
Multi-property-preserving Domain Extension

Using Polynomial-Based Modes of Operation

Jooyoung Lee1 and John Steinberger2,�

1 The Attached Institute of Electronics and Telecommunications Research Institute,
Daejeon, Korea

jlee05@ensec.re.kr
2 Institute of Theoretical Computer Science, Tsinghua University, Beijing, China

jpsteinb@gmail.com

Abstract. In this paper, we propose a new double-piped mode of oper-
ation for multi-property-preserving domain extension of MACs (message
authentication codes), PRFs (pseudorandom functions) and PROs (pseu-
dorandom oracles). Our mode of operation performs twice as fast as the
original double-piped mode of operation of Lucks [15] while providing
comparable security. Our construction, which uses a class of polynomial-
based compression functions proposed by Stam [22, 23], makes a single
call to a 3n-bit to n-bit primitive at each iteration and uses a finaliza-
tion function f2 at the last iteration, producing an n-bit hash function
H [f1, f2] satisfying the following properties.

1. H [f1, f2] is unforgeable up to O(2n/n) query complexity as long as
f1 and f2 are unforgeable.

2. H [f1, f2] is pseudorandom up to O(2n/n) query complexity as long
as f1 is unforgeable and f2 is pseudorandom.

3. H [f1, f2] is indifferentiable from a random oracle up to O(22n/3)
query complexity as long as f1 and f2 are public random functions.

To our knowledge, our result constitutes the first time O(2n/n) unforge-
ability has been achieved using only an unforgeable primitive of n-bit
output length. (Yasuda showed unforgeability of O(25n/6) for Lucks’
construction assuming an unforgeable primitive, but the analysis is sub-
optimal; in the appendix, we show how Yasuda’s bound can be improved
to O(2n).)

In related work, we strengthen Stam’s collision resistance analysis of
polynomial-based compression functions (showing that unforgeability of
the primitive suffices) and discuss how to implement our mode by replac-
ing f1 with a 2n-bit key blockcipher in Davies-Meyer mode or by replacing
f1 with the cascade of two 2n-bit to n-bit compression functions.

1 Introduction

The Merkle-Damg̊ard transform has been the most popular method to build a
cryptographic hash function from a fixed-size compression function. A major
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advantage of this construction is that it preserves collision resistance with an
appropriate padding algorithm, allowing one to focus on the construction of se-
cure compression functions. However, Joux showed that if computing collisions
becomes somehow feasible for the underlying compression function, then the
hash function may fail worse than expected: for a hash function based on a
compression function of n-bit output, one can find a t-multicollision only with
O(2n/2 log t) complexity, which is much smaller than O(2(t−1)n/t) required for
an ideal random function. This observation led to several generic attacks such
as long-message second preimage attacks [13] and herding attacks [12]. Lucks
observed that these weaknesses can be mitigated by increasing the size of the
internal state and claimed that the internal state size should be seen as a security
parameter of its own right [15]. Since a secure compression function of a larger
output size might be harder to construct than the hash function itself, Lucks pro-
posed to use a “narrow” compression function in a double-piped mode. In a sub-
sequent paper [24], Yasuda rigorously analyzed the security of the double-piped
mode of operation as a multi-property-preserving domain extension. Specifically,
he showed that Lucks’ double-piped mode of operation preserves unforgeability
up to O(25n/6) query complexity, and indistinguishability and indifferentiability
both up to O(2n) query complexity. Moreover it was later noticed by several re-
searchers that Yasuda’s unforgeability bound could be increased to O(2n) with
a slightly modified proof. (See appendix B.)

As such Lucks’ construction turned out to provide nearly optimal security.
However, the fact that Lucks’ compression function uses two applications of a
(fairly strong) primitive remains a drawback. Stam [22, 23] recently proposed a
class of wide-pipe compression functions making a single call to an equal prim-
itive (we call these polynomial-based compression functions). In this paper we
analyze the security properties of double-piped modes using Stam’s polynomial-
based compression functions, focusing on MAC-preservation, PRF-preservation
and PRO-preservation. Except for PRO-preservation (where we only achieve
O(22n/3) security), our bounds are comparable to those found by Yasuda for
Lucks’ original construction (and even better for unforgeability, given the sub-
optimality of Yasuda’s bound in that case, though the “corrected” unforgeability
bound exceeds ours by a factor of n) even though our construction has twice the
rate.

Besides performance, a second concern that arises for Lucks’ double-pipe con-
struction is the rather strong primitive it assumes: a 3n-bit to n-bit function
(note that careful consideration is typically already given for the construction of
2n-bit to n-bit compression functions from smaller or more available primitives).
Here we also tackle this problem and show our double-piped polynomial-based
mode can be implemented with a blockcipher of 2n-bit key in Davies-Meyer
mode, in either the ideal-cipher model or the weaker “unpredictable cipher”
model (see Section 5) without significant loss of security. We also prove MAC-
preservation and PRF-preservation for a compression function obtained by re-
placing the 3n-bit to n-bit primitive with the cascade of two 2n-bit to n-bit
primitives. This latter result potentially opens the door to implementing the
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Fig. 1. The polynomial-based mode of operation for c = n

compression function with two calls to an n-bit key blockcipher in Davies-Meyer
mode (which would be the first time, to our knowledge, that a 3n-bit to 2n-bit
compression function using two calls to an n-bit key blockcipher is proved secure
nearly up to the birthday bound).

Construction and Results. To keep our construction comparably general to
Lucks’ [15] and Yasuda’s [24], we discuss a hash function obtained by iterating
a (2n+ c)-bit to 2n-bit compression function φ[f1] where the primitive f1 used
by the compression function is a 2n + c-bit to n-bit compression function (the
“expected” setting of the parameters is c = n).

The compression function φ[f1] is illustrated in Fig. 1(a) for the case c = n of
a 3n-bit to 2n-bit compression function. Let u ∈ {0, 1}2n+c and let ud|| . . . ||u0

be the segmentation of u into n-bit blocks u0, . . ., ud−1 and a block ud of no
more than n bits (so d =

⌈
2n+c
n

⌉− 1). Then φ[f1](u) is defined by

φ[f1](u) = x||y,
where

x = f1(u),
y = udx

d + ud−1x
d−1 + · · ·+ u1x+ u0,

with all field operations taking place in F2n (and ud being viewed as embedded
in {0, 1}n). We call φ[f1] a polynomial-based compression function. This design
is due to Stam [22,23].
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Given an independent compression function f2 : {0, 1}2n+c → {0, 1}n, we
define a hash function

H [f1, f2] : {0, 1}∗ −→ {0, 1}n

M �−→ f2 (0c||v) ,
where v = MD[φ[f1]](M), the Merkle-Damg̊ard iteration of φ[f1] on message
M (with the usual “strengthened” padding for M that appends the length of the
message—see Section 2 for details). The scheme is pictured for c= n in Figure 1(b).

We comment at this point that our mode of operation uses two distinct prim-
itives instead of a single primitive f1 as do Lucks and Yasuda. As such, our
construction explicitly follows the framework of An and Bellare [1] for proving
unforgeability whereas Yasuda adopts it implicitly: with some extra work, one
can use f1 = f2 because the f2-queries are (with very high likelihood) all in-
dependent from f1-queries, due to the presence of the 0c input segment. (This
technique for reducing key material was first used by Maurer and Sjödin [19].)
We opt for using two primitives because it simplifies the proofs and allows sepa-
ration of the security properties required by f1 and f2 (the security requirements
for f1 being often much less than those for f2).

The following points summarize our results on φ[f1] andH [f1, f2]. For this sum-
mary we say that fi is unforgeable to mean that a computationally bounded ad-
versary with oracle access to fi has low probability of predicting the output of fi
on an unqueried value when fi is sampled from a keyed function family (as low as
for a random function of the same range). The query complexity of an attack on
a variable input length (VIL) function is the number of queries to the underlying
primitive necessary to compute the answers to the adversary’s queries.

1. We prove that φ[f1] is collision resistant up to O(2n/n) queries to f1 as long
as f1 is unforgeable. This result also implies the collision resistance of φ[f1]
against an information-theoretic adversary if f1 is a random function. It also
implies H [f1, f2] is unforgeable up to O(2n/n) query complexity as long as
f1 and f2 are unforgeable, and that H [f1, f2] is weakly collision resistant up
to O(2n/n) query complexity as long as f1 is unforgeable and f2 is weakly
collision resistant.

2. We prove that H [f1, f2] is pseudorandom up to O(2n/n) query complexity
as long as f1 and f2 are pseudorandom. In the complexity-theoretic model,
we can weaken the assumption so that f1 is unforgeable.

3. We prove that φ[f1] is preimage aware1 up to O(22n/3) query complexity as
long as f1 is a public random function. By the results of [6], this implies
H [f1, f2] is indifferentiable from a random oracle up to O(22n/3) query com-
plexity as long as f1 and f2 are public random functions.

1 Preimage awareness is a security notion introduced by Dodis, Ristenpart and Shrimp-
ton [6]. The Merkle-Damg̊ard iteration of a preimage aware compression function com-
posed with a random function results in a construction that is indifferentiable from a
random oracle, up to the preimage awareness security of the compression function and
the maximum message length queried to the iterated construction.
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Fig. 2. Variants of the quadratic compression function

Refinements. As mentioned, we also investigate two variants of the 3n-to-2n
bit polynomial-based compression function (a.k.a. the “quadratic” compression
function) with a view towards concrete implementations of the mode. These al-
ternate constructions are shown in Figure 2. The first variant replaces f1 by a
blockcipher E of 2n-bit key in Davies-Meyer mode. We show this compression
function ψ[E] is collision resistant up to O(2n/n) queries as long as E is “un-
predictable”, a notion we discuss in Section 5. Similar corollaries follow on the
security of the hash function obtained by iterating ψ[E].

The second is obtained by replacing f1 with the cascade of two 2n-bit to
n-bit compression functions h1 and h2. We show this compression function, de-
noted τ [h1, h2], is collision resistant up to O(2n/n3) queries as long as h1 and
h2 are unforgeable. It follows that the hash function G[h1, h2, f2] obtained by
iterating τ [h1, h2] (defined like H [f1, f2] but substituting τ [h1, h2] for φ[f1]) has
unforgeability security up to O(2n/n3) query complexity when h1, h2 and f2 are
unforgeable, has collision security up to O(2n/n3) query complexity when h1,
h2 are unforgeable and f2 is collision resistant, and is indistinguishable from a
PRF up to O(2n/n3) query complexity when h1, h2 are unforgeable and f2 is
pseudorandom.

Related Work. All the compression functions discussed in this paper, includ-
ing the cascaded and blockcipher variants, were proposed by Stam [22,23]. In [23]
Stam proves the collision resistance of polynomial-based compression functions of
degrees two and three in the random function model, and also proves the collision
security of the quadratic blockcipher mode in the ideal cipher model. Here our con-
tribution is that we weaken the model by showing collision resistance is already
assured when f1 and E are unforgeable/unpredictable rather than random. (It is
this weakening of the model that allows us to prove MAC-preservation results for
the resulting hash functions.) Regarding the quadratic cascade compression func-
tion, Stam proves collision resistance for a special class of non-adaptive adversaries
assuming random primitives. Our analysis supports fully adaptive adversaries and
once again weakens the model to unforgeable primitives.

Lucks [16] recently proposed a double-pipe hash function iterating a 3n-bit to
2n-bit compression function which, like the quadratic blockcipher-based mode,
uses a single call to a blockcipher of 2n-bit key. However, by contrast to the
quadratic blockcipher compression function, Lucks’ compression function is nei-
ther collision resistant nor preimage resistant. As a consequence, collision and
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preimage security can only be proved in the iteration (higher security notions
like indifferentiability are unaddressed). On the other hand, for n = 128 Lucks
gives a better explicit collision security bound than we do for the quadratic
blockcipher compression function: 2122 versus 2119 queries, respectively.

This paper can be seen as an extension of Yasuda’s work [24] since our main
achievement is to double the rate of that construction while maintaining com-
parable MAC-preservation and PRF-preservation properties. However, from a
technical standpoint we owe most to Dodis and Steinberger [7], whose
“multicollision-to-forgery” (MTF) balls-in-bins games are used in nearly all
of our analyses (the sole exception being the preimage awareness bound for
polynomial-based compression functions). Indeed, the main “message” of this
paper may well be the versatility and power of MTF games.

2 Preliminaries

F2n denotes a finite field of order 2n. Throughout our work, we will identify F2n

and {0, 1}n, assuming a fixed mapping between the two sets. For u ∈ {0, 1}∗, |u|
is the length in bits of u. For two bitstrings u and v, u||v denotes the concatena-
tion of u and v. For a set U , we write u $← U to denote uniform sampling from
U and assignment to u.

Let M ∈ {0, 1}∗ and let c ≥ 1 be message block length (as c will denote
throughout the paper). Then pad(M) := M ||10b||〈l〉 where b is the least integer
such that |M ||10b| is a multiple of c and where l is the number of c-bit blocks
in M ||10b. (This representation is possible as long as l < 2c, but this is not a
restriction for most applications.) The main property of pad(·) is that it gives a
suffix-free encoding of messages.

The (strengthened) Merkle-Damg̊ard transform produces a VIL-function
MD[F ] : {0, 1}∗ → {0, 1}n from a FIL-function F : {0, 1}n+c → {0, 1}n. Given a
predetermined constant IV ∈ {0, 1}n, the function MD[F ] is defined as follows.

Function MD[F ](M)

z[0]← IV
Break pad(M) into c-bit blocks, pad(M) = M [1]|| . . . ||M [l + 1]
for i← 1 to l + 1 do

z[i]← F (z[i− 1]||M [i])
return z[l+ 1]

3 Security Definitions

Unforgeability and Weak Collision Resistance. A function family is a
map f : {0, 1}κ × Dom(f)→ {0, 1}n where Dom(f) ⊂ {0, 1}∗. The bitstrings in
{0, 1}κ are the keys of f and we write fk(M) for f(k,M) for k ∈ {0, 1}κ and
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M ∈ Dom(f). The function fk is called a member of f . The unforgeability of f
as a secure message authentication code (MAC) is estimated by the experiment
Expmac

A described in Figure 3(a). In the experiment, an adversary A has oracle
access to fk(·) and tries to produce a valid tag z for a new message M . Here we
call a message M “new” if it has not been queried to oracle fk(·). The forgery
advantage of A is defined by

Advmac
f (A) = Pr [Expmac

A = 1] . (1)

The probability is taken over the random choice of k and A’s coins (if any).
We define Advmac

f (t, q, μ) as the maximum of Advmac
f (A) over all adversaries A

making at most q queries whose total combined length is at most μ bits (including
the forgery produced by A) and of “running time” at most t. The “running
time” is defined to be the total running time of the experiment, including the
time required to compute the answers to A’s queries. We write Advmac

f (t, q) for
Advmac

f (t, q, μ) if f is a family of fixed input length functions, as in this case μ
is automatically determined by q.

The weak collision resistance (WCR) of f is estimated by the experiment
Expwcr

A described in Figure 3(b). In contrast to the definition of collision resis-
tance (in the dedicated-key setting) where A is provided key k, A is allowed only
oracle access to fk(·). Let

Advwcr
f (A) = Pr [Expwcr

A = 1] . (2)

Then the weak collision resistance of f , denoted Advwcr
f (t, q, μ), is defined to

be the maximum of Advwcr
f (A) over all adversaries A making at most q queries

whose total combined length is at most μ bits and of running time at most t.
When f is a family of fixed input length functions we likewise write Advwcr

f (t, q)
instead of Advwcr

f (t, q, μ).
Our security proof for unforgeability will follow the approach developed by

An and Bellare [1]. One of their results is that f2 ◦MD[f1] is a VIL-MAC if f1
is a FIL-WCR and f2 is a FIL-MAC. With a slight modification, we summarize
Lemma 4.2 and Lemma 4.3 in [1] as the following lemma.

Lemma 1. Let f1 : {0, 1}κ × {0, 1}n+c → {0, 1}n and f2 : {0, 1}κ′ × {0, 1}n →
{0, 1}m be function families. Then,

Advmac
f2◦MD[f1] (t, q̃, μ) ≤ Advmac

f2 (t, q̃) + Advwcr
f1

(
t,

⌊μ
c

⌋
+ 2q̃

)
.

Remark 1.
⌊
μ
c

⌋
+2q̃ is the maximum number of queries to f1 required to compute

MD[f1](xi) for x1, . . . , xq̃ such that |x1|+ . . .+ |xq̃| ≤ μ.

Indifferentiability and Indistinguishability. In the indifferentiability frame-
work, a distinguisher is given two systems (F [P ],P) and (H,S[H]). Here P is
an ideal primitive used as a building block for the construction of F [P ]. An
ideal primitive H and a probabilistic Turing machine S[H] with oracle access
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Experiment Expmac
A

k
$← {0, 1}κ

(M, z)← Afk(·)

if M is new and fk(M) = z then
output 1

else
output 0

(a) Quantification of unforgeability

Experiment Expwcr
A

k
$← {0, 1}κ

(M, M ′)← Afk(·)

if fk(M) = fk(M ′) then
output 1

else
output 0

(b) Quantification of weak collision resis-
tance

Fig. 3. Experiments for quantification of unforgeability and weak collision resistance

to H have the same interfaces as F [P ] and P , respectively. The simulator S[H]
tries to emulate the ideal primitive P so that no distinguisher can tell apart
the two systems (H,S[H]) and (F [P ],P) with non-negligible probability, based
on their responses to queries that the distinguisher may send. We say that the
construction F [P ] is indifferentiable from H if the existence of such a simulator
is proved. The indifferentiability implies the absence of a generic attack against
F [P ] that regards P merely as a black-box. Now we give a formal definition of
indifferentiability in the information-theoretic model. For a more comprehensive
introduction of the indifferentiability framework, we refer to [3, 18].

Definition 1. A Turing machine F with oracle access to an ideal primitive P
is said to be (q, ε, t)-indifferentiable from an ideal primitive H if there exists a
simulator S of running time at most t with oracle access to H such that for any
distinguisher A making at most q queries, it holds that

∣
∣
∣Pr

[
AF [P],P = 1

]
−Pr

[
AH,S[H] = 1

]∣∣
∣ < ε.

If H is a public random function, then F [P ] is called a (q, ε, t)-pseudorandom
oracle (PRO).

If A is not allowed to make queries for the underlying primitive, we obtain the
definition of indistinguishability.

Definition 2. A Turing machine F with oracle access to an ideal primitive
P is said to be (q, ε)-indistinguishable from an ideal primitive H if for any
distinguisher A making at most q queries, it holds that

∣
∣
∣Pr

[
AF [P] = 1

]
−Pr

[AH = 1
]∣∣
∣ < ε.

If H is a public random function, then F [P ] is called a (q, ε)-pseudorandom
function (PRF).

Collision Resistance and Adaptive Preimage Resistance. First, we re-
view the definition of collision resistance in the information-theoretic model.



Multi-property-preserving Domain Extension 581

Experiment Expcoll
A

AP updates Q
if ∃ u �= u′, z s.t. z = FQ(u) =
FQ(u′) then

output 1
else

output 0

(a) Quantification of collision resistance

Experiment Expadpr
A

AP updates Q and L
if ∃ u s.t. z = FQ(u) for some z ∈ L
then

output 1
else

output 0

(b) Quantification of adaptive preimage
resistance

Fig. 4. Experiments for quantification of collision resistance and adaptive preimage
resistance

Given a function F = F [P ] and an information-theoretic adversary A both with
oracle access to an ideal primitive P , the collision resistance of F against A is
estimated by the experiment Expcoll

A described in Figure 4(a). The experiment
records every query-response pair that A obtains by oracle queries into a query
history Q. We write z = FQ(u) ifQ contains all the query-response pairs required
to compute z = F (u). At the end of the experiment, A would like to find two
distinct evaluations yielding a collision. The collision-finding advantage of A is
defined to be

Advcoll
F (A) = Pr

[
Expcoll

A = 1
]
. (3)

The probability is taken over the random choice of P and A’s coins (if any). For
q > 0, we define Advcoll

F (q) as the maximum of Advcoll
F (A) over all adversaries

A making at most q queries.
In this section, we also present a new notion of security, called adaptive preim-

age resistance. This notion will be useful for the proof of preimage awareness.
Given a function F = F [P ] and an information-theoretic adversary A both with
oracle access to an ideal primitive P , the adaptive preimage resistance of F
against A is estimated by the experiment Expadpr

A described in Figure 4(b). At
any point during the experiment, the adversary A is allowed to choose a com-
mitment element z in the range of F such that the query history Q has not
determined any preimage of z. The experiment Expadpr

A records the element z
into a commitment list L. Queries and commitments are made in an arbitrar-
ily interleaved order. At the end of the experiment, A would like to succeed
in finding a preimage of some element in the commitment list. The adaptive
preimage-finding advantage of A is defined to be

Advadpr
F (A) = Pr

[
Expadpr

A = 1
]
. (4)

For qp, qe > 0, we define Advadpr
F (qp, qe) as the maximum of Advadpr

F (A) over all
adversaries A that make at most qp queries and at most qe commitments.

Preimage Awareness. The notion of preimage awareness was first introduced
by Dodis, Ristenpart and Shrimpton [6]. This notion is useful for the proof of



582 J. Lee and J. Steinberger

indifferentiability of “NMAC” type constructions. Let F = F [P ] be a function
with oracle access to an ideal primitive P . In order to estimate the preimage
awareness of F , we use the experiment described in Figure 5. Here an adversary
A is provided two oracles P and Ex. The oracle P provides access to the ideal
primitive P and records a query history Q. Note that this oracle is implicitly
used in the experiments for collision resistance and adaptive preimage resistance.
The extraction oracle Ex provides an interface to an extractor E , which is a
deterministic algorithm that takes as input an element z in the range of F and
the query history Q, and returns either ⊥ or an element in the domain of F .
With respect to the extractor E , we define the advantage of A to be

Advpra
F (A, E) = Pr

[
Exppra

A,E = 1
]
. (5)

Let E∗ be an algorithm that on input (z,Q) returns an element u if there exists
u such that FQ(u) = z and ⊥ otherwise. Let

Advpra
F (A, E∗) = P1 + P2,

where P1 is the probability that u 
= V[z] 
= ⊥ and L[z] = 1 at the end of
the experiment and P2 is the probability that u 
= V[z] = ⊥ and L[z] = 1
at the end of the experiment. Then A can be regarded as a collision-finding
adversary such that Advcoll

F (A) = P1. Furthermore, A can be transformed into
an adaptive preimage-finding adversary B such that Advadpr

F (B) = P2: B runs A
as a subroutine, asks the same primitive queries as A, and makes commitments
z if A makes a query for Ex(z) and Q has not determined any preimage of z. If
A makes at most qp primitive queries and qe extraction queries, then it follows
that P1 ≤ Advcoll

F (qp) and P2 ≤ Advadpr
F (qp, qe). We record this observation as

the following lemma.

Lemma 2. Let F = F [P ] be a function with oracle access to an ideal primitive
P. Then there exists an extractor E∗ such that for any adversary A it holds that

Advpra
F (A, E∗) ≤ Advcoll

F (qp) + Advadpr
F (qp, qe).

The main application of preimage awareness lies in the construction of pseu-
dorandom oracles. In the following lemma which is a combination of Theorem
4.1 and Theorem 4.2 in [6], unpad is an algorithm such that unpad(y) = x if
y = pad(x) is a valid output of pad and unpad(y) = ⊥ otherwise. For any algo-
rithm F , we write Time(F , l) for the maximum time required to compute F(x)
for any input x such that |x| ≤ l. If F is an algorithm with oracle access to an
ideal primitive P , then NQ(F, l) is the maximum number of queries to P required
to compute F (x) for any input x such that |x| ≤ l. Without any constraint on
the input length, we just write Time(F) and NQ(F ).

Lemma 3. Let F : {0, 1}n+c → {0, 1}n be a function with oracle access to an
ideal primitive P and let g : {0, 1}n → {0, 1}m and H : {0, 1}∗ → {0, 1}m be pub-
lic random functions for m ≤ n. For an arbitrary extractor E with respect to F ,
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Experiment Exp
pra

A,E

u ← AP,Ex

z ← F [P](u)
output 1 if u �= V[z] and L[z] = 1

Oracle P(x)

y ← P(x)
Q ← Q∪ {(x, y)}
return y

Oracle Ex(z)

L[z] ← 1
V[z] ← E(z,Q)
return V[z]

Fig. 5. Experiments for quantification of preimage awareness. Arrays L and V are
global, and respectively initialized empty and ⊥ everywhere.

there exists a simulator S such that for any distinguisher A making at most
(q0, q1, q2) queries to the three oracle interfaces associated with (H,P , g), there
exists an adversary B such that

∣
∣∣Pr

[
Ag◦MD[F [P]],(P,g) = 1

]
−Pr

[
AH,S[H] = 1

]∣∣∣ ≤ Advpra
F (B, E).

Let lmax be the length in bits of the longest query made by A
to its first oracle, and let L =

⌈
lmax+1

c + 1
⌉
. Then, simulator S

runs in time O (q1 + Lq2Time(E) + Lq2Time(unpad)). Adversary B runs in
time O (Time(A) + q0Time(MD[F ], lmax) + q1 + (L+ 1)q2), makes at most
LNQ(F )(q0+1)+q1 primitive queries, and makes at most Lq2 extraction queries.

4 Security of the Polynomial-Based Mode of Operation

For this section and the rest of the paper, φ[f1] and H [f1, f2] refer to the com-
pression function and hash function defined in Section 1. We use “log” to denote
the logarithm base 2. For simplicity of notation, we assume that log q is an
integer for the number of queries q.

4.1 Weak Collision Resistance and Unforgeability

We begin with the proof of weak collision resistance for φ[f1] such that f1 is
randomly chosen from a function family f .

Theorem 1. Let φ be a function family defined by f : {0, 1}κ × {0, 1}2n+c →
{0, 1}n. Then,

Advwcr
φ (t, q) ≤ 2qmax(d+ log q, d2d+2)Advmac

f

(
t+O(d2n2qd+2) + Timed, q

)
,

where d =
⌈

2n+c
n

⌉ − 1 and Timed is the time required to solve a univariate
polynomial equation of degree d over F2n .

Remark 2. For a univariate polynomial of degree d over F2n , there is a deter-
ministic algorithm to find zeros using O(d3/2n) field operations (ignoring log
factors). See [8, 9].

In order to prove Theorem 1, we use a generalization of the multicollision-to-
forgery (MTF) balls-in-bins game first introduced in [7].
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MTF game. This game is played by two players A and B according to the
following rules. Parameters are integers q > 0 and m2 > m1 ≥ 0.

1. The game consists of q rounds.
2. At each round, A publicly places a set of balls into a set of bins such that

(a) balls placed at the same round go into distinct bins,
(b) the number of balls that are placed into bins already containing m1 balls

at the moment of placement is finite,
(c) some bin eventually contains more than m2 balls.

3. Before each round, B can secretly “pass” or “guess” a bin that will receive
a ball in the next round. B makes exactly one guess throughout the game.

4. If B makes a correct guess, then B wins. Otherwise, B loses.

Note there is no constraint on the total number of balls or bins.

Lemma 4. Irrespective of A’s strategy, there exists a strategy for B to win the
above game with probability at least 1/q·1/(cm1)1/(m2−m1), where cm1 is the num-
ber of balls that are placed into bins already containing m1 balls at the moment
of placement.

Proof. B’s strategy is simple, as follows:

1. Choose a round i ∈ {1, . . . , q} and a level j ∈ {m1 +1, . . . ,m2} uniformly at
random.

2. Before the i-th round of the game, guess a bin uniformly at random from all
bins containing at least j balls already.

Let cj be the total number of balls that are placed into bins that already have
at least j balls in them right before the round when the ball is placed. For a
given value of j, each ball placed into a bin with at least j balls in it already
gives B chance at least 1/(qcj−1) of winning since cj−1 is an upper bound for
the number of bins that have j balls in them at the end of the game. Therefore
B’s chance of winning is at least cj/(qcj−1) for a given value of j, and hence B’s
overall chance of winning is at least

1
m2 −m1

m2∑

j=m1+1

cj
qcj−1

=
1
q
ArithmeticMean

(
cm1+1

cm1

, . . . ,
cm2

cm2−1

)

≥ 1
q
GeometricMean

(
cm1+1

cm1

, . . . ,
cm2

cm2−1

)

≥ 1
q

(
1
cm1

)1/(m2−m1)

. ��

Note that Lemma 4 asserts nothing about B’s efficiency—in fact, if a huge number
of balls are thrown, it may be difficult to keep track of all bins that have received
at least j balls already (which is necessary for sampling uniformly among the bins).
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In our case, bins will often be curves defined by polynomials of degree ≤ d over
F2n and balls points in F2n×F2n , where a ball (x, y) goes into bin C if (x, y) ∈ C (a
ball is thus “cloned” into many different bins). In this setting, it becomes easier to
keep track of which bins have at least j balls in them when j ≥ d+1, as d+1 points
uniquely determine a polynomial of degree ≤ d. Thus for such a game it may be
helpful to set m1 = d, in order to keep the complexity of sampling under control.
(Dodis and Steinberger do not have games in which the number of bins containing
balls is so large that sampling for small values of j is an issue, and always use MTF
games with m1 = 0.) The value of m2 is then set large enough to make the term
(1/cm1)1/(m2−m1) small.

We typically upper bound cm1 by qM where M is an upper bound on the
total number of bins with at least m1 + 1 balls at the end of the game. Indeed,
because balls are thrown into distinct bins at each round, this definition of M
implies that at each round at most M balls are thrown into bins with m1 balls
in them already. We thus have the following corollary:

Corollary 1. If the number of bins that contain at least m1 + 1 balls at the end
of the MTF game is at most M , then B can win the MTF game with probability
at least 1/q · 1/(qM)1/(m2−m1).

We note that Corollary 1 is a bit wasteful, in the sense that it is possible to give
a better bound for B’s chance of success as a function of m1,m2 and M from the
relationshipM = cm1−cm1+1 and the fact that B’s chance of success is also lower
bounded by α

q(m2−m1) whereα = max
( cm1+1

cm1
, . . . ,

cm2
cm2−1

)
. However this gain leads

to a more complicated statement and is minor enough for us to ignore 2.

Proof (Theorem 1). Let A be a weak collision-finding adversary such that

Advwcr
φ (A) = Advwcr

φ (t, q) = ε.

We write u[i] = ud[i]|| · · · ||u0[i] for the i-query that A makes to f1(·) and
φ(u[i]) = (x[i], y[i]), where x[i] = f1(u[i]) and y[i] = ud[i]x[i]d + · · ·+ u1[i]x[i] +
u0[i]. The i-th query is associated with a curve

Ci = {(x, y) ∈ F
2
2n : y = ud[i]xd + · · ·+ u1[i]x+ u0[i]}.

Let Γi = {1 ≤ j ≤ i : (x[j], y[j]) ∈ Ci} and let γ = maxi |Γi|. By assumption
that A succeeds to find a collision with probability ε, one of the following two
events occurs with probability at least ε/2.

Case 1: A finds a collision and γ ≤ d+log q. For this case, we can construct
a forger B1 for f1 as follows.

2 More precisely, we have M = cm1 − cm1+1 ≥ cm1(1− α) or cm1 ≤M/(1− α). Then

B’s chance of success is at least 1
q

max
(

α
m2−m1

,
(

1−α
M

)1/(m2−m1)
)

where we know

0 < α ≤ 1.
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1. B1 chooses i ∈ {1, . . . , q} and s ∈ {1, . . . , d+ log q} uniformly at random.
2. B1 runs A as a subroutine and faithfully answers the queries made by A

until the (i− 1)-th query.
3. On the i-query u[i], B1 presents a forgery (u[i], x[js]) without making a query

to f1(·), where js is the s-th element of Γi. (If |Γi| < s, then B1 presents a
random value.)

Note that if there exists a collision (x[j], y[j]) = (x[i], y[i]) for j < i, then
(x[j], y[j]) ∈ Ci or equivalently j ∈ Γi. With this observation, we obtain

Advmac
f (B1) ≥ ε

2q(d+ log q)
. (6)

Case 2: A produces γ > d + log q. This is the case where we construct a
forger B2 for f1 using the MTF game: The bins are (d+ 1)-tuples (ud, . . . , u0) ∈
F
d+1
2n (regarded as a curve in the plane F

2
2n) and the balls are points (x, y) ∈ F

2
2n .

A query f1(ud|| · · · ||u0) results in a new ball (x, y) = (f1(ud|| · · · ||u0), udxd+· · ·+
u1x+u0) being placed into all bins (vd, . . . , v0) such that vdxd+· · ·+v1x+v0 = y,
namely all bins giving the coefficients of a polynomial curve fitting the point
(x, y), except the bin (ud, . . . , u0) itself. Thus one ball is replicated in 2dn − 1
different bins. We assume that the i-th query u[i] is known to B2 before the i-th
round of the game. Then, when B2 correctly guesses a bin (vd, . . . , v0) that will
receive the new ball (x[i], y[i]), B2 has a chance to forge f1 with probability 1/d
since the intersection of the curves associated with (ud, . . . , u0) and (vd, . . . , v0)
contains at most d elements. Here we assume the existence of an algorithm of
running time Timed to find zeros of a univariate polynomial of degree d. Let
m1 = d, m2 = d+ log q and M =

(
q
d+1

)
. Since d+ 1 points determine a unique

polynomial of degree d fitting the points, we can apply Corollary 1 to obtain a
forger B2 of success probability

Advmac
f (B2) ≥ ε

2
· 1
d
· 1
q

(
1
qM

)1/(m2−m1)

≥ ε

2
· 1
d
· 1
q

(
1

qd+2

)1/ log q

=
ε

dq2d+3
,

(7)
and of running time O(d2n2qd+2) + Timed. From (6) and (7), it follows that

Advwcr
φ (t, q) ≤ 2qmax(d+ log q, d2d+2)Advmac

f

(
t+O(d2n2qd+2) + Timed, q

)
.

��
The following theorem is immediate from Lemma 1 and Theorem 1.

Theorem 2. Let H = H [f1, f2] be a function family where f1 and f2 are inde-
pendently chosen from two function families f1 and f2, respectively. Then for
q = �μ/c�+ 2q̃,

Advmac
H (t, q̃, μ) ≤ ε,

where

ε=Advmac
f2 (t, q̃)+2qmax

(
d+log q, d2d+2

)
Advmac

f1

(
t+O(d2n2qd+2)+Timed, q

)
,
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and Timed is the time required to solve a univariate polynomial equation of degree
d over F2n . If f1 = f2 are chosen from the same function family f , then

Advmac
H∗ (t, q̃, μ) ≤ ε+ q2max{0,n−c}Advmac

f (t, q),

where ε is as above with f replacing f1 and f2.

In the single-key setting, we assume that IV1 
= 0n for two n-bit blocks IV1 and
IV2 such that IV = IV1||IV2. Then we can use the techniques employed in the
CS construction [19]. The term q2max{0,n−c}Advmac

f (t, q) comes from the case
where f1(M [i]) = 0min{n,c}||∗ for some message block M [i] during the Merkle-
Damg̊ard iteration.

4.2 Collision Resistance and Indistinguishability

Let Φn2n+c be the set of all functions from {0, 1}2n+c to {0, 1}n. Then Φn2n+c

can be regarded as a function family f∗ : {0, 1}κ × {0, 1}2n+c → {0, 1}n by
identifying Φn2n+c and {0, 1}κ for κ = n22n+c. The weak collision resistance
of φ defined by f∗ against a computationally unbounded adversary implies its
collision resistance in the information-theoretic model (due to the equivalence of
oracle access to either φ or f∗). Since

Advmac
f∗ (t, q) =

1
2n

for any q and t, the following theorem is immediate from Theorem 1.

Theorem 3. If f1 : {0, 1}2n+c → {0, 1}n is a random function, then

Advcoll
φ[f1] (q) ≤

max
(
d+ log q, d2d+2

)
q

2n−1
.

When we construct NMAC type pseudorandom oracles based on preimage aware
functions, adaptive preimage resistance is only needed for the case where a dis-
tinguisher makes a query to the finalization function. If there is no interface to
access the inner primitive, we do not need to worry about adaptive preimage
finding. The following lemma shows that any collision resistant function can be
combined with a random function producing a pseudorandom function. We give
the proof in Appendix A.

Lemma 5. Let F : {0, 1}∗ → {0, 1}n be a function with oracle access to an ideal
primitive P and let g : {0, 1}n → {0, 1}m and H : {0, 1}∗ → {0, 1}m be random
functions. Then the composite function g ◦ F is (q̃, ε)-indistinguishable from H,
where ε = Advcoll

F (q), q = NQ(F, lmax)q̃ and lmax is the length in bits of the
longest query made by a distinguisher.

Since the strengthened Merkle-Damg̊ard transform preserves collision resistance,
we obtain the following theorem.
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Theorem 4. If f1, f2 : {0, 1}2n+c → {0, 1}n are random functions, thenH [f1, f2]
is (q̃, ε)-indis-tinguishable from a random function H : {0, 1}∗ → {0, 1}n, where

ε =
max

(
d+ log q, d2d+2

)
q

2n−1
,

and

q = NQ(MD[φ[f1]], lmax)q̃ =
⌈
lmax + 1

c
+ 1

⌉
q̃,

for the length in bits lmax of the longest query made by a distinguisher. In the
single-key setting, H [f1, f1] is (q̃, ε+ q

2c )-indistinguishable from H.

Lemma 5 holds with ε = Advwcr
F (t, q̃, lmaxq̃) when F is a keyed function fam-

ily (in the complexity-theoretic model). This implies that H [f1, f2] is pseudo-
random up to O(2n/n) query complexity as long as f1 is unforgeable and f2 is
pseudorandom.

4.3 Preimage Awareness and Indifferentiability

We begin with the proof of adaptive preimage resistance for φ[f1] where f1 is
a public random function. Let A be an “optimal” adaptive preimage-finding
adversary that makes at most qp queries and at most qe commitments. That
is, Advadpr

φ[f1](A) = Advadpr
φ[f1](qp, qe). During the experiment Expadpr

A , A makes
queries and commitments in an arbitrarily interleaved order based on a deter-
ministic strategy. Here we can assume that the strategy does not depend on the
responses of oracle f1(·) to queries that A sends since the probability distribution
of the response to a certain query is independent of the previous query-response
pairs (as long as A does not make a redundant query). Therefore, in order to
estimate Advadpr

φ[f1](A), we can use the following game.

1. A makes qp queries {C1, . . . , Cqp} and qe commitments L = {(x1, y1), . . .
, (xqe , yqe)} based on the optimal strategy. (Here each query is represented
by a curve in F

2
2n as in the analysis of unforgeability.)

2. One point (x∗i , y
∗
i ) is chosen from each curve Ci uniformly at random.

3. If (x∗i , y
∗
i ) ∈ L for some i = 1, . . . , qe, then A wins. Otherwise, A loses.

The winning probability of A for the above game is equal to the adaptive
preimage-finding advantage of A. Let Γi = Ci ∩ L for i = 1, . . . , qp, and let

Δθ = {1 ≤ i ≤ qp : |Γi| ≥ θ},

for a parameter θ. Then for Δ ⊂ Δθ and δ = |Δ|, we have

qe ≥
∣
∣
∣
∣
∣

⋃

i∈Δ
Γi

∣
∣
∣
∣
∣
≥

∑

i∈Δ
|Γi| −

∑

i�=j∈Δ
|Γi ∩ Γj | ≥ δθ −

(
δ

2

)
· d.
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Therefore we conclude that |Δθ∗ | < δ∗ for any (θ∗, δ∗) such that

δ∗θ∗ −
(
δ∗

2

)
· d > qe. (8)

This implies that the number of curves that intersect with L at ≥ θ∗ points is
less than δ∗. Thus the winning probability of A is upper-bounded by

Advadpr
φ[f1](A) ≤ δ∗ qe

2n
+ (qp − δ∗) θ

∗

2n
.

By Lemma 2 and Theorem 3, we obtain the following theorem.

Theorem 5. Let (θ∗, δ∗) satisfy inequality (8). Then for a random function f1,
there exists an extractor E∗ such that for any adversary A it holds that

Advpra
φ[f1]

(A, E∗) ≤ max
(
d+ log qp, d2d+2

)
qp

2n−1
+ δ∗

qe
2n

+ (qp − δ∗) θ
∗

2n
.

We can use Lemma 3 and Theorem 5 with (θ∗, δ∗) = (dq1/2e , q
1/2
e ) to obtain the

following theorem.

Theorem 6. Let f1, f2 : {0, 1}2n+c → {0, 1}n and H : {0, 1}∗ → {0, 1}n be
public random functions. Then there exists a simulator S such that for any dis-
tinguisher A making at most (q0, q1, q2) queries to the three oracle interfaces
associated with (H, f1, f2),

∣
∣
∣Pr

[
AH[f1,f2],(f1,f2) = 1

]
−Pr

[
AH,S[H] = 1

]∣∣
∣ ≤ ε,

where

ε =
max

(
d+ log (Lq0 + q1 + L) , d2d+2

)

2n−1
(Lq0 + q1 + L) +

L1/2q
1/2
2

2n
(dLq0 + dq1 + Lq2 + dL) ,

lmax is the length in bits of the longest query made by A to its first oracle and L =⌈
lmax+1

c + 1
⌉
. Simulator S runs in time O (q1 + Lq2Time(E∗)+Lq2Time(unpad)),

where E∗ is the obvious extractor used in Lemma 2. In the single-key setting, we
have ∣

∣
∣Pr

[
AH[f1,f1],f1 = 1

]
−Pr

[
AH,S′[H] = 1

]∣∣
∣ ≤ ε+

Lq0
2c

,

where simulator S′ is obtained by a slight modification of S: On input x, S′
returns f2(x) if x = 0c||∗ for some ∗ ∈ {0, 1}2n and returns f1(x) otherwise, by
using the interfaces f1 and f2 of S.

Tightness of Indifferentiability. The preservation of indifferentiability is
guaranteed only up to O(22n/3) query complexity which is beyond the birth-
day bound but still far from optimal. This bound is dominated by the adaptive
preimage resistance, depending on a configuration that consists of q curves in
F

2
2n and q points on the curves (assuming q = qp = qe). If there exists a subfield
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F
′ of F2n such that |F′| = √q, then we have a configuration that provides tight

adaptive preimage resistance: The set of points is F
′ × F

′ ⊂ F
2
2n and the set of

curves consists of q polynomials of degree d with coefficients in F
′. However, for

the case where F2n admits no proper subfield (e.g. with prime n), there remains a
question whether a similar construction exists or the bound can be qualitatively
improved. We pose this as an open problem.

5 The Quadratic Blockcipher-Based Compression
Function

In this section and the next, we discuss how to instantiate φ[f1] for c = n
(the “quadratic” polynomial mode) by replacing the 3n-bit to n-bit compression
function f1 with a smaller primitive. First, we discuss a concrete instantiation of
the quadratic compression function using a blockcipher with 2n-bit keys. Given
f1 : {0, 1}3n → {0, 1}n, the compression function φ[f1] : {0, 1}3n → {0, 1}2n is
defined by φ[f1](u2||u1||u0) = x||y, where x = f1(u2||u1||u0) and y = u2x

2 +
u1x + u0 ∈ F2n for u2, u1, u0 ∈ {0, 1}n. In the quadratic blockcipher-based
compression function, f1 is implemented using a blockcipher E : {0, 1}2n ×
{0, 1}n → {0, 1}n, E(k, x) = Ek(x) by letting f1(u2||u1||u0) = Eu2||u1(u0) + u0

as described in Figure 2(a). We write ψ[E] for the resulting compression function.
Thus ψ[E] : {0, 1}3n → {0, 1}n and ψ[E](u2||u1||u0) = x||y where

x = Eu2||u1(u0) + u0,

y = u2x
2 + u1x+ u0.

We can prove that ψ[E] provide similar security as the quadratic mode φ[f1]
when instantiated with an ideal cipher E, in terms of unforgeability, collision
resistance and pseudorandomness. In fact, our results do not actually necessitate
an ideal cipher E (which is a set of independent random permutations with one
permutation per key) but only an “unpredictable” blockcipher E. For the latter,
all that is assumed is that it is difficult for an adversary to fully predict the
output of an unqueried value. We call this the unpredictability of the blockcipher
(which is similar to the unforgeability of a keyed function family, except no
keys are involved) and we quantify it by the advantage Advunp

E (t, q) which is
the maximum over all adversaries A running in time t and making at most q
queries to E of the probability that A can output a tuple (u2||u1, v, w) such that
Eu2||u1(v) = w without making queries for Eu2||u1(v) or E−1

u2||u1
(w).

Implicitly Advunp
E (t, q) depends on a sampling procedure for E. In the ideal ci-

pher model, E is sampled uniformly at random among all n-bit blockciphers with
2n-bit keys.Here we allow any sampling procedure forE. Note thatAdvunp

E (t, q) ≤
1/(2n− q) if E is an ideal cipher, so we can always revert to that bound by assum-
ing an ideal cipher. Our use of unpredictable blockciphers is somewhat similar to
that of [7], with the significant difference that the blockciphers of [7] use fixed keys,
and that they are sampled by sampling the fixed keys. The unpredictability then
corresponds to the unforgeability of a keyed function family (which happens to be
a family of permutations).
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We show that the collision resistance of ψ[E] can be effectively bounded in
terms of Advunp

E (t, q). Let Advcoll
ψ[E](t, q) be the maximum probability that an

adversaryA of running time t with oracle access to E and E−1 outputs a collision
(M,M ′) for ψ[E] which it has verified (i.e. has made the queries necessary to
compute ψ[E](M) and ψ[E](M ′)). The following theorems are proved in the full
version.

Theorem 7. Let ψ[E] be the quadratic blockcipher-based compression function,
where E is sampled from the set of all n-bit blockciphers with 2n-bit keys accord-
ing to an arbitrary fixed distribution. Then,

Advcoll
ψ[E](t, q) ≤ 2q(log q + 3)Advunp

E (t+O(n2q4) + Time2, q).

Furthermore, let G = G[E, f2] = f2 ◦ MD [ψ[E]] be a function family where
f2 is chosen from a function family f : {0, 1}κ × {0, 1}2n → {0, 1}n. Then for
q = �μ/c�+ 2q̃,

Advmac
G (t, q̃, μ) ≤ Advmac

f (t, q̃) + 2q(log q + 3)Advunp
E (t+O(n2q4) + Time2, q).

Remark 3. The term “Time2”, which represents the time necessary to select a
root of a quadratic polynomial over F2n , is mainly kept to facilitate comparison
with Theorem 1.

Theorem 8. Let E : {0, 1}2n × {0, 1}n → {0, 1}n be an ideal blockcipher and
let f2 : {0, 1}2n → {0, 1}n be a random functions. Then, Advcoll

ψ[E] (q) ≤ ε(q) for

ε(q) =
2q(log q + 3)

2n − q ,

and G[E, f2] = f2 ◦MD [ψ[E]] is (q̃, ε(q̄))-indistinguishable from a random func-
tion H : {0, 1}∗ → {0, 1}n, where

q̄ = NQ(MD[ψ[E]], lmax)q̃ =
⌈
lmax + 1

n
+ 1

⌉
q̃,

for the length in bits lmax of the longest query made by a distinguisher.

6 The Quadratic Cascade Compression Function

In this section, we discuss a concrete instantiation of the quadratic compression
function (polynomial-based compression function of degree d = 2) using the cas-
cade of two 2n → n functions. In the quadratic cascade compression function,
the compression function f1 is implemented by the cascade of two compres-
sion functions h1, h2 : {0, 1}2n × {0, 1}n → {0, 1}n by letting f1(u2||u1||u0) =
h2(h1(u2||u1)||u0) as described in Figure 2(b). We write τ [h1, h2] for the resulting
compression function. Thus τ [h1, h2] : {0, 1}3n → {0, 1}n and τ [h1, h2](u2||u1||
u0) = x||y, where

x = h2(h1(u2||u1)||u0),
y = u2x

2 + u1x+ u0.
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Now we have the following theorems. Due to lack of space, the proof will be given
in the full version of this paper. (The proof has similar—but slightly worse—
complexity as the security proof for SS-NMAC in [7]. It involves 13 different
cases for the forger, 8 of which use MTF games.)

Theorem 9. Let τ = τ [h1, h2] be a function family where h1 and h2 are inde-
pendently chosen from a function family h, respectively. Then,

Advwcr
τ (t, q) ≤ 26q log q (log q + 1)2 Advmac

h

(
t+O(n2q4 log4 q) + Time2, q

)
.

Furthermore, let G = G[h1, h2, f2] = f2 ◦ MD [τ [h1, h2]] be a function family
where f2 is chosen from a function family f . Then for q = �μ/c�+ 2q̃,

Advmac
G (t, q̃, μ) ≤ Advmac

f (t, q̃) + 26q log q (log q + 1)
2
Advmac

h

(
t+O(n2q4 log4 q) + Time2, q

)
.

Theorem 10. If h1, h2, f2 : {0, 1}2n → {0, 1}n are random functions, then
Advcoll

τ [h1,h2] (q) ≤ ε(q) for

ε(q) =
26q log q (log q + 1)2

2n
,

and G[h1, h2, f2] = f2 ◦MD [τ [h1, h2]] is (q̃, ε(q̄))-indistinguishable from a ran-
dom function H : {0, 1}∗ → {0, 1}n, where

q̄ = NQ(MD[τ [h1, h2]], lmax)q̃ = 2
⌈
lmax + 1

n
+ 1

⌉
q̃,

for the length in bits lmax of the longest query made by a distinguisher.
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A The Proof of Lemma 5

Let G0 and G1 be games with a single interface, as defined in Figure 6. Assume
that a distinguisher A makes no redundant query. Then whenever A makes
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Games G0 Games G1

Interface H(v)

w ← F [Sample-P](v)
z ← Sample-g(v, w)
return z

Subroutine Sample-P(x)

return P(x)

Subroutine Sample-g(v, w)

g(v, w)
$
← {0, 1}m

if g(v′, w) was previously queried for v′ �= v then

bad ← true

g(v, w) ← g(v′, w)

return g(v, w)

Fig. 6. Games G0 and G1. G1 includes the boxed statement

a query to H(·) in game G0, it will receive an independent random value in
{0, 1}m. It means that the interfaceH(·) faithfully implements a random function
H : {0, 1}∗ → {0, 1}m in game G0. On the other hand, the interface H(·) in game
G1 faithfully implements g ◦ F [P ] : {0, 1}∗ → {0, 1}m for a random function
g : {0, 1}n → {0, 1}m since Sample-g(v, w) only depends on the value v. Flag
bad sets to true only when A makes a collision in F [P ]. Therefore, for any
distinguisher A that makes at most q̃ queries to H(·), we have

∣
∣
∣Pr

[
Ag◦F [P] = 1

]
−Pr

[AH = 1
]∣∣
∣ ≤ Pr

(AG1 sets bad
) ≤ Advcoll

F (q),

where q = NQ(F, lmax)q̃ and lmax is the length in bits of the longest query made
by a distinguisher.

B Improved Analysis of Lucks’ Double-Piped Mode of
Operation

We begin with the definition of Lucks’ double-piped mode of operation (with a
slight modification). First, two 2n+ c→ n bit functions f1 and f2 are concate-
nated, yielding the following compression function.

F : {0, 1}2n+c −→ {0, 1}2n

u �−→ f1(u)||f2(u).

The pictorial description of F for c = n is shown in Figure 7. Given F = F [f1, f2]
and an independent compression function f3 : {0, 1}2n+c → {0, 1}n, the Lucks’
mode of operation defines a hash function

G[f1, f2, f3] : {0, 1}∗ −→ {0, 1}n

M �−→ f3(0c||v),
where v = MD[F ](M).
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f2
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cnn

x

n
y

n

Fig. 7. Lucks’ double-piped compression function

Now we prove the weak collision resistance of F = F [f1, f2] where f1 and f2
are independently chosen from a function family f .

Theorem 11. Let F be a function family defined by f : {0, 1}κ × {0, 1}2n+c →
{0, 1}n as described above. Then,

Advwcr
F (t, q) ≤

√
2qAdvmac

f (t, q) .

Proof. Let A be a weak collision-finding adversary such that

Advwcr
F (A) = Advwcr

F (t, q) = ε.

We write u[i] for the i-query that A makes to F and F (u[i]) = (x[i], y[i]), where
x[i] = f1(u[i]) and y[i] = f2(u[i]). Let

Γ =
{
(j, i) ∈ {1, . . . , q}2 : j < i and x[j] = x[i]

}
,

and let γ = |Γ | be the number of “upper half-collisions”. Here we fix an ordering
in Γ . By assumption that A succeeds to find a collision with probability ε, at
least one of the following two events happens with probability ≥ ε/2, where θ is
a parameter to be optimized later.

Case 1: A finds a collision and γ > θ. For this case, we can construct a
forger B1 for f1 as follows.

1. B1 chooses (j, i) ∈ {1, . . . , q}2 such that j < i uniformly at random.
2. B1 runs A as a subroutine and faithfully answers the queries made by A until

the (i−1)-th query. Here B1 simulates f2 by choosing a key for f2 uniformly
at random.

3. On the i-query u[i], B1 presents a forgery (u[i], y[j]) without making a query
to f1(·).

Since the probability that (j, i) ∈ Γ is θ/
(
q
2

)
, we have

Advmac
f (B1) ≥ εθ

2
(
q
2

) ≥ εθ

q2
. (9)

Case 2: A finds a collision and γ ≤ θ. For this case, we can construct a
forger B2 for f2 as follows.
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1. B2 chooses s ∈ {1, . . . , θ} uniformly at random.
2. B2 runs A as a subroutine: To each query made by A, B2 faithfully respond

by simulating f1 and making queries to f2(·).
3. B2 counts the number of collisions in f1. At the s-th collision (j, i) ∈ Γ , B2

stops without making a query to f2(·) and presents a forgery (u[i], y[j]).

If there exists a collision (x[j], y[j]) = (x[i], y[i]) for j < i, then obviously (j, i) ∈ Γ .
Therefore we have

Advmac
f (B2) ≥ ε

2θ
. (10)

From (9) and (10), it follows that

Advwcr
F (t, q) ≤ max

{
q2

θ
, 2θ

}
Advmac

f (t, q) .

By setting q2/θ = 2θ or θ = q/
√

2, we obtain

Advwcr
F (t, q) ≤

√
2qAdvmac

f (t, q) . ��

By Lemma 1 and Theorem 11, we obtain the following theorem.

Theorem 12. Let G = G[f1, f2, f3] be a function family such that f1, f2 and
f3 are independently chosen from a function family f . Then for q = �μ/c�+ 2q̃,

Advmac
G (t, q̃, μ) ≤ Advmac

f (t, q̃) +
√

2qAdvmac
f (t, q) .

With a slight modification of the above argument, we can prove that the Lucks’
mode of operation using a single key also preserves unforgeability up to O(2n)
query complexity, improving the bound O(25n/6) proved by Yasuda [24].
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