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Optimal Electricity Storage Sharing Mechanism
for Single Peaked Time-of-Use Pricing Scheme

Kui Wang, Yang Yu, and Chenye Wu

Abstract—Sharing economy has disrupted many industries.
We foresee that electricity storage systems could be the
enabler for sharing economy in electricity sector, though
its implementation is a delicate task. Unlike in the 2-
tier Time-of-Use (ToU) pricing, where greedy arbitrage
policy can achieve the maximal electricity bill savings,
most existing ToU schemes consist of multiple tiers, which
renders the arbitrage challenging. The difficulty comes
from the hedging against multiple tiers and the coupling
between the decisions across the day. In this work, we
focus on designing the energy sharing mechanism for single
peaked ToU scheme. To solve the problem, we identify
that it suffices to understand the arbitrage policies for
two forms of 3-tier ToU schemes. We submit that under
mild conditions, the sharing mechanism yields a unique
equilibrium, which supports the maximal social welfare.

Index Terms—Electricity storage, Time-of-Use pricing, op-
timal control, sharing economy

I. INTRODUCTION

Sharing economy exploits huge Internet’s value to heavy
financial-cost yet idle assets [1]. This emerging business
model is already disruptive for large industries such as
transportation, accommodation and micro finance [2].
We notice that there are tremendous idle assets on the
power grid, which already make the sharing economy
business model attractive in electricity economics. How-
ever, the operational complexity due to physical con-
straints leads to computational challenges in the sharing
market design and operation for the idle assets.

The current exploration on the sharing opportunities in
electricity sector concentrates on real and virtual demand
side assets. All relative studies demonstrate that such
sharing opportunities need to be supported by three pil-
lars: appropriate control policy with physical constraints,
smart market design inducing incentive compatibility,
and efficient algorithms to find the Pareto equilibrium.

The authors are with the Institute for Interdisciplinary Information
Sciences (IIIS), Tsinghua University, Beijing, China, 100084. C. Wu
is the correspondence author. Email: chenyewu@tsinghua.edu.cn.

We imagine the first adopters could be to share the
electricity storage in behind-the-meter setting [3]. This
is because the major concern in electricity sector comes
from the regulatory uncertainty, and behind-the-meter
setting is outside the purview of the utility. In such a
setting, the firms could utilize their storage systems to
arbitrage against the ToU pricing scheme, and share the
excess energy via a local spot market. In essence, this
opportunity requires each firm to better utilize the unused
capacity in its storage system, which motivates us to
design the electricity storage sharing mechanism.

It still warrants significant efforts to bring sharing elec-
tricity storage to practice. Wu et al. propose a styl-
ized model for storage sharing where in an industrial
park, each firm faces 2-tier ToU pricing scheme [4].
This stylized model elegantly lays out the theoretical
foundation for the sharing economy business model.
We further this result by generalizing from 2-tier to
practical multi-tier ToU schemes. It is challenging even
for a single firm’s decision making, since it needs to
hedge against multiple tiers and its decisions across the
day are closely coupled together. The sharing market
will emerge not only during peak but also partial peak
periods. Hence, the market structure is more complex for
examining the equilibrium behavior. In this work, we try
to understand the system behavior (including individual’s
decision making as well as the Nash equilibrium (N.E.)
behavior in various sharing markets) in single peaked1

ToU scheme. We offer explicit formula to characterize
the spot prices in the sharing markets.

A. Related Work

Researchers have designed control policies for different
pricing schemes. Wu and Yu proposed an optimal policy
to arbitrage against 3-tier ToU pricing to maximize
the arbitrage profits in [5]. For dynamic pricing, Qin
et al. proposed an online modified greedy algorithm

1Single peaked ToU scheme: Each day, the rate first increases from
off peak to peak, and then decreases to next off peak period.
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and proved its sub-optimality compared to offline [6].
Van de ven et al. proposed an optimal control policy
for storage charging and discharging under Markovian
random rates and demands [7]. To the best of our
knowledge, optimal control policy for general ToU has
not been fully investigated.

The literature on sharing economy in electricity sector
emerges only recently, most of which investigated the
cooperation of consumers to hedge against stochastic
risks. For example, Zhao et al. introduced the optimal
risky power contracts to the aggregation of multiple
wind power plants for better bidding against 2-settlement
markets in [8]. Bitar et al. explored the quantity risk
sharing opportunities among wind power plants in nodal
pricing scheme [9]. Chakraborty et al. introduced the
rooftop PV sharing mechanism for active users in [10].
Perera et al. proposed a solar power sharing mechanism
while avoiding the high voltage impact to grid [11]. Zhao
and Khazaei designed a cooperative game to aggregate
multiple renewable power plants and proved that the core
supports the social welfare [12].

As for storage sharing, Tushar et al. proposed an auction-
based storage sharing mechanism, where a unique equi-
librium exists [13]. Chakraborty et al. cast the storage
sharing problem in 2-tier ToU pricing as a coalitional
game [14]. Different from previous works, we seek to
design spot markets enabling the storage sharing, and
offer the explicit characterization for the sharing prices.

B. Our Contributions

In this work, we significantly extend our previous works
[4] and [5] by designing the optimal storage sharing
mechanism for single peaked multi-tier ToU scheme to
minimize all firms’ total cost for energy utilization. In the
sharing mechanism, we analytically examine the sharing
prices in spot markets, and each individual’s optimal
decision making to minimize its own cost. In summary,
our principal contribution can be summarized as follows:

• Optimal control policy: We propose the optimal
control policy for standalone firm to arbitrage
against single peaked ToU pricing scheme. Based
on this control policy, we solve the individual
optimal investment decision-making problem.

• Sharing spot market: We identify that sharing could
happen in all non-off peak periods. For each period,
we identify the aggregator-firms interaction game,
and characterize its N.E.. The N.E. consists of
the sharing prices and each individual’s decision

making. We also provide the sufficient conditions
for the existence of N.E..

• Performance assessment: We prove that the out-
come of our proposed sharing mechanism supports
the maximal social welfare. We use simulation to
compare our sharing mechanism and alternatives.

The rest of the paper is organized as follows. Section
II introduces the system model. Then, we propose the
individual optimal control policy for arbitrage in Section
III. Based on this control policy, we identify the market
structure in Section IV. Then, Section V derives the
optimal sharing mechanism for three-tier ToU scheme.
Inspired by the intuition from Section V, we fully solve
the problem for general single peaked ToU scheme in
Section VI. Simulation verifies the performance of our
proposed mechanism in Section VII. Section VIII gives
concluding remarks and points out future work.

We provide all the necessary proofs in the Appendix.

II. SHARING ELECTRICITY STORAGE

Assume a single peaked multi-tier ToU is implemented
in an industrial park, where firms can invest storage for
hedging against the price risks. To simplify the analysis,
we suppose that an aggregator in the park coordinates
the storage sharing and energy management, such as
procuring energy from the grid.

To obtain more insights through a stylized model, we
make the following assumptions:

1) Arbitrage opportunity exists: the largest rate gap
among hours is greater than the amortized cost of
the storage investment.

2) All players are price takers of ToU prices.
3) All users’ hourly energy consumption is inelastic.
4) Demands in different periods are independent.
5) Energy loss in storage operation is negligible.
6) Firms make investment decisions simultaneously.

Assumption 1 is already practical for many ToU pricing
schemes thanks to the decreasing cost for storage sys-
tems. For example, the amortized cost for Tesla Power
2.0 Lithium-ion over its 10-year lifetime is only 14
¢/kWh per day [15]. Assumption 2 implies that the user
behaviors are not large enough to influence the ToU
prices. This is reasonable for our industrial park setting.
However, we want to emphasize that, when designing
the sharing prices in our main results, we do consider all
firms compete in the energy sharing market. Assumption
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Fig. 1: Two basic 3-tier ToU pricing.

3 implies that without storage systems, all the firms have
already fully exploited their own flexibilities in response
to ToU prices. This allows us to focus on the additional
benefits brought by the storage systems and establish a
stylized model. We use numerical study to highlight that
the performance of our scheme is close to that of the
offline optimal with real data under assumption 4. The
next assumption is temporary for more intuition during
the analysis. We drop this assumption in Appendix A
for general conclusions. The last one is the common
technical assumption for game theoretic analysis.

III. OPTIMAL CONTROL FOR STANDALONE FIRM

The firms make sharing decisions according to their
energy consumption patterns and storage control. Thus,
the storage sharing market design and arrangement must
be built upon the understanding of individual’s decision.
The individual control policy in 3-tier ToU scheme has
been clarified by [5]. We first summarize this result and
then examine the individual storage control policy for a
general single peaked ToU scheme.

A. (M,C) Storage Control Policy for 3-tier ToU Scheme

The analysis for 3-tier ToU scheme in [5] reveals the
nature of the storage control problems in the single
peaked ToU schemes: there are two basic schemes of
storage control shown in Fig. 1. The optimal control for
ramp-down scheme (as shown in Fig. 1 (b)) is a greedy
policy: fully charge the battery during the off peak period
and maximally use the stored energy sequentially from
the peak to the partial peak period.

The optimal storage control for ramp-up scheme (as
shown in Fig. 1 (a)) is refereed to as the (M,C) control
policy in [5], where C denotes the storage capacity and
M denotes the energy reserved for peak demand use.

Denote the random partial peak and peak demand by X1

and X2, respectively. FX2(·) is the cumulative density

Fig. 2: Single peaked ToU pricing scheme.

function (cdf ) of random variable X2; FX1+X2|X2>M∗

is the conditional cdf of X1 + X2 given X2 > M∗;
πh, πm, π` are the peak, partial peak and off peak
rates, respectively; πs is the amortized investment cost of
storage. Then, the optimal parameters for (M,C) control
policy can be determined as follows:

M∗ = F−1X2

(
πh − πm
πh − π`

)
,

C∗ = F−1X1+X2|X2>M∗

(
πm − π` − πs
πm − π`

)
.

(1)

B. General Single Peaked ToU without Sharing

Note that the (M,C) policy manifests that inserting
a partial peak period sophisticates the storage control
in two ways: introducing additional randomness to the
capacity decision and additional decision problem of
discharging strategy in partial peak period. In a general
single peaked ToU scheme, there are more than one
partial peak periods, which will significantly increase the
complexity of the storage control problem.

Figure 2 plots the general single peaked ToU scheme.
The scheme consists of an off peak period, followed by
p ramp-up periods between off peak (denoted by RUj ,
j = 1, ···, p) and peak, followed by q ramp-down periods
between peak and off peak (including the peak, denoted
by RDj , j = 1, · · ·, q). RUj (RDj) is also referred to
as jth ((p+ j)

th) period of the day for brief statement.
We denote the electricity rate in off peak period by π`
¢/kWh, and the rate in τ th period by πτ ¢/kWh.

To minimize each firm’s electricity bill, the optimal
decisions for storage investment and storage control
depend on the distributions of firm’s random demand
in each period. We denote firm i’s demand in τ th period
by Xi

τ . In the subsequent analysis for standalone firm’s
decision making, when there is no confusion, we will
drop the superscript i for convenience.



4

We follow the (M,C) type control policy for general
single peaked ToU pricing. Specifically, the control pol-
icy for a firm can be decomposed as follows:

• Investment Decision: To minimize its electricity
cost, the firm will invest C kWh of storage.

• Initialization in Off Peak: Each day, the firm will
fully charge the storage system during off peak.

• Operation in RUs: In RUj , use the energy in the
storage while reserving at least Mj for future use.

• Operation in RDs: In RDj , use the energy in the
storage as much as possible, purchase the unmet
demand from the grid.

For the jth ramp-up period RUj , we define a function
MRj(Mj) as the marginal revenue for reserving Mj .
Specifically,

MRj(Mj)=

p+q∑
k=j+1

(πk−π`)P kj (Mj ,M
∗
j+1, · · ·,M∗p ), (2)

where P kj (Mj ,M
∗
j+1, · · ·,M∗p ) is the probability that

since RUj , kth (k>j) period is the first time that the firm
needs to purchase electricity from the grid, given optimal
reservations for following periods M∗j+1, · · ·,M∗p . The
marginal revenue measures the expected additional profit
that one more unit energy reservation may bring to
the firm. This one more unit reservation brings profit
exactly at the first time that the firm needs to purchase
energy from the grid, which is the economic intuition
of Eq. (2). In order to guarantee the uniqueness of
optimal reservation, we make the following technical
assumption:

Assumption 7: For each firm’s demand in each non
off peak period (denoted by X), its probability density
function fX(x) is differentiable, and fX(x)>0 if x ≥ 0.

With this assumption, we can show:

Lemma 3.1: If Assumption 7 is satisfied, then MRj(Mj)
is monotone and the optimal reservation is unique.

The optimal control policy in RUj balances the opportu-
nity costs of energy purchasing at current time slot and
the expected marginal revenue of reserving for future at
the crossing point:

πj − π` =MRj(M
∗
j ). (3)

The associated optimal investment is the capacity C∗

balancing the amortized fixed cost and the marginal

benefit of investment:

πs =
∑p+q

k=1
(πk − π`)P k0 (C∗,M∗1 , · · ·,M∗p ), (4)

where P k0 (C,M
∗
1 , · · ·,M∗p ) is the probability that since

the off peak, kth period is the first time that the firm
need purchase electricity from the grid, given storage
investment C and the optimal reservations M∗1 , · · ·,M∗p .

The above policy builds the foundation for analyzing
storage sharing market. It is used to calculate the social
optimal strategy benchmarking the efficiency of the shar-
ing mechanism, and to examine the firm’s strategy in the
sharing economy. Note that in both RU and RD periods,
the optimal storage control action for each individual
firm is to discharge the storage (while reserving certain
energy during RU periods). This greedy control action
will change dramatically when sharing is allowed.

IV. STORAGE SHARING AND INVESTMENT

It warrants designing a sequence of mechanisms to
coordinate firms’ price-arbitrage decisions. Those mech-
anisms respectively induce an aggregated investment
decision and a set of storage sharing market. We assume
that an aggregator coordinates the sharing market. We
want to emphasize that in our subsequent game theoretic
analysis, we do not make price taker assumption. In fact,
we explicitly consider firm’s competition, which leads to
the efficient sharing price.

Two coupled games respectively arrange the mechanism
of the storage investment and the associated storage
sharing rules. The firms first collectively determine the
storage capacity according to their cumulative net benefit
from the storage utilization. Then, the firms interact with
the aggregator for sharing the storage to arbitrage against
the ToU price in each period. Next, we severally describe
the two games.

A. Aggregator-Firm Interaction Game

The sharing market can be formulated as a Stackelberg
game economically enabling energy trading between the
firms. In this game, a non-for-profit aggregator pursues
for minimizing the total electricity cost in the industrial
park. The aggregator acts as the game leader and an-
nounces the sharing price in every period while the firms
respond to the price as followers. Thus, we can formally
define the Aggregator-Firm Interaction Game (AFIG) as
follows:

Aggregator-Firm Interaction Game (AFIG)
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Players: The aggregator is the leader, and the firms are
the followers.

Strategy Spaces: The aggregator sets the sharing prices
πaτ ∈ R+ at each period τ, τ = 1, · · · , p + q; the
firms respond to the prices by deciding their energy
procurement or supply Di

τ ∈ R, τ = 1, · · · , p + q
(positive Di

τ implies energy procurement for firm i at
period τ while negative Di

τ implies energy supply to
the sharing market).

Utilities: The non-for-profit aggregator seeks to mini-
mize the total energy cost in the industrial park with its
own budget balance guaranteed, while each firm seeks
to minimize its own electricity bill.

To better characterize each firm’s utility function, we
formulate the following optimization problem for each
firm i:

min
Di

1,··· ,Di
p+q

J iτ (Di
1, · · · , Di

p+q|πa1 , · · · , πap+q) =

E
{∑p+q

j=1
πajD

i
j

}
︸ ︷︷ ︸

cost in non off peak periods

+ π`E{Di
0}︸ ︷︷ ︸

recharge during off peak

,

(5)

The Di
τ ’s are used to meet firm i’s demand at each period

τ and simultaneously guarantee the storage temporal
constraints. We choose not to explicitly write out the
constraints, since we have derived the optimal (M,C)
policy for single firm. The aggregator can simple seek to
set πa1 , · · · , πap+q , such that the firms’ aggregate behavior
follows the optimal (M,C) policy.

Note that, in AFIG, we assume that the firms have
already purchased certain amount capacity of storage
systems, i.e., C1, · · · , Cn. Hence, the equilibrium prices
πa1 , · · · , πap+q are dependent on the storage capacities.
Next, we introduce the Capacity Decision Game for
firms to make the optimal storage investment decision
for itself.

B. Capacity Decision Game

In the Capacity Decision Game (CDG), the firms com-
pete for storage investment. Each firm’s decision bal-
ances between investing more capacity at the beginning
and exposing to more risks in the future. The profit
of investing more storage comes from: the higher cost
saving due to avoiding the energy procurement during
the high-price periods as well as the larger profit from

Fig. 3: The coupling between two games: CDG and AFIG.

selling the energy stored in the storage. We formally
introduce the CDG as follows:

Capacity Decision Game (CDG)

Players: All the firms in the industrial park.

Strategy Spaces: Storage investment decision Ci ∈ R+

for each firm i.

Utility: Each firm seeks to minimize its expected daily
cost Ii, i.e.,

min
Ci

Ii(Ci, C−i) =

πsCi︸︷︷︸
invest cost

+
∑p+q

j=1
E{πajDi

j}︸ ︷︷ ︸
cost in non off peak periods

+π`E{Di
0}.︸ ︷︷ ︸

recharge cost

(6)

Here, C−i =
∑
j 6=i Cj refers to the sum of all other

firms’ capacities. More precisely, note that πaj ’s are
determined by Ci and C−i, which naturally leads to the
game formulation. Di

j and Di
0 are actually related to Ci.

Remark: The outcome of CDG heavily depends on
the aggregator’s pricing scheme in AFIG. This is how
the two games are coupled together. We visualize the
coupling in Fig. 3 from two perspectives: the time
sequence and the analytical sequence. Specifically, in
the timeline, the firms first determine the capacity (the
decision of CDG), and then the aggregator arranges
the AFIG each day. However, to analyze the optimal
decisions to the two games, we need to solve them
in backward. We first analyze the N.E. (especially the
aggregator’s sharing prices) in the AFIG, and then, based
on this information, we can understand the optimal
storage investment decision for each firm in the CDG.

To ease the understanding of the sequential decision
making, we first analyze the coupling dynamics through
simple cases (three-tier ToU) and then generalize the
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results to general single peaked ToU.

V. MARKET ANALYSIS FOR THREE-TIER TOU

This section discusses the firms’ strategies and mar-
ket equilibria in the three-tier ToU, which reveals the
intuition of our proposed pricing mechanism, and the
corresponding firm strategies as well as associated sys-
tem impacts. There are two basic scenarios: the ramp-
up scheme (RUS) and the ramp-down scheme (RDS).
We separately discuss these two basic scenarios. We first
notice that the following two facts are true in both the
RUS and RDS.

Fact 1: Firms’ optimal strategy in the off-peak period is
to fully recharge the storage without sharing their energy.

Fact 2: Firms only reserve energy during RU periods.

These two facts allow us to narrow our focus on the
firms’ strategies during the peak and partial peak periods,
and their associated market dynamics.

A. Ramp-Down Scheme

In the RDS (as shown in Fig. 1 (b)), we model firm
i’s peak (partial peak) demand as random variable Xi

1′

(Xi
2′ ), and define the total demand during peak and

partial peak periods by Xc
1′ and Xc

2′ , i.e.,

Xc
1′ =

∑
i
Xi

1′ ; Xc
2′ =

∑
i
Xi

2′ .

Observing a greedy type policy is optimal, the follow fact
dictates the N.E. during the partial peak period when the
ith firm has ui units of electricity in the storage at the
beginning of partial peak period and has to consume xi2′
units of electricity (the realization of Xi

2′ ) in the partial
peak period.

Fact 3: The optimal electricity sharing price for maximal
social welfare in partial peak should be set as

πa∗partial =

{
π2′ , if xc2′ ≥ uc,
π`, if xc2′ < uc,

(7)

where xc2′ =
∑
i x

i
2′ , denoted the realization of Xc

2′ ; and
uc =

∑
i u

i.

This fact is simply the result of competition among firms
in different market conditions.

In peak period, we propose the optimal pricing strategy
for the aggregator to minimize the total cost of all firms
when the realized demand is xi1′ for firm i:

Mechanism 1: The optimal electricity sharing price in
peak period of the aggregator πa∗peak should be set as:

πa∗peak =

{
π1′ , if xc1′ > Cc,

π′, if xc1′ < Cc,

where π′ = π` + (π2′ − π`)Pr(xc2′ > Cc − xc1′), xc1′ =∑
i∈N x

i
1′ and Cc =

∑
i Ci.

The mechanism is derived from the aggregator’s system-
cost minimization problem thus guarantees the optimal
market equilibrium for social welfare, yielding the fol-
lowing lemma:

Lemma 5.1: The aggregator adopts pricing scheme in
Mechanism 1 will lead the firms to make storage op-
erations which supports social welfare (in terms of
minimizing the total cost), while achieves aggregator’s
budget balance (i.e., zero cost for the aggregator).

• When the total realized demand exceeds the total
amount of stored energy (xc1′ > Cc), each firm will
choose to greedily use up its storage since its own
cost monotonically increases with its reservation ui:

∂Ji
∂ui

= π1′ − π` − (π2′ − π`)Pr(xc2′ > uc)

> π1′ − π2′ > 0. (8)

• When the stored energy is sufficient to satisfy
realized the demand (xc1′ < Cc), we have

πa∗peak = π` + (π2′ − π`)Pr(xc2′ > Cc − xc1′)
= E{πa∗partial|xc1′}. (9)

This yields that the first order optimality condition
automatically holds:

∂Ji
∂ui

= πa∗peak − E{πa∗partial|xc1′} = 0. (10)

That is, the firms have no incentive to make any en-
ergy reservation in this case. Together with Eq. (8),
Mechanism 1 indeed leads to the optimal greedy
policy.

The firms’ total expected profit from owning the stor-
age, which is framed by the mechanism organizing the
sharing market, shapes their storage-investment decisions
in the CDG. Each firm balances the cost and benefit
from owning the storage by minimizing the total cost
Ii(Ci, C−i), including the investment cost and the total
expected cost from purchasing electricity.

Ii(Ci,C−i) = πsCi + E{πa∗peakDi
peak}

+ E{πa∗partialDi
partial}+ π`E{Di

off}, (11)
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where C−i = {Cj |j 6= i} implicitly influences the shar-
ing prices in peak and partial peak periods, and Di

peak,
Di
partial and Di

off are firm i’s electricity deficit during
the peak, partial peak and off peak period respectively.
The N.E. of the CDG is summarized in the following
theorem.

Theorem 5.2: If CDG admits a N.E., then it is unique
and can be characterized by

C∗i = λ1E[Xi
1′ |Xc

1′ = C∗c ]

+ λ2E[Xi
1′ +Xi

2′ |Xc
1′ +Xc

2′ = C∗c ],∀i, (12)

where

λ1 =
(π1′ − π2′)fXc

1′
(C∗c )

(π1′ − π2′)fXc
1′
(C∗c ) + (π2′ − π`)fXc

1′+X
c
2′
(C∗c )

,

λ2 =
(π2′ − π`)fXc

1′+X
c
2′
(C∗c )

(π1′ − π2′)fXc
1′
(C∗c ) + (π2′ − π`)fXc

1′+X
c
2′
(C∗c )

,

and C∗c is the unique solution to Eq. (13)

πs = (π1′ − π`)Pr(Xc
1′ > Cc)

+ (π2′ − π`)Pr(Xc
1′ < Cc, X

c
1′ +Xc

2′ > Cc). (13)

However, CDG may not always admit a N.E. in that
the cost function Ii(Ci, C−i) could be non-convex with
respect to Ci. We need the following technical alignment
conditions to guarantee the existence of the N.E.:

Theorem 5.3: If the following two conditions hold:

∂E[Xi
1′ |Xc

1′ = r]

∂r
≥ 0, ∀i, (14)

∂E[Xi
1′ +Xi

2′ |Xc
1′ +Xc

2′ = c]

∂c
≥ 0, ∀i, (15)

then CDG for RDS always admits a unique N.E..

Remark: The two technical alignment conditions merely
require on expectation, the energy consumption for each
individual firm should align with the trend of total
load. This can be guaranteed by checking the pairwise
correlations. Intuitively speaking, as long as there is
only a small portion of negative pairwise correlations,
the alignment conditions automatically hold. We have
observed the distribution of correlation for the residential
loads under the SCE Grandfathered Rate Plans [16].
The residential loads in Austin from Pecan street [17],
only produce 2.3% negative pairwise correlations in peak
period and 2.0% for the total demands in peak and the
following partial peak periods.

The above analysis presents how firms’ demands and
ToU designs determine sharing market design as well as

the storage investment.

B. Ramp-Up Scheme (RUS)

In contrast to the greedy strategy in RDS, the firms have
an extra choice that is to reserve electricity for future in
addition to sharing. Since the analysis is almost identical,
we will only present necessary intuition for the analysis
in RUS. We denote firm i’s random partial peak and
peak demand by Xi

1 and Xi
2, respectively, and denote

its realized partial and peak demand by xi1 and xi2.

Mechanism 2: The optimal pricing scheme for the ag-
gregator in RUS is to set πapeak and πapartial as follows:

πa∗peak =

{
π2, if xc2 > uc,

π`, if xc2 < uc,
(16)

πa∗partial =

{
π1, if xc1 > Cc −M,

π′′, if xc1 < Cc −M,
(17)

where xc2 =
∑
i x

i
2, uc =

∑
i u

i and π′′ = π` + (π2 −
π`)Pr(Xc

2 > Cc − xc1), and

M = F−1Xc
2

(
π2 − π1
π2 − π`

)
. (18)

We can show the optimality of Mechanism 2 through the
following lemma:

Lemma 5.4: The aggregator adopts pricing scheme in
Mechanism 2 will lead the firms to make storage op-
erations which supports social welfare (in terms of
minimizing the total cost), while achieves aggregator’s
budget balance (i.e., zero cost for the aggregator).

We would also like to point out that in RUS, there
exists another CDG and this time the technical alignment
condition to guarantee the existence of N.E. is different:

Theorem 5.5: If for each firm i,

∂E[Xi
1 +Xi

2|Xc
1 +Xc

2 = r,Xc
1 < r −M ]

∂r
≥ 0, (19)

Then, the CDG for RUS admits a unique N.E..

Remark: Again, this technical alignment condition is
not hard to meet. It also requires on expectation, the
energy consumption for each individual firm should align
with the trend of total load.
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VI. GENERAL SINGLE PEAKED TOU SCENARIO

Having the intuition from analyzing three-tier ToU
schemes, we know that the whole decision process
couples with two games: AFIG and CDG. In this section,
we analyze the sharing mechanism for single peaked
ToU scheme. Again, the firms will follow the agggre-
gator’s price signal to make their sharing decisions to
minimize their own cost in the non off peak periods, and
make storage sizing decisions according to CDG’s N.E..
However, the temporal coupling brings huge difficulties.

For τ th non off peak period, ucτ−1 refers to the total
energy left in the storage at the beginning of the period;
xcτ refers to the realized total demand in the period;
P kτ (x

c
τ , u

c
τ−1) refers to the probability that since τ th non

off peak period, kth period (k>τ ) is the first time that
the collective need purchase electricity from grid, based
on the realized demand xcτ and the initial reservation
ucτ−1. Based on these quantities, we can use the same
intuition of Eq. (2) to obtain the expected marginal profit
for reserving energy at each time slot. On the other hand,
the marginal cost for reserving energy at time τ is simply
πaτ , the sharing price that the energy set in τ th period.
And we seek to design the optimal prices (πa∗τ ’s) of the
aggregator.

For jth non off peak period, j = p+q, · · ·, 1, we propose
that the sharing price πaj should satisfy

πa∗j =π`+

p+q∑
k=j

(πk−π`)P kj (xcj , ucj−1). (20)

Notice that if realized demand (xcj) is more than total
energy left (ucj−1), then the collective need purchase
electricity from grid in period this period; i.e., P jj = 1,
yielding πa∗j = πj , which coincides with intuition.

This sharing mechanism leads to another CDG: if the
game admits a N.E., it is unique and given by

C∗i =

q∑
l=1

ρl(C
∗
c )E

[
p+l∑
k=1

Xi
k

∣∣∣∣∣
p+l∑
k=1

Xc
k =C∗c ,

n∑
k=1

Xc
k < C∗c −M∗n, 1 ≤ n ≤ p

]
,

(21)

where

ρl(C
∗
c )=

(πp+l − πp+l+1)f{
∑p+l

k=1X
c
k}
(C∗c )∑q

m=1(πp+m − πp+m+1)f{
∑p+m

k=1 Xc
k}
(C∗c )

,

and C∗c is the unique solution of

πs=
∑p+q

k=1
(πk−π`)P k0 (Cc), (22)

where πp+q+1=π`, P k0 (Cc) refers to the probability of
that since off peak, kth non off peak period is the first
time that the collective need purchase electricity grid,
based on investment Cc. To ensure the existence of N.E.,
we need the following technical alignment conditions:

Theorem 6.1: If ∀RDj , j : 1 ≤ j ≤ q,

∂Gij(r)

∂r
≥ 0, ∀i (23)

where

Gij(r) =E

[
p+j∑
k=1

Xi
k

∣∣∣∣∣
p+j∑
k=1

Xc
k=r,

n∑
k=1

Xc
k < r −M∗n, 1 ≤ n ≤ p

]
,

then the N.E. of CDG in the single peaked multi-tier
ToU pricing exists.

Remark: The N.E.’s of AFIG and CDG support social
welfare for all firms. By the definition of equilibrium,
they can automatically ensure individual rationality. In
fact, they enjoy additional properties, as summarized in
the following proposition:

Proposition 6.2: The equilibria of the sharing markets
and CDG in single peaked multi-tier ToU pricing scheme
enjoy the following properties:

(a) Coalitional stability: No subset of firms are better off
by defecting to form their own coalition.

(b) No pure-strategy play: If firm i has no demand in
all periods other than the off peak, it will not invest
in storage. Hence, the aggregator can be in a neutral
position to coordinate the market.

VII. SIMULATION STUDIES

To evaluate the performance of our control policy and
sharing mechanism, we use real household profiles (in
summer of 2016) from Austin in Pecan Street [17].
We compare our control policy with a simple policy
where the decisions for all the firms across the day are
decoupled. That is, the firms won’t reserve energy for
future use. They will focus on the arbitrage (and sharing)
opportunities between off peak period and other periods.
In a single peaked pricing scheme with k periods, this
simple policy is the same as solving k−1 2-tier (one
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Fig. 4: SCE Grandfathered Rate Plans ToU-D-A [16].

Fig. 5: Diversity of partial peak and peak demands.

non off peak and off peak) storage sharing problems.
We refer to this simple policy as “2-tier division”.

We use a real 3-tier ToU pricing scheme as shown in
Fig. 4 for simulation. We use Tesla Power 2.0 Lithium-
ion to estimate πs: amortized over 10-year lifetime, the
Tesla battery costs 14 ¢/kWh per day [15].

Pairwise correlation coefficient reflects the sharing mar-
ket conditions. The pairwise correlation coefficient be-
tween the consumptions of firm a and firm b in jth period
can be calculated as follows:

ρabj =
E{Xa

jX
b
j} − E{Xa

j }E{Xb
j}√

Var{Xa
j } · Var{Xb

j}
. (24)

If most coefficients are around 1, then there will be
little room for sharing. Figure 5 plots the histogram of
the pairwise correlation coefficients of the real demands
in different periods. We can observe that the mean
coefficient is around 0.16 while only 7% of coefficients
exceed 0.5. This illustrates certain room for sharing
markets in practice.

Figure 6 compares the different control policies. Our
proposed sharing mechanism achieves about 7 ¢/day
more profit compared with 2-tier division and about 23
¢/day more profit compared with no sharing scenario.
If the industrial park owner strategically selects the
firms with more diversified load profiles, our sharing

Fig. 6: Capacity and profit for different mechanisms. The
shaded regions in Fig. 6 reflects the interval between
mean-var/20 and mean+var/20 over different
community size.

mechanism can yield more profits.

We highlight the impact of independent demand assump-
tion is not too restrictive in Fig. 7. The offline optimal
denotes the storage operation with all the future demand
information, which yields 33.0% average cost saving
compared to the benchmark when there is no storage in
the system at all. Our proposed optimal storage sharing
mechanism achieves 30.4% expected cost saving. The
2.6% difference is the aggregate effects of unknown
future information and the independent demand assump-
tion.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a sharing mechanism for electricity storage
for single peaked ToU pricing scheme. We show that this
sharing mechanism supports the maximal social welfare.

We are interested in understanding the sharing mecha-
nism for the dynamic pricing schemes. The uncertainties
in the electricity rates will incur challenge for theoretical
analysis. It will be also interesting to consider the sharing
market where the firms make their decisions sequentially
instead of simultaneously. This scenario reflects the
dynamics of firm’s joining the industrial park.
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“Optimal control of end-user energy storage,” IEEE Trans. on
Smart Grid, vol. 4, no. 2, pp. 789–797, June 2013.

[8] Y. Zhao, J. Qin, R. Rajagopal, A. Goldsmith, and H. V. Poor,
“Wind aggregation via risky power markets,” IEEE Trans. Power
Syst., vol. 30, no. 3, pp. 1571–1581, May 2015.

[9] E. Y. Bitar, E. Baeyens, P. P. Khargonekar, K. Poolla, and
P. Varaiya, “Optimal sharing of quantity risk for a coalition of
wind power producers facing nodal prices,” in Proc. of IEEE
ACC. IEEE, 2012, pp. 4438–4445.

[10] P. Chakraborty, E. Baeyens, P. P. Khargonekar, K. Poolla, and
P. Varaiya, “Analysis of solar energy aggregation under various
billing mechanisms,” IEEE Trans. on Smart Grid, 2018.

[11] B. K. Perera, P. Ciufo, and S. Perera, “Power sharing among
multiple solar photovoltaic (pv) systems in a radial distribution
feeder,” in Proc. of IEEE AUPEC. IEEE, 2013, pp. 1–6.

[12] Y. Zhao and H. Khazaei, “An incentive compatible profit alloca-
tion mechanism for renewable energy aggregation,” in Proc. of
IEEE PESGM, July 2016, pp. 1–5.

[13] W. Tushar, B. Chai, C. Yuen, S. Huang, D. B. Smith, H. V.
Poor, and Z. Yang, “Energy storage sharing in smart grid: A
modified auction-based approach,” IEEE Trans. on Smart Grid,
vol. 7, no. 3, pp. 1462–1475, May 2016.

[14] P. Chakraborty, E. Baeyens, K. Poolla, P. P. Khargonekar, and
P. Varaiya, “Sharing storage in a smart grid: A coalitional game
approach,” IEEE Trans. on Smart Grid, 2018.

[15] Powerwall, tesla. [Online]. Available: http://alturl.com/hkgir

[16] SCE Grandfathered Rate Plans: TOU-D-A. [Online]. Available:
http://alturl.com/66iyu

[17] Pecan street. [Online]. Available: http://alturl.com/zjqk2

APPENDIX

A. Assumption 5 Relaxation

The imperfect charging efficiency and discharging ef-
ficiency will heavily affect the storage sharing mech-
anism characterization. Denote the charging efficiency
by ηi and the discharging efficiency by ηo. Below, we
show how to characterize the (M,C) control policy, the
sharing price πaj ’s, the optimal storage investment c∗i for
each firm i, and the technical alignment conditions, all
in terms of ηi and ηo.

With the charging and discharging efficiency, The opti-
mal collective reservation in jth non off peak period Mj

can be formulated as:

πjηo−π`/ηi=
p+q∑
k=j+1

(πkηo−π`/ηi)P kj (Mj ,M
∗
j+1, ···,M∗p ).

(25)

For jth non off peak period, j = p+q, · · ·, 1, the sharing
price πaj should satisfy

πa∗j ηo=π`/ηi+

p+q∑
k=j

(πkηo−π`/ηi)P kj (xcj , ucj−1). (26)

This sharing mechanism again leads to a CDG: if the
game admits a N.E., it is unique and given by

C∗i =

q∑
l=1

ρl(C
∗
c )E

[
p+l∑
k=1

Xi
k

∣∣∣∣∣
p+l∑
k=1

Xc
k =C∗c ηo,

n∑
k=1

Xc
k < (C∗c −M∗n)ηo, 1 ≤ n ≤ p

]
,

(27)

where

ρl(C
∗
c )=

(πp+l−πp+l+1)f{
∑p+l

k=1X
c
k}
(C∗c ηo)∑q

m=1(πp+m − πp+m+1)f{
∑p+m

k=1 Xc
k}
(C∗c ηo)

,

and C∗c is the unique solution of

πsηo=
∑p+q

k=1
(πkηo−π`/ηi)P k0 (Cc), (28)

http://alturl.com/hkgir
http://alturl.com/66iyu
http://alturl.com/zjqk2
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where πp+q+1=π`/(ηiηo), P k0 (Cc) refers to the proba-
bility of that since off peak, kth non off peak period is
the first time that the collective need purchase electricity
grid, based on investment Cc.

To ensure the existence of N.E., we need the following
technical alignment conditions:

Proposition A.1: If ∀RDj , j : 1 ≤ j ≤ q,

∂Gij(r)

∂r
≥ 0, ∀i (29)

where

Gij(r) =E

[
p+j∑
k=1

Xi
k

∣∣∣∣∣
p+j∑
k=1

Xc
k=rηo,

n∑
k=1

Xc
k < (r −M∗n)ηo, 1 ≤ n ≤ p

]
,

then the N.E. of CDG in the single peaked multi-tier
ToU price exists.

B. Optimality of the Control Policy

Remark: We only prove those results for the general
single peaked ToU in the following parts. Results for
the two basic 3-tier ToU schemes are special cases of
the general scenario and we only use them to obtain
more intuitions in the main content.

In this subsection, we show that the arbitrage control
policy proposed in Section III-B can bring maximal
profit using backward induction. Firstly, we prove that
the greedy policy is optimal in RD periods. Secondly, we
prove that the threshold policy is optimal in RU periods
and characterizes the best thresholds at the same time.
Finally, we characterize the optimal investment decision.

For jth non off peak period of the day, we denote energy
left in the storage at the beginning by uj−1, and energy
left in the storage at the end by uj , the electricity we
need to purchase by Dj and the realized demand in this
period as xj . Let D0 be the electricity amount we need
to purchase in off peak for recharge.

Greedy Policy in RD Periods Is Optimal

We first examine the trivial case in RDq , the last non off
peak period. It is straightforward to see that the optimal
strategy is to discharge the storage as much as possible,
which constructs our induction basis.

Now we prove the optimality for the rest RD periods.
Assume that greedy policy is optimal from RDq to

RDj+1. With this hypothesis, we want to show that
greedy policy is optimal in RDj .

The total cost Jp+j in RDj and following RD periods
is as follows:

Jp+j(up+j) = πp+j(up+j + xp+j − up+j−1)︸ ︷︷ ︸
buy deficit in RDj

+

p+q∑
k=p+j+1

πkE{Dk}︸ ︷︷ ︸
buy deficit in following RDs

+π`E{D0}︸ ︷︷ ︸
recharge cost

. (30)

Examining Jp+j’s first order derivative with respect to
up+j , we can conclude that

∂Jp+j
∂up+j

> 0, (31)

which means the greedy policy is optimal in RDj .

By now we complete our proofs for all RD periods, we
focus on the RU periods in the subsequent analysis.

Threshold Policy in RU periods
The induction basis is to examine the threshold policy
for RUp is optimal. This is a special case of the (M,C)
policy in [5]. Based on this induction basis, we can use
backward induction to complete our proof. To guarantee
the optimal reservation is unique in the ramp-up peri-
ods, we need the derivative the total cost Jj in RUj
and following periods with respect to uj is monotone
increasing, therefore we make the following technical
assumption.

Assumption 7: For each firm’s demand in each non
off peak period (denoted as X), its probability density
function fX(x) is differentiable, and fX(x)>0 if x ≥ 0;

Investment decision
We can regard the investment decision as a reservation
decision in the virtual period RU0 (off peak) with the
rate π0=πs+π`, then we get the optimal size C∗ which
satisfies Eq. (4).

By now we have proved our control policy achieves
maximal profit. �

C. Characterize N.E. of CDG

In this subsection we characterize the N.E. of the CDG,
and prove it supports maximal social welfare. Before we
start, we define some useful functions for subsequent
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analysis.

δ(Cc) =

q∑
m=1

(πp+m − πp+m+1)f{
∑p+m

k=1 Xc
k}
(Cc),

γi(Cc)=

q∑
j=1

ρj(Cc)E

[
p+j∑
k=1

Xi
k

∣∣∣∣∣
p+j∑
k=1

Xc
k=Cc,

n∑
k=1

Xc
k < Cc −M∗n, 1 ≤ n ≤ p

]
,

and

ρl(Cc) =
(πp+l − πp+l+1)f{

∑p+l
k=1X

c
k}
(Cc)∑q

m=1(πp+m − πp+m+1)f{
∑p+m

k=1 Xc
k}
(Cc)

.

Given other firms’ investment decision C−i, firm i’s
optimal investment decision can be stated as:

C∗i = argmin
Ci

Ii(Ci, C−i). (32)

Ii is the total electricity cost of firm i.

Ii(Ci, C−i) = πsCi︸︷︷︸
invest cost

+
∑p+q

j=1
E{πa∗j Di

j}︸ ︷︷ ︸
cost in non off peak periods

+π`E{Di
0}.︸ ︷︷ ︸

recharge cost

(33)

where Di
j is the deficit of firm i in kth non off peak

period, and Di
0 is the amount of energy that firm i needs

to recharge its storage. Negative value means the firm
shares its energy to others and obtain certain profit.

Due to our pricing mechanisms, single firm’s concrete
reservations at N.E. in each non off peak period do not
influence its profit as we analyzed in Section IV-A. Thus,
without loss of generality, we suppose firm i has zero
reservation in each non off peak period. Then

Di
1 = xi1 − Ci,

Di
j = xij , j = 2, · · · , p+ q,

Di
0 = Ci.

The derivative of Ii with respect to Ci is

∂Ii
∂Ci

=πs−
p+q∑
k=1

(πk−π`)P k0 (Cc)− δ(Cc)(γi(Cc)− Ci).

(34)

Define

α = πs −
p+q∑
k=1

(πk−π`)P k0 (C∗c ), (35)

β = δ(C∗c ). (36)

Note that Assumption 7 guarantees that β > 0 and C∗ >
0,∀i. The definition of N.E. guarantees that for each firm
i, its cost reaches minimum at C∗i :

∂Ii
∂Ci

∣∣∣∣
Ci=C∗i

= α− β(γi(C∗c )− C∗i ) = 0. (37)

Summing over all firms yields

nα− β(
∑

i
γi(C

∗
c )− C∗c ) = 0, (38)

where n is the number of firms. Note that
∑
i γi(C

∗
c ) =

C∗c , we can conclude that

α = 0. (39)

Hence, Eq. (34) dictates that for each firm i,

C∗i = γi(C
∗
c ). (40)

This implies C∗c satisfying Eq. (22), the optimal invest-
ment for the collective, in other words, the firms make
investment decisions which are optimal for the collective
in the N.E.. �

D. Alignment Conditions for the Existence of N.E.

We consider firm i’s decision Ci when fixing the deci-
sions of all other firms C∗−i as

C∗k = γk(C
∗
c ), k 6= i.

Define

ν =
∑

k 6=i
C∗k .

According to (34), the derivative of expected daily cost
of firm i with respect to Ci is

∂Ii
∂Ci

= πs −
p+q∑
k=1

(πk−π`)P k0 (Ci + ν)︸ ︷︷ ︸
φ(Ci)

− δ(Ci + ν) (γi(Ci + ν)− Ci)︸ ︷︷ ︸
ψ(Ci)

. (41)

We obtain φ(Ci) is strictly monotone increasing with
respect to Ci in that

∂2φ(Ci)

∂C2
i

= (πp+q − `)θ0(Ci + ν) > 0, (42)

where

θ0(Ci + ν) =
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∫ Ci+ν−M∗1

0

fX1
(x1)···

∫ Ci+ν−
p−1∑
k=1

xk−M∗p

0

fXp
(xp)

f{
∑q

k=1Xp+k}(Ci+ν−
p∑

k=j+1

xk)dxp ···dx1 > 0.

Here we use Assumption 7 once more.

To verify the monotonicity of ψ(Ci), we make critical
use of the technical alignment conditions in (23) to
conclude

1 =
∑
k

∂Gkj (r)

∂r︸ ︷︷ ︸
≥0

=⇒
∂Gij(r)

∂r
≤ 1.

And notice that
p∑
j=1

ρj(Ci + ν) = 1.

It then follows that

∂ψ(Ci)

∂Ci
=

p∑
j=1

ρj(Ci + ν)
∂Gij(Ci + ν)

∂(Ci + ν)
− 1 ≤ 0.

This means ψ(Ci) is monotonically decreasing with
respect to Ci.

We obtain φ(Ci) is strictly monotone increasing with
respect to Ci and ψ(Ci) is monotone decreasing, so
Ii(Ci) is strictly monotone increasing according to (41).
Notice φ(C∗i ) = ψ(C∗i ) = 0. As a result, we have

∂Ii
∂Ci


< 0 Ci < C∗i ,

= 0 Ci = C∗i ,

> 0 Ci > C∗i .

This proves that C∗i is the global minimizer of firm i’s
cost, establishing that (C∗1 , c

∗
2, · · · , C∗n) is the unique

N.E.. �

E. Proof of Proposition 6.2

(a) Coalitional Stability

For firms {1, 2, ..., n}, we form coalitions Aj ⊂
{1, ..., n} such that

Ai ∩ Aj = ∅,
⋃
k

Ak = {1, ..., n}.

The initial CDG G induces a new CDG H with players
Ai and associated cost

IAi =
∑
k∈Ai

Ik(C1, .., Cn).

Since the alignment condition (23) holds for CDG G, we
have for any coalition Ai,

∂GAi
j (r)

∂r
=
∑
k∈Ai

∂Gkj (r)

∂r
≥ 0.

Thus, the alignment condition holds for the induced
CDG H. It therefore admits a unique N.E. D∗ where

D∗Ai
= γAi

(C∗c ) =
∑
k∈Ai

γk(C
∗
c ).

Now individual rationality of D∗ in CDGH is equivalent
to coalitional stability of CDG G, proving the claim.

(b) If a firm i has no demand, then C∗i = 0 according
to (21). �
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