of the shift function has set an effective length scale over which the systemmust be simulated
classically. The statistical behaviour of future outputs from two systems that are initially prepared in points
separated bymore than one standard deviation are typically distinguishable, and so these pointsmust be stored
as nearly orthogonal quantum states at somememory cost. On the other hand, when two points are initially
closer than the standard deviation scale, the probability that they could be distinguished by their future
behaviour diminishes, and theymay be represented by increasingly overlapping quantum states. In this regime,
afixedfinitememory can accommodate any desired precision.

We gain further insight into the origins of quantum advantage by considering the cases where it does not
appear: 0s = and 0D = . In both these cases, the shift function is aDirac delta distribution. As such, nomatter
howhigh the precision, by observing the future outputs, it will always be possible to distinguishwhether the
system came from some site sj or its neighbour s ;j 1+ the dynamics of the system arewholly reversible. If sj always
transitions to sk and sj 1+ always to sk 1+ , being able to distinguish between these two sites is crucial to produce the
correct statistical behaviour, even as the precision increases. As such, the quantum simulator cannot tolerate
overlap between the states sjñ∣ and sj 1ñ+∣ , andmust store themorthogonally (allowing them to be distinguished).
In this scenario, the quantum simulator cannot demonstrate any advantage inmemory cost over its classical
analogue.

Discussion and outlook

In this article, we presented a task inwhich quantummechanics has an unboundedmemory advantage over the
mostmemory-efficient classical alternative: the simulation of a classical cyclic stochastic process.We found that
the classical simulator has amemory requirement that scales linearly with the precision required, while the
quantum simulatorʼs requirementmay be bounded by a finite value, even at arbitrarily highfixed precision. This
establishes a rare scenariowhere the scaling advantage of quantumprocessing can be provably established.

This finding leads to a number of natural open questions—thefirst being of generality. Certainly, the
examples presented are sufficiently simple that such divergences are unlikely to bemerely amathematical
oddity. The unbounded quantum advantage relies on n{ }having two properties: (a) the number of causal states

growswith n, and (b) the conditional future statistics P X S si


=( ∣ ) between different causal states converges
sufficient quickly with n. If these conditions can be formalised, wemay be able to establish similar divergences in
muchmore general scenarios, such as the simulation of non-Markovian or non-cyclic processes. Beyond von
Neumann entropy, it would be interesting if similar scaling can be found for othermetrics ofmemory cost, such
as the dimension—namely, whether there is an encoding that allows for simulation to arbitrary precision using a
Hilbert space of bounded dimension.Meanwhile the inefficiency of classical simulators have shown to directly
result in unavoidable increased heat dissipation [32–34]. This hints that quantumprocessingmay allow
significant energetic savings for stochastic simulation, especially for systems that become increasingly difficult to
simulate as they scale in size.

6
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On a foundational level, the statistical complexity is often regarded as a fundamentalmeasure of a processʼs
intrinsic structure—the rationale being that it quantifies theminimal amount of information about a processʼs
history thatmust be recorded to allow for predictions about that processʼs future behaviour. Themeasure has
been applied to understand structure within diverse complex settings: from the dynamics of neurons [14] and
the stockmarket [18], to quantifying self-organisation [15], among other examples [16, 17, 19, 20]. The
discovery ofmore efficient quantummodels has led to the idea that the complexity of a systemdepends onwhat
sort of informationwe use to observe it [26, 30]. In this context, our results establish a family of processes that
can look evermore complex classically, but remain simple quantum-mechanically. It would be fascinating to see
if divergences between quantumand classical complexities can be found in existing studies, such as the examples
above. Could it be that these systems appear complex classically—but lookmuch simpler when viewed through
the lens of quantum theory?
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Appendix

Classical costs from computationalmechanics
Wehere present someminimal details from themathematical framework of computationalmechanics [10–13]
to substantiate the claim that the classical simulatorʼsminimalmemory cost is equal to the precision Nlog .

In computationalmechanics, the evolution of a dynamical property (over domain  ) is characterised by a
discrete-time stochastic process  , written as bi-infinite sequence of random variables Y t

t Î{ } , where each
randomvariableY t governs the value yt Î of the dynamical property at time t. The statistical behaviour of a
processmay be represented in a causalmanner bywriting it as the conditional probability distribution

P Y Yt t
 ¬( ∣ ), where Y Y Y

t
t t1 2

= ¼+ + is the infinite string of random variables occuring after time t, and

Y Y Y
t

t t1¬
= ¼ - is the infinite string of randomvariables occuring before (and including) time t. For stationary

processes (such as the time-independent cyclic randomwalks described in this article), this distribution has no
explicit time dependence, sowe omit the superscript t.

A faithful simulator of process  is amachine (or programme) that, having been initialised in accordance
with the observation of past y t¬ , then generates a series of outputs yt

 according to the distribution

P Y y Y y
t t t t
= ¬

=¬( ∣ ). Since storing an infinite string y t¬ may require an unbounded amount ofmemory,
one instead configures the internal state of the simulator s (over configuration space  ) according to some

function s f y= ¬( ), satisfying P Y y S s P Y y Y y
t t t t t t
= = =


= ¬

=¬( ∣ ) ( ∣ ), where S f Y=
¬( ) is the

randomvariable describing the internal state of the simulator (formed by applying the function f on each variate

of Y
¬

).Moreover, once initiated into state s t, when the simulator outputs y t in the subsequent time-step, its
internal statemust then transition to the state s f y yt t1 = ¬+ ( ) (where y yt¬ indicates the concatenation of y t to

the end of string y¬).
Thememory cost of such a simulator is given by the information entropy of S,

H S P S s P S slogs i ii 
= -å = =Î( ) ( ) ( ). The function f thatminimises this classically corresponds to

identifying the causal state of a particular past [10, 11], defined by the equivalence relationship: y y
¬ ~ ¢

¬
for

pasts y¬ and y¢
¬

if and only if Y y X y P Y y X yP t t


= ¬
=¬ =


= ¬

= ¢
¬

( ∣ ) ( ∣ ) for all possible future values
y Y Î


. The causal states are unique for any given process, and so their entropy H S( ) is a property of the

process itself known as its statistical complexity Cμ, capturing the intuition that amore complex process requires
morememory to simulate.

ForMarkovian processes, such as discussed in this article, the number of causal states required is equal to the
number of unique rows in the stochasticmatrix describing the evolution.When these rows are generated by the
discretization of a continuous process intoN divisions—such aswhen they are derived from the cyclic walkʼs
shift function P X( )—the number of states will be equal toN, except for very specific (e.g. pathologically fractal)
choices of P X( ) andN. Since by symmetry the probability of the simulator being in any particular state is equal,
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the classicalmemory cost of a simulator hence scales with the number of sites as Nlog , or linearly with the
precision n Nlog2= .

Details of the quantum circuit infigure 2
Let us consider figure 2 inmore depth (see also [25]). The circuit consists of one persistent internalmemory
state, and an ‘output tape’—a line of quantum states, which are fed into the systemone at a time. Suppose each
state on the output tape is initialised into some arbitrary state fñ∣ . For any two quantum states xñ∣ and yñ∣ in the
sameHilbert space, it is always possible to construct a unitary transformationV such thatV x yñ = ñ∣ ∣ . This will
be of the form y x y xi i iñá + å ¢ñá ¢∣ ∣ ∣ ∣where xi¢ñ∣ are states orthogonal to each other and to xñ∣ , and y

i
¢ñ∣ are states

orthogonal to each other and to yñ∣ . Thus, in the jointHilbert space N N Ä of two quantum systems of
dimensionN, it is possible to build a ‘controlled’unitary operationU containing the elements j j jy fñá Ä ñá∣ ∣ ∣ ∣
for every jy ñ∣ in an arbitrary (generally non-orthogonal) set of states j j N0 1y = ¼ -{ } ( ). (Note: the orthogonality of

jñ{∣ }allows us to pairwise use the above construction for each jy ñ∣ .)
For aMarkovian process discretized such that the stochasticmatrix with elements pjk describes its evolution,

the above prescription supplies the unitary operation required for our quantum simulator whenwe set each
S p kj j k

N
kj0

1y ñ = ñ = å ñ=
-∣ ∣ ∣ , as per equation (4) (states kñ{∣ }and jñ{∣ }are in the same basis).

Wemay now evaluate the action of a single time-step (grey dashed boxwithinfigure 2). Here, the joint
Hilbert space corresponds to that of the internalmemory togetherwith the output tape. In the figure, we
explicitly wrote the initial state of the output tape as S0fñ = ñ∣ ∣ , but this is arbitrary; any fñ∣ could bemade into
S0ñ∣ by acting on itfirst with a unitary gate containing S0 fñá∣ ∣. At the start of a time step, the internalmemory is
in state S S p kt

j k
N

kj0
1ñ = ñ = å ñ=

-∣ ∣ ∣ . Hence, the joint state of thememory and output tape is initially Sj fñ Ä ñ∣ ∣ .

After the controlled unitary is applied, thememory and tapewill be in the entangled state p k Sk kj kå ñ Ä ñ∣ ∣ .

Applying a coherent swap operation (i.e. exchanging the labels of theHilbert spaces)will take this joint state to
p j S kk k kå ñ Ä ñ∣ ∣ —the state of the system at the end of the grey box.

The tape system is then ejected from the simulator. If onewere tomeasure this state in the kñ{∣ }basis, one
projects onto state kñ∣ with probability pkj, and hence the output statistics of thismeasurementmatch that of the
process being simulated.Moreover, aftermeasuring, due to the entanglement, we know thatwhen kñ∣ is
measured, the internalmemorymust be in state Skñ∣ , which is exactly the quantum state that would have been
prepared if we hadmapping the output statistics onto a classical causal state and then prepared Skñ∣ directly.
Hence, the quantum circuit infigure 2 can function as a discretized simulator for aMarkovian process.

However, it is very important to note that there is no needwhatsoever tomeasure the output tape kñ∣ for the
quantum simulator to continue functioning. If it suits oneʼs purpose to store the output states in quantum
memory (e.g. to perform further quantum information processing on the output data), then the quantum
simulator still functions correctly. In thismode of operation, themeasurements can be omitted from figure 2,
and afterM steps, the simulator would have produced the entangled state

P Y y Y y S S S y y y y, , , , 7
i i

t
i

t M
i

t t M t
i i i y M

M

M M

1

1 1 1å åFñ= ¼ = ¼ = ¼ ñ Ä ñ Ä ¼ ñ+ +
+∣ ( ∣ ) ∣ ( ) ∣ ∣ ( )

where S S y y, ,t M t
i iM1
¼ ñ+∣ ( ) is the quantum state thatwould have been prepared if the systemwas originally in

causal state S t then outputted string y yi iM1
¼ , and a new causal state directly set according to this output

sequence.Measuring the string of output tape subsystems thus still ensures that the internalmemory state
collapses into the correct causal state St Mñ+∣ , conditional on the string observed.

In thefirstmode of operation (as drawn infigure 2), only one ancillary quantum system is required, as it can
be reset and re-used between timesteps (the output tape carries away classical information only). In the second
mode, the quantumoutput explicitly fulfils the role of the ancillary system, and a fresh ancillary system
(provided by the ‘blank’ output tape set to some fixed choice of pure quantum state) is inserted at each time step.
In bothmodes, the ancillary systemdoes not need to persist between time steps in order for the simulator to
continue producing statistically correct outputs. As such, in both cases, it is the vonNeumann entropy

Tr logr r- of the first subsystem, which remains within the simulator at all times, that we consider to be the
internalmemory cost.

Derivation of discrete eigenspectrum
The quantummachine state corresponding to the systembeing in classical stateα is given as
S p bñ = å ña b ba∣ ∣ . Assuming pba ba{ } is simply connected, the quantummachinewill reach a stationary state

S S
N

1r = å ñáa a a∣ ∣. Rather than directly calculating the entropy of ρ, we can instead evaluate the entropy of the
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associatedGrammatrix g, whose elements gab are given by the overlaps S S
N

1 á ña b∣ 11. The circular symmetry of
the cyclic randomwalk ensures that the discretized transition probabilities satisfy p p k k=ab a b+ +( )( ) (that is, the
transition probabilities depend only on differences between indices). It hence follows that theGrammatrix
associatedwith ρ is circulant [35]. Since all rows can be derived by cyclic permutation of the top row,we shall
drop one index andwrite the top row as g g0=a a. The eigenvalues of theGrammatrix are given by

g kexpk N

2 il a= å -a a
p( ) for k N0, , 1= ¼ - , which can immediately be recognised as theDFTof ga a{ } ,

whichwe denote as g0 a( ).
Moreover, the inner product S S p pj j0 0á ñ = åa a a∣ , has the formof a convolution p q* , wherewe have

rewritten p ja as q j0 a-( ) such that q is theN-periodic extension of the reflection of p; q pj N j0 0= -( ) and

q qj j N0 0= +( ).Wemay then apply the circular convolution theorem tofind the eigenvalues of g, and therefore

ofρ:

N
p p

1
. 8k j N j0 0 l = -[ ] [ ] ( )( )

These eigenvalues can hence be found efficiently by numerical algorithms, such as the fast-Fourier transform.

Example (Dirac-delta shift function). Let the shift function be P x x x0d= -( ) ( ) for some x 0, 10 Î [ ). It can
be seen that all p 0j0 = except for the one at index j¢ that incorporates the delta peakwhere p 1j 0 =¢ . Hence,

p kexp 2 ij
j

N0 p= - ¢( )( ) and p kexp 2 iN j
N j

N0 p= --
- ¢( )( )( )

( )
, and so k N

1l = for allk. Thus, the von

Neumann entropy of the simulatorʼsmemory is Nlog .

Example (Uniform shift function).Consider the uniform shift function P x 1=( ) for x 0, 1Î [ ). Here,

pj N0
1= , and so p Nj0 =[ ] for k=0 and 0 for all other k. As such, wefind that the eigenvalue 10l = , and

all other eigenvalues 0N1 1l l= ¼ =- , and hence the entropy of theGrammatrix is zero, for all values ofN.

Sampling Fourier transforms
It will be useful to show an auxiliary relationship between discrete and continuous Fourier transforms Let g x( )
be a function over the range x 0, 1Î [ ] that is sampled atN equally spaced points with values given by

g gn
n

N
= ( ) for n N0 1= ¼ - .We can construct a function g x x g xn

N n

Ncomb 0
1 d= å -=

- ( )( ) ( ), whose Fourier
transform is

g x x x
n

N
g x kx

g
n

N

n

N
k

d exp 2 i

exp 2 i , 9

n

N

n

N

comb
0

1

0

1

 ò å

å

d p

p

= - -

= -

-¥

¥

=

-

=

-

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ( )) ( ) ( )

( )

whichwhen evaluated at integer k is exactly theDFTof the samples gn{ }, whichwewrite as kl{ }.
If g is periodic, it is always possible to offset the position of the sample windowof g by some integer cwithout

changing the values of gʼsDFT. For the functionswe consider in this article, it ismore convenient to start at N

2
- ,

since typically g g, 0N N
2 2

- and g 10 = .Moreover, once the sample windowhas been set, the values of g x( )
outside this window can not affect kl , since they do not feature in the sum. Thus, instead of considering
sampling g x( ) across afinite window,we can consider an infinite delta train sampled at the same intervals, but

across a function g xonce ( )where g x g xonce =( ) ( ) inside the range of the sample window (i.e. ,1

2

1

2
-⎡⎣ ) for the

windowused in this article) and g x 0once =( ) outside this range. Here

g x g x x
n

N

g x x
n

N

g x k mN , 10

k

n N

n

m

comb

2

once

once

N
2

 





å

å

å

l d

d

d

= = -

= -

= * -

=-

=-¥

¥

=-¥

¥

⎜ ⎟

⎜ ⎟

⎛

⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( ( )) ( )

( )

( ( )) ( ) ( )

11
Thisworks by constructing a fictitious purification of ρ, given S ii N i

1Yñ = å ñ Ä ñ∣ ∣ ∣ (where i iñ{∣ } is an orthonormal basis) such that
TrB rYñáY =∣ ∣ and gTrA YñáY =∣ ∣ . Since the vonNeumann entropy of pure state Yñ∣ is 0, it follows from triangle inequalities
that H H gr =( ) ( ).
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wherewe have used the convolution theorem in the final step. The periodic sampling of g x( ) causes the Fourier
transform to be periodic with periodN (a phenomenon known as aliasing), such that ;k k Nl l= + the
convolutionwith a delta train effectivelymakes kl a periodic sum of g xonce ( ( )). This periodicity allows us the
freedom to choose a convenient range of k. In this article, wewill typically use N

2
- to 1N

2
- . If g x 0once »( ( ))

outside the chosen range, thenwe can approximate

g x k . 11k oncel » [ ( ( ))]( ) ( )

Asymptotic limit of eigenvalues
For largeN, we can derive an expression for kl in terms of the probability density function P x( ).We substitute
p 0a with P

N N

1 a( ), which for Riemann-integrable P x( ) is an arbitrarily good approximation in the limit of

N  ¥. Similarly, wemay substitute p ja with P
N

j

N

1 - a-( )◦ , where P x( )◦ denotes the 1-periodic extension12 of

P x( ). Taking the limit of the Riemann sum for a product of two functions, we then see

S S p p

N
P

N
P

j

N

x P x P y x

lim lim

lim
1

d , 12

N j
N

N

j

N

N

0
0

1

0

0

1

0

1

ò

å

å a a

á ñ =

= -
-

= -

a
a a

a

¥
¥ =

-

¥ =

-
⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

∣

( ) ( ) ( )

◦

◦

where y
j

N
= .Moreover, since P only has support in 0, 1[ ), we can rewrite the integral limits from-¥ to¥,

and conclude that S S P x P x ylimN j0á ñ = * -¥ ∣ [ ( ) ( ) ]( )◦ sampled at y 0, ,
N

N

N

1 1= ¼ - . Thus by treating

gj as samples from a function g y
j

N
=( ) at discrete intervals of

N

1 , we find that g g yj N

j

N

1» =( ) for largeN, and
hence

g y
j

N
P x P x y . 13= = * -⎜ ⎟⎛

⎝
⎞
⎠ [ ( ) ( ) ]( ) ( )◦

As shown in equation (10), the eigenvalues kl{ }are given by g x k mNk moncel d= * å -=-¥
¥[ ( ( )) ( )]

evaluated at integers k N0, 1, 1= ¼ - , where g y g yonce =( ) ( ) over an (arbitrary) single period of g y( ) and
takes the value zero elsewhere. Due to the periodic summation, it can be seen also that k k Nl l= + , and sowe are

also free to choose themost convenient range for k, whichwill typically be from N

2
- to 1N

2
- . If

g k 0once »[ ( )]( ) when k N

2
>∣ ∣ , then the approximation

g k k
N N

for
2

,
2

1 14k oncel » = - ¼ -[ ( )]( ) ( )

is reasonable. This assumption amounts taking enough samples of g x( ) to admit a faithful reconstruction of
g x( ) under theNyquist–Shannon theorem [36]. This holds true for the examples we shall now consider, where
wewill ultimately take large values ofN.

Example 1 (Gaussian noise). Suppose the shift function of the particle is given by aGaussian distribution

G x exp x
,

1

2 2

2

2= -m s s p
m

s
-( )( ) ( )

aboutμwith standard deviation 1s  such thatwe can ignore the probability

of the particle looping around the ring.

Derivation of eigenvalues
Wecan express G x,m s ( ) as aGaussian:

G x
x

x

G x

2 exp
4

2 2 2 2 exp
2 2

2 2 . 15

,

2

2

1
2

2

, 2

1
2

1
4

1
2

1
4

1
2

1
2

1
2

1
4

s p
m

s

s p s p
m
s

s p

= -
-

= -
-

=

m s

m s

- -

- -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

It can be easily verified that g x g x, ,- =m s m s-( ) ( ).

12
Equivalent towrapping x to 0, 1[ ) before evaluating P x( ).
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Wealso note that g x, m s( ( )) is alsoGaussian:

g x k k

k
k

k g k

exp 2 i exp 2

2
1

2
exp 2 i 2

1

2
exp

2

2 exp 2 i 16

,
2 2

1 2

1

2

2

1
0, 1

2

1
2

1
2

1
2

 p m ps

p
ps

p m p
ps

p s p m

= -

= - -

= -

m s

ps

ps

-
-

- -

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )

( ( )) ( ) ( ( ) )

( ) ( ) · ( )

( ) ( ) ( ) ( )

Likewise, we can express G x,
2

m s[ ( )] as aGaussian:

G x
x

x

G x

2 exp

2 2
2

2 exp
2

2 2 . 17

,
2 2 1

2

2

1
1 2

2

2

1
,

2

1
2

1
2

1
2

1
2

1
2

s p
m

s

s p
s

p
m

s p

= -
-

= -
-

=

m s

s

m s

- -

- - -
-

-

- - -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )

[ ( )] ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Taken together (making sure to substitute in the correctlymodified values ofμ andσ), this allows us to
provide an analytic solution for equation (14) for Gaussian shift functions:

G x G x

g x G x

G x G x

k k G k

G k

G k

2 2

2 2 2 2 exp 2 i exp 2 i

2
1

2 2
2 2

. 18

k , ,

, ,

, 2 , 2

1 2
0, 1

2 2

2

1
1

0, 1
4

0, 1
4

1
2

1
2

1
2

1
2

1
2

 

 

 

l

s p

s p p s p m p m

p s
ps

p

= -

=

=

= -

=

=

m s m s

m s m s

m s m s

ps

ps

ps

-

-

- -

- -
-

- -

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) · ( )

( ) ( ) ( )

( ) ( )

Hence, we see that choosingGaussian transfer functionwith standard deviation 1s  corresponds to a
spectrumof eigenvalues with standard deviation 1

4ps
.

Upper bound on quantummemory cost
Wenowdemonstrate that the entropy of such a system, given H logQ k k k2l l= -å , isfinite by bounding it

from above. For convenience, wewrite k G k A Bkexp0,
21

4
l = -

ps
( ) ≔ ( ) ( )where A: 2 2ps= and B: 8 2 2p s= ,

andwill perform the calculation in units of nats. Thus, consider c k k klnl l= -( ) ( ) ( ), explicitly

c k A Bk Bk Aexp ln . 192 2= - -( ) ( )( ) ( )

By setting ABk Bk Bk A2 exp ln 1 0c

k

d

d
2 2= - - + + =( )( ) , wefind that c k( ) has stationary points at k=0,

¥ andwhen

k
A

B

ln 1 ln 2 2 1

8
. 20

2 2

ps
p s

= 
+

= 
+( ) ( )

When 0.073
e

1

2 2
s < »

p
, these last two solutions disappear, and sincewe are in the regime of 1s  , this

condition is satisfied.Hence, for smallσ, c k( )monotonically decreases from itsmaximumvalue at k=0 for
both positive and negative k. This allows us to apply theMaclaurin–Cauchy integral bound (see e.g. [37]),

c k k c k c m c k kd d , 21
m k m m

 ò òå +
¥

=

¥ ¥
( ) ( ) ( ) ( ) ( )

which holds for anymonotonically decreasing region m, ¥[ ) of a function c k( ) (here,m=0).
Using known results for definite Gaussian integrals,

x
B

x x
B

e d
1

2
and e d

1

4
, 22Bx Bx

0 0

2
3

2 2

ò ò
p p

= =
¥

-
¥

- ( )
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we evaluate

c k k AB
B

A A
B

A

B
A

A

d
1

4
ln

2

1

2
ln

1

2

1

2
ln . 23

0 3ò
p p

p

= -

= -

= -

¥

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

Since c A A0 ln= -( ) , wefind from equation (20) that

c k A A A

A A

1

2
ln ln ,

1

4

1

2
ln . 24

k m





å - -

- +

=

¥
⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

To obtain a bound onHQ, we double the above since c k( ) is even, andmultiply by 1

ln 2
to convert from nats to bits

(equivalently, change the base ln to log2 since xlogxln

ln 2 2= ): H A A1 2 logQ
1

2 ln 2 2 - +( ) . In terms of the
shift functionʼs standard deviationσ, this gives our result

H
1

2 ln 2
1 4 2 log 2 2 . 25Q 2 ps ps- +( ) ( )

In the limit of smallσ, the leading termof the entropy thus scales with log2s- , such that halving thewidth
of the standard deviation adds one bit to themaximum required quantummemory cost.

Example 2 (Uniformwhite noise).The normalised top-hat (rectangular) shift function allowing for jumps of
up toD around a constant displacementμ is written

S x
xfor ,

0 otherwise.
26

1

2
 m m= - D + D

D D
⎪

⎪

⎧
⎨
⎩( ) ( )

Derivation of eigenvalues
Taking the square root of this function alters its normalisation, but not its shape: S x S x2= DD D( ) ( ).

Suppose 0 1

2
< D < . In this case, S x S x* -D D( ) ( ) yields the triangle function

S x S x

x

x

1 for 0 2 ,

1 for 2 0,

0 otherwise.

27

x

x
2

2

 
* - =

- D

+ - D <D D

D

D

⎧
⎨⎪

⎩⎪
( ) ( ) ( )

This function is independent of the constant displacementμ. Indeed, non-zeroμ only results in perfectly
cancelling terms e k2 ip m and e k2 ip m- in the Fourier transform.

Basic Fourier analysis tells us that S xD( ) transforms into a normalised sinc function ( x x xsinc sin p p= ( ) ),
and the triangle function into the square of this: S x S x k2 sinc 22 * - = D DD D( ( ) ( )) ( ). As this tends to 0 for
large k, we can approximate the values of kl for largeNusing equation (14), tofind the eigenspectrum

k k
N N

2 sinc 2 for
2

,
2

1. 28k
2l = D D = - ¼ -( ) ( )

Upper bound on quantummemory cost
Through the careful deployment ofmildly intimidating algebra, we can also derive an upper bound on entropy
cost of simulating the square shift function. The outline of the proof is as follows. To bound c kkå ( )where
c k lnk kl l= -( ) , wefirst construct amonotonically decreasing function kd( ) that satisfies c k kd( ) ( ) at
every k, and then show that kdå ( ) is bounded from above. This sumwill hence also upper-bound c kkå ( ). As
with theGaussian example, for algebraic convenience, wewill use natural logarithms and only consider the
region of positive k. In thefinal stage, wewill convert from nats to bits, and use the evenness of c k( ) to arrive at
the full bound.

Explicitly, wewrite

c x
x

x

x

x
2

sin
ln 2

sin
, 29

2

2

2

2
= - D D

⎛
⎝⎜

⎞
⎠⎟( ) ( )

wherewe havemade the substitution x k2p= D.
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In the region x 0> , we can expand

c x
x

x
x

x
2

sin
ln sin 2 ln

2
. 30

2

2
2= - D -

D

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ( )

The function y yln- has amaximumvalue of
e

1 at y=e, and sowe can upper bound c x( ) bymaking the

substitution of x xsin lnsin2 2- with
e

1 . Since xsin 0, 12 Î [ ], in the region x 2> D where 4 ln 0x

2
D >

D( ) ,

we can likewise upper bound c x( ) bymaking the substitution of xsin2( )with 1. Thus, for the region x 2> D ,
we have a function f x c x( ) ( ) given

f x
x e

x2 1
2 ln

2
. 31

2
=

D
+

D

⎡
⎣⎢

⎤
⎦⎥( ) ( )

However, as we plan to ultimately apply theMaclaurin–Cauchy integral convergence test, it is only
convenient to use this upper bound in the region of xwhere f x( )monotonically decreases.We identify this

region by setting 2 ln 1 0
f

x x

x

e

d

d

4

2

1
3= - + - =D

D( ) , tofind that f x( ) decreasesmonotonically when

x 2 exp e

e

1

2
 D -( ), descending from itsmaximumvalue of exp e

e

1 -( ).
However, once again consider c x( ). Since it has the formof y yln- , it follows that in any region, c x

e

1( ) .

Since e

e e

1 1>- , we can then upper bound c x( ) in the region of x0 2  D to form themonotonically

decreasing function xd( ) given

x
x

x
x

d
exp 0 2 exp

2
2 ln 2 exp ,

32

e

e

e

e

e

x e

e

1 1

2

2

1

2

1

2

 
=

D

D
+ > D

- -

D

-

⎧
⎨⎪

⎩⎪
⎡⎣ ⎤⎦

( ) ( )
( )

( ) ( )

that is guaranteed to satisfy d x c x( ) ( ) for all x 0 . At this point, it is convenient to express this again in terms

of k, making the substitution k exp e

esplit
1

2

1

2
=

p D
-( ):

k
k k

k
k k k

d
exp 0

1

2
2 ln 2 ,

33

e

e

e

1
split

2 2

1
split

 

p
p

=

D
+ D >

-⎧
⎨⎪

⎩⎪
⎡⎢ ⎤⎥

⎡⎣ ⎤⎦ ⎡⎢ ⎤⎥
( )

( )
( )

( )

where ksplit
⎡⎢ ⎤⎥ represents the lowest integer above (or including) ksplit. This rounding is necessary since

k exp e

esplit
1

2

1

2
=

p D
-( ) is in general not an integer. To upper bound c k( ) at all points, wemust round up this

split between the regions of k, since exp e

e

1 -( )upper bounds all f k( ). (I.e. being slightly too inclusive in thefirst
regionwill result in a slightly higher value of kd( ) for thefirst k satisfying k ksplit .)

Having derived ourmonotonically decreasing function kd( ), we are now in a position to show that

kdk 0å =
¥ ( ) isfinite for 0D > .Writing k kd dk

k

k k0
split

split
å + å= =

¥
⎡⎢ ⎤⎥

⎡⎢ ⎤⎥( ) ( ) (for an upper bound, it isfine if a term is

counted twice!), we evaluate the two regions separately. Firstly,

k
e

e

e

e

e

e

e

e

d 1
1

2
exp

1

2
exp

1

exp
1 1

2
exp

1

2
, 34

k

k

0

split

å
p

p

+
D

- -

=
-

+
D

-
=

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎢ ⎤⎥
( )

( )

wherewe have used exp 1 expe

e

e

e

1

2

1

2

1

2

1

2
+ >

p pD
-

D
-⎡⎢ ⎤⎥( ) ( ) . Secondly, using theMaclaurin–Cauchy integral

test (see e.g. [37]), we bound

k k k k

e

e
k k

d d d d

exp
1

d d , 35

k k k

k

split

split
split

split





ò

ò

å +

-
+

=

¥ ¥

¥
⎜ ⎟

⎡⎢ ⎤⎥
⎛
⎝

⎞
⎠

⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥
( ) ( ) ( )

( ) ( )

where the second line follows by substituting kd split
⎡⎢ ⎤⎥( )with themaximumvalue of kd( ), and by failing to

round up the lower bound of the integral (thus including an extra contribution equal to k kd d 0
k

k

split

split ò
⎡⎢ ⎤⎥ ( ) ).

This integralmay be analytically solved,
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k e
k

k e
k

e

e

1

2

1 1
2 ln 2

1

2

1
2 2 ln 2

3

2
exp

1

2
. 36

k

e
e

2 2

2
1
2

exp 1
2

split
òp

p

p
p

p

D
+ D

=
-
D

+ + D

=
D

-
p

¥

D
-

¥

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

( )

( )

( )

( )

Combining these two terms, we arrive at:

k
e

e

e

e
d

4

2
exp

1

2
2 exp

1
. 37

k 0

å
p D

-
+

-

=

¥
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

Finally, to bound the entropy H logQ k k2l l= -å¥
¥ , wemust double the above (c k( ) is even, and

equation (37) bounds only the region 0, ¥[ )), andwe convert fromnats to bits (by including a factor of 1

ln 2
):

H
e

e

e

e

8

ln 2 2
exp

1

2

4

ln 2
exp

1
. 38Q 

p D

-
+

-⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

By evaluating the constant terms, approximately,

H
1.894

3.067, 39Q 
D

+ ( )

yielding our result.

ORCID iDs

Andrew J PGarner https://orcid.org/0000-0002-3747-9997

References

[1] IEEE 2008 754-2008 - IEEE Standard for Floating-Point Arithmetic (NewYork: IEEE) (https://doi.org/10.1109/
IEEESTD.2008.4610935)

[2] DeutschD 1985Quantum theory, the church-turing principle and the universal quantum computer Proc. R. Soc.A 400 97–117
[3] DeutschD and Jozsa R 1992Rapid solution of problems by quantum computation Proc. R. Soc.A 439 553–8
[4] Grover LK 1996A fast quantummechanical algorithm for database searchProc. 28thAnnual ACMSymp. on Theory of Computing,

STOC ’96 (NewYork: ACM) pp 212–9
[5] Shor PW1997 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM J. Comput.

26 1484–509
[6] Cleve R, Ekert AK,Macchiavello C andMoscaM1998Quantum algorithms revisitedProc. R. Soc.A 454 339–54
[7] vanDamW2000Nonlocality and communication complexity PhDThesisUniversity ofOxford
[8] deWolf RM2001Quantum computing and communication complexity PhDThesisUniversity of Amsterdam
[9] BrassardG2003Quantum communication complexity Found. Phys. 33 1593–616
[10] Crutchfield J P andYoungK1989 Inferring statistical complexity Phys. Rev. Lett. 63 105–8
[11] Shalizi CR andCrutchfield J P 2001Computationalmechanics: pattern and prediction, structure and simplicity J. Stat. Phys. 104

817–79
[12] Crutchfield J P, EllisonC J andMahoney J R 2009Timeʼs barbed arrow: irreversibility, crypticity, and stored information Phys. Rev.

Lett. 103 094101
[13] Crutchfield J P 2011 Between order and chaosNat. Phys. 8 17–24
[14] Haslinger R, Klinkner KL and Shalizi CR 2010The computational structure of spike trainsNeural Comput. 22 121–57
[15] Shalizi CR, Shalizi K L andHaslinger R 2004Quantifying self-organizationwith optimal predictors Phys. Rev. Lett. 93 118701
[16] Marques da Silva J G, Sartorelli J C, GonçalvesWMandPinto RD1997A scale law in a dripping faucet Phys. Lett.A 226 269–74
[17] Clarke RW, FreemanMP andWatkinsNW2003Application of computationalmechanics to the analysis of natural data: an example

in geomagnetism Phys. Rev.E 67 016203
[18] Park J B, Lee JW, Yang J-S, JoH-H andMoonH-T 2007Complexity analysis of the stockmarket PhysicaA 379 179–87
[19] Li C-B, YangH andKomatsuzaki T 2008Multiscale complex network of protein conformational fluctuations in single-molecule time

seriesProc. Natl Acad. Sci. USA 105 536–41
[20] LuC andBrooks RR2012 P2P hierarchical botnet traffic detection using hiddenMarkovmodels Proc. 2012Workshop on Learning from

Authoritative Security Experiment Results—LASER ’12 (NewYork: ACM) pp 41–6
[21] ShannonCE 1948Amathematical theory of communicationBell Syst. Tech. J. 27 379–423, 623–56
[22] Schumacher B 1995Quantum codingPhys. Rev.A 51 2738–47
[23] Winter A 1999Coding theorems of quantum information theory PhDThesisUniversit’´at Bielefeld
[24] Ladyman J, Lambert J andWiesner K 2013What is a complex system? Eur. J. Phil. Sci. 3 33–67
[25] GuM,Wiesner K, Rieper E andVedral V 2012Quantummechanics can reduce the complexity of classicalmodelsNat. Commun. 3 762
[26] SuenWY,Thompson J, Garner A J P, Vedral V andGuM2017The classical-quantumdivergence of complexity inmodelling spin

chainsQuantum 1 25
[27] Mahoney J R, Aghamohammadi C andCrutchfield J P 2016Occamas quantum strop: synchronizing and compressing classical cryptic

processes via a quantum channel Sci. Rep. 6 20495

14

New J. Phys. 19 (2017) 103009 A J PGarner et al

https://orcid.org/0000-0002-3747-9997
https://orcid.org/0000-0002-3747-9997
https://orcid.org/0000-0002-3747-9997
https://orcid.org/0000-0002-3747-9997
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1023/A:1026009100467
https://doi.org/10.1023/A:1026009100467
https://doi.org/10.1023/A:1026009100467
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1103/PhysRevLett.103.094101
https://doi.org/10.1038/nphys2190
https://doi.org/10.1038/nphys2190
https://doi.org/10.1038/nphys2190
https://doi.org/10.1162/neco.2009.12-07-678
https://doi.org/10.1162/neco.2009.12-07-678
https://doi.org/10.1162/neco.2009.12-07-678
https://doi.org/10.1103/PhysRevLett.93.118701
https://doi.org/10.1016/S0375-9601(96)00941-3
https://doi.org/10.1016/S0375-9601(96)00941-3
https://doi.org/10.1016/S0375-9601(96)00941-3
https://doi.org/10.1103/PhysRevE.67.016203
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1073/pnas.0707378105
https://doi.org/10.1073/pnas.0707378105
https://doi.org/10.1073/pnas.0707378105
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1038/ncomms1761
https://doi.org/10.22331/q-2017-08-11-25
https://doi.org/10.1038/srep20495


[28] PalssonMS, GuM,Ho J,WisemanHMandPrydeG J 2017 Experimentallymodeling stochastic processes with lessmemory by the use
of a quantumprocessor Sci. Adv. 3 e1601302

[29] Riechers PM,Mahoney J R, Aghamohammadi C andCrutchfield J P 2016Minimized state complexity of quantum-encoded cryptic
processes Phys. Rev.A 93 052317

[30] Aghamohammadi C,Mahoney J R andCrutchfield J P 2017The ambiguity of simplicity in quantum and classical simulationPhys. Let.
A 381 1223–27

[31] Mahoney J R, EllisonC J andCrutchfield J P 2009 Information accessibility and cryptic processes J. Phys. A:Math. Theor. 42 362002
[32] Wiesner K,GuM,Rieper E andVedral V 2012 Information-theoretic lower bound on energy cost of stochastic computationProc. R.

Soc.A 468 4058–66
[33] Still S, SivakDA, Bell A J andCrooks GE 2012Thermodynamics of prediction Phys. Rev. Lett. 109 120604
[34] Garner A J P, Thompson J, Vedral V andGuM2017The thermodynamics of complexity and patternmanipulation? Phys. Rev.E 95

042140
[35] GrayRM2005Toeplitz and circulantmatrices: a review Found. Trends Commun. Inf. Theory 2 155–239
[36] ShannonCE 1949Communication in the presence of noiseProc. IRE 37 10–21
[37] KnoppK 1990Theory andApplications of Infinite Series 2nd english edn (NewYork:Dover)

15

New J. Phys. 19 (2017) 103009 A J PGarner et al

https://doi.org/10.1126/sciadv.1601302
https://doi.org/10.1103/PhysRevA.93.052317
https://doi.org/10.1016/j.physleta.2016.12.036
https://doi.org/10.1016/j.physleta.2016.12.036
https://doi.org/10.1016/j.physleta.2016.12.036
https://doi.org/10.1088/1751-8113/42/36/362002
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1098/rspa.2012.0173
https://doi.org/10.1103/PhysRevLett.109.120604
https://doi.org/10.1103/PhysRevE.95.042140
https://doi.org/10.1103/PhysRevE.95.042140
https://doi.org/10.1561/0100000006
https://doi.org/10.1561/0100000006
https://doi.org/10.1561/0100000006
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969

	Cyclic random walks
	Classical simulation costs scale with precision
	Quantum simulators are memory–efficient
	Unbounded advantage of quantum memory
	The origin of quantum advantage
	Discussion and outlook
	Acknowledgments
	Appendix
	Classical costs from computational mechanics
	Details of the quantum circuit in figure 2
	Derivation of discrete eigenspectrum
	Sampling Fourier transforms
	Asymptotic limit of eigenvalues
	Derivation of eigenvalues
	Upper bound on quantum memory cost
	Derivation of eigenvalues
	Upper bound on quantum memory cost

	References



